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Abstract
This paper develops a logic programming language, ASPEP, that extends answer set programming
language with a new epistemic operator <x where x ∈ {],⊇}. The operator are used between two
literals in rules bodies, and thus allows for the representation of introspections of preferences in
the presence of multiple belief sets: G <] F expresses that G is preferred to F by the cardinality
of the sets, and G <⊇ F expresses G is preferred to F by the set-theoretic inclusion. We define
the semantics of ASPEP, explore the relation to the languages of strong introspections, and study
the applications of ASPEP by modeling the Monty Hall problem and the principle of majority.
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1 Introduction

Preferences have extensively been studied in disciplines such as economy, operations research,
psychology, philosophy, and artificial intelligence as showed in [8], [18], [2], [15], and [7] etc.
In [25], von Wright defined preference as a relation between states of affairs. In formal logical
languages, states of affairs are typically represented as propositions. Follow this tradition, one
of the important directions in artificial intelligence is the logical representation and reasoning
of preferences. Many extensions of the languages of answer set programming (ASP) have been
developed for handling preferences due to the strong power of ASP in expressing defaults.
Those languages provide elegant methodologies for modeling the intractable problems with
defaults and preferences. Examples include the ordered logic programming [20], the logic
programming with ordered disjunction [4], the answer set optimization [5][3], the prioritized
logic programming [19], the CR-prolog [1], the possibilistic answer set programming [17] etc.
The preferences handled in those answer set programs are used to evaluate the preferred
answer sets via specifying the precedence over the rules or the literals in rules heads.

Different from the above answer set programming paradigms with preferences, our purpose
in this paper is to represent introspections of preferences over propositions in the presence
of multiple belief sets by proposing a new epistemic operator <x where x ∈ {],⊇}. For
propositions F and G, F <] G expresses that F is true in more belief sets than G, and can
be read as “F is more possible than G”. And F <⊇ G expresses that F is always true in the
belief sets where G is true, which tells “F is antecedent to G” or “F is true whenever G is
true” etc. We first demonstrate this motivation using an example from our family life.

1 This work is supported by the National Key Research and Development Plan of China (No.
2017YFB1002801).
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3:2 Introspecting Preferences in Answer Set Programming

Table 1 Combo of Attractions.

(a) Packages Information

Package Attractions Ages

1
a1 Kids,teens
a2 Adults
a3 teens

2
b1 All
b2 Adults
b3 Kids

3
c1 All
c2 teens
c3 Kids

(b) Possible Combinations of Attractions]

Package Combinations Age Interest

1
{a1,a2} All
{a1,a3} Kids,teens
{a2,a3} Adults,teens

2
{b1,b2} All
{b1,b3} All
{b2,b3} Adults,Kids

3
{c1,c2} All
{c1,c3} All
{c2,c3} teens,Kids

I Example 1. Consider three discount packages offered by an amusement resort as showed
in Table 1(a)2. Each of them contains three attractions but only two of them are available.
A family is allowed to buy at most one package in advance, and may determine which two
attractions to choose according to the actual situations, such as the waiting time, physical
situation, when they are in the resort. For instance, a family with a kid child and a teenage
boy decide which package to buy by the following criteria: (1). The family prefer the package
that promises more opportunities for the kid child; (2). The parents request that their teenage
boy has an attraction to visit whenever they visit an attraction3.

Directly, the packages information allow the family to have nine possible combinations of
attractions as showed in the table 1(b).

And the family can have the following three conclusions via simple counting.

(i) Both package 2 and package 3 provide more opportunities for the kid child than
package 1.

(ii) Both package 1 and package 3 guarantee that the teenage boy has an attraction to visit
whenever the parents visit an attraction.

(iii) By (i) and (ii), Package 3 should be the favorite package for the family.

