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ABSTRACT 

LIGHTWEIGHT MUTUAL AUTHENTICATION AND PRIVACY PRESERVATION 

SCHEMES FOR IOT SYSTEMS 

Samah Mansour 

July 10, 2021 

Internet of Things (IoT) presents a holistic and transformative approach for 

providing services in different domains. IoT creates an atmosphere of interaction between 

humans and the surrounding physical world through various technologies such as sensors, 

actuators, and the cloud. Theoretically, when everything is connected, everything is at 

risk.   The rapid growth of IoT with the heterogeneous devices that are connected to the 

Internet generates new challenges in protecting and preserving user’s privacy and 

ensuring the security of our lives.  IoT systems face considerable challenges in deploying 

robust authentication protocols because some of the IoT devices are resource-constrained 

with limited computation and storage capabilities to implement the currently available 

authentication mechanism that employs computationally expensive functions.  The 

limited capabilities of IoT devices raise significant security and privacy concerns, such as 

ensuring personal information confidentiality and integrity and establishing end-to-end 

authentication and secret key generation between the communicating device to guarantee 

secure communication among the communicating devices. 
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The ubiquity nature of the IoT device provides adversaries more attack surfaces 

which can lead to tragic consequences that can negatively impact our everyday connected 

lives. According to [1], authentication and privacy protection are essential security 

requirements. Therefore, there is a critical need to address these rising security and 

privacy concerns to ensure IoT systems' safety. This dissertation identifies gaps in the 

literature and presents new mutual authentication and privacy preservation schemes that 

fit the needs of resource-constrained devices to improve IoT security and privacy against 

common attacks. This research enhances IoT security and privacy by introducing 

lightweight mutual authentication and privacy preservation schemes for IoT based on 

hardware biometrics using PUF, Chained hash PUF, dynamic identities, and user’s static 

and continuous biometrics. The communicating parties can anonymously communicate 

and mutually authenticate each other and locally establish a session key using dynamic 

identities to ensure the user’s unlinkability and untraceability. Furthermore, virtual 

domain segregation is implemented to apply security policies between nodes. The 

chained-hash PUF mechanism technique is implemented as a way to verify the sender’s 

identity. 

At first, this dissertation presents a framework called  “A Lightweight Mutual 

Authentication and Privacy-Preservation framework for IoT Systems” and this 

framework is considered the foundation of all presented schemes. The proposed 

framework integrates software and hardware-based security approaches that satisfy the 

NIST IoT security requirements for data protection and device identification. Also, this 

dissertation presents an architecture called “PUF Hierarchal Distributed Architecture” 

(PHDA), which is used to perform the device name resolution. 
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Based on the proposed framework and PUF architecture, three lightweight 

privacy-preserving and mutual authentication schemes are presented. The Three different 

schemes are introduced to accommodate both stationary and mobile IoT devices as well 

as local and distributed nodes.  The first scheme is designed for the smart homes domain, 

where the IoT devices are stationary, and the controller node is local. In this scheme, 

there is direct communication between the IoT nodes and the controller node. 

Establishing mutual authentication does not require the cloud service's involvement to 

reduce the system latency and offload the cloud traffic.  The second scheme is designed 

for the industrial IoT domain and used smart poultry farms as a use case of the Industrial 

IoT (IIoT) domain. In the second scheme, the IoT devices are stationary, and the 

controller nodes are hierarchical and distributed, supported by machine-to-machine 

(M2M) communication.  The third scheme is designed for smart cities and used IoV fleet 

vehicles as a use case of the smart cities domain. During the roaming service, the mutual 

authentication process between a vehicle and the distributed controller nodes represented 

by the Roadside Units (RSUs) is completed through the cloud service that stores all 

vehicle's security credentials.  After that, when a vehicle moves to the proximity of a new 

RSU under the same administrative authority of the most recently visited RSU, the two 

RSUs can cooperate to verify the vehicle's legitimacy. Also, the third scheme supports 

driver static and continuous authentication as a driver monitoring system for the sake of 

both road and driver safety. 

The security of the proposed schemes is evaluated and simulated using two 

different methods: security analysis and performance analysis. The security analysis is 

implemented through formal security analysis and informal security analysis. The formal 
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analysis uses the Burrows–Abadi–Needham logic (BAN) and model-checking using the 

automated validation of Internet security protocols and applications (AVISPA) toolkit. 

The informal security analysis is completed by: (1) investigating the robustness of the 

proposed schemes against the well-known security attacks and analyze its satisfaction 

with the main security properties; and (2) comparing the proposed schemes with the other 

existing authentication schemes considering their resistance to the well-known attacks 

and their satisfaction with the main security requirements. Both the formal and informal 

security analyses complement each other. 

 The performance evaluation is conducted by analyzing and comparing the 

overhead and efficiency of the proposed schemes with other related schemes from the 

literature. The results showed that the proposed schemes achieve all security goals and, 

simultaneously, efficiently and satisfy the needs of the resource-constrained IoT devices. 
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CHAPTER I 

INTRODUCTION AND DISSERTATION OVERVIEW 

The rapid increase in using the Internet means that more than 49% of the world 

population is reachable at the click of a button, providing people with economic and 

social opportunities. Internet of Things (IoT) is an old and new term at the same time. 

Kevin Ashton mentioned this term in 1999 during a presentation at Proctor & Gamble to 

link the idea of radio frequency identification (RFID) to the new topic of the Internet [1]. 

Internet of Things (IoT) is an emerging technology that is experiencing continuous 

growth. IoT creates a small and smart interconnected world that enables human-to-devise 

communication and device-to-device communication. IoT established an intelligent 

environment in which there is a constant exchange of data and services.   It is expected 

that more than 21 billion devices will be interconnected by 2025 [2]. The predicted 

exponential growth of IoT depends partially on both Moore's law and Koomey's law. 

Moore's law states that the number of transistors on a chip doubles approximately every 

two years [3]. As a result, powerful computers can be developed on the same sized chip. 

Koomey's law explains that the number of computations per kilowatt-hour 

roughly doubles every one and a half years [4]. Kevin Ashton describes that these two 

laws enabled  us to create powerful and energy-efficient computers. Those two laws are 

telling us that we can perform the same amount of computations on a smaller chip while 

consuming less energy. This means that computers become more computationally 

effective as they become more energy efficient. The output is a small, powerful, and 

energy-efficient computer that allows us to provide more advanced services with less 

chip size at lower energy consumption. [5]. 
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There is no universally accepted definition for IoT. The main idea of IoT is the 

connection of many objects to communication and the exchange of data as well as 

enabling people to communicate with these objects. IEEE's definition of IoT is: "Internet 

of Things envisions a self-configuring, adaptive, complex network that interconnects' 

things' to the Internet through the use of standard communication protocols. The things 

offer services, with or without human intervention, through the exploitation of unique 

identification, data capture and communication, and actuation capability. The service is 

exploited through the use of intelligent interfaces and is made available anywhere, 

anytime, and for anything taking security into consideration" [6]. 

According to the IEEE IoT definition [6], the IoT system consists of three main 

layers: (1) a front layer that consists of the front-end devices such as sensors that sense 

and gather data about the environment (2) a back layer that consists of back-end 

computing and storage devices which provides analytics and intelligence, (3) a network 

layer that provides the communication infrastructure which connects front-end sensors to 

back end servers. 

The Telecommunication Standardization Sector [7] defined IoT as "… a global 

infrastructure for the information society, enabling advanced services by interconnecting 

(physical and virtual) things based on existing and evolving interoperable information 

and communication technologies". 

According to the ITU, the physical world refers to anything in our physical world 

that can be sensed, actuated, and connected. The virtual world refers to data and 

information that can be collected, processed, stored, and accessed.  By integrating both 

the physical and virtual world, we can use a diverse collection of smart objects to collect, 



3 

process, and store data from any environment to make decisions and take actions at any 

time. 

In IoT, classical computing and communication devices as well as a wide range of 

other gadgets that we use in our daily life, are connected in different domains such as 

smart homes, health care, wearable devices, smart city, and others. Consequently, A large 

number of devices will be connected. Those devices will have smart capabilities to 

collect, analyze and even make decisions without any human interaction. Cisco forecasts 

that the IoT market will be $14.4 trillion by 2022, with the majority invested in 

improving customer experience. Other areas of investment are reducing the time-to-

market ($3T), cost reduction strategies ($2.5T), improving supply chain and logistics 

($2.7T), and increasing employee productivity ($2.5T). Moreover, Cisco found that 50% 

of IoT activity is in manufacturing, transformation, smart cities, and consumer markets 

[8] as presented in figure 1. 
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Figure 1:  Cisco Forecast of the IoT Growth 

Analysts at McKinsey institutes [9] estimate that the annual economic 

impact of IoT will grow from $3.9 trillion to $11.1 trillion by 2025. The growth 

will be in different domains such as manufacturing, smart cities, retail 

environments, cars, and the human body, as shown in figure 2[9]. 

Figure 2:  McKensey Forecast to IoT Growth Per Domain 
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 IoT technology is deployed in different domains such as surveillance devices in 

smart cities, patient monitoring devices in health care, connected cars in vehicular 

networks, wearable devices, and smart homes. IoT systems have a heterogeneous mix of 

diverse devices, networking and communication protocols, and design methodologies, 

making them complex subjects for designing a security framework. Therefore, security is 

an essential requirement in the IoT environment, especially authentication, which is of 

high interest given the damage that could happen from a malicious unauthenticated 

device in an IoT system. 

1.1 Challenges 

The communication among IoT devices over the Internet and on local networks 

needs to be secured to gain user trust. The implementation of the security system in IoT 

requires the building of a Root of Trust (ROT). ROT can be defined as an element of a 

system that offers services to verify the achievement of security-related goals such as 

confidentiality, messages integrity, and authentication of the sending and receiving 

devices [10] 

Security and privacy are key challenges to make the IoT ecosystem. Typically, 

IoT devices are characterized by their constrained resources, consisting of a small amount 

of memory and computational power, which are not architecturally designed to employ 

robust security techniques [11]. Besides, IoT devices are often deployed in open and 

public places, which may cause them to be vulnerable to physical and cloning attacks. 

We cannot deal with IoT in an ad-hoc manner using reactive approaches and being on the 

defensive side. Instead, a proactive approach is required by being on the offensive side. 
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Also, any security solution designed for IoT devices must be computationally efficient 

and able to detect any security violation of the IoT devices without sacrificing security. 

The traditional security and protection techniques, including currently available 

cryptographic solutions, secure protocols, and privacy preservation techniques, cannot be 

re-implemented to secure resource-constrained devices. IoT systems must be used to ease 

our lives and not harm our security and privacy.  Therefore, any new solution must be 

resource-efficient to fit devices with limited processing power, memory, and 

communication bandwidth and to preserve user's privacy. 

1.2 Problem Definition 

IoT devices are pervasive in our everyday life. IoT spending is now forecast to 

pass the $1 trillion projected market in 2022, reaching $1.1 trillion in 2023, for an annual 

growth rate of 13%. Both smart homes and connected vehicles are estimated to be the 

second-largest source of IoT spending [12]. Although there is a growth in the IoT market, 

there are still concerns about the security and privacy of such systems. Because IoT 

devices can monitor every aspect of people's lives, the user still has legitimate privacy 

concerns. Moreover, companies worry about reputational damage from data getting into 

the wrong hands, and governments fear security risks. 

IoT security is different for several reasons. First, IoT devices are characterized 

by their constrained resources consisting of a small amount of memory and 

computational power, which are not architecturally designed to support robust security 

techniques. Second, IoT systems have a heterogeneous mix of diverse devices and 

networking protocols, which makes it complex to design a security framework given 
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raised scalability and interoperability issues. Third, IoT devices are connected to various 

components, such as actuators or monitoring systems. The collected data by those devices 

is vital for the functioning of the operation of the whole system. Fourth, IoT nodes store a 

secret key in non-volatile memory (NVM), flash memory, or battery-operated static 

random-access memory (SRAM).  It has been proven that physical attacks such as 

invasive, semi-invasive, or side-channel attacks and software attacks such as malware can 

expose the key and lead to security breaches [13].  

The IoT system can be subject to two main types of attacks: (i) attacks against the 

IoT devices such as physical attacks on the device; (ii) attacks against the 

communications such as a man in the middle attack that may lead to listening, modifying, 

injecting, or re-routing the message.  Also, the adversary can either compromise existing 

IoT devices or inject malicious devices that can be used to launch different types of 

attacks. Therefore, appropriate countermeasures must be taken to secure the IoT systems 

from those attacks.  

Traditional password-based or secret-key-based authentication schemes, in which 

a shared secret is the only authentication factor, are not enough for addressing the security 

problems, especially if the IoT devices are mobile devices.  Many IoT devices have weak 

passwords using manufacturer default passwords, making them vulnerable to botnets, such 

as the Mirai IoT botnet [14].  Also, an adversary with physical access to an IoT device can 

launch various physical or side-channel attacks to acquire the device's secret key, thus 

compromising the device and the entire system. Moreover, hackers can connect rogue 

devices to IoT networks using fake or multiple identities without being caught. 

Furthermore, IoT devices may rely on user biometrics as another factor of authentication. 
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However, the biometric template affects the user's privacy if a hacking activity 

compromises it.  Therefore, protecting the user's privacy is a necessity for biometrics-based 

authentication systems. 

Privacy preservation is another major security component. The lack of privacy 

preservation may allow the attacker to track and identify the user or the IoT device 

identify, leading to a privacy breach.  The lack of protecting users or IoT devices in smart 

homes and health care will allow the adversary to identify the user's lifestyle and infer 

sensitive information, which can potentially be life-threatening to the users.  Therefore, 

anonymity, unlinkability, undetectability, unobservability, and pseudonymity are 

important characteristics to ensure privacy preservation and prevent attackers from 

obtaining the user's real identity or the IoT device [15]. 

Two of the core NIST requirements for securable IoT devices are device 

identification and data protection. Security, privacy, and trust are three main elements 

that must be satisfied in any IoT application [16]. Device’s authentication, data 

confidentiality, data integrity, trust management, and privacy are key challenges in 

designing a secure IoT. 

 Device authentication is the process of verifying the device's identity. Without 

strong authentication, attackers can capture sensitive data and execute malicious actions.  

Data integrity is the process of maintaining and ensuring the originality, accuracy, and 

consistency of the data. Trust management guarantees trust in the devices and ensures 

that data has been handled and processed in compliance with user needs and rights. 

Privacy is essential to ensure that the user's data and credentials are preserved. 
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Ensuring security and privacy in the IoT systems can be achieved using: (1) 

encryption that makes sensitive data useless to the adversary and (2) authentication 

techniques that reject malicious devices that can cause harmful attacks. 

There is a need for new robust authentication techniques to avoid the problems 

mentioned above and, at the same time, can work on resource constraint devices. In this 

dissertation, different IoT authentication architectures are presented that ensure security 

and privacy preservation and present computational efficiency solutions to fit the nature of 

the IoT devices. 

1.3 Solution Approach 

To address the aforementioned issues, authentication techniques that can deal 

with a mix of diverse and resource constraint devices and protect users' security and 

privacy should be developed. Unlike traditional Internet, a one-size-fits-all solution is not 

applicable in the IoT ecosystem because the IoT domains and the use cases are different. 

Consequently, the requirements are different. Therefore, more specialized solutions need 

to be designed and developed. 

The main goal of this dissertation is the design and development of new secure 

mutual authentication and key exchange schemes for secure communication in the IoT 

systems for both stationary and mobile IoT nodes.  The proposed schemes are built on six 

main foundations: (i) implementation of mutual authentication; (ii), the use of Physically 

Unclonable Functions (PUFs) as the root of trust (iii) verification of hardware 

counterfeiting; (iv) use of lightweight cryptosystem; (v) assurance of data integrity, 

confidentiality and privacy preservation; and (vi) support system scalability. 
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1.4 Main Contributions 

Designing lightweight authentication schemes for different IoT domains is 

necessary.  Transmitting user's data in a secure environment is crucial to preserve the 

user's privacy and security. Our proposed schemes depend on modern lightweight 

cryptography, PUF hardware's intrinsic security primitive, and user biometric features. 

Cryptography techniques are used to generate a shared key, establish an encrypted 

and secure channel of communication between the devices with the IoT systems, and 

authenticate the devices. PUF is used to create a secure and robust authentication scheme 

for devices and protect devices from counterfeiting along with the different cryptographic 

protocols. Furthermore, both static and dynamic user biometric features are used to 

complete initial and ongoing user authentication. 

 The main contributions are as follows of this work are as follows: 

• The development of PUF Hierarchal Distributed Architecture (PHDA) for device

name resolution to support system scalability and protect the IoT systems from 

being counterfeited. 

• Implement the Root of Trust (ROT) scheme in the IoT environment through the

utilization of PUF to ensure authenticity by using the challenge-response pair 

protocol. Also, PUF is used to derive device-dependent security keys. 

• The development of a zero-knowledge crypto solution known as “ Chained Hash

PUF” to maintain node tracking. It is considered the first of its kind technique in 

the IoT authentication research field. 
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• The development of  a Lightweight Mutual Authentication and Privacy

Preservation Framework for IoT (LMAP2A). The framework is developed to be

domain-independent for generalized usage in IoT environments. LMAP2A

integrates both software and hardware-based security approaches. Also, LMAP2A

applies the "defense in depth" concept by using multiple layers of security 

countermeasures through an IoT system to provide redundancy in case a security 

countermeasure fails, or a vulnerability is successfully exploited. 

• Based on the proposed framework, three lightweight authentication schemes were

developed to support three different IoT systems. The three different schemes are 

designed to support different node mobility and distribution requirements. 

• Detailed security and performance evaluation of the presented three schemes.

1.5 Dissertation Outlines 

The dissertation is organized as follows: 

• Chapter 2 provides a detailed overview of IoT security, authentication, and

hardware security. Also, the chapter discusses related work on authentication and 

key agreement for IoT. 

• Chapter 3 presents the foundation framework that is called “Lightweight Mutual

Authentication and Privacy Preservation Architecture for IoT (LMAP2A)”. This

framework is considered the backbone and the road map of the schemes that are 

presented in the following three chapters.  This chapter also presents a PUF 

Hierarchal Distributed Architecture (PHDA), which is used to perform the IoT 

device name resolution. 
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• Chapter 4: presents the first authentication scheme titled “Lightweight Privacy

Preservation and Mutual Authentication Scheme for Smart Homes Using 

Physical Unclonable Functions.” All devices in the proposed smart home use 

case are stationary and within range. 

• Chapter 5: presents the second authentication scheme titled “M2M Distributed

Multi-Layer Lightweight Mutual Authentication and Key Agreement Scheme 

Using Chained Hash PUF in Industrial IoT System”. The chapter presents the 

concept of the chained hash PUF and how it is used to authenticate IoT devices. 

The poultry farm network model is multi-layer in nature, and the devices are 

distributed and heterogeneous. 

• Chapter 6: describes the third authentication scheme called “Three-Factor

Authentication and Privacy Preservation Scheme Using User and Device 

Biometrics for IoV System.”  All devices and users in the IoV network model are 

mobile and require frequent authentication. 

• Chapter 7: concludes the dissertation by discussing the contributions of the

research and outlining future work. 
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CHAPTER II 

BACKGROUND AND LITERATURE REVIEW 

To better present the contribution of this dissertation, an in-depth analysis of IoT 

and the available solutions of IoT security are discussed.   This chapter provides 

background information about the Internet of Things, integrity, confidentiality, 

authentication, privacy, and trust. Also, the use of a physical unclonable function (PUF) 

as a hardware fingerprint is studied. Moreover, the use of fog computing as support to 

IoT resource-constraint devices in data processing and information delivery is discussed. 

2.1 Why IoT Security is Different 

Internet of Things (IoT) is experiencing continuous growth. Not only classical 

computing and communication devices are connected, but also a whole range of other 

gadgets that are used in our daily life in different domains such as smart homes, health 

care, wearable devices, smart city, and others. Consequently, tens and even hundreds of 

billions of devices will be connected. In the IoT ecosystem, objects are connected via the 

Internet without any human intervention. IoT enables the transfer and sharing of data 

among living and nonliving objects to achieve specific goals. Those devices will have 

smart capabilities to collect, analyze, and even make decisions without any human 

interaction. 
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As described in [7], five main characteristics differentiate the IoT devices from 

any other device: (i) Interconnectivity that indicates that all IoT devices can be connected 

to the global information and communication infrastructure. IoT is based on the idea of 

being able to interconnect everything ;(ii) heterogeneity where IoT systems have a mix of 

various devices and networking protocols but can still interact with each other through 

different networks.   This feature is considered one of the main challenges in the IoT 

ecosystem. ;(iii) dynamic changes where the devices can be in different states such as 

connected, disconnected, waking up, and sleeping.  The devices may change their state 

dynamically which will, in turn, change the number of devices;(iv) limited resources 

where the IoT devices experience limited CPU capabilities, memory, and power 

resources; (v) large scale where the number of IoT devices grows exponentially and will 

be larger than the number of devices in the current Internet. Most of the communication 

will be device-to-device instead of human-to-device, and (vi) IoT devices are often 

deployed unattended in open and public places which may cause them to be vulnerable to 

physical and cloning attacks 

The exponential growth of IoT is challenging from both security and technical 

perspectives due to the heterogeneous mix of devices and communication protocols. At 

least two challenges need to be carefully tackled: (1) security and privacy preservation 

requirements to ensure a safe IoT environment; (2) the heterogonous nature of IoT that 

makes one-size-fits-all security schemes unfeasible and inapplicable.  When everything is 

connected, multiple security threats will arise and put confidentiality, integrity, 

availability, authenticity, privacy, and trust in risk. 
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2.2 Security Goals 

Information Security refers to the processes and methodologies which are 

designed and implemented to protect data, information, and systems.  Information 

security means protecting data, information, and systems from unauthorized access, use, 

disclosure, disruption, modification, or destruction. National Institute of Standards and 

Technology (NIST) and the IETF defined security metrics as a tool to facilitate decision-

making and improve the systems’ performance. Security metrics are used to measure the 

security level because what we cannot measure, we cannot improve. Security metrics can 

be used to identify the strength and weaknesses of the implemented security system. 

NIST and IETF agree on a set of security goals that are necessary to achieve information 

security. Those objectives are confidentiality, integrity, authenticity, availability, and 

accountability of all messages [17]. The authors in [18]  added auditability, 

trustworthiness, non-repudiation, and privacy as additional security requirements. 

• Confidentiality: the process of ensuring that data will be disclosed only to

authorized users or systems. This applies to data in storage, during processing, 

and while in transit. Confidentiality is crucial for IoT devices because they might 

handle critical personal information. For example, unauthorized access to user’s 

data may lead to life-threatening situations. 

• Integrity:  is the process of ensuring that the data has not to be altered or

modified. The modification includes writing, changing the status, deleting, 

creating, delaying, and replaying the messages. Integrity is important to provide a 
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reliable service. If a modification has occurred, it must be detected. The 

compromisation of integrity can lead to serious consequences.  

• Availability: A system should always be available to legitimate users and deliver

prompt and reliable service.  Availability is essential to ensure that devices are 

available for collecting data and prevents service interruptions. 

• Scalability: The IoT system must be able to accept and register new IoT devices.

The IoT scheme must be able to adapt to new technologies and incorporate the 

needed modifications [19]. 

• Privacy: It refers to the protection of sensitive data.  Privacy implementation

requires securing end-to-end communication.  Therefore, the transmission process 

of the collected data should ensure that the data is not being tampered by an 

adversary.  Furthermore, the collected data must be stored in a secure 

environment.   

• Authenticity: It is the process of verifying the device's or user's identity.

Through authentication, we can verify the origin of a message, the date of the 

message, and message content. There are two classes of authentication: entity 

authentication and data authentication. Data authentication implies data integrity. 

• Non-repudiation is the process that prevents both the sender and the receiver

from denying previous communication or actions. 

2.3 Authentication 
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Authentication can be viewed as the first line of defense by ensuring the 

enforcement of security measures. Authentication requires a handshake process that can 

be done before an authorization is granted. Device authentication is the process of 

verifying the device identity. Without strong authentication, an attacker can capture 

sensitive data and execute malicious actions. Deploying robust authentication protocols 

becomes one of the first steps to ensure the security of the whole system. 

Authentication needs to be established to build secure communication between 

the IoT devices before transferring any data. Traditional authentication techniques 

depend on using one of the well-known authentication factors to identify users, such as a 

secret that a user knows or a token that a user has. On the other hand, modern 

authentication techniques combine several authentication factors to authenticate users or 

devices in different ways, such as two factors authentication and multi-factor 

authentication that use two or more independent channels for authentication. Two or 

more factor authentication processes aim to create a layered defense system that 

combines two or more independent authentication factors to make it hard and even 

impossible to gain access to a target. The two-factor authentication techniques have been 

widely used in recent years to ensure secure authentication in systems well as providing 

an extra layer of protection and increase user trust in the system. The authentication 

process can take two different formats: machine-to-machine authentication and user-to-

machine authentication. 

2.4 Cryptographic Systems 
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One of the main techniques to achieve security goals is the implementation of 

cryptographic algorithms.  There are two main cryptographic algorithms: (1) symmetric 

cryptography; (2) asymmetric cryptography. 

2.4.1 Symmetric Cryptography 

In symmetric cryptography, both the sender and receiver share the same secret 

key (K) to encrypt and decrypt data [20]. When the shared secret key encrypts the 

message, it needs to be decrypted by the same key.  A symmetric key cipher f is used to 

encrypt a plaintext message m and generates a ciphertext c = fK (m) to be sent. At the 

receiver side, an inverse cipher f −1 is used to retrieve the plaintext m = f −1 K (c), as 

illustrated in figure 3. 

Figure 3:  Symmetric Encryption Process 

One of the fast and secure symmetric cryptography algorithms is the Advanced 

Encryption Standard (AES). AES is a famous cipher that NIST has standardized to 

replace DES and Triple DES [20].  AES supports key lengths of 128, 192, or 256 bits, 

and the block length is 128 bits. AES does not require much memory, making it suitable 

for resource constraint IoT devices [21]. 

One of the main properties of symmetric cryptography that can be viewed as a 

drawback is the need to establish a secure channel of communication between the sender 
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and the receiver before exchanging the shared secret key between the two sides of the 

communication.  This is known as the key distribution problem [20]. The storage of the 

shared secret key can introduce vulnerabilities to the secure system. A compromised 

device will reveal all stored secret keys, and consequently, all communication on this 

device would be accessible. 

Although the problems mentioned above are universal of symmetric 

cryptography, it is still the best tool for encryption. Several techniques can be 

implemented to overcome the shortcomings. One of the techniques is called Diffie 

Hellman key exchange techniques. This technique will allow parties to establish a shared 

secret key over an insecure channel of communication. Diffie Hellman can be used in 

conjunction with asymmetric cryptography. 

2.4.2 Asymmetric Cryptography 

Unlike symmetric cryptography, asymmetric cryptography, or what is also called 

public-key cryptography (PCKS), allows users to communicate securely without the need 

for a shared secret key. PCKS is considered more computationally expensive compared 

to symmetric key cryptography. Both the sender and the receiver each have two keys 

called the public key and the private key.  The private keys are kept secret, while the 

public keys are public and widely distributed. The receiver's public key is used for 

encryption by the sender, and the receiver's private key is used for decryption by the 
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receiver, as illustrated in figure 4. When a sender encrypts a message using the receiver's 

public key, only the receiver can decrypt the message using his private key. 

Figure 4: The Process of Asymmetric Encryption 

Besides encryption, PKCS can be used for key establishment and authentication 

and non-repudiation [20]. Key establishment features in PKCS can be used to overcome 

the key establishment issue in symmetric cryptography, where the two parties need to 

communicate through a secure channel to exchange the shared secret key. By using 

PKCS, the two sides can securely establish a shared key. Non-repudiation is the 

technique that prevents any party from denying its actions. Non-repudiation and 

authentication can be achieved through the use of a digital signature that employs PKCS. 

The sender encrypts a message with his private key, and the receiver decrypts the 

message using the sender's public key; the receiver is assured that the sender generated 

the message, provided the public key is verified and trusted or extremely signed by a 

trusted certifying authority. 

Because PKCS is more computationally expensive than symmetric cryptography, 

it cannot be used for encrypting the ongoing communication during the session duration. 

Instead, symmetric cryptography is used. PKC can be used for the key establishment 
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stage, and then symmetric cryptography can be used to encrypt and decrypt all the 

ongoing communication during the session. The key establishment can be divided into a 

key transport protocol and a key agreement protocol [22]. One party creates the shared 

secret key in the key transport mechanism and securely transfers it to the other party 

using the receiver's public key to encrypt the shared secret key. An example of a key 

transport mechanism is RSA. 

On the other side, the shared secret key derivation process in the key agreement 

mechanism is completed through the contribution of the two parties. This process causes 

the two sides to influence the generated key and have the same key. An example of a key 

agreement protocol is Diffie Hellman key exchange 

2.4.2.1 Diffie Hellman Key Exchange 

The Diffie-Hellman Key Exchange (DHKE) was the first PKC protocol that is based 

on the Discrete Log Problem (DLP) [20]. The definition of DLP, as given in [20], is 

presented in figure 5. When we select large numbers, computing the discrete logarithm to 

identify the x value becomes a very time-consuming and challenging task [20]. 

Figure 5: Discrete Log Problem (DLP) 

DHKE consists of two main phases: (a) an initialization phase and (b) a key-

agreement phase.  During the initialization phase, the two parties need to agree upon a set 

Given in the finite cyclic group Zp where p is the prime number 

with a finite set of integers i = 0, 1, . . . , p − 1  and a primitive 

element g ∈ Zp and another element h ∈ Zp . The DLP is the 

problem of determining the integer 1 ≤ x ≤ p−1 such that:  

 g x ≡ h modp 
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of parameters called domain parameters, as presented in figure 6. These domain 

parameters are required to generate the secret key.  By using the domain parameters, the 

two sides can generate the same secret key over an insecure channel using the key 

agreement phase. 

          Figure 6:  Initialization Phase Diffie-Hellman protocol 

 Figure 7:  Key Agreement Process Diffie-Hellman protocol 

Diffie Hellman Initialization Phase 

1. Select a large prime number P

2. select a positive integer g, such that g is a generator modulo p

3. publish both P and g

Alice Bob 



23 

Figure 8:  Key Agreement Phase Diffie-Hellman protocol 

During the key-agreement phase, both participants contribute to the key 

establishment. Figures 7 and 8 show the key agreement process and phases of the Diffie 

Hellman protocol. During the first step of the key agreement phase, Alice and Bob agree 

on a large prime p and a nonzero integer g modulo p. Alice and Bob make the values of p 

and g public knowledge.  The next step is for Alice to pick a secret integer y that she does 

not reveal to anyone, and  Bob picks an integer x that he keeps secret. Bob and Alice use 

their secret integers to compute their public keys. As a next step, both Alice and Bob 

exchange their public keys. Alice sends R to Bob, and Bob sends G to Alice.  Finally, 

Bob and Alice use their secret integers to compute the secret key. 

2.4.2.2 Elliptic Curve Cryptography (ECC) 

Elliptic Curve Cryptography (ECC) is a public key algorithm that was introduced 

in 1987 by [23]and by [24]. ECC is considered lightweight compared to RSA because it 

can achieve the same level of security with much fewer arithmetic operations [20]. For 

example, 1024-bit RSA corresponds to 160-bit in ECC. Therefore, ECC can be used in 
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resource-constraint devices. The high security of ECC is based on the computation of the 

ECC discrete logarithm problem (ECDLP).  Solving this problem cannot be done 

effortlessly [22].  Also, the Elliptic Curve Diffie-Hellman (ECDH) protocol can be used 

to generate the secret key in a secure environment. 

ECC is based on the ECDLP, which is based on the DLP. This makes DHKE 

suitable for ECC. As described in [20], the elliptic curve over Zp, p > 3, is the set of all 

pairs (x, y) ∈ Zp which fulfill: 

y 2 ≡ x 3 + ax + b mod p 

together with an imaginary point of infinity θ, where a, b ∈ Zp and the condition 4a 3 + 

27b 2 ≠ 0 mod p. ECDLP is defined by [19] as described in figure 9. 

Figure 9: Elliptic Curve Discrete Logarithm Problem (ECDLP) 

ECDH key agreement protocol is based on the ECDLP.  ECDH allows two parties 

to establish a shared secret key over an insecure channel, where each of the parties has an 

elliptic curve public-private key pair [19]. In the beginning, the two parties agree on the 

ECC domain parameters that are presented in figure 10. 

Given is an elliptic curve E. We consider a primitive element P and another element T. 

The ECDLP problem is finding the integer d, where 1 ≤ d ≤ E, such that  

  P + P + ... + P = dP = T 

where E is the number of points on the curve 

   d times 
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1. p: Field that the curve defined over

2. G: the generator or the primitive root

3. a, b: values define the curve

4. n: prime order of G

5. h: cofactor

Figure 10: Elliptic Curve Diffie Hellman Domain Parameters 

      Figure 11: Elliptic Curve Diffie Hellman Key Agreement Protocol 

Figure 11 describes the ECDH protocol. First, both Alice and Bob select a private 

key that is a random integer d between {1,………n-1}. Second, each side will calculate 

its public keys, which are QA for Alice and QB for Bob. Third, Alice and Bob exchange 

their public keys over an insecure channel of communication.  Last, each side calculates 

     Alice      Bob 

Domain Parameters 

     p,G,n,a,b,h 
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the secret key using its private key and the other side's public key.  Once the two sides 

have the same secret key, they can use symmetric encryption for all subsequent ongoing 

communication. 

Because one of the key features of the IoT ecosystem is handling resource-

constrained devices, ECC is preferred over RSA for the following reasons: (1) It uses a 

shorter encryption key which in turn uses less memory, less storage, less power, and 

fewer CPU resources; (2) ECC is based on the computation of the discrete logarithm 

problem. Therefore, it is highly secured; (3) Zigbee Networking and Wi-Fi WPA 3 

Standards specify ECDSA and ECDH as the algorithm of choice, and (4) The US 

government publishes a set of standards algorithms approved for use in non-defense 

applications called Suite B Cryptography. Currently, this standard includes only ECC for 

authentication and key management. RSA has been completely removed. 

Table 1 presents a comparison of RSA and ECC algorithms for the key size. 

Column 1 shows the security level of that particular row. The security level is a measure 

of the strength that a cryptographic algorithm achieves. The security level is usually 

expressed in bits, where n-bit security means that the attacker would have to 

perform 2n operations to break the cryptographic cipher. Column 2 shows the public key 

size of RSA to achieve the corresponding security level. Column 3 shows the public key 

size of ECC to accomplish the corresponding security level. Column 4 displays the key 

size ratio between RSA ECC. 
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Table 1: RSA Versus ECC Key size 

Minimum Size of Public Keys Key Size Ratio 

Security Level in 

bits 

RSA ECC ECC to RSA 

80 1024 160-223 1:6 

112 2048 224-255 1:9 

128 3072 256-383 1:12 

192 7680 384-511 1:20 

256 15360 512+ 1:30 

The current common security requirement is to achieve a 128-bit security level. 

As stated in table 1, an ECC key size of 256 can accomplish a 128-bit security level 

compared to the RSA key size of 3072. This indicated that the ECC key size is 12 times 

smaller than the RSA key size. This means that RSA is more computationally expensive 

than ECC, and it requires more storage, more power, and more CPU Resources.  

Therefore, ECC is considered the potential algorithm for resource-constrained IoT 

devices. Because the main focus of this dissertation is IoT constrained devices, we will 

adopt ECC as the chosen Cryptographic algorithm. 
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2.4.3 Message Authentication Code 

A message authentication code (MAC) is a block of a few bytes that is used 

to authenticate a message. The receiver can check this block and ensure that the message 

is coming from the right sender and that an adversary hasn't modified it. A specific type of 

MAC is called HMAC. HMAC stands for Hash-based MAC. HMAC is a special type of 

message authentication code involving a cryptographic hash function and a secret 

cryptographic key [25].  This scheme extends the error detection capability in verifying 

data integrity as well as message authentication. HMAC can work with any cryptographic 

hash function such as MD5, SHA-1, SHA-256, or SHA-512, combined with a shared secret 

key [26]. Once the HMAC hash is calculated, the message must be sent alongside the 

HMAC hash. In HMAC, the presence of a shared secret helps to establish authenticity 

because it is generated during a key exchange process that requires the participation of the 

two communication parties.  Only those two parties know what the secret key is.  Then, 

they can verify that the message is from a legitimate source when the hash matches.  

Figure 12  describes how HMAC is working. First, the sender and the receiver share 

a secret key. Second, the sender creates the message and calculates the HMAC hash for the 

message where the message and the key will be used as inputs to the algorithm. Third, the 

sender will send the message alongside the HMAC hash. Fourth, the receiver will calculate 

the HMAC hash. Fifth, the receiver will verify the message's integrity and authenticity by 

comparing the received HMAC hash with the computed HMAC hash. If the two values are 

the same, the receiver ensures that the message has not been corrupted or modified. 
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Figure 12 Hash-based MAC 

2.4.4 Physical Unclonable Function (PUF) Technology 

2.4.4.1 Concept of PUFs 

With the quadratic growth of IoT devices, security and privacy become essential 

requirements [27]. Most of the currently available security solutions depend on the 

implementation of cryptography. The assumption is that the devices can securely store 

the secret key and keep it away from an adversary.  According to [28] and [29], this 

assumption is not practical because physical attacks such as invasive, semi-invasive, or 

side cha attacks can lead to key exposure and security breaches. Also, [29] highlighted 

that some devices could be resource-constrained or do not have a nonvolatile memory to 

store the secret key. 
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An alternative solution is a hardware security primitive known as Physical 

Unclonable Function (PUF). The PUF concept was first introduced by [30] in 2000. The 

authors proposed the idea of the mismatch in silicon devices for integrated circuit (IC) 

identification.  The authors in [31] introduced Physical On-Way Functions. Then, [32] 

proposed a Silicon Physical Random Functions and presented it as a PUF.  PUF is new 

hardware-based security primitive.  A PUF is a function embedded in a physical device to 

extract a secret from a complex physical system.   The key idea behind PUF is the 

exploitation of the “random physical disorder” or the “manufacturing variation” of the 

silicon chips [33].  This manufacturing variation can not be controlled during the 

fabrication process, and at the same time, it can not be refabricated intentionally. PUF 

can be described as a function that returns a value called the response.  This value can be 

treated as a unique signature or a unique fingerprint of an integrated circuit for a given 

challenge. Hence, we can define PUF as a Physical challenge-response procedure to 

extract the signature of an integrated circuit. A PUF is similar to human fingerprints 

because it produces a specific device signature to authenticate the device. PUF can be 

used for device authentication and to protect from devices counterfeiting [34]. Also, the 

unique secret key generated by the PUF can be used in different domains [35]. 
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Figure 13:  PUF Challenge-Response Uniqueness 

2.4.4.2 Properties and Parameters of PUFs 

Based on the PUF definition, we can extract two main properties of a PUF:(1) It is 

unpredictable. A PUF is unpredictable because an attacker who can use a limited and 

fixed amount of resources can only extract a small amount of information from the PUF's 

secret response. (2) It is unclonable. This means that it is hard to produce two identical 

PUFs from two different IC as described in figures 13 and 14 . PUFs take advantage of 

the circuit characteristics related to the uncontrollable random variation in the 

manufacturing process. Therefore, the less control present during the circuit's 

manufacturing process, the harder the reproduction of an identical PUF.  The author in 

[36] added four additional properties which have been identified from multiple proposed 

PUF definitions. These properties are: 

1. Low cost. This means that the measurement circuit should be easy to implement

and low cost. From a theoretical point of view, the PUF response should be easy 

to evaluate/produce. 
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2. Unique. The PUF response is extracted from the unique identity of the physical

entity. The set of challenge-response pairs should be sufficient to identify a PUF 

among a given population uniquely. 

3. Reproducible. This property distinguishes PUFs from True Random Number

Generators (TRNGs). The PUF response should be reproducible when introducing 

the same challenge, even when it is under different environmental conditions. 

4. Secure. When an invasive physical attack is performed, PUFs should produce an

error response when asked. 

   Figure 14: Main properties of PUF 

The authors in [37] proposed the construction of PUF-FSM as a controlled strong 

PUF without the need for error correction codes and helper data by only using error-free 

responses, which are fed in a finite state machine. This type of PUF is implemented in 

our proposed schemes. 
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2.4.4.3 PUF Applications 

There are four main applications that can use PUF. 

2.4.4.3.1 Low-cost Device Authentication 

The researcher in [38] proposed a low-cost device authentication based on a 

challenge-response protocol. The proposed protocol can also be applied to IoT resource-

constrained devices. The authentication process ensures that an adversary cannot obtain 

the PUF output that is used for authentication.  PUFs are expected to have exponential 

numbers of challenge-response pairs. This implies that the challenge can only be used for 

only one time, which can overcome the man-in-the-middle attack. 

2.4.4.3.2 Cryptographic Key Generation 

The authors in [39] presented a PUF based process to generate a reliable 

cryptographic key. The cryptographic key generation process is divided into two stages, 

which are initialization and regeneration of the PUF response.  Figure 15 described the 

cryptographic key generation process using PUFs. The generated c key can be used with 

different cryptographic algorithms such as Advanced Encryption Standard (AES), Rivest 

Shamir and Adleman (RSA) or Elliptic Curve Cryptography (ECC) and others 

Figure 15:  Cryptographic key generation using PUFs 
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2.4.4.3.3 Intellectual Property (IP) Protection 

Counterfeit and Intellectual Property (IP) theft are two related key problems in the 

IoT ecosystem.  Most of the counterfeit products are made from stolen Intellectual 

Property.  While counterfeiting is the process of creating cloned fake copies of IoT 

devices, Intellectual Property is the process of unauthorized use of software in a fake 

device in violation of the law.  Because PUF responses are unpredictable and unclonable, 

the PUF can be used as a hardware fingerprint to protect the IoT devices against 

counterfeiting. 

2.4.4.4 PUF Classification 

There are two PUF classifications from the security perspective.  The two classes 

are strong PUF and weak PUF. The distinction between the two types of PUF depends on 

the number of challenge-response pairs. A PUF is called strong when its challenge is 

large, such as the arbiter PUF. On the other hand, Weak PUFs structures have one 

challenge, such as SRAM PUFs. According to [33], a weak PUF has two main features: 

(1) few challenges: A Weak PUF has only a few and fixed challenges; (2) Access-

restricted responses: the challenge-response interface needs to be restricted. In weak 

PUF, it is assumed that the attacker cannot access PUF's responses. The authors of [40] 

[41] defined the main features of strong PUF. The main features of strong PUF are (1) 

Many challenges: Strong PUF has a large number of possible CRPs; (2) Unpredictability: 

even if an adversary knows a large number of CRPs, he cannot predict unknown CRPs. 
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2.4.4.4.1 Delay based PUFs – Arbiter PUF 

The arbiter PUF is a delay-based silicon PUF. The arbiter PUF structure 

comprises two parallel, identical, and controllable delay paths and an arbiter circuit at the 

end. It is composed of a sequence of switch components. The simplest way to implement 

them is with a pair of 2-to-1 multiplexers. Each one interconnects two input ports to two 

output ports with different configurations depending on the applied control bit (0 or 1). A 

delay-based PUF exploits the random variations in delays of wires and gates on silicon. 

Ideally, the delay between the red and blue lines should be 0 if they are symmetrically 

laid out. In practice, the variation in the manufacturing process will introduce a random 

delay between the two paths. 

Figure 16: PUF Design 

Figure 16 shows how the arbiter PUF works. The idea is to introduce an edge and 

then make a race between the two paths and sample the top signal and the bottom one at 

the end. Then, the arbiter circuit outputs a binary value to indicate which one of the two 
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paths is faster or slower. Because the two parallel paths are identical, the delay difference 

between them is minor. Hence, two scenarios are possible to get the arbiter circuit 

decision: 

1. Even when designed identically, the delays of the two paths may not be equal.

This is due to the random silicon process variation. This random difference 

between the high and the low path will determine the output of the arbiter circuit 

and then the PUF response. And, because the random silicon process variation is 

device specific, the arbiter output will be device specific. 

2. It is also possible that even with the random process variation between the two

designed paths, the delay difference cannot be detectable by the arbiter circuit. 

Therefore, the introduced edge will simultaneously reach the two inputs, so the 

arbiter circuit produces a metastable state. Then, after a short random time, the 

arbiter will output a value that is independent of the paths' race. 

The authors in [37] proposed the construction of PUF-FSM as a controlled 

strong PUF without the need for error correction codes and helper data by only using 

error-free responses, which are fed in a finite state machine. This type of arbiter PUF 

is implemented in my proposed architecture. 

2.5 Fog Computing 

Cloud computing enables IoT devices to provide data storage, cost-effective, and 

on-demand services. However, [42] and [43] stated that the cloud-based IoT services 

have some issues such as latency, lack of mobility support and security, and location 
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awareness. For example, sensor and actuators systems, and monitoring systems are too 

latency-sensitive to be deployed on the cloud. Also, IoT devices produce a large amount 

of confidential and sensitive data. At the same time, most of the IoT devices are resource-

constrained.  One way to overcome the latency issue and to offload the security 

operations from the IoT device is the use of a more resourceful entity such as a fog-based 

node.  Fog computing technology, also known as fog networking or fogging, was first 

introduced by Cisco in 2014 as an extension of cloud computing that would work on the 

edge of the end-users network [43] [44]. Fog computing puts most of the communication, 

storage, and management at the edge of a network rather than on the centralized cloud, 

which in turn will improve the service and reduce the latency that will be interpreted as 

better service to the user. 

There is no standard architecture for fog computing [45]. According to [46], fog 

computing can be divided into cloud-fog-edge-device architecture and fog-device 

architecture, as shown in Figure 17. 
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Figure 17: Fog computing architecture 

2.5.1 Cloud-Fog- Edge-Device Architecture 

As presented in figure 17, the Cloud-Fog-Edge-Device architecture has four 

layers, which are the cloud layer, fog layer, edge layer, and device layer.  By moving 

down from the cloud layer to the other three layers, the storage and computing 

capabilities decrease, and at the same time, the latency will decrease too. The cloud layer 

consists of computing and permanent storage devices. The fog layer provides data 

processing and temporary data storage near the IoT device.  The use of the fog nodes can 

support the mobility and the heterogeneity of the IoT device as well as reduce the latency 

and provide service to a larger number of devices [47]. The edge layer provides local 

gateways that can be used to process data locally instead of sending it to the fog or the 

cloud. The device layer consists of both mobile and stationary IoT devices. These devices 

can be anything equipped with different capacities of storage, communication, 

processing, and computational capabilities. 
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2.5.2 Cloud-Fog-Device Architecture 

In cloud-fog-device architecture, the cloud layer consists of computing and 

permanent storage devices. Fog nodes provide different services to the IoT devices 

without the intervention of the cloud layer. The implementation of this architecture 

depends on the IoT application. This, in turn, depends on the needs and requirements of 

IoT applications. 

In summary, the main goal of fog computing is to improve the quality of provided 

service to users and reduce the traffic to the cloud. Data processing occurs in a gateway 

to minimize the amount of the transmitted data to the cloud. According to [48], fog 

computing performs short-term analytics at the edge while the cloud performs long-term 

analytics. 

2.6 Biometric Authentication 

Biometric features have become a key tool to authenticate mobile IoT devices. 

Biometric identification allows the user to use physical features instead of human made 

features to be authenticated and access systems.   According to a survey by Javelin 

Strategy & Research, in 2014, $16 billion was stolen by 12.7 million people who were 

victims of identity theft in the US only [49].  The verification and authentication are 

performed based on three different techniques: (1) something we know, such as a 

password; (2) something we have such as tokens; or (3) something we are such as 

physiological and behavioral characteristics. The authentication process may employ one 

or more of the techniques mentioned above.  There are two types of biometric 

identification, physiological and behavioral [50]. Physiological identification is based on 
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direct human body features such as the face, fingerprint, or iris. Behavioral features are 

based on indirect human features that are measured through feature extraction and 

machine learning. Examples of behavioral biometrics are signature, keystroke dynamics, 

gait, and voice [51]. 

The authors of [52] presented the benefits of using biometric authentication in the 

IoT applications as follows: 

1. Accurate information: the biometric features are more precise and secured

compared to password-based or token-based security. The use of biometric 

features does not require the user to remember any security credentials. 

Consequently, no adversary can steal or guess the security credential such as a 

password or a token. Therefore, biometric authentication can be a long-term 

security solution. 

2. Accountability: A user who is using a service and access it by using his

biometric features cannot deny using the service.  

3. Time-saving: Biometric authentication is fast to execute compared to

traditional security techniques. 

4. User-friendly systems: it is easy for users to install biometric systems into

their devices. By 2025 there will be 1200 million people aged 60, and above 

and by 2050 they will reach 2000 million. Therefore, the use of biometric 

authentication will be more suitable and user-friendly for those who will use 

IoT devices. 
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5. Convenience: It is a convenient security technique because users do not need

to remember a password or keep any identity cards for verification. 

According to [53], authentication mechanisms can be divided into static and 

dynamic authentication methods. Static authentication techniques authenticate users but 

do not monitor post-authentication sessions to detect if it is the same user accessing the 

system or not [54]. Dynamic authentication techniques monitor a system during the 

lifetime of a session to detect if it is the same user accessing the system or not [55]. The 

third proposed architecture will employ both static and dynamic biometric authentication 

to identify and verify users. 

2.7 Summary 

       This chapter presents the basis for this work, and it influences every aspect of this 

research. The chapter discusses why IoT security is different and presents the main 

security goals.  The chapter illustrates the different cryptographic techniques. Also, the 

chapter introduces the PUF concept, including its properties, applications, and 

classification. Furthermore, the chapter discusses the fog computing concept and its 

different architecture. Finally, the chapter reviews biometric authentication and its main 

advantages. In the subsequent chapters, it is assumed that readers have the necessary 

background knowledge. 
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CHAPTER III 

A LIGHTWEIGHT MUTUAL AUTHENTICATION AND 

PRIVACY-PRESERVATION FRAMEWORK FOR IOT SYSTEMS 

This chapter introduces an approach to authenticate IoT devices. This chapter 

presents how the proposed approach addresses the IoT security and privacy preservation 

challenges through a Lightweight Mutual Authentication and Privacy Preservation 

Framework for IoT (LMAP2A). This chapter also presents a PUF Hierarchal Distributed 

Architecture (PHDA), which can be used to perform the IoT device name resolution. 

Additionally, this chapter describes how the LMAP2A framework achieves both the 

security and privacy goals. Finally, this chapter discusses the evaluation process to assess 

the security and performance of the schemes that will be designed based on the proposed 

framework. 

3.1 Security Goals to Build an Effective Authentication scheme 

To build a secure authentication schemes and evaluate other existing ones, a set of 

security goals must be defined and used as metrics to measure the authentication 

architecture's robustness. The following metrics should be taken into account when 

developing the IoT: 

1. Mutual authentication: This means that the two communicating parties should

authenticate each other.  We must not assume a point of trust. 
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2. Multiple authentication levels: Multiple levels of authentication are required, each with

different credentials.  This feature is vital to implement the defense-in-depth concept [56]. 

Defense-in-depth requires using multiple layers of security countermeasures through an 

IoT system to provide redundancy if a security countermeasure fails or a vulnerability is 

successfully exploited. 

3. Protection against well-known attacks:  Security countermeasures should be in place to

mitigate against well-known attacks such as man-in-the-middle attacks, replay attacks, 

eavesdropping, and brute force attacks. 

4. Scalability: The architecture must be able to accommodate new devices and adapt and

incorporate new technologies. According to [19],  IoT architecture should be able to 

expand incrementally to support newly added devices or growing data volumes. 

5. Anonymity: Anonymity is an essential feature to protect both a user's and device's

privacy. The IoT devices can communicate anonymously with either fog or the cloud 

nodes without exchanging their real identities. It is essential to guarantee that the IoT 

devices' IDs and messages can only be traced by a trusted fog node or the Cloud.  

Anonymity ensures the IoT device's untraceability and unlinkability. The IoT device uses 

a pseudonym when transmitting data. Consequently, the adversary cannot trace back the 

device's identity from the pseudonym. 

6. Counterfeiting resistance: The IoT devices should be secured from being cloned and

replaced with fake devices. 

3.2 PUF Hierarchal Distributed Architecture (PHDA) 

We present a PUF architecture that can support system scalability, protect the IoT 

systems from the counterfeited devices and protect devices' privacy. To ensure system 
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scalability and flexibility, we propose PHDA as a device name resolution to store and 

retrieve the devices' Challenge-Response Pairs (CRPs). The proposed architecture is 

presented in figure 18. It stores the PUF data using a 3-tier architecture employing a 

simple naming scheme.  The first node at the top of the hierarchy is the centralized Grand 

hub that maintains a reference to whom should be queried (Parent PUF Nodes) to obtain 

a reference to who may know how to retrieve the PUF data for a certain IoT device in a 

specific domain.  The Parent PUF nodes maintain a reference to the service provider 

container (Child PUF Node) that should be queried next to return the PUF CRPs for a 

specific IoT device.  The parent PUF nodes are organized based on different specific 

categories of the IoT devices (e.g., medical equipment, home equipment, etc.) The Child 

PUF nodes are organized based on different service providers. The Cloud or the fog 

should communicate initially with the Grand PUF servers to retrieve the CRPs of the IoT 

node.  Moreover, the proposed architecture supports Over the Air (OTA) authentication 

and assist in overcoming the counterfeiting problem.  



45 

Figure 18: PUF Hierarchal Distributed Architecture 

3.3 Lightweight Mutual Authentication and Privacy Preservation Framework 

for IoT (LMAP2A) 

With the exponential growth of the IoT field, IoT devices'  lightweight nature 

makes security a significant concern. It highlights the need for designing schemes that 

can fit the resource-constrained nature of the IoT devices and satisfy new security and 

privacy requirements. When an IoT device and controller node need to interact securely, 

they need to authenticate each other. In some cases, both the IoT node and the controller 

node may need the cloud service's involvement to facilitate the authentication process. 

Furthermore, to support the mobility of the IoT device, there is a need to allow the 
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controller nodes under the same administrative authority to interact with each other and 

cooperate to verify the authenticity of the mobile IoT devices. 

This work aims to present an frameework that can establish a secure connection 

between a resource-constrained device and a resource-rich controller node. We propose a 

secure, lightweight mutual authentication, key exchange, and privacy preservation 

framework for the IoT systems. The proposed framework integrates software and 

hardware-based security approaches that satisfy the NIST IoT security requirements for 

data protection and device identification [16]. We call this framework A Lightweight 

Mutual Authentication and Privacy Preservation Architecture for IoT (LMAP2A).  The 

proposed framework can authenticate both stationary and mobile IoT devices and 

authenticate both local and distributed controller nodes. The controller nodes build and 

manage trust relationships with other controller nodes. We assume that the granularity 

and requirements of the IoT devices may vary depending on the IoT domain. 

LMAP2A is developed to be domain independent for generalized usage in IoT 

environments. Based on the proposed framework, three lightweight authentication 

schemes are developed to support three different IoT systems. The three different 

schemes are designed to support different node mobility and distribution requirements. 

A use case scenario is designed to demonstrate each scheme. The first use case is 

the smart home domain, where the IoT devices are stationary and the controller node is 

local. In this use case, there is direct communication between the two parties. 

Establishing mutual authentication does not require the cloud service's involvement to 

reduce the system latency and offload the cloud traffic as the authentication data is stored 

locally on the controller unit in a secure database.  The second use case is smart poultry 
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farms, an example of the Industrial IoT (IIoT) domain. In the second use case, the IoT 

devices are stationary, and the controller nodes are hierarchical and distributed, supported 

by machine-to-machine (M2M) communication.  The third use case is the internet of 

vehicles (IoV) fleet vehicles as part of the smart city domain. During the roaming service, 

the mutual authentication process between a vehicle and the distributed controller nodes 

that are represented by the Road Side Units (RSUs) will be completed through the cloud 

service to accommodate the mobility of the vehicle as it is going to hand off from an 

RSU coverage to a different one depending on its speed.  To avoid the unnecessary 

repetition of the authentication phase, the authentication process will be handled by the 

cloud service that stores all vehicle's security credentials.  After that, when a vehicle 

moves to the proximity of a new RSU under the same administrative authority of the 

most recently visited RSU, the two RSUs can cooperate to verify the vehicle's legitimacy. 

Also, the third use case supports driver static and continuous authentication as a driver 

monitoring system for the sake of both road and driver safety. 

The proposed framework consists of four main phases: the enrollment phase, the 

registration phase, the mutual authentication phase, and the key agreement phase. 

3.3.1 LMAP2A Phases 

3.3.1.1 Device Enrollment Phase 

The enrollment phase is completed at the manufacturer's site before the devices 

are shipped to the service provider or user. First, the manufacturer will load the devices 

with a real device ID. The manufacturer will then load the device with information and a 

list of the supported cryptosystem techniques. Second, a large number of Challenge-
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Response Pairs (CRPs) associated with the device's PUF are stored in a database that is 

hosted on the manufacturer's Cloud, as shown in figures 19 and 20.  The manufacturer 

sends random challenges to the device. Then the device processes the challenges using 

PUF and replies with the corresponding responses. The  CRPs and devices' real IDs are 

stored in a highly secured environment.  Lastly, the manufacturer stores the CRPs in the 

database and the real ID of the device. The manufacturer can then repeat this procedure 

as much as needed.  

Figure 19: Device Enrollment Phase 

Enrollment of a device 
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Manufacturer Device 

1. Choose CID

 CID ∈C {set of all possible challenges} 

2. Challenge CID

3. PUF processing RID = f(CID)

4. Response RID

5. Store (CID, RID) pair to a database

6. Repeat Steps 1 to 5 N times

Figure 20: Device Enrollment Process 

3.3.1.2 Registration Phase 

During this phase, the communicating devices are assigned their Alias IDs, 

getting the Alias ID and Real ID of the other party. The communicating parties will 

communicate using their pseudonym IDs. Because the dynamic pseudonym IDs will be 

changed every authentication session, they will offer the anonymity of the sender's ID, 

receiver's ID, and the sender-receiver relationship, in addition to device untraceability 

and end-to-end flow untraceability. Other authentication parameters will be calculated as 

needed.  All these data are loaded into the device's memory through a secured channel. 

The controller node saves this data in its database and forwards it to the cloud service if 

needed. 

3.3.1.3 Mutual Authentication Phase 



50 

During this phase, the communicating parties securely verify each other's 

identities that will be sent as part of a hash function or an encrypted message.  This phase 

can be completed through direct communication in case the communicating parties are 

stationary. Also, this phase can be achieved through the cloud service when the IoT 

device is mobile and is trying to communicate with a distributed controller node. 

Different lightweight cryptographic primitives such as ECDH, one-way hash function, 

AES, PUF, chained hash PUF, and Exclusive-OR are utilized in this phase. 

3.3.1.4 Key agreement phase 

During this phase, the two parties agree on a symmetric session key to encrypt the 

data exchanged. Once the mutual authentication is completed, the two sides will generate 

the new shared secret key (ssk) that will be derived from the shared secret parameters as 

well as the PUF challenges and their corresponding responses. AES will be used as a 

symmetric encryption algorithm to encrypt and decrypt all the subsequent data that will 

be sent between the communicating parties. 

3.3.2 Components of the Architecture  

LMAP2A consists of four layers: the physical layer, edge layer, fog layer, and cloud 

layer. 

3.3.2.1 Physical layer 

This layer consists of  IoT devices that can be resource-constrained devices or 

general-purpose computing devices. All IoT nodes are equipped with a PUF, and any 

attempt to tamper with the PUF will change the device's behavior and render the device 

useless. 
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3.3.2.2 Edge Layer 

The edge layer consists of devices that have more resources than the IoT devices. 

The edge devices support different communication protocols and facilitate the 

communication between the IoT devices and the fog nodes. The edge nodes are within 

one/two-hop distance from the IoT nodes. Edge resources have varying ranges of 

computational capabilities, from highly capable devices such as mini data centers to less 

capable such as tablets or smartphones. Edge layer resources are assumed to have device-

to-device connectivity within the layer and reliable connectivity to fog layer. 

3.3.2.3 Fog Layer 

The Fog layer resides on top of the edge. It consists of networking devices such as 

routers and switches with high computing capabilities. The fog layer acts as an 

interconnecting link between the IoT devices or the edge layer on one side and the cloud 

on the other side. The fog layer can perform protocol conversion and provides other 

services such as data aggregation, filtering, and dimensionality reduction.  The devices on 

the fog layer can also act as a local repository to temporarily store sensors' generated 

data, provide local processing capability, and perform data cleaning, aggregation, 

analysis, and interpretation techniques because it has a local database. 

3.3.2.4 Cloud Layer 

The cloud layer resides on top of the fog layer.  It is a consolidation of devices 

such as servers with the highest computing and storage capabilities.  The cloud layer in 

the LMAP2A consists of the PUF cloud, where the PUF challenges and responses (CRPs) 

of the devices are stored, and the service provider cloud. 
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3.3.3 How LMAP2A Address Security Challenges 

Identifying the security goals serves as a first step to ensure the implementation of 

an efficient and lightweight mutual authentication security operation that can fit the IoT 

devices' resource-constrained nature. The following section covers the main 

characteristics of LMAP2A that satisfy the security goals. All the security characteristics 

of  LMAP2A will be inherited to the proposed schemes.  LMAP2A employs different 

cryptographic techniques, as presented in figure 21. 

           Figure 21: LMAP2A Security Approaches 

1. Device authentication: device authentication is achieved using physical

identifier. The physical identifier is applied through Physical Unclonable 

Function (PUF) technology that acts as a hardware fingerprint.  A delay-based 
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arbiter PUF-is used for authentication and secret key generation. An arbiter 

PUF is used as the root of trust in our architecture. From the security 

perspective, the employment of PUF in the proposed framework is considered 

one of the key assets. 

2. Key-length Security Level: based on the current security needs, the

employed security level is AES 128-bits. Therefore, cryptographic algorithms 

are chosen to satisfy this security level. 

3. No storage of shared secret keys locally: the proposed framework requires

that the secret keys are not stored on the resource-constrained IoT devices. 

4. No use of a trusted third party: The proposed framework does not require

the use of a digital certificate that requires the involvement of a third party 

during the mutual authentication process between the IoT node and the fog 

node. 

5. No sharing of Shared Symmetric Key (SSK) over the network: the

proposed framework does not require an exchange of shared secret symmetric 

keys over the network to be resistant against side-channel attacks. All shared 

secret keys are generated locally on the devices. 

6. Confidentiality: To ensure the confidentiality of the data and to be sure that

only authorized users access it, the communication is encrypted. Symmetric 

cryptography can be used to achieve confidentiality. However, symmetric 

cryptography requires the two parties to share the same key, and this can be 

achieved by a key-establishment protocol. AES is used as a symmetric 
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cryptography technique.  Elliptic curve Diffie Hellman (ECHD) is used for 

key establishment. ECDH is selected because it is lightweight and requires 

less computation to fit the nature of the resource-constrained IoT devices.  

ECDH is an acceptable standard and has low-overhead properties. 

7. Data freshness: It is achieved using timestamp and nonce to ensure the

message's freshness. 

8. Data integrity: It is achieved using either one-way function SHA-256 to

ensure the message has not been altered or modified. 

9. Privacy and anonymity: The proposed framework uses both a real ID and an

Alias ID for each device.  The nodes' real IDs will never be released in a 

cleartext format. Also, the real IDs are transferred over the network in an 

encrypted format.  Furthermore, the IoT Alias ID is updated for every 

authentication session. Accordingly, the adversary will not be able to monitor 

the activities of the IoT devices. 

10. Server Impersonation: to ensure the robustness of the proposed framework

against server impersonation attacks, the server authenticates itself to the IoT 

node before conducting any further steps in the authentication process. 

11. Defense in Depth: the proposed framework implements the defense in depth

concept by applying the multi-factor authentication technique. 

12. Heterogeneity: LMAP2A supports different security configurations that can

be implemented in different circumstances to meet the diverse needs of the 

IoT devices. The configuration options support both stationary and mobile IoT 
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devices as well as local and distributed controller nodes. Also, the 

configuration supports the integration of the user's static and continuous 

biometrics as another authentication feature.  The framework configuration 

includes multiple alternatives for cryptography strength and key lifetime, the 

number of authentication factors, and session keys usage. For instance, in a 

high-risk environment, short-term keys can be employed to limit the damage 

when an IoT node is compromised. 

13. Scalability: The scalability here refers to the framework's ability to expand

incrementally to support the newly added devices and growing data volumes. 

The proposed approach addresses the first problem by introducing the PHDA 

to store and retrieve the CRPs of the IoT devices, which can support Over the 

Air (OTA) registration on the fly to accommodate new devices to be admitted 

to the system. Also, the proposed framework allows the authenticated IoT 

devices to move from one controller node to another and be authenticated to 

the new controller node with the help of the most recently visited controller 

node. 

3.4 Evaluation Process 

There is strong agreement among the IoT cybersecurity research community on 

how to evaluate and compare the effectiveness of the authentication frameworks using 

both security analysis and performance analysis [57], [58], [59], [60], [61], [62] and [63].   

We plan to use and extend this approach to measure the effectiveness of the proposed 

schemes. Figure 22 provides a roadmap for the evaluation process as follows: 
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Figure 22: Proposed Framework Evaluation Process 

3.4.1 Phase 1: Security Analysis 

The security analysis will be conducted using both formal and informal evaluations. 

The formal security evaluation assesses the proposed schemes' resistance to some of the 

well-known attacks using two approaches: Burrows–Abadi–Needham (BAN) logic and a 

well-known rule-based simulation called AVIPSA.  To confirm and demonstrate the 

results of the formal security evaluation, we will conduct informal security evaluation to 

analyze in details the strength of the proposed scheme against well-known attacks using 

the best practice approach. The informal security analysis will use Dolev–Yao's threat 

model as a foundation. In addition, during the informal security evaluation, we compare 

the proposed schemes with the other existing authentication schemes considering their 
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resistance to the well-known attacks and their satisfaction with the main security 

requirements. 

3.4.1.1 Informal Security Analysis 

Informal security analysis is completed to investigate the robustness of the 

proposed framework against the well-known security attacks and analyze its satisfaction 

with the main security properties.  Dolev–Yao's threat model [64] is used to identify any 

security issues in any of the presented protocols. It is a powerful adversarial model that is 

widely accepted as the standard by which cryptographic protocols should be evaluated.  

The threat model is based on the following two assumptions: 

• Cryptography is secure:

1. The adversary is not able to decrypt a message without the key.

2. The adversary can't solve the private key pairing of a public key.

3. The adversary is not able to compute HMAC without the key.

4. The adversary is not able to guess an encryption key.

5. The adversary cannot guess a random number that is chosen as part of a

    security protocol or a random number. 

• The adversary can do the following:

1. Obtain any message passing through the network.

2. Act as a legitimate user of the network where he can initiate a conversation

with any other user. 
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3. Construct and deconstruct messages.

4. Become the receiver to any sender and be able to read, store, and block every

message in transit. 

5. Encrypt/decrypt if the encryption/decryption key is known.

6. Manipulate any message.

7. Send messages to any entity by impersonating any other entity.

To evaluate the security of the proposed schemes, we should assume that the 

adversaries are everywhere in the network. Based on the Dolev-Yao threat model, those 

adversaries may eavesdrop, manipulate, inject, alter, duplicate, or re-route messages. 

Therefore, the following security attacks have been considered for examination: 

1. Impersonation Attack: The adversary uses a trusted user's identity and

authentication credentials to get access and send malicious messages to other 

entities [64]. 

2. Replay Attack: is a form of network attack in which a message is intercepted and

maliciously repeated or delayed. A malicious node may repeat the data 

continuously, which will cause irregular and malicious behavior in the network 

[65] 

3. Man-in-the-Middle Attack: is a type of attack where the attacker inserts

him/herself into the conversation and tampers with the communication between 

two parties. The attacker impersonates one or both parties and gains access to the 

exchanged information between the two parties. This attack takes advantage of 
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the authentication process's weakness and modifies the communication between 

the communicating entities. 

4. Eavesdropping Attack: This is a passive attack. The attacker successfully

accesses some secret or confidential information by listening to the 

communication between the entities [65]. 

