251 research outputs found

    Towards a Secure Smart Grid Storage Communications Gateway

    Full text link
    This research in progress paper describes the role of cyber security measures undertaken in an ICT system for integrating electric storage technologies into the grid. To do so, it defines security requirements for a communications gateway and gives detailed information and hands-on configuration advice on node and communication line security, data storage, coping with backend M2M communications protocols and examines privacy issues. The presented research paves the road for developing secure smart energy communications devices that allow enhancing energy efficiency. The described measures are implemented in an actual gateway device within the HORIZON 2020 project STORY, which aims at developing new ways to use storage and demonstrating these on six different demonstration sites.Comment: 6 pages, 2 figure

    Trusted Computing in Mobile Action

    Full text link
    Due to the convergence of various mobile access technologies like UMTS, WLAN, and WiMax the need for a new supporting infrastructure arises. This infrastructure should be able to support more efficient ways to authenticate users and devices, potentially enabling novel services based on the security provided by the infrastructure. In this paper we exhibit some usage scenarios from the mobile domain integrating trusted computing, which show that trusted computing offers new paradigms for implementing trust and by this enables new technical applications and business scenarios. The scenarios show how the traditional boundaries between technical and authentication domains become permeable while a high security level is maintained.Comment: In: Peer-reviewed Proceedings of the Information Security South Africa (ISSA) 2006 From Insight to Foresight Conference, 5 to 7 July 2006, Sandton, South Afric

    A Survey on Smart Home Authentication: Toward Secure, Multi-Level and Interaction-based Identification

    Get PDF
    With the increased number and reduced cost of smart devices, Internet of Things (IoT) applications such as smart home (SHome) are increasingly popular. Owing to the characteristics of IoT environments such as resource constrained devices, existing authentication solutions may not be suitable to secure these environments. As a result, a number of authentication solutions specifically designed for IoT environments have been proposed. This paper provides a critical analysis of existing authentication solutions. The major contributions of the paper are as follows. First, it presents a generic model derived from an SHome use-case scenario. Secondly, based on the model, it performs a threat analysis to identify possible means of attacks. The analysis leads to the specification of a set of desirable security requirements for the design of authentication solutions for SHome. Thirdly, based on the requirements, existing authentication solutions are analysed and some ideas for achieving effective and efficient authentication in IoT environments are proposed

    Authentication Protocols for Internet of Things: A Comprehensive Survey

    Get PDF
    In this paper, a comprehensive survey of authentication protocols for Internet of Things (IoT) is presented. Specifically more than forty authentication protocols developed for or applied in the context of the IoT are selected and examined in detail. These protocols are categorized based on the target environment: (1) Machine to Machine Communications (M2M), (2) Internet of Vehicles (IoV), (3) Internet of Energy (IoE), and (4) Internet of Sensors (IoS). Threat models, countermeasures, and formal security verification techniques used in authentication protocols for the IoT are presented. In addition a taxonomy and comparison of authentication protocols that are developed for the IoT in terms of network model, specific security goals, main processes, computation complexity, and communication overhead are provided. Based on the current survey, open issues are identified and future research directions are proposed

    Lightweight mutual authentication and privacy preservation schemes for IOT systems.

    Get PDF
    Internet of Things (IoT) presents a holistic and transformative approach for providing services in different domains. IoT creates an atmosphere of interaction between humans and the surrounding physical world through various technologies such as sensors, actuators, and the cloud. Theoretically, when everything is connected, everything is at risk. The rapid growth of IoT with the heterogeneous devices that are connected to the Internet generates new challenges in protecting and preserving user’s privacy and ensuring the security of our lives. IoT systems face considerable challenges in deploying robust authentication protocols because some of the IoT devices are resource-constrained with limited computation and storage capabilities to implement the currently available authentication mechanism that employs computationally expensive functions. The limited capabilities of IoT devices raise significant security and privacy concerns, such as ensuring personal information confidentiality and integrity and establishing end-to-end authentication and secret key generation between the communicating device to guarantee secure communication among the communicating devices. The ubiquity nature of the IoT device provides adversaries more attack surfaces which can lead to tragic consequences that can negatively impact our everyday connected lives. According to [1], authentication and privacy protection are essential security requirements. Therefore, there is a critical need to address these rising security and privacy concerns to ensure IoT systems\u27 safety. This dissertation identifies gaps in the literature and presents new mutual authentication and privacy preservation schemes that fit the needs of resource-constrained devices to improve IoT security and privacy against common attacks. This research enhances IoT security and privacy by introducing lightweight mutual authentication and privacy preservation schemes for IoT based on hardware biometrics using PUF, Chained hash PUF, dynamic identities, and user’s static and continuous biometrics. The communicating parties can anonymously communicate and mutually authenticate each other and locally establish a session key using dynamic identities to ensure the user’s unlinkability and untraceability. Furthermore, virtual domain segregation is implemented to apply security policies between nodes. The chained-hash PUF mechanism technique is implemented as a way to verify the sender’s identity. At first, this dissertation presents a framework called “A Lightweight Mutual Authentication and Privacy-Preservation framework for IoT Systems” and this framework is considered the foundation of all presented schemes. The proposed framework integrates software and hardware-based security approaches that satisfy the NIST IoT security requirements for data protection and device identification. Also, this dissertation presents an architecture called “PUF Hierarchal Distributed Architecture” (PHDA), which is used to perform the device name resolution. Based on the proposed framework and PUF architecture, three lightweight privacy-preserving and mutual authentication schemes are presented. The Three different schemes are introduced to accommodate both stationary and mobile IoT devices as well as local and distributed nodes. The first scheme is designed for the smart homes domain, where the IoT devices are stationary, and the controller node is local. In this scheme, there is direct communication between the IoT nodes and the controller node. Establishing mutual authentication does not require the cloud service\u27s involvement to reduce the system latency and offload the cloud traffic. The second scheme is designed for the industrial IoT domain and used smart poultry farms as a use case of the Industrial IoT (IIoT) domain. In the second scheme, the IoT devices are stationary, and the controller nodes are hierarchical and distributed, supported by machine-to-machine (M2M) communication. The third scheme is designed for smart cities and used IoV fleet vehicles as a use case of the smart cities domain. During the roaming service, the mutual authentication process between a vehicle and the distributed controller nodes represented by the Roadside Units (RSUs) is completed through the cloud service that stores all vehicle\u27s security credentials. After that, when a vehicle moves to the proximity of a new RSU under the same administrative authority of the most recently visited RSU, the two RSUs can cooperate to verify the vehicle\u27s legitimacy. Also, the third scheme supports driver static and continuous authentication as a driver monitoring system for the sake of both road and driver safety. The security of the proposed schemes is evaluated and simulated using two different methods: security analysis and performance analysis. The security analysis is implemented through formal security analysis and informal security analysis. The formal analysis uses the Burrows–Abadi–Needham logic (BAN) and model-checking using the automated validation of Internet security protocols and applications (AVISPA) toolkit. The informal security analysis is completed by: (1) investigating the robustness of the proposed schemes against the well-known security attacks and analyze its satisfaction with the main security properties; and (2) comparing the proposed schemes with the other existing authentication schemes considering their resistance to the well-known attacks and their satisfaction with the main security requirements. Both the formal and informal security analyses complement each other. The performance evaluation is conducted by analyzing and comparing the overhead and efficiency of the proposed schemes with other related schemes from the literature. The results showed that the proposed schemes achieve all security goals and, simultaneously, efficiently and satisfy the needs of the resource-constrained IoT devices