It is easy to get the combinations by encoding the packages information and the purchase
requirements in a logic program Πep containing the following rules:

2 In the tables, “All” means that there is no age limitation.
3 To avoid the boy running around without parents.
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1{package(1); package(2); package(3)}1
2{attraction(a1); attraction(a2); attraction(a3)}2← package(1)
2{attraction(b1); attraction(b2); attraction(b3)}2← package(2)
2{attraction(c1); attraction(c2); attraction(c3)}2← package(3)
age(kids)← attraction(a1)
age(adults)← attraction(a2)
age(teens)← attraction(a3)
age(all)← attraction(b1)
age(adults)← attraction(b2)
age(kids)← attraction(b3)
age(all)← attraction(c1)
age(teens)← attraction(c2)
age(kids)← attraction(c3)
age(kids)← age(all)
age(teens)← age(all)
age(adults)← age(all)
age_interest(X,Y )← package(X), age(Y ).

that has exactly nine answer sets which correspond to the nine possible combinations in
Table 1. We now expect to expand Πep by rules that is able to intuitively represent the
criteria such that the result program is able to give the conclusions as showed in (i),(ii), and
(iii). It is easy to see, for achieving the above goal, our representation and reasoning system
should have an introspective ability that is able to look at the preferences over the beliefs
with regard to those belief sets/answer sets.

Specifically, this paper will address the issue of introspection of preferences illustrated in
the above example. We develop a logic programming language, ASPEP, that extends the
answer set programming language with a new epistemic operator <x where x ∈ {],⊇}. In
ASPEP, the operator is used between two literals in rules bodies, and thus allows for the
representation of introspections of preferences. Consider rules r]:

prefer(X,Y, kid)← age_interest(X, kids) <] age_interest(Y, kids),
package(X), package(Y )
and r⊆:
request(X)← age_interest(X, teens) <⊇ age_interest(X, adults), package(X)

They are able to represent the criteria (1) and (2) in the motivation example respectively.
The rest of the paper is organized as follows. In the next section, we review the basic

principles underlying the answer set semantics of logic programs. In section 3, we introduce
syntax and semantics of ASPEP. In section 4, we consider the relationship between ASPEP

and the strong introspection specification languages. In section 6, we explore the applications
of ASPEP. We conclude in section 7 with some further discussion.
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3:4 Introspecting Preferences in Answer Set Programming

2 Answer Set Programming

Throughout this paper, we assume a finite first-order signature σ that contains no function
constants of positive arity. There are finitely many Herbrand interpretations of σ, each of
which is finite as well. We follow the description of ASP from [14]. A logic program over σ is
a collection of rules of the form

l1 or ... or lk ← lk+1, ..., lm, not lm+1, ..., not ln

where the ls are literals of σ, not is called negation as failure, or is epistemic disjunction.
The left-hand side of a rule is called the head and the right-hand side is called the body.
A rule is called a fact if its body is empty and its head contains only one literal, and a
rule is called a denial if its head is empty. A logic program is called ground if it contains
no variables. [14] intuitively interprets that an answer set associated with a ground logic
program is a set of beliefs (collection of ground literals) and is formed by a reasoner guided
by three principles:

Rule’s Satisfiability principle: Believe in the head of a rule if you believe in its body.
Consistency principle: Do not believe in contradictions.
Rationality Principle: Believe nothing you are not forced to believe.

The definition of the answer set is extended to any non-ground program by identifying it
with the ground program obtained by replacing every variable with every ground term of
σ. It is worthy noting that > can be removed if it is in the body of a rule, the rule can be
removed from the program if ⊥ is in its body.

3 The ASPEP Language

3.1 Syntax
An ASPEP program Π is a set of rules of the form

l1 or ... or lk ← e1, ..., em, s1, ..., sn.

where k ≥ 0, m ≥ 0, n ≥ 0, the ls are literals in first order logic language and are called
objective literals here, es are extended literals which are 0-place connectives > and ⊥, or
objective literals possibly preceded by not, ss are subjective literals of the form e <x e

′ or
e 6<x e

′ where e and e′ are extended literals and x ∈ {],⊇}. The left-hand side of a rule is
called the head and the right-hand side is called the body. As in usual logic programming, a
rule is called a fact if its body is empty and its head contains only one literal, and a rule is
called a denial if its head is empty. We use head(r) to denote the set of objective literals in
the head of a rule r and body(r) to denote the set of extended literals and subjective literals
in the body of r. Sometimes, we use head(r) ← body(r) to denote a rule r. The positive
body of a rule r is composed of the extended literals containing no not in its body. We use
body+(r) to denote the positive body of r. r is said to be safe if each variable in it appears
in the positive body of the rule. We will use sl(Π) to denote the set of subjective literals
appearing in Π.