5. Denial of Service (DoS) Attack: it is a type of attack where a malicious node

keeps sending messages to the receiver node and negatively consumes the 

network's bandwidth to negatively impact service availability [65]. In summary, 

the adversary overloads the system with too many requests causing it to crash 

eventually. 

6. Brute-force attack: An attacker performs an exhaustive search where he or she

uses a trial-and-error method to explore all possible passwords of the user [66]. 

7. Side-channel attack: This type of attack enables an adversary to extract secret

keys maintained in a security system.  By observing the system's timer, the 

amount of power consumed by the system to respond to various queries, the 

adversary can figure out how the encryption algorithm is implemented [67]. 

8. Modeling attack: It is an attack where the adversary collects a large number PUF

CRPs and uses a regression algorithm to build a model and predict responses for 

new challenges [68]. 

The next step in the informal security analysis is to compare the proposed 

schemes with the other existing authentication schemes considering their resistance to the 
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above-mentioned well-known attacks and their satisfaction with the main security 

requirements. 

3.4.1.2 Formal Security Analysis 

The formal security analysis will use a theoretical analysis technique called 

Burrows–Abadi–Needham (BAN) and a simulation-based engine called AVISPA. 

3.4.1.2.1 Burrows–Abadi–Needham Logic 

BAN logic has been widely used for the formal evaluation and verification of 

authentication protocols and to provide proof of the correctness of any authentication 

protocol [69]. Therefore, this dissertation employs the widely accepted BAN logic to 

prove that the proposed authentication protocols provide secure mutual authentication 

between the IoT node and the fog node. The following paragraph presents a summarized 

introduction about the essential symbols and rules of BAN logic. 

3.4.1.2.1.1 BAN symbols and rules 

BAN logic is based on a set of postulates and assumptions. BAN uses three 

objects: principles, encryption keys, and logic formulas. The main notations used in BAN 

are described as follows:  

• P|≡X: P believes the statement X.

• #(X):X is fresh.

• P|⇒X: P has jurisdiction over the statement X.

• P ⊲ X: P sees the statement X.

• P|∼X: P once said the statement X.

• (X, Y): X or Y is one part of the formula (X, Y).
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• {X}k: The formula X is encoded/encrypted using the key K.

• <X>Y: X combined with the formula Y.

• P      K     Q: K is a secret parameter shared between P and Q 

3.4.1.2.1.2 BAN logic's rules 

The following commonly used BAN logic rules are utilized to prove that the 

authentication scheme ensures secure mutual authentication and key agreement: 

• Message-meaning rule: If P believes that the K is shared with Q and P sees X

combined with K, then P believes Q said X. 

𝑃| ≡ P      K     Q , P ⊲  < X > y 

𝑃| ≡ Q | ∼  X 

• Nonce-verification rule: If P believes X is fresh, and P believes Q once said X, then P

believes Q believes X. 

𝑃|≡#(X),P|≡Q~X

𝑃|≡Q|≡X

• Freshness- Conjunction rule: If P believes that X is fresh, then P believes that (X, Y)

is fresh. 

𝑃|≡#(X)

𝑃 |≡#(X,Y)

• Jurisdiction rule: If P believes that Q has jurisdiction over X and P believes Q

believes X, then P believes X. 

𝑃| ≡ Q ⇒ X, P| ≡ Q| ≡ X 

𝑃 | ≡ X

3.4.1.2.2 AVISPA Tool 
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Authors in [70]  introduced Automated Validation of Internet Security Protocols 

and Applications (AVISPA) to validate and assess the Internet Security Protocols and 

Applications. AVISPA is widely accepted as a validation simulation in the research 

community [71]. Also, the authors in [71] evaluated the specifications of several 

industrial-scale security protocols that are currently being drafted or standardized. In 

addition, the researchers in [57], [58], [62], and [63] used AVISPA to validate the 

security features of their protocols. AVISPA is a role-oriented language where each agent 

plays a distinct role during the execution of the given protocol. We will implement the 

proposed framework using HLPSL (High-Level Protocols Specifications Language) and 

then present the simulation results. HLPSL's semantics is based on Lamport's Temporal 

Logic of Actions (TLA). HLPSL is used to verify security properties such as data secrecy 

and authentication in message exchanges between agents. HLPSL provides a separate 

section to define the security properties, called the goal section. 

This tool uses a Dolev Yao attacker model presented in section 3.4.1.1, giving the 

attacker complete control over the network. In general, it can be stated that this threat 

model has full control over the network. AVISPA verifies the confidentiality, integrity, 

authentication of communication and data origin, anonymity, non-repudiation, and key-

management properties of a given protocol or communication exchange. This tool is a 

web-based, platform-independent realization and is compatible with standard operating 

systems. 

The protocol is determined, whether SAFE or not, based on predefined goals. The 

safety of the protocol is evaluated based on the Dolev-Yao threat model. HLPSL 

specifications are automatically translated into a lower language called the Intermediate 
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Format (IF) using the HLPSL2IF translator. These translations' main goal and designing 

the IF language is to offer and serve as an adequate input to the various back-end of the 

AVISPA toolkit. 

AVISPA integrates different back-ends implementing a variety of automatic 

analysis techniques for protocol falsification by finding an attack on the input protocol 

and abstraction-based verification methods both for finite and infinite numbers of 

sessions. AVISPA has the following four back-end tools: 

• OFMC Model Checker: The On-the-Fly Model-Checker (OFMC) incorporates

several symbolic techniques and algebraic properties to explore the state space in a 

demand-driven way. 

• CL-AtSe Model Checker: The Constraint-Logic-based Attack Searcher (CL-

AtSe) translates any security protocol specification written as a transition relation 

in IF language into a set of constraints that are effectively used to discover any 

possible attack on the protocol. 

• SATMC Model Checker: SAT-based Model checker (SATMC) constructs a

propositional formula based on the Transitional state obtained from the IF 

specification. The propositional formula represents any violation of the security 

properties, which can be translated into an attack. 

• TA4SPModelChecker: The Tree Automata based on Automatic Approximations

for the Analysis of Security Protocols (TA4SP) identifies the vulnerability of a 

protocol or predicts the protocol correctness by accurate estimation of the 

intruder's capabilities. 
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The architecture of the AVISPA Tool is presented in figure 23. A user interacts 

with the tool by specifying a security problem - a protocol paired with a security property 

that the protocol is expected to achieve in the High-Level Protocol Specification 

Language (HLPSL). The HLPSL is an expressive, modular, role-based, formal language 

for modeling communication and security protocols.  HLPSL specifications are 

automatically translated into the IF by the HLPSL2IF translator. The Intermediate Format 

(IF) is a lower-level language at a lower abstraction level. These translations, in turn, 

serve as input to the various back-ends that are analysis tools of the AVISPA toolset. 

Figure 23 AVISPA Architecture 

The entities involved in the communication process are modeled as roles with 

their message exchanges. Apart from the initiator and the receiver, the environment and 

the session of the protocol are also roles in HLPSL. The roles can be basic or composed 

depending on if they are constituent of one agent or more. A session is created between 

the roles to achieve the required message exchanges. The session also considers an 
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intruder in the process. Finally, the environment is created for all the sessions 

simultaneously. 

3.4.2 Phase 2: Performance Analysis 

The proposed framework implement the performance evalution to analyze the 

proposed schemes and compare them with other related protocols regarding 

computational complexity, communication cost and storage requirements. The 

computational complexity accounts for the execution time of the crypto operations such 

as  one-way hash function SHA-256, xor function, HMAC, PUF response generation, 

performing ECC, encryption, and decryption using ECC and AES. The communication 

cost computes the size of the message in bits. The message size varies depending on the 

message content. Finally, the storage requirements calculate  the needed storage space on 

the communicating parties. 

3.5 Summary 

This chapter presents the proposed framework and the proposed PUF distributed 

architecture. The different phases of the proposed framework are described. The 

evaluation process and the employed tools that will be implemented to evaluate the 

proposed work are presented in detail. The next chapter presents a new secure, 

lightweight mutual authentication scheme for stationary and mobile IoT nodes. 
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CHAPTER IV 

LIGHTWEIGHT PRIVACY PRESERVATION AND MUTUAL 

AUTHENTICATION PROTOCOL FOR SMART HOMES USING 

PHYSICAL UNCLONABLE FUNCTIONS 

With the exponential growth of IoT technology, there is an increasing demand for 

secure IoT authentication protocols. Most of the currently published protocols depend on 

computationally expensive mechanisms such as public-key encryption. In contrast, most 

IoT devices are resource-constrained, which may not handle such security approaches. 

This chapter proposes a secure, lightweight mutual authentication, key exchange, 

and a privacy preservation protocol for IoT smart homes and similar environments where 

both the IoT device and the controller node are stationary and within range. The 

presented protocol is called Lightweight Privacy Preservation and Mutual Authentication 

Protocol for Smart Homes Using Physical Unclonable Functions. This protocol adopts 

the cloud-fog-device architecture. 

The IoT node communicates and establishes a session with the controller node 

using dynamic anonymous identity, and the two sides agree on a symmetric key in an 

unlinkable manner.  The protocol also sets up virtual domain segregation based on the 

IoT device's type to apply the same service agreement level and enforce the same security 
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policies on similar devices. We also evaluate the proposed protocol by using different 

measures, namely, security and performance evaluation. The security evaluation will be 

both formal and informal. The formal analysis uses the Burrows–Abadi–Needham logic 

(BAN), the automated validation of internet security protocols and applications 

(AVISPA) toolkit. 

Furthermore, the protocol efficiency is evaluated and compared with other related 

protocols. Through the informal analysis, we will assess the proposed protocol against 

well-known security attacks.  We also validate the efficiency of the proposed 

authentication mechanism in terms of storage requirements, computational cost, and 

communication overhead. 

In Section 4.1, we first introduce the motivation of the work. Section 4.2 presents 

the related work and the other existing protocols. Section 4.3 demonstrates the use of case 

application and proceeds with defining the requirements that act as guidelines during the 

proposed protocol design.  In addition, the section discusses the IoT virtual domain 

segregation process. Section 4.4 presents the proposed protocol. Section 4.5 illustrates the 

protocol evaluation process, and finally, section 4.6 summarizes the chapter. 

4.1 Motivation 

There are two types of security threats, which are passive attacks and active attacks. 

In passive attacks, the adversary tries to collect data and learn about the system without 

affecting its resources. This type of attack can take the form of eavesdropping or traffic 

analysis. Through eavesdropping, the adversary intercepts the ongoing communication 

without consent from the authorized parties. Through traffic analysis, the adversary 
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monitors traffic patterns to deduce helpful information for later use. Both attacks are hard 

to detect, and therefore we focus on preventing them. 

On the other hand, in active attacks, the adversary tries to alter system resources or 

affect their operations. The attackers may try to modify the data stream or introduce fake 

data to the system. The most common active attacks are man-in-the-middle attacks, replay 

attacks, message modification, and denial of service.  In a man-in-the-middle attack, the 

adversary tries to be a trusted node to gain privileges. A replay attack allows the adversary 

to passively capture the messages and retransmit them to produce an unauthorized effect. 

The main goal of the denial-of-service attack is to interrupt the availability of the system 

[72]. 

4.2 Related Work 

In [73], the authors propose an efficient IoT device authentication protocol that 

employs the keyed hash algorithm. The proposed protocol avoids the use of a certificate 

authority to fit the protocol to constrained applications.   The proposed protocol increases 

efficiency by minimizing the number of message exchanges. The results show that the 

proposed authentication protocol improves the security level and reduces devices' 

resource consumption. 

The author of [74] presents PUF-based algorithms for resource-constrained IoT 

devices. The author uses the PUF-based algorithm for device enrollment, authentication, 

encryption, decryption, and digital signature generation. The author highlights the impact 

of the environmental variations under which the IoT devices will be operating and 

suggests using error correction codes to overcome PUF aging. The researcher concludes 
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that the implementation of PUF based elliptic curve protocols over elliptic curves are 

ideal in the IoT environment. Also, he states that elliptic curve cryptography provides 

security with low computational and storage requirements. Finally, the author argues that 

PUF provides low-cost tamper resistance for IoT devices. 

The authors in [75] propose a lightweight mutual authentication scheme for IoT 

devices. A block cipher algorithm is employed in this scheme to conduct the mutual 

authentication between the IoT device and the server. The protocol requires a secret key 

to be initially stored in both the IoT device and the server. A session key is dynamically 

generated using this secret key. The authentication mechanism is a typical application of 

encryption/decryption cryptography algorithms in authenticating IoT devices. This, in 

turn, makes the IoT device vulnerable to being compromised by an adversary who has 

remote access to the IoT device and uses a side-channel attack technique. 

In [76], the authors present an IoT authentication protocol based on PUF. Initially, 

the IoT device registers its credentials, including the device serial number and fingerprint 

generated using a PUF. Then, the gateway proves the device's authenticity by matching 

the device's PUF fingerprint with what is stored in the gateway's repository. The IoT 

device and the gateway share an initial secret key; the IoT device stores the secret key in 

its non-volatile memory. The gateway stores the secret key in its repository. The initial 

secret key is used to encrypt and decrypt the initial message processes. The proposed 

authentication protocol requires that the IoT device stores an initial cryptographic key in 

its secure non-volatile memory to set up an initial connection with the gateway. This 

proposed protocol suffers from the same vulnerability that is previously presented in [75], 
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where storing an initial secret in IoT devices can be compromised by an intruder using a 

firmware side-channel attack to retrieve the secret key. 

The authors in [77] introduce a mutual authentication scheme for an IoT system. 

In the proposed scheme, authentication occurs between the IoT device and the server. 

The scheme is based on hashing feature extraction and asymmetric cryptography. The 

authors improve IoT security and decreased computation and communication costs by 

combining one-way hashing using SHA1 and feature extraction. This combination helps 

avoid any collision attacks. The authors conduct a security analysis and conclude that the 

proposed scheme is secure for application and consumes low computation and memory 

resources. 

The authors in [78] propose an IoT authentication scheme for a smart home 

system. The presented protocol uses elliptic curve cryptography (ECC) for authenticating 

IoT devices. The proposed protocol uses a Wi-Fi gateway to complete the initial system 

configuration, authenticate IoT devices, and provide a means for the user to set up, 

access, and control the system through an Android-based mobile device. The protocol 

facilitates the authentication between a user and an IoT device via the home gateway. The 

presented protocol does not support user traceability and user anonymity. 

The authors of [79] propose a mutual authentication protocol using public-key 

encryption and the IoT device's capability to calculate a predesigned functional operation. 

The server and the IoT device store their private key and each others’ public key. The 

proposed protocol has two main weaknesses. First, the IoT device and the server store their 

long-term private key, which an adversary can extract by conducting firmware attack 

techniques. Second, the proposed protocol employs public cryptography, which is 
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considered computationally expensive and resource-consuming for resource-constrained 

IoT devices. 

The authors in [80]  present a Linear Feedback Shift Register (LFSR)-based PUF. 

The proposed protocol is based on generating a response to a challenge, then feeding the 

response to another PUF as a challenge. The two PUF responses are connected using the 

LFSR. The length of the response can be increased by increasing the number of states of 

LFSR without any changes in the hardware. The proposed protocol's main weaknesses 

are the complexity of the proposed design and the absence of security analysis. 

The proposed protocol in [81] presents a secure authentication method using zero-

knowledge proof for a smart home environment. The presented protocol does not require 

any secret key during the authentication process between the IoT device and the home 

gateway. Alternatively, the gateway provides the IoT node with a number to act as a 

token during the authentication phase. This token can be used later by the IoT device to 

prove its authenticity to the gateway. 

The author of [82] proposes a two-factor one-time password (OTP) technique 

based on a lightweight identity-based ECC scheme. The proposed protocol achieves both 

efficiency and security because (1) the Key Distribution Center (KDC) does not require 

any key storage, and (2) it does not store the private and public keys of the other devices. 

This presented protocol consumed a small amount of resources. 

In [83], the authors develop a secure and efficient architecture for authentication 

and authorization of resource-constrained IoT devices. The proposed architecture aims to 

maintain the security, privacy, and accuracy of patient data. The presented architecture 

shifts the authentication task from the remote end-user to the distributed smart e-health to 
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accommodate the medical sensors' resource-constrained nature. The proposed 

architecture is based on a certificate-based DTLS handshake protocol. The architecture is 

tested via a healthcare prototype structure based on Pandaboard, Texas Instruments (TI) 

SmartRF06 board and WiSMotes. The CC2538 module integrated into the TI board acts 

as a smart gateway, and the WiSMotes act as medical sensor nodes. The effectiveness of 

denial-of-service (DoS) attacks is mitigated through the distributed nature of the 

proposed architecture. The results indicate that the proposed architecture minimized the 

communication burden by 26% and reduced communications latency by 16% compared 

to the delegation-based architecture. 

Authors in [84] introduce a lightweight and secure session key establishment 

scheme for smart home environments. Both the control unit and the sensors use a token to 

establish trust and a secret session key. The short authentication token ensures mutual 

authentication between the IoT resource-constrained device and the control unit. The 

researchers use the AVISPA tool to verify the authentication and confidentiality 

attributes. Also, the proposed scheme's security analysis proved that the proposed scheme 

is secure against the Dolev-Yao attack model.  The performance and efficiency of the 

proposed scheme are evaluated using a testbed. The results indicated that the proposed 

scheme achieved security goals as expected. 

Authors in [85] present a machine-to-machine mutual authentication protocol that 

relies on asymmetric cryptography for resource-constrained IoT nodes in the smart home 

domain. The proposed protocol enables the IoT nodes to authenticate each other and 

generate a dynamic shared secret using a pseudo-random generator in every session 

without any human intervention. The researchers use SPAN/AVISPA toolkit as a security 
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evaluation tool. The results indicate that the introduced protocol is resilient against well-

known attacks, such as man-in-the-middle attacks, replay attacks, and eavesdropping 

attacks. However, using the pseudo-random number generator to generate the shared 

session key does not provide complete randomness to the key generation process. 

Additionally, the use of asymmetric cryptography does not fit the resource-constrained 

nature of smart home IoT devices. 

In [86], the authors introduce a new authentication scheme to authenticate 

resource-constrained IoT devices in smart homes.  The proposed protocol uses PUF and 

Physical Key Generation (PKG) as an alternative to public-key cryptography. The system 

generates a secure key based on the PUF, producing unique physical parameters for each 

IoT device. The presented protocol provides secrecy and authenticity against attackers. 

The authors of [87] introduce a PUF based mutual authentication scheme between 

the IoT devices and the gateway using the CRPs stored inside the gateway. The protocol 

enables the users to authenticate themselves with the gateway to communicate with the 

IoT device using a session key generated between them. Timestamp data are used to 

ensure security against replay attacks. 

The authors in [57] present a lightweight mutual authentication protocol for IoT. 

The researchers use physically unclonable functions (PUFs) and XOR functions to 

provide security. First, the proposed authentication protocol sends the same device ID in 

a hash format for every authentication session.  As a result, the adversary can trace the 

activities of the IoT device.  Therefore, this protocol does not protect the privacy of the 

IoT device. Second, during the setup phase, the server retrieves the IoT CRP's from the 

manufacturer’s cloud and stores them locally on its memory.  This action may lead to 
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different problems. First, the protocol is not resistant to the stolen-verifier attack [61], 

where the adversary can obtain verification information stored in the server. Second, if an 

adversary hacks the server, the adversary could access all the CRP's, leading to server 

impersonation attacks. Third, the adversary can also use the retrieved CRP's to conduct 

modeling attacks by using the available challenges and responses to build a model and 

predict the responses of new challenges. Fourth, storing all the CRP's on the server's local 

storage will not support system scalability because it will require vast storage space.  On 

another side, the presented protocol supports mutual authentication but does not support 

multiple authentication sessions concurrently.  

The authors in [59] propose a PUF based secure communication and key generation 

protocol for IoT. The researchers use the PUF to generate the public key. The presented 

protocol has multiple weaknesses. First, the protocol sends the device's real ID in cleartext, 

which does not preserve its privacy. Also, it does not protect anonymity and untraceability 

security features. Second, the protocol does not authenticate the server first, leading to 

server impersonation attacks. Consequently, the IoT node will calculate the responses and 

calculate its private and public keys without verifying the server's authenticity. Third, during 

the enrollment phase, the server sends challenges to the IoT node that generates the 

corresponding responses.  Those CRPs are stored on the server. This technique does not 

protect the system from enrolling fake devices. The protocol does not have any mechanism 

to ensure that the IoT device is an authentic device and not a cloned or a fake device. 

Therefore, this protocol does not protect the IoT system against counterfeiting. Fourth, the 

presented protocol does not support IoT system scalability.  The server stores all the CRPs 

of the IoT nodes, which requires considerable storage space on the server. This, in turn, may 



75 

hinder the system's scalability. Fifth, the protocol is not resilient against a stolen-verifier 

attack where the adversary can obtain the CRPs that are stored on the server's storage. Sixth, 

the protocol is not resistant to replay attacks because the time stamp has never been updated, 

and therefore, there is no way to ensure the message's freshness. 

The author in [60] proposes a mutual authentication protocol using PUF, ECC, and 

simple XOR functions. The presented protocol has multiple weaknesses. The author in [60] 

shares three weaknesses with [59]: (1) the protocol sends the device's real ID in clear text, 

which does not preserve the device privacy and also does not protect anonymity and 

untraceability security features; (2) the CRPs are generated and collected during the 

enrollment phase. Those CRPs are stored on the server. This technique does not protect the 

system from counterfeiting, and (3) the protocol is not resistant against the replay attack 

because the timestamp is a constant value during the authentication process. Therefore, there 

is no way to ensure the message's freshness. 

Besides, the presented protocol is subject to a brute force attack. The adversary can 

capture the IoT node's first message that contains the node ID and the TS in cleartext. The 

server calculates a value called h11 = h (C1 ⊕ C2 ⊕ TS), a value called C'2 = 

C2⊕h(R1⊕TS⊕D2), along the same C1 in cleartext. The adversary can brute force h11 to 

get the value of C2. Once the adversary succeeds in getting the value of C2, he can XOR C2 

with C'2 to get h (R1⊕ TS⊕D2).  Because the adversary already has D2, and TS, he can 

conduct a brute force attack to find R1. This significant weakness will corrupt the 

authentication process and allow the adversary to collect enough CRPs to build a model that 

can be used to predict responses for new challenges. 
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The authors in [61] introduce a lightweight and privacy-preserving two-factor 

authentication protocol for IoT devices. The authors use PUFs as one of the 

authentication techniques and an XOR function for data encryption. The presented 

protocol protects the device's privacy and ensures the anonymity of the devices. The 

researchers use the reverse fuzzy extractor to eliminate the issue that occurred because of 

noise during the operation of the PUF. During the setup phase, the server sends the IoT 

device the PUF challenges, and the IoT device responds with the corresponding PUF 

responses.  Because this process is completed during the setup phase, there is no way to 

verify the IoT device's originality, making this protocol vulnerable to IoT device 

counterfeiting. Also, the proposed protocol stores a long-term secret key that is used as 

the first authentication factor for proving the legitimacy of the IoT device on the device's 

non-volatile memory. This makes the IoT device vulnerable to being compromised by an 

adversary who can use firmware attack techniques to retrieve the secret key. 

Authors in [62] present a mutual authentication protocol for IoT devices using 

physically unclonable functions. The researchers use PUFs and message authentication 

code (MAC) to build the authentication protocol. The presented protocol is a lightweight 

protocol, but it uses the real identity of the IoT device while completing the 

authentication phase.  As a result, the adversary can monitor the activity pattern of the 

IoT device.  Therefore, the protocol does not protect the privacy of the IoT device.  

In [63], the authors introduce a lightweight mutual two-factor authentication scheme 

using PUF and hashing algorithms to secure authentication and session key agreement 

between the IoT device and the server. The researchers conduct a formal analysis using 

BAN logic to validate the protocol's security. They also conduct informal analysis and 
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evaluate their proposed protocol against different types of attacks. The researchers 

concluded that the proposed protocol fits the needs of resource-constrained IoT devices. The 

presented protocol is a lightweight protocol, but it uses the IoT device's real identity during 

the authentication phase, which does not protect the IoT device's anonymity and 

untraceability. 

Based on the work presented above, there are common limitations that are shared 

among most of the presented schemes. First, in the schemes presented in [59,60,61], the 

CRPs are generated and collected during the setup phase and outside the manufacturing 

process.  This does not allow the opportunity to discover counterfeited devices from original 

devices. Second, using PUF generates considerable interest in terms of authentication. One 

of the main drawbacks that is clear in many of the protocols mentioned above [57,59,60] is 

storing challenge and response pairs on the server-side.  Many of the presented protocols 

store the CRPs on the server storage, which can be an obstacle to system scalability.  This 

is a significant problem with much of the literature regarding resource-constrained IoT 

devices. Third, in some of the presented protocols [57, 59, 60,62,63], the researchers 

overlook the IoT devices' privacy, which does not guarantee the anonymity and privacy of 

the IoT device. Fourth, the proposed protocol [61] requires storing a secret key hash on the 

IoT device's memory, which can be retrieved using side-channel attacks. 

4.3 IoT Smart Home Network Model and Security Goals 
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4.3.1 Smart Homes Network Model 

The use case presented in this section is illustrated in figure 24.  It presents a 

resource-rich Intelligent Gateway (IG) node that communicates with resource-constrained 

IoT devices (N) in an untrusted field. The IG is the central device and is aware of all the 

nodes within its network. It is also responsible for managing the data about each node and 

starting and maintaining the network. Both the IoT device and the fog node that is 

represented by the controller node are stationary. The communication between the IoT 

device and the controller node is subject to both active and passive attacks. In passive 

attacks, the adversary can eavesdrop on the communication. In active attacks, the intruder 

may replay, modify, or delete specific communication messages. 

 Figure 24: IoT Smart Home Network 
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Establishing a secure communication between an IoT device (N) and an 

intelligent gateway (IG) node requires a secure protocol. Authentication, key agreement, 

and access control are the four critical components of the scheme that we present in this 

chapter, as demonstrated in figure 25. 

    Figure 25: Key Components for Secure Communication 

Figure 26 describes the proposed scheme. The protocol consists of four 

participants: the IoT node (N), the Intelligent gateway node (IG), the service provider 

cloud, and the manufacturer cloud. The local IoT network includes IoT nodes and an 

intelligent gateway (IG) that acts as the central node. The IG node oversees starting and 

maintaining the network, and it is aware of all the devices' alias identities and real identities. 

IoT devices can be resource-constrained devices or general-purpose computing devices. 

All IoT nodes and the IG are equipped with a PUF, and any attempt to tamper with the 

PUF will change the device's behavior and render the device useless. The PUF hardware 
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security primitive is used as the root-of-trust, which provides device authenticity. The IG 

simply is a secured node with more resources than the IoT device. 

Figure 26:  The Proposed Protocol Overview 

The IG supports different communication protocols and acts as a communication 

point between the IoT nodes and the local Internet. It receives data from various sensors, 

performs protocol conversion, and provides other services such as data aggregation, 

filtering, and dimensionality reduction. The IG will support different wireless protocols 

and facilitate inter-device communication. The IG also acts as a local repository to 

temporarily store sensors' generated data, provides local processing capability, and 

performs data cleaning, aggregation, analysis, and interpretation techniques because it has 

a local database. The IoT nodes communicate directly with the IG. A trust relationship and 
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a secure communication link exist between the IG and the service provider cloud 

environment. The manufacturer assigns the IoT devices and the IGs real IDs that are stored 

in the device's memory. Also, the service provider gives the IoT nodes and the IG alias 

IDs.  

The proposed scheme ensures data confidentiality by encrypting the exchanged 

messages using the AES algorithm with a 128 bits key length as recommended by NIST 

[16].  In addition, a one-way cryptographic hash function with a 256 bits length is used to 

validate and ensure the integrity of the data transmitted between the two devices. 

The IoT node will be given two different options for generating a shared secret 

session key during the authentication process to add more flexibility to the proposed 

protocol and accommodate IoT nodes with diverse computational resources. The IoT node 

will select the option that is suitable to its resources and the security requirements. 

The proposed protocol supports IoT devices' dynamic addition to the network 

without causing any changes in the network's present security states. Adding a new IoT 

device is controlled by the capabilities and the available resources of the IG, which is 

assumed to be a powerful device because it stores separate information for each IoT device 

in the network. 

4.3.2 IoT Virtual Domain Segregation 

To apply security policies that fit the needs of the different IoT devices, the 

proposed protocol uses virtual segregation among the IoT devices. The IoT network is 

virtually partitioned based on the type of the IoT device. The segregation process will 

help the IG to control the communication process in the IoT network. 
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 Virtual segregation is an essential factor to secure the IoT network so that the 

same policies and security rules can be applied on the IoT devices of the same type 

regardless of 

Figure 27: Virtual Domain Segregation Based on Device Type 

where they are located. For example, as in figure 27, all motion sensors are in the same 

virtual domain. The same is for the glass breaking sensors and lighting sensors. Each IoT 

device is assigned a virtual domain ID(VID) and Type ID(TID) during the registration 

phase.

4.4 Proposed Scheme:  Lightweight Privacy Preservation and Mutual 

Authentication Protocol for Smart Homes Using Physical Unclonable Functions 

This section presents a lightweight mutual authentication and key agreement 

protocol for stationary IoT devices. The abstract notations used to describe the 

authentication protocol are listed in Table 2. The proposed protocol is based on LMAP2A 
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architecture that is presented in chapter 3. An IoT node (N) and an Intelligent gateway (IG) 

are responsible for ensuring secure, anonymous mutual authentication and key exchange 

in the proposed protocol. The proposed protocol consists of four phases: the enrollment 

phase, registration phase, mutual authentication phase, and the key generation phase. 

Depending on how the IoT node will choose to generate the session key, the key generation 

phase can be executed in two different ways. 

The enrollment phase will be completed during manufacturing. The Authoritative 

entity will be in charge of completing the registration phase. Both the mutual authentication 

and the key generation phases will be conducted between the IoT device and the IG without 

any human involvement. The two parties are responsible for ensuring secure, anonymous 

mutual authentication and key generation. The relationship between the IoT devices and 

the IG is based on the client-server topology. It is assumed that the two communication 

parties can have direct communication with each other. 

4.4.1 Enrollment Phase 

The enrollment phase is completed during the manufacturing process. The 

manufacturers will assign a real ID to every IoT device and every intelligent gateway. Also, 

the manufacturers will collect a set of CRPs for each IoT device and each intelligent 

gateway during the enrollment phase. The manufacturers will test all the CRPs under 

different temperature and voltage conditions and consider the aging effects to keep only 

the error-free CRPs [ [37]. Then, the manufacturers will load the CRPs of the IoT devices 

and the intelligent gateways to the cloud of their service providers.  The service provider 

containers are part of the PUF architecture that is presented in Chapter 3.  
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Table 2: Notations Used in the Proposed Scheme 

Notation Description 

Authoritative Entity AE 

IoT node N 

Intelligent Gateway IG 

NIDR IoT Node Real ID 

NIDA IoT node Alias ID 

IGIDR Intelligent Gateway Real ID 

IGIDA The intelligent Gateway Alias ID 

OTP One-time password 

VDIDN IoT node virtual domain ID 

TIDN IoT node Type ID 

RVN The random value generated by the IoT 

node 

RVIG The random value generated by the IG 

Auth1,Auth2, and Auth3 Authentication parameters 

TSN Timestamp generated by the IoT node 

TSIG Timestamp generated by the IG 

PUF Physical unclonable function 

C PUF Challenge 

R PUF Response 

PubN IoT device public key 

PrivN IoT device private key 

PubIG Intelligent gateway public key 

PrivIG Intelligent gateway private key 

OTPnew New OTP 

NIDANew N new alias ID 
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SSK Shared secret session key 

{}_ Encryption 

H Hash function 

⊕ Bitwise xor operation 

4.4.2 Registration Phase 

The main goal of this phase is to register the IoT device. Before operation in the 

field, the Authoritative Entity (AE) will complete multiple tasks, as described in figure 

28. First, The AE will assign the IoT node (N) an Alias identity (NIDA), virtual domain

ID(VDIDN), and type ID (TIDN). NIDA will be a fake ID that the IoT node will use to 

communicate with the IG. NIDA will be dynamically changed in every authentication. The 

goal of the NIDA is to protect and ensure the unlinkability and untraceability of the IoT 

devices. 

Additionally, the NIDA supports the anonymity of the node in each session. VDIDN 

refers to the virtual domain that N belongs to, and the TIDN indicates the type of the IoT 

device.  Then the AE will use N's different ID's and the real ID of the IG to generate three 

authentication parameters, which are Auth1 and Auth2, and Auth3 using a one-way hash 

function and XOR operations. 

  Second, the AE will use a random number generator to generate a one-time 

password (OTP) between N and the IG. Once N is registered, both N and IG will generate 

the OTP during every authentication session without any human involvement. 
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Third, the AE will retrieve CRP (CIG, RIG) of the IG from the PUF cloud.  Fourth, 

the AE will insert and store NIDR, NIDA, the VDIDN, the TIDN, and the OTP in the IG's 

database and store Auth1, Auth2, Auth3, OTP, NIDA, RIG, and IGIDA in N's memory. 

Figure 28: Registration Phase 

The real identities of both the IoT node and the IG represent secure parameters 

between the IoT node and the IG. The NIDR and the IGIDR will never be transmitted in a 

plain text format and will be used during the authentication process between the IoT node 

and the IG. 

4.4.3 Mutual Authentication Phase 

This phase includes implementing the two-factors authentication process and the 

agreement on the technique of generating the secret session key (ssk) between the IoT 

Step 1: The AE assigns an Alias ID to N 

Step 2: The AE assigns N to its appropriate virtual domain and generates a VDIDN to the N. 

Step 3: The AE generates and assigns a TIDN to each N based on its type 

Step 4: AE communicates with the PUF cloud to retrieve a CRP (CIG, RIG of the IG. 

Step 5: The AE calculates the three parameters using the VDIDN, TIDN, and the RIG: Auth1, 

Auth2, and Auth3 as follows: 

     Auth1: H (NIDR || IGIDR||RIG) 

     Auth2: H(Auth1 ||IGIDR ||VDIDN) 

     Auth3: H (Auth2|| IGIDR ||TIDN) 

The VDIDN, the TIDN, and the RIG   are only used to create Auth1 Auth2 and Auth3. Both the 

VDIDN and the TIDN are only stored on the IG database. The IoT node does not know anything 

about those two IDs and the RIG.  The CIG is only stored on the IG database, and RIG is 

unknown to both the IoT node and the IG because the IG will generate it on every 

authentication session. Using these two IDs to generate the authentication parameters makes it 

almost impossible for an adversary to identify any IoT node's VDIDN and the TIDN. Also, using 

the RIG makes it impossible for an adversary to impersonate the IG. 

Step 6: The AE generates a one-time token (OTT) that will be used as part of a one-time 

password (OTP) using a random number generator 

Step 7: The AE stores the Auth1, Auth2, Auth3, NIDA, IGIDA, and OTP in the IoT device 

database.  

Step 8: The AE inserts the NIDR, NIDA, IGIDA, PubIG, VDIDN, OTP, CIG, and TIDN of the IoT node 

in the IG database.  
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node and the IG. The ssk will be generated either by employing a hash function or using 

the Elliptic Curve Diffie Hellman Key exchange protocol. 

This phase includes implementing the two-factor mutual authentication using the 

PUF, one-way hash function, bitwise XOR operation, and symmetric encryption. The 

security of exchanged messages in this phase is ensured by encrypting the messages 

using the AES algorithm with a 128-bit key length. Besides, a one-way cryptographic 

hash function with a length of 256 bits is used to validate and ensure the integrity of the 

transmitted data between N and the IG. 

During this phase, the two sides negotiate the session key generation technique. 

The two sides will agree to either generate the session key by using a one-way hash 

function or by using Elliptic Curve Diffie Hellman Key Exchange Protocol (ECDH). The 

ECDH Key Exchange is a key-agreement protocol that can be used for deriving a shared 

secret key [20]. Figure 29 describes the ECDH key exchange process. 

N IG 

Choose α = PriN, 1< α <n-1

Compute PubN ≡ αG mod p
          PubN  

Choose:  β = PriIG, 1<β<n-1 

Compute:  PubIG ≡ βG mod p 

         PubIG 

 ssk = PubIG α ssk = PubN β 

Figure 29: Elliptic Curve Diffie Hellman Key Exchange Protocol 

As presented in figure 30, this phase starts when N prepares the connection 

request message that will be sent to the IG. The preparation process of this message 

includes the following steps: 
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1. N generates a new TSN1 to avoid replay attacks

2. N Computes NX1

a. NX1 = H (Auth3|| OTP)

3. N selects a random parameter RVN and then calculates NX2

a. NX2 = XOR (RVN1, NX1)

4. N computes SN = H (NIDR|| NX1 ||TSN1 || RVN 1)

5. N sends a connection request message.

The connection request includes NIDA, TSN1, X2, and SN, as shown in 4.1. 

N          IG Conn-Req (NIDA, TSN1, NX2, SN)              (4.1) 
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Figure 30: The Proposed protocol authentication process between N and IG 

N IG 

Generate: TSN1, RVN1 

Compute: 

NX1 = H (Auth3|| OTP) 

NX2 = XOR (RVN1, NX1) 

SN = H (NIDR|| NX1 ||TSN1 || RVN 1) 

 M1: (NIDA, TSN1, NX2, SN) 

 Check:|TRec−TSN11 |< ∆T 

    Find: NIDA

    Read: NIDR VDIDN, TIDN, CIG, and OTP 

 Compute: 

    RIG = PUF(CIG) 

  Auth1’ = H ((NIDR || IGIDR|| RIG)

    Auth2’ = H (Auth’1 ||IGIDR || VDIDN)  

 Auth3’ = H (Auth2’|| IGIDR || TIDN)

    X1’ = H (Auth2’ || Auth3’|| OTP) 

    RVN1’ = XOR (X2, X1
’) 

    Verify: SN’ = H (NIDR|| X1’|| TSN1’ || RVN1
’) 

    Generate: RVIG1, TSIG1, SID

Computes: 

       G1 = H (Auth1’|| OTP|| RVN1’) 

       CX = C1 ⊕ G1 

  G2 = H (IGIDR||C1 || RVIG1 || TSIG1|| G1) 

M2: (IGIDA, SID, TSIG1, CX, {RVIG1, G2} _R1) 

Check:|TRec−TSIG1 |< ∆T 

Compute: 

G1’ = H (Auth1|| OTP|| RVN1) 

C1’ = G1’ ⊕ CX 

R1’ = PUF(C1’) 

Verify 

G2’= H (IGIDR||C1’ || RVIG1 || TSIG1|| G1’) 

Generate: RVN2, TSN2 

Compute 

OTPnew= H (OTP|| CNI|| TSN2) 

NIDAnew = H (NIDA || RVIG1) 

N3 = H (TSN2||RVN2||OTPnew || NIDAnew ||RVIG1) 

  M3: NIDA, SID. TSN2, {RVN2, N3}R1) 

 Check:|TRec−TSIG1 |< ∆T 

 Compute: 

 OTPnew= H (OTP|| CNI|| TSN2) 

  NIDAnew = H (NIDA || RVIG1) 

 Verify: 

 N3’ = H (TSN2||RVN2||OTPnew’ || NIDAnew
’ ||RVIG1) 

 Store (OTPnew’, NIDAnew
’)  
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Once the IG receives the connection request, it will complete the following steps: 

1. IG checks the validity of the received timestamp |TRec−TSN11 |< ∆T.  TRec is

the time when the message is received, and ∆T is the maximum transmission 

delay. The message will be dropped if the difference between the timestamp 

and the time when the message is received higher than the expected maximum 

transmission delay. 

2. IG retrieves from its database the NIDR that corresponds to its NIDA.  If the IG

did not find the NIDA in its database, it will ignore and drop the connection 

request. 

3. Once the IG finds the NIDR, it will retrieve it along with the VDIDN, TIDN, CIG,

and OTP of N. 

4. The IG passes the challenge CIG to its PUF function and generates a response

RIG 

5. The IG uses the generated RIG to compute Auth1' by applying a one-way hash

function, as described in 4.2. Based on the calculated Auth1', the IG calculates 

Auth2' as presented in 4.3.  Also, the IG calculates Auth3' by using Auth2' as 

presented in 4.4. 

Auth1’ = H ((NIDR || IGIDR|| RIG)  (4.2) 

Auth2’ = H (Auth’1 ||IGIDR || VDIDN)  (4.3)  

 Auth3’ = H (Auth2’|| IGIDR || TIDN)     (4.4)       

6. The IG computes X1’ = H (Auth2’ || Auth3’|| OTP)
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7. The IG computes the RVN1’ = XOR (X2, X1
’)

8. The IG uses the calculated X1’, TSN1
'
, NIDR, and the RVN1' to generate SN',

which is a combination of NIDR, X1’, TSN1', the RVN1' using a one-way hash 

function as shown in figure 31. If the computed value is equal to the received 

value, the IG accepts the connection request; otherwise, it will drop it.  

Figure 31: IoT Node Message Verification 

Once the IG verifies the IoT node, the IG communicates with the Grand PUF 

node to retrieve the PUF challenge (CNI) and their corresponding PUF responses (RNI) 

through a secure communication channel. The IG will generate a random value RVIG, a 

session ID to distinguish one session from the rest of the running sessions 

simultaneously, and a timestamp TSIG1. The preparation process of the connection 

response message includes the following steps:  

1. IG selects a random parameter (RVIG1) 

2. IG generates a new timestamp (TSIG1)

3. IG generates a session ID(SID)

4. IG computers G1 = H (Auth1’|| OTP|| RVN1’)

5. IG calculates CX = CNI ⊕ G1

6. IG calculates G2 = H (IGIDR||CNI || RVIG1 || TSIG1|| G1)

SN’ = H (NIDR|| X1’|| TSN1’ || RVN1
’) 

If SN = SN' Then 

The IG will accept the connection request 

Else 

The IG will drop the connection request 



92 

7. IG sends a connection response message

The connection response includes IGIDA, session ID(SID), TSIG1, RVIG1, CX, and G2, as 

shown in 4.5. The message is encrypted by RNI because it is a secured parameter between 

the N and the IG 

     IG          N Conn-Res (IGIDA, SID, TSIG1, CX, {RVIG1, G2}R1)            (4.5) 

Once N receives the connection response, it completes the following steps: 

1. N checks the validity of the received timestamp |TSRec−TSIG1 |< ∆T.  TRec is

the time when the message is received, and ∆T is the maximum transmission 

delay. The message is dropped if the difference between the timestamp and 

the time when the message is received higher than the expected maximum 

transmission delay. 

2. N retrieves from its database IGIDR that corresponds to its IGIDA.  If N did not

find the IGIDA in its database, it will ignore and drop the connection response 

8. N computes G1’ = H (Auth1|| OTP|| RVN1)

3. N calculates CNI’ = G1’ ⊕ CX

4. N computes RNI’ = PUF(CNI’)

5. Then N will use RNI' to decrypt the message to retrieve RVIG1 and G2

6. As presented in figure 32,  N calculates G2'using a one-way hash function and

compares the generated G2' with the received G2. If the two values are the 

same, N will accept the connection response and authenticate the IG; 

otherwise, it will drop it. 
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G2’= H (IGIDR||CNI’ || RVIG1 || TSIG1|| G1’) 

 If G2 = G2’Then 

Then N will accept the connection response. 

Else 

N will drop the connection response 

Figure 32: Evaluating the IG Authentication Parameter 

After ensuring the correctness of the G2' and verifying the integrity of the sent 

message, N completes the following steps: 

1. N generates the TSN2

2. N generates the RVN2

3. N computes new OTP(OTPnew) = H (OTP|| CNI|| TSN2)

4. N computes a new alias ID(NIDAnew) = H (NIDA || RVIG1)

5. N computes N3 = H (TSN2||RVN2||OTPnew || NIDAnew ||RVIG1)

6. N selects its technique to generate the session key. N will send either T1 or T2.

a. If N decides to use a hash function to generate the session key, it will

send to the IG the hash function that it will use. 

b. If N decides to use ECDH to generate the session key, N derives its

private and public keys using the ECC public domain parameters. N 

selects a random secret key and calculates the corresponding public key 

as Gα . 

7. N sends to the IG a message containing RVN2, TSN2, and Nthree. Also, N will

send either the hash function as shown in 4.6a or the public key as shown in 

4.6b that will be used to generate the session key. The message will be 

encrypted by the RNI 
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         N      IG   NIDA, SID. TSN2, {RVN2, N3, SHA256} R1) (4.6.a) 

N      IG   NIDA, SID, TSN2, {RVN2, N3, G
α} R1)      (4.6.b) 

Upon receiving N's message, IG completes the steps involved in this process, as 

listed below. 

1. IG verifies the TSN2. . IG checks the validity of the received timestamp

|TSRec−TSN2 |< ∆T.  TSRec is the time when the message is received, and ∆T is 

the maximum transmission delay. The message is dropped if the difference 

between the timestamp and the time when the message is received higher than 

the expected maximum transmission delay. 

2. IG decrypts the message using the R1.

3. IG computes new OTP(OTPnew) = H (OTP|| CNI|| TSN2
’)

4. IG computes a new alias ID(NIDAnew) = H (NIDA || RVIG1)

5. IG computes the N3, which combines TSN2, RVN2, OTPnew, NIDAnew, and

RVIG1. If the calculated N3 equals the received N3, the IG will accept the 

message and authenticate N; otherwise, it will end the session as presented in 

figure 33.  Also, the IG will store OTPnew and NIDAnew in its memory for the 

next authentication session.

Figure 33: IoT Node Authentication Process 

N3’ = H (TSN2
’||RVN2

’||ssk’|| OTPnew’ || NIDAnew
’ ||RVIG1) 

If N3' = N3 Then 
Integrity and authenticity are proved, and The IoT node will be 

authenticated 

Else 

The IG node will end the session 
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4.4.4 Key Generation Phase 

Once the mutual authentication is completed, the two sides will generate a shared 

secret session key (ssk) using the technique they agreed upon during the authentication 

phase.  

Suppose the two sides agreed on using the hash function to generate the ssk. In 

that case, the two sides will generate the ssk locally by hashing a combination of the PUF 

responses and the generated random values as presented in 4.9. and figure 34 The 

uniqueness of the PUF responses ensures the uniqueness of the generated ssk. 

ssk = H (RNI
’ || CNI|| RVN1

’||RVIG1|| RVN2
’)       (4.9)       

If the two sides decided to use ECHD to generate the ssk, the two sides would 

generate the ssk as presented in figure 35.  AES will be used as a symmetric encryption 

algorithm to encrypt and decrypt all the subsequent data that will be sent between N and 

the IG. 

If the key generation phase gets disrupted and the connection gets terminated for 

any reason, the IoT device and the IG will have to repeat the entire mutual authentication 

steps. 

Figure 34: The Process of Generating ssk Using Hash Function and CRPs 
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Figure 35: The Process of Generating ssk Using ECDH 

The algorithm for the proposed mutual authentication mechanism is shown in detailed 

steps in figure 36. 

Algorithm 1 The mutual authentication between IoT device and the IG 

Input: 

An IoT device with real identity (NIDR), alias identity (NIDA), IG real identity (IGIDR), IG 

alias identity (IGIDR), Authentication parameters (Auth1, Auth2, and Auth3), G, and one 

time password (OTP). 

IG with with real identity (NIDR), alias identity (NIDA), IG real identity (IGIDR), IG alias 

identity (IGIDR), the virtual domain ID(VIDA) and type ID (TID) of the IoT node, G, PUF 

challenge (CIG), and one time password (OTP). 

Output: 

 Mutual authentication between the IoT device(N) and the IG. 

Begin 

1. The IoT device generates a random nonce RVN1, a timestamp TSN1, computes the

(XN1) H (Auth3, OTP), NX2 ,  xor(RVN1,NX1), and (SN) H(XN1,TSN1,RVN1,NIDR).

2. IoT device sends (NIDA, TSN1, XN2, SN) message to the server.

3. If (the IG finds NIDA in its repository) then

4. The IG retrieves NIDR, OTP, VIDA, CIG, and TIDA that belongs to the NIDA from

       its repository to its memory.IG passes the challenge CIG to its PUF function and 

generates a RIG. 

5.           The IG calculates Auth1
’, Auth2’, and Auth3’. Then the IG computes NX1,  

retrieves the RVN1 from XORing NX1 and NX2 and finally calculates SN’  

        H (NX1, TSN1, RVN1, NIDR) message. 
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6. If (the calculated hash message in step 6 matches the hash message that was

In step 2) then 

7.         The IG communicates with the Grand PUF node to a CRP,    

generates a timestamp TSIG1, generates a random nonce RVIG1, calculates the  

hash value (G1) H (Auth1, OTP, RVN1) , computes (CX) xor(C1,G1)  and   

generates (G2) H (G1C1TSIG1, RVIG1, IGIDR); 

8. The IG sends IGIDA, SID, TSIG1, CX, {RVIG1, G2}R1 message encrypted by R1

to N; 

9. else

   Go to step 24; 

       end if 

10. else

Go to step 24; 

11. end if

12. N verifies the time stamp, calculates G1’ to retrieves C1 from CX. N applies the

PUF function to calculate R1 for C1. .N uses R1 to decrypt the received message

and retrieves RVIG1 and G2. N generates G2’ H (G1, C1, TSIG1, RVIG1, IGIDR);

13. If (the calculated hash message in step 12 matches the hash message that was sent

in step 9) then

The authenticity of the IG is verified 

14. N generates a timestamp TSN2, a random nonce RVN2, a private key(PRIVN) and

calculates its corresponding public key(PubN) using the ECC algorithm.

15. N computes new OTP(OTPnew) = H (OTP|| CNI|| TSN2)

16. N computes a new alias ID(NIDAnew) = H (NIDA || RVIG1)

17. N computes N3 = H (TSN2||RVN2||OTPnew || NIDAnew ||RVIG1)

18. N sends NIDA, SID, TSN2, {RVN2, PubN, N3}R1 message encrypted by R1 to

IG;

19. else

 Go to step 24. 

end if 

20. The IG verifies the TSN2, decrypts the message using R1 and generates (N3’) H

(TSN2
’||RVN2

’||ssk’|| OTPnew’ || NIDAnew
’ ||RVIG1)

21. If (the calculated hash message in step 20 matches the hash message that was sent

in step 18 then
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 The authenticity of the IoT device is verified. 

22. Mutual authentication between the IoT device and the server is established.

23. else

Go to step 24. 

End if 

24. Stop (terminates the connection).

 End 

Figure 36: Algorithm 1 The mutual authentication between IoT device and the IG 

4.5 Evaluation Process 

The following section presents a detailed security and performance analysis of the 

proposed protocol and compares the analysis results with other related schemes presented 

in the literature.  

4.5.1 Security Validation of the Proposed Protocol 

In this section, we conducted both formal and informal security analysis. The 

formal evaluation uses two different approaches.  The first formal evaluation approach is 

simulation-based by using the AVISPA tool to ensure that the proposed scheme is secure 

against active and passive attacks such as replay attacks and man-in-the-middle attacks. 

The second evaluation approach theorem proving-based uses Burrows, Abadi, and 

Needham (BAN) belief logic of authentication to confirm that the authenticated 

participants share the session key and the generated one-time password (OTP) securely in 

the proposed scheme. The BAN logic can be used as an illustrative method of the 

essential concepts of an authentication protocol and as a basic verification tool for a 

security protocol. After completing the formal evaluation, we conduct an informal 
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security evaluation by examining the proposed protocol against the well-known attacks 

and prove that the proposed protocol satisfies the main security properties. 

4.5.1.1 Formal Security Evaluation 

4.5.1.1.1 Simulation-based Security Verification Using AVISPA 

The proposed protocol is simulated and tested using the AVISPA software, a 

widely accepted tool for automatically validating the protocols' security features.   The 

messages involved in the cryptography and security of the authentication process are 

taken into consideration. 

4.5.1.1.1.1 Simulation Overview 

The abstract notations used to describe the authentication protocol and the 

corresponding AVISPA HLPSL scripting variables/functions are presented in table 3. 

Also, table 4 shows the symbols that are used in AVISPA HLPSL scripting. 

Table 3: Abstract Notation and AVISPA HLPSL Scripting Variables/Functions for 

Protocol Specification 

Notation Description 

AE AE 

N N 

IG G 

SID SIDNIG 

NIDR NIDR 
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NIDA NIDA 

IGIDR IGIDR 

IGIDA IGIDA 

Auth1, Auth2,Auth3 T,X,Y 

TSIG TSoneIG,TstwoIG 

TSN TsoneN,TstwoN 

RVN1 Na 

RVN2 Naa 

RVIG1 Nb 

TIDN TIDN 

VDIDN VDIDN 

R1, R2 Rone,Rtwo 

RIG RG 

C1, C2 Cone,Ctwo 

CX CX 

N1, N2, N3 None,Ntwo,Nthree 

G1, G2 Gone,Gtwo 
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PubN Exp (GX,Pn) 

PubIG IG_pub 

NIDAnew NnewIDA 

OTPNew NOTP 

⊕ XOR 

H H 

Table 4: Symbols for Protocol Specification 

Symbol Meaning 

‘ The variable is locally computed by the 

agent. 

/\ Logical AND 

{} Encryption 

The main goals of the simulation are as follows: 

1. Goal 1: The secrecy_of secNIDR represents that the NIDR is permanently

kept secret, known to only (N and IG). 

2. Goal 2: The secrecy_of secOTP represents that OTP is kept secret to (N, IG)

only. 

3. Goal 3: The secrecy_of secNa represents that Na is kept secret to (N, IG) only.
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4. Goal 4: The secrecy_of secNb represents that Nb is kept secret to (N, IG)

only. 

5. Goal 5: The secrecy_of secIGIDR represents that the IGIDR is permanently

kept secret, known to only (N and IG). 

6. Goal 6: The secrecy_of secRone represents that Rone is kept secret to (N, IG)

only. 

7. Goal 7: The secrecy_of secCone represents that Cone is kept secret to (N, IG)

only. 

8. Goal 8: The secrecy_of secNaa represents that the secret key Naa is

permanently kept secret, known to only (N and IG). 

9. Goal 9: The secrecy_of secNOPT represents that NOPT is permanently kept

secret, known to only (N and IG). 

10. Goal 10: The secrecy_of secRG represents that RG is permanently kept secret,

known to only (N and IG). 

11. Authentication Property 1: The authentication_on Nb represents that IG

generates Nb. If N securely receives Nb through a message, it authenticates 

IG. 

12. Authentication Property 2: The authentication_on Na represents that N

generates Na. If IG securely receives Na through a message, it authenticates 

N. 

To achieve the goals mentioned above,  we wrote the HLPSL script for the 

protocol. The entities involved in the communication process are modeled as roles with 
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their message exchanges. There are four defined roles:  that are: (1) role_N that is played 

by the IoT node; (2) role _IG that is played by the Intelligent gateway; (3) session, where 

the session role and all its declarations are defined, and (4) environment, which 

instantiates all agents, variables, and functions. When the agent locally computes the 

variable, it is marked as primed (’). Also, the symbol /\ presents the conjunction (logical 

AND). Notice that { }_denotes the encryption where the encryption key is identified 

following a _ . 

Figure A_1 in Appendix A shows the role of the Node N played by N. N is aware 

of the N and IG agents in the protocol, and its alias identity and the IG alias identity. 

Also, it is aware of its own real identity and the IG real identity that should be kept 

secured. Furthermore, N is aware of the authentication parameters T, X, Y, the OTP 

generated by the AE, the hash function H (·), and the send/receive channels Snd/Rcv. The 

(dy) notation indicates that the channels are following the Dolev-Yao model. 

At the first state, “state 2,” N receives a start message “Rcv(start)” as a signal to 

begin the protocol run. All local variables are declared under the local section.  N 

generates new random values (TSoneN and Na) and computes None, Ntwo, and SN. The 

computation process of the None, Ntwo, and SN follows the presented protocol 

description. N sends (NIDA, TSoneN,  Ntwo, SN) to the IG.

At the second transition, “State 4”, N receives the (IGIDA, SIDNIG, TSoneIG, 

{CX, Gtwo} R1) message from the IG encrypted by R1. The computation TG, Gone, 

Cone, and Gtwo follows the description of our protocol. At this transition, if the Gtwo 

appears as expected by N, N authenticates the IG. After authenticating the IG, N 

generates TStwoN and Naa. Also, N computes NOTP, NnewIDA and Nthree. The 
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computation process of Nthree follows the presented protocol description. Based on the 

negotiation agreement regarding the algorithm that will be used to generate the session 

key, N will generate its public key and send it to the IG as part of the message. The “end 

role” at the end of the N role denotes the end of the role Node played by N. 

Figure A_2 in Appendix A shows the role of the Intelligent Gateway played by 

IG. The IG is aware of all agents in the protocol N and IG, its alias and real identities 

(IGIDA, IGIDR), the alias and real identities (NIDA, NIDR) of the N node. IG knows its 

public key (IG_pub), the OTP, the virtual domain of the IoT device VDIDN, the type of 

the IoT device TIDN, the challenge (CG), the hash function H (·), and the send/receive 

channels Snd/RcvAll local variables are defined under the local section.  

At the first transition, “State 1”, IG receives the (NIDA, TSoneN, Ntwo, SNG) 

message which is sent by N.  IG uses the N’ alias ID to retrieve its NIDR, VDIDN, 

TIDN, OTP, and CG. Once the IG verifies SNG, it will generate a fresh value Nb and a 

TSoneIG. IG will compute TG, Gone, CX, and Gtwo according to the description of the 

introduced scheme. Then the IG will send to N (IGIDA, SIDNID, TSoneIG, CX, {Nb, 

Gtwo} R1) encrypted by R1. At the second transition, IG receives (SIDNIG.TStwoN' 

{Naa'.exp(GX,Pn').Nthree'}_R1. The IG decrypts the message using R1. Then it will 

compute NnewIDA and NOPT and verify Nthree in accordance with the description of 

the presented protocol. The “end role” at the end of the IG role denotes the end of the role 

Node played by IG. 

Figure A_3 in Appendix A shows the session role where the two agents’ roles are 

invoked, and all the session parameters are defined. First, all known constant parameters 

and their declarations are presented. The predefined constants are T, X, Y, NIDA, NIDR, 
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IGIDA, IGIDR, GX, CG, OTP, VDIDN, and TIDN. IG_pub is defined as a public key, 

and H is defined as the hash function. In the composition section, each agent's role is 

invoked along with its constant values and functions. For example, The G role is invoked 

with N and G as agents, NIDA, NIDR, IGIDA, IGIDR, VDIDN, TIDN, GX, CG, and 

OTP and as predefined constants, IG_pub as a public key, H as the hash function, and 

SND2 and RCV2 as the send and receive channels for G. Similarly, N role is invoked in 

the same manner. The “end role” at the end of the session role indicates the end of this 

role. 

Figure A_4 in Appendix A shows the environment role. In this role, one or more 

sessions are instantiated. First, all constants are instantiated and defined. The constants n, 

and g are instantiated as agents representing agents N, and G. The ig_pub instantiates the 

public key IG_pub.  The constants t,x,y, nida, nidr , igida , igidr, vdidn, tidn,otp, gx and 

cg instantiates T, X, Y, NIDA, NIDR, IGIDA, IGIDR, VDIDN, TIDN, OTP, GX and 

CG, respectively. The function h instantiates the hash function H. The protocol identifiers 

secNIDR,secOTP, secNa,secIGIDR, secNb, secRone, secCone ,secNaa,secNOTP,secRG, 

na, and nb are also instantiated and defined. In the intruder knowledge section, all 

relevant values that the intruder is assumed to know before the execution are provided. 

The attacker is assumed to know n and g. He/ she is also assumed to know ig_pub, gx, 

and the hash h. The session is instantiated with n, g, n,g,t,x,y, nida, igida, nidr, igidr, gx, 

otp, cg,ig_pub, and h instances in the composition section. The “end role” at the end of 

the environment role denotes the end of this role. 

Figure A_5 in Appendix A shows the simulation goals which are declared under 

the “goal” keyword using the protocol identifiers declared as ‘protocol_id’. The simulator 
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is dictated to check the secrecy NIDR, IGIDR, T, X,Na,Nb,Rone,Cone, Naa, RG and 

NOTP at different states using ‘secrecy_of secNIDR’, ‘secrecy_of secOTP’, ‘secrecy_of 

secNa’, ‘secrecy_of secNb, ‘secrecy_of secIGIDR’, ‘secrecy_of secRone’, ‘secrecy_of 

secCone’, ‘secrecy_of secNaa’, ‘secrecy_of secNOTP’, and ‘secrecy_of secRG’. The 

authentication is checked using ‘authentication_on na and ‘authentication_on nb’. The 

“end role” at the end of the goal section denotes the end of this role. 

4.5.1.1.1.2 Simulation results 

The simulation results of the proposed scheme are based on OFMC and CL-AtSe, 

which are considered two widely accepted backend model checkers to check and verify 

that the protocol meets the specified security goals  [71].  These backends help in the 

automatic execution analysis of the security protocols. OFMC and CL-AtSe were used 

because they support the bitwise XOR operation. OFMC and CL-Atse are multipurpose 

automatic model analyzers for testing how efficient the security of the cryptographic 

protocols. OFMC and CL-Atse receive an input a protocol described by a set of rules 

generated by the AVISPA compiler and decide If an attack exists based on the Dolev-

Yao intruder threat model [88].  A security protocol animator (SPAN) is used to build a 

Message Sequence Chart (MSC) of the protocol execution from the outlined HLPSL 

specification. Moreover, SPAN automatically creates attacks on HLPSL specifications 

using the well-known “Dolev-Yao” intruder model. The SPAN protocol simulation’s 

MSC corresponding to our HLPSL specification is shown in Figure 37. 
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Figure 37: Snapshot of the protocol simulation in AVISPA 

In AVISPA tool, the security properties such as authentication, integrity, and 

secrecy are specified in a separate section. Therefore, when SPAN is executed, it verifies 

if the protocol satisfies the specified properties. SPAN generates an attack trace if an 

attack is found, and it will consider the protocol unsafe. The presented protocol's 

simulation results are achieved by the OFMC back-end checker and the CL-AtSe back-

end checker. Figure 38 shows the CL-AtSe back-end checker report, which guarantees 

that the protocol is SAFE and satisfies all the specified security goals. Figure 39 presents 

the OFMC back-end checker report shows that the protocol is SAFE, thus meeting the 

defined security goals. In summary, we can conclude that the proposed protocol is secure. 
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Figure 38: CL-AtSe Summary Report 

Figure 39: OFMC Summary Report 

4.5.1.1.2 Formal Proof Based on BAN Logic 
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This section uses BAN logic to verify the legitimacy of the shared secret session 

key (ssk) and the new OTP (OTPnew) shared between N and IG. To ensure the security 

of the proposed protocol under BAN logic, it needs to satisfy a set of security goals. The 

following section defines the main goals of the analysis of the presented authentication 

scheme. 

4.5.1.1.2.1 Goals Identification 

Goal 1: The N and the IG want to establish a secret shared session key (ssk) that is 

believed by both, respectively. 

G 1_1: N believes that the IG believes that the ssk is a securely shared parameter between 

N and IG. 

    N| ≡ IG | ≡ (N     IG) 

G1_2:  N believes that ssk is a securely shared parameter between N and IG. 

N| (N  IG) 

G1_3: IG believes that the N believes that the ssk is a securely shared parameter between 

N and IG. 

   IG| ≡ N | ≡ (N  IG) 

G1_4:  IG believes that ssk is a securely shared parameter between N and IG. 

IG| ≡ (N  IG) 

ssk 

ssk 

ssk 

ssk 
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Goal 2: OTPnew is well protected and believed by N. 

G2_1: N believes that the IG believes that the OTPnew is a securely shared parameter 

between N and IG. 

  N| ≡ IG | ≡ (N   IG) 

G2_2:  N believes that OTPnew is a securely shared parameter between N and IG. 

N| ≡ (N  IG) 

G2_3: IG believes that the N believes that the OTPnew is a securely shared parameter 

between N and IG. 

  IG| ≡ N | ≡ (N   IG) 

G2_4:  IG believes that OTPnew is a securely shared parameter between N and IG. 

IG| ≡ (N  IG) 

4.5.1.1.2.2 Messages Idealization 

First, we transfer all transmitted messages into idealized form as follows: 

M1: N          IG:<NIDR, NX1, TSN1, RVN1> N     OTP  IG 

M2: IG          N: {IGIDR, C1, C2 G1, RVIG1, TSIG1} R1 

M3: N          IG: {NIDR, TSN2, RVN2, Gα } R1 

OTPnew 

OTPnew 

OTPnew 

OTPnew 
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4.5.1.1.2.3 Main Assumptions 

The second step to be completed is to define some assumptions as initiative 

promises. The fundamental assumptions of the presented authentication scheme are as 

follows: 

P1: IG believes that OTP is a securely shared parameter between N and IG 

IG| ≡ (N  IG) 

P2: IG believes N believes that OTP is a securely shared parameter between N and IG 

IG | ≡ N| ≡ (N  IG) 

P3: N believes that OTP is a secure shared parameter between N and IG 

N| ≡ (N  IG) 

P4: N believes IG believes that OTP is a securely shared parameter between N and IG 

N | ≡ IG| ≡ (N  IG) 

P5: IG believes that R1 is a securely shared parameter between N and IG 

IG| ≡ (N  IG) 

P6: IG believes N believes that R1 is a securely shared parameter between N and IG 

IG | ≡ N| ≡ (N  IG) 

P7: N believes that R1 is a securely shared parameter between N and IG 

N| ≡ (N  IG) 

 OTP 

 OTP 

 OTP 

 OTP 

 R1 

 R1 

 R1 
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P8: N believes IG believes that R1 is a securely shared parameter between N and IG 

N | ≡ IG| ≡ (N  IG) 

P9: IG believes TSN1 is fresh. 

IG| ≡ #(TSN1) 

P10: IG believes TSN2 is fresh. 

IG| ≡ #(TSN2) 

P11: IG believes RVN1 is fresh. 

IG| ≡ #(RVN1) 

P12: IG believes that N believes RVN1. 

IG | ≡ N| ≡   RVN1  

P13: IG believes that N has jurisdiction over RVN1. That is, N is an authority and believes 

RVN1. 

   IG | ≡ N   ⇒ RVN1 

P14: IG believes RVN2 is fresh. 

IG| ≡ #(RVN2) 

P15: IG believes that N believes RVN2. 

IG | ≡ N| ≡   RVN2  

 R1 
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P16: IG believes that N has jurisdiction over RVN2. That is, N is an authority and believes 

RVN2. 

   IG | ≡ N   ⇒ RVN2 

P17: N believes TSIG1 is fresh. 

N| ≡ #(TSIG1) 

P18: N believes RVIG1 is fresh. 

N| ≡ #(RVIG1) 

P19: N believes that IG believes RVIG1. 

N | ≡ IG| ≡   RVIG1  

P20: N believes that N has jurisdiction over RVIG1. That is, IG is an authority and 

believes RVIG1. 

   N | ≡ IG   ⇒ RVIG1 

P21: IG believes NIDR is a securely shared parameter between N and IG. 

IG | ≡ (N   IG) 

P22: IG believes N believes that NIDR is a securely shared parameter between N and IG. 

IG | ≡ N| ≡   (N    IG) 

P23: N believes IGIDR is a securely shared parameter between N and IG. 

NIDR 

NIDR 
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N | ≡ (N   IG) 

P24: N believes IG believes that IGIDR is a securely shared parameter between N and IG. 

N | ≡ IG| ≡   (N   IG) 

P 25: IG believes α is fresh 

IG ≡ #(α) 

P26: IG believes that N believes α. 

IG| ≡ N | ≡   α  

P 27: IG believes that N has jurisdiction over α. That is, N is an authority and believes α. 

IG| ≡ N ⇒ α  

P28: N believes that IG believes C1 

N| ≡ IG | ≡ C1 

P29: N believes that IG has jurisdiction over C1

N| ≡ IG ⇒ C1

 P30: IG believes N believes that ssk is a securely shared parameter between N and IG 

IG | ≡ N| ≡ (N  IG) 

P31: N believes IG believes that ssk is a securely shared parameter between N and IG 

IGIDR 

IGIDR 

 ssk 

 ssk 
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N | ≡ IG| ≡ (N    IG) 

P32: N believes that IG believes OPTnew 

N| ≡ IG | ≡ OTPnew 

P33: IG believes that N believes OPTnew 

IG| ≡ N | ≡ OTPnew 

4.5.1.1.2.4 Analysis of the Authentication Protocol 

We then prove that the proposed protocol achieves the security goals based on the 

idealized form of the messages, assumptions, and BAN logic rules. The proposed 

authentication scheme analysis is shown below to prove that the protocol achieves mutual 

authentication between N and IG. 