    A survey of secure middleware for the Internet of Things

    Get PDF
    The rapid growth of small Internet connected devices, known as the Internet of Things (IoT), is creating a new set of challenges to create secure, private infrastructures. This paper reviews the current literature on the challenges and approaches to security and privacy in the Internet of Things, with a strong focus on how these aspects are handled in IoT middleware. We focus on IoT middleware because many systems are built from existing middleware and these inherit the underlying security properties of the middleware framework. The paper is composed of three main sections. Firstly, we propose a matrix of security and privacy threats for IoT. This matrix is used as the basis of a widespread literature review aimed at identifying requirements on IoT platforms and middleware. Secondly, we present a structured literature review of the available middleware and how security is handled in these middleware approaches. We utilise the requirements from the first phase to evaluate. Finally, we draw a set of conclusions and identify further work in this area

    Security protocols suite for machine-to-machine systems

    Get PDF
    Nowadays, the great diffusion of advanced devices, such as smart-phones, has shown that there is a growing trend to rely on new technologies to generate and/or support progress; the society is clearly ready to trust on next-generation communication systems to face today’s concerns on economic and social fields. The reason for this sociological change is represented by the fact that the technologies have been open to all users, even if the latter do not necessarily have a specific knowledge in this field, and therefore the introduction of new user-friendly applications has now appeared as a business opportunity and a key factor to increase the general cohesion among all citizens. Within the actors of this technological evolution, wireless machine-to-machine (M2M) networks are becoming of great importance. These wireless networks are made up of interconnected low-power devices that are able to provide a great variety of services with little or even no user intervention. Examples of these services can be fleet management, fire detection, utilities consumption (water and energy distribution, etc.) or patients monitoring. However, since any arising technology goes together with its security threats, which have to be faced, further studies are necessary to secure wireless M2M technology. In this context, main threats are those related to attacks to the services availability and to the privacy of both the subscribers’ and the services providers’ data. Taking into account the often limited resources of the M2M devices at the hardware level, ensuring the availability and privacy requirements in the range of M2M applications while minimizing the waste of valuable resources is even more challenging. Based on the above facts, this Ph. D. thesis is aimed at providing efficient security solutions for wireless M2M networks that effectively reduce energy consumption of the network while not affecting the overall security services of the system. With this goal, we first propose a coherent taxonomy of M2M network that allows us to identify which security topics deserve special attention and which entities or specific services are particularly threatened. Second, we define an efficient, secure-data aggregation scheme that is able to increase the network lifetime by optimizing the energy consumption of the devices. Third, we propose a novel physical authenticator or frame checker that minimizes the communication costs in wireless channels and that successfully faces exhaustion attacks. Fourth, we study specific aspects of typical key management schemes to provide a novel protocol which ensures the distribution of secret keys for all the cryptographic methods used in this system. Fifth, we describe the collaboration with the WAVE2M community in order to define a proper frame format actually able to support the necessary security services, including the ones that we have already proposed; WAVE2M was funded to promote the global use of an emerging wireless communication technology for ultra-low and long-range services. And finally sixth, we provide with an accurate analysis of privacy solutions that actually fit M2M-networks services’ requirements. All the analyses along this thesis are corroborated by simulations that confirm significant improvements in terms of efficiency while supporting the necessary security requirements for M2M networks

    The Internet of Everything

    Get PDF
    In the era before IoT, the world wide web, internet, web 2.0 and social media made people’s lives comfortable by providing web services and enabling access personal data irrespective of their location. Further, to save time and improve efficiency, there is a need for machine to machine communication, automation, smart computing and ubiquitous access to personal devices. This need gave birth to the phenomenon of Internet of Things (IoT) and further to the concept of Internet of Everything (IoE)

    A survey of secure middleware for the Internet of Things

    Get PDF
    • …
    corecore