It is clear that an ASPEP program containing no subjective literals is a disjunctive logic
program that can be dealt with by ASP solvers like DLV [9], CLASP [10].

It is worthy of noting that, for convenient description, we will use e �x e
′ to denote the

strict preference that can be expressed by the conjunction of e <x e
′ and e′ 6<x e, and use

e ≈x e
′ to denote the preferential indifference that can be expressed by the conjunction of
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e �x e′ and e′ �x e, and use e ≡x e′ to denote the preferential equivalence that can be
expressed by the conjunction of e <x e

′ and e′ <x e.

3.2 Semantics
We will restrict our definition of the semantics to ground programs. However, we admit
rule schemata containing variables bearing in mind that these schemata are just convenient
representations for the set of their ground instances. In the following definitions, l is used to
denote a ground objective literal, e is used to denote a ground extended literal, and s is used
to denote a ground subjective literal.

3.2.1 Satisfiability
Let W be a non-empty collection of consistent sets of ground objective literals, (W,w) is a
pointed ASPEP structure of W where w ∈W . W is a model of a program Π if for each rule
r in Π, r is satisfied by every pointed ASPEP structure of W . The notion of satisfiability
denoted by |=ep is defined below.

(W,w) |=ep >
(W,w) 6|=ep ⊥
(W,w) |=ep l if l ∈ w
(W,w) |=ep not l if l 6∈ w
(W,w) |=ep e <] e′ if |{w ∈W : (W,w) |=ep e}| ≥ |{v ∈W : (W, v) |=ep e

′}|
(W,w) |=ep e <⊇ e′ if {w ∈W : (W,w) |=ep e} ⊇ {v ∈W : (W, v) |=ep e

′}
(W,w) |=ep e 6<x e′ if (W,w) 6|=ep e <x e′, x ∈ {],⊇}

Then, for a rule r in Π, (W,w) |=ep r if
∃l ∈ head(r): (W,w) |=ep l, or
∃t ∈ body(r): (W,w) 6|=ep t.

The satisfiability of a subjective literal does not depend on a specific belief set w in W , hence
we can simply write W |=ep s if (W,w) |=ep s and say the subjective literal s is satisfied by
W , and we can simply write W 6|=ep s if (W,w) 6|=ep s and say the subjective literal s is not
satisfied by W .

We consider the properties of the above satisfiability by some axioms of the strict
preference relation proposed by von Wright in [25]. Let W be a non-empty collection of
consistent sets of ground objective literals, the following properties of the satisfiability |=ep
hold.
�x Asymmetry. W |=ep e �x e′ =⇒W |=ep e

′ �x e

�] Inescapability. W |=ep e �] e′,W |=ep e
′′ �] e′ =⇒W |=ep e �] e′′

�x Transitivity. W |=ep e �x e′,W |=ep e
′ �x e′′ =⇒ W |=ep e �x e′′

�x Irreflexivity. W |=ep e �x e

≈x Reflexivity. W |=ep e ≈x e

≈x Symmetry. W |=ep e ≈x e′ =⇒W |=ep e
′ ≈x e

≈] Transitivity.W |=ep e ≈] e′,W |=ep e
′ ≈] e′′ =⇒ W |=ep e ≈x e′′

�] R-Analogy. W |=ep e �] e′,W |=ep e
′ ≈] e′′ =⇒ W |=ep e �] e′′

�] L-Analogy. W |=ep e ≈] e′,W |=ep e
′ �] e′′ =⇒ W |=ep e

′ �] e′′

where x ∈ {],⊇}.
In addition, let W be a non-empty collection of consistent sets of ground objective literals,

it is easy to find that
W |=ep e <x e

W |=ep > <x e

ICLP 2018



3:6 Introspecting Preferences in Answer Set Programming

W |=ep e <x ⊥
W |=ep e 6<⊇ enot

where enot is l if e is not l, and enot is not l if e is l, and >not is ⊥, and ⊥not is >.