According to M1: 

V1: IG ◃:<NIDR,NX1,TSN1,RVN1> N     OTP  IG 

According to P1, P21, and Rule 1, we derive the following 

V2: 
𝐼𝐺|≡N  OTP  IG,IG ⊲(N𝐼𝑅𝐷,NX1,TS𝑁1,RV𝑁1) 𝑁  𝑂𝑇𝑃     𝐼𝐺

𝐼𝐺| ≡N|∼(N𝐼𝑅𝐷,NX1,TS𝑁1,RV𝑁1)

According to P9, P11, and rule 3, we derive the following 

V3: 
𝐼𝐺|≡#(𝑇𝑆𝑁1 𝑎𝑛𝑑 𝑅𝑉𝑁1)

𝐼𝐺|≡#(N𝐼𝑅𝐷,NX1,TS𝑁1,RV𝑁1)|

According to P2, P22, V2, V3, and rule 2, we derive the following 
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V4: 

𝐼𝐺|≡#(N𝐼𝑅𝐷,NX1,TS𝑁1,RV𝑁1),IG|≡N~(N𝐼𝑅𝐷,NX1,TS𝑁1,RV𝑁1)

𝐼𝐺|≡N|≡(N𝐼𝑅𝐷,NX1,TS𝑁1,RV𝑁1)

According to V4, P12, P13, and rule 4, we derive the following: 

V5: 
IG |≡N| ⇒ ,RV𝑁1 ,IG |≡ N |≡ ,RV𝑁1

IG|≡  ,RV𝑁1

According to M2: 

V6: N ◃{IGIDR, C1,G1,RVIG1,TSIG1}R1

According to P7, P23, and Rule 1, we derive the following 

V7: 

𝑁|≡IG  R1  N,IG ⊲(IG𝐼𝐷𝑅,C1,G1,RV𝐼𝐺1,TS𝐼𝐺1) 𝑁  𝑅1     𝐼𝐺

𝑁|≡IG |∼ ( IG𝐼𝐷𝑅,C1,G1,RV𝐼𝐺1,TS𝐼𝐺1)

According to P17, P18, and rule 3, we derive the following 

V8: 
𝑁|≡#(RV𝐼𝐺1,TS𝐼𝐺1)

𝑁|≡#(IG𝐼𝐷𝑅,C1,G1,RV𝐼𝐺1,TS𝐼𝐺1)|

According to P8, P24, V7, V8, and rule 2, we derive the following 

V9: 

𝑁|≡#(IG𝐼𝐷𝑅,C1,G1,RV𝐼𝐺1,TS𝐼𝐺1),N|≡IG~(IG𝐼𝐷𝑅,C1,G1,RV𝐼𝐺1,TS𝐼𝐺1 )

𝑁|≡IG|≡(IG𝐼𝐷𝑅,C1,G1,RV𝐼𝐺1,TS𝐼𝐺1)
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According to P19, P20, P28, P29, V9, and rule 4, we derive the following: 

V10: 
𝑁 |≡IG|⇒RV𝐼𝐺1,C1,   N |≡ IG |≡ RV𝐼𝐺1,C1,C2 , 

N|≡  RV𝐼𝐺1,C1,C2 ,

According to M3, we get 

V11: IG ◃ {NIDR, TSN2, RVN2, Gα} R1 

According to P5, P21, and Rule 1, we derive the following 

V12: 

 IG|≡N  R1    IG ,IG ⊲(𝑁𝐼𝐷𝑅,TS𝑁2,RV𝑁2,Gα ) 𝑁  𝑅1    𝐼𝐺

𝐼𝐺|≡N |∼( 𝑁𝐼𝐷𝑅,TS𝑁2,RV𝑁2,Gα )

According to P10, P14, P25, and rule 3, we derive the following 

V13: 
𝐼𝐺|≡#(TS𝑁2,RV𝑁2,α)

𝐼𝐺|≡#(𝑁𝐼𝐷𝑅,TS𝑁2,RV𝑁2,Gα)

According to P6, P22, V12, V13, and rule 2, we derive the following 

V14: 

𝐼𝐺|≡#(𝑁𝐼𝐷𝑅,TS𝑁2,RV𝑁2,Gα),IG|≡N~(I𝑁𝐼𝐷𝑅,TS𝑁2,RV𝑁2,Gα)

𝐼𝐺|≡N|≡(𝑁𝐼𝐷𝑅,TS𝑁2,RV𝑁2,Gα)

According to P15, P16, P26, P27, V14, and rule 4, we derive the following: 

V15: 
𝐼𝐺 |≡N| ⇒ RV𝑁2,α ,IG |≡ N |≡ RV𝑁2,R2,α 

𝑁|≡  RV𝑁2,α

If both N and the IG agreed on generating the ssk using the hash function: 
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By combining V9 and Rule 2, we get 

 V16:  N | ≡ IG|(N  IG)    (Goal 1_1) 

From assumption P31, V10, V16, and Rule 4, we get: 

V17: N| ≡ (N  IG)   ( Goal 1_2) 

By combining V4, V14, and Rule 2, we get 

V18:  IG | ≡ N| ≡ (N  IG)   (Goal 1_3) 

From assumption P30, V5, V15, V18, and Rule 4, we get: 

V19: IG| ≡ (N  IG)    (Goal 1_4) 

By combining V9 and Rule 2, we can derive 

V20:  N|≡IG|≡ (N IG)            (Goal 2 _1) 

From assumptions P4, P32, V10, V20, and Rule 4,  we derive 

V21:  N|≡ (N IG)        (Goal 2_2) 

By combining V14 and Rule 2, we can derive 

          V22:  IG|≡N|≡ (N  IG)            (Goal 2 _3) 

From assumptions P2, P33, V15, V22, and Rule 4, we derive 

V23:  IG|≡ (N  IG)               (Goal 2_4) 

Thus, by achieving all the goals mentioned above, we demonstrate the validity of the 

proposed scheme. we formally prove our protocol correctness as a secure mechanism to 

achieve mutual authentication and key agreement between the IoT node and the IG. 

ssk 

ssk 

ssk 

ssk 

OTPnew 

OTPnew 

OTPnew 

OTPnew 
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4.5.1.2 Informal Security Analysis 

This section examines the security of the proposed protocol against well-known 

security attacks and satisfies the main security properties.  The security of the protocol is 

explored against various known attacks. This section will provide brief descriptions of 

different types of attacks against IoT systems. A description of how the proposed 

protocol successfully resisted the well-known attacks and achieved the proposed security 

properties is presented. 

4.5.1.2.1 Security attack Scenarios 

Table 5 presents a short definition of the well-known threats that an attacker can 

launch on an IoT system and the main security properties that can ensure the systems’ 

security 

Table 5: A Summary of the Well-known Attacks 

Attack name Attack definition 

Man-in-the-middle An attack where an adversary can intercept the traffic 

between two communication parties and possibly modifies 

the communicated information. 

Forward/forward 

secrecy 

This is a security feature to ensure that even if the most 

recent key is hacked, a minimal amount of sensitive data is 

exposed, and no future keys will not be affected 

Anonymity  and 

Unlinkability 

properties 

Anonymity: is a feature to ensure the privacy of the device 
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Unlinkability: is a property that does not enable an 

adversary to determine whether two events occurring in the 

system are related or not. 

A brute-force attack It is an attack where the adversary can try every possible 

combination of letters, numbers, and symbols to guess a 

secret key or a password.  

Replay attack A network attack where legitimate data transmission is 

maliciously repeated or delayed to disrupt communications. 

Eavesdropping attack A type of passive attack where the adversary sniffs 

sensitive data from insecure communication networks. 

Impersonating/spoofing 

attacks 

An attack where an adversary pretends to be a trusted node 

in an IoT system. 

Modeling attack An attack that employs machine learning prediction 

algorithms to predict unknown CRPs from the known ones. 

Physical attack A hardware attack where an adversary physically accesses 

the hardware’s semiconductor to read the stored secrets on 

it or discover its structure [89] 

IoT device 

counterfeiting 

Imitating real IoT devices with the intent to steal, destroy, 

or replace the original devices. 

4.5.1.2.2 Security Properties Assessment 

The following section presents a detailed security analysis of the security 

properties of the proposed protocol. It demonstrates how the proposed protocol satisfies 
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the security requirements for mutual authentication, session key agreement and resists 

various kinds of known attacks. Then, a comparison with other related protocols is 

presented. 

4.5.1.2.2.1 Mutual Authentication 

Before sending the first message, N chooses a random number (RVN1) and 

computes NX1, NX2, and SN. For the IG to retrieve RVN1 and compute Auth2 and Auth3,

the IG needs to compute Auth1. The computation of Auth1 requires that the IG passes the 

stored PUF challenge to the PUF function to compute the PUF response (RIG). An 

adversary can’t generate Auth1 = H ((NIDR || IGIDR || RIG) without knowing the NIDR of N 

and the IGIDR of the IG and the PUF response (RIG). Also, the adversary cannot verify 

Auth2 = H (Auth1 ||IGIDR|| VDIDN) and Auth3 = H (Auth2|| IGIDR||TIDN) without having the 

VDIDN and TIDN that are securely stored and known only by the IG. 

N and IG authenticate each other by verifying the correctness of G2 = H 

(IGIDR||C1’ ||RVIG1 || TSIG1|| G1’) and N3 = H (R2 || RVN2|| TSN2 || RVIG1’). The adversary 

cannot generate G2 without having G1 = H (Auth1|| OTP|| RVN1). Due to the PUF nature 

that is resilient to prediction and replication, the adversary cannot guess or generate RIG 

to construct Auth1 that is an element of G1. Also, the adversary does not know the OTP 

that is considered a secured shared parameter between N and the IG. Additionally, the 

adversary cannot generate N3 without having R2, which can be generated only by N. In 

summary, the adversary cannot generate either G2 or N3 without knowing RIG.  As a 

result, the proposed scheme can achieve mutual authentication between N and IG. 

4.5.1.2.2.2 Session key agreement and forward/backward security 
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According to the proposed scheme, N and the IG can agree on generating the 

session key in one of two different ways. The selection of the key generation technique 

will depend on the IoT node’s capabilities and what it can support. During the session 

key agreement phase, both N and the IG locally generate the session key ssk in one of the 

following two ways. 

By using the first technique, the session key ssk = (Gα)β is established between N 

and the IG using the ECDH algorithm to protect future communication. The secrecy of 

the ssk depends on the secrecy of β and α.  The D-H key agreement scheme is based on 

ECDH; therefore, the disclosed session key will not cause the compromise of any future 

session key. The forward/backward security property's objective is to ensure that any past 

or future session keys will not be affected when any session key ssk is exposed. Even if 

an adversary obtains ssk of a session, he/she cannot compute any of the past and future 

session keys by using the disclosed ssk because the ssk is protected by the randomization 

of the β and α and the discrete logarithm problem of the Elliptic curve algorithm. As a 

result, the proposed scheme achieves session key security. 

By using the second technique, the session key ssk = h (R1||C1|| RVN1|| RVN2

||RVIG1) is established between N and the IG to protect future communication. In the 

proposed scheme, ssk is generated locally. The secrecy of the ssk depends on the secrecy 

of RVN1, RVN2, RVIG1, C1 and R1. Because RVN1, RVN2 and RVIG1 are randomly selected 

for every new authentication session and R1 cannot be replicated or predicted because it 

is unique for each N due to the nature of the PUF, the disclosed ssk will not cause the 

compromise of any future ssk. The forward/backward security property's objective is to 

ensure that any past or future shared secret keys will not be affected when any ssk is 
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exposed. Even if an adversary obtains ssk of a session, he/she cannot compute any of the 

past and future shared secret keys by using the disclosed ssk because the ssk is protected 

by the randomization of R1|| C1|| RVN1|| RVN2 ||RVIG1. As a result, the proposed scheme 

achieves the security of ssk. 

4.5.1.2.2.3 Anonymity Unlinkability, and Untraceability Properties 

For fully protected N privacy, strong anonymity with unlinkability is required. In 

the proposed protocol, the N’s real identity NIDR is not transmitted during all phases in 

clear text format. Therefore, even if the adversary eavesdrops on all communication 

messages, it is impossible to obtain the IoT node's real ID. In addition, the new alias ID 

of the IoT node NIDANew = H (NIDA || R1||C1). Because C1 and R1 are fresh in each 

session, the attacker cannot link any two different NIDA’s to the same N and cannot trace 

a given IoT device to N’s messages. By using a new NIDA for each authentication session, 

the adversary will not be able to decide whether these authentication messages are from 

the same N or not. This means that device N cannot be linked to different sessions. 

Consequently, the proposed protocol provides anonymity and unlinkability, and the 

adversary cannot trace the devices by intercepting messages. 

4.5.1.2.2.4 Stolen database attack 

On the IoT node side, if any IoT node is compromised and the adversary is able to 

steal Auth1, Auth2, Auth3, NIDR, and the OTP from the IoT node’s database to 

impersonate the IoT node, the fake node will fail the CRP verification process. On the IG 

side, if the IG is compromised and the adversary is able to steal NIDR, IGIDR, VDIDN, 

TIDN, and OTP from the IG database to impersonate the IG, the fake IG will fail to 

calculate the RIG. 
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4.5.1.2.2.5 Brute Force Attack 

The first optional technique to generate the session key ssk is done locally by both 

the IoT node and the IG using the ECDH algorithm.  Due to the discrete logarithm 

problem of the ECDH, guessing the session key is a time-consuming and challenging 

task.  The probability of guessing is so negligible that the attacker will fail to guess the 

correct session key, given that this session key changes in every session. 

The optional technique to generate the session key ssk is generated locally by both 

the IoT node and the IG using RVN2 and the generated nonce values from the two sides. 

All the ssk components are transferred in an encrypted format either by using a bitwise 

XOR function or by using R1. Also, the session key's secrecy depends on the security of 

the communication between the IoT node and the IG and the response's uniqueness. 

Because no other IoT node can duplicate the responses, the adversary cannot obtain it 

from the protocol. The probability of guessing the session key is so negligible that the 

adversary will fail to guess the correct parameters given that this session key changes in 

every session. 

4.5.1.2.2.6 Replay attack 

The proposed protocol overcame the replay attack by using timestamps. The 

timestamp TS is generated by the sender node and then inserted in a hash function to 

ensure the adversary cannot replace it. Furthermore, Each CRP is used only one time to 

provide security against replay attacks. Hence, the protocol protects against replay 

attacks. 
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4.5.1.2.2.7 Eavesdropping attack 

During the authentication phase, the adversary can intercept messages transmitted 

between N and the IG. All the intercepted messages will be useless because they are sent 

in an encrypted format using a one-way hash function and symmetric encryption. For the 

attacker to decrypt the messages, he/she needs to know R1 that can only be generated by 

N. The only two parameters that are sent in clear text are the Alias identities and session 

ID. The Alias identities and the session ID do not pose any threat because this 

information is constructed from random parameters that change in every session. The 

adversary will not be able to link the message to a particular device because the proposed 

protocol uses alias identities that vary in every session. Therefore, the proposed protocol 

protects against eavesdropping attacks. 

4.5.1.2.2.8 Impersonation attack 

In this attack, when the intruder eavesdrops on the messages transmitted from N 

to IG or vice versa, he/she can use the intercepted information for malicious actions, such 

as impersonating the IoT device or the IG and sending fabricated messages. 

4.5.1.2.2.8.1 IG impersonation 

This attack will not succeed for several reasons. First, each IG has an Alias ID 

and Real ID.  The real ID is known only for IoT devices. The real ID of the IG will never 

be released in clear text format. Also, for the IG to compute Auth1, it needs to compute 

the PUF response (RIG), which is one of the Auth1 parameters.  Due to the PUF nature, 

RIG cannot be predicted or replicated by another device. The IoT device will verify the 
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IG's real ID and G2= H (IGIDR||C1 || RVIG1 || TSIG1|| G1) before proceeding with the 

authentication process. 

4.5.1.2.2.8.2 IoT Node Impersonation 

To impersonate the IoT node, an adversary should intercept the messages 

exchanged in the previous sessions.  However, in the proposed scheme, the adversary 

cannot produce valid messages without having R1 that is used to encrypt the second, 

third, and fourth authentication messages. Also, this attack will fail for numerous reasons. 

First, the alias ID of the IoT node changes every authentication session. Second, the fake 

IoT node will not be able to generate legitimate responses because the PUF responses are 

unique for each device. 

From another perspective, even if the adversary succeeded in compromising an 

IoT node, the adversary’s further attacks using the compromised node only affect the 

communication related to that node. Because each IoT node has its own secret keys, the 

adversary cannot derive other non-compromised IoT nodes’ keys without knowing those 

nodes' random information. Therefore, further attacks will not affect other 

communications. As a result, the proposed scheme is resistant to IoT node impersonation 

attacks. 

4.5.1.2.2.9 Data Modification attack 

As discussed in the replay attack, eavesdropping, and impersonation attacks, the 

data modification attack is defeated because the real identity of IoT node NIDR, the 

timestamp TS, the symmetric key, the one-way hash function, the nonce values RVN1, 

RVN2, and RVIG1, and the CRPs are unknown to the attacker. Therefore, the man-in-the-

middle attack is prevented. The IoT device and the IG do not exchange sensitive data 
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such as real identities, nonce values, PUF responses R in plaintext over the insecure 

communication channel. This supports data confidentiality. The only exchanged data in 

plaintext during authentication are the alias identities, the timestamps (TSN1, TSN2, 

TSIG1), and hashed messages. In such a setting, a data modification attack will not benefit 

from any captured data. Furthermore, if an adversary modifies the transferred data, the 

intended receiver will detect the data modification by matching the hashed messages and 

drop the connection. 

4.5.1.2.2.10 Modeling Attacks 

This is an attack where the adversary collects a large number PUF CRPs and uses 

a regression algorithm to build a model and predict responses for new challenges. All the 

PUF challenges and the responses are transferred in an encrypted format. Therefore, the 

adversary will not be able to collect enough useful CRPs to build a model and predict 

responses to new challenges. 

4.5.1.2.2.11 Physical Attack 

Any attempt to tamper with the IoT device will change the PUF embedded chip's 

behavior and, consequently, renders the PUF useless. 

4.5.1.2.2.12 IoT Device Counterfeit/Cloning 

Both the IG and the IoT device are authenticated using the PUF. PUF responses 

are treated as hardware fingerprints that cannot be duplicated or cloned.  Therefore, by 

the use of the PUF, the IoT devices and the IG cannot be cloned. 

4.5.1.2.3 Comparison of Security Features 
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We compare the proposed protocol's security features with other related 

authentication and key agreement schemes [57,59,60,61,62,63]. Table 6 shows the 

comparison results. The table indicates that the proposed protocol is secure against all the 

imperative security threats and accomplishes diverse security features.  

Two of the proposed protocols [57,59] require secret key storage, which may 

compromise the secret key. Consequently, the adversary can exploit the compromised 

key to conduct different types of attacks and possibly reconstruct the secret key. Also, 

many of the proposed schemes, such as [57] and [ 60-63], used the IoT node's real 

identity to exchange messages with the server, which is against protecting the anonymity 

and unlinkability of the IoT devices. Furthermore, several proposed schemes such as 

[61], [60],[59], and [62] did not protect their schemes against replay attack. 

Table 6:  Security feature comparison of the proposed scheme with other related Mutual 

authentication and key agreement schemes. 

Security 

Property 

[57] [61] [60] [59] [62] [63] Proposed 

Protocol 

Resilience to IG 

the 

Impersonation 

Attack 

No No No No No Yes Yes 

Resilience to 

IoT the 

Impersonation 

Attack 

Yes Yes Yes No Yes Yes Yes 

Resilience to 

Replay Attack 

Yes No No No No Yes Yes 

Resilience to 

Device 

Counterfeit 

Yes No Yes Yes Yes Yes Yes 
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Resilience to 

Modeling 

Attack 

Yes Yes Yes Yes Yes Yes Yes 

Resilience to 

the Data 

Modification 

Attack 

Yes Yes Yes No Yes Yes Yes 

Anonymity and 

Untraceability 

No Yes No No No No Yes 

Requires Key 

Storage 

yes Yes No No No No No 

Resilience to 

brute force 

attack 

Yes No No Yes Yes Yes Yes 

Resilience to 

Physical attacks 

 Yes Yes   Yes Yes Yes Yes Yes  

        Mutual 

Authentication 

    Yes   Yes     Yes  Yes  Yes     Yes   Yes 

Two-factor 

authentication 

     No    Yes      No  No  No      No    Yes 

On the other hand, the proposed protocol supports multiple essential security 

features: First, the proposed protocol does not require any secret key storage or secret key 

sharing over the network. Second, each IoT device maintains two authentication factors 

by using OTP and PUF to prove its legitimacy to the IG. Third, all secret keys are 

computed locally on both the IoT node and the IG. Fourth, the proposed protocol does 

not store any CRPs on the IG, but they are frequently retrieved from the PUF cloud.  

Fifth, the IoT devices use a one-time alias identity for each authentication session in the 

proposed protocol. Therefore, it will be difficult for an outside adversary to comprehend 
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the activities of the IoT devices. Sixth, the proposed protocol overcomes the noise issue 

in PUF operation by using error-free CRPs [ [37] and [90]. From table 6, we can 

conclude that the proposed protocol can support all the desired security properties, which 

are essential for IoT devices' security. 

4.5.2 Performance Analysis 

In this section, we present a performance analysis of the proposed protocol. The 

performance analysis evaluates the storage requirements. Also, we analyze the preset 

protocol's overhead and efficiency in terms of computational complexity and 

communication overhead, and storage constraints. We then compare our mutual 

authentication mechanism to the most relevant protocols in the literature proposed by 

[57], [59], [60],[61], [62], and [63]. 

4.5.2.1 Storage requirements 

 Table 7: Storage Cost of the Proposed Scheme 

Node Storage cost (in bits) 

N 128 + 256 * 3 + 8* 3 + 256 = 1024 + 64 = 

1176 bits 

IG 128 + 8 * 5 +256 + 128 = 552 bits 
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In the proposed protocol, each IoT node must store its real identity NIDR alias 

identity NIDA, the real identity of the IGIDR, alias identity IGIDA, authentication parameters 

Auth1, Auth2 and Auth3, one-time password OTP. We use SHA-256 as an example of 

hash function. By applying these settings, we obtain |NIDA | =128 bits, |Auth1 | = |Auth2 | 

= |Auth3 | = 256 bits, while |NIDR | = |IGIDR| = |IGIDA| =8 bits and |OTP| = 256 bits. On the 

other hand, IG is required to store the tuple NIDA, NIDR, IGIDA, IGIDR, VDIDN, TIDN, OTP 

and CIG. By applying these settings, we obtain |NIDA | = 128 bits, while |NIDR | = |IGIDA| = 

|IGIDR| = |VDIDN | = |TIDN |= 8 bits |OTP| = 256 bits and the CIG =128 bits. Table 7 

summarizes the storge cost of the proposed scheme. 

4.5.2.2 Computational Complexity Analysis 

We compare the computational complexity of the proposed protocol with other 

related protocols [57,59–63].  We only focus on comparing the authentication phase 

because the key generation phase is executed differently from one protocol to another.  

Because the time for executing a bitwise XOR operation is negligible, we do not consider 

XOR operations for computational cost analysis. To analyze the performance of the 

proposed protocol with respect to other presented protocols in the literature, we conduct 

simulations of the cryptographic operations using Dell Inspiron Laptop with Intel Core 

i7, dual-core 2.7 GHz CPU, and 8 GB RAM to act as the IG. We use a Raspberry Pi 4 

Model B with 64-bit quad-core cortex A-72 processor and 1 GB RAM to simulate an IoT 

device. The simulations used PyCryptodome cryptographic and Fastecdsa libraries in 

Python. For these results, we considered the 128-bit arbiter PUF for PUF operation. The 

fuzzy extraction's execution time is almost the same as the ECC point multiplication and 

the execution time for modular exponentiation is double the time of the execution of the 
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ECC point multiplication [58]. Table 8 presents the used notation and the execution time 

of each operation. 

Table 8: Execution Time of the Cryptographic Operations 

Operation Computation Time on IoT Computation Time on 

IG 

H: time for executing a one-way 

hash function 

0.002 ms .001 ms 

FE: time for executing a fuzzy 

extractor 

5 ms 4 ms 

EM: time for executing an ECC 

point multiplication 

5 ms 4 ms 

EXP: time for a modular 

exponentiation 

10 8 

HMAC: time for executing the  

HMAC 

2.7 ms 1.5 ms 

MAC 2.9 ms 1.23 ms 

ENC: Time for Executing (AES 128 

Encryption) 

0.18 ms .14 ms 

DEC: Time for executing (AES-

CBC Decryption) 

0.18 ms .14 ms 
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PUF: Time for executing PUF (128-

bit Arbiter) 

.12 ms .12 ms 

Table 9 and figures 40, 41, and 42 summarize the computational complexity 

comparison between the proposed protocol and the other related protocols presented in 

the literature.  Table 9 lists the number of cryptographic operations of each type for each 

protocol. Figure 40 displays the number of cryptographic operations of each type that are 

completed on the IoT side. Figure 41 depicts the number of cryptographic operations of 

each type that are completed on the IG side. Figure 42 demonstrates the total number of 

cryptographic operations of each type that are complete for each protocol. As depicted 

from the table and the figures, the proposed protocol used more hash functions than most 

of the other schemes and used AES 128 symmetric encryption to avoid computationally 

expensive cryptographic operations such as MAC and HMAC while achieving the same 

security goals. On the IoT side, all the protocols used the same number of PUF. Our 

proposed protocol is the only one that used PUF on the IG side to protect the protocol 

from IG impersonation 

Table 9: Comparison of computational costs for the authentication phase of the proposed 

scheme and other related protocols. 

Entity [57] [59] [60] [61] [62] [63] Proposed 

Scheme 

Using a 

hash 

function 

Proposed 

Scheme 

Using 

ECC 

IoT 8TH+ 

2TPUF 

3TH+ 

2TPUF+ 

2TEM 

5TH+ 

2TPUF+ 

3TEM+ 

1TENC 

3TH+ 

2TPUF+ 

1T FE Gen 

2TH + 

3TMAC+ 

1TENC + 

1TDEC + 

2TPUF+ 

2TPUF + 

3HMAC 
7TH 

+1TPUF+1

TENC + 

1TDEC 

7TH + 

1TPUF+1

TENC + 

1TDEC + 

1TEM 
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IoT Cost .26 ms 11.20 ms 16.39 ms 5.25ms 9.3ms 8.34 ms .49ms 5.49 ms 

IG 9TH+ 

2TEXP 
6TH+ 5TH 

+2TEM+ 

1 DEC

5TH+ 

1TFE Rec 
2TH + 

3TMAC+ 

1TENC + 

3HMAC 10TH 

+1TPUF+ 

1TENC + 

1TDEC 

10TH 

+1TPUF+1

TENC + 

1TDEC 

IG Cost 16.01 ms .006 ms 8.16 ms 4.01ms 3.83ms 4.5ms .41ms .41ms 

Total 

Cost 

16.27 ms 11.21 ms 24.55 ms 9.26ms 13.13ms 12.84ms .90ms 5.9 ms 

    Figure 40: Comparison of the number of the IoT crypto operations across the protocols 
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Figure 41: Comparison of the number of IG crypto operations across the protocols 

     Figure 42: Comparison of the total number of crypto operations across the protocols 
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        Figure 43: The IoT computational time across the different protocols 

Figure 44: IG computational time across the different protocols 
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Figure 45: Total computational time across the different protocols 

Table 9 and figures 43,44, and 45 demonstrate the cost comparison of the 

presented protocol with other similar protocols from the literature.  Table 9 and figure 45 

present the computational cost of each protocol.  Figure 43 displays the computation cost 

of each protocol for the IoT side, and figure 44 depicts the computational cost of each 

scheme for the IG side. The results indicate that the proposed protocol has the lowest 

computational cost for the IoT side compared to [59,60,62, and 63].  These results prove 

that our proposed protocol is suitable for IoT resource-constrained devices.  Although our 

proposed protocol has a higher computational cost on the IoT side than [57] and [61], the 

presented protocol ensured data confidentiality and user anonymity which are essential 

security goals. 

From table 9 and figure 45, it is observed that while [57], [59],[60],[61],[62] and 

[63] take approximately 16.27, 11.21, 24.55, 9.26, 13.13, and 12.840, the proposed 
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higher number of ECC point operations involved. Also, the protocol in [57] has a bad 

performance due to the use of modular exponentiation.  Furthermore, both protocols [62 

and 63] have high computational cost due to using many MAC and HMAC functions that 

are computationally heavy. In summary, our proposed protocol is more efficient than 

other related protocols and has a higher security level than the rest of the protocols.  The 

proposed protocol achieved the main security goals of confidentiality, integrity, and 

authenticity besides accommodating IoT devices that are diverse in their capabilities. 

4.5.2.3 Communicational Cost 

The following section analyzes the communication cost of the proposed protocol. 

To reduce network congestion and to provide fast message transmission, the 

communication costs of the protocol should be as low as possible. For the communication 

cost analysis, we evaluate the communication cost in terms of the size of the message in 

bits. Then, we compare the proposed protocol to the other related protocols.  Table 10 

presents a summary of the sizes of the message parameters. Table 11 lists the message 

parameters that are communicated between the server and the IoT device along with their 

sizes. 

 Table 10:  Size of the Message Parameters 

Message Parameters Size in Bits 

ID of N [ [57], [62], [63] 128 

ID of server [63] 8 

SID [57],  [62] 8 
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Nonces [61], [63] 128 

CRP (C, R) [61], [62] 128 

HMAC [63] 256 

Hash Function  [57], [62] 256 

Timestamp (TS) [63] 48 

ECC [60], [59] 256 

MAC [62] 256 

• Message 1: In the transmission (N → IG), N sends the tuple, NIDA, TSN1, NX2, SN

Therefore, the size of this tuple is 128 + 48 + 128+256 = 560. bits. 

• Message 2: In the transmission (IG → N), IG sends the tuple, IGIDA, SID, TSIG1,

CX {RVIG1, G2} R1. Therefore, the size of this tuple is 8 +8 + 48 + 128+128+256 = 

576 bits. 

• Message 3_1: In case the two parties decided to use the hash function to generate

the session key. In the transmission (N → IG), N sends the tuple, NIDA, SID. 

TSN2{RVN2, N3, SHA256} R1) Therefore, the size of this tuple is 128 + 8 + 48+128 

+256 = 568. bits. 

• Message 3_2: In case the two parties decided to use ECC to generate the session

key. In the transmission (N → IG), N sends the tuple, NIDA, SID. TSN2,{RVN2, N3, 

Gα }R1) Therefore, the size of this tuple is 128 + 8 + 48+128 +256 = 824 bits. 

Table 11: Communication Cost Comparison (bits) 
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Message 

Number 

[57] [59] [60] [61] [62] [63] Proposed 

scheme_

hash 

Proposed 

scheme_

ECC 

M1: N→ S 256 bits 128 bits 176 bits 256 bits 256 bits 432 bits 560 bits 560 bits 

M2: S→ N 512 bits 304 bits 640 bits 512 bits 768 bits 432 bits 576 bits 576 bits 

M3: N→S 688 bits 1024 bits 512 bits 640 bits 768 bits 304 bits 568 bits 824 bits 

M4: S→ N 384 bits 1024 bits 1024 bits ---- ---- 480 bits --- --- 

M5: N→S 640 ------ ---- --- 

Total 2480 

bits 

2480 

bits 

2352 

 bits 

1408 

 bits 

1792 

 bits 

1648 

 bits 

1704 

 Bits 

1960 

 bits 

The total communication costs of [57], [59], [60], [61], [62], and [63] are 

2480,2480,2352,1408,1792, and 1648 bits, respectively. If the proposed protocol uses a 

hash function to generate a session key, the total communication cost is 1704. Still, if the 

two communicating sides decide to use ECC to generate the session key, the total 

communication cost is 1960 bits.  Compared to the other presented protocols that used 

ECC to generate the session key [59 and 60], our proposed protocol has a lower 

communication cost and, at the same time, achieved all the required security goals. While 

if the two communicating parties decided to use the hash function, the communication 

cost of my proposed protocol is less than [57 and 62], while it is higher than [61 and 63]. 

As given in table 6, protocols in [57], [61], [62], and [63] are incapable of achieving all 

the security goals. 
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4.6 Summary 

This chapter presents a two-factor mutual authentication protocol for IoT systems 

between an IG and an IoT device.  The proposed protocol introduces a mechanism for 

secure session key establishment. The protocol provides confidentiality, integrity, 

anonymity, unlinkability, and untraceability capabilities while achieving mutual 

authentication between the IoT and the IG devices. The proposed protocol is assessed 

using both security and performance analysis. The security analysis used both formal and 

informal techniques. The formal evaluation employed used the BAN logic and AVISPA 

simulation to verify the proposed protocol's security. The results showed that the 

proposed scheme is safe. The informal security analysis also showed that the presented 

protocol is resistant to common attacks and satisfies the main security properties. 

Furthermore, we evaluated the protocol's efficiency in terms of storage requirements, 

communication, and computational cost and compared it with other related protocols. 

The presented protocol achieves the required low computational complexity for resource-

constrained IoT devices. 
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CHAPTER V 

M2M DISTRIBUTED MULTI-LAYER LIGHTWEIGHT MUTUAL 

AUTHENTICATION AND KEY AGREEMENT SCHEME USING 

CHAINED HASH PUF IN INDUSTRIAL IOT SYSTEM 

The emergence of Industry 4.0 and the Internet revolution changed the 

manufacturing atmosphere and created an integrated environment between the virtual 

world and the physical world. Although the Internet made the world smaller, there is still 

a gap between the physical and cyber worlds. With the rise of the IoT, all objects in the 

cyber world and the physical world have become interconnected. This integration can be 

viewed as a physical–digital-physical information chain that happens through three 

simple steps: physical to digital, digital to digital, and digital to physical.  During the first 

step, data is collected from the surrounding environment through IoT sensors. In the 

second step, the collected data is processed and analyzed. The third stage consists of 

transmitting the decisions to the physical world through actuators. 

With the emergence of Industrial IoT(IIoT), machine-to-machine (M2M) 

communication is essential to build IIoT environments that enable heterogeneous devices 

such as sensors, actuators, and gateways to communicate without any human intervention 

through a wireless or wired link. [91]. These IoT devices have a connection to the Internet 

either directly or through another device. Their connection to the Internet makes them 
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 Figure 46: M2M Networks in the IoT Environment 

available any time and from everywhere in the world to their users. M2M communication 

is a network where smart devices communicate through wireless and wired technologies. 

According to [92], the M2M communication system consists of three interconnected 

layers as presented in figure 46: (1) a M2M area layer that includes a M2M area network 

with M2M gateways; (2) a communication network layer that includes wired/wireless 
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networks; and (3) an application services layer consisting of the end-users and required 

applications.  However, this connectivity makes them accessible to adversaries who can 

attack a device to access sensitive data or use actuators to perform harmful actions that 

can damage the system [93] and  [94].  IIoT devices produce a massive amount of 

confidential and sensitive data. Several cryptographic mechanisms can be applied to 

protect the IoT devices from cyber-attacks, but they are not suitable for the resource 

constraint nature of the IoT devices.  One way to solve this problem is to offload some 

security-related operations from resource-constrained IoT devices to more resource-rich 

IoT devices. In IIoT, devices' authentication is crucial to achieving a trusted 

communication among the communicating devices. However, most of the currently 

employed M2M authentication protocols in the IIoT domain are based on asymmetric 

cryptography with a high computational cost. Consequently, those authentication 

schemes are not the best suitable solution for resource-constrained IoT devices, leading to 

many security issues in the IIoT environment. 

This chapter introduces lightweight privacy-preserving M2M mutual 

authentication and key agreement scheme. The presented protocol is called M2M 

Distributed Multi-Layer Lightweight Mutual Authentication and Key Agreement Scheme 

Using Chained Hash PUF in Industrial IoT System. The proposed scheme enables the 

devices to verify each others' identities and perform secure, anonymous authentication 

while the real identities stay secret. It will also allow the devices to locally generate 

shared secret keys to ensure the confidentiality and integrity of the exchanged data. The 

proposed scheme utilizes PUF as a hardware security approach and the chained hash 

concept.  The scheme also employs an access control method and implements virtual 
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domain segregation to protect the IoT devices from any arbitrary access by other 

unauthorized devices. The proposed scheme employs lightweight operations of XOR and 

a one-way hash function; thus, the scheme does not have a high impact on the device's 

computational and battery resources. It only requires between 3 and 4 messages to be 

exchanged between the communicating parties for the mutual authentication and key 

agreement. We evaluate the proposed scheme by using different measures, namely, 

security and performance evaluation. The security evaluation will be both a formal and 

informal security evaluation. The formal analysis used the Burrows–Abadi–Needham 

logic (BAN) as a formal validation of the proposed authentication scheme and the 

automated validation of the internet security protocols and applications (AVISPA) 

toolkit. 

Furthermore, the scheme efficiency is evaluated and compared with other related 

schemes. Through the informal analysis, we will assess the proposed scheme against 

well-known security attacks.  Furthermore, we also validate the efficiency of the 

proposed scheme and compares its performance in terms of computational cost and 

communication overhead with other related schemes. 

 In Section 5.1, we first introduce the motivation of the work. Section 5.2 discusses 

the security and functional requirements for M2M communication. Section 5.3 presents 

the security vulnerabilities and potential threats in M2M communication.  Section 5.4 

presents the related work and the other existing protocols. Section 5.5 demonstrates the 

network model and the security goals. Section 5.6 presents the proposed protocol. Section 

5.7 illustrates the protocol evaluation process, and finally, section 5.8 summarizes the 

chapter. 
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5.1 Motivation 

The implementation of IIoT can lead to many benefits to the industry, such as 

monitoring and optimizing the supply chains. Also, the use of IIoT can lead to early 

detection of machine failure, which can prevent production delay, equipment damage, or 

injuries to workers [95].  IIoT showed a significant interest in implementing M2M 

communication in wireless networks. Some characteristics of M2M communication 

within the IoT ecosystem are as follows: [96] 

1. Heterogeneity of devices: IoT devices are different due to their

functionalities and applications. 

2. Device coexistence and collaboration: the different IoT devices

communicate with each other anytime. 

3. Diverse networks and networking standards: Because the IoT ecosystem

consists of heterogeneous devices, they can use various communication 

standards such as cellular systems, WiFi, Bluetooth, Zigbee, or others to 

facilitate communication between devices. 

4. Device limitations: Most IoT devices are resource-constrained with limited

capabilities in terms of battery life, memory, and processing power. 

5. Multihop communication: Most IoT devices are equipped with limited

transceiver systems.  Therefore, they will only be capable of short-range 

transmissions and will need to route information over multiple hops. 

The emergence of M2M significantly impacts peer-to-peer networks and is 

expected to influence the IoT. Most of the current IoT domains require higher data rates, 
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low latency, and better quality of service (QoS) from the wireless networks [91] and [97]. 

With the exponential increase in IoT devices, the implementation of M2M technology 

becomes necessary to provide better services. M2M communication can improve wireless 

networks' performance by eliminating the need for a central node, reducing the overall 

communication latency, and offloading central node traffic [98]. Furthermore, M2M 

communication provides autonomous and energy-efficient systems. 

In M2M communication, IoT devices can take different forms of communication. 

The communication can be through a single hup or multiple hops. Also, communication 

can be intra-domain or inter-domain. Single-hop communication is where there is direct 

communication between source and destination without any other device involvement. 

On the other hand, multi-hop communication is where an intermediate device exists as a 

relay or an access point between the source and the destination devices. Intra-domain 

communication is where the interaction will be among the devices within the same 

network. In contrast, inter-domain is referring to communication among the devices of 

different networks. 

The communication systems employ nonstandard hard-wired communication 

technologies among communication and industrial devices [99]. On the other hand, the 

evolution of the IIoT, the industrial environment saw changes where the heterogeneous 

communication technologies employ wireless standards to assure communication, 

compatibility, and remote operation and control of the different devices through the 

Internet. Given that IIoT sensors are designed to be resource-constrained, these sensors 

tend to have some security drawbacks. 
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To meet the industrial requirements, smarter sensors capable of more complex 

operations are developed. However, there are still several challenges facing IoT sensors.  

First, there is still a gap between the security requirements and the currently implemented 

security solutions. According to [100], few of the currently available solutions adopt the 

security by design approach, which provides a new attack surface for the attackers.  The 

attacker can cause physical damage, threaten human life, manipulate the final product by 

compromising the production processes or increasing the used resources. Second, 

machines operating on a production floor typically last for several decades, and it is not 

always economically feasible to replace the old equipment with the latest technology. 

Therefore, finding solutions that can ensure security to modern manufacturing technology 

and the old systems is essential. Third, another major issue is the authenticity of the IIoT 

device and identifying the counterfeited devices. 

One of the main challenges in M2M communication is security because of such 

systems' dynamic nature [101]. While designing M2M systems, we should keep in mind 

how to prevent threats and vulnerabilities rather than curing them. Unfortunately, most 

M2M research focuses on other topics such as interference management, route discovery, 

and resource optimization rather than security.  Security also is an essential issue in 

wireless networks because of the exchanged information over the network that can be 

eavesdropped on, modified, or corrupted by an adversary. M2M communications face 

several security threats that can affect privacy, authentication, confidentiality, integrity, 

network availability, and QoS. 

Most of the currently employed cryptographic primitives are not suitable for the 

resource-constrained nature of IIoT devices, which negatively impacts the ability to 
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conduct authentication, identification, integrity, and verification of those devices. Most of 

the proposed authentication protocols employ public-key cryptography [102], [103], 

[104], [105], [106]. The long key length and the computational complexity of such 

cryptosystems make them hard to be implemented in resource-constrained devices due to 

their limited memory and limited power supply [107], [108]. Because identification and 

authentication are the cornerstones of providing security, new lightweight authentication 

approaches and securing those resource-constrained devices are necessary. 

5.2 Security and functional requirements for M2M communications 

To ensure the effectiveness of the M2M communication, there are security and 

functional requirements that need to be satisfied. 

5.2.1 Security requirements 

The communication channels between two IoT nodes (M2M) or an IoT node and 

a gateway are subject to several attacks. Because most IoT domains require a high level 

of security, several security measures need to be addressed and satisfied. Table 12 

presents the main security requirements in the M2M communication 

Table 12: Main security requirements in the M2M communication 

Security Requirement Description 

Confidentiality This requirement prevents an adversary from disclosing 

transmitted data and ensures that only the authorized 

entities can read the exchanged data in a M2M 

communications system. 
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Integrity This requirement ensures that the data has not been 

modified or altered by an adversary. Data integrity 

requirement is crucial in M2M communication systems 

because unauthorized data modification can lead to severe 

consequences. 

Availability The availability requirement ensures that the M2M 

application systems can access the service anytime and is 

always available. 

Authentication Authentication is one of the main requirements to ensure 

the security of the M2M communication. Through 

authentication, the device can verify each other's identity 

and authenticity before exchanging sensitive information. 

Anonymity It is essential to secure the device's anonymity and 

unlinkability to ensure data privacy when an attacker 

illegally exposes sensitive information. 

Access control It is vital to limit data access and communicate with other 

devices to the authorized devices.  

Non-repudiation This requirement ensures that no device can deny sending 

a message that it originated. 

Data freshness This feature implies that received messages are fresh and 

are not a replayed old messages sent by an adversary. 



151 

5.2.2 Functional requirements 

Besides the security requirements, there are functional requirements that can 

ensure the quality and applicability of the authentication protocols. Table 13 presents the 

main functional requirements of M2M authentication protocols 

Table 13: Main functional requirements of M2M authentication protocols 

Feature Description 

Scalability This feature ensures the ability of the 

system to add new nodes easily  

Efficiency This feature ensures communication 

efficiency by minimizing the number of 

the exchanged messages between the 

communicating parties. 

Low computational cost The M2M systems need to employ 

lightweight cryptographic primitives to 

support the resource-constrained nature of 

the IoT devices. 

Storage needs The authentication protocols must request 

minimum storage on the IoT nodes. 

A distributed scheme IoT nodes should communicate, if 

applicable, directly and not require a 
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central server's support to execute the 

authentication phase. 

5.3 Security vulnerabilities and potential threats in M2M communication 

M2M networks consist of a heterogeneous mix of devices ranges from resource-

constrained devices to resource-rich devices. Most of the resource-constraint devices are 

IoT nodes. The resource-rich devices are gateways in charge of managing the connection 

among the IoT devices on one side and between the internal and external networks on the 

other side.  M2M networks consist of many IoT nodes and one or more gateways.  IoT 

nodes are simple devices equipped with some specific sensing technology to collect real-

time data and transmit the collected data to the gateway in a single-hop or multi-hop 

format. Once the gateways receive the IoT node data, they can either process the received 

data or send it to a back-end server for processing and storage [95],[98], [105], [106]. 

  Table 14 presents a description of the main security threats in M2M networks, 

the potential consequences, and the possible countermeasure. 

Table 14: Main security threats in M2M networks, the potential consequences, and the 

possible countermeasure 
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Security Threat Potential Consequence Countermeasure 

Eavesdropping: is a 

type of attack where the 

adversary listens to the 

exchanged messages 

between the 

communicating parties 

to learn things about the 

network and try to find a 

way to be inside it. 

1. They are exposing

sensitive and private data. 

1. Using secure

communication links 

that implement modern 

cryptographic 

primitives. 

2. Establish security

association between 

the communicating 

parties after 

performing mutual 

authentication between 

them. 

Hacking the long term 

key of the IoT 

node/gateway 

1. device impersonation 1. Store the long-term

keys in a Hardware 

Security Module 

(HSM) located inside 

the devices and is 

tamper-resistance. This 

makes it impossible for 

attackers to discover 
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the values of long-term 

keys. 

2. Limiting the lifetime of

the session key. 

Modifying/replacing 

long term keys in 

IoT/gateway 

DoS attack 1. Store the long-term

keys in a HSM located 

inside the devices and 

is tamper-resistance. 

2. Allowing the

modification of stored 

sensitive data and long-

term key after 

completing strong 

mutual authentication. 

Modifying messages 

between entities 

Loss of message integrity 1. Use of modern

cryptographic 

primitives to secure 

message's 

confidentiality and 

integrity 

2. Limiting the lifetime of

the session keys 
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3. Establish a security

association between 

the communicating 

entities. 

Replaying sniffed 

message to entities 

1. Unauthorized access to the

system 

2. Impersonating the IoT

node/gateway 

1. Use of a timestamp or

sequence number to 

ensure message 

freshness 

Physical attack where 

the attacker tries to  

take control of a device 

and then extract any 

information from it, 

instead of destroying it 

1. Impersonating the

legitimate devices 

2. Gain root-level access

on the device and 

compromise the 

device, which allows 

the attacker to move 

freely and attack other 

devices to bring the 

whole system down. 

1. The use of hardware-

based security provides 

robustness because it 

makes it hard for the 

attacker to alter or 

replicate the device's 

physical features. 

5.4 Related Work 
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The following section introduces an analysis of some of the presented 

authentication protocols in the literature. The authors in [109] propose a user 

authentication and key agreement protocol for heterogeneous ad hoc wireless sensor 

networks for achieving energy efficiency, user anonymity, and mutual authentication. 

The researchers used hash functions and XOR operations to implement the authentication 

process. They present a heterogeneous environment with two or more types of nodes: 

resource-constrained sensor nodes and more powerful gateways. The researchers state 

that their proposed protocol ensures high security and performance features. However, 

the presented protocol has multiple weaknesses. First, both the user and the sensor are 

using fixed masked IDs, which can lead to a lack of user anonymity and linkability and 

traceability attacks. Second, the authentication process does not require any user input; 

therefore, stealing the smart card can lead to a user impersonation attack. Third, the 

proposed protocol does not support two-factor authentication. Fourth, suppose a sensor 

node became compromised; in that case, an attacker can monitor this sensor node and 

obtain the session key shared between another sensor node and the user who has ever 

connected to this compromised sensor node. 

Authors in [110] present a modified version of the protocol presented by [109]. 

The researchers propose a remote user authentication and key agreement protocol to 

access IoT nodes that are part of the wireless sensor networks where the network consists 

of multiple gateway nodes. The proposed protocol has multiple phases: the system setup 

phase, user registration phase, login phase, authentication phase, password update phase, 

and dynamic node addition phase. The researchers assume that each sensor node is 

assigned to the nearest gateway based on minimum distance. The proposed protocol used 
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the one-way hash and the XOR as lightweight cryptographic functions.  The proposed 

protocol used a long-time session key, which can make it subject to session key 

disclosure.  Also, the protocol transmits the sensors' real identities in clear text, which 

does not support the anonymity and unlinkability security features. 

Authors in [111] present a lightweight authentication protocol that relies on 

digital signatures. The proposed authentication protocol presents a lightweight signature 

solution using Hierarchical Identity Based Signature (HIBS).  It consists of five phases; 

two setup phases, extraction phase, signing phase, and verification phase.  The presented 

protocol uses an identity-based signature to generate signing and verification keys. The 

identity-based signature uses the user's identity to generate the signing and verification 

keys. The protocol consists of three layers. The first layer is called the Root Private Key 

Generator (Root PKG) and is located in the cloud.  The second layer is called sub-PKGs, 

which act as agents and are located in the fog. The third layer is users' layer, which 

consists of end-users. Each sub-PKG is responsible for the public and private keys 

generation of its registered mobile users. The use of the sub PKG reduces the overheads 

on the Root PKG. The researchers compared their work to other related protocols in light 

of the key distribution method, key generation method, and security attack model.  The 

results indicate that the presented protocol is resilient to multiple attacks such as linking 

signature, replay attack, key eavesdropping attack, and signature forgery attack. 

The authors in [91] introduce a proxy-based key establishment protocol for IoT 

using the Diffie Hellman (D.H.) algorithm. The proposed protocol allows any two 

unknown, resource-constrained devices to initiate secure end-to-end (E2E) 

communication. The constrained devices should maintain secured connections with the 
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neighbor nodes that are less resource-constrained devices in the local networks in which 

they are deployed. The less constrained devices act as proxies and are performing 

expensive cryptographic operations on behalf of the resource-constrained node. The 

proposed protocol aims to allow two resource-constrained devices located into two 

different networks to generate a shared secret key. The proxies into the two different 

networks will support the resource-constrained devices in computing the shared secret 

key.  The researchers assumed that the proxies of the two different networks could 

securely communicate with each other. The researchers also assumed that the resource-

constrained IoT nodes have a list of the neighbor proxies and their corresponding pre-

shared keys for authentication. Although the proposed protocol is proposed for resource-

constrained devices, it requires the resource-constrained devices to store multiple pre-

shared keys of the different proxies. Also, the protocol requires storing the pre-shared key 

and reusing them for each authentication session which may lead to a side-channel attack. 

The authors in [93] introduce a lightweight authentication and key agreement 

scheme for heterogeneous ad hoc wireless sensor networks. The proposal relies on XOR 

and hash functions. The researcher put in their consideration five main factors: (1) 

ensuring user anonymity, (2) requiring no complex computations, (3) performing mutual 

authentication, (4) providing a user-friendly scheme, and (5) ensuring the correctness of 

the session key. The proposed protocol consists of six phases: predeployment phase, 

registration phase, login phase, authentication phase, password-change phase, and 

dynamic node addition phase. The proposed protocol requires lots of computations, and it 

is subject to node capture attacks. 
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The authors in [94] propose a group authentication and key agreement (GROUP-

AKA) protocol designed for M2M communication. The authors successfully prevent the 

DoS attack, but the protocol does not handle the privacy preservation problem. 

Furthermore, the proposed protocol is computationally expensive because it employs a 

public cryptology approach. 

In [97], the authors proposed a lightweight mutual authentication and key 

agreement protocol for M2M communications in IIoT environment between resource-

constrained sensors and a router, including a trusted platform module (TPM). The 

protocol is based on hash and XOR operations. The authors assume that the proposed 

protocol is characterized by low computational cost, low communication cost, and low 

storage overhead. The authors in [98] demonstrate that the proposed protocol by [97] is 

vulnerable against DoS, and router impersonation attacks. Also, they prove that the 

adversary could trace the smart sensor by eavesdropping on only one session. 

Furthermore, the researchers present how an untrusted smart sensor can obtain the 

router's secret key and the session key that another sensor established with the router. 

The authors in [100] present a smart card-based authentication scheme for 

heterogeneous ad hoc wireless sensor networks. They introduce two versions of the 

proposed protocol. The first version of the protocol is called P1. P1 has four phases: 

predeployment phase, registration phase, authentication phase, and password changing 

phase. The researchers claimed that P1 is lightweight but does not provide perfect 

forward secrecy. Therefore, they introduce the second version of the protocol called P2.  

The researchers mentioned that P2 could guarantee perfect forward secrecy. They explain 

that P2 is an advanced version of P1 and shares with P1 the same procedures in the 
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predeployment, registration, and password changing phases.  P1 is lightweight because it 

mainly uses XOR and one-way hash function, but P2 uses public-key cryptography to 

make it more computationally intensive. The two versions of the proposed protocol do 

not achieve a proper mutual authentication as the user's identity is not verified by the 

sensor. Therefore, the protocol is executed even if the user's inputs are wrong.  The 

proposed protocol does not support the unlinkability security feature where the sensor 

I.D. (SID) is static and sent over the network in clear text format. Finally, the validity of 

the user's identity is not checked by any party. Therefore, the authentication phase will 

still be executed even if the user inputs a wrong identity. 

The authors in [102] introduce an authentication, authorization, and accounting 

(AAA) system for IIoT. The proposed protocol is based on the Next Generation Access 

Control (NGAC) standard that provides access control in different environments. The 

proposed system provides access control and security to heterogeneous IIoT devices in a 

local cloud. The proposed authentication mechanism employs X.509 certificates. The use 

of the digital certificate makes the proposed solution not suitable for resource-constrained 

devices. According to [103], using the X.509 certificate and the public-key certificate 

management causes performance bottlenecks and makes the proposed scheme not 

applicable to resource-constrained IoT devices. 

Authors in [104] present a mutual authentication protocol between an IoT node 

and a fog node using the HMAC and XOR function. The two sides have a fixed shared 

secret key. The proposed protocols used challenge-response negotiation. The presented 

protocol is vulnerable to various types of security attacks and violates security 

requirements.  First, the protocol exchanges messages between the IoT node and the fog 
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node using their real identities, which do not preserve the user's privacy. Consequently, 

the proposed protocol does not provide anonymity and unlinkability, and the adversary 

can trace the devices by intercepting messages.  The first message that the fog node sent 

to the IoT node contains K ⊕  CA ⊕ CB where the K is the fixed share secret key, C.A. is 

the nonce value that is generated by the IoT node and was sent to the fog node in clear 

text format. C.B. is the nonce value that was generated by the fog node. Once the IoT node 

receives the message from the fog node, it increments the timestamp by one and 

calculates a new HMAC using the K, the ID of the IoT node, and  CB. The adversary can 

intercept the messages and conduct a brute force attack by guessing the CB and the K. 

Then, the adversary can verify his guess by recomputing the XOR values using the 

guessed CB. and K. Also, the adversary can intercept the last message that was sent from 

the IoT node to the fog node and recompute the HMAC by using the guessed K and CB.  

If the recalculated HMAC value is equal to the intercepted HMAC value, this will ensure 

that the guessed K and CB. are correct. Then the adversary can use the guessed key to 

decrypt all subsequent messages. 

The authors in [105] introduce an efficient authentication scheme for M2M 

networks in IoT-enabled cyber-physical systems. The researchers present four different 

protocols to achieve four different authentication tasks. The four main elements of the 

presented protocol are gateways, mobile users, IoT devices connected to the gateway, and 

IoT devices that are not connected to the gateways but connected to the IoT devices that 

are connected to the gateway. The authentication protocols are achieved used symmetric 

cryptography and a one-way hash function. The first protocol enables the mobile user to 

authenticate with any gateway mutually. The second protocol enables the mobile user to 
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mutually authenticate with any of the IoT nodes that are within the domain of this 

gateway the user is authenticated to in protocol 1. The third protocol allows the IoT nodes 

to mutually authenticate each other, given the condition that at least one of the IoT nodes 

is connected to the gateway. The fourth protocol allows IoT nodes that are not connected 

to the gateway to mutually authenticate each other with the IoT node connected to the 

gateway. Although the four protocols are lightweight, all of them require the storage of 

long-term shared secret keys, which can make the system vulnerable to several attacks, 

such as side-channel attacks, to obtain the secret key. Second, the different devices 

exchange messages using their real identities that make the protocols violate privacy 

preservation and do not satisfy the untracability and unlikability security features. 

Finally, the proposed protocols have unnecessary steps that can be avoided to reduce the 

computational complexity and the computational cost. For example, the mobile user can 

send a message directly to the gateway requesting to perform mutual authentication with 

one of the IoT devices instead of sending the message to the IoT node. Then the node 

forwards the message to the gateway. 

The authors in [106] propose three new lightweight, efficient authentication 

protocols for IoT-based healthcare applications. The first protocol is an improvement of 

the protocol proposed by [105]. The second protocol is the M2C (machine to the cloud) 

mutual authentication protocol that is based on a one-way hash function.  The third 

protocol is M2M mutual authentication protocol using Elliptic Curve Cryptography ECC. 

Although the researcher claimed that the M2M authentication protocol is efficient and 

suitable for resource-constrained devices, it does not fit the resource-constrained devices. 

The third protocol used digital signatures and ECC, which are computationally expensive 
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and consume a lot of power from IoT devices.  Also, the exchanged messages did not 

include any IDs. Therefore, it is not clear how the recipient can identify the sender and 

verify each other's identities. The protocols cannot mitigate against a replay attack. 

The authors in [107] propose an Identity-Based Cryptography (IBC) without Key-

Escrow (AIBCwKE) authentication scheme. The scheme covers most known attacks; 

however, the scheme requires IoT devices and mobile devices to perform 

computationally expensive cryptographic operations. The IoT nodes perform multiple 

bilinear pairing operations on elliptic curves in addition to several point multiplications 

and exponentiations. These computational requirements are not suitable for resource-

constrained devices. 

Authors in [112]  propose a new Token-Based Lightweight User Authentication 

(TBLUA) for IoT devices. The presented protocol consists of the following phases: (i) 

Offline smart device and gateway registration, (ii) User reservation, (iii) Token 

distribution between the gateway and smart devices, and (iv) Login and Authentication. 

The proposed protocol is secure against replay attacks, user impersonation attacks, and 

password guessing attacks.  Also, it satisfies the user anonymity as well as perfect 

forward secrecy features. On the other hand, similar to many other authentication 

schemes, it requires storing long-time security keys and does not ensure against devices 

counterfeiting. 

The authors in [95] introduce an authentication protocol for resource-constrained 

IIoT devices. The proposed protocol is based on simple operations such as XOR, 

addition, subtraction, and a hash function. The protocol consists of two phases: (1) the 

registration phase, where IoT node and gateway exchange secrets that they will later use 
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to prove their identities, and (2) the mutual authentication phase, where the authentication 

and session key generation process is completed.  The protocol is resilient against replay, 

impersonation, tracking, man-in-the-middle attacks, and identity guessing attacks.  Also, 

it satisfies multiple security requirements such as perfect forward secrecy, device 

anonymity, mutual authentication, and data integrity. The only limitation of this protocol 

is storing several long-term secret keys on the IoT node. 

Based on the work presented above, there are common limitations that are shared 

among most of them. First, many suggested protocols used computationally expensive 

cryptographic operations that do not fit the IoT devices' resource-constrained nature. 

Second, most of the proposed protocols did not focus on ensuring the originality of the IoT 

devices and secure the system from integrating counterfeited devices. However, this is 

considered a major concern in the IIoT domain. Third, many of the proposed protocols do 

not implement multiple authentication levels, which is the core of the defense-in-depth 

concept. Fourth, in some of the presented protocols, the researchers overlooked the IoT 

devices' privacy, which does not guarantee the IoT device's anonymity and privacy. Fifth, 

many of the proposed protocols require storing long-term secret keys on the IoT device's 

memory, which can be retrieved using side-channel attacks. Sixth, most of the proposed 

protocols did not account for gateways load, leading to slowing down the system response 

and not responding to authentication requests promptly. This will, in turn, negatively impact 

the system's scalability. Seventh, most of the presented protocols may suffer from losing the 

authentication service entirely due to the design's single point failure. 
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5.5 Industrial IoT (IIoT) network model and security goals 

This section will present a smart poultry farm network model and introduce the 

proposed authentication scheme's security mechanisms and components. Then, the threat 

model and the involved attack surface will be discussed. 

5.5.1 Smart poultry farm network model 

One of the industries that can make good use of IoT technology is poultry farms. 

In such an environment, it is essential to monitor the environmental quality to ensure the 

healthy growth of the chicken and, at the same time, to reduce chicken loss. Therefore, 

there is a need for a smart monitoring system. The environmental parameters can be 

measured by using wireless sensors. Collected data can be transmitted through a gateway 

to the employer's control station to monitor the farm's operation and production. The use 

of IoT sensors can be a solution to build a smart poultry farm. The implementation of an 

automated real-time monitoring system of the environmental parameters can: (1) increase 

productivity and at the same time reduce cost and time; and (2) facilitate the data analysis 

process that can help in making faster and better decisions. However, IoT and smart 

communication technologies introduce a vast exposure to cybersecurity threats and 

vulnerabilities in smart poultry farming environments. Such threats can disturb the 

operation and the production of the farm. This chapter introduces a distributed 

lightweight mutual authentication and key generation protocol that fits the poultry farms' 

dynamic and distributed cyber-physical nature to ensure the system's security. 

In the proposed scheme, an IoT node (N) mini gateways (MG), Intermediate 

gateway (IG), and central gateway (CG) are responsible for ensuring secure, anonymous 
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mutual authentication and key generation. The proposed scheme is based on a challenge-

response technique and is developed as a secure and efficient mutual authentication 

scheme without requiring high computational and communication costs. The use of 

symmetric cryptography may generate security issues due to key exchanges over public 

channels. To solve this issue, the proposed scheme does not exchange keys over the 

network and does not use the devices' real identities, and consequently, it is not affected 

by these problems. The proposed scheme enables a M2M communication, which 

provides the chance for devices inside the IIoT network to do data offloading and allows 

the IoT devices that are away from their gateways to get authenticated and communicate 

with them through other IoT devices. 

Figure 47 illustrates the network model of the farm. The cage is divided into three 

levels (Level 1, Level 2, and Level 3).  The three levels are identical. Each level has a 

dedicated gateway called the Intermediate gateway (IG). The three IGs are connected to a 

central gateway that is in charge of the whole cage. Each level is divided into three zones 

(Zone A, Zone B, and Zone C).   The three zones are identical. Each zone is controlled by 

a mini-gateway (MG). All MGs can communicate with each other to exchange data.  Each 

zone is divided into multiple virtual domains where the IoT devices are located.  Each virtual 

domain has the more powerful IoT nodes closer to the MG. There are four main players: the 

central gateway (CG), the intermediate gateways, the mini-gateways, and IoT nodes(N). 

• The central gateway (CG): CG is a central device for starting and maintaining the

network. It is aware of all the devices' real identities. The CG achieves multiple 

tasks: (1) it is in charge of authenticating the intermediate gateways; (2) it supports 

the mini-gateways while authenticating the IoT devices; and (3) it is in charge of 
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sending the collected data from the intermediate gateways to the cloud. The CG also 

acts as a local repository to temporarily store the data generated from the whole cage 

and provides a local processing capability, and performs data cleaning, aggregation, 

analysis, and interpretation techniques because it has a local database.  Then it will 

send the collected data to the cloud. 

• Intermediate Gateways (IG): the intermediate gateway controls starting and

maintaining the level-based network.  The IGs achieve multiple tasks: (1) they are 

in charge of authenticating the mini-gateways; (2) The IG also acts as a local 

repository to temporarily store the data generated from its level and provides a local 

processing capability and performs data cleaning, aggregation, analysis, and 

interpretation techniques because it has a local database. The IGs  store the received 

data in buffers and forward them to the central gateway. 

• Mini-gateways (MGs): MGs are less powerful than IGs. Each MG is in charge of

a zone and acts as a connection point between the IG and the IoT devices. MGs are 

used to offload the IG and distribute the authentication process among multiple MGs 

under the authority of the IG. The MGs will be in charge of authenticating all the 

IoT nodes. Each MG acts as a local repository to temporarily store the data generated 

from its zone and provides a local processing capability, and performs data cleaning, 

aggregation, analysis, and interpretation techniques because it has a local database. 

The MGs store the received data in buffers and forward them to their IGs., which 

aggregate the information of different MGs and redirect it to the central gateway. 

• IoT nodes: Those are the limited resources devices that are used to collect and send

data to its MG. The IoT nodes are not allowed to communicate directly with the IG 
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or the CG. If either the CG or the MG receives any message from any IoT node, it 

will drop it. Some IoT nodes are connected directly to the MG, while others are 

connected indirectly through other connected IoT nodes to MG. The IoT devices 

include temperature sensors, water sensors, CO2 sensors, NH2 sensors, static pressure 

sensors, and actuators.  

The presented scheme consists of four main layers: the physical, edge, fog, and 

cloud layers. The bottom layer is the physical layer consisting of sensors and actuators 

distributed in the cage. These devices include different types of sensors such as temperature 

sensors and water sensors, and actuators to take actions. The sensors are responsible for 

sensing and collecting data from the surrounding environment. The collected data helps in 

actuating other devices such as the ventilation system. The sensors collect real-time data 

about water, temperature, CO2 level, or NH2 level, which can be sent to the edge, fog, or 

cloud systems to provide recommendations and enable automation. For example, data 

collected by the temperature sensors are processed at the edge to determine the amount of 

air or heat that is needed in the cage, optimize the airing or the heating schedule, and 

support the farm operation. 

The next layer up is the edge layer that consists of the mini gateways. Each virtual 

domain has its own mini gateway that provides communication among smart objects and 

acts as the link between the smart device and the intermediate gateway. The MG in the 

edge layer oversees conducting real-time data cleaning, aggregation, analysis, and 

making decisions within its virtual domain. 

 The third layer up is the fog layer that consists of the intermediate gateways and 

the central gateway. The fog layer oversees local real-time data cleaning, aggregation, 
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analysis, and making decisions. This layer's integration reduces the computation and data 

analysis load off the centralized cloud layer. The fog layer consists of two sub-layers. The 

bottom sublayer consists of the intermediate gateways.  Each Intermediate gateway 

oversees the cleaning, aggregating, and analyzing the data of its level. The top sublayer 

consists of the central gateway. The central gateway aggregate and analyze the data of the 

whole cage. Security monitoring, device failure prediction, and anomaly detection systems 

can be deployed for real-time monitoring of abnormal events and classifying these events 

as malicious or benign. 

The cloud layer is generally virtualized in data centers and communicates with the 

other layers using the Internet. The network model presented in figure 47 has two clouds.  

The first one is the cloud of the service provider, where the collected data that has been 

sent through the edge layer will be stored on Distributed File System (DFS). This stored 

data will be used to conduct further analysis and to mine knowledge. The second cloud is 

the PUF cloud, where the manufacturers store the CRPs of their produced devices. The 

CRPs will be used to authenticate the devices and ensure the originality of the devices to 

protect the farms from integrating counterfeited devices. 

The IoT nodes such as sensors and actuators represent the sensing layer that is used 

to sense/control the industrial world and acquire data. The MGs, IGs, and the CG represent 

the aggregation layer responsible for collecting and processing the data and then sending 

information to the cloud. All MGs can communicate directly with each other. Each IoT 

node can communicate directly with its MG but can't communicate with either the IG or 

the CG. A trust relationship and a secure communication link exist between the CG. and 

the service provider cloud environment. 



170 

Figure 47: Smart poultry farm network model 

The manufacturer assigns the IoT nodes real IDs that are stored on their memory. 