3.2.2 World Views
We first give the definition of candidate world view for disjunctive logic programs and arbitrary
ASPEP programs respectively. Then, we define world view for ASPEP programs by presenting
a minimizing preferences principle.

I Definition 2. Let Π be a disjunctive logic program, the candidate world view of Π is the
non-empty set of all its answer sets, written as AS(Π).

I Definition 3. Let Π be an arbitrary ASPEP program, and W is a non-empty collection of
consistent sets of ground objective literals in the language of Π, we use ΠW to denote the
disjunctive logic program obtained by removing the epistemic operators using the following
reduct laws
1. removing from Π all rules containing subjective literals not satisfied by W .
2. removing all other occurrences of subjective literals of the form e <x e or > <x e or

e <x ⊥ or e 6<⊇ enot.
3. replacing all other occurrences of subjective literals of the form e <x > by e.
4. replacing all other occurrences of subjective literals of the form ⊥ <x e by enot.
5. replacing other occurrences of subjective literals of the form e1 <x e2 or e1 6<x e2 by four

conjunctions e1, e2, and enot
1 , e2, and e1, e

not
2 , and enot

1 , enot
2 respectively.

where enot is l if e is not l, and enot is not l if e is l, and >not is ⊥, and ⊥not is >. Then, W
is a candidate world view of Π if W is a candidate world view of ΠW .

We use cwv(Π) to denote the set of candidate world views of an ASPEP program Π. ΠW is
said to be the reduct of Π with respect to W . Such a reduct process eliminates subjective
literals so that the belief sets in the model are identified with the answer sets of the program
obtained by the reduct process. The intuitive meanings of the reduct laws can be described
as follows:

The first reduct law directly comes from the notion of Rule Satisfiability and Rationality
Principle in answer set programming which means if a rule’s body cannot be satisfied
(believed in), the rule will contribute nothing;
The second reduct law stems from the fact e <x e and > <x e and e <x ⊥ and e 6<⊇ enot

are tautologies.
The third reduct law states that, you are forced to believe e with regard to each belief
set due to the fact that e <x > implies e is true with regard to each answer set and the
Rationality Principle in ASP.
The fourth law states that, you are forced to believe enot with regard to each belief set
due to the fact that ⊥ <x e implies e is not true with regard to each answer set.
The last law states that, both the literals e1 and e2 in e1 <x e2 may be true or not with
regard to each belief set.

I Definition 4. Let Π be an arbitrary ASPEP program, and W is a non-empty collection of
consistent sets of ground objective literals in the language of Π, W is a world view of Π if it
satisfies the conditions below

W ∈ cwv(Π)
Minimizing preferences principle: @V ∈ cwv(Π)({s̄|s ∈ sl(Π) ∧ V |=ep s̄} ⊃ {s̄|s ∈
sl(Π) ∧W |=ep s̄})
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where s̄ is e <x e
′ if s is e 6<x e

′, and s̄ is e 6<x e
′ if s is e <x e

′.

We use wv(Π) to denote the set of world views of an ASPEP program Π.

I Definition 5. Let Π be an ASPEP program, a ground objective literal l is true in Π
(written by Π `ep l) if ∀W ∈ wv(Π)∀w ∈W ((W,w) |=ep l).