The service provider gives the IoT nodes Alias IDs. The Alias ID will be changed every 

authentication session. The goal of the alias ID is to protect the device's anonymity and 

ensure the device's untraceability. 
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All devices are stationary. The communication between any two devices is subject 

to both active and passive attacks. In passive attacks, the adversary can eavesdrop on the 

communication. In active attacks, the intruder may replay, modify, or delete specific 

communication messages. Moreover, IoT devices can be destroyed or stolen. The 

message header containing the device Alias ID is sent in a clear text while the payload is 

encrypted and authenticated. A one-way cryptographic hash function with a 256 bits 

length is used to validate and ensure the integrity of the data transmitted between the two 

devices. 

The number of IoT devices can vary throughout the lifetime of the network. 

Moreover, because the addition of new IoT devices to the network is highly likely, the 

proposed scheme accommodates system scalability. The proposed scheme supports the 

dynamic addition of IoT devices to the network without changing the network's security 

states. The dynamic addition of new IoT devices is a shared responsibility between the 

CG and the MG., which are assumed to be powerful devices. 

5.5.2 Automated access control and privacy 

The nature of the multi-layered architecture of the poultry farms highlights the 

chances of cyber threats challenges. Therefore, an access control solution needs to be 

integrated to support smart poultry farms' dynamic nature. Efficient access control and 

privacy protection are necessary to protect sensitive data [113], [114]. Therefore, an 

automated access control model based on virtual domain segregation of IoT network and 

device type is introduced.   
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5.5.2.1 IoT virtual domains segregation 

The proposed scheme creates virtual segregation among the IoT devices. Virtual 

segregation's primary goals are to (1) improve security through applying security policies 

that fit the different IoT devices' needs and increase the data's confidentiality;(2) improve 

the network performance through eliminating the unnecessary traffic; and (3) improve 

and ease the management of the network. 

 The IoT network is virtually partitioned based on the type of IoT device. Each 

virtual domain is connected to its MG to manage and control that virtual domain. If an 

MG of a specific virtual domain goes down, its neighbor gateway that is located at the 

same level would temporarily take over the connection management. At the same time, it 

will notify the IG that its neighbor MG is out of service. All MGs within the same level 

periodically exchange heartbeats signals to ensure their availability over time and share a 

common database that lists those sensors under the authority of each MG. The IoT 

devices are organized in a multi-tier architecture where the top layer (L1) houses the most 

powerful IoT nodes within the MG range. The lower layer (L2) includes the IoT nodes 

that are distant and out of range from the MG but within their peers' range sitting at the 

top layer. The L1 IoT nodes will be used as a relay between the L2 IoT nodes and the 

MG. Each virtual domain has a unique virtual Domain ID (VDID) and a unique Group 

address (GAD). The GAD will equal the hardware address of the MG. Each device has a 

typeID (TID) that is shared among all devices with the same type. 

5.5.3 Challenge-response mechanism based on PUF and chained hash PUF 

The proposed scheme achieves mutual authentication by implementing a PUF 

challenge-response and chained hash PUF value authentication mechanism. The idea 
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behind using the chained hash PUF value is to create a type of tracking system that stores 

a value related to interaction over time between the IoT node and the MG. The chained 

hash PUF value is utilized to present a historical factor for authenticating the IoT node. 

Employing both the PUF and the chained hash PUF mechanisms to generate a cumulative 

value from all previous authentication sessions ensures mutual authentication. The two-

way challenge/response authentication technique allows the MG to check the authenticity 

of the IoT node, and at the same time, enables the IoT node to ensure that it is not 

communicating with a malicious MG. The use of the PUF proves the originality of the 

devices and protects the IoT ecosystem from impersonation attacks.  The use of the 

cumulative chained hash PUF value depends on the ability of the IoT node and MG to 

show proof of knowledge of past chained hash PUF values. 

 In the proposed scheme, during the registration phase, both the sending IoT node 

and the MG hash the first PUF response RH1 along with the real ID of the IoT node and 

produce a hashed value named CHX. Then, for all subsequent authentication sessions, the 

IoT node hashes the previously-stored chained CHX along with the new PUF response 

(Rx) to generate a new chained hash CHxN. On the other side, the MG will apply the 

same technique to ensure the authenticity of the received hashed value upon receiving the 

data. First, the MG retrieves the Rx value from its database. Second, the MG hashes the 

retrieved Rx with the previously stored chained CHx-1. Then, the MG compares the 

computed value CHXN' = h (RX, CHx-1) with the one that was received CHXN from the IoT 

node. If it matches, it will authenticate the sender IoT node N. Once the authentication is 

completed; the two sides will store the CHXN in their databases and use the CHx-1 along 

with the exchanged random values to generate the shared session key(ssk). 
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The proposed mechanism chains the blocks of hashed response values together by 

hashing the new hash value with previously generated hash values and the realID of the 

IoT node. Thus, the mechanism looks like a blockchain technology at first glance, but it 

does not utilize blockchains with its overheads. Because the RX values cannot be 

predicted or replicated due to the nature of the PUF, the adversary can't predict the 

chained hash value. 

5.5.4 Security Design Goals 

To ensure the security and efficiency of communication in the IIoT domain, the 

security goals that are presented in figure 48 need to be achieved in the proposed 

protocol. 

Figure 48: Security Design Goals 
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• Confidentiality: This is achieved through symmetric encryption.

• Resistance to data modification attack: An adversary cannot tamper with the

communication data to break its integrality: This is achieved by using a strong 

hash function such as SHA-256. 

• Anonymity and unlinkability: The sensors’ identity information cannot be

exposed to anyone outside its level. This is achieved through using an Alias ID/ 

pseudonym that will be changed for every authentication session. The adversary 

cannot trace back the device's real ID from the pseudonym. Using pseudonyms 

also ensures that when an IoT device uses network resources multiple times, it 

will be hard to link these uses together by an adversary. 

• Resistance to the Replay Attack: An adversary cannot reuse the previously

exchanged valid information to steal sensitive data. This attack can be avoided by 

ensuring the message's freshness by using timestamps and nonce values. 

• Forward/backward security: This is satisfied by ensuring the confidentiality of

all messages.  

• Counterfeiting and hardware security: This is achieved through using the PUF

• Mutual Authentication: Each communicating pair should authenticate each other

to avoid potential malicious attacks. 

• Resistance to the Impersonation Attack: An adversary pretends to be a

registered entity.  The implementation of the PUF concept can avoid this attack. 
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• High Efficiency: To encounter the communication demands of the resource-

constrained IoT devices in industrial systems, the proposed schems should have 

low-computation cost and communication overhead. 

5.5.5 Threat Model 

The Dolev–Yao (DY) threat model [64]  is applied in the presented protocol. In 

the DY threat model, any two communicating parties (in the context, IoT node and MG, 

MG and IG, and IG and CG) communicate with each other via insecure public channels. 

During the interaction process, an adversary can eavesdrop, intercept, and modify the 

transmitted data of both parties. The service provider cloud and the PUF cloud are 

assumed to be fully trusted in the presented scheme. 

 The following assumptions about security properties and adversary abilities are made. 

1. The used communication channel during the registration process is secure.

2. The one-way hash function is collision-resistant.

3. The gateways and IoT nodes have protection against tampering.

4. Replay attack: An adversary can capture messages from old authentication sessions

and replay them in the current session. 

5.Message modification attack: the adversary can tamper with intercepted messages.

7. Injection attack: the adversary can send fake messages.

6. Impersonation attack: The adversary can pretend to be a legitimate gateway or sensor

node. 
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5.6 Proposed Scheme: M2M Distributed Multi-Layer Lightweight Mutual 

Authentication and Key Agreement Scheme Using Chained Hash PUF in Industrial 

IoT System 

This work focuses on resource-constrained IoT devices that are not suitable for 

traditional security methods to protect communication with the gateway and IoT devices. 

Deploying a massive number of IoT devices in the IIoT environment may consume a 

considerable amount of energy. Therefore, there is a need to optimize the communication 

tasks among the IoT devices to reduce the consumed energy [115]. The proposed scheme 

aims to achieve low computing-resource usage by reducing computational complexity 

and the computational cost of IoT devices, which will reduce the energy cost of the IIoT 

system and extend the battery life of the IoT devices. 

Because most IoT devices are resource-constrained, we use lightweight 

cryptographic operations during exchanged authentication messages. To achieve this 

goal, a lightweight mutual authentication and key agreement scheme for M2M 

communication between a CG and IG, IG and MG, and finally between N and MG are 

proposed in this section. 

The proposed scheme consists of four main phases: the enrollment phase, 

registration phase, mutual authentication phase, and key agreement phase. The enrollment 

phase will be completed during manufacturing. The Authoritative entity (AE) will oversee 

completing the registration phase. Both the mutual authentication and the key generation 

phases will be completed between CG and IG, IG and MG, and N and the MG without any 

human involvement. Every two parties are responsible for ensuring a secure, anonymous 

mutual authentication and key generation process. The relationship between CG and IG, 



178 

IG and MG, and N and MG is based on infrastructure communication mode. The 

relationship among the different MGs and the relationship among the IoT nodes within the 

same virtual domain is based on peer-to-peer topology.  The mutual authentication and the 

key generation phases are broken down as follows: 

1. Mutual authentication and key agreement between CG and IG.

2. Mutual authentication and key agreement between IG and MG.

3. Mutual authentication and key agreement between two different MGs.

4. Mutual authentication between MG and N.

The proposed scheme allows any two devices in the M2M network to authenticate 

each other and exchange data mutually. Moreover, the IoT nodes are not necessarily 

required to be directly connected to their mini gateway at the time of authentication. It is 

important to highlight that the authenticated devices must be within the same virtual 

domain.  Any communication between any two IoT nodes from two different virtual 

domains must be through the mini gateway of each of them. The proposed scheme 

utilizes a one-way hash function, PUF, chained hash PUF and simple XOR function 

between any two mutually authenticated devices. 

Furthermore, IoT nodes use Alias IDs (pseudonyms) instead of their real IDs 

during the communication process. Alias IDs support the anonymity of senders' IDs, 

receivers' IDs, and the sender-receiver relationship. The abstract notations used to 

describe the proposed authentication scheme are listed in table 15. The scheme phases are 

presented below. 
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5.6.1 Enrollment Phase 

The enrollment phase is completed during the manufacturing process. The 

manufacturer will assign a real ID to every IoT device and gateways. All devices are 

equipped with a PUF, and any attempt to tamper with the PUF will change the device's 

behavior and render the device useless and must be replaced. The PUF hardware security 

primitive is used as the root-of-trust, which provides device authenticity. 

The manufacturer will also collect a set of CRPs for each device during the 

enrollment phase. The manufacturer will test all the CRPs under different temperature 

and voltage conditions and consider the aging effects to keep only the error-free CRPs 

[37]. Then, the manufacturer will load the CRPs of the devices to the cloud of their 

service provider.  The service provider container is part of the PUF architecture that is 

presented in chapter 2. The main goals of PUF are to protect the devices from 

counterfeiting and generate a relevant, unique key for the device.  The uniqueness of the 

generated key in the network would be guaranteed based on the diversity and the 

manufacturing variations that generate the PUF.  The generated PUF responses will be 

used to generate the symmetric keys. 

Table 15: Notations used in the scheme 

Notation Description 

Authoritative Entity AE 

IoT node N 

Mini-Gateway MG 

Intermediate Gateway IG 

Central Gateway CG 
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NIDR IoT Node Real ID 

NIDA IoT node Alias ID 

MGIDR Mini-Gateway Real ID 

MGIDA Mini-Gateway Alias ID 

IGIDR Intermediate Gateway Real ID 

IGIDA Intermediate Gateway Alias ID 

CGIDR Central Gateway Real ID 

CGIDA Central Gateway Alias ID 

OTP One-time password 

Token TK 

MSK Master secret key 

GID Group ID 

TIDN IoT node Type ID 

RV Random values 

S1, S2, and S3 Authentication parameters 

TS Timestamp generated by the IoT node 

PUF Physical unclonable function 

C Challenges 

R Response 

H Hash function 

5.6.2 Registration Phase 

In this phase, the Authoritative Entity (AE) securely registers CG, IG, MG, and N.  

Before operation in the field, the AE will complete multiple tasks, as described in figure 

49. First, the AE will assign alias IDs to the CG, IGs, MGs, and N nodes. The alias IDs

will be fake IDs that devices will use to communicate with each other. Alias IDs will act 

as pseudonym IDs and will be dynamically changed in every authentication session. The 
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goal of the Alias ID goal is to protect and ensure the unlinkability and untraceability of 

the device and support the anonymity of each device in each session. Second, the AE will 

retrieve CRPs (CCG, RCG, CIG, RIG, CCMG, RMG) of the CG, IG, and MG, respectively, from 

the PUF cloud 

 Third, AE will use a random number generator to generate three random values 

to be used as for one-time passwords (OTP) between CG and each IG. There will be a 

unique OTP between the CG and each IG. Also, the AE will generate a master secret key 

(MSKCI) to be only known to the CG and the three IGs. Once the IG is registered, IG and 

CG will generate the OTP during every authentication session without any human 

involvement. Then, the AE will insert and store CGIDR, CGIDA, IGIDR, IGIDA, MSKCI, and 

OTPCI in the IG's database and store CGIDR, CGIDA, IGIDR, IGIDA, MSKCI, and OTP CI of 

each IG in CG’ memory. 

Fourth, AE will use a random number generator to generate three random values 

to be used as one-time passwords (OTP) between the IG of each level and its MGs. There 

will be a unique OTP between the IG and each MG within the same level. Also, The AE 

will generate a master secret key (MSKIM) to be only known to the IG and the MGs 

inside the same level. Once MGs are registered, both IG and MG will generate the OTP 

during every authentication session without any human involvement. The AE will insert 

and store MGIDR, MGIDA, MSKIM, and OTPIM in the MG's database and store IGIDR, 

IGIDA, MGIDR, MGIDA, MSKIM, and OTPIM of each MG in IG’ memory. 

Fifth, AE will assign the IoT node Group ID(GIDN), and type ID (TIDN). The GIDN 

refers to the virtual domain that N belongs to, and the TIDN indicates the type of the IoT 

device.   Second, the AE will use a random number generator to generate a one-time 
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token (OTT) to be used as part of a one-time password (OTP) between N and the MG. 

Once N is registered, both N and MG will generate the OTT during every authentication 

session without any human involvement.  Then the AE will use N’s different IDs and the 

CG-IG Registration 

Step1: AE uses a random number generator to generate a random value to be used as a 

one-time password (OTPCi) between CG and each IGi.  

Step 2: AE generates a master secret key (MSKCI) only known to the CG and its IGs. 

Step 3:  AE communicates with the PUF cloud to retrieve a CRP (CCG, RCG) of the CG 

and CRP (CIGi, RIGi) of the IGi

Step 4: The AE calculates the authentication parameters as follows: 

CGA = H (CGIDR || IGiIDR|| RCG) 

CIAi = H (H (CGIDR || IGiIDR|| RIGi) 

Step 5: AE inserts and stores CGIDR, CGIDA, IGIDR, IGIDA, MSKCI, CGA, CIGi, and 

OTPCi in the IG's database. The MSKCI is stored in an encrypted format using the RIGi.  

The IGi only knows the CIGi.  RIGi is unknown to the IGi. To calculate CIAi and decrypt 

the OTPCi and the MSKCI, the IGi needs to feed the CIGi to the PUF function to 

compute the RIGi. 

Step 6: The AE inserts and stores CGIDR, CGIDA, IGiIDR, IGiIDA, MSKCI, CIAi, CCG, and 

OTPCi in CG’ memory. The MSKCI is stored in an encrypted format using the RCG.  The 

CG only knows the CCG.  RCG is unknown to the CG. To calculate CGA and decrypt the 

OTPCi and the MSKCI, the CG needs to feed the CCG to the PUF function to compute 

the RCG. 

IG-MG Registration 

Step1: AE uses a random number generator to generate a random value to be used as a 

one-time password (OTPIM) between IG and the MGi. 

Step 2: AE generates a master secret key (MSKIM) to be only known to the IG and the 

three MGs that are within the same level. 

Step 3:  AE communicates with the PUF cloud to retrieve a CRP (CMGi, RMGi ) of the 

MGi.

Step 4: The AE calculates the following authentication parameter as follows: 

MGAi = H (IGiIDR || MGiIDR|| RMGi) 

IMAi = H (IGiIDR || MGiIDR|| RIGi) 

Step 5:  AE inserts and stores MGIDR, MGIDA, MSKIM, MGAi, and OTPIM in the IG's 

database.  The MSKIM is stored in an encrypted format using the RIGi.  The IGi only 

knows the CIGi.  RIGi is unknown to the IGi. To calculate IMAi, and decrypt the MSKIM 

and OTPIM, the IGi needs to feed the CIGi to the PUF function to compute the RIGi. 

Step 6: AE inserts and stores IGIDR, IGIDA, MGIDR, MGIDA, MSKIM, IMAi,CMGi, and  

OTPIM  in the MGi’s memory.  The MSKIM is stored in an encrypted format using the 

RMGi.  The MGi only knows the CMGi.  RMGi is unknown to the MGi. To calculate MGAi 
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Figure 49: Registration Phase 

MG's real ID to generate three different authentication parameters, which are S1 

and S2, and S3, using a one-way hash function and XOR operations. Then, the AE will 

insert and store NIDR, NIDA, the MGIDA, GIDN, TIDN, and the OTT in the MG's database and 

store S1, S2, S3, OTT, NIDA, MGIDR, and MGIDA in N’ memory. 

The real identities of the devices represent a secure parameter between the devices 

within the network. The real IDs will never be transmitted in a plain text format and will 

be used during the authentication process between every two devices. 

and decrypt the MSKIM and OTPIM, the MGi needs to feed the CMGi to the PUF 

function to compute the RMGi. 

MG-N Registration 

Step 1: The AE assigns N to its appropriate virtual domain and generates a GIDN to the 

N. 

Step 3: The AE generates and assign a TIDN to each N based on its type 

Step 4: The AE calculates the three parameters: S1, S2, and S3 as follows: 

     S1: h (NIDR || MGIDR ||RMGi) 

     S2: h (S1 ||MGIDR || GIDN) 

     S3: h (S2|| MGIDR ||TIDN) 

GIDN, TIDN and RMGi are only used to create S1, S2, and S3. Both the GIDN and the TIDN 

are only stored on the MGi. The IoT node does not know anything about those two IDs 

and the RMGi.  The CMGi is only stored on the MGi database. RMGi is unknown to both 

the IoT node and the MGi because the MGi will compute RMGi on every authentication 

session. Using GIDN and TIDN to generate the authentication parameters makes it almost 

impossible for an adversary to be able to identify the GIDN and the TIDN of any IoT 

node.   Also, using the RMGi makes is impossible for an adversary to impersonate the 

MGi. 

Step 5:  AE generates a one-time token (OTT) that will be used as part of a one-time 

password (OTP) using a random number generator 

Step 6: AE stores the S1, S2, S3, NIDA, MGIDA, MGIDR, and OTT in the IoT device 

database.  

Step 7: AE inserts the NIDR, NIDA, GIDN, TIDN, and OTT of the IoT node in the MG 

database.  
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5.6.3 Mutual authentication and key generation phases 

This phase will cover three different protocols.  The protocol depends on the 

relationship between every two nodes. Figure 50 presents the different types of 

relationships that we have in the poultry farm IoT network. We have a parent-child 

relationship, and this is presented as the relationship between a gateway and the other 

gateway that is above it. The two examples of the parent-child relationship are the CG-IG 

relationship and the IG-MG relationship. The second type of relationship is the child-

child relationship. This type of relationship is between two gateways at the same level. 

The two examples in the presented network are IG-IG relationship and MG-MG 

relationship. The third type of relationship is between a gateway and IoT. 

Figure 50: Different types of relationships in the poultry farm network 
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5.6.3.1 Protocol 1: parent gateway-child gateway authentication and key 

generation 

This protocol presents the mutual authentication process between parent gateway 

(PG) and child gateway (ChG) and establishes a session key for data transfer. As 

presented in figure 51, this process starts when ChG prepares the authentication request 

message that will be sent to the PG. Also, the algorithm for the proposed parent gateway-

child gateway mutual authentication mechanism is shown in detailed steps in figure 52.  

The steps involved in this process are listed below. 

Child Gateway (ChG) Parent Gateway (PG) 

Generate:  TSChG1, RVChG1

Compute: 

X1 = H (OTP || AuthP) 

X2 = X1 ⊕ (RVChG1) 

X3 = H (ChGIDR || TS ChG1 || RVChG1 || X1) 

 M1: (ChGIDA, TSChG1, X2, X3) 

 Check:|TRec− TS ChG1 |< ∆T 

    Find: ChGIDA

    Read: ChGIDR Cp, OTP 

 Compute: 

    RP = PUF(CP) 

      AuthP’ = H (PGIDR || ChGIDR || RP) 

   X1’ = H (OTP || AuthP’) 

      RV’ChG1 = X2 ⊕ X’1 

     Verify:  X3
’ = H (ChGIDR || TS ChG1 || RVChG1

’
 || X1

’) 

   Generate:  TSPG1, RVPG1, SID

Computes: 

    Yx = H (OTP || Authc) 

  Y1 = RVPG1 ⊕ H (Yx || RVChG1) 

   Y2 = H (PGIDR || TSPG1 || RVPG1 || RVChG1 || Yx ) 

    M2: (PGIDA, SID, TSPG1Y1, Y2) 

Check:|TRec− TSPG1 |< ∆T 

Read: CC, OTP 

Compute: 

RC = PUF(CC) 

AuthC’ = H (PGIDR || ChGIDR || RC) 

YX’ = H (OTP || AuthC’) 
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Figure 51: The authentication process between PG and CG 

5.6.3.1.1 Step 1: Interaction Request  

1. ChG generates a new TSChG1 to avoid replay attacks

2. ChG computes X1

a. X1 = H (OTP || AuthP)

RVPG1
’ = H (Yx’ ⊕ RVChG1) ⊕ Y1 

Verify 

Y2
’
 = = H (ChGIDR || TS’PG1 || RV’PG1 || RVChG1  Yx) 

Generate: TSChG2, RVChG2 

Compute 

Xcc = H (RV’PG1|| OTP) 

X4 = H(Xcc)⊕ RVChG2

X5 = H (ChGIDR || TSChG2 || RVChG2|| (RV’PG1 || Xcc) 

  M3:  ChGIDA, SID, TSChG2, X4, X5) 

 Check:|TS’Rec− TSChG2 |< ∆T 

 Compute: 

    Xcc’ = H (OTP|| RV’PG1) 

  RV’ChG2 = H(Xcc’) ⊕ X4 

  Verify:     

 H (ChGIDR || TS’ChG2 || RV’ChG2|| RVPG1|| Xcc) 

  Generate: TSPG2, TK12 and Tk13 

 Compute 

  Y3= H(OTP) ⊕ TK12 

Y4 = TK12⊕ TK13 

   OTPx = H (OTPx-1 || RVChG1) 

 ChGIDAx = H (OTP|| ChGIDA) 

    H5 = H (ChGIDR || TSPG2 || TK12|| TK13   

 ||OTPX|| ChGIDAx|) 

M4: (PGIDA, SID, TSPG2, Y3, Y4, Y5)  

Check: |TS’Rec− TSCG2 |< ∆T 

Compute: 

TK12
’= H(OTP) ⊕ Y3 

TK13
’ = TK12

’⊕ Y4 

OTP’x = H (OTPx-1 || RVChG1) 

ChG’IDAx = H (OTP|| ChGIDA )  

Verify 

Y5’ = H ( ChGIDR || TS’PG2 || TK’12|| TK’13 || OTP’X || ChG’IDAx  ) 

Store (OTP’x ’,  ChG’IDAx
 ’)  
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3. ChG selects a random parameter RVChG1 and then calculates X2

a. X2 = X1 ⊕ (RVChG1)

4. ChG computes X3 = H (ChGIDR || TS ChG1 || RVChG1 || X1)

5. ChG sends the message to the PG.

The message includes ChG IDA, TSChG1, X2, and X3, as shown in 5.1. 

ChG          PG M1(ChGIDA, TSChG1, X2, X3)              (5.1) 

Algorithm 2 The mutual authentication between PG device and the ChG 

Input: 

Child gateway (ChG) device with real identity (PGIDR), alias identity (PGIDA), IG real 

identity (ChGIDR), IG alias identity (ChGIDR), master secret key (MSK), PUF 

Challenge (CChG), the Authp authentication parameter, and one time password (OTP) 

PG device with real identity of the PG (PGIDR), alias identity of the PG (PGIDA), ChG 

real identity (ChGIDR), IG alias identity (ChGIDR), master secret key (MSK), one-time 

password (OTP), PUF challenge (Cp), and the authentication parameter Authc 

Output: 

 Mutual authentication between the CG and the IG 

Begin 

1. The ChG device generates a random nonce RVChG1, a timestamp TSChG1, X1 =

H (OTP || AuthP) X2 = X1 ⊕ (RVChG1), and X3 = H (ChGIDR || TS ChG1 || RVChG1 || X1)

2. ChG device sends <ChGIDA, TSChG1, X2, X3 > message to the PG.

3. If (the PG finds ChGIDA in its repository) then

4. The PG retrieves ChGIDR, OTP, and Cp from its repository to its memory;

5. The PG passes the challenge Cp to its PUF function and generates a

response RPG 

6. The PG calculates Authp’. Then the PG computes X1’, retrieves the

RV’ChG1 from XORing X1 and X2 and finally calculates X3’ = H (ChGIDR || TS 

ChG1 || RVChG1 || X1)  
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7. If (the calculated hash message in step 6 matches the hash message that

was sent in step 2) then

8. The PG generates a timestamp TSP1, generates a random nonce  

RVP1, calculates the hash value Yx = H (OTP || Authc), Y1 = RVPG1 ⊕ H 

(Yx || RVChG1), and Y2 = H (PGIDR || TSPG1 || RVPG1 || RVChG1 || Yx) 

9. The PG sends PGIDA, SID, TSP1, TSPG1Y1, and Y2 message ChG.

10. else

11.           Go to step 42. 

12. end if

13. else

14. Go to step 42.

15. end if

16. ChG verifies the time stamp and retrieves CC, OTP. ChG computes RC =

PUF(CC), AuthC’ = H (PGIDR || ChGIDR || RC), and retrieves RVChG1. ChG generates
Y2

’
 = = H (ChGIDR || TS’PG1 || RV’PG1 || RVChG1, Yx)

17. If (the calculated hash message in step 16 matches the hash message that

was sent in step 9)

18. then

19. The authenticity of the PG is verified

20. ChG generates a timestamp TSChG2 and a random nonce RVChG2, ChG Xcc = H

(RV’PG1|| OTP), X4 = H(Xcc)⊕ RVChG2, and X5 = H (ChGIDR || TSChG2 || RVChG2|| (RV’PG1 ||

Xcc)

21. ChG sends <ChGIDA, SID, TSChG2, X4, X5> message to PG.

22. else

23. Go to step 42.

24. end if

25. The PG verifies the TSChG2, PG computes Xcc’ = H (OTP|| RV’PG1) and retrieving

RV’ChG2 by xoring = H(Xcc’) and X4. Also, PG generates X5’ = H (ChGIDR || TSChG2 || 

RVChG2|| (RV’PG1 || Xcc)

26. If (the calculated hash message in step 25 matches the hash message that

was sent in step 21

27. then

28. The authenticity of the IG device is verified.

29. PG generates a timestamp TSPG2 TK12 and Tk13. Also, PG computes
Y3= H(OTP) ⊕ TK12, Y4 = TK12⊕ TK13, OTPx = H (OTPx-1 || RVChG1),
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ChGIDAx = H (OTP|| ChGIDA ), and Y5 = H (ChGIDR || TSPG2 || TK12|| TK13 ||OTPX|| 

ChGIDAx| ) 

30. PG sends < PGIDA, SID, TSPG2, Y3, Y4, Y5> message to ChG.

31. , ChG Xcc = H (RV’PG1|| OTP), X4 = H(Xcc)⊕ RVChG2, and X5 = H (ChGIDR || TSChG2 || 

RVChG2|| (RV’PG1 || Xcc)

32. ChG <ChGIDA, SID, TSChG2, X4, X5> message to PG.

33. else

34. Go to step 42.

35. end if

36. ChG verifies the TSPG2. Also, ChG computes TK12
’= H(OTP) ⊕ Y3, TK13

’ = TK12
’⊕

Y4, OTP’x = H (OTPx-1 || RVChG1), ChG’IDAx = H (OTP|| ChGIDA). Finally, ChG generates

Y5’ = H (ChGIDR || TS’PG2 || TK’12|| TK’13 || OTP’X || ChG’IDAx)

37. If (the calculated hash message in step 36 matches the hash message that

was sent in step 32

38. then

39. ChG stores OTP’x’,  ChG’IDAx
  in its database

40. else

41. Go to step 42.

     End if 

42. Stop (terminates the connection)

 End 

      Figure 52: Algorithm 1 The mutual authentication between PG device and the ChG 

5.6.3.1.2 Step 2: Parent Gateway Response 

Once the PG receives the connection request, it will complete the following steps: 

1. PG checks the validity of the received timestamp | TS’Rec− TSChG1 |< ∆T.

TS’Rec is the time when the message is received, and ∆T is the maximum 

transmission delay. The message will be dropped if the difference between the 

timestamp and the time when the message is received higher than the expected 

maximum transmission delay. 
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2. PG retrieves from its database the ChGIDR that corresponds to its ChGGIDA. If

the PG did not find the IGIDA in its database, it will ignore and drop the 

received message. 

3. PG will retrieve the Cp and pass it to the PUF function to compute the RP

a. RP = PUF(Cp)

4. PG computes AuthP’ = H (PGIDR || ChGIDR || RP)

5. PG computes the X1’ = H (OTP || AuthP’)

6. PG computes the RV’ChG1 = X2 ⊕ X’1

7. The PG uses the calculated X1’, TSChG1
'
, ChGIDR, and the RV’ChG1 to verify

X3', which is a combination of ChGIDR, X1’, TSChG1
'
, and RV’ChG1 using a one-

way hash function as shown in figure 53. If the computed value is equal to the 

received value, the PG accepts the connection request; otherwise, it will drop 

it.  

Figure 53: Verify the interaction request parameters 

Once the PG accepts the interaction request, it generates a random value RVPG1

and time stamp TSPG1. Also, the PG generates a session ID.  The session ID aims to 

distinguish one session from the rest of the running sessions simultaneously. The PG 

prepares and sends an interaction response to the ChG. The preparation process of the 

connection response message includes the following steps:  

X3
’ = H (ChGIDR || TS ChG1 || RVChG1

’
 || X1

’) 

If X3 = X3
’ Then 

The PG will accept the interaction request 

Else 

The PG will drop the interaction request 
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1. PG generates a new TSPG1

2. PG Calculates Yx

a. Yx = H (OTP || Authc)

3. PG selects a random parameter RVPG1 and then calculates Y1

a. Y1 = RVPG1 ⊕ H (Yx || RVChG1)

4. PG generates a session ID(SID)

5. PG calculates Y2 = H (PGIDR || TSPG1 || RVPG1 || RVChG1 || Yx)

6. PG sends an interaction response message

The interaction response includes PGIDA, session ID(SID), TSPG1, Y1, and Y2, as shown in 

5.2. 

PG         ChG Conn-Res (PGIDA, SID, TSPG1, Y1, Y2)              (5.2) 

5.6.3.1.3 Step 3: Parent Gateway Authentication 

Once ChG receives the connection response, it completes the following steps: 

1. ChG checks the validity of the received timestamp | TS’Rec- TSPG1 |< ∆T.

TS’Rec is when the message is received, and ∆T is the maximum transmission 

delay. The message is dropped if the difference between the timestamp and 

the time when the message is received higher than the expected maximum 

transmission delay. 

2. ChG will retrieve the CC and pass it to the PUF function to compute the RC

a. RC = PUF(CC)
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3. ChG computes AuthC’ = H (PGIDR || ChGIDR || RC)

4. ChG computes the YX’ = H (OTP || AuthC’)

5. ChG calculates the RVPG1
’ = H (Yx’ ⊕ RVChG1) ⊕ Y1

6. As presented in figure 54, ChG calculates Y2’ using a one-way hash function

and compares the generated Y2’ to the received Y2. If the two values are the 

same, ChG will accept the interaction response and authenticate the PG.; 

otherwise, it will drop it.  

Y2
’
 = = H (ChGIDR || TS’PG1 || RV’PG1 || RVChG1. Yx) 

 If Y2 = Y2’ Then 

Then ChG will accept the connection response. 

Else 

ChG will drop the connection response 

Figure 54: Evaluate the PG authentication parameter 

Once the ChG authenticates the PG, it generates a random value RVChG2 and time 

stamp TSCHG2. The ChG prepares and sends another message to the PG. The preparation 

process of the message includes the following steps:  

1. ChG generates a new TSChG2

2. ChG computers Xcc

a. Xcc = H (RV’PG1|| OTP)

3. ChG selects a random parameter RVChG2 and then calculates X4

a. X4 = H(Xcc)⊕ RVChG2

4. ChG calculates X5

a. X5 = H (ChGIDR || TSChG2 || RVChG2|| (RV’PG1 || Xcc)

5. ChG sends the message to the PG
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The message includes ChGIDA, session ID, TSChG2, X4, and X5, as shown in 5.3. 

ChG         PG (ChGIDA,SID, TSChG2, X4 ,X5) (5.3) 

5.6.3.1.4 Step 4: Child Gateway Authentication 

Once the PG receives the message, it will complete the following steps: 

1. PG checks the validity of the received timestamp | TS’Rec− TSChG2 |< ∆T.

TS’Rec is the time when the message is received, and ∆T is the maximum 

transmission delay. The message will be dropped if the difference between the 

timestamp and the time when the message is received higher than the expected 

maximum transmission delay. 

2. PG computes Xcc’ = H (OTP|| RV’PG1)

3. PG computers RV’ChG2 = H(Xcc’) ⊕ X4

4. The PG uses the TS’ChG2, Xcc’, RVPG1 and, RV’ChG2 to generate X5’ using a

one-way hash function as shown in figure 55. If the computed value is equal 

to the received value, the PG accepts the message and authenticates the ChG; 

otherwise, it will drop the connection. 

 Figure 55: Evaluate the ChG Authentication Parameter 

X5’ = H (ChGIDR || TS’ChG2 || RV’ChG2|| RVPG1|| Xcc) 

If X5 = X5
’ Then 

The PG will accept the message 

Else 

The PG will drop the connection 
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Once the PG accepts the message, it will generate a new timestamp TSPG2. Also, 

the PG will generate two news tokens that the ChG can use to complete a mutual 

authentication with the other two ChGs. The PG will also compute a new OTP and a new 

alias ID for the ChG to be used for the next authentication session.  The PG prepares and 

sends a message to the ChG. The preparation process of the message includes the 

following steps:  

1. PG generates a new TSPG2

2. PG generates two new tokens TK12 and Tk13, and then calculates and then

calculates Y3 and Y4 

a. Y3= H(OTP) ⊕ TK12

b. Y4 = TK12⊕ TK13

3. PG calculate a new OTP

a. OTPx = H (OTPx-1 || RVChG1)

4. PG calculate a new Alias ID for the ChG

a. ChGIDAx = H (OTP|| ChGIDA)

5. PG calculates Y5 = H (ChGIDR || TSPG2 || TK12|| TK13 ||OTPX|| ChGIDAx|)

6. PG sends the message to the ChG

The message includes PGIDA, SID, TSPG2, Y3, Y4, and Y5, as shown in 5.4. 

PG         ChG M4 (PGIDA, SID, TSPG2, Y3, Y4, Y5) (5.4) 

Once the ChG receives the message, it will complete the following steps: 
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1. ChG checks the validity of the received timestamp | TS’Rec− TSCG2 |< ∆T.

TS’Rec is the time when the message is received, and ∆T is the maximum 

transmission delay. The message will be dropped if the difference between the 

timestamp and the time when the message is received higher than the expected 

maximum transmission delay. 

2. ChG computes the TK12 and TK13

a. TK12
’= H(OTP) ⊕ Y3

b. TK13
’ = TK12

’⊕ Y4

3. ChG computes the OTP’x = H (OTPx-1 || RVChG1)

4. ChG computes the ChG’IDAx = H (OTP|| ChGIDA)

5. The ChG uses TS’PG2, TK’12, TK’13, OTP’x and ChG’IDAx to generate Y5’

using a one-way hash function as shown in figure 56. If the computed value is 

equal to the received value, the ChG accepts the message, saves the tokens in 

its database, and updates its database with the new OTP and the new Alias ID. 

Figure 56: Evaluate the PG received message 

5.6.3.1.5 Key generation phase between PG and ChG 

Once the mutual authentication is completed, the two sides will generate a shared 

secret session key (ssk) that will be used to encrypt all the subsequent communication 

between the PG and the ChG. The ssk will be a combination of the generated random 

Y5’ = H (ChGIDR || TS’PG2 || TK’12|| TK’13 || OTP’X || ChG’IDAx ) 

If Y5 = Y8
’ Then 

The ChG will accept the message and update its database 

Else 

The ChG will drop the connection 
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values as presented in 5.5. SHA 256 will be used to generate the ssk. AES 128 bits will 

be used to encrypt and decrypt the messages. 

ssk = H (RVChG1|| RVChG2|| RVPG1 || OTP)       (5.5) 

5.6.3.2 Protocol 2: child gateway-child gateway authentication and key generation 

This protocol presents the mutual authentication process between any two nodes 

that inherit the child-child relationship. The two-child gateways will complete mutual 

authentication and establishes a session key for data transfer. As presented in figure 57, 

this process starts when ChG_1 prepares the interaction request message that will be sent 

to the ChG_2. In the case the MG-MG mutual authentication, the two gateways must be 

inside the same level. Each child node knows the MSK. In the case of the intermediate 

gateways, all the IGs share the same MSK with their parent gateway, which is the CG.  In 

the case of the mini gateways. The mini gateways within the same level share the MSK 

with their parent gateways, the IG. Also, each child gateway knows the tokens that it 

received from its parent gateway to use during the mutual authentication with another 

child gateway. Furthermore, each child gateway knows its real and alias IDs and the other 

child gateways' real and alias IDs that they are eligible to authenticate with them 

mutually. The algorithm for the proposed Child Gateway -Child Gateway mutual 

authentication mechanism is shown in detailed steps in figure 59.  The steps involved in 

this process are listed below.   

5.6.3.2.1 Step 1: Interaction Request 

1. ChG_1 generates a new TSChG_11

2. ChG_1 calcilates Rj
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a. Rj = H (TK|| ChG_2IDR)

3. ChG_1 selects a random parameter RVChG_11 and then calculates T1

a. T1 = RVChG_11 ⊕ Rj

4. ChG_1 computes T2 = H (ChG_1IDR || TS ChG_11 || RVChG_11 ||Rj)

5. ChG_1 sends an interaction request message.
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 Figure 57: The authentication process between ChG_1 and ChG_2 

The connection request includes ChG_1IDA, TSChG_11, T1, and T2, as shown in 5.7. 

Child Gateway_1 (ChG_1) Child Gateway_2 (ChG_2) 

Generate: TSChG_11, RVChG_11 

Compute: 

Rj = H (TK|| ChG_2IDR) 

T1 = RVChG_11 ⊕ Rj  

T2 = H (ChG_1IDR || TS ChG_11 || RVChG_11 ||Rj) 

     M1: (ChGIDA1, TSChG_11, T1, T2) 

    Check| TSRec_11Rec− TS’ChG_11 |< ∆T 

 Find: ChGIDA1

    Read: ChG_1IDR, TK, CC_2  

 Compute: 

     Rj’ = H (TK || ChG_2IDR) 

     RV’ChG_11 = Rj’ ⊕ T1      

     Verify:  T2
’ = H (ChG_1IDR || TS’ChG_11 || 

     RV’ChG_11 ||Rj’) 

     Generate: TS ChG_21, RVChG_21, SID

Computes: 

    RC_2 = PUF(CC_2) 

    Decrypt: 

    MSK ={MSK} RC_2 

Computes: 

D1 = H (RVChG_11 ||MSK || TK) 

      D2 = RVChG_21 ⊕ D1

D3 = H (ChG_2IDR || TS ChG_21 || RVChG_21|| D1) 

    M2: (ChG_2IDA, SID, TS ChG_21, D2, D3) 

Check: | TS Rec- TS’ ChG21 |< ∆T  

Read: CC_1 

Compute: 

RC_1 = PUF(CC_1) 

Decrypt: 

MSK ={MSK} RC_2 

Compute: 

D1’ = H (RVChG_11 ||MSK || TK) 

RVChG_21 = D1’ ⊕ D2

Verify 

D3’ = = H (ChG_2IDR || TS’ ChG_21 || RV’ ChG_21 ||D1) 

Generate: TSChG12, RVChG12 

Compute 

T3 = H (TK|| RVChG_21|| MSK) 

T4 = T3 ⊕ RVChG_12

T5 = H (ChG_1IDR || TSCHG_12 || RVChG_12 || T3) 
  M3: (ChG_1IDA, SID, TSCHG_12, T4, T5) 

 Check: TSRec - TS’ChG_12   |< ∆T 

 Compute: 

       T3
’ = H (TK|| RVChG_21|| MSK)   

  RV’ChG12 = T3
’ ⊕ T4      

     Verify: 

 T5
’ = H ((ChG_1IDR || TSCHG_12 || RVChG_12 || T3) 
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ChG_1 ChG_2 Conn-Req (ChGIDA, TSChG_11, T1, T2) (5.7) 

 Once the ChG_2 receives the interaction request, it will complete the following 

steps: 

1. ChG_2 checks the validity of the received timestamp | TSRec_11Rec− TS’ChG_11 |<

∆T.  TSRec_ is the time when the message is received, and ∆T is the maximum 

transmission delay. The message will be dropped if the difference between the 

timestamp and the time when the message is received higher than the expected 

maximum transmission delay. 

2. ChG_2 retrieves from its database the ChG_1IDR that corresponds to its

ChG_1IDA.  If the ChG_2 did not find the ChG_1IDA in its database, it will ignore 

and drop the interaction request. 

3. Once the ChG_2 finds the ChG_1IDR, it will retrieve it along with the token (TK)

of ChG_1. 

4. ChG_2 computes Rj’ = H (TK || ChG_2IDR)

5. ChG_2 computes the RV’ChG_11 = Rj’ ⊕ T1

6. The ChG_2 uses ChGIDR, TS’ChG_11, Rj’, and the RVChG_11 using a one-way hash

function as shown in figure 58 to verify T2’. If the computed value is equal to the 

received value, the ChG_2 accepts the interaction request; otherwise, it will drop 

it. 
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Figure 58: Evaluate the ChG interaction request parameters 

Algorithm 3 The mutual authentication between IG device and the MG 

Input: 

First Child gateway (ChG1) device with real identity (ChGIDR1), alias identity 

(ChGIDA1), ChG_2 real identity (ChGIDR2), IG alias identity (ChGIDR2), master secret 

key (MSK), PUF Challenge (CChG1), and the TK. 

Second Child gateway (ChG2) with real identity (ChGIDR1), alias identity (ChGIDA1), 

ChG_2 real identity (ChGIDR2), IG alias identity (ChGIDR2), master secret key (MSK), 

PUF Challenge (CChG2), and the TK.  

Output: 

 Mutual authentication between the ChG1 and the ChG2 

Begin 

1. The ChG1 device generates a random nonce RVChG_11 and a timestamp

TSChG_11.  ChG1 computes Rj = H (TK|| ChG_2IDR), T1 = RVChG_11 ⊕ Rj, and

T2 = H (ChG_1IDR || TS ChG_11 || RVChG_11 ||Rj)

2. ChG1 device sends < ChGIDA1, TSChG_11, T1, T2 > message to the ChG2.

3. If (the ChG2 finds ChGIDA1 in its repository)

4. then

5. The ChG2 verifies the timestamp TSChG_11 and retrieves ChG_1IDR, TK, CC_2

from its repository to its memory.

6. The ChG2 computes Rj’ = H (TK || ChG_2IDR) and retrieves RV’ChG_11 from

xoring Rj’ and T1. Then ChG2 generates T2
’ = H (ChG_1IDR || TS’ChG_11 ||

RV’ChG_11 ||Rj’)

7. If (the calculated hash message in step 6 matches the hash message that was in

step 2) then

8. The ChG2 generates TS ChG_21 and RVChG_21, SID

9. The ChG2 passes the challenge CC_2 to its PUF function and generates a

T2
’ = H (ChG_1IDR || TS’ChG_11 || RV’ChG_11 ||Rj’) 

If T2 = T2
’ Then 

The ChG_2 will accept the interaction request 

Else 

The ChG_2 will drop the interaction request 
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response RC_2.  Then the ChG2 decrypts the MSK using RC_2. 

10. The ChG2 computes D1 = H (RVChG_11 ||MSK || TK), D2 = RVChG_21 ⊕ 

D1, D3 = H (ChG_2IDR || TS ChG_21 || RVChG_21|| D1) 

11.            ChG2 device sends < ChG_2IDA, SID, TS ChG_21, D2, D3> message to the 

ChG1. 

12. else

13.           Go to step 34. 

14. end if

15. else

16. Go to step 34.

17. end if

18. ChG1 verifies the timestamp and retrieves CC_1.  The ChG1 passes the

challenge CC_1 to its PUF function and generates a response RC_1.  ChG1

computes D1’ = H (RVChG_11 ||MSK || TK) and retrieves RVChG_21 from xoring

D2 and D1. Then ChG1 generates D3’ = = H (ChG_2IDR || TS’ ChG_21 || RV’ 

ChG_21 ||D1)

19. If (the calculated hash message in step 18 matches the hash message that was

     sent in step 11) 

 then 

20. The authenticity of the ChG2 device is verified.

21. ChG1 generates a time stamp TSChG12 and a nonce value RVChG12

22. ChG1 computes T3 = H (TK|| RVChG_21|| MSK), T4 = T3 ⊕ RVChG_12, and T5 =

H (ChG_1IDR || TSCHG_12 || RVChG_12 || T3)

23. ChG1 device sends < ChG_1IDA, SID, TSCHG_12, T4, T5> message to the ChG2

24. else

25. Go to step 34.

26. end if

27. The ChG2 verifies the timestamp TSCHG_12.  It computes T3
’ = H (TK||

RVChG_21|| MSK) and retrieves RVChG_12 by XORing = T3 and T4. Also, ChG2

generates T5
’ = H ((ChG_1IDR || TSCHG_12 || RVChG_12 || T3) 

28. If (the calculated hash message in step 27 matches the hash message that was

sent in step 23

29. then

30. The authenticity of the ChG1 device is verified.
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31. else

32. Go to step 34.

33. end if

34. Stop (terminates the connection)

 End 

   Figure 59: Algorithm 3 The mutual authentication between ChG1 device and the ChG2 

5.6.3.2.2 Step 2: ChG_2 Response 

Once the ChG_2 accepts the interaction request, it will retrieve its stored PUF 

challenge (CC_2) and feed it to the PUF function to calculate the PUF response (RC_2). 

Then ChG_2 will use RC_2 to decrypt the stored MSK. Also, it generates a random value 

RVChG_21   and time stamp TS ChG_21. Furthermore, the ChG_2 generates a session ID.  The 

session ID aims to distinguish one session from the rest of the running sessions 

simultaneously. The ChG_2 prepares and sends a connection response to the ChG_1. The 

preparation process of the connection response message includes the following steps:  

1. ChG_2 retrieves its CC_2 from its database and computes RC_2

a. RC_2 = PUF(CC_2)

2. ChG_2 decrypt the MSK using RC_2 

3. ChG_2 calculates D1

a. D1 = H (RVChG_11 ||MSK || TK)

4. ChG_2 generates a new TSChG-21 

5. ChG_2 selects a random parameter RVChG_21 and then calculates D2

a. D2 = RVChG_21 ⊕ D1

6. ChG_2 generates a session ID (SID)
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7. ChG_2 calculates D3 = H (ChG_2IDR || TS ChG_21 || RVChG_21|| D1)

8. ChG_2 sends the message to ChG_1

The message includes ChG_2IDA, session ID (SID), D2, and D3, as shown in 5.6. The 

timestamps present information about when an event occurred, which makes this value 

important. 

ChG_2           ChG_1 (ChG_2IDA, SID, D2, D3)              (5.8) 

5.6.3.2.3 Step 3: ChG_2 Authentication 

Once ChG_1 receives the connection response, it completes the following steps: 

1. ChG_1 checks the validity of the received timestamp | TS Rec- TS’ ChG21 |< ∆T.  TS

Rec is the time when the message is received, and ∆T is the maximum transmission 

delay. The message is dropped if the difference between the timestamp and the 

time when the message is received higher than the expected maximum 

transmission delay. 

2. ChG_1 retrieves its CC_1 from its database and computes RC_1

a. RC_1 = PUF(CC_1)

3. ChG_1 decrypt the MSK using RC_1 

4. ChG_1 computes D1’ = H(RVChG_11 ||MSK || TK)

5. ChG_1 calculates the RVChG_21 = D1’ ⊕ D2

6. As presented in figure 60, ChG calculates D3’ using a one-way hash function and

compares the generated D3’with the received D3. If the two values are the same, 

ChG_1 will authenticate ChG_2; otherwise, it will drop the message.  
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D3’ = = H (ChG_2IDR || TS’ ChG_21 || RV’ ChG_21 ||D1) 

If D3 = D3’ Then 

Then ChG_1 will Authenticate ChG_2 

Else 

ChG will drop the message 

Figure 60: Evaluate the ChG_2 authentication parameter 

Once the ChG_1 authenticate ChG_2, it generates a random value RVChG_12 and 

time stamp TSChG_12. The ChG_1 prepares and sends another message to the ChG_2. The 

preparation process of the message includes the following steps:  

1. ChG_1 generates a new TSChG_12

2. ChG_1 calculates T3

a. T3 = H (TK|| RVChG_21|| MSK)

3. ChG_1 generate a new random value RVChG_12 and computers T4

a. T4 = T3 ⊕ RVChG_12

4. ChG_1 calculates T5

a. T5 = H (ChG_1IDR || TSCHG_12 || RVChG_12 || T3)

5. ChG_1 sends the message to the ChG_2

The message includes ChG_1IDA, SID, TSChG_21, T4, and T5, as shown in 5.9. 

ChG_1         ChG_2 (ChG_1IDA, SID, TSCHG_12 T4, T5)  (5.9) 

5.6.3.2.4 Step 4: ChG_1 Authentication 

Once the ChG_2 receives the message, it will complete the following steps: 
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1. ChG_2 checks the validity of the received timestamp TSRec - TS’ChG_12   |< ∆T.

TS’ChG_12 is the time when the message is received, and ∆T is the maximum 

transmission delay. The message will be dropped if the difference between the 

timestamp and the time when the message is received higher than the expected 

maximum transmission delay. 

2. ChG_2 computesT3
’ = H (TK|| RVChG_21|| MSK)

3. ChG_2 computers RV’ChG12 = T3
’ ⊕ T4

4. The ChG_2 uses TS’CHG_12, the RV’ChG12, and T3
’ to generate T5’ using a one-

way hash function and XOR function as shown in figure 61. If the computed 

value is equal to the received value, the ChG_2   accepts the message and 

authenticate ChG_1; otherwise, it will drop the connection. 

Figure 61: Evaluate the ChG_1 authentication parameter 

5.6.3.2.5 Key Generation Phase 

Once the mutual authentication is completed, the two sides will generate a shared 

secret session key (ssk) that will be used to encrypt all the subsequent communication 

between ChG_1 and ChG_2. The ssk will be a combination of the generated random 

values and the TK as presented in 5.10. SHA 256 will be used to generate the ssk. AES 

128 bits will be used to encrypt and decrypt the messages. 

ssk = H (RVChG_11 ||RVChG_21 || RVChG_12 || TK)        (5.10) 

T5
’ = H (ChG_1IDR || TSCHG_12 || RVChG_12 || T3) 

If T5= T5’ Then 

The ChG_2 will accept the message and authenticate ChG_1 

Else 

The ChG_2 will drop the connection 
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5.6.3.3 Protocol 3: mini gateway–IoT node authentication and key generation 

This protocol presents the mutual authentication process between a mini-gateway 

(MG) and an IoT node(N).  The two devices will complete mutual authentication and 

establish a session key for data communication. As presented in figure 62, this process 

starts when Ni prepares the connection request message that will be sent to the MG. All 

IoT nodes inside the same virtual domain share a group ID (GID).  Also, all IoT nodes 

with the same type share a typeID (TID). Each IoT node stores three authentication 

parameters that will be used during the authentication process.  Each IoT node knows its 

real and alias IDs, its MG's real and alias IDs, the OTT, the three authentication 

parameters, and the chained hash PUF value.  The steps involved in this process are listed 

below.   

As presented in figure 62, this phase starts when NW prepares the connection 

request message that will be sent to the MG. The steps involved in this process are listed 

below.   

5.6.3.3.1 Step 1: Interaction Request 

1. N generates a new TSN1 to avoid replay attacks

2. N computes X1

a. X1 = H (S2 ||S3)
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IoT(N) Mini Gateway (MG) 

Generate:  TSN1, RVN1 

Compute: 

X1 = H (S2 ||S3) 

X2 = RVN1 ⊕ OTT

SN = H (NIDR||TSN1 || RVN1|| X1) 

     M1: (NIDA, TSN1, X2, SN) 

 Check:|TSRec− TS’N1 |< ∆T 

    Find:  NIDR

 Read: GIDN, TIDN, CMG, and OTT 

 Compute: 

      RMG = PUF(CMG) 

      S’1 = H ((NIDR || MGIDR || RMG) 

 S’2 = H (S’1 || MGIDR || GIDN) 

      S’3 = H (S2’|| MGIDR || TIDN)

X1
’
 = H (S2

’
 ||S3

’)

      RV’N1 = OTT’ ⊕ X2 

      Verify:   SN’ = H (NIDR|| TS’N1, || RV’N1 || X1) 

      Generate:  TSMG1, RV1MG, SID 

Computes: 

 Y1 = H (S’1|| S’2)      

 Y2 = RVMG1 ⊕OTT 

  C’ = C ⊕ H(RVMG1) 

   Y3 = H (MGIDR || TSMG1 || RVN1 || RVMG1 ||C||Y1)

    M2: (MGIDA, SID, TSMG1, Y2, C’, Y3) 

Check: |TS’Rec−TS’MG1 |< ∆T 

Compute: 

Y1’ = H (S’1|| S’2) 

RV’MG1 = Y2 ⊕ OTT 

CX = C’ ⊕ H(RV’MG1) 

Verify 

Y3’ = H (MGIDR || TSMG1 || RVN1 || RVMG1 ||C||Y1) 

Generate: TSN2, RVN2 

Read: CHXi 

Compute 

Ri = PUF(C’) 

CHXi+1 = H (Ri || CHXi) 

Ci+1 = H (RV’MG1 || RVN1)  

Ri+1 = PUF (Ci+1) 

X3 = RVN2 ⊕ CHXi+1 

Rx = H (RVN2|| CHXi+1) ⊕ Ri+1 

OTTnew = H (OTPnew-1|| C’ || Ri) 

NIDAnew = H (RVMG1|| NWIDAnew-1)  

X4 = H (NIDR|| TSN2|| RVN2 || CHXi+1 || Ri+1 || Ci+1 || OTTnew || NIDAnew) 

  M3: (NIDA, TSN2, X3, Rx, X4) 

 Check: |TS’Rec− TS’N2 |< ∆T 



208 

Figure 62: MG-N mutual authentication process 

3. N selects a random parameter RVN1 and then calculates X2

4. X2 = RVN1 ⊕ OTT

5. N computes SN = H (NIDR||TSN1 || RVN1|| X1)

6. N sends a connection request message.

The connection request includes NIDA, TSN1, X2, and SN, as shown in 5.11. 

N          MG (NIDA, TSN1, X2, SN) (5.11) 

5.6.3.3.2 Step 2: mini-gateway response 

Once the MG receives the connection request, it will complete the following steps: 

1. MG checks the validity of the received timestamp |TSRec− TS’N1 |< ∆T.  TSRec is

the time when the message is received, and ∆T is the maximum transmission 

delay. The message will be dropped if the difference between the timestamp and 

the time when the message is received is higher than the expected maximum 

transmission delay. 

2. MG retrieves from its database the NIDR that corresponds to its NIDA.  If the MG

did not find the NIDA in its database, it will ignore and drop the connection 

request. 

 Read:  R’i and the CHX’i           

 Compute: 

   CHX’i+1 = H (R’i || CHX’i) 

C’i+1 = H (RVMG1 || RV’N1)

RV’N2 = X3 ⊕ CHXi+1   

  Ri+1’ = Rx ⊕ H (RV’N2|| CHXi+1) 

 OTTnew = H (OTPnew-1|| C’ || Ri)

     NIDAnew = H (RVMG1|| NWIDAnew-1) 

 Verify: 

   X4’ = X4 = H (NIDR|| TS’N2|| RV’N2 || CHX’i+1  

  || R’x || C’i+1|| OTTnew || NIDAnew ) 

   Store: CHXi+1, OTTnew, NIDAnew, C’i+1, Ri+1 
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3. Once the MG finds the NIDR, it will retrieve it along with the GIDN, TIDN, CMG, and

OTT of N. 

4. MG passes the challenge CMG to its PUF function and generates a response RMG

a. RMG = PUF(CMG)

5. MG uses the generated RMG to compute S1' by applying a one-way hash function.

Based on the calculated Auth1', the IG calculates Auth2' as presented in 5.12.  

Also, the MG calculates S2’ and S3’as presented in 5.13 and 5.14. 

S’1 = H ((NIDR || MGIDR || RMG)      (5.12) 

 S’2 = H (S’1 || MGIDR || GIDN)   (5.13)  

    S’3 = H (S2’|| MGIDR || TIDN) (5.14)       

6. MG computes X1
’
 = H (S2

’
 ||S3

’)

7. MG computes the RV’N1 = OTT ⊕ X2

8. The MG uses NIDR, TSN1, RVN1, and X1 to generate using a one-way hash

function, as shown in figure 63. If the computed value is equal to the received 

value, the MG accepts the connection request; otherwise, it will drop it.  

Figure 63: Evaluate the IoT node interaction request parameter 

Once the MG accepts the message, it generates a timestamp and a random value 

RVMG. Also, the MG generates a session ID.  The session ID aims to distinguish one 

SN’ = H (NIDR|| TS’N1, || RV’N1 || X1) 

If SN = SN” Then 

    The MG will accept the connection request 

Else 

The MG will drop the connection request 
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session from the rest of the running sessions simultaneously. Furthermore, the MG will 

retrieve a challenge(C) from its database. The MG prepares and sends a connection 

response to the IoT node. The preparation process of the connection response message 

includes the following steps:  

1. MG calculates Y1

a. Y1 = H (S’1|| S’2)

2. MG selects a random parameter RV1MG and then calculates Y2

a. Y2 = RVMG1 ⊕ OTT

3. MG generates a new TSMG1

4. MG generates a session ID(SID)

5. C’ = C ⊕ H(RVMG1)

6. MG calculates Y3

Y3 = H (MGIDR || TSMG1 || RVN1 || RVMG1 ||C||Y1) 

7. MG sends a connection response message

The connection response includes MGIDA, session ID(SID), TSMG1, Y2, C’, and Y3, as 

shown in 5.15. 

MG          NW Conn-Res (MGIDA, SID TSMG1, Y2, C’, Y3)              (5.15) 

5.6.3.3.3 Step 3: mini-gateway authentication 

Once N receives the connection response, it completes the following steps: 
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1. N checks the validity of the received timestamp |TS’Rec−TS’MG1 |< ∆T.

S’MGRec is the time when the message is received, and ∆T is the maximum 

transmission delay. The message is dropped if the difference between the 

timestamp and when the message is received is higher than the expected 

maximum transmission delay. 

2. N calculates Y1’ = H (S’1|| S’2)

3. N calculates the RV’MG1 = Y2 ⊕ OTT

4. N calculates the CX = C’ ⊕ H(RV’MG1)

5. As presented in figure 64, N calculates Y3’ using a one-way hash function and

compares the generated Y3’ with the received Y3. If the two values are the 

same, N will authenticate MG; otherwise, it will drop it.  

Figure 64: Evaluate the MG authentication parameter 

Once N accepts the received message and authenticates MG, it will complete the 

following steps 

1. N will input the received challenge Cx to its PUF and obtains the response Ri.

a. Ri = PUF(C’)

2. N will retrieve the chained hash response s(CHXi) from its memory and calculate

the new value of the chained has responses (CHXi+1) as follows

Y3’ = H (MGIDR || TSMG1 || RVN1 || RVMG1 ||C||Y1) 

 If Y3’ = Y3 Then 

Then N will accept the connection response and authenticate MG 

Else 

N will drop the connection response 
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a. CHXi+1 = H (Ri || CHXi)

b. N will compute a new challenge (Ci+1). Then N will input the Ci+1
 into a

PUF function to obtains a new CRP for the next authentication session 

where: 

• Ci+1 = H (RV’MG1 || RVN1)

• Ri+1 = PUF (Ci+1)

3. N generates a new TSN2 to avoid replay attacks

4. N selects a random parameter RVN2 and then calculates X3

a. X3 = RVN2 ⊕ CHXi+1

5. N calculates Rx = H (RVN2|| CHXi+1) ⊕ Ri+1

6. N generate a new OTTnew

a. OTTnew = H (OTTnew-1|| C’ || Ri)

7. N calculate a new Alias ID for the N

a. NIDAnew = H (RVMG1|| NWIDAnew-1)

8. N calculate X4

a. X4 = H (NIDR|| TSN2|| RVN2 || CHXi+1 || Ri+1 || Ci+1 || OTTnew || NIDAnew)

9. N sends the message to the MG

The message includes NIDA, SID, TS’N2, RV’N2, X3, Rx, and X4, as shown in 5.16. 

N         MG (NIDA, TSN2, X3, Rx, X4)     (5.16) 

5.6.3.3.4 Step 4: IoT node authentication 
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Once MG receives the message, it completes the following steps: 

1. MG checks the validity of the received timestamp |TS’Rec− TS’N2 |< ∆T.  TS’Rec is

the time when the message is received, and ∆T is the maximum transmission 

delay. The message is dropped if the difference between the timestamp and the 

time when the message is received is higher than the expected maximum 

transmission delay. 

2. MG will retrieve the R’i and the CHX’i from its databased and computes CHX’i+1 

a. CHX’i+1 = H (R’i || CHX’i) 

3. MG calculates the new challenge C’i+1 = H (RVMG1|| RV’N1)

4. MG calculates the RV’N2 = X3 ⊕ CHXi+1

5. MG computes the Ri+1’ = Rx ⊕ H (RV’N2|| CHXi+1)

6. MG computes OTTnew = H (OTTnew-1|| C’ || Ri)

7. MG computes NIDAnew = H (RVMG1|| NWIDAnew-1)

As presented in figure 65, MG calculates X4’ using a one-way hash function and 

compares the generated X4’ with the received X4. MG will authenticate N; otherwise, 

it will drop it if the two values are the same.  

X4’ = X4 = H (NIDR|| TS’N2|| RV’N2 || CHX’i+1 || R’x || C’i+1|| OTTnew || NIDAnew) 

 If X4’ = X4

Then 

Then MG will authenticate the N. 

Else 

MG will drop the connection response 

       Figure 65: Evaluate the IG authentication parameter 
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After authenticating the N, the MG will store the new CRP (C’i+1, R’i+1) in its 

database for the next authentication session. Also, The MG will override the old CHXi 

with the new chained hash response value CHXi+1. Then the MG will store the new OTT 

and the new alias ID for the N. The algorithm for the proposed IoT- mini gateway mutual 

authentication mechanism is shown in detailed steps in figure 66. 

Algorithm 4 The mutual authentication between IoT device and the MG 

Input: 

An IoT device with real identity (NIDR), alias identity (NIDA), MG real identity 

(MGIDR), MG alias identity (IGIDR), Authentication parameters (S1, S2, and S3), and 

one-time token (OTT) 

MG with real identity (NIDR), alias identity (NIDA), MG real identity (MGIDR), MG 

alias identity (MGIDR), the virtual domain Group ID(GID) and type ID (TID) of the IoT 

node, PUF challenge (CMG), and one-time token (OTT) 

Output: 

 Mutual authentication between the IoT device(N) and the MG 

Begin 

1. The IoT device generates a random nonce RVN1, a timestamp TSN1, computes the

X1 = H (S2 ||S3), X2 = RVN1 ⊕ OTT, and SN = H (NIDR||TSN1 || RVN1|| X1)

2. IoT device sends (NIDA, TSN1, X2, SN) message to the MG.

3. If (the MG finds NIDA in its repository)

4. then

5.            MG verifies the timestamp TSN1 and retrieves NIDR, OTT, GID, CMG, and 

           TID that belongs to the NIDA from its repository to its memory. 

6.            The MG passes the challenge CMG to its PUF function and generates a         

            response MG. The MG calculates S1
’, S2’, and S3’. Then the MG computes   

X1’, retrieves the RVN1 from XORing OTT and NX2 and finally calculates 

SN’ =H (NIDR||TSN1 || RVN1|| X1) message 

7. If (the calculated hash message in step 7 matches the hash message that was 



215 

sent in step 2) 

8. then  

9. MG generates a timestamp TSMG1, generates a random nonce RVMG1, 

10. retrieves the challenge (Ci) from its database. Then, MG calculates       

Y1 = H (S’1|| S’2), Y2 = RVMG1 ⊕OTT, C’ = C ⊕ H(RVMG1) and

Y3 = H (MGIDR || TSMG1 || RVN1 || RVMG1 ||C||Y1) 

11.      The MG sends < MGIDA, SID, TSMG1, Y2, C’, Y3> message to N. 

12. else

13. Go to step 34. 

14. end if

15. else

16. Go to step 34.

17. end if

18. N verifies the time stamp, calculates Y1’ = H (S’1|| S’2) and retrieves RVMG1 from

xoring OTT and Y2 and C from xoring C’ and H(RVMG1). Then, N generates Y3’ =

H (MGIDR || TSMG1 || RVN1 || RVMG1 ||C||Y1).

Also, N computes    C1 from CX. N applies the PUF function to calculate R1 for

C1.

19. If (the calculated hash message in step 18 matches the hash message that was sent

in step 11)

20. then

21. The authenticity of the MG is verified

22. N generates a timestamp TSN2, a random nonce RVN2, and retrieves CHXi
. N

computes Ri = PUF(C’), CHXi+1 = H(Ri || CHXi ), Ci+1 = H (RV’MG1  || RVN1), Ri+1 

= PUF (Ci+1 ), X3 = RVN2 ⊕ CHXi+1 , Rx = H (RVN2|| CHXi+1 ) ⊕ Ri+1, OTTnew =

H (OTPnew-1|| C’ || Ri ), NIDAnew = H (RVMG1|| NWIDAnew-1 ), and X4 = H(NIDR||

TSN2|| RVN2 || CHXi+1  || Ri+1 || Ci+1 || OTTnew || NIDAnew)

23. N sends < NIDA, TSN2, X3, Rx, X4 > message to MG.

24. else

25. Go to step 34.

26. end if

27. The MG verifies the TSN2 and retrieves R’i and the CHX’i. N computes CHX’i+1 =

H (R’i || CHX’i), C’i+1 = H (RVMG1 || RV’N1), RV’N2 = X3 ⊕ CHXi+1, Ri+1’ = Rx ⊕
H (RV’N2|| CHXi+1),  OTTnew = H (OTPnew-1|| C’ || Ri, NIDAnew = H (RVMG1||
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NWIDAnew-1). Then N generates X4’ = X4 = H (NIDR|| TS’N2|| RV’N2 || CHX’i+1 || R’x 

|| C’i+1|| OTTnew ||NIDAnew) 

28. If (the calculated hash message in step 27 matches the hash message that was sent

in step 23)

29. then

30. The authenticity of the IoT device is verified.

31. else

32. Go to step 34.

33. End if

34. Stop (terminates the connection)

35. End

Figure 66: Algorithm 4 the mutual authentication between IoT device and the MG 

5.6.3.3.5 Key generation phase 

Once the mutual authentication is completed, the two sides will generate a shared 

secret session key (SK) that will be used to encrypt all the subsequent communication 

between N and MG. The two sides will generate the ssk locally by hashing a combination 

of the PUF responses and the generated random values, as presented in 5.17. The 

uniqueness of the PUF responses ensures the uniqueness of the generated ssk. 

ssk = H (RVN1 || Ri || RVN2 || RV’MG1)         (5.17) 

5.7 Evaluation Process 

The following section presents a detailed security and performance analysis of the 

proposed scheme and compares the analysis results with other related schemes presented 

in the literature.  
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5.7.1 Security validation of the proposed scheme 

In this section, we conduct both formal and informal security analysis. The formal 

evaluation uses two different approaches. The first formal evaluation approach is 

simulation-based using AVISPA tool to ensure that the proposed scheme is secure against 

active and passive attacks such as replay attacks and man-in-the-middle attacks. The 

second evaluation approach theorem proving-based to perform the logical verification 

using BAN logic to confirm that the authenticated participants share the secret parameters 

securely in the proposed protocols. The BAN logic is used as an illustrative method of the 

essential concepts of an authentication protocol and as a basic verification tool for a 

security protocol. After completing the formal evaluation, we examine the proposed 

protocols against the well-known attacks and prove that the proposed protocols satisfy the 

main security properties. 

5.7.1.1 Formal Security Evaluation 

5.7.1.1.1 Security Verification Using AVISPA 

5.7.1.1.1.1 Protocol 1: parent gateway-child gateway mutual authentication 

The abstract notations used to describe the authentication protocol and the 

corresponding AVISPA HLPSL scripting variables/functions are presented in table 16. 

Table 16: Abstract notation and AVISPA HLPSL scripting variables/functions for 

protocol specification 

Notation Description 

PG Parent gateway 

ChG Child gatetway 
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ChGIDR CIDR 

ChGIDA CIDA 

PGIDR PIDR 

PGIDA PIDA 

MSK MSK 

OTP OTP 

Xc Xc 

RVChG1 RVCone 

X1 Xone 

X2 Xtwo 

Yx Yx 

Y1 Yone 

Y2 Ytwo 

RVPG1 RVPone 

Xcc Xcc 

X3 Xthree 

X4 Xfour 
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RVChG2 RVCtwo 

TK11, TK12 TKone, TKtwo 

YxP YxP 

Y3 Ythree 

Y4 Yfour 

YP YP 

OTPx OTPnew 

ChGIDAx CIDAnew 

Sk SK 

TSPG TSoneP,TstwoP 

TSChG TsoneC,TstwoC 

⊕ XOR 

H H 

The main goals of the simulation are as follows: 

13. Goal 1: The secrecy_of secRVCone represents that RVCone is kept secret to

(C, P) only. 

14. Goal 2: The secrecy_of secRVCtwo represents that RVCtwo is kept secret to

(C, P) only. 
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15. Goal 3: The secrecy_of secRVPone represents that RVPone is kept secret to

(C, P) only 

16. Goal 4: The secrecy_of secOTP represents that OTP is kept secret to (C, P)

only 

17. Goal 5: The secrecy_of secTKone represents that TKone is kept secret to (C,

P) only.

18. Goal 6: The secrecy_of secTKtwo represents that TKtwo is kept secret to (C,

P) only.

19. Goal 7: The secrecy_of secOTPnew represents that the secret key secOTPnew

is permanently kept secret, known to only (C and P). 

20. Goal 8: The secrecy_of secCIDR represents that the NIDR is permanently

kept secret, known to only (C and P). 

21. Goal 9: The secrecy_of secPIDR represents that the IGIDR is permanently

kept secret, known to only (C and P). 

22. Goal 10: The secrecy_of secCIDAnew represents that CIDAnew is

permanently kept secret, known to only (C and P). 

23. Authentication Property 1: The authentication_on RVPone represents that P

generates RVPone. If N securely receives RVPone through a message, it 

authenticates P. 

24. Authentication Property 2: The authentication_on rvcone represents that C

generates RVCone. If P securely receives rvpone through a message, it 

authenticates C. 
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To achieve the goals mentioned above, we wrote the HLPSL script for the 

protocol. The entities involved in the communication process are modeled as roles with 

their message exchanges. There are four defined roles: that are: (1) role_C that is played 

by the child gateway; (2) role _P that is played by the parent gateway; (3) session, where 

the session role and all its declarations are defined, (4) and environment, which 

instantiates all agents, variables, and functions. 

Figure B_1 in Appendix B presents the role of the child gateway that is played by 

C. C is aware of the C and P agents in the protocol, its alias identity (CIDA), and the P 

alias identity (PIDA). Also, it is aware of its own real identity (CIDR) and P real identity 

(PIDR) that should be kept secured. Furthermore, C is aware of MSK and OTP that are 

generated by the parent gateway, its PUF challenge (CPC), the parent gateway 

authentication parameter (PAU), the hash function H (·), and the send/receive channels 

Snd/Rcv. The (dy) notation indicates that the channels are following the Dolev-Yao 

model. At the first state “state 2,” C receives a start message “Rcv(start)” as a signal to 

begin the protocol run. The keyword ‘Played_by C’ denotes that the role of the child 

gateway is played by agent C. All employed local variables in this role are defined under 

the local section. C generates new random values (TSoneC and RVCone) and computes 

Xc, Xone, and Xtwo. The computation process of the Xc, Xone, and Xtwo follows the 

presented protocol description. C sends CIDA, TSoneC, Xone, Xtwo to P. 

At the second transition, “State 4”, C receives the (PIDA, SIDNIG, TSoneP, 

Yone, Ytwo) message from the P. The computation of Yx, Yone, and Ytwo follows the 

description of the protocol. At this transition, if the Ytwo appears as expected by C and C 

correctly verified RVPone, then C authenticates P.  Then C generates new random values 
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(TStwoC and RVCtwo) and computes Xcc, Xthree, and Xfour. The computation process 

of the Xcc, Xthree, and Xfour follows the presented protocol description. C sends CIDA, 

TStwoC, Xthree, Xfour to P. 

 At the third transition, “State 6”, C received the (PIDA, SIDNIG, TStwoP, 

Ythree, Yfour, YPx) from P.  C calculates and verifies the received Tokens, new OTP, 

and New Alias ID.  After completing the verification process, C will store the tokens, its 

new alias ID and the new NOTP on its own memory.  C will use the new NOPT during 

the next authentication session. The “end role” at the end of the C role denotes the end of 

the role Node played by C. 

Figure B_2 in Appendix B shows the role of the Parent Gateway played by P.  is 

aware of all agents in the protocol (C and P), its alias and real identities (PIDA, PIDR), 

the Alias and real identities (CIDA, CIDR) of the C node. P knows the OTP, the MSK, its 

PUF challenge (CPP), C authentication parameter (CAU), the hash function H(·), and the 

send/receive channels Snd/Rcv. 

At the first transition, “State 1”, P receives the (CNIDA, TSoneC, Xone, Xtwo) 

message which was sent by C. The extraction and computation of RVCone, Xc, Xone, 

and Xtwo follow the presented scheme's description.   Once the P verifies Xtwo, it 

generates a fresh value RVPone and a TSoneP and computes Yx, Yone, and Ytwo. Then 

the P sends to C (PIDA, SIDNID, TSoneP, Yone, Ytwo). The computation of Yone and 

Ytwo follows the description of the introduced scheme. 

At the second transition, “State 3”, P received the (CIDA, SIDNIG, 

TStwoC,Xthree, Xfour) from the C.  The computation of the Xthree and Xfour followed 



223 

the description of the presented protocol.  At this transition, if the Xfour is proved to be 

valid by P, P will authenticate C. Consequently, P will generate a new alias ID for C and 

a new OTP.  The computations of NnewIDA and OPTnew follows the description of the 

presented protocol. Also, the P generates two tokens that act as a one-time secret code 

that C can use to authenticate its peer Cs.  P will then send to C (PIDA, SIDNIG, 

TStwoP, Ythree, Yfour, and YP). The “end role” at the end of the P role denotes the end 

of the role Node played by P.

Figure B_3 in Appendix B demonstrates the session role where all the two agents’ 

roles are invoked and all the session parameters are defined. Both the parent gateway and 

the child gateway roles are invoked with C and P as agents. CIDA, PIDA, CIDR, PIDR, 

OTP, MSK, CPC, PAU, CPP, CAU are predefined as constants. H is defined as the hash 

function.  SND1, RCV1, SND2, and RCV2 are defined as send and receive channels for 

C and P. The “end role” at the end of the session role indicates the end of this role. 

Figure B_4 in Appendix B shows the environment role. In this role, one or more 

sessions are instantiated. First, all constants are instantiated and defined. The constants, c, 

and p are instantiated as agents representing agents C and P. The constants cida, pida, 

cidr, pidr, otp, msk, cpp,cau,cpc, and pau instantiates CIDA, PIDA, CIDR, PIDR, OTP, 

MSK, CPP,CAU,CPC,and PAU respectively. The function h instantiates the hash 

function H. The protocol identifiers are secNIDR, secPIDR, secOTP, secMSK, 

secRVoneC, secRVtwoC, secRVoneP, secTKone, secTKtwo, secOTPnew,secCIDAnew, 

secYxP, rvcone and rvpone are also instantiated and defined. In the intruder knowledge 

section, all relevant values that the intruder is assumed to know before the execution are 

provided. The attacker is assumed to know c and p. He/ she is also assumed to know the 
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hash h. The session is instantiated with c, p, cida, cidr, pida,pidr,otp, msk, 

cpp,cau,cpc,pau and h instances in the composition section. The “end role” at the end of 

the environment role denotes the end of this role. 

Figure B_5 in Appendix B presents the simulation goals which are declared under 

the “goal” keyword using the protocol identifiers declared as ‘protocol_id’. The simulator 

is dictated to check the secrecy CIDR, PIDR, OTP,MSK,RVoneC,RvtwoC, RVoneP, 

TKone, TKtwo, OTPnew, and CIDAnew at different states using secrecy_of secCIDR’, 

‘secrecy_of secPIDR’, ‘secrecy_of secRVoneC’, ‘secrecy_of secRVtwoC’, ‘secrecy_of 

secRVoneP’, ‘secrecy_of secOTP’, ‘secrecy_of secTKone,  secrecy_of secTKtwo, 

‘secrecy_of secOTPnew, and ‘secrecy_of secCIDAnew’.  The authentication is checked 

using ‘authentication_on rvonec and ‘authentication_on rvonep’. The “end role” at the 

end of the goal section denotes the end of this role. 

 5.7.1.1.1.1.1 Protocol 1: parent gateway-child gateway simulation results 

A security protocol animator (SPAN) is used to build a Message Sequence Chart 

(MSC) of the protocol execution from the outlined HLPSL specification. Moreover, 

SPAN automatically creates attacks on HLPSL specifications using the well-known 

“Dolev-Yao” intruder model. The SPAN protocol simulation’s MSC corresponding to the 

HLPSL specification is shown in figure 67. 
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Figure 67: Snapshot of the protocol simulation in AVISPA 

In the AVISPA tool, the security properties such as authentication, integrity, and 

secrecy are specified in a separate section. Therefore, when SPAN is executed, it verifies 

if the protocol satisfies the specified properties. SPAN generates the attack trace if any 

attack is found, and it will consider the protocol unsafe. The presented protocol's 

simulation results are achieved by the OFMC back-end checker and the CL-AtSe back-

end checker. Figure 68 shows the CL-AtSe back-end checker report, which guarantees 

that the protocol is SAFE and satisfies all the specified security goals. Figure 69 presents 

the OFMC back-end checker report shows that the protocol is SAFE, thus meeting the 

defined security goals. In summary, we can conclude that the proposed protocol is secure. 
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Figure 68: CL-AtSe summary report 

Figure 69:  OFMC summary report 

5.7.1.1.1.2 Protocol 2: child gateway-child gateway mutual authentication 

The abstract notations used to describe the authentication protocol and the 

corresponding AVISPA HLPSL scripting variables/functions are presented in table 17. 
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Table 17: Abstract notation and AVISPA HLPSL scripting variables/functions for 

protocol specification 

Notation Description 

Cone First child gateway 

Ctwo Second child gateway 

ChG_1IDR ConeIDR 

ChG_1IDA ConeIDA 

ChG_2IDR CtwoIDR 

ChG_2IDA CtwoIDA 

MSK MSK 

TK TK 

Rj Rj 

RVChG11 RCone 

T1 Tone 

T2 Ttwo 

T3 Tthree 

D1 Done 

D2 Dtwo 
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D3 Dthree 

RVChG21 RCCone 

T4 Tfour 

T5 Tfive 

RVChG21 RCCone 

TK TK 

TSChG11, TSChG12 TSoCone,TStCone 

TSChG21 TSoCtwo 

⊕ XOR 

H H 

The main goals of the simulation are as follows: 

1. Goal 1: The secrecy_of secRCone represents that RCone is kept secret to

(Cone, Ctwo) only. 

2. Goal 2: The secrecy_of secRCCone represents that RCCone is kept secret to

(Cone, Ctwo) only. 

3. Goal 3: The secrecy_of secRCtwo represents that RCtwo is kept secret to

((Cone, Ctwo) only 
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4. Goal 4: The secrecy_of secTK represents that TK is kept secret to ((Cone,

Ctwo) only 

5. Goal 5: The secrecy_of secMSK represents that MSK is kept secret to ((Cone,

Ctwo) only. 

6. Goal 6: The secrecy_of secConeIDR represents that the secConeIDR is

permanently kept secret, known to only (Cone and Ctwo). 

7. Goal 7: The secrecy_of secCtwoIDR represents that the secCtwoIDR is

permanently kept secret, known to only (Cone and Ctwo). 

8. Authentication Property 1: The authentication_on RCone represents that

ChG_1 generates RCone. If ChG_2 proves that it securely receives and 

successfully verifies RCone, ChG_1 authenticate ChG_2. 

9. Authentication Property 2: The authentication_on RCCone represents that

ChG_2 generates RCCone. If ChG_1 proves that it securely receives and 

successfully verifies RCone, ChG_2 authenticate ChG_1 

To achieve the goals mentioned above, we wrote the HLPSL script for the 

protocol. The entities involved in the communication process are modeled as roles with 

their message exchanges. There are four defined roles:  that are: (1) role_Cone that is 

played by the first child gateway; (2) role_Ctwo that is played by the second child 

gateway; (3) session, where the session role and all its declarations are defined, (4) and 

environment, which instantiates all agents, variables, and functions. 

As presented figure B_6 in Appendix B, the role of the first child gateway is 

played by Cone. Cone is aware of the Cone and Ctwo agents in the protocol, and its alias 
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identity (ConeIDA), and the Ctwo alias identity (CtwoIDA). Also, it is aware of its own 

real identity (ConeIDR) and the Ctwo real identity (ConeIDR) that should be kept secured. 

Furthermore, Cone is aware of the master secret key (MSK) and one-time token (TK) that 

are generated by the parent gateway, the hash function H (·), and the send/receive 

channels Snd/Rcv. The (dy) notation indicates that the channels are following the Dolev-

Yao model. 

At the first state “state 2,” Cone receives a start message “Rcv(start)” as a signal to 

begin the protocol run. The keyword ‘Played_by Cone’ denotes that agent Cone plays the 

role of the child gateway. All employed local variables in this role are defined under the 

local section. Cone generates new random values (TSoCone and RCone) and computes Rj, 

Tone, and Ttwo. The computation process of the Rj, Tone, and Ttwo follows the presented 

protocol description. Cone sends (ConeIDA, Tone, Ttwo) to the Ctwo. 

At the second transition, “State 4”, Cone receives the (CtwoIDA, SIDNIG, Dtwo, 

Dthree) message from the Ctwo. At this transition, if the Dtwo appears as expected by Cone 

and Cone correctly verified Dtwo and RCone, then Cone authenticates Ctwo.  Then Cone 

generates new random values (TStCone and RCtwo) and computes Tthree, Tfour, and 

Tfive. The computation process of the Tthree, Tfour, and Tfive follows the presented 

protocol description. Cone sends (ConeIDA, Tfour, Tfive) to the Ctwo. The “end role” at 

the end of the Cone role denotes the end of the role Node played by Cone. 

Figure B_7 in Appendix B shows the role of the second child Gateway played by 

Ctwo. Ctwo is aware of all agents in the protocol (Cone and Ctwo), its alias and real identities 

(CtwoIDA, CtwoIDR), the Alias and real identities (ConeIDA, ConeIDR) of the Cone 
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node. Ctwo knows the TK, the MSK, the hash function H (·), and the send/receive 

channels Snd/Rcv. 

At the first transition, “State 1”, Ctwo receives the (ConeIDA, Tone, Ttwo) 

message which was sent by Cone.  Once the Ctwo verifies Ttwo, it generates a fresh value 

RCCone and a TSoCtwo and computes Done, Dtwo, and Dthree. Then the Ctwo will send 

to Cone (CtwoIDA, SIDNID, Dtwo, Dthree). At this transition, if the Tfive appears as 

expected by Ctwo and Ctwo correctly verified Tfive and RCCone, then Ctwo authenticates 

Cone.  The “end role” at the end of the Ctwo role denotes the end of the role Node played 

by Ctwo 

Figure B_8 in Appendix B shows the session role where the two agents’ roles are 

invoked, and all the session parameters are defined. First, all known constant parameters 

and their declarations are presented. The predefined constants are ConeIDR, CtwoIDA, 

CtwoIDR, ConeIDA, TK, and MSK as predefined constants, and H as the hash function. 

A send and receive channel is assigned to each agent under the local section. The “end 

role” at the end of the session role indicates the end of this role. 

Figure B_9 in Appendix B shows the environment role. In this role, one or more 

sessions are instantiated. First, all constants are instantiated and defined. The constants, 

cone, and ctwo are instantiated as agents representing agents Cone and Ctwo. The 

constants coneida, coneidr, ctwoida, ctwoidr, tk and msk instantiates ConeIDA, 

ConeCIDR, CtwoIDA, CtwoIDR, TK, and MSK, respectively. The function h instantiates 

the hash function H. The protocol identifiers are secConeIDR, secCtwoIDR, secTK, 

secMSK, secRCone, secRCCone, secRCtwo, rcone and rccone are also instantiated and 

defined. In the intruder knowledge section, all relevant values that the intruder is assumed 
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to know before the execution are provided. The attacker is assumed to know cone and 

ctwo. He/ she is also assumed to know the hash h. The session is instantiated with cone, 

ctwo, coneida, coneidr, ctwoida, ctwoidr,tk, msk, and h instances in the composition 

section. The “end role” at the end of the environment role denotes the end of this role. 

Figure B_10 in Appendix B shows the simulation goals which are declared under 

the “goal” keyword using the protocol identifiers declared as ‘protocol_id’. The simulator 

is dictated to check the secrecy ConeIDR, CtwoIDR, TK, MSK, RCCone, RCtwo, and 

RCCone, at different states using secrecy_of secConeIDR’, ‘secrecy_of secCtwoIDR’, 

‘secrecy_of secRCone’, ‘secrecy_of secRCtwo’, ‘secrecy_of secRCCone’, ‘secrecy_of 

secMSK’, and ‘secrecy_of secTK. The authentication is checked using 

‘authentication_on rcone’ and ‘authentication_on rccone’. The “end role” at the end of 

the goal section denotes the end of this role. 

5.7.1.1.1.2.1 Simulation results 

The SPAN protocol simulation’s MSC corresponding to our HLPSL specification 

is shown in Figure 70. In the AVISPA tool, security properties such as authentication, 

integrity, and secrecy are specified in a separate section. Therefore, when SPAN is 

executed, it verifies if the protocol satisfies the specified properties. SPAN generates the 

attack trace if an attack is found, and it considers the protocol unsafe. The presented 

protocol's simulation results are achieved by the OFMC back-end checker and the CL-

AtSe back-end checker. Figure 71 shows the CL-AtSe back-end checker report, which 

guarantees that the protocol is SAFE and satisfies all the specified security goals. Figure. 

72 presents the OFMC back-end checker report shows that the protocol is SAFE, thus 
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meeting the defined security goals. In summary, we can conclude that the proposed 

protocol is secure. 

Figure 70: Snapshot of the protocol simulation in AVISPA 

Figure 71:  CL-AtSe summary report 
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Figure 72: OFMC summary report 

5.7.1.1.1.3 Protocol 3: mini-gateway-IoT node mutual authentication 

The abstract notations used to describe the authentication protocol and the 

corresponding AVISPA HLPSL scripting variables/functions are presented in table 18. 

Table 18: Abstract notation and AVISPA HLPSL scripting variables/functions for 

protocol specification 

Notation Description 

N N 

MG MG 

SID SIDNIG 

NIDR NIDR 
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NIDA NIDA 

MGIDR MGIDR 

MGIDA MGIDA 

S1, S2, S3 T, X, Y 

X1 Xone 

X2 Xtwo 

X3 Xthree 

X4 Xfour 

Y1 Yone 

Y2 Ytwo 

Y3 Ythree 

Y4 Yfour 

RX RX 

Sk Skk 

TSMG1 TSoneMG 

TSN1, TSN2 TsoneN,TstwoN, 

RVN1 Na 
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RVN2 Naa 

RVMG Nb 

Ri Rone 

Ri+1 Rtwo 

C Cone 

Ci+1 Ctwo 

C’ CMG 

CHX CHX 

CHXi+1 CHXnew 

⊕ XOR 

H H 

NIDAnew NnewIDA 

OTPN NOTP 

The main goals of the simulation are as follows: 

1. Goal 1: The secrecy_of secNa represents that Na is kept secret to (N, MG)

only. 

2. Goal 2: The secrecy_of secNb represents that Nb is kept secret to (N, MG)

only 
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3. Goal 3: The secrecy_of secNaa represents that Naa is kept secret to (N, MG)

only 

4. Goal 4: The secrecy_of secOTT represents that OTP is kept secret to (N, MG)

only 

5. Goal 5: The secrecy_of secNIDR represents that the NIDR is permanently

kept secret, known to only (N and MG). 

6. Goal 6: The secrecy_of secMGIDR represents that the MGIDR is

permanently kept secret, known to only (N and MG). 

7. Goal 7: The secrecy_of secX represents that X is permanently kept secret,

known to only (N and MG). 

8. Goal 8: The secrecy_of secY represents that Y is permanently kept secret,

known to only (N and MG). 

9. Goal 9: The secrecy_of secCone represents that Cone is permanently kept

secret, known to only (N and MG). 

10. Goal 10: The secrecy_of secRone represents that Rone is permanently kept

secret, known to only (N and MG). 

11. Goal 11: The secrecy_of secCHXnew represents that CHXnew is

permanently kept secret, known to only (N and MG). 

12. Goal 12: The secrecy_of secRtwo represents that Rtwo is permanently kept

secret, known to only (N and MG). 

13. Goal 13: The secrecy_of secNOTT represents that NOTP is permanently kept

secret, known to only (N and MG). 
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14. Goal 14: The secrecy_of secNnewIDA represents that NnewIDA is

permanently kept secret, known to only (N and MG). 

15. Authentication Property 1: The authentication_on na represents that N

generates Na. If MG securely receives Na through a message, it authenticates 

N. 

16. Authentication Property 2: The authentication_on Nb represents that MG

generates Nb. If N securely receives Nb through a message, it authenticates 

MG. 

To achieve the goals mentioned above, we wrote the HLPSL script for the 

protocol. The entities involved in the communication process are modeled as roles with 

their message exchanges. There are four defined roles:  that are: (1) role_N that is played 

by the IoT node; (2) role _MG that is played by the mini-gateway gateway; (3) session, 

where the session role and all its declarations are defined, (4) and environment, which 

instantiates all agents, variables, and functions. 

Figure B_11 in Appendix B presents the role of node N. Node N is aware of the N 

and MG agents in the protocol, its alias identity (NIDA), and the MG alias identity 

(MGIDA). Also, it is aware of its own real identity (NIDR) and the MG real identity 

(MGIDR) that should be kept secured. Furthermore, N is aware of the three 

authentication parameters (S1, S2, S3), one-time token (OTP), the hash function H (·), and 

the send/receive channels Snd/Rcv. The (dy) notation indicates that the channels are 

following the Dolev-Yao model. At the first state “state 2,” N receives a start message 

“Rcv(start)” as a signal to begin the protocol run. All local variables are declared under 

the local section. At the first transition, “State 2”, N generates new random values 
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(TSoneN and Na) and computes Xone, Xtwo, and SN. The computation process of the 

Xone,Xtwo, and  SN follows the presented protocol description. N sends (NIDA, 

TSoneN, Xtwo, SN) to the MG. 

At the second transition, “State 4”, N receives the (MGIDA, SIDNIG, TSoneMG, 

Ytwo, CMG, Ythree) message from the MG. At this transition, if the Ythree appears as 

expected by N, then N authenticates the MG. After authenticating the MG, N generates a 

new challenge CTwo and calculates the corresponding response Rtwo.  Also, N generates 

a new OTT (NOTT) and a new Alias ID (NnewIDA) to be used in the next authentication 

session. Then N will store its new NnewIDA, and the new NOTT on its own memory.  

The “end role” at the end of the N role denotes the end of the role Node played by N. 

Figure B_12 in Appendix B shows the role of the mini gateway played by MG. 

The MG is aware of all agents in the protocol (N and MG), its alias and real identities 

(MGIDA, MGIDR), the Alias and real identities (NIDA, NIDR) of the N node. MG 

knows the OTT, the virtual domain ID of N(GID), the typeID of N(TID), and the hash 

function H (·), and the send/receive channels Snd/Rcv. The MG does not know S1, S2, or 

S3 parameters that will be locally computed later using N's received authentication 

parameters. All local variables are defined under the local section. At the first transition, 

“State 1”, MG receives the (NIDA, TSoneN, Xtwo, SNG) message which was sent by N 

in role node played by N.  MG uses the N’ alias ID to retrieve its real ID, GID, TID, and 

its OTT. MG verify the received SNG’. Once the MG verifies SNG, MG generates a 

fresh value Nb and a TSoneMG. Also, MG retrieved N’s PUF challenge (Cone) from its 

memory. Then, MG computes Yone, Ytwo, Ythree, and CMG. Then the MG will send to 
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N (MGIDA, SIDNID, TSoneMG, Ytwo, CMG, Ythree). The computation for Ythree 

follows the description of the introduced scheme. 

At the second transition, “State 3”, MG received the (NIDA, SIDNIG, TSTwoN, 

Xthree, RX, Xfour) from N.  The computation of the Xfour followed the description of 

the presented protocol.  At this transition, if the Xfour is proved to be valid by MG, IG 

will authenticate the N. Consequently, the MG stores the new C, new R, new alias ID for 

N, and a new OTT in its database for the next authentication session. The computation of 

NnewIDA and NOTT follows the description of the presented protocol. The “end role” at 

the end of the IG role denotes the end of the role Node played by IG. 

Figure B_13 in Appendix B shows the session role where the two agents’ roles 

are invoked, and all the session parameters are defined. First, all known constant 

parameters and their declarations are presented. The predefined constants are NIDR, 

MGIDA, MGIDR, NIDA, OTT, T, X, Y, and CHX as predefined constants, and H as the 

hash function. A send and receive channel is assigned to each agent under the local 

section. The “end role” at the end of the session role indicates the end of this role. 

Figure B_14 in Appendix B shows the environment role. In this role, one or more 

sessions are instantiated. First, all constants are instantiated and defined. The constants n 

and mg are instantiated as agents representing agents N and MG. The constants t,x,y, 

nida, nidr , mgida , mgidr, ott,and chx instantiates T, X, Y, NIDA, NIDR, IGIDA, 

IGIDR, OTT, and CHX, respectively. The function h instantiates the hash function H. 

The protocol identifiers are secNIDR, secMGIDR, secOTT, secCHXnew, secNnewIDA, 

secNOTP, secX,secY,secRtwo, secNa, secNb, secRtwo, secNaa, secRone, secCone, na, 

and nb are also instantiated and defined. In the intruder knowledge section, all relevant 
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values that the intruder is assumed to know before the execution are provided. The 

attacker is assumed to know n and mg. He/ she is also assumed to know the hash h. The 

session is instantiated with n, mg, nida, nidr, mgida,mgidr,t,x,y, ott,chx, and h instances 

in the composition section. The “end role” at the end of the environment role 

denotes the end of this role. 

Figure B_15 in Appendix B shows the simulation goals which are declared under 

the “goal” keyword using the protocol identifiers declared as ‘protocol_id’. The simulator 

is dictated to check the secrecy NIDR, MGIDR, X,Y,Na,Nb,Naa,OTT, 

Rone,Rtwo,Cone,CHXnew,NOTP,NnewIDA, and OTT at different states using 

secrecy_of secNIDR’, ‘secrecy_of secMGIDR’, ‘secrecy_of secX’, ‘secrecy_of secY’, 

‘secrecy_of secCone’ ,‘secrecy_of secRone’, ‘secrecy_of secRtwo’,  ‘secrecy_of secNa’, 

‘secrecy_of secNb’, ‘secrecy_of secNaa’, ‘secrecy_of secOTT’, ‘secrecy_of 

secChXnew’, ‘secrecy_of secNnewIDA’  and ‘secrecy_of secNOTT’. The authentication 

is checked using ‘authentication_on na’ and ‘authentication_on nb’. The “end role” at the 

end of the goal section denotes the end of this role. 
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5.7.1.1.1.3.1 Simulation results 

The SPAN protocol simulation’s MSC corresponding to the HLPSL specification 

is shown in figure 73.  Figure 74 shows the CL-AtSe back-end checker report, which 

guarantees that the protocol is SAFE and satisfies all the specified security goals. Figure. 

75 presents the OFMC back-end checker report shows that the protocol is SAFE, thus 

meeting the defined security goals. In summary, we can conclude that the proposed 

SMART protocol is secure. 

Figure 73:  Snapshot of the protocol simulation in AVISPA 
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Figure 74: CL-AtSe summary report 

Figure 75: OFMC summary report 
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5.7.1.1.2 Formal proof Based on BAN logic 

5.7.1.1.2.1 Protocol 1: Parent gateway-child gateway mutual authentication 

In this section, we use BAN logic to verify the legitimacy of the session key (ssk), the 

TK12, TK13, and OTPx that are shared between the communicating entities C and P. To 

ensure the security of the proposed protocol under BAN logic, it needs to satisfy a set of 

security goals. The following section defines the main goals of the analysis of the 

presented authentication scheme. 

5.7.1.1.2.1.1 Protocol 1 Goals Identification 

Goal 1: The C and the P want to establish a shared secret key (ssk) key that is 

believed by each other. 

G1_1: P believes that the C believes that the ssk is a securely shared parameter between 

C and P. 

P| ≡ C|≡ (C   P) 

G1_2:  P believes that ssk is a securely shared parameter between C and P. 

P|≡ (C  P) 

G1_3: C believes that the P believes that the ssk is a securely shared parameter between 

C and P. 

   C| ≡ P | ≡ (C  P) 

ssk 

ssk

ssk
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G1_4:  C believes that ssk is a securely shared parameter between C and P. 

           C| ≡ (C  P) 

Goal 2: TK12 and TK13 are well protected and believed by C. 

G2_1: C believes that the P believes that the TK12 and TK13 are securely shared 

parameters between C and P. 

C| ≡ P | ≡ (C        P) 

G2_2:  C believes that TK12 and TK13 are securely shared parameters between C and P. 

C| ≡ (C      P) 

Goal 3: P and C want to generate a secret one-time password (OTPx) that is 

believed by each other. 

G3_1: P believes that C believes that the OTPx is a securely shared parameter between P 

and C. 

P| ≡ C|≡ (C  P) 

G3_2:  P believes that OTPx is a securely shared parameter between C and P. 

P|≡ (C  P) 

ssk 

TK12 and TK13 

 TK12 and TK13 

OTPx 

OTPx 
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G3_3: C believes that the P believes that the OTPx is a securely shared parameter 

between C and P. 

   C| ≡ P | ≡ (C P) 

G3_4:  C believes that OTPx is a securely shared parameter between C and P. 

C| ≡ (C  P) 

5.7.1.1.2.1.2 Protocol 1 messages idealization 

First, we transfer all transmitted messages into idealized form as follows: 

M1: C          P:(ChGIDR, TSCHG1, RVCHG1) X1

M2: P          C:(PGIDR, TSPG1, RVPG1) YX

M3: C          P:(ChGIDR, TSCHG2, RVCHG2) XCC 

M4: P          C:(PGIDR, TSPG2, TK12, TK13) OTP

5.7.1.1.2.1.3 Protocol 1 main assumptions 

The second step to be completed is to define some assumptions as the initiative 

promises. The fundamental assumptions of the presented authentication scheme are as 

follows: 

P1: P believes that X1 is a secure shared parameter between C and P 

P| ≡ (C P) 

OTPx 

OTPx 

 X1 
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P2: P believes C believes that that X1 is a secure shared parameter between C and P 

P | ≡ C| ≡ (C P) 

P3: C believes that Yx is a secure shared parameter between C and P 

C| ≡ (C P) 

P4: C believes P believes that Yx is a secure shared parameter between C and P 

C | ≡ P| ≡ (C P) 

P5: P believes that Xcc is a secure shared parameter between C and P 

P| ≡ (C P) 

P6: P believes C believes that Xcc is a secure shared parameter between C and P 

P | ≡ C| ≡ (C P) 

P7: C believes that OTP is a secure shared parameter between C and P 

C| ≡ (C P) 

P8: C believes P believes that OTP is a secure shared parameter between C and P 

C | ≡ P| ≡ (C P) 

P9: P believes that OTP is a secure shared parameter between C and P 

P| ≡ (C P) 

P10: P believes P believes that OTP is a secure shared parameter between C and P 

P | ≡ C| ≡ (C P) 

 Yx 

 Xcc 

 OTP 

 X1 

 Yx 

 Xcc 

 OTP 

 OTP 

 OTP 
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P 11: P believes ChGIDR is a secure shared parameter between C and P. 

P | ≡ (C P) 

P 12: P believes C believes that ChGIDR is a secure shared parameter between C and P. 

P | ≡ C| ≡   (C         P) 

P13: C believes PGIDR is a secure shared parameter between C and P. 

C | ≡ (C   P) 

P14: C believes P believes that PGIDR is a secure shared parameter between C and P. 

C | ≡ P| ≡ (C   P) 

P 15: P believes TSChG1 is fresh. 

P| ≡ #(TSChG1) 

P 16: P believes TSChG2 is fresh. 

P| ≡ #(TSChG2) 

P 17: C believes TSPG1 is fresh. 

C| ≡ #(TSPG1) 

ChGIDR 

ChGIDR 

PGIDR 

PGIDR 
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P 18: C believes TSPG2 is fresh. 

C| ≡ #(TSPG2) 

P 19: P believes RVChG1 is fresh. 

P| ≡ #(RVChG1) 

P20: P believes that C believes RVChG1. 

P| ≡ C | ≡   RVChG1  

P21: P believes that C has jurisdiction over RVChG1. That is, C is an authority and 

believes RVChG1. 

    P| ≡ C ⇒ RVChG1 

P 22: P believes RVChG2 is fresh. 

P| ≡ #(RVChG2) 

P23: P believes that C believes RVChG2. 

P| ≡ C | ≡   RVChG2  

P24: P believes that C has jurisdiction over RVChG2. That is, C is an authority and 

believes RVChG2. 

    P| ≡ C ⇒ RVChG2

P 25: C believes RVPG1 is fresh. 

C| ≡ #(RVPG1) 
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P26: C believes that P believes RVPG1. 

C| ≡ P | ≡   RVPG1 

P27: C believes that P has jurisdiction over RVPG1. That is, P is an authority and believes 

RVPG1. 

    C| ≡ P ⇒ RVPG1 

P28: P believes C believes that SK is a secure shared parameter between C and P. 

P | ≡ C| ≡   (C P) 

P 29: C believes P believes that SK is a secure shared parameter between C and P. 

C | ≡ P| ≡ (C P) 

P 30: C believes that P believes TK12. 

C| ≡ P | ≡ TK12 

P31: C believes that P has jurisdiction over TK12, which is securely shared parameter 

between C and P. That is, P is an authority and believes TK12. 

C| ≡ P ⇒ (C P) 

P 32: C believes that P believes TK13. 

C| ≡ P | ≡ TK13 

P33: C believes that P has jurisdiction over TK13, which is securely shared parameter 

between C and P. That is, P is an authority and believes TK13. 

C| ≡ P ⇒ (C P) 

 ssk 

 ssk 

TK12 

TK13 
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P34: C believes that P believes OPTx. 

C| ≡ P | ≡ OTPx 

P35: P believes that C believes OPTx. 

P| ≡ C | ≡ OTPx 

5.7.1.1.2.1.4 Analysis of the authentication protocol 

We then prove that the proposed protocol achieves the security goals based on the 

idealized form of the messages, assumptions, and BAN logic rules. The proposed 

authentication scheme analysis is shown below to prove that the protocol achieves mutual 

authentication between C and P. 

According to M1: 

V1: P◃(ChGIDR, TSChG1, RVChG1
 )X1 

According to P1, P11, and Rule 1, we derive the following: 

V2: 
𝑃|≡C  X1     P ,P ⊲(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺1,𝑅𝑉𝐶ℎ𝐺1) 𝐶  𝑋1     𝑃

𝑃|≡C |∼  (𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺1,𝑅𝑉𝐶ℎ𝐺1)

According to P15, P19, and rule 3, we derive the following: 

V3: 
𝑃|≡#(𝑇𝑆𝐶ℎ𝐺1 𝑎𝑛𝑑 𝑅𝑉𝐶ℎ𝐺1)

𝑃|≡#(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺1,𝑅𝑉𝐶ℎ𝐺1)|
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According to P2, P12, V2, V3, and rule 2, we derive the following: 

V4: 

𝑃|≡#(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺1,𝑅𝑉𝐶ℎ𝐺1),P|≡C~(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺1,𝑅𝑉𝐶ℎ𝐺1)

𝑃|≡C|≡(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺1,𝑅𝑉𝐶ℎ𝐺1)

According to V4, P20, P21, and rule 4, we derive the following: 

V5: 
P |≡C| ⇒ 𝑅𝑉𝐶ℎ𝐺1 ,P |≡ C |≡𝑅𝑉𝐶ℎ𝐺1 

P|≡  𝑅𝑉𝐶ℎ𝐺1

According to M2: 

V6: C (PIDR, TSPG1, RVPG1) Yx 

According to P3, P13 and Rule 1, we derive the following: 

V7: 
𝐶|≡P  Yx  C ,P ⊲(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺1,𝑅𝑉𝑃𝐺1 ) 𝐶  𝑌𝑥     𝑝

𝐶|≡P |∼ ( P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺1,𝑅𝑉𝑃𝐺1)

According to P17, P25, and rule 3, we derive the following: 

V8: 
𝐶|≡#(𝑇𝑆𝑃𝐺1and  𝑅𝑉𝑃𝐺1)

𝐶|≡#(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺1,𝑅𝑉𝑃𝐺1)|

According to P4, P14, V7, V8 and rule 2, we derive the following: 

V9: 
𝐶|≡#(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺1,𝑅𝑉𝑃𝐺1),C|≡P~(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺1,𝑅𝑉𝑃𝐺1 )

𝐶|≡P|≡(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺1,𝑅𝑉𝑃𝐺1)

According to P26, P27, V9, and rule 4, we derive the following: 
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V10: 
𝐶 |≡P|⇒𝑅𝑉𝑃𝐺1  ,C |≡ P |≡ 𝑅𝑉𝑃𝐺1 

C|≡  𝑅𝑉𝑃𝐺1

According to M3: 

V11: P (ChGIDR, TSChG2, RVChG2) Xcc 

According to P5, P11, and Rule 1, we derive the following: 

V12: 
𝑃|≡C  XCC     P ,P ⊲(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺2,𝑅𝑉𝐶ℎ𝐺2) 𝐶  𝑋𝐶𝐶     𝑃

𝑃|≡C |∼  (𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺2,𝑅𝑉𝐶ℎ𝐺2)

According to P16, P22, and rule 3, we derive the following: 

V13: 
𝑃|≡#(𝑇𝑆𝐶ℎ𝐺2 𝑎𝑛𝑑 𝑅𝑉𝐶ℎ𝐺2)

𝑃|≡#(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺2,𝑅𝑉𝐶ℎ𝐺2)|

According to P6, P12, V12, V13, and rule 2, we derive the following: 

V14: 

𝑃|≡#(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺2,𝑅𝑉𝐶ℎ𝐺2),P|≡C~(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺2,𝑅𝑉𝐶ℎ𝐺2)

𝑃|≡C|≡(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺2,𝑅𝑉𝐶ℎ𝐺2)

According to V14, P23, P24, and rule 4, we derive the following: 

V15: 
P |≡C| ⇒ 𝑅𝑉𝐶ℎ𝐺2 ,P |≡ C |≡𝑅𝑉𝐶ℎ𝐺2 

P|≡  𝑅𝑉𝐶ℎ𝐺2

According to M4: 
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V16: C (PIDR, TSPG2, TK12, TK13) OTP

According to P7, P13, V16 and Rule 1, we derive the following: 

V17: 
𝐶|≡P  OTP  C ,P ⊲(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺2  ,𝑇𝐾1,𝑇𝐾

2,   
) 𝐶 𝑂𝑇𝑃     𝑃

𝐶|≡P |∼ ( P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺2, 𝑇𝐾12,𝑇𝐾13  )

According to P18 and rule 3, we derive the following: 

V18: 
𝐶|≡#(𝑇𝑆𝑃𝐺2)

𝐶|≡#( P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺2 ,𝑇𝐾1,𝑇𝐾2   )|

According to P8, P14, V17, V18 and rule 2, we derive the following: 

V19: 
𝐶|≡#(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺2, 𝑇𝐾12,𝑇𝐾

13
),C|≡P~(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺2, 𝑇𝐾12,𝑇𝐾

13   
 )

𝐶|≡P|≡(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺2, 𝑇𝐾12,𝑇𝐾
13  

)

According to P30, P31, P32, P33, V19, and rule 4, we derive the following: 

V20: 
𝐶 |≡P|⇒ 𝑇𝐾12,𝑇𝐾13   ,C |≡ P |≡    𝑇𝐾12,𝑇𝐾13 

C|≡   𝑇𝐾12,𝑇𝐾13

As ssk = H (RVChG1|| RVChG2 || RVPG1 || OTP) and in combination with P9, V4, V14 we 

can derive 

V21:  P| ≡C|≡ (C  P)   (Goal 1_1) 

 As ssk = H (RVChG1|| RVChG2 || RVPG1 || OTP) and in combination with P10, P28, V5, 

V15 and V21 

V22:  P|≡ (C P)  (Goal 1_2) 

ssk 

ssk 
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 As ssk = H (RVChG1|| RVChG2 || RVPG1 || OTP) and in combination with P7, V9, we can 

derive 

V23:  C| ≡P|≡ (C   P)   (Goal 1_3) 

 As ssk = H (RVChG1|| RVChG2 || RVPG1 || OTP) and combining with P8, P29, V10, and 

V23 

V24: C|≡ (C   P)    (Goal 1_4) 

Based on V20, we can derive 

V25:   C| ≡ P| ≡ (C P) (Goal 2_1)

Based on P30, P32, V20, and V25, we derive the following 

        V26:   C|≡ (C P)                 (Goal 2_2) 

As OTPx = H (OTP || RVChG1) and in combination with P9 and V4 we can derive 

V27:  P| ≡C|≡ (C   P)  (Goal 3_1) 

 As OTPx = H (OTP || RVChG1) and in combination with P10, P35, V5, V15 and V27 

V28:  P|≡ (C P)  (Goal 3_2) 

As OTPx = H (OTP || RVChG1) and in combination with P7 we can derive 

V29:  C| ≡P|≡ (C   P)  (Goal 3_3) 

ssk 

ssk 

NOTP, TK1, TK2 

NOTP, TK1, TK2 

OTPx 

OTPx 

OTPx 
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 As OTPx = H (OTP || RVChG1) and combining with P8, P34, and V29 

V30: C|≡ (C P)   (Goal 3_4) 

Therefore, the above logic proves that the proposed protocol achieves the goals 

1_1 to 1_4, goals 2-1 to 2-2, and goals 3_1 to 3_4 successfully.  Thus, we prove that the 

shared secret key ssk, OTPx, TK12, and TK13 are trusted by both C and the P.  Based on 

the above results, the achievement of goals 1_1 to 1_4, 2_1 to 2_2, and 3_1 to 3_4 proves 

that the proposed protocol achieves the mutual authentication and the ssk, OTPx, TK12, 

and TK13 are securely shared between C and P. 

5.7.1.1.2.2 Protocol 2: Child gateway-child gateway mutual authentication 

5.7.1.1.2.2.1 Protocol 2: Goals identification 

Goal 1: The ChG_1 and the ChG_2 want to establish a shared secret key (ssk) key 

that is believed by each other. 

G1_1: ChG_2 believes that the ChG_1 believes that the ssk is a securely shared 

parameter between ChG_1 and ChG_2. 

ChG_2|≡ChG_1|≡ (ChG_1  ChG_2) 

G1_2:  ChG_2 believes that ssk is a securely shared parameter between ChG_1 and 

ChG_2. 

ChG_2|≡ (ChG_1   ChG_2) 

ssk 

ssk

OTPx 
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G1_3: ChG_1 believes that the ChG_2 believes that the ssk is a securely shared 

parameter between ChG_1 and ChG_2. 

ChG_1|≡ChG_2|≡ (ChG_1    ChG_2) 

G1_4:  ChG_1 believes that ssk is a securely shared parameter between ChG_1 and 

ChG_2. 

ChG_1|≡ (ChG_1    ChG_2) 

5.7.1.1.2.2.2 Protocol 2: message idealization 

First, we transferred all transmitted messages into idealized form as follows. 

M1: ChG_1          ChG_2:(ChGIDR_1, TK, TSChG11, RVChG11) Rj 

M2: ChG_2          ChG_1:( ChGIDR_2, TK, MSK, TSChG21, RVChG21) D1 

M3: ChG_1          ChG_2:(ChGIDR_1, TK, MSK, TSChG12, RVChG12) T3 

5.7.1.1.2.2.3 Protocol 2 main assumptions 

The second step to be completed is to define some assumptions as of the initiative 

promises. The fundamental assumptions of the presented authentication protocol are as 

follows: 

P1: ChG_2 believes that Rj is a secure shared parameter between ChG_2 and ChG_1 

ChG_2| ≡ (ChG_1              ChG_2) 

P2: ChG_2 believes ChG_1 believes that Rj is a secure shared parameter between ChG_1 

and ChG_2 

ssk

ssk 

 Rj

Rj 
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ChG_2 | ≡ ChG_1| ≡ (ChG_1   ChG_2) 

P3: ChG_1 believes that D1 is a secure shared parameter between ChG_1 and ChG_2 

ChG_1| ≡ (ChG_1       ChG_2) 

P4: ChG_1 believes ChG_2 believes that D1 is a secure shared parameter between 

ChG_1 and ChG_2 

ChG_1 | ≡ ChG_2| ≡ (ChG_1   ChG_2) 

P5: ChG_2 believes that T3 is a secure shared parameter between ChG_1 and ChG_2 

ChG_2| ≡ (ChG_1   ChG_2) 

P6: ChG_2 believes ChG_1 believes that T3 is a secure shared parameter between ChG_1 

and ChG_2 

ChG_2 | ≡ ChG_1| ≡ (ChG_1     ChG_2) 

P 7: ChG_2 believes TSChG11 is fresh. 

ChG_2| ≡ #(TSChG11) 

P 8: ChG_2 believes TSChG12 is fresh. 

ChG_2 | ≡ #(TSChG12) 

P 9: ChG_1 believes TSChG21 is fresh. 

ChG_1| ≡ #(TSChG21) 

P 10: ChG_2   believes RVChG11 is fresh. 

ChG_2 | ≡ #(RVChG11) 

D1 

T3 

D1 

T3 
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P11: ChG_2 believes that ChG_1 believes RVChG11. 

ChG_2 | ≡ ChG_1 | ≡   RVChG11  

P12: ChG_2 believes that ChG_1 has jurisdiction over RVChG11. That is, ChG_1 is an 

authority and believes RVChG11. 

   ChG_2 | ≡ ChG_1   ⇒ RVChG11 

P 13: ChG_2 believes RVChG12 is fresh. 

ChG_2 | ≡ #(RVChG12) 

P14: ChG_2 believes that ChG_1 believes RVChG12. 

ChG_2 | ≡ ChG_1 | ≡   RVChG12  

P15: ChG_2 believes that ChG_1 has jurisdiction over RVChG12. That is, ChG_1 is an 

authority and believes RVChG12. 

 ChG_2 | ≡ ChG_1 ⇒ RVChG12 

P 16: ChG_1 believes RVChG21 is fresh. 

ChG_1 | ≡ #(RVChG21) 

P17: ChG_1 believes that ChG_2 believes RVChG21. 

ChG_1| ≡ ChG_2 | ≡   RVChG21  

P18: ChG_1   believes that ChG_2 has jurisdiction over RVPG1. That is, ChG_2   is an 

authority and believes RVChG21. 
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    ChG_1 | ≡ ChG_2  ⇒ RVChG21 

P19: ChG_1 believes that TK is a secure shared parameter between ChG_1 and ChG_2 

ChG_1 | ≡   ChG_1 ChG_2) 

P20: ChG_1 believes ChG_2 believes that TK is a secure shared parameter between 

ChG_1 and ChG_2 

ChG_1 | ≡ ChG_2| ≡ (ChG_1  ChG_2) 

P21: ChG_2 believes that TK is a secure shared parameter between ChG_1 and ChG_2 

ChG_2 | ≡   ChG_1 ChG_2) 

P22: ChG_2 believes ChG_1 believes that TK is a secure shared parameter between 

ChG_1 and ChG_2 

ChG_2 | ≡ ChG_1| ≡ (ChG_1  ChG_2) 

P 23: ChG_2 believes ChG_1 believes that ssk is a secure shared parameter between 

ChG_2 and ChG_1

ChG_2 | ≡ ChG_1| ≡ (ChG_1  ChG_2) 

P 24:  ChG_1 believes ChG_2 believes that ssk is a secure shared parameter between 

ChG_1and ChG_2 

ChG_1 | ≡ ChG_2 | ≡ (ChG_1  ChG_2) 

5.7.1.1.2.2.4 Protocol 2 Analysis of the authentication protocol 

ssk 

 ssk 

 TK 

TK 

 TK 

TK 
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We then prove that the proposed protocol achieves the security goals based on the 

idealized form of the messages, assumptions, and BAN logic rules. The proposed 

authentication protocol analysis is shown below to prove that the protocol achieves 

mutual authentication between ChG_1 and ChG_2. 

According to M1: 

V1: ChG_2◃(ChGIDR_1, TK, TSChG11, RVChG11
 ) 

According to P1 and Rule 1, we derive the following 

V2: 

ChG_2|≡ChG_1  Rj     ChG_2 ,ChG_2 ⊲(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝐾,𝑇𝑆𝐶ℎ𝐺1,𝑅𝑉𝐶ℎ𝐺1) ChG_1  𝑅𝑗     ChG_2

ChG_2|≡ChG_1 |∼  (𝐶ℎ𝐺𝐼𝐷𝑅_1,𝑇𝐾,𝑇𝑆𝐶ℎ𝐺11,𝑅𝑉𝐶ℎ𝐺11)

According to P7, P10, and rule 3, we derive the following 

V3: 
ChG_2|≡#(𝑇𝑆𝐶ℎ𝐺11 𝑎𝑛𝑑 𝑅𝑉𝐶ℎ𝐺11)

ChG_2|≡#(𝐶ℎ𝐺𝐼𝐷𝑅_1,𝑇𝐾,𝑇𝑆𝐶ℎ𝐺11,𝑅𝑉𝐶ℎ𝐺11)|

According to P2, V2, V3, and rule 2, we derive the following 

V4: 

ChG_2|≡#(𝐶ℎ𝐺𝐼𝐷𝑅1 ,TK,𝑇𝑆𝐶ℎ𝐺11,𝑅𝑉𝐶ℎ𝐺11),ChG_2|≡ChG_1~(𝐶ℎ𝐺𝐼𝐷𝑅_1,𝑇𝐾,𝑇𝑆𝐶ℎ𝐺11,𝑅𝑉𝐶ℎ𝐺11)

ChG_2|≡ChG_1|≡(𝐶ℎ𝐺𝐼𝐷𝑅_1,𝑇𝐾,𝑇𝑆𝐶ℎ𝐺11,𝑅𝑉𝐶ℎ𝐺11)

According to P11, P12, and rule 4, we derive the following: 

V5: 
ChG_2 |≡ChG_1| ⇒ 𝑅𝑉𝐶ℎ𝐺11 ,ChG_2 |≡ ChG_1 |≡𝑅𝑉𝐶ℎ𝐺11 

ChG_2|≡  𝑅𝑉𝐶ℎ𝐺11

According to M2: 
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V6: ChG_1 (𝐶ℎ𝐺𝐼𝐷𝑅_2, TK, MSK, TSChG21, RVChG21) D1 

According to P3 and Rule 1, we derive the following 

V7: 

ChG_1 |≡ChG_2  D1 ChG_1 ,ChG_2 ⊲(𝐶ℎ𝐺𝐼𝐷𝑅_2,𝑇𝑆𝐶ℎ𝐺21,𝑅𝑉𝐶ℎ𝐺21 ) 𝐶ℎ𝐺_2 𝐷1     𝐶ℎ𝐺_1

𝐶ℎ𝐺_1|≡𝐶ℎ𝐺_2 |∼ (𝐶ℎ𝐺𝐼𝐷𝑅_2,𝑇𝐾,𝑀𝑆𝐾,𝑇𝑆𝐶ℎ𝐺21,𝑅𝑉𝐶ℎ𝐺21)

According to P9, P16, and rule 3, we derive the following 

V8: 
ChG_1|≡#(𝑇𝑆𝐶ℎ𝐺21and  𝑅𝑉𝐶ℎ𝐺21)

ChG_1|≡#(𝐶ℎ𝐺𝐼𝐷𝑅_2,𝑇𝑆𝐶ℎ𝐺21,𝑅𝑉𝐶ℎ𝐺21)|

According to P4, V7, V8 and rule 2, we derive the following 

V9: 

ChG_1|≡#(𝐶ℎ𝐺𝐼𝐷𝑅_2,𝑇𝑘,𝑀𝑆𝐾,𝑇𝑆𝐶ℎ𝐺21,𝑅𝑉𝐶ℎ𝐺21),ChG_1|≡ChG_2~(𝐶ℎ𝐺𝐼𝐷𝑅_2,𝑇𝑘,𝑀𝑆𝐾,𝑇𝑆𝐶ℎ𝐺21,𝑅𝑉𝐶ℎ𝐺21 )

ChG_1|≡ChG_2|≡(𝐶ℎ𝐺𝐼𝐷𝑅_2,𝑇𝐾,𝑀𝑆𝐾,𝑇𝑆𝐶ℎ𝐺21,𝑅𝑉𝐶ℎ𝐺21)

According to P17, P18, V9, and rule 4, we derive the following: 

V10: 
ChG_1 |≡ChG_2|⇒𝑅𝑉𝐶ℎ𝐺21  ,ChG_1 |≡ ChG_2 |≡ 𝑅𝑉𝐶ℎ𝐺21 

ChG_1|≡  𝑅𝑉𝐶ℎ𝐺21

According to M3: 

V11: ChG_2◃(ChGIDR_12,Tk,MSK, TSChG12, RVChG12
 ) 

According to P5 and Rule 1, we derive the following 
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V12: 

ChG_2|≡ChG_1  T3     ChG_2 ,ChG_2 ⊲(𝐶ℎ𝐺𝐼𝐷𝑅,TK,MSK,𝑇𝑆𝐶ℎ𝐺12,𝑅𝑉𝐶ℎ𝐺12) ChG_1  𝑇3     ChG_2

ChG_2|≡ChG_1 |∼  (𝐶ℎ𝐺𝐼𝐷𝑅_1𝑇𝐾,𝑀𝑆𝐾,,𝑇𝑆𝐶ℎ𝐺121,𝑅𝑉𝐶ℎ𝐺11)

According to P8, P13, and rule 3, we derive the following 

V13: 
ChG_2|≡#(𝑇𝑆𝐶ℎ𝐺12 𝑎𝑛𝑑 𝑅𝑉𝐶ℎ𝐺12)

ChG_2|≡#(𝐶ℎ𝐺𝐼𝐷𝑅_1,𝑇𝑆𝐶ℎ𝐺12,𝑅𝑉𝐶ℎ𝐺12)|

According to V12, V13, and rule 2, we derive the following 

V14: 

ChG_2|≡#(𝐶ℎ𝐺𝐼𝐷𝑅1 ,𝑇𝐾,𝑀𝑆𝐾,𝑇𝑆𝐶ℎ𝐺12,𝑅𝑉𝐶ℎ𝐺12),ChG_2|≡ChG_1~(𝐶ℎ𝐺𝐼𝐷𝑅_1,𝑇𝐾,𝑀𝑆𝐾,𝑇𝑆𝐶ℎ𝐺12,𝑅𝑉𝐶ℎ𝐺12)

ChG_2|≡ChG_1|≡(𝐶ℎ𝐺𝐼𝐷𝑅_1,𝑇𝐾,𝑀𝑆𝐾,𝑇𝑆𝐶ℎ𝐺12,𝑅𝑉𝐶ℎ𝐺12)

According to P14, P15, V14, and rule 4, we derive the following: 

V15: 
ChG_2 |≡ChG_1| ⇒ 𝑅𝑉𝐶ℎ𝐺12 ,ChG_2 |≡ ChG_1 |≡𝑅𝑉𝐶ℎ𝐺12 

ChG_2|≡  𝑅𝑉𝐶ℎ𝐺12

As ssk = H (RVChG11|| RVChG12 || RVChG21|| TK) and in combination with V4, V14 and P21 

we can derive 

V16: ChG_2|≡ChG_1|≡(ChG_2  ChG_1)  (Goal 1_1) 

 As ssk = H (RVChG11|| RVChG12 || RVChG21|| TK) and in combination with P22, P23, V5, 

V15 and V16. 

        V17:  ChG_2|≡ (ChG_1  ChG_2)  (Goal 1_2) 

 As ssk = H (RVChG11|| RVChG12 || RVChG21|| TK) and in combination with P19 and V9, we 

can derive 

ssk 

ssk 

ssk 
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V18:  ChG_1| ≡ ChG_2|≡ (ChG_1   ChG_1)   (Goal 1_3) 

 As ssk = H (RVChG1|| RVChG2 || RVPG1) and combining with P20, P24, V10, and V18. 

     V19: ChG_1|≡ (ChG_1  ChG_2)   (Goal 1_4) 

Therefore, the above logic proves that the proposed protocol achieves the goals 

1_1 to 1_4 successfully.  Thus, we prove that the shared secret key ssk is trusted by both 

ChG_1 and the ChG_2. Based on the above results, the achievement of goals 1_1 to 1_4 

proves that the proposed protocol achieves mutual authentication, and the session key ssk 

is securely shared between ChG_1 and ChG_2. 

5.7.1.1.2.3 Protocol 3: mini-gateway _IoT node mutual authentication 

5.7.1.1.2.3.1 Protocol 3 goals identification 

Goal 1: Ci+1, Ri, and Ri+1 are well protected and believed by MG. 

G1_1: MG believes that the N believes that the Ci+1, Ri, and Ri+1 are securely shared 

parameters between N and MG. 

MG| ≡ N | ≡ (N  MG) 

G1_2:  MG believes that Ci+1, Ri and Ri+1 are securely shared parameters between N and 

MG. 

MG| ≡ (N  MG) 

Goal 2: The N and the MG want to establish a shared secret key (ssk) key that is 

believed by each other. 

ssk 

Ri, Ri+1, Ci+1 

Ri, Ri+1, Ci+1 
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G2_1: MG believes that the N believes that the ssk is a securely shared parameter 

between N and MG. 

    MG| ≡ N|≡ (N     MG) 

G2_2:  MG believes that ssk is a securely shared parameter between N and MG. 

MG|≡ (N   MG) 

G2_3: N believes that the MG believes that the ssk is a securely shared parameter 

between N and MG. 

   N| ≡ MG | ≡ (N  MG) 

G2_4:  N believes that ssk is a securely shared parameter between N and MG. 

N| ≡ (N  MG) 

5.7.1.1.2.3.2 Protocol 3 Messages Idealization 

First, we transfer all transmitted messages into idealized form as follows: 

M1: N          MG:(NIDR, S2, S3, TSN1, RVN1) OTT

M2: MG          N:(MGIDR, S1, S2, RVMG1, TSMG, C) OTT

M 3: N          MG:(NIDR, TSN2, RVN2, NOTP, NnewIDA) CHXi+1 

5.7.1.1.2.3.3 Protocol 3 main assumptions 

ssk 

ssk

ssk

ssk 
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The second step to be completed is to define some assumptions as the initiative 

promises. The fundamental assumptions of the presented authentication scheme are as 

follows: 

P1: MG believes that OTT is a secure shared parameter between N and MG 

           MG| ≡ (N  MG) 

P2: MG believes N believes that OTT is a secure shared parameter between N and MG. 

MG | ≡ N| ≡ (N   MG) 

P3: N believes that OTT is a secure shared parameter between N and MG. 

N| ≡ (N  MG) 

P4: N believes MG believes that OTT is a secure shared parameter between N and MG. 

N | ≡ MG| ≡ (N   MG) 

P5: MG believes that CHXi+1 is a secure shared parameter between N and MG. 

MG| ≡ (N  MG) 

P6: MG believes N believes that CHXi+1 is a secure shared parameter between N and 

MG. 

 OTT 

OTT 

 CHXi+1 

CHXi+1 

 OTT 

OTT 
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MG | ≡ N| ≡ (N   MG) 

P7: MG believes TSN1 is fresh. 

MG| ≡ #(TSN1) 

P8: MG believes TSN2 is fresh. 

MG| ≡ #(TSN2) 

P9: N believes TSMG1 is fresh. 

N| ≡ #(TSMG1) 

P10: MG believes RVN1 is fresh. 

MG| ≡ #(RVN1) 

P11: MG believes that N believes RVN1. 

MG | ≡ N| ≡   RVN1  

P12: MG believes that N has jurisdiction over RVN1. That is, N is an authority and 

believes RVN1. 

   MG | ≡ N   ⇒ RVN1 

P13: MG believes RVN2 is fresh. 

MG| ≡ #(RVN2) 

P14: MG believes that N believes RVN2. 

MG | ≡ N| ≡   RVN2  
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P15: MG believes that N has jurisdiction over RVN2. That is, N is an authority and 

believes RVN2. 

   MG | ≡ N   ⇒ RVN2 

P16: N believes RVMG1 is fresh. 

N| ≡ #(RVMG1) 

P17: N believes that MG believes RVMG1. 

N | ≡ MG| ≡   RVMG1  

P18: N believes that MG has jurisdiction over RVMG1. That is, MG is an authority and 

believes RVMG1. 

   N | ≡ MG   ⇒ RVMG1 

P19: MG believes that N has jurisdiction over Ri 

MG| ≡ N ⇒ Ri 

P20: MG believes that N believes Ri

MG| ≡ N | ≡ Ri 

P21: MG believes that N has a jurisdiction over Ri+1 

MG| ≡ N ⇒ Ri+1 

P22: MG believes that N believes Ri+1 

MG| ≡ N | ≡ Ri+1 
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P23: MG believes that N has a jurisdiction over Ci+1 

                                    MG| ≡ N ⇒ Ci+1 

P24: MG believes that N believes Ci+1 

                                    MG| ≡ N | ≡ Ci+1 

P25: MG believes N believes that ssk is a secure shared parameter between N and MG 

                                        MG | ≡ N| ≡ (N                     MG) 

P26: N believes MG believes that ssk is a secure shared parameter between N and MG 

                                        N | ≡ MG| ≡ (N               MG) 

5.7.1.1.2.3.4 Protocol 3 analysis of the authentication protocol 

 

We then prove that the proposed protocol achieves the security goals based on the 

idealized form of the messages, assumptions, and BAN logic rules. The proposed 

authentication protocol analysis is shown below to prove that the protocol achieves 

mutual authentication between N and MG. 

According to M1:  

V1: IG ◃(NIDR, S2,S3,TSN1,RVN1
 )OTP 

According to P1 and Rule 1, we derive the following 

V2: 
𝑀𝐺|≡N  OTT     MG ,MG ⊲(𝑁𝐼𝐷𝑅,𝑆2,𝑆3,𝑇𝑆𝑁1,𝑅𝑉𝑛1) 𝑁  𝑂𝑇𝑇     𝑀𝐺

𝑀𝐺|≡N |∼ ( (𝑁𝐼𝐷𝑅,𝑆2,𝑆3,𝑇𝑆𝑁1,𝑅𝑉𝑛1)
 

 

ssk 

 ssk 
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According to P7, P10, and rule 3, we derive the following 

V3: 
𝑀𝐺|≡#(𝑇𝑆𝑁1 𝑎𝑛𝑑 𝑅𝑉𝑁1)

𝑀𝐺|≡#|(𝑁𝐼𝐷𝑅,𝑆2,𝑆3,𝑇𝑆𝑁1,𝑅𝑉𝑛1)

According to V2, V3, and rule 2, we derive the following 

         V4: 
𝑀𝐺|≡#(𝑁𝐼𝐷𝑅 ,𝑆2,𝑆3,𝑇𝑆𝑁1 ,𝑅𝑉𝑛1),MG|≡N~(𝑁𝐼𝐷𝑅 ,𝑆2,𝑆3 ,𝑇𝑆𝑁1,𝑅𝑉𝑛1)

𝑀𝐺|≡N|≡(𝑁𝐼𝐷𝑅 ,𝑆2,𝑆3,𝑇𝑆𝑁1 ,𝑅𝑉𝑛1)

According to P11, P12, V4 and rule 4, we derive the following: 

V5: 
MG |≡N| ⇒ 𝑅𝑉𝑛1 ,MG |≡ N |≡ 𝑅𝑉𝑛1

MG|≡  𝑅𝑉𝑛1

According to M2, we get 

V6: N ◃ (MGIDR, S1, S2, RVMG1, TSMG, C) Y2 

According to P3 Rule 1, we derive the following

V7: 
𝑁|≡N  OTT   MG ,N ⊲(MG𝐼𝐷𝑅, 𝑇𝑆𝑀𝐺1,𝑆1,𝑆2,𝑅𝑉𝑀𝐺1,C) 𝑁   𝑂𝑇𝑇     𝑀𝐺

𝑁|≡MG |∼ ( MG𝐼𝐷𝑅, 𝑇𝑆𝑀𝐺1,𝑆1,𝑆2,𝑅𝑉𝑀𝐺1,C)

According to P9, P16 and rule 3, we derive the following 

V8: 
𝑁|≡#(𝑇𝑆𝑀𝐺1,𝑅𝑉𝑀𝐺1

)

𝑁|≡#(MG𝐼𝐷𝑅, 𝑇𝑆𝑀𝐺1,𝑆1,𝑆2,𝑅𝑉𝑀𝐺1,C)

According to V7, V8, and rule 2, we derive the following 

V9: 

𝑁|≡#(MG𝐼𝐷𝑅, 𝑇𝑆𝑀𝐺1,𝑆1,𝑆2,𝑅𝑉𝑀𝐺1,C),N|≡MG~(MG𝐼𝐷𝑅, 𝑇𝑆𝑀𝐺1,𝑆1,𝑆2,𝑅𝑉𝑀𝐺1,C)

𝑁|≡MG|≡(MG𝐼𝐷𝑅, 𝑇𝑆𝑀𝐺1,𝑆1,𝑆2,𝑅𝑉𝑀𝐺1,C)
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According to P17, P18 and rule 4, we derive the following: 

V10: 
𝑁 |MG| ⇒ 𝑅𝑉𝑀𝐺1,N |≡ MG |≡ 𝑅𝑉𝑀𝐺1 

𝑁|≡  𝑅𝑉𝑀𝐺1

According to M3: 

V11 IG ◃(NIDR,TSN2,RVN2,OTPN, NnewIDA, Ci+1 ,Ri, Ri+1  )CHXi
+1 

According to P5 and Rule 1, we derive the following 

V12: 

𝑀𝐺|≡N  CHXi+1 MG ,MG ⊲(𝑁𝐼𝐷𝑅,𝑁𝑂𝑇𝑃,𝑁𝑛𝑒𝑤𝐼𝐷𝐴,𝑇𝑆𝑁2,𝑅𝑉𝑛2,   𝑁 𝐶𝑖+1,𝑅𝑖,𝑅𝑖+1 𝑀𝐺) 𝑁 𝐶𝐻𝑋𝑖+1     𝑀𝐺

𝑀𝐺|≡N |∼ ( (𝑁𝐼𝐷𝑅,𝑁𝑂𝑇𝑃,𝑁𝑛𝑒𝑤𝐼𝐷𝐴,𝑇𝑆𝑁2,𝑅𝑉𝑛2, 𝑁 𝐶𝑖+1,𝑅𝑖,𝑅𝑖+1 𝑀𝐺)

According to P8, P13 and rule 3, we derive the following 

V13: 
𝑀𝐺|≡#(𝑇𝑆𝑁2 𝑎𝑛𝑑 𝑅𝑉𝑁2)

𝑀𝐺|≡#|(𝑁𝐼𝐷𝑅,𝑁𝑂𝑇𝑃,𝑁𝑛𝑒𝑤𝐼𝐷𝐴,𝑇𝑆𝑁2,𝑅𝑉𝑛2,𝑁 𝐶𝑖+1,𝑅𝑖,𝑅𝑖+1 𝑀𝐺)

According to V12, V13, and rule 2, we derive the following: 

V14

𝑀𝐺|≡#(𝑁𝐼𝐷𝑅,𝑁𝑂𝑇𝑃,𝑁𝑛𝑒𝑤𝐼𝐷𝐴,𝑇𝑆𝑁2,𝑅𝑉𝑛2,𝑁 𝐶𝑖+1,𝑅𝑖,𝑅𝑖+1 𝑀𝐺),MG|≡N~(𝑁𝐼𝐷𝑅,𝑁𝑂𝑇𝑃,𝑁𝑛𝑒𝑤𝐼𝐷𝐴,𝑇𝑆𝑁2,𝑅𝑉𝑛2 𝑁 ,𝐶𝑖+1,𝑅𝑖,𝑅𝑖+1 𝑀𝐺)

𝑀𝐺|≡N|≡(𝑁𝐼𝐷𝑅,𝑁𝑂𝑇𝑃,𝑁𝑛𝑒𝑤𝐼𝐷𝐴,𝑇𝑆𝑁2,𝑅𝑉𝑛2,𝑁 𝐶𝑖+1,𝑅𝑖,𝑅𝑖+1 𝑀𝐺)

According to P14, P15, P19, P20, P21, P22, P23, P24, V14, and rule 4, we derive the 

following: 

V15: 
MG |≡N| ⇒ 𝑅𝑉𝑛2,𝐶𝑖+1,𝑅𝑖,𝑅𝑖+1 ,MG |≡ N |≡ 𝑅𝑉𝑛2,𝐶𝑖+1,𝑅𝑖,𝑅𝑖+1

MG|≡  𝑅𝑉𝑛2,𝐶𝑖+1,𝑅𝑖,𝑅𝑖+1

Based on V15, we can derive 

V16:   MG| ≡|N ≡ (N        MG)  (Goal 1_1) 

Ci+1, Ri, Ri+1 
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Based on P20, P22, P24, V15, and V16, we derive the following 

V17:   MG|≡ (N        MG)  (Goal 1_2) 

As session key ssk = h ((RVN1|| RVN2 || RVMG1 || Ri) and in combination with V9, we 

can derive 

V18:  N| ≡MG|≡ (N    MG)   (Goal 2_1) 

 As session key ssk = h ((RVN1|| RVN2 || RVMG1 || Ri) and combining with P26, V10 and 

V18 

V19: N|≡ (N   MG)  (Goal 2_2) 

 As session key ssk = h ((RVN1|| RVN2 || RVMG1 || Ri) and combining with V4 and V14, 

we can derive 

V20:  IG ≡N|≡ (N  MG)  (Goal 2_3) 

 As session key ssk = h ((RVN1|| RVN2 || RVMG1 || Ri) and combining with P25, V5, V15, 

and V20. 