I Example 6. Consider Π = Πep ∪ {r], r⊇} where Πep and r] and r⊇ are given in section 1.
It is easy to see that Π has an unique world view containing nine belief sets:

{prefer(2,1),prefer(3,1),request(1),request(3),package(1),age_interest(1,kids),
age_interest(1,adults),...}
{prefer(2,1),prefer(3,1),request(1),request(3),package(1),age_interest(1,kids),
age_interest(1,teens),...}
{prefer(2,1),prefer(3,1),request(1),request(3),package(1),age_interest(1,adults),
age_interest(1,teens),...}
{prefer(2,1),prefer(3,1),request(1),request(3),package(2),age_interest(2,kids),
age_interest(2,adults),age_interest(2,teens),...}
{prefer(2,1),prefer(3,1),request(1),request(3),package(2),age_interest(2,kids),
age_interest(2,adults),age_interest(2,teens),...}
{prefer(2,1),prefer(3,1),request(1),request(3),package(2),age_interest(2,adults),
age_interest(2,kids),...}
{prefer(2,1),prefer(3,1),request(1),request(3),package(3),age_interest(3,kids),
age_interest(3,adults),age_interest(3,teens),...}
{prefer(2,1),prefer(3,1),request(1),request(3),package(3),age_interest(3,kids),
age_interest(3,adults),age_interest(3,teens),...}
{prefer(2,1),prefer(3,1),request(1),request(3),age_interest(3,teens), age_interest(1,kids),...}

Then we have Π `ep prefer(2, 1) and Π `ep prefer(3, 1) corresponding to the conclusion
(i), and Π `ep request(3) and Π `ep request(1) corresponding to the conclusion (ii), and it is
easy to verify that if we add to Π another rule:

buy(X)← request(X), not prefer(Y,X), package(X), package(Y ), X! = Y

that states a simple ordered-based choice strategy, then we can get Π `ep buy(3) corresponding
to the conclusion (iii) in section 1.

4 Relation to Strong Introspection Specifications

Several languages have been developed by extending the languages of answer set programming
(ASP) using epistemic operators to handle introspections. The need for such extension of ASP
was early recognized and addressed by Gelfond in [11], where Gelfond proposed an extension
of ASP with two modal operators K and M and their negations (ASPKM). Informally, K p

expresses “p is known”(p is true in all belief sets of the agent), M p means “p may be true”(p
is true in some belief sets of the agent). It has been proved that ASPKM is potential in
dealing with some important issues in the field of knowledge representation and reasoning,
for instance the correct representation of incomplete information in the presence of multiple
belief sets [12], commonsense reasoning [12], formalization for conformant planning [16], and
meta-reasoning [24] etc. Recently, there is increasing research in this direction to address
the long-standing problems of unintended world views due to recursion through modalities

ICLP 2018



3:8 Introspecting Preferences in Answer Set Programming

Table 2 Modal Reduct in ASPKM.

subjective literal s if W |=km s W 6|=km s

Kl replace Kl with l delete the rule
not Kl remove not Kl replace not Kl with not l

Ml remove Ml replace Ml with not not l

not Ml replace not Ml with not l delete the rule

that were introduced by Gelfond [11], e.g. [13, 16, 6]. Very recently, Shen and Eiter [22]
introduced general logic programs possible containing epistemic negation NOT (ASPNOT),
and defined its world views by minimizing the knowledge. ASPNOT can not only express K p

and M p formulas by not NOT p and NOT not p, but also offer a solution to the problems of
unintended world views. In this section we show that ASPKM logic programs in [16] where
the most recent version of ASPKM is defined, and a special kind of ASPNOT programs can
be viewed as ASPEP programs.

4.1 Relation to ASPKM

An ASPKM program is a set of rules of the form h1 or ... or hk ← b1, ..., bm where k ≥ 0,
m ≥ 0, hi is an objective literal, and bi is an objective literal possible preceded by a negation
as failure operator not, a modal operator K or M, or a combination operator not K or
not M. For distinguishment, we call the world view of the ASPKM program KM-world
view. Let W be a non-empty collection of consistent sets of ground objective literals, W is
a KM-world view of an ASPKM program Π if W = AS(ΠW ) where ΠW is a disjunctive
logic program obtained using Modal Reduct as showed in Table 2.

In ASPKM, the notion of satisfiability is defined from |=km relationship below.
< W,w >|=km l if l ∈ w
< W,w >|=km not l if l 6∈ w
< W,w >|=km Kl if ∀v ∈W : l ∈ v
< W,w >|=km not Kl if ∃v ∈W : l 6∈ v
< W,w >|=km Ml if ∃v ∈W : l ∈ v
< W,w >|=km not Ml if ∀v ∈W : l 6∈ v

I Definition 7. Given an ASPKM program Ω, an ASPEP program is called a KM-EP-Image
of Ω, denoted by KM − EP − I(Ω), if it is obtained by

Replacing all occurrences of literals of the form K l in Π by l <] >.
Replacing all occurrences of literals of the form M l in Π by not l 6<] > and not not l4
respectively.
Replacing all occurrences of literals of the form not K l in Π by l 6<] > and not l

respectively.
Replacing all occurrences of literals of the form not M l in Π by not l <] >.

I Theorem 8. Let Ω be an ASPKM program, and Π be the ES-EP-Image of Ω, and W be a
non-empty collection of consistent sets of ground objective literals, W is a candidate world
view of Π iff W is a KM-world view of Ω.

4 Here, we view not not l as a representation of not l′ where we have l′ ← not l and l′ is a fresh literal. It
is worthwhile to note that CLINGO is able to deal with not not.
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I Example 9. Consider an ASPKM program Ω: p← M p. Ω has an unique KM-world view
{{p}}. Its ES-EP-Image Π contains two rules

p← not p 6<] > p← not not p

Then, the reduct Π{{p}} contains five rules

p← p,> p← not p,> p← p,⊥ p← not p,⊥ p← not not p

which has only one answer set {p}. While the reduct Π{{}} contains only one rule p← not not p

which has two answer sets {} and {p}. Then, {{p}} is the unique candidate world view of Π.

4.2 Relation to ASPNOT

Here, we consider the ASPNOT program that is a set of the rules of the form l1 or ... or lk ←
e1, ..., em, s1, ..., sn where k ≥ 0, m ≥ 0, n ≥ 0, li is an objective literal, ei is an extended
literal, si is a subjective literal of the form NOT e or not NOT e. For distinguishment, we
call the world view of an ASPNOT program NOT-world view. Let W be a non-empty
collection of consistent sets of ground objective literals, W is a candidate NOT-world view
of an ASPNOT program Π if W = AS(ΠW ) where ΠW is a general logic program obtained
using Epistemic Reduct by (1) replacing every NOT F that is satisfied by W with >, and
(2) replacing every NOT F that is not satisfied by W with not F . In ASPNOT, the notion of
satisfiability of a subjective formula NOT F is defined from |=NOT relationship

< W,w >|=NOT NOT F if ∃v ∈W : v 6|=GLP F

where the satisfaction denoted by |=GLP is as the satisfaction of a formula defined in general
logic programming introduced in [23]. W is a NOT-world view of an ASPNOT program Π
if it is a candidate NOT-world view satisfying maximal set of literals of the form NOT e

appearing in Π.

I Definition 10. Given an ASPNOT program Ω, an ASPEP program is called a NOT-EP-
Image of Ω, denoted by NOT-EP-I(Ω), if it is obtained by

Replacing all occurrences of literals of the form not NOT e in Ω by e <] >.
Replacing all occurrences of literals of the form NOT e in Ω by e 6<] > and not e

respectively.

I Theorem 11. Let Ω be an ASPNOT program, and Π be the NOT-EP-Image of Ω, and W
be a non-empty collection of consistent sets of ground objective literals, W is a world view of
Π iff W is a NOT-world view of Ω.

I Example 12. Consider an ASPNOT program from [22] that contains two rules

innocent(john)|guilty(john) innocent(john)← NOT guility(john)

Ω has an unique NOT-world view {{innocent(john)}}. The NOT-EP-Image of Ω has three
rules

innocent(john)|guilty(john)
innocent(john)← guilty(john) 6<] >
innocent(john)← not guility(john)

and a unique world view {{innocent(john)}}.

ICLP 2018
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5 Applications

Consider the relationship between ASPEP and the languages of strong introspections men-
tioned in section 5, ASPEP is potential in dealing with some important issues. In this section,
we illustrate the use of ASPEP in modeling problems with introspective preferences.