V21: MG|≡ (N  MG)  (Goal 2_4) 

Hence, the above logic proves that the proposed protocol achieves Goals 1_1 - 

1_2 and 2_1 - 2_4 successfully. In other words, the proposed protocol achieves mutual 

authentication. Also, it has been proved that Ci+1, Ri, Ri+1, and ssk are securely shared 

between the communicating parties. 

Ci+1,Ri,Ri+1

ssk 

ssk 

ssk 

ssk 
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In summary, by achieving all the goals mentioned above, we demonstrate the 

validity of the proposed protocols. We proved that the presented three protocols are 

secure mechanisms to perform mutual authentication and secret key generation to secure 

the communication between the involved parties. 

5.7.1.2 Informal Security Analysis 

This section examines that the proposed protocols are secure against well-known 

security attacks and satisfy the main security properties. The security of the protocols is 

explored against various known attacks. This section will provide brief descriptions of 

different types of attacks against the smart poultry farming IoT systems. A description of 

how the proposed protocols successfully resisted the well-known attacks and achieved 

the proposed security properties will be presented. 

5.7.1.2.1 Security Properties Assessment 

The following section presents a detailed security analysis of the security 

properties of the three proposed protocols.  It demonstrates how the proposed protocols 

satisfy the security requirements for mutual authentication and session key agreement and 

resist various known attacks. Then, a comparison with other related schemes is presented. 

5.7.1.2.1.1 Protocol 1: parent gateway-child gateway mutual authentication 

5.7.1.2.1.1.1 Mutual authentication 

During the mutual authentication process, PG and the ChG authenticate each 

other by verifying the correctness of the X3, X5, Y2, and Y5.  Also, the two sides verify the 

freshness of the RVChG1, RVChG2, RVPG1 and generating the ssk. The ssk is generated by 
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using the OTP that is known only to PG and the ChG, the nonce values RVChG1 and 

RVChG2 generated by ChG, and the nonce value (RVPG1) generated by the PG. An 

adversary can’t generate X1 = H (OTP || AuthP) without knowing the ChGIDR of ChG, 

PGIDR of the PG, and OTP, which are considered secret shared parameters between ChG 

and PG well as knowing Authp that is only known to ChG.  Also, the adversary can’t 

generate Yx = H (OTP || AuthC) without knowing the ChGIDR of ChG, PGIDR of the PG, 

and OTP, which are considered secret shared parameters between ChG and PG well as 

knowing Authc that is only known to PG. Furthermore,the adversary cannot verify X3 =  

H (ChGIDR || TS ChG1 || RVChG1 || X1), Y2 = H(PGIDR || TSPG1 || RVPG1 || RVChG1 || Yx  ),  X5 = 

H(ChGIDR || TSChG2 || RVChG2|| (RV’PG1 || Xcc), and Y5 = H (ChGIDR || TSPG2 || TK12|| TK13 

||OTPX||  ChGIDAx|   without knowing the PUF responses for both ChG and PG,OTP, 

PGIDR,ChGIDR, RVChG1,  RVChG2, and RVPG1. As a result, the proposed scheme can 

achieve mutual authentication between PG and the ChG. 

5.7.1.2.1.1.2 Session key agreement and forward /backward security 

At the end of the mutual authentication phase, the shared secret key ssk is 

established between ChG and the PG. The ssk is a combination of the OTP, RVChG1, 

RVChG2, and RVPG1. The goal of the ssk is to protect all the communication between PG 

and ChG. The ssk will be generated locally. The secrecy of the ssk depends on the 

secrecy of OTP, RVChG1, RVChG2, and RVPG1. Because all those parameters are randomly 

selected for every new authentication session, the disclosure of the ssk will not cause the 

compromise of any future ssk. The forward/backward security property's objective is to 

ensure that any past or future shared secret keys will not be affected when any ssk is 

exposed. Even if an adversary obtains ssk of a session, he/she can’t compute any of the 
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past and future shared secret keys by using the disclosed ssk because the ssk is protected 

by the randomization of the OTP, RVChG1, RVChG2, and RVPG1. As a result, the proposed 

scheme achieves the security of ssk. 

5.7.1.2.1.1.3 Anonymity unlinkability, and untraceability properties 

For fully protected ChG and PG privacy, strong anonymity with unlinkability is 

required. In the proposed protocol, the ChG’s and PG’s real identities ChGIDR and PGIDR 

are not transmitted during all phases in clear text format. Therefore, even if the adversary 

eavesdrops on all communication messages, it is impossible to obtain real identities. In 

addition, the new alias ID of the ChG node ChGnewIDA = h (ChGIDA. OTP). Because 

OTP is fresh in each session, the attacker cannot link any two different ChGIDA’s to the 

same ChG and cannot trace a given ChGIDA to ChGIDR’s messages. By using a new 

ChGIDA for each authentication session, the adversary will not be able to decide whether 

these authentication messages are from the same ChG or not. This means that ChG cannot 

be linked to different sessions. Consequently, the proposed protocol provides anonymity 

and unlinkability, and the adversary cannot trace the devices by intercepting messages. 

5.7.1.2.1.1.4 Node stolen database attack 

Due to the nature of the PUF, if an adversary can compromise a locally stored 

database at one of the communicating parties, he/she will fail to prove himself/herself 

because the PUF response can’t be replicated or predicted. Besides, the secret keys are 

different every session, which overcomes the issue of having any secret key exposed. 

Also, the lifetime of the ssk’s parameters is only one authentication session, and then they 



276 

will be destroyed. Furthermore, the proposed protocol is resilient against any device's full 

comptonization by employing node behavioral analysis where the node transaction, 

including traffic type, timing, and frequency, will be monitored and cross-compared to 

similar devices. 

5.7.1.2.1.1.5 Brute force attack 

The shared secret key ssk is generated locally by both the ChG node and the PG 

using the random secret parameters OTP, RVChG1, RVChG2, and RVPG1. Because this ssk 

depends on random parameters, the adversary cannot obtain it from the protocol. The 

probability of guessing is so negligible that the adversary will fail to guess the shared 

secret key's correct parameters, given that this ssk changes in every session. 

5.7.1.2.1.1.6 Replay attack 

The proposed protocol overcame the replay attack by using timestamps and nonce 

values. The timestamp TS and the nonce value are generated by the sender node and then 

inserted in the transmitted message in an encrypted format to ensure the adversary cannot 

replace it. Furthermore, the OTP is used only one time to ensure security against replay 

attacks. Hence, the protocol protects against the replay attack. 

5.7.1.2.1.1.7 Eavesdropping attack 

During the authentication phase, the adversary can intercept the messages 

transmitted between PG and ChG_1. All the intercepted messages will be useless because 

they are sent encrypted using the XOR and one-way hash function. For the attacker to 

verify the received parameters, he/she needs to know the PUF responses, the real 
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identities of the communicating parties, and the OTP that are protected and out of the 

adversary's reach. The only two parameters that are sent in clear text are the Alias 

identities and session ID. The Alias identities and the session ID do not pose any threat 

because this information is constructed from random parameters that change in every 

session. The adversary will not link the message to a particular device because the 

proposed protocol uses alias identities that vary in every session. Therefore, the proposed 

protocol protects against eavesdropping attacks. 

5.7.1.2.1.1.8 Impersonation attack 

In this attack, when the intruder eavesdrops on the messages transmitted from 

ChG to PG or vice versa, he/she can use the intercepted information for malicious 

actions, such as impersonating the ChG device or the PG and sending fabricated 

messages. 

This attack will not succeed for several reasons. First, each device has an Alias ID 

and Real ID.  The real IDs are known only for the communicating parties. The Real IDs 

will never be released in clear text format. The two sides will verify the real ID of each 

other before proceeding with the authentication process. Furthermore, without the 

knowledge of the OTP and the PUF response, the adversary will not be able to generate 

any of the different authentication parameters to prove itself to the other side. 

In the current protocol, if an attacker impersonates GhG and sends (ChGIDA , 

TSoneChG, X2, X3) or (ChGIDA , TSoneChG , X4, X5)which might be previously 

eavesdropped during the transmission between GhG and PG, to PG. This attack will fail 

for certain reasons. First, the temporary identity of GhGIDA changes in every session. 
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Second, both X3 and X5 are protected using the message parameters' one-way hash 

function, which includes the timestamp, OTP, and GhGIDR.

On the other side, if the attacker impersonates PG and sends (PGIDA, TSonePG1, 

Y1, Y2) or (PGIDA, TSonePG2, Y3, Y4, Y5) which might be previously eavesdropped 

during the transmission between ChG and PG, to ChG. This attack will fail because both 

Y2 and Y5 are protected using the secret parameters' one-way hash function, which 

includes the timestamp, OTP, and PGIDR.  Finally, without the knowledge of the OTP, 

RVChG1, RVChG2, and RVPG1, the attacker will not be able to generate the same SK. Thus, 

the protocol protects against the impersonation attack.  

5.7.1.2.1.1.9 Man-in-the-middle attack 

As discussed in the replay attack, eavesdropping, and impersonation attacks, the 

man-in-the-middle attack is defeated because the communication parties' real identities 

and the secret parameters OTP and the PUF responses are unknown to the attacker. 

Therefore, the man-in-the-middle attack is prevented. 

5.7.1.2.1.2 Protocol 2: child gateway-child gateway mutual authentication 

5.7.1.2.1.2.1 Mutual authentication 

During the mutual authentication process, ChG_1 and ChG_2 authenticate each 

other by verifying the correctness of the T2, T5, and D3. Also, the two sides verify the 

freshness of the RVChG_11, RVChG_12, and RVChG_21 and generate the SK. The ssk is 

generated by using the TK known only to ChG_1 and the ChG_2, the nonce values 

RVChG_11 and RVChG_12 generated by ChG_1 nonce value (RVChG_21) generated by 

the ChG_2. An adversary can’t generate T2, T5, and D3 without knowing the ChG1IDR, 

ChG2IDR, TK, and MSK. Because the MSK is stored on each side in an encrypted format 
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using the PUF response of that side as an encryption key, both ChG_1 and the ChG_2 

need to compute their PUF responses to retrieve MSK. As a result, the proposed scheme 

can achieve mutual authentication between ChG_1 and ChG_2. 

5.7.1.2.1.2.2 Session key agreement and forward/backward security 

After completing the mutual authentication phase, the shared secret key ssk is 

established between ChG_1 and ChG_2. The ssk is a combination of the TK, RVChG11, 

RVChG12, and RVChG21. The goal of the ssk is to protect all the communication between 

ChG_1 and ChG_2. The ssk is generated locally. The secrecy of the ssk depends on the 

secrecy of the TK, RVChG11, RVChG12, and RVChG21. Because all those parameters are 

randomly generated for every new authentication session, the disclosure of the ssk will 

not cause the compromise of any future ssk. Even if an adversary obtains ssk of a session, 

he/she can’t compute any of the past or future shared secret keys by using the disclosed 

ssk because the ssk is protected by the randomization of the TK, RVChG11, RVChG12, and 

RVChG21. As a result, the proposed scheme achieves the security of ssk. 

5.7.1.2.1.2.3 Anonymity unlinkability, and untraceability properties 

For fully protected ChG_1 and ChG_2 privacy, strong anonymity with 

unlinkability is required. In the proposed protocol, the ChG’s and ChG’s real identities 

ChG_1IDR and ChG_2IDR are not transmitted during all phases in clear text format. 

Therefore, even if the adversary eavesdrops on all communication messages, it is 

impossible to obtain real identities. In addition, a new alias ID will be assigned to each 

ChG for every authentication session as presented in protocol 1. By using a new ChGIDA 

for each authentication session, the adversary will not be able to decide whether these 

authentication messages are from the same ChG or not. This means that ChG cannot be 
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linked to different sessions. Consequently, the proposed protocol provides anonymity and 

unlinkability, and the adversary cannot trace the devices by intercepting messages. 

5.7.1.2.1.2.4 Node stolen database attack 

If the ChG_1 or the ChG_2 is hacked, the MSK is encrypted by the PUF response 

of the ChG.  For the adversary to retrieve the MSK, he/she needs to calculate the PUF 

response, which is impossible due to the nature of the PUF that can’t be predicted or 

replicated. From another perspective, the ssk is different every session, which overcomes 

the issue of having any secret key exposed. Furthermore, the proposed protocol is 

resilient against any device's full compromising by employing node behavioral analysis 

where the node transaction, including traffic type, timing, and frequency, will be 

monitored and cross-compared to similar devices. 

5.7.1.2.1.2.5 Brute force attack 

The shared secret key ssk is generated locally by both the ChG_1 node and the 

ChG_2 using the random secret parameters TK, RVChG11, RVChG12, and RVChG21. Because 

this ssk depends on random parameters, the adversary cannot obtain it from the protocol. 

The probability of guessing is so negligible that the adversary will fail to guess the shared 

secret key's correct parameters, given that this ssk changes in every session. 

5.7.1.2.1.2.6 Replay attack 

The proposed protocol overcame the replay attack by using timestamps and nonce 

values. The timestamp TS and nonce values are generated by the sender node and then 

inserted in the transmitted message so that it ensures the attacker cannot replace it. Before 

trusting the received TS, the receiver verifies the TS's integrity by recalculating the 
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received hash value that includes secret parameters between the two communicating 

parties.  The attacker cannot reconstruct the hash value because he/she does not know the 

TK, MSK, and the real identities of the communicating parties. Therefore, any replay 

attack attempts will fail.  Hence, the protocol protects against replay attack. 

5.7.1.2.1.2.7 Eavesdropping attack 

During the authentication phase, the adversary can intercept the messages 

transmitted between ChG_1 and ChG_2. All the intercepted messages will be useless 

because they are sent in an encrypted format using the XOR function and one-way hash 

function. For the attacker to verify the received parameters, he/she needs to know the TK 

and MSK, which are composed of random values and are protected and out of the 

adversary's reach. The TK is changed every authentication session, and the PUF response 

encrypts the MSK. The only two parameters that are sent in clear text are the Alias 

identities and session ID. The Alias identities and the session ID do not pose any threat 

because this information is constructed from random parameters that change in every 

session. The adversary will not link the message to a particular device because the 

proposed protocol uses alias identities that change in every session. Therefore, the 

proposed protocol protects against eavesdropping attacks. 

5.7.1.2.1.2.8 Impersonation attack 

In this attack, when the intruder eavesdrops on the messages transmitted from 

ChG_1 to ChG_2 or vice versa, he/she can use the intercepted information for malicious 

actions, such as impersonating the ChG_1 device or the ChG_2 and sending fabricated 

messages. 
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This attack will not succeed for several reasons. First, each device has an Alias ID 

and Real ID.  The real IDs are known only for the communicating parties. The Real IDs 

will never be released in clear text format. The two sides will verify the real ID of each 

other before proceeding with the authentication process. Furthermore, without the 

knowledge of the TK and the MSK, the adversary will not be able to generate any of the 

authentication parameters to prove himself/herself to the other side. 

In the current protocol, if an attacker impersonates GhG_1 and sends (ChGIDA, 

TSChG_11, T1, T2) or (ChG_1IDA, SID, TSCHG_12, T4, T5), which might be previously 

eavesdropped during the transmission between GhG_1 and ChG_2, to ChG_2, this attack 

will fail for certain reasons. First, the temporary identity of GhGIDA changes in every 

session. Second, for T1, T2, T4, and T5, the adversary will not be able to reconstruct 

them without knowing the TK, MSK, the real identity of the receiving node, and its own 

real identity. 

On the other side, if the attacker impersonates GhG_2 and sends (ChG_2IDA, SID 

,D2, D3), which might be previously eavesdropped on during the transmission between 

ChG_1 and ChG_2, to ChG_1, this attack will fail because D3 is protected using the one-

way hash function of the message parameters. D2 message includes TK and RVChG, which 

are different for every authentication session, and MSK that is encrypted by GhG_2 PUF 

response. Finally, without knowing the TK, RVChG11, RVChG12, and RVCHG21, the attacker 

will not be able to generate the same ssk. Thus, the protocol protects against the 

impersonation attack.  

5.7.1.2.1.2.9 Data modification attacks 
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Assuming that M1 < ChGIDA1, TSChG_11, T1, T2 > has been tampered by an 

adversary M1* < ChGIDA1
*, TSChG_11

*
, T1

*
, T2

*
 >. After receiving the message, the 

adversary will first need to have TK and ChG_2IDR, which are secure parameters to 

compute Rj <H (TK|| ChG_2IDR)> and T1< RVChG_11 ⊕ Rj>. Furthermore, without having 

all secret parameters, the adversary will not be able to generate a legitimate T2 = H 

<ChG_1IDR || TS ChG_11 || RVChG_11 ||Rj>, that is, if the message has been tampered, the 

ChG_1 is considered to be illegal, and the session will be terminated immediately by the 

ChG_2. 

Now suppose the message M2 < ChG_2IDA, SID, TSChG12, D2, D3> has been 

tampered with by an adversary and sent to V M2* < ChG_2IDA
 *, SID

*
 , TSChG12

*
, D2*, D3*

 

>. After receiving the message, the adversary will first need to compute <D1 = H 

(RVChG_11 ||MSK || TK)> and <D2 = RVChG_21 ⊕ D1> using TK, MSK, and the random 

generated value received from ChG_1. Because each ChG_2 has a PUF chip and each 

chip is unique, the adversary will not be able to replicate or predict the response(R) of the 

real ChG_2. Consequently, the adversary will not be able to generate R and decrypt the 

MSK to compute D1.  Also, the TK is secret and is only known to the ChG_1 and ChG_2, 

the adversary will not correctly calculate D1 and D2. Finally, without having all above-

mentioned secret parameters, the adversary will not be able to compute <D3 = H 

(ChG_2IDR || TS ChG_21 || RVChG_21|| D1)> to pass the ChG_2 authentication. 

As for the message M3 <ChG_1IDA, SID, TSCHG12, T4, T5)> suppose the message 

M3 was tempered by an adversary. Because ChG_1 has a PUF chip and each chip is 

unique, the adversary will not be able to replicate or predict the response(R) of the real 

ChG_2. Consequently, the adversary will not be able to generate R and decrypt the MSK 
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to compute T3. Furthermore, also the TK is secret and is only known to the ChG_1 and 

ChG_2; the adversary will not correctly calculate T3 and T4. Furthermore, the adversary 

will not be able to construct a valid T5and send a legitimate message to ChG_2 that can 

pass the authenticate verification. So, o after receiving the message M3* and verifying it, 

ChG_2 will terminate the session with ChG_1. In summary, the proposed protocol can 

resist all message modification attacks. 

5.7.1.2.1.2.10 Man-in-the-middle attack 

As discussed in the replay attack, eavesdropping, and impersonation attacks, the 

man-in-the-middle attack is defeated because the communication parties' real identities 

and the secret parameters TK and MSK are unknown to the attacker. Therefore, the man-

in-the-middle attack is prevented. 

5.7.1.2.1.3 Protocol 3: mini-gateway _IoT node mutual authentication 

5.7.1.2.1.3.1 Mutual authentication 

N and the MG authenticate each other during the mutual authentication by 

verifying the SN, Y3, and X4. An adversary cannot generate S1 = h (NIDR || MGIDR||| RMG) 

without knowing the NIDR of N and the MGIDR of the MG and compute the PUF response 

(RMG). Also, the adversary cannot verify S2 = h (S1 ||MGIDR) ⊕ GIDN and S3 = h ((S2|| 

MGIDR) ⊕TIDN without knowing the GIDN and TIDN. Furthermore, the adversary will not 

be able to generate Y3 = H (MGIDR || TSMG1 || RVN1 || RVMG1 ||C||Y1) without having S1, 

S2 OTT, MGIDR, || RVMG1 and RVN1. Also, the adversary cannot generate X4 without 

having the R that can only be generated by N and having CHX, which is considered a 
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secure parameter between N and MG. As a result, the proposed scheme can achieve 

mutual authentication between N and MG. 

5.7.1.2.1.3.2 Session key agreement and forward/backward security 

After successfully completing the mutual authentication phase, the shared secret 

key ssk is established between N and the MG. The ssk is a combination of RVN1, RVN2, 

RVMG1, and Ri. The ssk will be generated locally. The secrecy of the ssk depends on the 

secrecy of RVN1, RVN2, RVMG1, and Ri. Because all those parameters are randomly 

selected for every new authentication session, the disclosed ssk will not cause the 

compromise of any future ssk. Even if an adversary obtains the ssk of a session, he/she 

can’t compute any of the past or future shared secret keys by using the disclosed ssk. The 

ssk is protected by the uniqueness of the Ri where each CRP will be used only one time. 

The corresponding responses can’t be replicated or predicted because they are unique for 

each N because of the nature of the PUF.  Second:  the randomization of the RVN1, RVN2, 

and RVMG1.   As a result, the proposed scheme achieves the security of ssk. 

5.7.1.2.1.3.3 Anonymity unlinkability and untraceability properties 

Protecting the privacy of N requires strong anonymity with unlinkability. The N’s 

real identity NIDR is not transmitted during all phases in clear text format in the 

proposed protocol. Therefore, even if the adversary eavesdrops on all communication 

messages, it is impossible to obtain the IoT node's real ID. In addition, the new alias ID 

of the IoT node NIDA2 = h(NIDA1.RVMG). Because RVMG1 is fresh in each session, the 

attacker cannot link any two different NIDA’s to the same N and cannot trace a given IoT 

device to N’s messages. By using a new NIDA for each authentication session, the 

adversary will not be able to decide whether these authentication messages are from the 
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same N or not. This means that device N cannot be linked to different sessions. 

Consequently, the proposed protocol provides anonymity and unlinkability, and the 

adversary cannot trace the devices by intercepting messages. 

5.7.1.2.1.3.4 Node stolen database attack 

If any IoT node is compromised and the adversary can steal S1, S2, S3, NIDR, 

CHX, and the OTT from the IoT node’s database to impersonate the IoT node, the fake 

node will fail the CRP verification process. The proposed protocol is resilient against a 

full compromising of the IoT node by employing node behavioral analysis where the 

node transaction, including traffic type, timing, and frequency, will be monitored and 

cross-compared to the previous data from the same virtual domain. Also, if an MG was 

compromised and the adversary can steal its database, the adversary will fail to generate 

RMG to compute S1 that is needed for N to authenticate the MG. 

5.7.1.2.1.3.5 Brute force attack 

The shared secret key ssk is generated locally by both the IoT node and the MG 

using the random secret parameters RVN1, RVN2, RVMG1, and Ri. Because this ssk 

depends on random parameters, the adversary cannot obtain it from the protocol. The 

probability of guessing is so negligible that the adversary will fail to guess the shared 

secret key's correct parameters, given that this ssk changes every session. 

5.7.1.2.1.3.6 Replay attack 

The sender node generates the timestamp TS and is then inserted in the 

transmitted message to ensure the attacker cannot replace it.  Before trusting the received 

TS, the receiver verifies the TS's integrity by recalculating the received hash value that 

includes secret parameters between the two communicating parties. Furthermore, Each 
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CRP is used only one time to ensure security against replay attacks. Hence, the proposed 

protocol protects against the replay attack 

5.7.1.2.1.3.6 Eavesdropping attack 

During the authentication phase, the adversary can intercept messages transmitted 

between N and the MG. All the intercepted messages will be useless because they are 

sent in an encrypted format using XOR and a one-way hash function. To verify the 

received parameters, the attackers need to know the RMG, OTT, CHX, NIDR, MGIDR, and 

Ri, which are composed of random values and are protected and out of the adversary's 

reach. The only two parameters that are sent in clear text are the Alias identities and 

session ID. the Alias identities and the session ID do not pose any threat because this 

information is constructed from random parameters that change in every session. The 

adversary will not be able to link the message to a particular device because the proposed 

protocol uses alias identities that change in every session. Therefore, the proposed 

protocol protects against eavesdropping attack. 

5.7.1.2.1.3.7 Impersonation attack 

In this attack, when the intruder eavesdrops on the messages transmitted from N 

to MG or vice versa, he/she can use the intercepted information for malicious actions, 

such as impersonating the IoT device or the MG and sending fabricated messages. 

5.7.1.2.1.3.7.1 MG impersonation 

This attack will not succeed for several reasons. First, Each MG has an Alias ID 

and Real ID.  The real ID is known only for IoT devices. The MG's Real ID will never be 
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released in Clear Text format. The IoT device will verify the MG's Real ID before 

proceeding with the authentication process. Second, the proposed protocol uses the Y3 

value to authenticate the MG node. Without the knowledge of S1, S2 OTT, MGIDR, 

RVMG1, and RVN1, the attacker cannot construct a valid Y3. To compute S1, the adversary 

needs to have the PUF response RMG that the MG can only generate. 

5.7.1.2.1.3.7.2 IoT node impersonation 

To impersonate the IoT node, an adversary should intercept the messages 

exchanged in the previous sessions.  This attack will fail for numerous reasons. First, the 

Alias ID of the IoT node changes every authentication session. Second, the fake IoT node 

will not be able to generate legitimate responses because the PUF responses are unique 

for each device. Third, X4 is protected using the one-way hash function of the message, 

including CHX, Ri, and TS. Thus, the protocol protects against the impersonation attack. 

From another perspective, even if the adversary succeeded in compromising an 

IoT node, the adversary’s further attacks using the compromised node only affect the 

communication related to that node. Because each IoT node has its own secret keys, the 

adversary can’t derive other non-compromised IoT nodes’ keys without knowing those 

nodes' random information. Therefore, further attacks will not affect other 

communications. As a result, the proposed scheme is resistant to IoT node impersonation 

attacks. 

5.7.1.2.1.3.8 Data modification attacks 

Assuming that M1 < NIDA, TSN1, X2, SN > has been tampered by an adversary 

M1* < NIDA
 *, TSN1

*
, X2

*
, SN * >. After receiving the message, the adversary will first 

need to have S2, S3, OTT, and NIDR, which are secure parameters to compute X1 <H (S2
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||S3) and X2< RVN1 ⊕ OTT>. Furthermore, without having all secret parameters, the 

adversary will not be able to generate a legitimate SN = < H (NIDR||TSN1 || RVN1|| X1)>, 

that is, if the message has been tampered, N is considered to be illegal, and the session 

will be terminated immediately by the MG. 

Now suppose the adversary needs to modify M2 <MGIDA, SID, TSMG1, Y2, C’, Y3 > to be 

M2* < MGIDA
 *, SID

*
, TSMG1

*
, Y2*, C’*, Y3

*
 >. After receiving the message, the adversary 

will first need to compute <Y1 = H (S’1|| S’2) > and <Y2 = RVMG1 ⊕OTT> using S’1 S’2 and 

OTT. To compute S1, the adversary needs to have the PUF response (RMG). Because the 

MG has a PUF chip and each chip is unique, the adversary will not be able to replicate or 

predict the response (RMG) of the real ChG_2. Consequently, the adversary will not be 

able to generate R to compute S1.  Also, the OTT is secret and is only known to the N and 

MG, and the adversary will not correctly calculate Y1 and Y2. Finally, without having ll 

above mentioned secret parameters, the adversary will not be able to compute <Y3 = 

H(MGIDR || TSMG1 || RVN1 || RVMG1 ||C||Y1)>  to pass the N authentication. 

As for the message M3 < NIDA, TSN2, X3, Rx, X4)> suppose an adversary tempered 

the message M3. Because N has a PUF chip and each chip is unique, the adversary will 

not be able to replicate or predict the response (Ri) to compute CHX+1 of the real N. 

Also, the OTT is secret and is only known to N and MG. Therefore, the adversary will 

not correctly calculate X3 and Rx. Furthermore, the adversary will not be able to construct 

a valid X4 and send a legitimate message to MG that can pass the authenticate 

verification. So, o after receiving the message M3* and verifying it, MG will terminate 

the session with N. In summary, the proposed protocol can resist all message 

modification attacks. 
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5.7.1.2.1.3.9 Man-in-the-middle attack 

As discussed in the replay attack, eavesdropping, and impersonation attacks, the 

man-in-the-middle attack is defeated because of the employment of the real identity of 

IoT node NIDR, the timestamp TS, the one-way hash function, the nonce values generated 

by both the IoT and MG, and the CRPs that are unknown to the attacker. Moreover, the 

chained-hash value CHX is protected using a one-way hash function. Therefore, the man-

in-the-middle attack is prevented. 

5.7.1.2.1.3.10 Modeling attacks 

It is an attack where the adversary collects a large number of PUF CRPs and uses 

a regression algorithm to build a model and predict responses for new challenges. All the 

challenges and their corresponding responses are transferred in an encrypted format by 

using a a one-way hash function. Therefore, the adversary will not be able to collect 

enough useful CRPs to build a model and predict responses to new challenges. 

5.7.1.2.1.3.11 Physical attack 

Any attempt to tamper with the IoT device will change the PUF embedded chip's 

behavior and, consequently, renders the PUF useless. 

5.7.1.2.1.3.12 IoT Device Counterfeit/Cloning 

The IoT device is authenticated through the use of the PUF. PUF responses are 

treated as hardware fingerprints that cannot be duplicated or cloned.  Therefore, by the 

use of the PUF, IoT devices cannot be cloned. 
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5.7.1.2.2 Comparison of Security Features 

We compare the proposed MG-IoT protocol security features with other related 

authentication and key agreement protocols [97,104,105,106,95]. Table 19 shows the 

comparison results. The table indicates that the proposed protocol is secure against all the 

imperative security threats and accomplishes diverse security features. The protocols 

[104-105] used the IoT node real identity to exchange messages with the server, which is 

against protecting the anonymity and the unlinkability of the IoT devices. Furthermore, 

the researchers in [106] do not defend their protocol against the replay attack. Also, none 

of the proposed protocols protects against IoT device counterfeiting, database stealing, or 

physical attacks. 

On the other side, the proposed Mg-IoT protocol supports multiple essential 

security features: First, the proposed protocol does not require any secret key storage or 

secret key sharing over the network. Second, all secret keys are computed locally on all 

the communicating parties. Third, the mini-gateway and the IoT device use their one-time 

alias identity for each authentication session in the proposed protocol. Therefore, it will 

be difficult for an outside adversary to comprehend the activities of the IoT devices. 

Fourth, the proposed protocol used the PUF to protect the IoT device against 

counterfeiting and used the PUF responses as an encryption key to protect the device 

database if the device got compromised.  From table 19, we can conclude that the 

proposed protocol in this chapter can support all the desired security properties, which are 

essential for IoT devices' security. 
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Table 19: Security feature comparison of the proposed mini-gateway _IoT node protocol 

with other related mutual authentication and key agreement schemes. 

Security Property [97] [104] [105] [106] [95] Proposed 

protocol 

Resilience to IG the 

Impersonation 

Attack 

No No Yes Yes Yes Yes 

Resilience to IoT the 

Impersonation 

Attack 

Yes No Yes Yes Yes Yes 

Resilience to Replay 

Attack 

Yes Yes Yes No Yes Yes 

Resilience to Device 

Counterfeit 

No No No No No Yes 

Resilience to 

Modeling Attack 

NA NA NA NA NA Yes 

Anonymity and 

Untraceability 

Yes No No Yes Yes Yes 

Resilience to 

Physical attacks 

No No No No No Yes 

Resilience to 

Database stealing 

No No No No No Yes 

Mutual 

Authentication 

Yes Yes Yes Yes Yes Yes 

5.7.2 Performance Analysis 

In this section, we present a performance analysis of the proposed protocol. The 

performance analysis evaluates the storage requirements.  Also, we analyze the presented 

protocol's overhead and efficiency in terms of computational complexity and 

communication overhead and compare its computational complexity and communication 

cost with the most relevant protocol in the literature proposed by [97], [104],[105], [106] 

and [95]. 
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5.7.2.1 Storage requirements 

Table 20: Storage cost of the proposed scheme 

Table 20 presents the storage requirements for the proposed protocol.  The 

calculation considered only the authentication protocol between the IoT node and the 

mini gateway. In the proposed protocol, each IoT node must store its real identity NIDR 

alias identity NIDA, the real identity of the MGIDR, alias identity MGIDA, authentication 

parameters S1, S2 and S3, Chained hash CHX,and one-time token OTT. We use SHA-1 

and SHA-2 as two examples of hash function, and the output of SHA-1 is 160 bits and 

SHA-2 is 256 bits. By applying these settings, we obtain |NIDA | = 128 bit. |S1 | = |S2 | = 

|S3 | = |CHX| = |OTT| = 256 bits and |NIDR | = |MGIDR| = |MGIDA| = 8 bits. 

On the other hand, MG is required to store the tuple NIDA, NIDR, MGIDA, MGIDR, 

GIDN, TIDN, OTT, C and R. By applying these settings, we obtain |NIDA | = 128.  |NIDR | = 

|MGIDR| = |GIDN | = |MGIDA| |TIDN |=8 bits, |C| = |R| = 128 bits, and |CHX| = |OTP| = 256 

bits. 

5.7.2.2 Computational Complexity Analysis 

We compare the computation cost of the proposed scheme with other related 

schemes [97], [104],[105], [106] and [95]. We only focus on comparing the mutual 

authentication phase between the MG and the IoT. Because the time for executing a 

bitwise XOR operation is negligible, we do not consider XOR operations for 

Node Storage cost (in bits) 

N 128+ 256 * 5 + 8 * 3 = 1432 b 

MG 128*3+ 256 * 2 + 8 * 5 = 936 b 
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computational cost analysis.  To analyze the performance of the proposed protocol with 

respect to other presented protocols in the literature, we conducted simulations of the 

cryptographic operations using Dell Inspiron Laptop with Intel Core i7, dual-core 2.7 

GHz CPU, and 8 GB RAM to act as the IG. we used a Raspberry Pi 4 Model B with 64-

bit quad-core cortex A-72 processor and 1 GB RAM to simulate an IoT device. The 

simulations used PyCryptodome cryptographic and Fastecdsa libraries in Python. For 

these results, we considered the 128-bit arbiter PUF for PUF operation. The fuzzy 

extraction's execution time is almost the same as the ECC point multiplication and the 

execution time for modular exponentiation is double the time of the execution of the ECC 

point multiplication [58]. Table 21 presents the used notation and the execution time of 

each operation. 

Table 21: Execution time of the cryptographic operations 

Operation Computation Time on IoT Computation Time 

on MG 

H: time for executing a one-way 

hash function 

0.002 ms .001 ms 

F: time for executing a fuzzy 

extractor 

5 ms 4 ms 

EM: time for executing an ECC 

point multiplication 

5 ms 4 ms 
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EXP: time for a modular 

exponentiation 

10 ms 8 ms 

HMAC: time for executing the 

HMAC 

2.7 ms 1.5 ms 

ENC: Time for Executing (AES-

CBC Encryption) 

0.18 ms .14 ms 

DEC: Time for executing (AES-

CBC Decryption) 

0.18 ms .14 ms 

PUF: Time for executing PUF (128-

bit Arbiter) 

.12 ms .12 ms 

Table 22: Comparison of computation costs for the authentication phase of the proposed 

scheme and other related schemes. 

Entity [97] [104] [105] [106] [95] Proposed 

Protocol 

IoT 7Th 1THMAC 3Th

+2TTSE + 

TTSD 

2TTP  + 3Th 8Th 10Th + 

2TPUF 

CosT 7*.002 = 
.014 ms 

1* 2.7 = 
2.7ms 

3*.002 + 
.18*2 
+.18 = .55 
ms 

2*5 + 
3*.002 = 
10.006 
ms 

8*.002 = 
.016 ms 

10 * .002 
+.12 *2 = 
.26 ms 

MG 8Th 1THMAC 3Th

+TTSE + 

2TTSD 

2TTP  + 3Th 8Th 13Th + 

TPUF 

Cost 8 *.001 = 
.008 ms 

1 * 1.5 = 
1.5 ms 

3*.001 
+2*.14 
+.14 = .45 
ms 

2* 4 + 
3*.001= 
8.003 ms 

8 *.001 = 
.008 ms 

13*.001 
+.1 = .13 
ms 

Total 

Cost 

.022 ms 4.2 ms 1 ms 18.009 
ms 

.024 ms .39 ms 
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Table 22 summarizes the computational cost comparison between the proposed 

protocol and the other related protocols presented in the literature. The total run time of 

the proposed protocol is .39 ms. When comparing the proposed protocol with other 

related protocols, we found that the proposed protocol is more efficient than [104] that 

used HMAC to complete the mutual authentication process, and [105] that used 

symmetric encryption. Furthermore, the proposed proposal is more efficient than [106] 

that used scaler multiplication.  Although the proposed protocol's computable cost is 

more than [97 and 95], the proposed protocol does not require any secret key storage and 

is secure against database stealing. One of the main strengths of the proposed protocol is 

securing the IoT devices from physical attacks and counterfeiting by employing the PUF 

and the CHX. 
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   Figure 76: Comparison of the number of IoT cryto operations across the protocols 

Figure 77: Comparison of the number of the MG crypt operations across the protocols 
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      Figure 78: Comparison of the total number of crypto operations across the protocols 

Table 22 and figures 76,77 and 78 summarize the computational complexity 

comparison between the proposed protocol and the other related protocols presented in 

the literature.  Table 22 listed out the number of operations of each type for each protocol 

considered. Figure 76 displays the number of authentication operations of each type that 

are completed on the IoT side. Figure 77 depicts the number of authentication operations 

of each type that are completed on the MG side. Figure 79 demonstrates the total number 

of cryptographic operations of each type that are complete for each protocol. As depicted 

from the table and the figures, the proposed protocol used more hash functions than most 
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side to protect the protocol from MG impersonation and secure the MG database to be 

stolen in case the device is compromised. 

 Figure 79: The IoT computational time across the different protocols 

Figure 80: MG computational time across the different protocols 
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       Figure 81: Total computational time across the different protocols 

Table 22 and figures 79, 80 and 81 demonstrate the cost comparison of the 

authentication protocol with other similar protocols.  Table 22 and figure 81 present the 

total computational cost of each protocol.  Figure 79 displays the computation cost of 

each protocol for the IoT side, and figure 80 depicts the computational cost of each 

protocol for the MG side. The results indicate that the proposed protocol has a lower 

computational cost for the IoT side than [104,105, and 106].  Although the proposed 

protocol is higher than [97 and 95], the proposed protocol is resilient against 
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use of HMAC, which is computationally expensive.  Furthermore, protocol [105] has a 

high computational cost due to multiple encryption and decryption calculations. 

We can conclude that the proposed protocol has a higher security level than the 

rest of the protocols.  The proposed protocol achieved the main security goals of 

confidentiality, integrity, and authenticity besides accommodating IoT devices that are 

diverse in their capabilities. 

5.7.2.3 Communication cost analysis 

The following section analyzes the communication cost of the proposed MG-IoT 

protocol. To reduce network congestion and provide fast message transmission, the 

communication costs of the protocol should be as low as possible. For the communication 

cost analysis, we evaluate the communication cost in terms of the size of the message in 

bits. Then, we compare the proposed protocol to the other related protocols.  Table 23 

presents a summary of the sizes of the message parameters. Table 24 lists the message 

parameters that are communicated between the server and the IoT device, along with 

their sizes. 

 Table 23:  Size of the message parameters 

Message Parameters Size in Bits 

ID of N [ [57], [62], [63] 128 

ID of server [63] 8 

SID [57],  [62] 8 

Nonces [61], [63] 128 
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CRP (C, R) [61], [62] 128 

HMAC [63] 256 

Hash Function  [57], [62] 256 

Timestamp (TS) [63] 48 

ECC [60], [59] 256 

MAC [62] 256 

• Message 1: In the transmission (N → MG), N sends the tuple, NIDA, TSN1, X2, SN.

Therefore, the size of this tuple is 128 + 48 + 128+256 = 560 bits. 

• Message 2: In the transmission (MG 1→ N), IG sends the tuple, MGIDA, SID,

TSMG1, Y2, C’, Y3. Therefore, the size of this tuple is 8 +8 + 48 + 128+128+256 = 

576 bits. 

• Message 3: In the transmission (N → MG), N sends the tuple, NIDA, SID. TSN2, X3,

RX, X4. Therefore, the size of this tuple is 128 + 8 + 48+128 +128+256+256 = 

952. bits. 

         Table 24: Communication cost comparison (bits) 

Message 

Number 

[97] [104] [105] [106] [95] Proposed 

scheme 

M1: N→ S 640 bits 136 bits 136 bits 128 bits 560 bits 560 bits 

M2: S→ N 512 bits 568 bits 296 bits 512 bits 560 bits 576 bits 
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M3: N→S 128 bits 256 bits 672 bits 256 bits 304 bits 568 bits 

M4: S→ N ------ ------ 536 bits ---- 304 bits --- 

M5: N→S ------ ------ 144 bits ---- --- 

Total 1280 bits 960 bits 2056 bit 896 bits 1728 bits 1824 bits 

Table 24 presents the communication cost of the proposed protocol and the 

comparison schemes. Four protocols have less communication cost than the proposal, 

which are [97,104,106 and 95] with differences of 30%, 47%, 51% and 5% respectively. 

The proposed protocol requires sending only three messages to achieve mutual 

authentication, and they contain timestamps, XOR-ciphered random numbers, and hash 

functions. Sending this information prevents attacks such as data modification, replay, 

and impersonation [28]. The protocols that have less communication cost do not send all 

this information, and some of them used real identities of the IoT nodes during the 

communication process; consequently, they have been found vulnerable to some of the 

attacks, as can be seen in the above-presented comparison. The proposed protocol has a 

lower communication cost than [105] and a reasonable cost compared to [95]. Therefore, 

even if the proposal is not the protocol with the lowest communication cost, it is suitable 

for IIoT. At the same time, it achieves more security properties than the protocols with 

less cost. 
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5.8 Summary 

This chapter presents a mutual authentication scheme for M2M communication in 

IIoT.  The proposed scheme introduces a mechanism for secure session key 

establishment. the proposed scheme targets to have low computational complexity and 

low computational cost to be suitable for resource-constrained IIoT devices. To achieve 

the lightweight feature, the scheme is based on the lightweight operations XOR and hash 

functions. The scheme provides confidentiality, integrity, anonymity, unlinkability, and 

untraceability capabilities while achieving mutual authentication between the 

communicating devices. The proposed scheme is assessed using both security and 

performance analysis. The security analysis used both formal and informal techniques. 

The formal evaluation employed used the BAN logic and AVISAP simulation to verify 

the proposed protocol's security. The informal security analysis also showed that the 

presented scheme is resistant to common attacks and satisfies the main security properties 

such as confidentiality, integrity, mutual authentication, perfect forward and backward 

secrecy. Furthermore, we evaluated the MG-IoT protocol's efficiency in terms of storage 

requirements, communication cost, and computational complexity and compared it with 

other related protocols.  The results proved that the proposed protocol has a  higher attack 

resistance compared to the other protocols. 

 In summary, the presented protocol achieves the required low computational 

complexity for resource-constrained IIoT devices. Furthermore, the proposed protocol's 

high security and low computational complexity allow resource-constrained IIoT devices 

to implement a security service, protect data privacy, and prevent attacks such as device 
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impersonation, data modification, and man-in-the-middle attacks that can interrupt the 

system operations.  
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CHAPTER VI 

THREE-FACTOR AUTHENTICATION AND PRIVACY 

PRESERVATION SCHEME USING USER DEVICE 

BIOMETRICS FOR IOV SYSTEM 

With the rise of the smart city concept and the growing demands for smart 

vehicles, the Internet of Vehicles (IoV) emerged as new technology.  IoV is an emerging 

concept in intelligent transportation systems (ITS).  IoV is considered an extension of the 

Vehicle-to-Vehicle (V2V) communication network. IoV is connected in an adhoc 

networking environment that employs each vehicle in the network as a node, called 

Vehicular Ad Hoc Network (VANET). The goal of IoV is to enhance the existing 

capabilities of VANETs by integrating them with the Internet of Things (IoT). The 

emergence of the IoV in the transportation system is related to several factors such as the 

large network scale, compatibility with personal devices, the reliability of the Internet, 

and the high-performance processing capabilities. The IoV will lead to the reduction of 

accidents, levels of pollution, and traffic congestion. IoV is also essential for autonomous 

vehicles because it will allow them to communicate with other vehicles surrounding them 

instantaneously. 

Despite the promising aspects of the IoV, it is subject to several security threats 

because sensitive data is transmitted through an insecure channel in the IoV-based smart 

city environment. It can be a rich environment for passive and active attacks where the 

adversary can intercept, modify, or delete messages during the communication 
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process.  The driver needs to determine whether the received message is authentic or not. 

In IoV, vehicles' authentication is crucial to achieve a trusted communication among the 

communicating vehicles. However, most of the currently employed authentication 

protocols in the IoV domain are based on asymmetric cryptography with a high 

computational cost. 

This chapter introduces an efficient and privacy-preserving IoV mutual 

authentication and key agreement scheme. The presented protocol is called Three-Factor 

Authentication and Privacy Preservation Scheme Using User and Device Biometrics for 

IoV System. The proposed scheme enables the communicating devices to verify each 

other’s identities and perform secure, anonymous authentication while the real identities 

stay secret. It will also allow the communicating parties to locally generate shared secret 

keys to ensure the confidentiality and integrity of the exchanged data. The proposed 

scheme utilizes PUF as a hardware security approach and the chained hash PUF concept. 

The proposed scheme employs lightweight operations of XOR and a one-way hash 

function; thus, the scheme does not significantly impact the device's computational and 

battery resources. We evaluate the proposed scheme by using different measures, namely, 

security and performance evaluation. The security evaluation will be both formal and 

informal security evaluation. The formal analysis used the Burrows–Abadi–Needham 

logic (BAN), the automated validation of internet security protocols and applications 

(AVISPA) toolkit. 

Furthermore, the scheme efficiency is evaluated and compared with other related 

schemes. Through the informal analysis, we will assess the proposed scheme against 

well-known security attacks.  Furthermore, we also validate that the proposed 
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authentication mechanism is efficient in storage requirements, computational cost, and 

communication overhead. 

 In Section 6.1, we first introduce the motivation of the work. Section 6.2 discusses 

the security aspects of the IoV. Section 6.3 presents the security threats and potential 

attacks in IoV communication.  Section 6.4 presents the related work and the other 

existing protocols. Section 6.5 demonstrates the network model and the security goals. 

Section 6.6 presents the proposed protocols. Section 6.7 illustrates the protocol evaluation 

process, and finally, section 6.8 summarizes the chapter. 

6.1 Motivation 

Every year, approximately 1.3 million people die, and more than 7 million people 

are injured in around 8 million traffic accidents. People waste more than 90 billion hours 

because of traffic problems (accidents and traffic jams), causing a loss of 2% of the 

global gross domestic product, and vehicular travel generates 220 million metric tons of 

carbon equivalent [116]. The cost of personal transportation in cars is about $3 trillion 

per year in the United States, and 40% of this cost is related to crashes, parking, roads, 

traffic services, and pollution [117]. The authors in [118] stated that the number of all 

vehicles, whether commercial or passenger, used worldwide is more than one billion, and 

it is expected by 2035 to be around 2 billion [119]. 

The technological advances in the last few years led to the emergence of "Smart 

Cities".  Improving road safety, traffic monitoring, and passengers' comfort are the main 

goals of designing new intelligent transportation systems (ITSs) in smart cities. One of 

the main goals of the Intelligent Transportation System (ITS) is tackling the above-
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mentioned issues by providing smart mechanisms that are efficient, accessible, and 

secure. 

Modern vehicles need to integrate smart sensors, powerful computational units, 

IP-based connectivity to the Internet and communicate with other vehicles and other 

devices in the surrounding environment. According to [120], the implementation of the 

IoV requires the integration of intelligent devices, capable processors with powerful 

computing and communication capabilities, internal sensors, external sensors such as 

cameras, location tracking, sensors to detect the physical, mental and emotional condition 

of the driver, and actuators to take actions to create an intelligent system that can support 

the needs of smart cities and the ITS. 

IoV can be defined as a network of vehicles equipped with sensors, software, and 

technologies that enable exchanging information between the car and its surroundings 

through different communication media to connect and exchange data over the Internet 

according to agreed standards. IoV is composed of three fundamental components: 1) the 

inter-vehicular network; 2) the intravehicular network; and 3) vehicular mobile Internet 

[121]. IoV supports six types of network communication, as presented in figure 82: 

Vehicle-to-Vehicle (V2V): An ad hoc communication enables each vehicle to contact its 

neighbor vehicles directly.  This type of communication is used to exchange information 

about the speed and position of surrounding vehicles. 

Vehicle-to-Roadside unit (V2R): An ad hoc communication facilitates exchanging 

information between vehicles and roadside units (RSU). RSUs are used as data storage 

servers. Unlike V2V, V2R allows long-distance communication. Besides, RSUs can act 

as an intermediate hop between the vehicle and the destination. 
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Vehicle-to-Infrastructure (V2I): An ad hoc communication where the vehicle can 

connect to the Internet to get different internet services. 

Vehicle to Personal Devices (V2P): refers to the interaction between vehicles and 

personal devices such as tablets and smartphones.  Personal devices can be related to the 

driver, passengers, cyclists, or pedestrians. This kind of communication can be used to 

create awareness for vulnerable users, road users or connect the vehicle with other 

devices to share files such as music or video streaming. 

Vehicle-to-Sensor (V2S): this can also be called intra-vehicle communication. The main 

goal of this type of communication is to monitor the vehicle's internal performance, such 

as speed, tire pressure, and oil pressure, through the On-Board Units (OBUs). 

Vehicle-to-everything (V2X): this communication allows the vehicle to communicate 

with everything in the surrounding environment. 

Figure 82: The IoV environment with five communication components 
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Based on the above-mentioned different types of communication that the IoV 

supports, IoV enables vehicles to connect to the Internet, constructing an interconnected 

cluster of vehicles that can exchange data about traffic, road safety, and others [122]. 

Furthermore, IoV facilitates communication with drivers, passengers, pedestrians, 

cyclists for entertainment and safety goals using different communication standards. 

IoV will add individual, societal and environmental benefits as described below 

[120]: 

 Individual Level: The implementation of IoV reduces the vehicle running cost by 

lowering insurance rates, reducing operation costs, and minimizing the time spent in 

traffic, which in turn will increase productivity and reduce fatal accidents 

Societal Level:  IoV supports the smart city evolution by lowering road operational costs, 

reducing the number of accidents, and providing real-time traffic updates that can better 

control congestion through traffic management and road network optimization. 

Environmental Level: reducing traffic and controlling congestion through traffic 

management will reduce the production of CO2, which will positively impact the green 

environment.  

Because IoV is one of the main components of the ITS, the security of the IoV is 

an essential factor. The IoV domain vehicles are equipped with the onboard unit (OBU) 

and application unit (AU) to communicate with the other vehicles. These units help 

exchange messages between vehicles and infrastructure, such as Internet-based roadside 

units (RSUs). The vehicles collect sensitive data about traffic jams, accidents, and 

weather conditions. The collected data is sent to the nearest access points for further 

action. This data can be transferred to other vehicles to avoid traffic jams and take an 
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alternative route in severe road conditions or accidents. Because most of the IoV 

ecosystem's communication is wireless, it is subject to different security risks. In IoV, 

most of the channels the vehicles use for communication are not secure, and therefore, 

the adversary can eavesdrop and tamper their messages. 

On another perspective, transferring a driver's data to a trusted authority (TA) can 

lead to a security threat such as data eavesdropping, data modification, or data fabrication 

[123], which can negatively impact the driver's privacy, data confidentiality, and data 

integrity.  Therefore, a secure authentication protocol is essential for IoV to establish trust 

in the system. Developing secure and efficient mutual authentication schemes and 

establish trust are major challenges of an IoV domain. There is limited work on 

developing lightweight mutual authentication protocols for the IoV domain.  Most of the 

available work depends on heavy cryptographical methodologies to authenticate and 

secure the communication between the communicating parties. This chapter's main goals 

are to (1) present a lightweight mutual authentication protocol for IoV that preserves user 

privacy and (2) establish a mechanism to continually verify that the received data is 

coming from the authenticated driver. The proposed authentication scheme should detect 

and discover whenever someone else different from the authorized driver is driving the 

car during the lifetime of the authentication session to maintain the same level of trust 

among the authenticated entities and ensure the security of the IoV ecosystem. 

6.2 Security aspects of IoV 

According to [124], IoV integrates diverse devices, technologies, services, and 

standards, which will increase the need to secure exchanged data and communication.  

The authors in [125] argued that the heterogeneity of the IoV domain has many security 
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vulnerabilities.  The operation of vehicles in an open and vulnerable environment makes 

the IoV vulnerable to cyberattacks and raises serious problems during V2V, V2I, V2R, 

and V2P communication.  An adversary can exploit existing vulnerabilities, eavesdrop, 

manipulate, or delete vehicular data streams with destructive effects.  Suppose the 

adversary succeeds in taking control of the vehicle. In that case, he/she can control the 

vehicle's brakes, heating system, or turning on or off the car, which in turn can present 

significant harm to road safety, including driver, passenger, pedestrian, and road 

infrastructure [126] and [127].  Therefore, it is a necessity to ensure security a high 

priority for the IoV. 

IoV has several security requirements that must be addressed, and security 

solutions must be implemented to ensure user security and privacy.  Table 25 presents the 

main security requirements, the potential attacks that threaten each requirement, and the 

mitigation techniques. 

Table 25: IoV security requirements 

The Security Requirement The definition 

Data Integrity The sent and the received data are original 

and have not to be modified or altered 

[128] 

Data Confidentiality Data need to be protected to ensure the 

secrecy of the data between the parties 

participating in the IoV [129] and [130]. 
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Authentication To ensure that communication is 

occurring between the legitimate nodes. 

The identities of the vehicles must be 

verified [131] and [132] 

Access Control Vehicles must be able to only access data 

and data they are eligible to gain access 

to. Each participating node/vehicle has 

been assigned different roles and 

privileges to access the network [133]. 

Non-repudiation It is preventing a vehicle from denying 

sending data to another vehicle. [134]. 

Availability It is ensuring that the system is always 

available to service the vehicles and users. 

Also, to ensure the ongoing 

communication between the vehicles 

under different conditions [132]. 

Anti-jamming A technique that can be employed to 

prevent malicious vehicles from sending 

fake/interfering messages to the 

surrounding vehicles to interrupt 

communication among vehicles [135]. 
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Message Freshness Enable the vehicle to verify that the 

received messages are fresh and are not 

replayed by an adversary. 

Privacy The vehicle's driving route driving is 

related to people's privacy, and therefore 

it must stay untraceable and get 

compromised by unauthorized access 

[136]. 

6.3 Security threats and attacks in IoV domain 

IoV is exposed to different types of attacks and threats. To enhance the security of 

IoV, it is vital to understand the existing attacks in IoV. In this section, several security 

attacks in the IoV domain are discussed in the following section and presented in figure 

83. 

Sybill attack: The adversary creates some fake vehicles that use fake ids around the 

victim vehicles and sends fake messages such as traffic jamming messages, wrong 

directions, or false positions to misguide and deceive the surrounding innocent vehicles. 

consequently, the whole network is disturbed, and it is risky for users' lives [123], [137], 

and [138] 

Denial of service (DoS) attack: This attack threatens the availability security 

requirement.  It aims to prevent legitimate and innocent users from using network 

services and resources [122] by making them unavailable. It overloads the 

communication channel so that no communication occurs among the authentic vehicles, 
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which is a severe problem. Communication is vital in safety applications because timely 

information is required to avoid accidents [139]. The DoS attack can take different forms, 

such as (1) Communication channel jamming, which will hinder users from the network 

by jamming the communication channel. In this type of DoS attack, the adversary will 

intentionally use a high-power transmitter to continuously transmit a signal at a higher 

power level on the same channel frequency as the target. The target can be: (1) 

communication between vehicles or between vehicles and RSUs; (2) Network 

overloading where the adversary sends fake traffic to other vehicles or RSUs in the 

network to keep the other node busy and prevent them from performing their tasks and 

eventually the performance of the network is reduced; or (3) Packet dropping in which 

the adversary makes the information unavailable to other nodes by dropping the packets 

which carry essential information, so communication is affected. 

Node impersonation attack This attack is a violation of authentication in a network. In 

IoV domain, each vehicle has a unique identity to identify itself, and this unique identity 

is useful in case of any unsafe situations. In a node impersonation attack, the adversary 

may use the id of an authenticated node to send malicious messages to other nodes on the 

network.  In such a case, the innocent vehicles assume that a message is received from a 

legitimate node; thus, confidential information is violated [139]. 

 Man in the middle (MITM) attack: This attack violates data integrity and privacy goal. 

In this attack, the adversary position himself/herself between the legitimate 

communicating parties. As a result, the adversary may eavesdrop on their 

communication, modify the sniffed message, or inject fake messages. At the same time, 

two communicating parties assume that they are directly communicating with each other. 
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Consequently, the message's integrity and authenticity are negatively impacted, and the 

network security is compromised [123] and [133]. 

Replay attack:  this type of attack repeatedly broadcasting the already sent message by 

the adversary to deceive the other vehicles in the network by dropping the priority 

messages from the queue. The system performance would be affected by frequent 

replaying, and bandwidth cost also increases [136]. 

Brute force attack:  session key/symmetric keys play a vital role in cryptographic 

algorithms in securing the information. In this attack, the adversary tries all possible 

combinations and already existed dictionaries to steal sensitive information such as 

passwords. The attacker makes multiple attempts as the brute force approach takes time 

in decoding the encrypted information [122]. 

Eavesdropping attack: In this attack, the attacker acts as a passive illegitimate listener to 

the exchange message between the communicating parties to collect private, confidential 

data of the drivers or the passenger to use it against their privacy without even letting 

them know. 
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 Figure 83:  Security threats and attacks in IoV domain 

6.4 Related Work 

Authenticating vehicles in the IoV domain is a security requirement that has been 

studied by several researchers in conjunction with achieving other security requirements. 

The authors in [140] present the possible vulnerabilities and threats of connected vehicles 

from three different aspects. The first aspect is the vehicle itself that consists of three 

main elements: electronic control units (ECUs), in-vehicle networks, and the gateway of 
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standardized public communications such as 3G/4G, Wi-Fi, and Bluetooth. The second 

aspect is the connection between the mobile device to the vehicle. The third aspect is the 

communication technologies used by the vehicle to communicate with the surrounding 

environment.  Authors in [141] classified possible attacks of connected vehicles into 

physical attacks such as physical damage of the vehicle, close-proximity attacks to 

obfuscate sensor information and inject faulty data in ECUs within a range of 

approximately 10 meters, and remote attacks, including accessing ECUs and sensors via 

insecure communication paths over remote wireless access.  The authors in [142] 

explained that connected vehicles are more vulnerable to cyber threats than traditional 

vehicles due to the communication between the connected vehicle and the surrounding 

external environment and the increased internal communications among the system's 

internal components. 

 The authors in [143] present a lightweight mutual authentication protocol for IoV 

using cryptographic operations. The presented protocol enables a vehicle and a server to 

establish a secret key to secure the ongoing communication while minimizing the 

computational cost associated with the process through a trusted authority server. The 

protocol consists of four main parties: the vehicle, the vehicle server, the trusted 

authority, and the registration authority.  The protocol proved to be secure against 

impersonation attacks because the malicious vehicles cannot generate request messages 

as it involves passing through the second mandatory phase. Furthermore, the protocol is 

resilient against data modification, replay attacks, and password guessing attacks. On the 

other hand, the protocol does not clarify how the trusted authority can identify the 
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vehicles without using an ID. Also, the presented protocol uses a long-term secret key 

during the authentication process, which can be retrieved using side-channel attacks. 

Authors in [144] proposed an authentication scheme that focused on 

authentication, privacy preservation, integrity, and non-repudiation. The researcher used 

Timed Efficient Stream Loss-tolerant Authentication (TESLA).  The authors in [145] 

presented TESLA as a broadcast authentication scheme to provide V2V communication 

using ECDSA to sign the first packet that is sent by each vehicle. Because ECDSA is 

computationally expensive, the researchers in [144] used the Bloom filtering (B.) 

technique as an alternative to ECDSA. In the presented protocol, the RSUs are 

responsible for generating a group of pseudonyms for each vehicle. The vehicle rapidly 

changes its pseudonyms in fixed time slots ensuring privacy. The vehicles are grouped 

according to their similar characteristics like speed and location. The authentication of 

the vehicle is verified against the BF value. Any new vehicle that initiates a 

communication would request a BF value from the corresponding RSU and key from the 

vehicle that it needs to communicate with. The proposed scheme can protect the system 

against malicious nodes, preserve the user's privacy, and helps in reducing delay and 

latency. 

Author [146]  presents an authentication scheme resistant to secret key 

compromisation by presenting a key insulation concept.  It has a Private Key Generation 

(PKG) algorithm that generates a set of keys for both the vehicles and RSUs. They also 

suggested adding to the vehicle an additional Tampered Proof Devices device (TPD) that 

acts as a helper.  They assume that the TPD is physically secure but computationally 

limited, and its stored information can never be disclosed. The presented scheme is based 



321 

on elliptic curve cryptography (ECC). The scheme has four phases.  The first phase is the 

initialization phase, where the PKG generates parameters of ECC. The PKG generates the 

private keys and calculates the corresponding public keys of TPD and RSUs. The second 

phase is the key generation phase, where the vehicles create their secret keys using the 

public keys of OBU and TPD and some randomized parameters. The third phase is the 

signing phase, where the OBU sends the signature to the RSU for verification. The fourth 

step is verification, where the RSU verifies the received signature from the vehicle for 

authentication. The proposed scheme is secure against various chosen plaintext attacks 

and forgery attacks as its private key is of two parts: one part is with TPD, and the other 

is with the vehicle itself. On the other side, it is computationally expensive due to the 

generation of multiple private and public keys and the use of digital signatures. 

The authors in [147] present a two-level authentication key exchange scheme 

employing the Elliptic Curve Cryptography (ECC). During the first authentication level, 

the cluster head (CH) vehicle is verified and authenticated by the CA. Then the 

authenticated CH will be responsible for authenticating the vehicles within the cluster in 

the second level of authentication. The protocol consists of four different phases.  The 

first phase is the pre-deployment of vehicles phase, where the CA assigns the vehicle the 

needed authentication parameters that will be verified during the authentication phase. 

The second phase is the cluster head verification, where the CA verifies and authenticates 

the CH vehicle. The third phase is the authentication and key agreement of the vehicles.  

During this phase, the cluster head verifies and authenticates the vehicles within the 

cluster. After completing the authentication process, the CH establishes a session key for 

their secure communications in the future. The last phase is Dynamic Vehicles Addition, 
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where new vehicles can be dynamically added to the cluster.  The presented protocol is 

not clear how the CA and the CH identify the vehicles without receiving any vehicle ID. 

Also, the proposed protocol is very computationally expensive due to the extensive use of 

public cryptography and digital signature. Finally, the protocol depends on the CH to 

verify and authenticate all the vehicles that are within the cluster.  This design will 

generate a significant overhead on the CH, and at the same time, it is vulnerable to a 

single-point failure.  Moreover, the cluster head will always be changing depending on 

the vehicle speed and position; therefore, the CH will often be altered, reducing the 

authentication session lifetime as the new CH will be elected and a new authentication 

process will be conducted. 

Authors in [148] introduced secure and efficient message authentication protocols 

for IoV communication such as V2V, V2S, V2R, V2I, and V2P. The proposed protocol 

consists of four phases: initial setup, registration, authentication, and communication.  

The presented protocol cannot resist various security threats such as secret key 

disclosure, MITM, and impersonation attacks and does not ensure authentication. The 

adversary can conduct an impersonation attack because he/she can masquerade as a 

legitimate vehicle. Also, the adversary can conduct a secret key disclosure attack by 

being able to extract the secret credentials {Za, Ua, Wa} stored in a smart card. Then, the 

adversary will be able to compute and retrieve the vehicle server's secret key KVS = Za 

⊕ h(Ua||Wa), and random nonce pa = Aa ⊕ h (KVS ||T1). Consequently, the adversary 

can execute a secret key disclosure attack by calculating Ce = De ⊕ KVS ⊕ pa and 

masquerade as a legitimate vehicle and also can conduct a man-in-the-middle attack. 

Finally, because the adversary can obtain the VS's secret key KVS and symmetric key 
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between each entity. Then, the adversary can generate authentication request messages, 

verify response messages, and achieve message authentication with other entities 

successfully. Consequently, the proposed scheme does not ensure secure message 

authentication. 

The researchers in [149] present an efficient message authentication protocol for 

IoV in a smart city environment, called IoV-SMAP. The proposed protocol consists of 

three phases that are initialization, registration, and authentication. The vehicle server 

registers all IoV entities in the communication system during the initialization phase and 

generates a secret master key (KV).  The proposed protocol does not present a technique 

on how the IoV entities can verify the identities of each other.  Therefore, the protocol 

can be subject to an impersonation attack and also a man in a middle attack. 

Furthermore, by impersonating and acting as a legitimate vehicle, the adversary 

will be able to generate the session key between each entity. Then, the adversary can 

generate authentication request messages, verify response messages, and successfully 

achieve message authentication with other entities. Consequently, the proposed scheme 

does not ensure secure message authentication.  The proposed IoV-SMAP can resist 

security drawbacks and provide user anonymity and mutual authentication. 

The authors in [150] present a two-factor authentication and key agreement 

protocol for IoV by combining a password with the PUF.  The proposed protocol 

preserves user's anonymity. The protocol consists of three parties: (1) the User (Ui) that 

receives data from the vehicle sensors and statistical data from the data center;(2) the 

Data Center (DC) that manages and stores data collected by vehicle sensors; (3) and the 

Vehicle Secret Key (Vsk) that is located in the vehicle to collect data from the 
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surrounding environment. The protocol consists of three phases that are system setup, 

registration, login, and authentication. During the setup phase, the DC generates its own 

public-private key pair (pk, sk) and publishes its pk to users and vehicles for encrypting 

the subsequent messages. During the registration phase, both the user and the vehicle 

sensor are registered to the DC.  During the authentication phase, the DC authenticates 

both the user and the vehicle and generates a session key with each of them. On the 

proposed protocol, the user and the vehicle sensor do not authenticate the CD first before 

sending the PUF responses, which can lead to DC impersonation.  Because the vehicle 

sensor generates its PUF challenge, there is no way to verify is the vehicle sensor is 

original or counterfeited. 

The authors in [151] propose a platform for secure data sharing and storage in 

VANETs using blockchain.  The proposed authentication scheme requires the vehicle to 

prove its ID before sharing any data. One of the main weaknesses of the proposed 

protocol is using blockchain that added overhead to the proposed protocol and did not 

support its scalability. Similarly, the researchers in [152] and [153] introduced other 

authentication and key management protocols that employ blockchain, which inherit the 

same weaknesses as [151]. 

The authors in [154] present an efficient protocol for mutual authentication in the 

IoV. The proposed protocol uses physical unclonable functions as part of the 

authentication process.  The researchers claim that the proposed protocol Protects against 

physical and cloning attacks and preserves user's privacy.  The proposed protocol consists 

of three phases that are: Device registration, authentication, and CRP update. Each 

vehicle needs to register itself with the trusted authority (TA) during the device 
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registration phase before it can become a part of the IoV.  During the authentication 

phase, the vehicles are authenticated to the TA and the RSUs and generate a session key.  

Once the authentication process is completed, the authenticated vehicle can communicate 

with the RSUs using the session key.  The third phase is the CRP update, where the TA 

can update the CRPs of the vehicles. The proposed protocol preserves the user's privacy. 

However, the proposed protocol does not support ensuring the device's originality before 

completing the registration process. 

The authors in [155] present a cloud-centric three-factor authentication and key 

agreement protocol that integrates passwords, biometrics, and smart cards to ensure 

secure access to both cloud and Autonomous Vehicles (AVs). At the end of the 

authentication process, two session keys are negotiated. The first key is between the user 

and AV to support secure remote control of the AV, and the second key is negotiated 

between the mobile device and the cloud. The proposed protocol has three entities, 

including the user, the vehicle, and the cloud. The protocol consists of 6 phases: system 

setup, AV registration, user registration, user authentication, password, biometrics 

change, and smart card revocation. During the setup phase, the cloud generates and 

advertises the Elliptic Curve Cryptosystem (ECC) public parameters and generates an ID. 

In the AV registration phase, the cloud generates and distributes a secret key for each 

AV. In the user registration phase, the cloud issues a smart card storing the secret key to 

each user. During the user authentication phase, the authentication mechanism is 

employed to verify the user identity and build secure channels among the cloud, the AV, 

and the user. Although the protocol achieves its security goals, it is computationally 

expensive due to the extensive use of the ECC scaler multiplier and the Fuzzy extraction.  
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Therefore, this protocol does not support the required system efficiency and does not 

support system scalability. Furthermore, the protocol does not support physical security. 

The authors in [156] present a physical unclonable function (PUF) based on three-

factor authentication and key agreement protocol to ensure that the system is secure even 

if the user devices or sensors are compromised. The researchers used password, 

biometrics, and PUF as the three authentication parameters. The proposed protocol 

combined the user characteristic through the use of biometric and the device 

characteristic through the use of the PUF. The protocol consists of five stages: system 

setup, registration, login and authentication, password update, and biometric update. 

Although the proposed protocol is secure, it has several limitations: (1) it depends heavily 

on scaler multiplier for ECC and fuzzy extractor, which are computationally expensive; 

(2) although the proposed protocol used PUF as a hardware fingerprint, the proposed 

protocol can't verify the originality of the devices and sensors before completing the 

registration process which in turn does not protect the IoV ecosystem from the devices 

counterfeiting; and (3) the lack of efficient computation negatively impact the scalability 

of the proposed protocol. 

The authors in [157] propose a lightweight and secure authentication and 

attestation scheme for attesting vehicles on the roads. The presented protocol proposed a 

security scheme using PUFs to perform a combined authentication and attestation 

protocol for the IoV network. The Roadside Units initially authenticate the Vehicle 

Onboard Units (OBUs) (RSUs), and then the attestation process is to be completed at the 

edge servers. The authors state that they used PUFs for generating on-the-fly secret 

information that can be used as part of the authentication process. The proposed protocol 
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consists of five main entities: the vehicle Vi, the RSU Rj, the edge server ES, the IoV 

cloud server IoV C, and the trusted authority TA. The RSUs are responsible for 

authenticating the vehicles. The proposed protocol consists of the initialization phase, 

Registration phase, Vehicle-RSU authentication phase, and Attestation phase. Although 

the proposed protocol is lightweight, it has several limitations.  First, it uses the same 

pseudoID for both the vehicle and RSU in every authentication session.  This, in turn, can 

lead to vehicle traceability and linkability. Second, the same challenge and response are 

used in every authentication session. If a hacker succeeded in retrieving the challenge and 

the response, they could impersonate the vehicle. Third, the authentication session can't 

be transferred from one RSU to another within the same cluster, limiting the protocol 

scalability. 

Many of the above-presented protocols share the same common limitations. First, 

many suggested protocols used computationally expensive cryptographic operations that do 

not support system scalability and, at the same time, do not support devices with limited 

memory and computational capabilities. Second, most of the proposed protocols did not 

focus on the ensure the authenticity of the communicating devices and secure the system 

from integrating counterfeited devices. However, this is considered a significant concern in 

the IoV domain. Third, many proposed protocols do not implement multiple authentication 

levels, which is the core of the defense-in-depth concept. Fourth, in some of the presented 

protocols, the researchers overlooked the devices' privacy, which, in response, does not 

guarantee the anonymity and privacy of the IoT device and, at the same time, allows devices 

traceability. Fifth, many of the proposed protocols require storing long-term secret keys that 

can be retrieved using side-channel attacks. Sixth, some of the proposed protocols, such as 
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[157], use the same CRP for every authentication session and store the CRP on the vehicle's 

OBU. If the device is compromised, the adversary may obtain the CRP and impersonated 

the vehicle. 

The available literature shows the necessity of using multi-factor authentication to 

implement the defense-in-depth concept. Also, it highlights the need for lightweight 

authentication protocols that fit the limited resources devices and support the system 

scalability. The proposed scheme in this chapter combines both the driver's biometric 

parameters and the PUF as unique identifiers to authenticate the vehicle and the driver.  

Using only one of the two mechanisms will lead to limitations in the presented scheme. 

Using the driver's biometric only will authenticate the driver, but the vehicle's authenticity 

will be questionable. 

On the other hand, using only the PUF to authenticate the vehicle will authenticate 

the vehicle but will not enable us to verify the authenticity of the driver.  Therefore, we 

propose combining both the vehicle and the driver biometric to implement a secure and 

robust authentication protocol that facilitates building a root of trust among all the 

communication parties. The proposed protocol will achieve three levels of authentication, 

namely, V2V, V2I, U2I. 
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6.5 Three-Factor Authentication and Privacy Preservation Scheme Using User 

and Device Biometrics for IoV System Network Model and Security Goals 

We present an IoV network model and introduce the security mechanisms and 

components of the proposed scheme. Then, we will discuss the main security goals. 

6.5.1 Network Model 

Figure 84 presents the network model of the proposed scheme. We propose a 

four-layer architecture consisting of 6 main entities: the driver (D), the Vehicle (V), RSU, 

central RSU (CRSU), the vehicle owners cloud server (VOCS), and trusted authority 

(TA).  The vehicles and drivers are at the lowest layer. The vehicles and drivers are 

connected wirelessly to the next layer, which consists of RSUs. The RSUs are connected 

to a central RSU that is located in the third layer. This connection may be wired or 

wireless. Finally, the CRSU is connected to both the service provider cloud server and the 

trusted authority (TA.) through a wired connection. There are several types of 

communication modes, such as Vehicle to Vehicle (V2V), Vehicle to Infrastructure 

(V2I), user to infrastructure (U2I). 

The responsibility of the TA is to perform the registration of V, RSUs, CRSUs, 

and the D prior to placement in the network. Each V has an OBU, which processes and 

stores all vehicles' information [158]. Vehicles are also equipped with sensors that sense 

and process surrounding information and send that information to the OBU of the vehicle 

[159]. Each vehicle is connected with the Internet and can also send and receive data 

using the Internet [160]. D-VOCS, RSU-CRSU, V-VOCS, and CRSU-TA 

communications occur through the Internet. V2V and V-RSU communication also occur 

through the Internet, but it is preferable to have dedicated short-range communications 

(DSRC) [161]. 
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Figure 84: Proposed IoV network model 

• The Vehicle is equipped with sensors, ECUs and in-vehicle networks, and

onboard units (OBUs).  The OBU is a device that is implanted in a vehicle, and it 

is used to send and receive data to other OBUs or RSUs. Furthermore, a PUF chip 

is embedded in the OBU and used as the vehicle fingerprint. By using OBUs, 

vehicles can communicate with each other as well as with the RSUs. The 

communication among them is based on the DSRC protocol [155]. Therefore, any 

attempt to tamper or separate the PUF from the OBU renders the PUF useless 

[162] and [163] 
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• The Driver: The system continuously monitors the driver's behavior to make sure

that he/she is the authorized driver on the vehicle and he/she is in good health 

condition.  

• Roadside Unit (RSU): It is a stationary device located along the roads and at

intersections. RSU gathers information about the road traffic and broadcasts it to 

the OBUs within the communication range. Also, an RSU can communicate with 

other RSUs and the CRSU to exchange messages related to road traffic through a 

secure channel. 

• Central RSU (CRSU): The CRSU is a device that is in charge of a group of

RSUs, and it is considered the intermediate communication channel between the 

RSU and the T.A.  The CRSU collects and aggregates the data from all its RSUs 

and sends it to the T.A. for further analysis and storage. 

• Vehicle Owner Cloud Server: The VOCS is responsible for the vehicle's data

storage and data analysis and the driver's collected data. The VOCS is in charge 

of registering the vehicle and the driver on the company level.  The analyzed data 

results will help the organization monitor the driver's health and behaviors and 

allow the company to monitor the activities of the vehicle as an asset. 

• Trusted Authority (TA): The TA is responsible for data storage and data

analysis. The TA collects real-time traffic information, road conditions, and 

environmental data from the CRSUs and analyzes them for situational awareness.  

All vehicles, RSUs, and CRSUs, need to register with the TA. The TA is assumed 

to be completely trustable, hard to compromise, and powerful. In addition, it has 

sufficient computation and storage capacity. 



332 

The proposed scheme consists of four main layers: the physical layer that consists 

of the vehicles and the driver, the edge layer consists of the RSUs, the fog layer that 

consists of the central RSUs, and the cloud layer that consists of the trusted authority 

(TA), the Vehicle Owner Cloud Server (VOCS), and the PUF cloud. The Vehicle on 

Layer I is equipped with different types of internal and external sensors collecting data in 

real-time.  This work focuses on sensors that collect real-time data from the vehicle 

surrounding environment, such as radar, lidar, 360 camera, proximity sensors, and lane 

tracking sensors.  The collected data is sent to the designated ECUs units for further 

processing and reporting. Data that has to be reported will be sent over by the appropriate 

ECU to the OBU unit to be transmitted to the RSU.  The OBU has an implanted PUF 

chip that will be used during the authentication process. The driver's fingerprint will be 

collected via the in-vehicle fingerprint scanner.  Additionally, the driver's biometric 

features such as EKG or ECG will be continuously collected by using a steering wheel-

based sensor for real-time driver's verification. 

The edge layer is a series of individual RSUs that are under the authority of a 

single Central RSU. RSUs collect real-time data from the vehicle and acts as a relay 

between the vehicle and the Central RSU. In addition, the RSU facilitates V2V 

communication. Furthermore, when a vehicle moves to the proximity of a new RSU, to 

verify the vehicle's authenticity, the most recently visited RSU will help the new RSU. 

The fog layer houses the CRSUs, where the CRSU interconnect multiple 

individual RSUs.  The CRSU plays a major role in facilitating vehicle communication 

that involves the following activities: (1) vehicle authentication; (2) handover between 

neighbor RSUs; (3) maintain authentication session and parameters during the vehicle 
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trips that may cross multiple RSUs. Furthermore, the CRSU will be in charge of data 

cleaning, aggregation, analysis, and decision-making. The main goal of this distributed 

architecture of the RSUs is to create a scalable architecture for vehicle systems that 

exhibit flexible admission control and avoiding single-point failure. Additionally, it 

enables the vehicle to be authenticated just once using its PUF when it is within the 

CRSU range. This, in turn, reduces the expected latency and the computational 

complexity of each new authentication session. The RSUs on the edge layer and CRSUs 

on the fog layer participate in local decision-making such as reroute vehicles to reduce 

traffic jams or avoid road constructions or predict the probability of accidents in a 

specific area.   Based on local decision-making, the alarm system gives a warning 

message to the driver of that particular vehicle. 

The cloud layer is generally virtualized in data centers and communicates with the 

other layers using the Internet. The architecture presented in figure 84 has three clouds.  

The first one is the cloud of the Vehicle Owner Cloud Server (VOCS.), where the 

collected data from the vehicles and the drivers will be stored and analyzed to be utilized 

as an organizational monitoring system. This stored data will be used to conduct further 

analysis and mine knowledge to help the organization make better decisions regarding 

their business. The VOSC is responsible for the registration of the vehicles. The VOCS is 

in charge of generating the communicating credentials for the vehicles, such as alias 

identities, OTP, and secret keys to be used during the authentication process.  After 

storing the generated credentials in the vehicle's memory, the vehicles can be deployed in 

the field. The VOCS is also responsible for registering the driver and stores the template 
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of his/her biometrics to be used during the authentication process. The driver can also 

access the data of the deployed vehicles from the VOCS. 

The second cloud is the cloud of the trusted authority (TA), where the collected 

data that has been sent through the fog layer will be stored on Distributed File System 

(DFS). This stored data will be used to conduct further analysis and to mine knowledge. 

The TA is responsible for registering various network communicating entities, including 

the vehicle, the RSU, and the CRSU.  RSUs, CRSUs. TA collaborates in large-scale 

decision-making, such as traffic conditions for a whole city. The TA is in charge of 

generating the communicating credentials for the vehicles, such as alias identities, OTP, 

and other authentication parameters.   The third cloud is the PUF cloud, where the 

manufacturers store the CRPs of the vehicles, RSUs, CRSUs, TA, and VOCS.  The CRPs 

will be used to authenticate the vehicle as well as ensure the authenticity of the devices to 

protect the IoV ecosystem from integrating counterfeited devices.  

The manufacturer assigns each vehicle a unique secret ID. The VOCS assigns the 

vehicle and the driver unique alias IDs. Also, the TA assigns the vehicle an alias ID. The 

Alias IDs will be changed every authentication session. The main goal of the alias ID is to 

protect the vehicle and the driver's anonymity and ensure their untraceability. 

The communication between any two entities is subject to both active and passive 

attacks. In passive attacks, the adversary can eavesdrop on the communication. In active 

attacks, the intruder may replay, modify, or delete specific communication messages. The 

message header that contains the device Alias ID is sent in clear text while the payload is 

sent in an encrypted format.  The number of vehicles can vary throughout the lifetime of 

the network. Because adding a new vehicle to the network is highly possible, the 
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proposed protocol accommodates system scalability. The proposed scheme supports the 

dynamic addition of vehicles to the IoV network without changing the network's security 

states. 

6.5.2 Driver biometric and vehicle biometric 

Ensuring the security of the IoV ecosystems requires ongoing authentication of 

the communicating entities and verification of the collected data from both the vehicle 

and the driver to establish trust. An authentication mechanism is needed to ensure the 

validity of the data before being used to analyze the collected data about the driver and 

the vehicle surrounding environment. Furthermore, there is no proof that the collected 

data is still related to the same driver during the authentication session once the driver got 

authenticated. To ensure safety and security, the fleet vehicle in the IoV ecosystem 

requires continuous monitoring of the driver.  Therefore, the received data from the 

driver need to be verified and validated continuously to ensure that it is coming from the 

same driver during the whole authentication session [145] and [146].  The IoV system 

needs to ensure that the driver's received data belongs to the authenticated driver and also 

is obtained from the authenticated vehicle. This can be achieved by using user biometric 

and vehicle biometric that the PUF represents. 

6.5.2.1 Biometric authentication techniques 

6.5.2.1.1 Driver's biometric authentication 

During an authentication session, the verification process can be performed based 

on one or more of the following three different factors: (1) something we know such as a 

password or unique identification value; (2) something we have such as token or secret 

keys; and (3) something we are such as biometric features like fingerprint, voice, face, or 
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electrocardiography (ECG). Biometric authentication is considered a decisive 

authentication factor compared to other authentication credentials because it is a unique 

identifier for each human and cannot be transferred or replicated [164]. Authentication 

mechanisms can be categorized as static and continuous authentication methods [165]. 

Static authentication can be treated as an initial authentication where the user can be 

authenticated to the system. Still, there is no post-authentication monitoring technique to 

ensure that the same user is initially authenticated [166]. 

On the other hand, continuous authentication mechanisms monitor a system 

during the lifetime of the authentication session to verify and ensure that it is the same 

user who accesses the system [167]. The proposed scheme employs both static and 

continuous authentication of the driver to ensure the same driver during the whole 

authentication session. In addition, the constant collection of the driver's biometric will 

be an effective method to monitor the driver's health condition.  The proposed scheme 

will authenticate the driver using his/her biometric in the fingerprint format as the static 

biometric feature and the driver's biometric in the ECG or EKG format as the continuous 

biometric feature. 

6.5.2.1.2 Vehicle biometric mechanism based on PUF and chained hash PUF 

authentication 

The PUF technique uses the hardware properties of the vehicle for unique 

identification. The proposed scheme achieves mutual authentication by implementing a 

challenge-response authentication mechanism. In the proposed scheme, during the 

registration phase, both the vehicle and the TA hash the response of a PUF challenge and 

the TA master secret key to produce a hashed value named CHX. Then, for all 
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subsequent authentication sessions, the vehicle hashes the previously-stored chained 

CHXx-1 along with the new Rx, to generate a new chained hash CHXx. The TA retrieves 

the Rx value from its database and hash the retrieved R with the previously stored 

chained CHXx-1. Then, it compares the resulting value (CHXx' = h (R'|| CHXx-1)) with 

the received CHXx’. If it matches, it will authenticate the vehicle node. Once the 

authentication is completed, the two communicating parties will store the CHXx in their 

databases and use the CHXx-1 along with the exchanged random values to generate the 

shared session key(ssk). 

During the driver authentication, the hash value of the combination of the vehicle 

Rx and the user static biometric will be calculated before being sent to the VOCS to 

authenticate the driver.  This process aims to secure the driver's privacy and ensure the 

security of the biometric feature. 

The proposed scheme chains the blocks of hashed response values together by 

hashing the new PUF response value with previously generated chained hash PUF values 

and the vehicle's real identity. Thus, my mechanism looks like a blockchain technology at 

first glance, but it does not utilize blockchains. Because the PUF response value cannot 

be predicted or replicated, the adversary can't predict the chained hash PUF value. The 

chained hash PUF value is used to present a historical factor for authenticating the 

vehicle and the driver. Employing the chained hash PUF mechanism and user biometric 

technique ensures mutual authentication through a challenge-response scheme which is 

essential in IoV ecosystem security. The two-way challenge/response authentication 

technique allows the communicating parties to check the device’s authenticity and, at the 

same time, enables the communicating parties to ensure that they are not communicating 
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with a malicious node. The use of the PUF proves the device's identity and ensures its 

originality.  The use of the cumulative chained hash PUF value proves the ability of the 

communicating parties to show proof of knowledge of past chained hash PUF value. 

6.5.3 Security goals 

Because security attacks on the vehicles in the IoV ecosystem may cause physical 

damage and loss of human lives, security requirements became vital in the IoV domain. 

Single-factor authentication is not sufficient to validate the security of the vehicles and 

users in the IoV domain. A 3-factor authentication protocol is a promising alternative to 

secure the IoV ecosystem.  This chapter presents a three-factor authentication 

schemewith the following goals: 

1. Mutual authentication:  The goal of mutual authentication is to ensure that the

communication is occurring only among the legitimate parties as well as ensuring 

that only the legitimate parties have access to the vehicles, the RSU, VOCS, and 

the TA. Therefore, the legitimate parties should be able to prove they are 

who/what they claim. 

2. Secret session key (ssk) perfect secrecy: the ssk of one session should not be

derived even if the adversary reveals the ssks of previous sessions. 

3. User/vehicle anonymity: the proposed scheme should be able to preserve

user/vehicle anonymity. The adversary must not identify the user's or vehicle's 

real identity by capturing any communication message. 

4. User /vehicle untraceability: the scheme should preserve user's and vehicle's

privacy and ensure that an adversary can't trace the user's actions and status as 

well as vehicle location.  
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5. Biometric privacy protection: The leakage of a user's biometric template can

cause serious privacy risks once being leaked. To preserve biometric privacy, no 

biometric template will be saved in cleartext on the VOCS. 

6. System scalability: the scheme should be scalable and be able to accommodate

the growing number of vehicles. This goal can be achieved by reducing the 

communication overhead and reducing the number of times a vehicle needs to 

authenticate to the RSUs. 

7. Low latency: Because the IoV is dynamic and the vehicle movement is so

frequent and fast, the proposed scheme needs to be efficient and not 

computationally expensive. One way to achieve this goal is by reducing the 

required data to complete the authentication process and employing lightweight 

cryptosystems. 

8. Counterfeiting and physical protection: This goal can be achieved by using the

PUF. 

6.5.4 Network model assumptions 

 We make the following assumptions. 

• Every vehicle is equipped with a PUF.

• The communication between a vehicle's OBU and PUF is considered secure.

• Every vehicle is equipped with a fingerprint scanner.

• Every vehicle is equipped with a smart steering wheel that can collect data about

the driver’s health. 
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• Every vehicle is equipped with a keypad for the driver to insert his username and

password. 

• The communication between the vehicle's OBU and the fingerprint scanner is

considered secure. 

• The communication between the vehicle's OBU and the smart steering wheel is

considered secure. 

• The communication between CRSU and TA is considered to be secure.

• The communication between the RSUs and the CRSU is considered secure.

6.5.5 Threat model 

Assume vehicle x sends an authentication request to the VOCS, an adversary S is 

able to replay, eavesdrop, tamper, and inject packets sent by a vehicle or by the driver. 

Moreover, S may gain physical access to vehicles and exploit physical attacks to retrieve 

stored secret data.  The following assumptions about security properties and adversary 

abilities are made. 

1. The used communication channel during the registration process is secure.

2. The one-way hash function is collision resistant.

3. The vehicle's OBU has protection against tampering.

4. Replay attack: An adversary can capture messages from old authentication sessions

and replay them in the current session. 

5. Eavesdropping attack: the adversary can eavesdrop on the communication channel

between the vehicle and the infrastructure. 

6. Message modification attack: the adversary can tamper with intercepted messages.
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7. Injection attack: the adversary can send counterfeit messages.

8. Impersonation attack: The adversary can pretend to be a legitimate vehicle or a driver

and sends a message to the infrastructure. Also, the adversary can impersonate the 

infrastructure and sends a message to the vehicle. 

9. Physical attack: the adversary can conduct a physical attack on vehicles to extract

stored secrets in memory. Any physical attack will tamper with the PUF and destroys it. 

6.6 Proposed authentication scheme: Multi-Factor Authentication and Privacy 

Preservation Scheme Using User and Device Biometrics for IoV System 

Fleet vehicles are a special type of vehicle that may share their data with more 

than one destination. On the road, the fleet vehicle is treated as any other regular vehicle 

that can collect data from the surrounding environment to support the intelligent 

transportation system. From another perspective, the fleet vehicles need to continuously 

communicate their data and the drivers' data with the vehicle owning company as a 

mechanism of fleet monitoring. This work focuses on authenticating the fleet vehicles in 

the IoV ecosystem to the road infrastructure and authenticating both the vehicle and the 

driver to the cloud server of the vehicle-owning company.  The continuous growth of the 

number of fleet vehicles on the road highlights the need to optimize the communication 

tasks and the authentication process to reduce the consumed energy and support the 

system scalability. According to [168], a fleet monitoring system adds several benefits to 

businesses. First, it will allow businesses to collect real-time data about the driver's 

behaviors for driver safety and build trust between the drivers and their managers to 

increase drivers' retention. Second, the implementation of fleet monitoring allows 

businesses to track the vehicle to be able to identify the vehicle location at a given time. 
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Fleet tracking will provide businesses with real-time data about the vehicle operation that 

can reduce the vehicle cost and help businesses make better decisions about new vehicle 

acquisition. At the same time, an effective tracking system can ensure vehicle safety. 

Third, it provides the businesses with a dynamic and accurate Electronic Logging Device 

(ELD) compliant system to track the vehicle's hours of service to reduce the accidents 

that fatigued drivers can cause. 

This work proposes a lightweight mutual authentication and key agreement 

scheme for communication between vehicle to road infrastructure and authentication and 

key agreement between the vehicle and user to the VOCS. Furthermore, to reduce the 

latency and support the system scalability, the proposed scheme will present how an RSU 

can communicate and collaborate with other RSU under the same CRSU to verify the 

legitimacy of a roaming vehicle's expedited authentication process. The proposed scheme 

aims to build trust among all communication parities while reducing the computational 

complexity and the computational cost, ensuring security and preserving privacy during 

the authentication process and all subsequent communication, and supporting system 

scalability. 

The proposed scheme consists of four phases: the enrollment phase, registration 

phase, mutual authentication phase, and key agreement phase. The enrollment phase will 

be completed during manufacturing. The trusted authority (TA) will complete the 

registration phase when the vehicle communicates with the road infrastructure. The vehicle 

owner cloud server (VOCS) will complete the registration phase when the vehicle is 

communicating with the owning company monitoring system.  The mutual authentication 

and the key agreement phases will be completed between V and TA, V and VOCS, and 
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Driver and VOCS without any human involvement. Every two parties are responsible for 

ensuring a secure, anonymous mutual authentication and key generation. V and TA, Driver 

and VOCS, and V and VOCS are based on the client-server topology. The relationship 

among the different vehicles is based on peer-to-peer topology. The mutual authentication 

and the key generation phases are broken down into other sub-phases 

5. The mutual authentication and key agreement between V and TA

6. The mutual authentication and key agreement between V and VOCS

7. The mutual authentication and key agreement between D and VOCS

The proposed scheme utilizes a one-way hash function, simple XOR function or 

symmetric encryption between the communicating devices. Furthermore, both vehicles 

and drivers use Alias IDs (pseudonyms) instead of using their real IDs during the 

communication process. Alias IDs support the anonymity of senders' IDs, receivers' IDs, 

and the sender-receiver relationship. The abstract notations used to describe the proposed 

authentication scheme are listed in table 26. The scheme phases are presented below. 

6.6.1 Enrollment Phase 

The manufacturer will collect a set of CRPs for each vehicle, RSUs, CRSUs, and 

the cloud servers during the enrollment phase. The manufacturer will test all the CRPs 

under different temperature and voltage conditions and consider the aging effects to keep 

only the error-free CRPs.  Then, the manufacturer will load the CRPs of the vehicle, the 

RSUs, the CRSUs and the servers to the cloud of their service providers.  The service 

provider container is part of the PUF architecture that is presented in chapter 2.  The main 

goals of PUF are to be used as the device biometric that is unique per device, protect the 
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device from having counterfeited parts, and generate a relevant, unique key for the 

device.  The uniqueness of the generated key in the network would be guaranteed based 

on the diversity and the manufacturing variations that generate the PUF. The generated 

PUF responses will be used to generate the symmetric keys. 

Table 26: Notations used in the scheme 

Notation Description 

Trusted Authority TA 

Vehicle Vi 

Vehicle owner cloud server VOCS 

Driver Di 

VIDR Vehicle Real ID 

VIDA Vehicle Alias ID 

TAIDR Trusted Authority Real ID 

TAIDA Trusted Authority Alias ID 

VOCSIDR Vehicle Owner Cloud Server Real ID 

VOCSIDA Vehicle Owner Cloud Server Alias ID 

OTP One Time password 

OTT One Time Token 

MSK Master Secret Key 

PUF Physical unclonable function 

CHx Chained hash PUF 

C Challenges 

R Response 

VTA1 Authentication parameter between V and 

TA 

VCS1, VCS2 Authentication parameters between V and 

VOCS 
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VTID Vehicle Type ID 

RV Random values 

Ui Username 

PUi User password 

FP User’s fingerprint 

BBU User’s behavioral biometric 

ZU1, ZU2 Authentication parameters between D and 

VOCS 

TS Timestamp 

H Hash function 

6.6.2 Registration Phase 

6.6.2.1 Vehicle – TA registration process 

Each vehicle needs to register itself with the TA before being deployed in the 

field and be part of the IoV system.  The TA can be a state-wide entity where all vehicles 

need to be registered with this TA. The vehicle will send a registration request to the TA, 

including its ID. Once the TA receives the registration request, it will complete multiple 

tasks, as described in figures 85 and 86. First, the TA will assign alias IDs to each 

vehicle. The alias ID will be a fake ID that the vehicle will use to communicate with 

other communication parities in the IoV domain. Alias IDs will act as pseudonym IDs 

and will be dynamically changed in every authentication. The goal of the Alias ID goal is 

to protect and ensure the unlinkability and untraceability of the vehicle and to support the 

anonymity of each vehicle in each session. 
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Second, the TA will send the vehicle a PUF challenge to use the PUF function to 

calculate the corresponding PUF response. The TA will use the PUF response as a seed to 

calculate the chained hash PUF by calculating the hash value of the PUF response 

concatenated with the secret vehicle ID. Third, TA will use the PUF function to generate 

the PUF response (RTA) of its challenge (CTA). The challenge will be stored on the 

memory of the TA, and the response will be calculated for every authentication session. 

Fourth, TA will use a random number generator to generate a random value to be used as 

one-time passwords (OTP) between V and the TA. There will be a unique OTP between 

each vehicle and the TA. Finally, the TA will insert and store VIDR, TAIDR, VIDA, TAIDA, 

OTP, and the CHXx, in the OBU of each vehicle. 

Vehicle-TA Registration 

Step1: The vehicle sends a registration request to the TA, including its ID (VIDR). 

Step 2: The TA searches its database to check if the vehicle is registered. If it is not 

registered, it sends a message to the vehicle, including a PUF challenge, so the response 

can be used as a seed to create the chained hash PUF 

Step 3: Once the vehicle receives the challenge, it will use the PUF function to calculate 

the response and send it to the TA. 

Step 4: Once the TA receives the response, it will verify the received response and 

compares it with the retrieved one from the PUF cloud.  After the successful verification, 

the TA will generate a nonce (a) and will use the PUF function to generate the response 

of its challenge and complete the following calculations: 

1. Calculates the chained hash (CHXxi)= H (Rv || VIDR)

2. Generates an OTPVi

3. RTA = PUF(CTA)

4. Calculates an authentication parameter VTA1 = H (TAIDR || MSKTA || RTA|| VIDR).

The vehicle does not know the TAIDR, RTA, nor MSKTA.

5. Calculates an Alias ID for the vehicle VIDA = H (R1|| a || VIDR)

Finally, the TA stores the VIDR, VIDA, CTA, OTPVi. CHXxi and the vehicle stores on its 

OBU the VIDA, OTPVi. CHXxi, VTA1. 

  Figure 85: The registration process between V and TA 



347 

Vehicle TA 

VIDR, Generate a nonce a VIDR 

The VIDR is already registered? 

       If no, TA communicates with the PUF cloud 

     to retrieve a vehicle’s CRP.  

Cv 

Rv = PUF(Cv) VIDR, Rv 

1. Verify the PUF response, and if it is

correct, TA will complete the following

calculation:

2. Generate a nonce (a)

3. Generate the PUF response of its

challenge RTA= PUF(CTA)

4. VTA1 = H (TAIDR || MSKTA ||RTA|| VIDR)

5. Generates an OTPVi

6. CHXxi = H (Rv || VIDR)

7. VIDA = H (Rv|| a || VIDR)

Store: VIDR, VIDA, CTA, OTPVi. CHXxi 

        VIDA,OTPVi. CHXxi, VTA1 

Store VIDA, TAIDA, OTPVi. CHXxi, VTA1 

Figure 86:  The Exchanged Messages between V and TA during the 

6.6.2.2        Vehicle – Vehicle Owner Cloud Server (VOCS) registration process 

Each vehicle needs to register itself with its VOCS before being deployed in the 

field. The VOCS is the owning company cloud server that is in charge of authenticating 

the vehicle and storing and analyzing the collected data from the vehicle. The vehicle will 

send a registration request to the VOCS, including its real ID. Once the VOCS receives 

the registration request, it will complete multiple as described in figure 87 and 88. First, 

the VOCS will assign an alias ID to each vehicle. The alias ID will be a fake ID that the 

vehicle will use to communicate with the VOCS. Alias IDs will act as pseudonym IDs 
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and will be dynamically changed in every authentication. The goal of the Alias ID goal is 

to protect and ensure the unlinkability and untraceability of the vehicle and to support the 

anonymity of each vehicle in each session. 

Second, VOCS will use a random number generator to generate a nonce (b) to be 

used in generating the vehicle’s alias ID and a random value to be used as a one-time 

token (OTT) between V and the VOCS. There will be a unique OTT between each 

vehicle and the VOCS. Third, the VOCS will generate a PUF response (RCS) to its 

challenge. Fourth, VOCS will use vehicle real ID, its real ID, the RVOCS, and its MSK to 

generate authentication parameters using a one-way hash function XOR operations. 

Finally, the VOCS will insert and store VIDR, VIDA, VOCSIDA, OTT, and authentication 

parameters VCS1 and VCS2. 

Vehicle-VOCS Registration 

Step1: The vehicle will send a registration request to the VOSC, including its ID (VIDR). 

Step 2: VOSC searches its database to check if the vehicle is registered. If not registered, 

The VOCS will complete the following calculations: 

1. Calculates an authentication parameter VCS1 = H (VOCSIDR || MSKCS || RCS||

VIDR). The vehicle does not know the VOCSIDR, RCS, nor the MSKCS.

2. The VOCS generates and assigns a VTIDN to each vehicle based on its type.

3. Calculates an authentication parameter VCS2 = H (VCS1 ||VTID). The vehicle does

not know the VTID. The VTID is only used to create VCS2.  VTID is only stored on

the VOCS. The vehicle does not know anything about the VTID. Using the

VOCSIDR, RCS, the MSKCS, and VTID to generate the authentication parameters

makes it almost impossible for an adversary to identify the VTID of any vehicle or

to identify the VOCSIDR, RCS, or the MSKCS of the VOCS.

4. Generates a One-Time-Token OTTVi

5. Generates a nonce (b)

6. Calculates an Alias ID for the vehicle VIDA = H (b || VIDR).

Steps 3: Finally, the VOCS stores the VIDR, CCS, VIDA, OTTVi. VTID and the vehicle stores 

on its OBU the VIDA, OTTVi, VCS1, VCS2 

Figure 87: The registration process between V and VOCS 
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Vehicle     VOCS 

     VIDR VIDR 

The VIDR,is already registered? 

          If no, VOCS generates the following parameters 

1. VCS1 = H (VOCSIDR || MSKCS || VIDR|| Rcs)

2. VCS2 = H (VCS1 ||VTID)

3. Generates an OTTVi

4. Generate a nonce (b)

5. VIDA = H (b || VIDR)

Store: VIDR, VIDA, OTTVi. 

VIDA, OTTVi, VCS1, VCS2 

Store VIDA, OTTVi, VCS1, VCS2  

Figure 88: The Exchanged Messages between V and VOCS during the 

6.6.2.3 Driver - VOCS Registration 

Each driver needs to register himself/herself with its VOCS before driving any 

vehicle. The VOCS is the owning company cloud server that is in charge of 

authenticating the driver and storing and analyzing the collected data from the driver. 

During the registration process, the driver will complete the following tasks: (1) the 

driver will select a username and a password using the vehicle's touch screen; (2) the 

driver will use the vehicle fingerprint scanner to create a biometric template that will be 

used for static authentication; and (3) For the continuous authentication, we propose to 

use a built-in sensor in the vehicle steering wheel to collect the driver's ECG or EKG. 

The driver's ECG or EKG features are extracted to create a biometric template, and it will 

be used for the continuous authentication process. The driver computes the authentication 
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parameter ZU1 = H (FPU || PUi). VOCS will generate the PUF response (RUCS) of its 

challenge (CUCS) and computes the authentication parameter ZU2 = H (Zu1 || RUCS). VOCS 

will store Ui and CUCS in clear text and the EID, BBUi, and ZU2 encrypted by the PUF 

response (RUCS) into its database for later authentication. The registration process is 

presented in figures 89 and 90. 

Driver-VOCS Registration 

Step1: The driver will complete the following tasks: 

1. Generate a username (Ui) and password PUi) using the vehicle's touch screen.

2. Capture fingerprint features (FPUi) using a vehicle fingerprint scanner to create a

biometric template that will be used for static authentication

3. Capture the blood pressure or the ECG features (BBUi) using a built-in sensor in

the vehicle steering wheel to create a biometric template that will be used for

continuous authentication.

4. computes Zu1 = H (FPU || PUi)

Step 2: VOSC searches its database to check if the user is registered. If not registered, 

the VOCS will: 

1. Generate the PUF response of its challenge RUCS = PUF(CUcs).

2. Compute Zu2 = H (Zu1 || RUcs).

3. Store the Ui, and CUCS in cleartext.  EID, ZU2, and BBUi in its database are

encrypted by the PUF response for further comparison during the authentication

process.

Figure 89: The registration process between D and VOCS 

Driver              VOCS 

Employee ID(EID) 

The driver will complete the following tasks: 

1. Generate a username (Ui)

2. Generate a password PUi)

3. Capture a fingerprint features (FPU)

4. Capture the EKG or the ECG features (BBUi)

5. Comptes Zu1 = H (FPU || PUi)

EID, Ui, ZU1   BBUi 

1. Generate a PUF response Rcs =

PUF(CUCSU)

2. Computes ZU2 = H (ZU1 || RUcs)

3. Stores: EID, Ui, BBUi, ZU2, CUCS

    Figure 90: The exchanged messages between D and VOCS during the registration 

    process 
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6.6.3 Mutual authentication phase 

This phase will cover two different protocols.  The first protocol is to achieve 

mutual authentication between the vehicle and the TA. The second protocol is to achieve 

mutual authentication among vehicle, driver, and the VOCS. 

6.6.3.1 Protocol 1: Vehicle-TA mutual authentication and key generation 

phases 

Vehicle to TA mutual authentication process will be executed when a vehicle Vi 

wants to send the data that it collects from the surrounding environment to the TA with 

the help of the RSU as presented in figures 91 and 92 . However, the RSU can’t validate 

the legitimacy of the Vi.  Therefore, the RSU needs to interact with the TA to 

authenticate the Vi.

V TA 

Generate:  TSVi1, RVVi1

Compute: 

X1 = RVVi1 ⊕ H(VTA1) 

X2 = H (RVVi1 || VTA1 || TSVi1 || VIDR) 

     M1: (VIDA, TSVi1, X1, X2) 

    Check| TSRec_11Rec− TS’Vi1|< ∆T 

    Find:  VIDA

    Read:  VIDR, OTP, CTA, MSKTA 

 Compute: 

    RTA = PUF(CTA) 

     VTA1’ = H (MSKTA || VIDR || RTA ||TAIDR) 

  RV’Vi1 = H (VTA1’) ⊕ X1

 Verify:  X2
’ = H (RVVi1 || VTA1’ || TSVi1’|| VIDR) 

     Generate:  TSTA1, RVTA1, SID

 Retrieve:  Vi CRP, CHXx

Computes: 

 Y1 = H (VTA1’ ||OTPVi) 

 Y2 = RVTA1 ⊕ Y1 

 C’ = H (CHXx|| RVTA1) ⊕ C 

  Y3 = H (C || TSTA1 || Y1 ||RVTA1 || RVVi1’) 
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Figure 91: V-TA mutual authentication process 

    M2: (TAIDA, SID, TS TA1, Y2, C’, Y3) 

Check: | TS Rec- TS’ TA1 |< ∆T 

Compute: 

Y1
’ = H (VTA1’ ||OTPVi) 

RVTA1’ = Y1 ⊕ Y2 

C’X = C’ ⊕ H (H (CHXx|| RVTA1
’)  

Verify 

Y3’ = H (C || TSTA1 || Y1
’ ||RVTA1

’
 || RVVi1’) 

Generate: TSVi2, RVVi2 

Compute 

Ri = PUF (C’X) 

CHXx+1
 = H (Ri || CHXx) 

X3 = RVVi2 ⊕ H (RVTA1|| CHXx+1)  

X4 = H (VIDR|| TSVi2|| RVVi2 || CHXx+1) 

  M3: (VIDA, SID, TSVi2, X3, X4) 

 Check: TSRec  - TS’Vi2   |< ∆T      

       Compute: 

  CHAx+1
’ = H (R’i || CHXx)

 RV’vi2 = X3 ⊕ (RVTA1|| CHXx+1
’) 

       Verify: 

  X4’ = H (VIDR|| TSVi2
’|| RVVi2

’
 || CHXx+1

’) 

 Generate: TSTA2, RVTA2

 Compute 

 Y4 = H (RVVi2
’|| Ri) 

 Y5 = RVTA2 ⊕ Y4 

 OTPnew = H (OTPnew-1|| RVTA2 || Ri) 

 VIDAnew = H (C|| VIDA) 

  Y6 = H (VIDR ||Y4|| TSTA2 || RVTA2 || OTPnew|| VIDAnew) 

    M4: (TAIDA, SiD TSTA2, Y5, Y6) 

Check: |TS’Rec− TSTA2 |< ∆T 

Compute: 

RV’TA2 = Y4 ⊕ H (RVVi2
’|| Ri)  

OTPnew’ = H (OTPnew-1|| RVTA2
’ || Ri) 

VIDAnew
’ = H (C’X || VIDA) 

Verify: 

Y6’ = H (VIDR ||Y4
’|| TSTA2 || RVTA2 || OTPnew

’|| VIDAnew
’) 

Store (OOTPnew’,’VIDAnew’’)  
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Algorithm 6: The mutual authentication between V and TA 

Input: 

V with real identity (VIDR), alias identityVIDA), TA alias identity (TAIDR), 

Authentication parameters (VTA1), one-time password (OTPvi), and the chained 

hash PUF (CHXxi)  

TA with real identity (VIDR), alias identity (VIDA), TA real identity (TAIDR), TA 

alias identity (TAIDR), PUF challenge (CTA), and one time password (OTP), and 

the chained hash PUF (CHXxi). 

Output: 

 Mutual authentication between the vehicle (N) and the Trusted Authority (TA) 

Begin 

1. V generates a random nonce RVvi1, a timestamp TSvi1, computes X1 = RVVi1 ⊕
H(VTA1) and X2 = H (RVVi1 || VTA1 || TSVi1 || VIDR).

2. V sends (VIDA, TSvi1, X1, X2) message to TA.

3. If (TA finds VIDA in its repository)

4. then

5. TA retrieves VIDR, OTP, and CTA that belongs to the VIDA from its repository to its

memory.

6. The TA passes the challenge CTA to its PUF function and generates a response

 RTA. 

7. TA calculates VTA1. Then the TA retrieves RVvi1 from XORing X1 and H(VTA1)

and finally calculates X2’ = H (RVVi1 || VTA1 || TSVi1 || VIDR).

8. If (the calculated hash message in step 6 matches the hash message that was

          sent in step 2) 

9. then

10. The TA communicates with the Grand PUF node to retrieve a CRP of the Vi,

generates a timestamp TSTA1, generates a random nonce RVTA1, calculates Y1

= H (VTA1’ ||OTPVi), Y2 = RVTA1 ⊕ Y1 , C’ = H(CHXx|| RVTA1) ⊕ C, and

Y3 = H (C || TSTA1 || Y1 ||RVTA1 || RVVi1’)

11. The TA sends TAIDA, SID, TSTA1, Y2, C’, Y3 to V.

12. else

13.           Go to step 42. 

14. end if

15. else

16. Go to step 42.

17. end if

18. V verifies the time stamp, calculates Y1
’ = H (VTA1’ ||OTPVi), retrieves RVTA1’

and C’X. V computes Y3’ = H (C || TSTA1 || Y1 ||RVTA1 || RVVi1’)

19. If (the calculated hash message in step 18 matches the hash message that was sent

in step 11)

20. then

21. The authenticity of the TA is verified

22. V generates a timestamp TSvi2 and a random nonce RVvi2. V computes Ri =
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    PUF (C’X), CHXx+1
 = H (Ri || CHXx), X3 = RVVi2 ⊕ H (RVTA1|| CHXx+1) and 

X4 = H (VIDR|| TSVi2||RVVi2 || CHXx+1) 

23. V sends VIDA, SID, TSvi2, X3, X4 to TA.

24. else

25. Go to step 42.

26. end if

27. The TA verifies the TSvi2, computes CHXx+1
’ = H (R’i || CHXx), retrieves

RV’vi2 = X3 ⊕ (RVTA1|| CHXx+1
’) and generates X4’ = H (VIDR|| TSVi2

’|| RVVi2
’
 ||

CHXx+1
’)

28. If (the calculated hash message in step 27 matches the hash message that was sent

in step 23

29. then

30. The authenticity of V is verified.

31. TA generates TSTA2 and RVTA2. Then TA computes Y4 = H (RVVi2
’|| Ri), Y5 = RVTA2 ⊕ Y4,

OTPnew = H (OTPnew-1|| RVTA2 || Ri), VIDAnew = H (C|| VIDA1) and, Y6 = H (VIDR ||Y4|| TSTA2 || RVTA2 ||

OTPnew|| VIDAnew)

32. TA sends TAIDA, SiD TSTA2, Y5, Y6 to V.

33. else

34. Go to step 42.

35. End if

36. V verifies the TSTA2, computes RV’TA2 = Y4 ⊕ H (RVVi2
’|| Ri), OTPnew’ = H (OTPnew-1|| RVTA2

’

|| Ri), VIDAnew
’ = H (C’X || VIDA) and verifies Y6’ = H (VIDR ||Y4

’|| TSTA2 || RVTA2 || OTPnew
’|| VIDAnew

’)

37. If (the calculated hash message in step 36 matches the hash message that was sent

in step 32

38. then

39. V stores the received data in its database

40. else

41. Go to step 42

42. Stop (terminates the connection).

43. End

          Figure 92: Algorithm of the mutual authentication algorithm between V and TA 

This scheme consists of the following steps: 

6.6.3.1.1 Step 1: Interaction Request 

6. Vi generates a new TSVi1 to avoid replay attacks

7. Vi selects a random parameter RVVi1 and then calculates X1

a. X1 = RVVi1 ⊕ H(VTA1)

8. Vi computes X2 = H (RVVi1 || VTA1 || TSVi1 || VIDR)

9. Vi sends the authentication request to the TA.
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The authentication request includes VIDA, TSVi1, X1, and X2, as shown in 6.1. The 

timestamp presents information about when an event occurred, which makes this value 

important. 

           Vi              TA Authentication-Req (VIDA, TSVi1, X1, X2)              (6.1) 

6.6.3.1.2 Step 2: TA Response 

Once the TA receives the authentication request, it will complete the following steps: 

1. TA checks the validity of the received timestamp | TS’Rec− TS’Vi1 |< ∆T.  TS’Rec is

the time when the message is received, and ∆T is the maximum transmission 

delay. The message will be dropped if the difference between the timestamp and 

the time when the message is received is higher than the expected maximum 

transmission delay. 

2. TA retrieves from its database the VIDR that corresponds to its VIDA.  If the TA did

not find the VIDA in its database, it would send a message to the vehicle to 

complete the registration process. 

3. Once the TA finds the VIDA, it will retrieve the CTA of the Vi.

4. TA computes RTA = PUF(CTA)

5. TA computes the VTA1’ = H (MSKTA || VIDR || RTA ||TAIDR)

6. TA computes the RV’Vi1 = H (VTA1’) ⊕ X1

7. TA computes X2’ = H (TS’Vi1 || RV’Vi1 || VIDR || VTA1’)

If the computed value of X2’ is equal to the received value, the TA accepts the 

authentication request; otherwise, it will drop it as shown in figure 95. 
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Figure 93: Evaluating the Vi Authentication Parameter 

Once the TA accepts the authentication request, it will retrieve a Vi CRP from the 

PUF cloud and generates a random value RVTA1 and time stamp TSTA1. Also, the TA 

generates a session ID.  The session ID aims to distinguish one session from the rest of 

the running sessions simultaneously. The TA prepares and sends a connection response to 

the Vi. The preparation process of the connection response message includes the 

following steps: 

1. TA retrieve a Vi CRP from the PUF cloud

2. TA generates a new TSTA1 to avoid replay attacks

3. TA calculates Y1

a. Y1 = H (VTA1’ ||OTPVi)

4. TA generates a random parameter RVTA1 and then calculates Y1

a. Y2 = RVTA1 ⊕ Y1

5. TA calculates C’

a. C’ = H (CHXx|| RVTA1) ⊕ C

6. TA calculates Y3 = H (C || TSTA1 || Y1 ||RVTA1 || RVVi1’)

7. TA generates a session ID(SID)

8. TA sends a connection response message

X2
’ =    H (TS’Vi1 || RV’Vi1 || VIDR || VTA1’)  

If X2 = X2
’ Then 

The TA will accept the authentication request 

Else 

The TA will drop the authentication request 
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The connection response includes TAIDA, session ID (SID), TSTA1, C’, Y2, and Y3, as 

shown in 6.2. The timestamps present information about when an event occurred, which 

makes this value important. 

TA         Vi M2(TAIDA, SID, TSTA1, C’, Y2, Y3)              (6.2) 

6.6.3.1.3 Step 3: TA authentication 

Once the Vi receives M2, it will complete the following steps: 

6. Vi checks the validity of the received timestamp |TSRec−TS’TA1 |< ∆T.  TSRec

is the time when the message is received, and ∆T is the maximum 

transmission delay. The message is dropped if the difference between the 

timestamp and when the message is received is higher than the expected 

maximum transmission delay. 

7. Vi calculates Y1
’ = H (VTA1’ ||OTPVi)

8. Vi calculates RVTA1’ = Y1 ⊕ Y2

9. Vi calculates the C’X = C’ ⊕ H (H (CHXx|| RVTA1
’)

10. As presented in figure 94, Vi calculates Y3’ using a one-way hash function

and compares the generated Y3’ with the received Y3. If the two values are the 

same, Vi will authenticate TA; otherwise, it will drop it.  

Y3’ = H (C || TSTA1 || Y1
’ ||RVTA1

’
 || RVVi1’) 

 If   

Y3’ = Y3 

Then 

Then Vi will accept M2 and authenticate TA 
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Else 

Vi will drop M2 

Figure 94: Evaluating the TA authentication parameter 

Once Vi accepts the received message and authenticates TA, it will complete the 

following steps 

1. Vi will input the received challenge Cx’ to its PUF and obtains the response Ri.

2. Vi will retrieve the chained hash responses (CHXx) from its memory and calculate

the new value of the chained has responses (CHXx+1) as follows 

a. CHXx+1
 = H (Ri || CHXx)

3. Vi generates a new TSVi2 to avoid replay attacks

4. Vi selects a random parameter RVVi2 and then calculates X3

a. X3 = RVVi2 ⊕ H (RVTA1|| CHXx+1)

5. Vi calculate X4

a. X4 = H (VIDR|| TSVi2|| RVVi2 || CHXx+1)

6. Vi sends the message to the TA

The message includes VIDA, SID, TSVi2, X3 and X4 as shown in 6.3. 

Vi         TA (VIDA, TSVi2, X3, X4)     (6.3) 

6.6.3.1.4 Step 4: Vi authentication 

Once TA receives the message, it completes the following steps: 
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1. TA checks the validity of the received timestamp |TS’Rec− TS’vi2 |< ∆T.  TS’Rec is

the time when the message is received, and ∆T is the maximum transmission 

delay. The message is dropped if the difference between the timestamp and the 

time when the message is received is higher than the expected maximum 

transmission delay. 

2. TA will retrieve the R’i and the CHXx from its databased and computes CHX’i+1 

a. CHXx+1
’ = H (R’i || CHXx) 

3. TA calculates the RV’vi2 = X3 ⊕ (RVTA1|| CHXx+1
’)

4. TA calculates X4’ = H (VIDR|| TSVi2
’|| RVVi2

’
 || CHXx+1

’)

As presented in figure 95, TA calculates X4’ using a one-way hash function and 

compares the generated X4’ with the received X4. If the two values are the same, TA 

will authenticate Vi; otherwise, it will drop it.  

X4’ = X4 = H (VIDR|| TSVi2
’|| RVVi2

’
 || CHXx+1

’) 

 If X4’ = X4Then 

Then TA will authenticate the Vi. 

Else 

TA will drop the message 

Figure 95: Evaluating the V authentication parameter 

After authenticating the Vi, the TA will override the old CHXx
 with the new 

chained hash responses value CHXx+1. Then the TA will generate a new OTP and the 

new alias ID for the Vi and store them on its database. 

1. TA generates a new timestamp TSTA2

2. TA calculates Y4

a. Y4 = H (RVVi2
’|| Ri)
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3. TA selects a random parameter RVTA2 and then calculates Y5

a. Y5 = RVTA2 ⊕ Y4

4. TA computes OTPnew = H (OTPnew-1|| RVTA2 || Ri)

5. TA computes VIDAnew = H (C|| VIDA)

6. TA calculates Y6

a. Y6 = H (VIDR ||Y4|| TSTA2 || RVTA2 || OTPnew|| VIDAnew)

7. TA sends the message to the Vi. The message includes TAIDA, SID, TSTA2, Y5, and

Y6, as shown in 6.4. 

TA         Vi (TAIDA, TSTA2, Y5, Y6)     (6.4) 

6.6.3.1.5 Step 5: New Parameters Verification 

Once Vi receives the message, it completes the following steps: 

1. Vi checks the validity of the received timestamp |TS’Rec− TS’TA2 |< ∆T.  TS’Rec is

the time when the message is received, and ∆T is the maximum transmission 

delay. The message is dropped if the difference between the timestamp and the 

time when the message is received is higher than the expected maximum 

transmission delay. 

2. Vi calculates the RV’TA2 = Y4 ⊕ H (RVVi2
’|| Ri)

3. Vi computes OTPnew’ = H (OTPnew-1|| RVTA2
’ || Ri)

4. Vi computes VIDAnew
’ = H (C’X || VIDA)

5. Vi calculates Y6’
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a. Y6’ = H (VIDR ||Y4
’|| TSTA2 || RVTA2 || OTPnew

’|| VIDAnew
’)

As presented in figure 96, Vi calculates Y6’ using a one-way hash function and 

compares the generated Y6’ with the received Y6. If the two values are the same, Vi 

will accept the message; otherwise, it will drop it.  

Y6’ = Y6 = H (VIDR ||Y4
’|| TSTA2 || RVTA2 || OTPnew

’|| VIDAnew
’) 

 If Y6’ = Y6 Then 

Then Vi will accept the message. 

Else 

Vi will drop the message 

Figure 96: TA -V Parameters Verification 

After verifying and accepting the message, the Vi, will store the OTPnew, VIDAnew,

in its database for the next authentication session. 

6.6.3.1.6 Key generation 

Once the mutual authentication is completed, the two sides generate a shared 

secret session key (ssk) using the technique they agreed upon during the authentication 

phase.  The two sides generate the ssk locally by hashing a combination of PUF response 

and the generated random values as presented in 6.5. The uniqueness of the PUF 

responses ensures the uniqueness of the generated ssk. 

ssk= H (Ri || (RVvi1 || RVTA2 || RVvi2 || RV’TA1)              (6.5) 

Then the TA will send the ssk of Vi to the CRSU through a secure channel. Once 

the CRSU received the key it will share it will all its RSU to communicate with Vi. By 

using the ssk, Vi can communicate with all RSUs that are within the same CRSU. 

However, when Vi enters an area of another CRSU, it has to authenticate itself with the 

TA again. Finally, the RSU that communicates with Vi will share the secret broadcast 
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key (SKB) with it that Vi can use to communicate with other vehicles within the same 

CRSU. The RSU will send the SKB to Vi encrypted by the ssk. 

6.6.3.2 Protocol 2: Vehicle– Driver-Vehicle Owner Cloud Server (V-D-VOCS) 

Authentication and Key Generation 

This authentication phase consists of two phases. The first one handles the mutual 

authentication process between a vehicle (Vi) and a vehicle owner cloud server (VOCS). 

The second one focuses on the mutual authentication between the driver (Di) and the 

VOCS where the vehicle acts as a relay between Di and VOCS. The first phase must be 

completed first before starting on the second phase. 

6.6.3.2.1 Phase one: Vehicle -Vehicle Owner Cloud Server Mutual 

Authentication 

As presented in figures 97 and 98, this process starts when Vi prepares an 

authentication request message that will be sent to the VOCS. All vehicles of the same 

type share a typeID (VTID). Each vehicle stores two authentication parameters that will 

be used during the authentication process.  Furthermore, all OBUs in the vehicles are 

equipped with PUF chips that will be used to build a root of trust. Each vehicle knows its 

Real and alias IDs, the alias ID of the VOCS, the OTT, and the two authentication 

parameters. The steps involved in this process are listed below.  
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V VOCS 

Generate:  TSvi1, RVvi1

Compute: 

VX1 = H (VCS2 || OTT) 

VX2 = H(VX1) ⊕ RVVi1  

VX3 = H (VIDR|| VCS1|| TSVi1 || RVVi1|| OTT) 

     M1: (VIDA, TSvi1, VX2, VX3) 

    Check:|TSRec− TS’vi1 |< ∆T 

 Find:   VIDA

    Read:  VIDR, VTID, CCS, and OTT      

    Compute: 

 RCS = PUF(CCS) 

VCS1 = H (VOCSIDR || MSKVOCS || VIDR|| Rcs). 

VCS2 = H (VCS1 || VTID) 

VX1’ = H (VCS2’ || OTT) 

 RV’Vi1 = VX2 ⊕ VX1’ 

  Verify:    VX3
’ = H (VIDR|| VCS1

’|| TSVi1
’
 || RVVi1

’|| OTT) 

     Generate:  TSCS1, RVCS1, SID 

Computes: 

     CSY1 = H (VIDR|| VCS1’ || OTT) 

     CSY2 = H(CSY1) ⊕ RVCS1 

         CV = C ⊕ H (CSY1 || RVCS1) 

         CSY3 = H (VOCSIDR || CSY1|| TSCS1 || RVVi1 ||C || VCS1|| RVCS1) 

    M2: (VOCSIDA, SID, TSCS1, CSY2, CV, CSY3) 

Check: |TS’Rec−TS’CS1 |< ∆T 

Compute: 

CSY1’ = H (VIDR|| VCS1’ || OTT) 

RV’CS1 = H(CSY1) ⊕ CSY2 

C’ = CV ⊕ H (RV’CS1 || CSY1’) 

Verify 

CSY3
’ = H (VOCSIDR || CSY1

’|| TSCS1
’
 || RVVi1 ||C’ || VCS1

’|| RVCS1
’) 

Generate: TSvi2, RVvi2

Compute 

Ri = PUF(C’) 

Ci+1 = H (RV’CS1 || RVvi1)  

Ri+1 = PUF (Ci+1) 

VX4 = H (OTT|| RVCS1) 

VX5= RVvi2 ⊕ H (VX4|| VIDR)  

VX6 = H (VX4|| RVVi2) ⊕ Ri

VX7 = H (C’|| R’) ⊕ Ri+1 

OTTnew = H (OTT|| RVVi2|| C) 

VIDAnew = H (VIDA || C|| OTT) 

VX8 = H (VX4 || RVVi2 || TSVi2 || Ri || Ci+1 || Ri+1 || OTTnew ||VIDAnew) 

  M3: (VIDA, SID, TSVi2, VX5, VX6, VX7, VX8) 
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Figure 97: V-VOCS Mutual Authentication Process 

6.6.3.2.1.1 Step 1: Interaction request 

1. Vi generates a new TSVi1 to avoid replay attacks

2. Vi computes VX1 = H (VCS2 || OTT)

3. Vi selects a random parameter RVVi1 and then calculates VX2

a. VX2 = VX1 ⊕ RVVi1

4. Vi computes VX3 = H (VIDR|| VCS1|| TSVi1 || RVVi1|| OTT)

5. Vi sends a authentication request message.

The authentication request includes VIDA, TSvV1, VX2, and VX3 as shown in 6.6. 

Vi          VOCS Auth-Req (VIDA, TSVi1, VX2, VX3) (6.6) 

Algorithm 6:_Protocol 2_ Phase 1: The mutual authentication between V-VOCS 

Input: 

Vehicle with real identity (VIDR), alias identity (VIDA), VOCS real identity (VOCSIDR), 

VOCS alias identity (VOCSIDR), Authentication parameters (VCS1, VCS2), and one time 

token (OTT). 

 Check: |TS’Rec− TS’vi2 |< ∆T 

  Read:  R’i  

 Compute: 

      VX4’ = H (RVCS1 || OTT) 

   RV’VI2 = VX5
’
 ⊕ H (VX4’|| VIDR)  

   Ri
’ = VX6’ ⊕ H (RVVi2|| VX4’)  

   Ci+1 = H (RV’CS1 || RVVi1) 

   Ri+1’ = VX7’ ⊕ H (C’|| Ri
’)  

   OTTnew’ = H (OTT|| RVVi2|| C) 

   VIDAnew’ = H (VIDA || C|| OTT) 

  Verify: 

  VX8 = H (VX4 || RVVi2 || TSVi2 || Ri || Ci+1 || Ri+1 || OTTnew || 

   VIDAnew) 

 Store: OTTnew, VIDAnew, C’i+1, Ri+1 
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VOCS with with real identity (VIDR), alias identity (VIDA), VOCS real identity 

(VOCSIDR), VOCS alias identity (VOCSIDR), the vehicle type ID(VTID) Master secret 

key (MSKcs), PUF challenge (CCS), and one-time token (OTT). 

Output: 

 Mutual authentication between the vehicle (V) and the VOCS. 

Begin 

1. V generates a random nonce RVvi1, a timestamp TSvi1, computesVX2 =

H(VX1) ⊕ RVVi1 and VX3 = H (VIDR|| VCS1|| TSVi1 || RVVi1|| OTT)

2. V sends (VIDA, TSvi1, VX2, VX3) message to the VOCS.

3. If (the VOCS finds VIDA in its repository).

4. then

5.            The VOCS retrieves VIDR, OTT, CCS, and VTID that belongs to the VIDA 

from its repository to its memory. The VOCS passes the challenge CCS to its 

PUF function and generates a    

           response RCS 

6.           The VOCS calculates VCS1’ and VCS2’. Then the VOCS computes VX1,   

          retrieves the RVvi1 from XORing VX2 ⊕ VX1’ and finally calculates VX3’ 

H (VIDR|| VCS1|| TSVi1 || RVVi1|| OTT) 

7. If (the calculated hash message in step 7 matches the hash message that was

sent in step 2) 

8. then

9. The VOCS communicates with the Grand PUF node to retrieve a CRP 

of Vi, generates a timestamp TSCS1, generates a random nonce RVCS1, 

calculates CSY1 = H (VIDR|| VCS1’ || OTT), CSY2 = H (CSY1) ⊕ RVCS1, CV = C ⊕ H (CSY1 || 

RVCS1), and CSY3 = H(VOCSIDR || CSY1|| TSCS1 || RVVi1 ||C || VCS1|| RVCS1).  

10. The VOCS sends VOCSIDA, SID, TSCS1, CSY2, CV, CSY3 to Vi.

11. else

Go to step 29. 

       end if 

12. else

Go to step 29. 

       end if 

13. V verifies the time stamp, calculates CSY1
’ to retrieves RVCS1

’ and   C’ from CV.

V generates CSY3’ H (VOCSIDR || CSY1|| TSCS1 || RVVi1 ||C || VCS1|| RVCS1).

14. If (the calculated hash message in step 14 matches the hash message that was

sent in step 11)

15. then
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     The authenticity of the VOCS is verified 

16. V generates a timestamp TSvi2 and a random nonce RVvi2. V computes Ri =

PUF(C’),  Ci+1 = H (RV’CS1 || RVvi1), Ri+1 = PUF (Ci+1), VX4 = H (OTT|| RVCS1), VX5= RVvi2

⊕ H (VX4||VIDR) ,VX6 = H (VX4|| RVVi2) ⊕ Ri, VX7 = H (C’|| R’ ) ⊕ Ri+1, OTTnew =

H(OTT|| RVVi2|| C), IDAnew = H (VIDA || C|| OTT), VX8 = H (VX4 || RVVi2 || TSVi2 || Ri || Ci+1 || Ri+1

|| OTTnew || VIDAnew )

17. V sends VIDA, SID, TSVi2, VX5, VX6, VX7, VX8 to VOCS.

18. else

19. Go to step 29

20. end if

21. V verifies the time stamp TSvi2, calculates VX4
’ to retrieves RViv2’, VX6, and VX7. 

V generates VX8 = H (VX4 || RVVi2 || TSVi2 || Ri || Ci+1 || Ri+1 || OTTnew || VIDAnew )

22. If (the calculated hash message in step 22 matches the hash message that was

sent in step 18)

23. then

24. The authenticity of V is verified.

25. Mutual authentication between V and the VOCS is established.

26. else

27. Go to step 29

28. End if

29. Stop (terminates the connection).

 End 

Figure 98: The mutual authentication between V and the VOCS 

6.6.3.2.1.2 Step 2: VOCS response 

Once the VOCS receives the authentication request, it will complete the following steps: 

1. VOCS checks the validity of the received timestamp |TSRec− TS’Vi1 |< ∆T.  TSRec

is the time when the message is received, and ∆T is the maximum transmission 

delay. The message will be dropped if the difference between the timestamp and 

the time when the message is received is higher than the expected maximum 

transmission delay. 
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2. VOCS retrieves from its database the VIDR that corresponds to its VIDA.  If the

VOCS did not find the NIDA in its database, it will ignore and drop the 

authentication request. 

Once the VOCS finds the VIDR, it will retrieve it along with the VTID, its PUF Challenge 

that relates to this Vi and OTT of Vi. 

1. VOCS generates the PUF response Rcs = PUF(Ccs)

2. VOCS generates VCS1 = H (VOCSIDR || MSKVOCS || VIDR|| Rcs).

3. VOCS generates VCS2 = H (VCS1 || VTID)

4. VOCS computes VX1’ = H (VCS2’ || OTT)

5. VOCS computes the RV’Vi1 = VX2 ⊕ VX1’

The VOCS uses the calculated VCS2, TS’Vi1, OTT, and the RV’Vi1 to generate 

VX3’, a combination of VIDR, VCS3, TS’Vi1, OTT, and the RV’Vi1 using a one-way hash 

function as shown in figure 99. If the computed value is equal to the received value, the 

VOCS accepts the authentication request; otherwise, it will drop it.  