5.1 Describing the Principle of Majority
The principle of majority (PM) is a widely used epistemic commonsense in the fields of
information fusion, decision making, social choice, etc, where incomplete information usually
causes multiple belief sets, and queries are usually answered by the principle of majority. For
example, consider the behavior of common birds modeled by a program PM as below:

pigeon(X) or raven(X) or swallow(X) sparrow(X)← commonBird(X)
behavior(X,migratory)← swallow(X)
behavior(X, resident)← pigeon(X)
behavior(X, resident)← raven(X)
behavior(X, resident)← sparrow(X)

Then, given a fact ft:

commonBird(tom)

and answer the query behavior(tom,?) by the principle of majority described by the following
rules rr, rm, and ru:

behavior(X, resident)← behavior(X, resident) �] behavior(X,migratory), bird(X)
behavior(X,migratory)← behavior(X,migratory) �] behavior(X, resident), bird(X)
behavior(X,unknown)← behavior(X,migratory) ≈] behavior(X, resident), bird(X)

They express that a bird X is a resident(migratory) bird if X being resident(migratory) is
strictly more possible than X being migratory(resident), otherwise it is unknown. It is easy
to see that the program PM ∪ {ft, rr, rm, ru} gives answer behavior(tom, resident) to the
query, that is

PM ∪ {ft, rr, rm, ru} `ep behavior(tom, resident)

5.2 Modeling the Monty Hall Problem
We will use ASPEP to solve the Monty Hall problem from [21]: One of the three boxes labeled
1, 2, and 3 contains the keys to that new 1975 Lincoln Continental. The other two are empty.
If you choose the box containing the keys, you win the car. A contestant is asked to select
one of three boxes. Once the player has made a selection, Monty is obligated to open one of
the remaining boxes which does not contain the key. The contestant is then asked if he would
like to switch his selection to the other unopened box, or stay with his original choice. Here is
the problem:does it matters if the contentant switches? The answer is YES.

One of many solutions of the Monty Hall Problem is by arithmetic [21], where nine
possible states are given as showed in Table 3, and the idea in the solution can be described
naturally as: Constestant switches if SWITCH can bring more wins than STAY, Constestant
stays if STAY can bring more wins than SWITCH.
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Table 3 Possible Results of MHP.

Keys are in box Contestant choose box Monty can open box Contestant switches Results
1 1 2 or 3 2 or 3 loses
1 2 3 1 wins
1 3 2 1 wins
2 1 3 2 wins
2 2 1 or 3 1 or 3 loses
2 3 1 2 wins
3 1 2 3 wins
3 2 1 3 wins
3 3 1 or 2 1 or 2 loses

Encode the definition of the problem using a disjunctive logic program MHP below.

box(1)
box(2)
box(3)
1{choose_box(X) : box(X)}1
1{key_in_box(X) : box(X)}1
can_open_box(X)← box(X), not choose_box(X), not key_in_box(X)
win_by_switch← choose_box(X), not key_in_box(X)
win_by_stay ← choose_box(X), key_in_box(X)

Represent the idea in the solution by two rules r1 :

switch← win_by_switch <] win_by_stay, win_by_stay 6<] win_by_switch

and r2:

stay ← win_by_stay <] win_by_switch, win_by_switch 6<] win_by_stay

Then, we have the following result that gives a correct answer for the problem.

I Theorem 13. MHP ∪ {r1, r2} `ep switch and MHP ∪ {r1, r2} 0ep stay.

6 Conclusion and Future Work

We present a logic programming formalism capable of reasoning that combines nonmonotonic
reasoning, epistemic preferential reasoning, which is built on the existing efficient answer
set solvers. This makes it an elegant way to formalize some problems with defaults and
introspections of preferences.

A limitation of the work in this paper is that we do not consider the relationships between
ASPEP and other well developed formalisms of preferences.

As a next goal, we will consider the introspection of other typs of preferences which are
considered in the AI field [8, 18]. Our future work also includes the mathematical properties
of ASPEP programs, the methodologies for modeling with ASPEP, and the efficient solver of
ASPEP programs.

ICLP 2018
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