Figure 99:  Evaluating the Vi authentication request message 

Once the VOCS accepts the message, it generates a timestamp and a random 

value RVCS1. Also, the VOCS generates a session ID.  The session ID aims to distinguish 

VX3’ =   H (VIDR|| VCS1
’|| TSVi1

’
 || RVVi1

’|| OTT) 

If   VX3 =   VX3’ Then 

The VOCS will accept the authentication request 

Else 

The VOCS will drop the connection request 
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one session from the rest of the running sessions simultaneously. Furthermore, the VOCS 

will retrieve a PUF CRP from the PUF cloud to authenticating the vehicle. The VOCS 

prepares and sends an authentication response to the Vi. The preparation process of the 

authentication response message includes the following steps: 

1. VOCS generates a new TSCS1 to avoid replay attacks

2. VOCS calculates CSY1

a. CSY1 = H (VIDR|| VCS1’ || OTT)

3. VOCS selects a random parameter RVCS1 and then calculates CSY2

a. CSY2 = H(CSY1) ⊕ RVCS1

4. VOCS generates a session ID(SID)

5. CV = C ⊕ H (CSY1 || RVCS1)

6. VOCS calculates CSY3

7. CSY3 = H (VOCSIDR || CSY1|| TSCS1 || RVVi1 ||C || VCS1|| RVCS1)

8. VOCS sends an authentication response message

The connection response includes VOCSIDA, session ID(SID), TSCS1, CSY2, CV, and 

CSY3, as shown in 6.7. 

VOCS          Vi Auth-Res (VOCSIDA, SID, TSVi1, CSY2, CV, CSY3)             (6.7) 

6.6.3.2.1.3 Step 3: VOCS authentication 

Once Vi receives the authentication response, it completes the following steps: 
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1. Vi checks the validity of the received timestamp |TS’Rec−TS’CS1 |< ∆T.  TSRec is

the time when the message is received, and ∆T is the maximum transmission 

delay. The message is dropped if the difference between the timestamp and the 

time when the message is received is higher than the expected maximum 

transmission delay. 

2. Vi calculates CSY1’ = H (VIDR|| VCS1’ || OTT)

3. Vi calculates the RV’CS1 = H(CSY1) ⊕ CSY2

4. Vi calculates the C’ = CV’⊕ H (RV’CS1 || CSY1’)

5. As presented in figure 100, Vi calculates CSY3’ using a one-way hash function

and compares the generated CSY3’ with the received CSY3.  If the two values are 

the same, Vi will authenticate VOCS; otherwise, it will drop it.  

CSY3’ = H (VOCSDR || CSY2
’|| TSCS1

’
 || RVVi1

’ ||C’ || VCS1
’|| RVCS1

’) 

If CSY3’ = CSY3 Then 

Then Vi will accept the authentication response and authenticate VOCS 

Else 

Vi will drop the authentication response 

Figure 100: Evaluating the VOCS authentication parameter 

Once Vi accepts the received message and authenticates VOCS, it will complete the 

following steps 

1. Vi will input the received challenge C’ to its PUF and obtains the response Ri.

a. Ri = PUF(C’)

2. Vi will compute the H (RV’CS1 || RVVi1) to generate a new challenge (Ci+1). Then

Vi will input the Ci+1
 into a PUF function to obtains a new Ri+1 where: 

a. Ci+1 = H (RV’CS1 || RVVi1)
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b. Ri+1 = PUF (Ci+1) to be used in the next authentication session.

3. Vi generates a new TSVi2 to avoid replay attacks

4. Vi calculates VX4 = H (OTT|| RVCS1)

5. Vi selects a random parameter RVVi2 and then calculates VX5

a. VX5= RVvi2 ⊕ H (VX4|| VIDR) 

6. Vi calculates VX6

a. VX6 = H (VX4|| RVVi2) ⊕ Ri

7. Vi calculates VX7

a. VX7 = H (C’|| R’) ⊕ Ri+1

8. Vi will generate a new OTT(OTTnew)

OTTnew = H (OTT|| RVVi2|| C) 

9. Vi will generate a new Alias ID (VIDAnew)

a. VIDAnew = H (VIDA || C|| OTT)

10. Vi calculates VX8

a. VX8 = H (VX4 || RVVi2 || TSVi2 || Ri || Ci+1 || Ri+1 || OTTnew || VIDAnew )

11. Vi sends the message to the VOCS

The message includes VIDA, TS’Vi2, VX5, VX6, VX7, and VX8 as shown in 6.8. 

   Vi         VOCS (VIDA, TSVi2, VX5, VX6, VX7, VX8)     (6.8) 

6.6.3.2.1.4 Step 4: Vi authentication 

Once VOCS receives the message, it completes the following steps: 
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1. VOCS checks the validity of the received timestamp |TS’Rec− TS’Vi2 |< ∆T.

TS’Rec is the time when the message is received, and ∆T is the maximum 

transmission delay. The message is dropped if the difference between the 

timestamp and the time when the message is received is higher than the expected 

maximum transmission delay. 

2. VOCS calculates VX4’ = H (RVCS1 || OTT)

3. VOCS calculates the RV’VI2 = VX5
’
 ⊕ H (VX4’|| VIDR) 

4. VOCS computes the Ri
’ =VX6’ ⊕ H (RVVi2|| VX4’)

5. VOCS computes Ci+1 = H (RV’CS1 || RVVi1)

6. VOCS computes the Ri+1’ = VX7’ ⊕ H (C’|| Ri
’)

7. VOCS Computes OTTnew’ = H (OTT|| RVVi2|| C)

8. VOCS computes VIDAnew’ = H (VIDA || C|| OTT)

9. VOCS compures VX8’ = H (VX4
’ || RVVi2’ || TSVi2 || Ri’ || Ci+’1 || Ri+1’ || OTTnew’

|| VIDAnew’) 

As presented in figure 101, VOCS calculates VX8’ using a one-way hash function and 

compares the generated VX8’ with the received VX8. If the two values are the same, 

VOCS will authenticate Vi; otherwise, it will drop it.  

VX8’ = VX8 = H (VX4
’ || RVVi2’ || TSVi2 || Ri’ || Ci+’1 || Ri+1’ || OTTnew’ || VIDAnew’) 

 If VX8’ = VX8

Then 

       Then VOCS will authenticate the Vi. 

Else 

VOCS will drop the connection response 

Figure 101:  Evaluate the Vi authentication parameter 
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After authenticating the Vi, the VOCS will store the new CRP, OTTnew, and VIDAnew in 

its database for the next authentication session. 

6.6.3.2.1.5 Key generation 

Once the mutual authentication is completed, the two sides will generate a shared 

secret session key (ssk). The two sides will generate the ssk locally by combining the 

PUF responses and the generated random values. The uniqueness of the PUF responses 

ensures the uniqueness of the generated ssk. 

ssk = H (R|| (RV’VI1||   RV’VI2 ||RVCS1)) 

6.6.3.2.2 Phase 2: Driver- Owner Cloud Server (VOCS) authentication 

This sub-phase presents a mutual authentication process between a Driver (Di) 

and a vehicle owner cloud server (VOCS). The two devices will complete mutual 

authentication. The mutual authentication between Di and VOCS should be completed 

after completing the mutual authentication between the vehicle and the VOCS. The 

authentication between Di and VOCS will be completed through the vehicle, where it 

will act as a relay between the two ends.  All the exchanged messages will be encrypted 

by the ssk between the vehicle and the VOCS. Also, the vehicle OTT and Ri will be used 

to authenticate the driver to the VOCS. Using some of the vehicle parameters ensures that 

the driver parameters are collected and sent through the authenticated vehicle. 

As presented in figures 102 and 103, this phase starts when Vi prepares the 

authentication request message on behalf of Di that will be sent to the VOCS. The steps 

involved in this process are listed below.  
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6.6.3.2.2.1 Step 1: Authentication request 

1. Di will insert his/her username (Ui) and the password (PUi).

2. Di will use the vehicle’s fingerprint scanner to capture fingerprint biometric

characteristics (FP) 

3. The Ui, PUi, Su, and the FP will send to the vehicle’s OBU through a secured

channel 

Figure 102: Di-VOCS mutual authentication process 

Di VOCS 

Generate:  TSvi1, RVvi1

Compute: 

U1 = H (EID||Ri |VIDR||| OTT) 

ZU1 = H(FP||PUi)  

DV1 = ZU1 ⊕ U1 

DV2 = H (VIDR ||TSvi1|| ZU1 || U1) 

  M1: (VIDA, {Ui, TSVi1, DV1, DV2}ssk) 

 Check:|TSRec− TS’vi1 |< ∆T 

 Find:   VIDA Ui      

 Read:  VIDR, CUCS, OTT, and Ri 

 Decrypt the message using the ssk 

 Compute: 

 RuCS = PUF(CuCS) 

 Read: EID, ZU2 

Compute: 

 U1
’ = H (EID ||VIDR||Ri || OTT) 

 ZU1
’ = DV1⊕ U1

’ 

 ZU2
’ = H (ZU1

’ || RuCS)  

 Verify: 

  DV2
’ = H (VIDR ||ZU1

’
 ||TSvi1’|| U1’) 

 Generate:  TSCS1 

Computes: 

 UVi = H (Ri|| TScs1|| ZU1|| OTT) 

 M2: (VOCSIDA, {TScs1 , UVi}ssk) 
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Algorithm 7_Protocol 2_Phase 2: The mutual authentication between D and the 

VOCS 

Input:  

V with real identity (VIDR), alias identity (VIDA), VOCS real identity (VOCSIDR), VOCS 

alias identity (VOCSIDR), one-time-token (OTT), PUF response (Ri), and Authentication 

parameters (VCS1, VCS2) 

VOCS with with real identity (VIDR), alias identity (VIDA), VOCS real identity (VOCSIDR), 

VOCS alias identity (VOCSIDR), the vehicle type ID(VTID) Master secret key (MSKcs), 

PUF challenge (CCS), and one time token (OTT) 

Output: 

 Mutual authentication between Driver (Di) and the VOCS 

Begin 

1. D inserts the Employee ID(EID), username (Ui), password (PUi) and fingerprint (FP).

V generates a timestamp TSvi1 and random nonce RVvi1. V computes computes U1 = H

(EID||Ri |VIDR||| OTT), ZU1 = H(FP||PUi), DV1 = ZU1 ⊕ U1, DV2 = H (VIDR ||TSvi1|| ZU1 ||

U1)

2. V sends VIDA, {Ui, TSVi1, DV1, DV2}ssk to VOCS encrypted by the ssk between V and

VOCS.

3. If (the VOCS finds VIDA in its repository)

4. then

5. VOCS decrypts the message and retrieves the Ui. Then VOCS will retrieve the PUF

challenge that corresponds to the Ui and feed it to the PUF function. VOCS uses the

PUF response to decrypt the driverer’s data, including EID, ZU2, and BBUi, that are

stored on its database.

6. The VOCS calculates U1
’ and retrieves ZU1 from xoring U1 with DV1. Finally, VOCS

calculates DV2 = H (VIDR ||TSvi1|| ZU1 || U1)

7. If (the calculated hash message in step 6 matches the hash message that was sent

In step 2)

8. then

9.    The authenticity of the D is verified. 

10. VOCS communicates generates a timestamp TSCS1 and computes UVi = H (Ri||

TScs1||ZU1||OTT)

11. VOCS sends (VOCSIDA, {TScs1, UVi}ssk) message encrypted by ssk to Vi

12. else

13. Go to step 21.

14. end if

15. else

16. Go to step 21.

17. end if

18. V verifies the time stamp, decrypts the message using ssk and computes UVi’ = = H

(Ri|| TScs1|| ZU1|| OTT)

19. If (the calculated hash message in step 18 matches the hash message that was sent in

step 11) then

     The authenticity of the VOCS is verified 
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20. else

21. Stop (terminates the connection);

 End 

Figure 103: Mutual Authentication between D and VOCS 

The Vi will complete the following steps: 

1. Vi generates a new TSVi1 to avoid replay attacks

2. Vi computes U1

a. U1 = H (EID||Ri |VIDR||| OTT)

3. Vi computes ZU1

a. ZU1 = H(FP||PUi)

4. Vi computes DV1

a. DV1 = ZU1 ⊕ U1

5. Vi computes DV2

a. DV2 = H (VIDR ||TSvi1|| ZU1 || U1)

1. Vi sends an authentication request message encrypted by the ssk between Vi and

VOCS. 

The authentication request includes VIDA, TSVi1, DV1, and DV2 as shown in 6.9. 

Vi          VOCS Auth-Req (VIDA, {Ui, TSVi1, DV1, DV2}ssk ) (6.9) 

6.6.3.2.2.2 Step 2: VOCS response 

Once the VOCS receives the authentication request, it will complete the following steps: 

1. VOCS decrypts the message using ssk
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2. VOCS retrieves from its database the VIDR that corresponds to its VIDA.  If the

VOCS did not find the VIDA in its database, it will ignore and drop the 

authentication request. 

3. VOCS checks the validity of the received timestamp |TSRec− TS’Vi1 |< ∆T.  TSRec

is the time when the message is received, and ∆T is the maximum transmission 

delay. The message will be dropped if the difference between the timestamp and 

the time when the message is received higher than the expected maximum 

transmission delay. 

4. Once the VOCS finds the VIDR, OTT and Ri of Vi

5. VOCS retrieves its PUF challenge (CuCS) and computes the corresponding PUF

response (RuCS) uses the RCS to decrypt and retrieve EID, ZU2 

a. RuCS = PUF((CuCS)

6. VOCS computes U1
’ = H (EID ||VIDR||Ri || OTT)

7. VOCS retrieves ZU1
’

a. ZU1
’ = DV1⊕ U1

’

8. VOCS computes ZU2
’ = H (ZU1

’ || RuCS) and compares it with the stores ZU2

9. VOCS calculates DV2

b. DV2
’ = H (VIDR ||ZU1

’
 ||TSvi1’|| U1’)

If the computed value is equal to the received value, as shown in figure 104, the VOCS 

accepts the authentication request and authenticates the driver; otherwise, it will drop it.  
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Figure 104: Evaluating the driver authentication parameter 

Once the VOCS accepts the message, it generates a timestamp. The VOCS 

prepares and sends an authentication response to the Vi. The preparation process of the 

authentication response message includes the following steps: 

1. VOCS generates a new TSCS1 to avoid replay attacks

2. VOCS generates UVi

3. UVi = H (Ri|| TScs1|| ZU1|| OTT)

4. VOCS sends an authentication response message

The authentication response includes VOCSIDA, UVi, and TSCS1 encrypted by the ssk, as 

shown in 6.10. 

VOCS          Vi   Auth-Res (VOCSIDA, TScs1, UVi} ssk)             (6.10) 

Once the Vi receives the authentication response message, it will verify the response, Vi 

calculates UVi’. If the computed value is equal to the received value, as shown in figure 

105, the Vi accepts the authentication response and ensures the authenticity of the VOCS. 

Figure 105: Evaluate the VOCS authentication response 

DV2
’ = H (VIDR ||TSvi1

’|| ZU1 || U1
’) 

If    DV2
’ = DV2 Then 

The VOCS will authenticate Di 

Else 

The VOCS will drop the authentication request 

UVi
’ = H (Ri|| TScs1|| ZU1|| OTT) 

If     UVi =     UVi
’ Then 

The VOCS will be verified 

Else 

The Vi will drop the authentication response 
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Once the authentication phase is completed, the process of continuous biometric 

authentication will start. The vehicle will periodically collect the drivers’ BBUi using the 

built-in sensor in the steering wheels and sends the driver’s BBUi as part of its data. Every 

time the VOCS receives the driver’s BBUi, it will compare it against the stored BPi 

template to ensure that he/she is the same driver, monitor their health condition, and 

monitor the driver’s behaviors. 

6.7 Evaluation Process 

The following section presents a detailed security and performance analysis of the 

proposed scheme and compares the analysis results with other related schemes presented 

in the literature.  

6.7.1 Security validation of the proposed scheme 

In this section, we conduct both a formal and informal security analysis. The 

formal evaluation uses two different approaches: First, we validate the proposed scheme 

using the AVISPA tool to ensure that the proposed scheme is secure against active and 

passive attacks such as replay attacks and man-in-the-middle attacks. Second, we then 

perform the logical verification using BAN logic to confirm that the authenticated 

participants share the secret parameters securely in the proposed protocols. After 

completing the formal evaluation, we examine the proposed protocols against the well-

known attacks and prove that the proposed protocols satisfy the main security properties. 

6.7.1.1 Formal security evaluation 

6.7.1.1.1 Simulation-based security verification using AVISPA 
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The proposed protocols are simulated and tested using the AVISPA software, a 

widely accepted tool for automatically validating the schemes’ security features.   The 

messages involved in the cryptography and security of the authentication process are 

taken into consideration. 

6.7.1.1.1.1 Protocol 1: V-TA mutual authentication 

 6.7.1.1.1.1.1 Simulation overview 

The abstract notations used to describe the authentication scheme and the 

corresponding AVISPA HLPSL scripting variables/functions are presented in table 27. 

Table 27: Abstract notation and AVISPA HLPSL scripting variables/functions for 

protocol specification 

Notation Description 

TA Trusted Authority 

V Vehicle 

VIDR VIDR 

VIDA VIDA 

TAIDA TAIDA 

VTA1 VTA 

RVvi1 Na 

OTPvi OTP 
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TSvi1 TSoneV 

RVTA1 Nb 

C Cone 

CHXx CHX 

TSTA1 TSoneTA 

Ri Rone 

CHXx+1 CHXnew 

TSvi2 TStwoV 

RVvi2 Naa 

TSTA2 TStwoTA 

RVTA2 Nbb 

OTPnew NOTP 

VIDAnew NnewIDA 

⊕ XOR 

H H 

The main goals of the simulation are as follows: 

• Goal 1: The secrecy_of secNa represents that RVvi1 is kept secret to (V, TA)

only. 
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• Goal 2: The secrecy_of secNaa represents that RVvi2 is kept secret to (V,

TA) only. 

• Goal 3: The secrecy_of secNb represents that RVTA1 is kept secret to ((V, TA)

only. 

• Goal 4: The secrecy_of secVTA represents that VTA1 is kept secret to (V, TA)

only. 

• Goal 5: The secrecy_of secCHX represents that CHXx is kept secret to ((V,

TA) only. 

• Goal 6: The secrecy_of secRone represents that Ri is kept secret to (V, TA)

only. 

• Goal 7: The secrecy_of secCone represents that C’ is kept secret to (V, TA)

only. 

• Goal 8: The secrecy_of secNOTP represents that OTPnew is kept secret to

(V, TA) only. 

• Goal 9: The secrecy_of secNnewIDA represents that VIDAnew is kept secret to

(V, TA) only. 

• Goal 10: The secrecy_of secVIDR represents that the VIDR is kept secret to

(V, TA) only. 

• Authentication Property 1: The authentication_on nb represents that TA

generates RVTA1. If V securely receives RVTA1 through a message, it 

authenticates TA. 
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• Authentication Property 2: The authentication_on na represents that V

generates RVvi1. If TA securely receives RVvi1 through a message, it 

authenticates V. 

To achieve the goals mentioned above, we wrote the HLPSL script for the 

protocol. The entities involved in the communication process are modeled as roles with 

their message exchanges. There are four defined roles:  that are: (1) role_V that is played 

by the vehicle; (2) role _TA that is played by the trusted authority; (3) session, where the 

session role and all its declarations are defined, (4) and environment, which instantiates 

all agents, variables, and functions. 

As presented in Figure C_1 in Appendix C, the role of the vehicle is played by V. 

V is aware of the Vi and TA agents in the protocol, and its alias identity and the TA alias 

identity. Also, it is aware of its own real identity and the CHX that should be kept 

secured. Furthermore, V is aware of the OTP that is generated by the TA, the VTA 

authentication parameter, the hash function H (·) and the send/receive channels Snd/Rcv. 

The (dy) notation indicates that the channels are following the Dolev-Yao model. The 

keyword ‘Played_by V’ denotes that the role of the vehicle is played by agent V. All 

employed local variables in this role are defined under the local section. 

At the first state “state 2,” V receives a start message “Rcv(start)” as a signal to 

begin the protocol run. V generates new random values (TSoneV and Na) and computes 

Xone and Xtwo. The computation process of the Xone and Xtwo follows the presented 

protocol description. V sends VIDA, TSoneV, Xone, and Xthree to the TA. At the second 

transition, “State 4”, V receives the (TAIDA, SIDNIG, TSoneTA, Ytwo, CX and Ythree) 

message from the TA. The computation of Ytwo, CX, and Ythree follows the description 
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of our protocol. At this transition, if Ythree appears as expected by V and V correctly 

verified nb, V authenticates TA.  Then V generates a timestamp (TStwoV), new random 

value (Naa), and computes CHxnew, Xthree, and Xfour. The computation process of 

Xthree, Xfour, and CHxnew follows the presented protocol description. V sends VIDA, 

TStwoV, Xthree, and Xfour to TA. At the third transition, “State 6”, V received the 

(TAIDA, SIDNIG, TStwoTA, Yfive, and Ysix) from the TA.  V calculates and verifies 

the received new OTPnew, and NnewIDA by following the presented protocol's 

description.  After completing the verification process, Vstores its new alias ID and the 

new OTP on its own memory for the next authentication session.  The “end role” at the 

end of the V role denotes the end of the role played by V. 

Figure C_2 in Appendix C shows the role of the trusted authority played by TA. 

The TA is aware of all agents in the protocol (V and TA), its alias and real identities 

(TAIDA, TAIDR), the Alias and real identities (VIDA, VIDR) of the vehicle. TA knows 

the OTP, the CHX, the hash function H (·), and the send/receive channels Snd/Rcv. 

At the first transition, “State 1”, TA receives the (VIDA, TSoneV, Xone, and 

Xtwo) message which was sent by V.  TA uses the alias ID of V to retrieve its real ID, its 

PUF challenge, the CHX, and OTP. TA uses the calculated VTA value to extract the V's 

random generated value. Furthermore, TA uses V’s real identity, TSoneV, Na, and the 

VTA to compute and verify the received Xtwo’. The computation and extraction of Na, 

Xone, and Xtwo follow the presented scheme's description. Once the TA verifies Xtwo, it 

generates a new value Nb and a TSoneT and computes Yone, Ytwo, CX and Ythree. 

Then the TA sends to V (TAIDA, SIDNID, TSoneT, Ytwo, CX,Ythree). The 

computation for Yone, Ytwo, CX, Ythree follows the description of the introduced 
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scheme. t the second transition, “State 3”, TA received the (VIDA, SIDNIG, TStwoV, 

Xthree, and Xfour) from the V.  The computation of the Xthree and Xfour followed the 

description of the presented protocol.  At this transition, if Xfour is proved to be valid by 

TA, TA will authenticate V. Consequently, the TA will generate a new alias ID for V and 

a new OTP.  The computations of NnewIDA and NOPT will follow the description of the 

presented protocol. The TA will then send to V (TAIDA, SIDNIG, TStwoT, Yfive,Ysix 

).  The “end role” at the end of the TA role denotes the end of the role played by TA. 

Figure C_3 in Appendix C shows the session role where all the two agents’ roles 

are invoked, and all the session parameters are defined. Both the TA and V roles are 

invoked with TA and V as agents, VIDA, VIDR, TAIDA, OTP, VTA, and CHX are 

predefined as constants, H as the hash function, and SND1 and RCV1 as well as SND2 

and RCV2 as the send and receive channels for V and TA. The “end role” at the end of 

the session role indicates the end of this role. 

Figure C_4 in Appendix C shows the environment role. In this role, one or more 

sessions are instantiated. First, all constants are instantiated and defined. The constants, v, 

and ta are instantiated as agents representing agents V and TA. The constants vida, vidr 

,taida ,  otp,vta, and chx instantiates VIDA, VIDR, TAIDA, OTP,VTA, and CHX. The 

function h instantiates the hash function H. The protocol identifiers are secVIDR, 

secOTP, secNa, secNb,secNaa, secCone, secRone, secNOTP,secVIDAnew, secCHXnew, 

secVTA, na, and nb are also instantiated and defined. In the intruder knowledge section, 

all relevant values that the intruder is assumed to know before the execution are provided. 

The attacker is assumed to know v and TA. He/ she is also assumed to know the hash h. 

The session is instantiated with v, ta, vida, vidr, taida, otp, chx, vta, and h instances in the 
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composition section. The “end role” at the end of the environment role denotes the end of 

this role. 

Figure C_5 in Appendix C shows the simulation goals which are declared under 

the “goal” keyword using the protocol identifiers declared as ‘protocol_id’. The simulator 

is dictated to check the secrecy VIDR, OTP,Na,Nb, 

VTA,Cone,Rone,CHXnew,Naa,NOTP, and VnewIDA at different states using 

secrecy_of secVIDR’, ‘secrecy_of secOTP’, ‘secrecy_of secNa’, ‘secrecy_of secNb, 

‘secrecy_of secVTA’, ‘secrecy_of secCone’, ‘secrecy_of secRone,  secrecy_of 

secCHXnew, ‘secrecy_of secNaa, ‘secrecy_of secNOTP’, and ‘secrecy_of 

secNnewIDA’. The authentication is checked using ‘authentication_on na’ and 

‘authentication_on nb’. The “end role” at the end of the goal section denotes the end of 

this role. 

6.7.1.1.1.1.2 Simulation results 

The SPAN protocol simulation’s MSC corresponding to our HLPSL specification 

is shown in Figure. 106. 

Figure 106: Snapshot of the protocol simulation in AVISPA 
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In AVISPA tool, the security properties such as authentication, integrity, and 

secrecy are specified in a separate section. Therefore, when SPAN is executed, it verifies 

if the protocol satisfies the specified properties. SPAN will generate the attack trace if an 

attack is found and considers the protocol unsafe. The presented protocol's simulation 

results are achieved by the OFMC back-end checker and the CL-AtSe back-end checker. 

Figure 107 shows the CL-AtSe back-end checker report, which guarantees that the 

protocol is SAFE and satisfies all the specified security goals. Figure 108 presents the 

OFMC back-end checker report shows that the protocol is SAFE, thus meeting the 

defined security goals. In summary, we can conclude that the proposed protocol is secure. 

Figure 107: CL-AtSe Summary Report 
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Figure 108: OFMC summary report 

6.7.1.1.1.2 Protocol 2: Vehicle-Driver-VOCS authentication 

6.7.1.1.1.2.1    Phase 1: Vehicle -VOCS mutual authentication 

6.7.1.1.1.2.1.1        Simulation overview 

The abstract notations used to describe the authentication process and the 

corresponding AVISPA HLPSL scripting variables/functions are presented in table 28. 

Table 28: Abstract notation and AVISPA HLPSL scripting variables/functions for 

protocol specification 

Notation Description 

VOCS CS 

Vi Vehicle 

VIDR VIDR 
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VOCSIDR CSIDR 

VOCSIDA CSIDA 

MSK MSK 

OTT OTT 

VTID TID 

RVvi1 Na 

TSvi1 TSoneV 

VCS1 VCS1 

VCS2 VCS2 

TSCS1 TSoneCS 

RVCS1 Nb 

C Cone 

CV CV 

SIDNIG SID 

TSvi2 TStwoV 

RVvi2 Naa 

Ri Rone 
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Ci+1 Ctwo 

Ri+1 Rtwo 

OTTnew NOTT 

VIDAnew VnewIDA 

⊕ XOR 

H H 

The main goals of the simulation are as follows: 

1. Goal 1: The secrecy_of secVIDR represents that the VIDR is permanently

kept secret, known to only (V, VOCS) 

2. Goal 2: The secrecy_of secOTT represents that OTT is kept secret to (V, CS)

only. 

3. Goal 3: The secrecy_of secVCS1 represents that VCS1 is kept secret to (V, CS)

only. 

4. Goal 4: The secrecy_of secVCS2 represents that VCS2 is kept secret to (V, CS)

only. 

5. Goal 5: The secrecy_of secNa represents that RVvi1 is kept secret to (V, CS)

only. 
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6. Goal 6: The secrecy_of secNb represents that RVTA1 is kept secret to (V, CS)

only. 

7. Goal 7: The secrecy_of secCone represents that C is kept secret to ((V, CS)

only. 

8. Goal 8: The secrecy_of secRone represents that Ri is kept secret to ((V, CS)

only 

9. Goal 9: The secrecy_of secRtwo represents that Ri+1 is kept secret to ((V,

CS) only. 

10. Goal 10: The secrecy_of secNaa represents that RVvi2 is kept secret to (V,

CS) only. 

11. Goal 11: The secrecy_of secNOTT represents that OTTnew is kept secret to

(V, CS) only. 

12. Goal 12: The secrecy_of secVnewIDA represents that the secret key

secVIDAnew is permanently kept secret, known to only (V, CS). 

13. Authentication Property 1: The authentication_on Nb represents that CS

generates Nb. If V securely receives Nb through a message, it authenticates 

CS. 

14. Authentication Property 2: The authentication_on Na represents that V

generates Na. If CS securely receives Na through a message, it authenticates 

V. 

To achieve the goals mentioned above, we wrote the HLPSL script for the 

protocol. The entities involved in the communication process are modeled as roles with 
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their message exchanges. There are four defined roles:  that are: (1) role_V that is played 

by the vehicle; (2) role _CS that is played by the vehicle owner cloud server; (3) session, 

where the session role and all its declarations are defined, (4) and environment, which 

instantiates all agents, variables, and functions. 

As presented in Figure C_6 in Appendix C, the role of the vehicle is played by V. 

V is aware of the V and CS agents in the protocol, and its alias identity and the CS alias 

identity. Also, it is aware of its own real identity VIDR real identity that should be kept 

secured. Furthermore, V is aware of the VCS1, VCS2, OTT, the hash function H (·), and 

the send/receive channels Snd/Rcv. The (dy) notation indicates that the channels are 

following the Dolev-Yao model. The keyword ‘Played_by V’ denotes that the role of the 

vehicle is played by agent V. All employed local variables in this role are defined under 

the local section. 

At the first state “state 2,” V receives a start message “Rcv(start)” as a signal to 

begin the protocol run. V generates new random values (TSoneV and Na and computes 

VXone and VXtwo. The computation process of the VXone and VXtwo follows the 

presented protocol description. V sends VIDA, TSoneV, VXone, and VXtwo to the CS. 

At the second transition, “State 4”, V receives the CSIDA, SIDNIG, TSoneCS, 

Ytwo, CV and Ythree) message from the CS The computation of CSYtwo, CV, and 

CSYthree follows the description of our protocol. At this transition, if the CSYthree 

appears as expected by V and V correctly verified Nb, then V authenticates CS.  Then V 

generates new random values TStwoV and Naa. Also, V generates a new challenge 

(Ctwo) and calculates its response (Rtwo), its new alias ID(VnewIDA), and a new 

OTT(NOTT).  The computations of Ctwo, Rtwo,VnewIDA,  NOTT, VXfour,Vxfive, 
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Vxsix, and Vxseven follow the description of the presented protocol. V sends (VIDA, 

TStwoV, VXfour, VXfive, Vxsix, and Vxseven) to CS. The “end role” at the end of the 

V role denotes the end of the role played by V. 

Figure C_7 in Appendix C shows the role of the Vehicle owner cloud server 

played by CS. The CS is aware of all agents in the protocol (V and CS), its alias and real 

identities (CSIDA, CSIDR), the Alias and real identities (VIDA, VIDR) of the vehicle. 

CS knows the OTT, the TID, the hash function H (·), and the send/receive channels 

Snd/Rcv. 

At the first transition, “State 1”, CS receives the (VIDA, TSoneV, VXone, and 

VXtwo) message, which V. CS sent uses the alias ID of V to retrieve its real ID, TID, and 

OTT and its own PUF challenge. CS uses the calculated VSC1 and VCS2 to extract the 

V's random generated value. Also, CS uses V’s real identity, TSoneV, Na, OTT, and the 

VCS1to compute and verify the received VXtwo’. The computation and extraction of Na, 

TSoneV, and VXtwo follow the presented scheme's description. Once the CS verifies 

VXtwo’, it generates a fresh value Nb and a TSoneCS and computes CSYone, CSYtwo, 

CV, and CSYthree. Then the CS sends to V (CSIDA, SIDNID, TSoneCS, CSYtwo, 

CV,CSYthree). The computation for CSYone, CSYtwo, CV, CSYthree follows the 

description of the introduced scheme. 

At the second transition, “State 3”, CS received the (VIDA, SIDING, TStwoV, 

VXfour,  VXfive, VXsix, and VXseven) message from the V.  The computation of the 

VXfour, VXfive, VXsix, and VXseven follows the description of the presented protocol.  

At this transition, CS calculates and verifies the received new token (NOTT), New Alias 

ID (VnewIDA), new challenge (Ctwo), and new response (Rtwo) by following the 
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presented protocol's description. Suppose VXseven is proved to be valid by CS. In that 

case, CS authenticates V.  The “end role” at the end of the CS role denotes the end of the 

role played by CS. 

 Figure C_8 in Appendix C shows the session role where the two agents’ roles are 

invoked and defined all the session parameters. Both the CS and V roles are invoked with 

CS and V as agents, VIDA, VIDR, CSIDA, VCS1, VCS2, OTT, and TID are predefined 

as constants, H as the hash function, and SND1 and RCV1 as well as SND2 and RCV2 as 

the send and receive channels for V and CS. The “end role” at the end of the session role 

indicates the end of this role. 

Figure C_9 in Appendix C shows the environment role. In this role, one or more 

sessions are instantiated. First, all constants are instantiated and defined. The constants, v, 

and cs are instantiated as agents representing agents V and CS. The constants vida, vidr, 

csida ,vcs1,vcs2, otp, and tid instantiates VIDA, VIDR, CSIDA, VCS1,VCS2,OTT, and 

TID, respectively. The function h instantiates the hash function H. The protocol 

identifiers are secVIDR, , secOTT, secNa, secNb,secNaa, secCone, secRone, secRtwo, 

secNaa, secNOTT,secVCS1, secVCS1, secVnewIDA, na and nb are also instantiated and 

defined. In the intruder knowledge section, all relevant values that the intruder is assumed 

to know before the execution are provided. The attacker is assumed to know v and cs. He/ 

she is also assumed to know the hash h. The session is instantiated with v, cs, vida, vidr, 

csida, vcs1, vcs2, ott, tid, and h instances in the composition section. The “end role” at 

the end of the environment role denotes the end of this role. 

Figure C_10 in Appendix C shows the simulation goals, which are declared under 

the “goal” keyword using the protocol identifiers declared as ‘protocol_id’. The simulator 
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is dictated to check the secrecy VIDR, OTT,Na,VCS1,VCS2, Nb, 

Cone,Rone,Rtwo,Naa,NOTT, and VnewIDA at different states using secrecy_of 

secVIDR’, ‘secrecy_of secOTT’, ‘secrecy_of secNa’, ‘secrecy_of secVCS1’, ‘secrecy_of 

secVCS2’, ‘secrecy_of secNb,  ‘secrecy_of secCone’, ‘secrecy_of secRone,  secrecy_of 

secRtwo, ‘secrecy_of secNaa,‘secrecy_of secNOTT’,  and ‘secrecy_of secVnewIDA’ . 

The authentication is checked using ‘authentication_on na’ and ‘authentication_on nb’. 

The “end role” at the end of the goal section denotes the end of this role. 

6.7.1.1.1.2.1.2 Simulation results 

The SPAN protocol simulation’s MSC corresponding to our HLPSL specification 

is shown in figure 109. 

Figure 109: Snapshot of the Protocol Simulation in AVISPA 

In AVISPA tool, the security properties such as authentication, integrity, and 

secrecy are specified in a separate section. Therefore, when SPAN is executed, it verifies 

if the protocol satisfies the specified properties. SPAN will generate the attack trace if an 
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attack is found, and it will consider the protocol unsafe. The presented protocol's 

simulation results are achieved by the OFMC back-end checker and the CL-AtSe back-

end checker. Figure 110 shows the CL-AtSe back-end checker report, which guarantees 

that the protocol is SAFE and satisfies all the specified security goals. Figure. 111 

presents the OFMC back-end checker report shows that the protocol is SAFE, thus 

meeting the defined security goals. In summary, we can conclude that the proposed 

protocol is secure. 
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Figure 110 : CL-AtSe summary report 

Figure 111: OFMC summary report 

6.7.1.1.1.2.2 Phase 2: Driver-VOCS Authentication 

6.7.1.1.1.2.2.1 Simulation Overview 

After completing the mutual authentication between the vehicle and the VOCS, 

the driver’s authentication to the VOCS will be started. The vehicle will be used as the 

communication medium between the driver and the VOCS. The abstract notations used to 

describe the authentication protocol and the corresponding AVISPA HLPSL scripting 

variables/functions are presented in table 29. 

Table 29: D-VOCS abstract notation and AVISPA HLPSL scripting variables/functions 

for protocol specification 

VOCS CS 
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Vi Vehicle 

VIDR VIDR 

VOCSIDR CSIDR 

VOCSIDA CSIDA 

OTT OTT 

UI Ui 

PUi PUI 

Ssk SK 

VTID TID 

TSvi1 TSoneV 

VCS1 VCS1 

VCS2 VCS2 

TSCS1 TSoneCS 

Ri Rone 

⊕ XOR 

H H 

The main goals of the simulation are as follows: 
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1. Goal 1: The secrecy_of secVIDR represents that the VIDR is permanently

kept secret, known to only (V, CS) 

2. Goal 2: The secrecy_of secOTT represents that OTT is kept secret to (V, CS)

only 

3. Goal 3: The secrecy_of secRone represents that Ri is kept secret to ((V, CS)

only 

4. Goal 4: The secrecy_of secSk represents that SKis kept secret to (V, CS)

only. 

5. Goal 5: The secrecy_of secPUI represents that PUI is kept secret to (V, CS)

only. 

6. Authentication Property 1: The authentication_on Uone represents that the

user generates Uone. If CS securely receives Uone through a message, it 

authenticates U. 

To achieve the goals mentioned above, we wrote the HLPSL script for the 

protocol. The entities involved in the communication process are modeled as roles with 

their message exchanges. There are four defined roles:  that are: (1) role_V that is played 

by the vehicle that represents the user; (2) role _CS that is played by the vehicle owner 

cloud server; (3) session, where the session role and all its declarations are defined, (4) 

and environment, which instantiates all agents, variables, and functions. 

As presented in figure C_11 in Appendix C, the role of the vehicle is played by V. 

V is aware of the V and CS agents in the protocol, and its alias identity and the CS alias 

identity. Also, it is aware of its own real identity VIDR that should be kept secured. 
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Furthermore, V is aware of the VCS1, VCS2, OTT, UI, Rone, SIDIG, SK, the hash 

function H (·), and the send/receive channels Snd/Rcv. The (dy) notation indicates that 

the channels are following the Dolev-Yao model. The keyword ‘Played_by V’ denotes 

that the role of the vehicle is played by agent V. All employed local variables in this role 

are defined under the local section.  At the first state “state 2,” V receives a start message 

“Rcv(start)” as a signal to begin the protocol run. V generates a timestamp (TSoneV) and 

computes Uone, ZUone,Utwo, and Uthree. The computation process of the Uone, ZUone, 

Utwo, and Uthree follows the presented protocol description. V sends VIDA, Ui, 

TSoneV, Utwo, and Uthree to the CS. At the second transition, “State 4”, V receives the 

CSIDA, SIDNIG, TSoneCS, and UV) message from the CS. At this transition, if the UV 

appears as expected by V and V correctly verified UV, this proves that the response came 

from the real CS, and the user got successfully authenticated to the CS.  The “end role” at 

the end of the V role denotes the end of the role played by V. 

Figure C_12 in Appendix C shows the role of the vehicle owner cloud server 

played by CS. The CS is aware of all agents in the protocol (V and CS), its alias and real 

identities (CSIDA, CSIDR), the Alias and real identities (VIDA, VIDR) of the vehicle. 

CS knows the OTT, the TID, UI, Rone, SIDING, SK, the hash function H (·), and the 

send/receive channels Snd/Rcv. The (dy) notation indicates that the channels are 

following the Dolev-Yao model. The keyword ‘Played_by CS’ denotes that agent CS 

plays the role of the vehicle owner cloud server. All employed local variables in this role 

are defined under the local section. At the first transition, “State 1”, CS receives the 

(VIDA, TSoneV, UI, Utwo, Uthree) message from V. At this transition, Uthree is proved 

to be valid by CS, CS authenticates the user.  Then, CS generates a fresh TSoneCS and 
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computes Uv. Then the CS sends to V (CSIDA, SIDNID, {TSoneCS, UV}ssk). The 

computation for Uv, follows the description of the introduced scheme. The “end role” at 

the end of the CS role denotes the end of the role played by CS. 

Figure C_13 in Appendix C shows the session role where the two agents’ roles 

are invoked and defined all the session parameters. Both the CS and V roles are invoked 

with CS and V as agents, CSIDA, VIDA, VIDR, CSIDR, VCS1, VCS2, OTT, UI, Rone, 

SIDNIG, TID, and SK are predefined as constants, H as the hash function, and SND1 and 

RCV1 as well as SND2 and RCV2 as the send and receive channels for V and CS. The 

“end role” at the end of the session role indicates the end of this role. 

Figure C_14 in Appendix C shows the environment role. In this role, one or more 

sessions are instantiated. First, all constants are instantiated and defined. The constants, v, 

and cs are instantiated as agents representing agents V and CS. The constants csida, vida, 

vidr , csidr ,vcs1,vcs2, ott,ui, rone, siding, tid, and sk instantiates CSIDA,VIDA, VIDR, 

CSIDR, VCS1,VCS2,OTT,UI,Rone, SIDNIG, TID, and SK, respectively. The function h 

instantiates the hash function H. The protocol identifiers are secVIDR, secOTT, secRone, 

secSK, secPUI, and uone are also instantiated and defined. In the intruder knowledge 

section, all relevant values that the intruder is assumed to know before the execution are 

provided. The attacker is assumed to know v and cs. He/ she is also assumed to know the 

hash h. The session is instantiated with v, cs, csida, vida, vidr, csidr, vcs1, vcs2, ott, ui, 

rone, siding, tid, sk, and h instances in the composition section. The “end role” at the end 

of the environment role denotes the end of this role. 

C_15 in Appendix C shows the simulation goals, which are declared under the 

“goal” keyword using the protocol identifiers declared as ‘protocol_id’. The simulator is 
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dictated to check the secrecy VIDR, OTT, Rone, SK, and PUI at different states using 

secrecy_of secVIDR’, ‘secrecy_of secOTT’, ‘secrecy_of secRone’, ‘secrecy_of secSK’, 

and ‘secrecy_of secPUI. The authentication is checked using ‘authentication_on uone’. 

The “end role” at the end of the goal section denotes the end of this role. 

6.7.1.1.1.2.2.2 Simulation Results 

The SPAN protocol simulation’s MSC corresponding to the HLPSL specification 

is shown in figure 112. 

Figure 112: Snapshot of the protocol simulation in AVISPA 

In AVISPA tool, the security properties such as authentication, integrity, and 

secrecy are specified in a separate section. Therefore, when SPAN is executed, it verifies 

if the protocol satisfies the specified properties. SPAN will generate the attack trace if an 

attack is found, and it will consider the protocol unsafe. The presented protocol's 

simulation results are achieved by the OFMC back-end checker and the CL-AtSe back-

end checker. Figure 113 shows the CL-AtSe back-end checker report, which guarantees 

that the protocol is SAFE and satisfies all the specified security goals. Figure. 114 

presents the OFMC back-end checker report shows that the protocol is SAFE, thus 

meeting the defined security goals. In summary, we can conclude that the proposed 

protocol is secure. 
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Figure 113: CL-AtSe summary report 

Figure 114: OFMC summary report 
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6.7.1.1.2 Formal proof based on BAN logic 

6.7.1.1.2.1 Protocol 1: V-TA authentication 

In this section, we use BAN logic to verify the legitimacy of OTPnew and the 

session key (ssk) that are shared between V and TA that communicate in the presented 

protocol. To ensure the security of the proposed protocol under BAN logic, it needs to 

satisfy security goals. The following section defines the main goals of the analysis of the 

presented authentication scheme. 

6.7.1.1.2.1.1 Goals identification 

Goal 1: V and TA want to establish a shared secret key (ssk) that is believed by each 

other. 

G1_1: TA believes that the V believes that the ssk is a securely shared parameter between 

V and TA. 

       TA| ≡ V|≡ (V      TA) 

G1_2:  TA believes that ssk is a securely shared parameter between V and TA. 

      TA|≡ (V  TA) 

G1_3: V believes that TA believes that the ssk is a securely shared parameter between V 

and TA. 

   V| ≡ TA | ≡ (V  TA) 

ssk 

ssk

ssk
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G1_4:  V believes that the ssk is a securely shared parameter between V and TA. 

V| ≡ (V  TA) 

Goal 2: V and TA want to generate a one-time password (OTPnew) that is believed 

by each other. 

G2_1: TA believes that the V believes that the OTPnew is securely shared parameters 

between V and TA. 

TA| ≡ V | ≡ (V                 VOCS) 

G2_2:  TA believes that OTPnew is securely shared parameter between V and TA. 

TA| ≡ (V  TA)  

G2_3: V believes that the TA believes that the OTPnew is securely shared parameters 

between V and TA. 

V| ≡ TA | ≡ (V           TA)  

ssk 

 OTPnew 

 OTPnew 

 OTPnew 
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G2_4:  V believes that OTPnew is securely shared parameter between V and TA. 

V| ≡ (V  TA)  

6.7.1.1.2.1.2 Messages idealization 

First, we transfer all transmitted messages into idealized form as follows. 

M1: V          TA:(VIDR, TSv1, RVv1) VTA1

M2: TA          V:(RVTA1, TSTA1, OTPVi , C)Yone 

M 3: V          TA:(VIDR, TSV2, RVV2, OTPVi , Ri) CHXi+1 

M 4: TA          V:(VIDR, TSTA2, RVTA2) Yfour 

6.7.1.1.2.1.3 Main assumptions 

The second step is to define some assumptions as initiative promises. The 

fundamental assumptions of the presented authentication scheme are as follows: 

P1: TA believes that VTA is a secure shared parameter between V and TA 

TA| ≡ (V  TA) 

P2: TA believes V believes that VTA is a secure shared parameter between V and TA. 

TA | ≡ V| ≡ (V    TA) 

 VTA 

VTA 

 OTPnew 
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P3: V believes that Yone is a secure shared parameter between V and TA 

V| ≡ (V  TA) 

P4: V believes TA believes that Yone is a secure shared parameter between V and TA. 

V | ≡ TA| ≡ (N    MG) 

P5: TA believes that CHXi+1 is a secure shared parameter between V and TA 

TA| ≡ (V  TA) 

P6: TA believes V believes that CHXi+1 is a secure shared parameter between V and TA. 

TA | ≡ V| ≡ (V    TA) 

P7: V believes that Yfour is a secure shared parameter between V and TA 

V| ≡ (V  TA) 

P8: V believes TA believes that Yfour is a secure shared parameter between V and TA. 

V | ≡ TA| ≡ (V    TA) 

P9: TA believes RVV1 is fresh. 

TA| ≡ #(RVV1) 

 Yone 

 CHXi+1 

Yonr 

CHXi+1 

 Yfour 

Yfour 
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P10: TA believes that V believes RVV1. 

TA | ≡ V| ≡   RVV1  

P11: TA believes that V has jurisdiction over RVV1. That is, V is an authority and 

believes RVV1. 

   TA | ≡ V   ⇒ RVV1 

P12: TA believes TSV1 is fresh. 

TA| ≡ #(TSV1) 

P13: TA believes RVV2 is fresh. 

TA| ≡ #(RVV2) 

P14: TA believes that V believes RVV2. 

TA | ≡ V| ≡   RVV2 

P15: TA believes that V has jurisdiction over RVV2. That is, V is an authority and 

believes RVV2. 

   TA | ≡ V   ⇒ RVV2 

P16: TA believes TSV2 is fresh. 

TA| ≡ #(TSV2) 

P17: V believes RVTA1 is fresh. 

V| ≡ #(RVTA1) 
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P18: V believes that TA believes RVTA1. 

V | ≡ TA| ≡   RVTA1  

P19: V believes that TA has jurisdiction over RVTA1. That is, TA is an authority and 

believes RVTA1. 

   V | ≡ TA   ⇒ RVTA1 

P20: V believes RVT2 is fresh. 

V| ≡ #(RVTA2) 

P21: V believes that TA believes RVTA2. 

V | ≡ TA| ≡   RVTA2 

P22: V believes that TA has jurisdiction over RVTA2. That is, TA is an authority and 

believes RVTA2. 

   V | ≡ TA   ⇒ RVTA2 

P23: V believes TSTA1 is fresh. 

V| ≡ #(TSTA1) 

P24: V believes TSTA2 is fresh. 

V| ≡ #(TSTA2) 

P25: TA believes VIDR is a secure shared parameter between V and TA. 

TA | ≡ (V   TA) 

VIDR 



409 

P26: TA believes V believes that VIDR is a secure shared parameter between V and TA. 

TA | ≡ V| ≡ (V   TA) 

P27: TA believes that V believes Ri

TA| ≡ V | ≡ Ri 

P28: TA believes that V has a jurisdiction over Ri 

            TA| ≡ V ⇒ Ri 

P29: V believes TA believes that OTP is a secure shared parameter between V and TA. 

V | ≡ TA| ≡ (V  MG) 

P30: V believes that OTP is a secure shared parameter between V and TA 

V| ≡ (V  TA) 

P31: TA believes that OTP is a secure shared parameter between V and TA 

TA| ≡ (V  TA) 

P32: TA believes V believes that OTP is a secure shared parameter between V and TA. 

TA | ≡ V|≡ (V   TA) 

VIDR 

OTP 

 OTP 

OTP 

 OTP 
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P33: TA believes that CHXx+1 is a secure shared parameter between V and TA 

   TA| ≡ (V  TA) 

P34: TA believes V believes that CHXx is a secure shared parameter between V and TA. 

TA | ≡ V| ≡ (V  TA) 

P35: TA believes V believes that ssk is a secure shared parameter between V and TA 

TA | ≡ V| ≡ (V  TA) 

P36: V believes TA believes that ssk is a secure shared parameter between V and TA 

V | ≡ TA| ≡ (V  TA) 

P37: TA believes V believes that OTPnew is a secure shared parameter between V and 

TA 

TA | ≡ V| ≡ (V   TA) 

P38: V believes TA believes that OTPnew is a secure shared parameter between V and 

TA 

V | ≡ TA| ≡ (V   TA) 

6.7.1.1.2.1.4 Analysis of the V-TA authentication protocol 

We then prove that the proposed protocol achieves the security goals based on the 

idealized form of the messages, assumptions, and BAN logic rules. The proposed 

ssk 

 ssk 

OTPnew 

OTPnew 

 CHXx+1 

CHXx+1 
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authentication scheme analysis is shown below to prove that the protocol achieves mutual 

authentication between V and TA. 

According to M1: 

V1: TA ◃:(VIDR, TSv1, RVv1) VTA1

According to P1, P25 and Rule 1, we derive the following 

V2: 

𝑇𝐴|≡V  VTA  TA ,TA ⊲(𝑉𝐼𝐷𝑅, ,𝑇𝑆𝑉1,𝑅𝑉𝑉1) 𝑉  𝑉𝑇𝐴     𝑇𝐴

𝑇𝐴|≡V |∼ ( (𝑉𝐼𝐷𝑅,𝑇𝑆𝑉1,𝑅𝑉𝑉1)

According to P9, P12, and rule 3, we derive the following 

V3: 
𝑇𝐴|≡#(𝑇𝑆𝑉1 𝑎𝑛𝑑 𝑅𝑉𝑉1)

𝑇𝐴|≡#|(𝑉𝐼𝐷𝑅, 𝑇𝑆𝑉1,𝑅𝑉𝑉1)

According to P2, P26, V2, V3, and rule 2, we derive the following 

V4: 
𝑇𝐴|≡#(𝑉𝐼𝐷𝑅, ,𝑇𝑆𝑉1,𝑅𝑉𝑉1),TA|≡V~(𝑉𝐼𝐷𝑅,𝑇𝑆𝑉1,𝑅𝑉𝑉1)

𝑇𝐴|≡V|≡(𝑉𝐼𝐷𝑅, 𝑇𝑆𝑉1,𝑅𝑉𝑉1)

According to V4, P10, P11, and rule 4, we derive the following: 

V5: 
TA |≡V| ⇒ 𝑅𝑉𝑣1 ,TA |≡ V |≡ 𝑅𝑉𝑣1 

TA|≡  𝑅𝑉𝑣1

According to M2, we get 

V6: V◃ (RVTA1, TSTA1, OTPVi, C) Yone 
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 According to P3, P 29 and Rule 1, we derive the following

V7: 

𝑉|≡V  Yone  TA ,V ⊲(TS𝑇𝐴1,𝑅𝑉𝑇𝐴1,V OTP TA,C) 𝑉       𝑌𝑜𝑛𝑒     𝑇𝐴

𝑉|≡TA |∼ ( TS𝑇𝐴1,𝑅𝑉𝑇𝐴1,V OTP TA  ,C)

According to P17, P23 and rule 3, we derive the following 

V8: 
𝑉|≡#(TS𝑇𝐴1,𝑅𝑉𝑇𝐴1,)

𝑉|≡#(TS𝑇𝐴1,𝑅𝑉𝑇𝐴1,V OTP TA,C)

According to P30, V7, V8, and rule 2, we derive the following 

V9: 

𝑉|≡#(TS𝑇𝐴1,𝑅𝑉𝑇𝐴1,V OTP TA,C),V|≡TA~(TS𝑇𝐴1,𝑅𝑉𝑇𝐴1,V OTP TA,C)

𝑉|≡TA|≡(TS𝑇𝐴1,𝑅𝑉𝑇𝐴1,V OTP TA,C)

According to V9, P18, P19 and rule 4, we derive the following: 

V10: 
𝑉 |TA| ⇒ 𝑅𝑉𝑇𝐴1,V |≡ TA |≡ 𝑅𝑉𝑇𝐴1 

𝑉|≡  𝑅𝑉𝑇𝐴1

According to M3: 

V11 TA ◃(VIDR, TSV2, RVV2, OTPVi ,Ri) CHXi+1

According to P5, P25, P27, P31 and Rule 1, we derive the following 

V12: 

𝑇𝐴|≡V  CHXx+1 TA ,TA ⊲(VIDR,TS𝑉2,𝑅𝑉𝑉2,V Ri TA,V OTP TA) 𝑉 𝐶𝐻𝐴𝑥+1     𝑇𝐴

𝑇𝐴|≡V |∼ ( VIDR, TS𝑉2,𝑅𝑉𝑉2,V Ri TA,   V OTP TA)
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According to P13, P16, and rule 3, we derive the following 

    V13: 
𝑇𝐴|≡#(𝑇𝑆𝑉2 𝑎𝑛𝑑 𝑅𝑉𝑉2)

𝑀𝑇𝐴|≡#|(VIDR,TS𝑉2,𝑅𝑉𝑉2,V Ri TA,V OTP TA )

According to P6, P26, P32, V12, V13, and rule 2, we derive the following 

V14: 

𝑇𝐴|≡#(TS𝑉2,𝑅𝑉𝑉2,V Ri TA,V OTP TA ),V|≡TA~(TS𝑇𝐴1,𝑅𝑉𝑇𝐴1,V Ri TA,V OTP TA  )

𝑇𝐴|≡V|≡(TS𝑇𝐴1,𝑅𝑉𝑇𝐴1,V Ri TA,V OTP TA)

According to V14, P15, P28 and rule 4, we derive the following: 

V15: 
TA |≡V|⇒ 𝑅𝑉𝑣2 ,Ri TA |≡ V |≡ 𝑅𝑉𝑣2,𝑅𝑖 

TA|≡  𝑅𝑉𝑣2,𝑅𝑖

According to M4, we get 

V16: V ◃(VIDR, TSTA2,RVTA2, OTPvi ) Yfour 

 According to P7, P29, and Rule 1, we derive the following

V17: 

𝑇𝐴|≡V  Yfour  TA ,V ⊲(VIDR,TS𝑇𝐴2,𝑅𝑉𝑇𝐴2,   V OTP TA) 𝑉  𝑌𝑓𝑜𝑢𝑟  𝑇𝐴

𝑉|≡TA |∼ ( VIDR,TS𝑇𝐴2,𝑅𝑉𝑇𝐴2,V OTP TA)

According to P20, P24 and rule 3, we derive the following 

V18: 
𝑉|≡#(𝑇𝑆𝑇𝐴2, 𝑅𝑉𝑇𝐴2,)

𝑉|≡#(VIDR,TS𝑇𝐴2,𝑅𝑉𝑇𝐴2,V OTP TA)
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According to P8, P30, V17, V18, and rule 2, we derive the following 

V19: 

𝑉|≡#(VIDR,TS𝑇𝐴2,𝑅𝑉𝑇𝐴2,V OTP TA),V|≡TA~(VIDR,TS𝑇𝐴2,𝑅𝑉𝑇𝐴2,V OTP TA)

𝑉|≡TA|≡(VIDR,TS𝑇𝐴2,𝑅𝑉𝑇𝐴2,V OTP TA)

According to V19, P21, P22 and rule 4, we derive the following: 

V20: 
𝑉 |TA| ⇒ 𝑅𝑉𝑇𝐴2,V |≡ TA |≡ 𝑅𝑉𝑇𝐴2 

𝑉|≡  𝑅𝑉𝑇𝐴2

As session key ssk = H (Ri || (RVvi1|| RVTA2 ||RVvi2 || RV’TA1) and in combination with 

P10, P14, V4 and V14, we can derive 

V21:  TA| ≡V |≡ (V    TA)     (Goal 1_1) 

 As session key ssk = H (Ri || (RVvi1|| RVTA2 ||RVvi2 || RV’TA1) and combining with P27, 

P35 and V5, V15, V21 

V22: TA|≡ (V  TA)   (Goal 1_2) 

 As session key ssk = H (Ri || (RVvi1|| RVTA2 ||RVvi2 || RV’TA1) and combining with P18, 

P21, V9 and V19 we can derive 

V23:  V ≡TA|≡ (V   TA)    (Goal 1_3) 

 As session key ssk = H (Ri || (RVvi1|| RVTA2 ||RVvi2 || RV’TA1) and combining with P36, 

V10, V20 and V23. 

V24: V|≡ (V  TA)   (Goal 1_4) 

ssk 

ssk 

ssk 

ssk 
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As OTPnew = H (OTP||RVTA2
 || Ri) and in combination with P27, P31 and V14, we can 

derive 

V25:  TA| ≡ V |≡ (V  TA)      (Goal 2_1) 

 As OTPnew = H (OTP||RVTA2
 || Ri) and combining with   P32, P37, and V15, PV25 

    V26: TA|≡ (V    TA)   (Goal 2_2) 

As OTPnew = H (OTP||RVTA2
 || Ri) and combining with P21, P29 and V19 we can derive 

V27:  V ≡TA|≡ (V  TA)    (Goal 2_3) 

 As OTPnew = H (OTP||RVTA2
 || Ri) and combining with P30, P38, V20, and V27. 

V28: V|≡ (V   TA)    (Goal 2_4) 

Hence, the above logic proves that the proposed protocol successfully achieves 

Goals 1.1 to 1.4 and 2.1 to 2.4. In other words, the proposed protocol achieves mutual 

authentication and secure session key agreement between V and TA. 

OPTnew 

OTPnew 

OTPnew 

OTPnew 
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6.7.1.1.2.2 Protocol 2: Vehicle- Driver-VOCS authentication 

6.7.1.1.2.2.1 Phase 1: V-VOCS 

In this section, we use BAN logic to verify the legitimacy of the session key (ssk),

Ri+1, and OTTnew that are shared between V and VOCS, which communicate in the 

presented phase. To ensure the security of the proposed protocol under BAN logic, it 

needs to satisfy a set of security goals. The following section defines the main goals of 

the analysis of the presented authentication scheme. 

6.7.1.1.2.2.1.1 Goals identification 

Goal 1: Ri+1 is well protected and believed by VOCS. 

G1_1: VOCS believes that the V believes that the Ri+1 is securely shared parameters 

between V and VOCS. 

VOCS| ≡ V | ≡ (V                 VOCS) 

G1_2:  VOCS believes that Ri+1 is securely shared parameters between V and VOCS. 

VOCS| ≡ (V  VOCS) 

Goal 2: The V and the VOCS want to establish a One Time Token (OTT) key that 

each other believes. 

G2_1: VOCS believes that the V believes that the OTTNew is a securely shared 

parameter between V and VOCS. 

Ri+1 

Ri+1 

OTTnew 
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  VOCS| V|≡ (V   VOCS) 

G2_2:  VOCS believes that OTTnew is a securely shared parameter between V and 

VOCS. 

VOCS|≡ (V    VOCS) 

G2_3: V believes that the VOCS believes that the OTTnew is a securely shared 

parameter between V and VOCS. 

   V| ≡ VOCS | ≡ (V         VOCS) 

G2_4:  V believes that OTTnew is a securely shared parameter between V and VOCS. 

V| ≡ (V   VOCS) 

Goal 3: The V and the VOCS want to establish a shared secret key (ssk) that each 

other believes. 

G3_1: VOCS believes that the V believes the ssk is a securely shared parameter between 

V and VOCS. 

 VOCS| ≡ V|≡ (V   VOCS) 

G3_2:  VOCS believes that sskis a securely shared parameter between V and VOCS. 

VOCS|≡ (V  VOCS) 

G3_3: V believes that the VOCS believes that the ssk is a securely shared parameter 

between V and VOCS. 

ssk

ssk

OTTnew

OTTnew

OTTnew 

ssk 
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   V| ≡ VOCS | ≡ (V  VOCS) 

G3_4:  V believes that ssk is a securely shared parameter between V and VOCS. 

V| ≡ (V  VOCS) 

6.7.1.1.2.2.1.2 Messages idealization 

First, we transferred all transmitted messages into idealized form as follows. 

M1: V          VOCS:(VIDR, TSv1, RVv1, OTT, VCS1) VX1

M2: VOCS          V:( VIDR, RVTA1, TSTA1, C, OTT, VCS1) CSY1 

M 3: V          VOCS:(VIDR, OTT, TSV2, RVV2, C
i+1 Ri, Ri+1) VXfour 

6.7.1.1.2.2.1.3 Main assumptions 

The second step to be completed is to define some assumptions as the initiative 

promises. The fundamental assumptions of the presented authentication scheme are as 

follows: 

P1: VOCS believes that VX1 is a secure shared parameter between V and VOCS 

VOCS| ≡ (V  VOCS) 

P2: VOCS believes V believes that VX1 is a secure shared parameter between V and 

VOCS. 

 VX1 

ssk 
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VOCS | ≡ V| ≡ (V    VOCS) 

P3: V believes that CSY1 is a secure shared parameter between V and VOCS 

V| ≡ (V  VOCS) 

P4: V believes VOCS believes that CSY1 is a secure shared parameter between V and 

VOCS. 

V | ≡ VOCS| ≡ (V   VOCS) 

P5: VOCS believes that VX4
 is a secure shared parameter between V and VOCS 

VOCS| ≡ (V  VOCS) 

P6: VOCS believes V believes that VX4
 is a secure shared parameter between V and 

VOCS. 

VOCS | ≡ V| ≡ (V   VOCS) 

P7: VOCS believes RVV1 is fresh. 

VOCS| ≡ #(RVV1) 

P8: VOCS believes that V believes RVV1. 

VOCS | ≡ V| ≡   RVV1  

VX1 

 CSY1 

 VX4 

CSY1 

VX4 
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P9: VOCS believes that V has jurisdiction over RVV1. That is, V is an authority and 

believes RVV1. 

   VOCS | ≡ V   ⇒ RVV1 

P10: VOCS believes RVV2 is fresh. 

   VOCS| ≡ #(RVV2) 

P11: VOCS believes that V believes RVV2. 

VOCS | ≡ V| ≡   RVV2

P12: VOCS believes that V has jurisdiction over RVV2. That is, V is an authority and 

believes RVV2. 

   VOCS | ≡ V   ⇒ RVV2 

P13: VOCS believes TSV1 is fresh. 

VOCS| ≡ #(TSV1) 

P14: VOCS believes TSV2 is fresh. 

VOCS| ≡ #(TSV2) 

P15: V believes RVVOCS1 is fresh. 

V| ≡ #(RVVOCS1) 

P16: V believes that VOCS believes RV VOCS1. 

V | ≡ VOCS| ≡   RVVOCS1  
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P17: V believes that VOCS has jurisdiction over RVVOCS1. That is, VOCS is an authority 

and believes RVVOCS1. 

   V | ≡ VOCS   ⇒ RVVOCS1 

P18: V believes TSVOCS1 is fresh. 

V| ≡ #(TSVOCS1) 

P19: VOCS believes VIDR is a secure shared parameter between V and VOCS. 

VOCS | ≡ (V   VOCS) 

P20: VOCS believes V believes that VIDR is a secure shared parameter between V and 

VOCS. 

         VOCS | ≡ V| ≡ (V   VOCS) 

P21: VOCS believes that V believes Ri

VOCS| ≡ V | ≡ Ri 

P22: VOCS believes that V has a jurisdiction over Ri 

VOCS| ≡ V ⇒ Ri 

P23: VOCS believes that V believes Ri+1 

VOCS| ≡ V | ≡ Ri+1 

P24: VOCS believes that V has a jurisdiction over Ri+1 

VIDR 

VIDR 
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VOCS| ≡ V ⇒ Ri+1 

P25: V believes that VOCS believes C

V| ≡ VOCS | ≡ C 

P26: V believes that VOCS has a jurisdiction over C 

VOCS| ≡ V ⇒ C 

P27: V believes that OTT is a secure shared parameter between V and VOCS 

V| ≡ (V  VOCS) 

P28: V believes VOCS believes that OTT is a secure shared parameter between V and 

VOCS. 

V | ≡ VOCS| ≡ (V   VOCS) 

P29: VOCS believes that OTT is a secure shared parameter between V and VOCS 

VOCS| ≡ (V  VOCS) 

P30: VOCS believes V believes that OTT is a secure shared parameter between V and 

VOCS. 

VOCS | ≡ V| ≡ (V  VOCS) 

OTT 

 OTT 

 OTT 

OTT 
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P31: VOCS believes V believes that ssk is a secure shared parameter between V and 

VOCS 

VOCS | ≡ V| ≡ (V  VOCS) 

P32: V believes VOCS believes that ssk is a secure shared parameter between V and 

VOCS 

V | ≡ VOCS| ≡ (V  VOCS) 

P33: VOCS believes V believes that OTTnew is a secure shared parameter between V 

and VOCS 

VOCS | ≡ V| ≡ (V    VOCS) 

P34: V believes VOCS believes that OTTnew is a secure shared parameter between V 

and VOCS 

V | ≡ VOCS| ≡ (V    VOCS) 

6.7.1.1.2.2.1.4 Analysis of the authentication V-VOCS phase 

We then prove that the proposed protocol achieves the security goals based on the 

idealized form of the messages, assumptions, and BAN logic rules. The proposed 

authentication protocol analysis is shown below to prove that the protocol achieves 

mutual authentication between V and VOCS. 

ssk 

 ssk 

OTTnew 

OTTnew 
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According to M1: 

V1: VOCS ◃:(:(VIDR, TSv1, RVv1, OTT, VCS1) VX1 

According to P1, P19, P29, and Rule 1, we derive the following 

V2: 

𝑉𝑂𝐶𝑆|≡V  VX1  VOCS ,VOCS ⊲(𝑉𝐼𝐷𝑅, 𝑉 𝑂𝑇𝑇 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1, 𝑉CS1,𝑅𝑉𝑉1) 𝑉  𝑉𝑋1     𝑉𝑂𝐶𝑆

𝑉𝑂𝐶𝑆|≡V |∼ ( (𝑉𝐼𝐷𝑅, 𝑉 𝑂𝑇𝑇  𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1, 𝑉CS1,𝑅𝑉𝑉1)

According to P7, P13, and rule 3, we derive the following 

V3: 
𝑉𝑂𝐶𝑆|≡#(𝑇𝑆𝑉1 𝑎𝑛𝑑 𝑅𝑉𝑉1)

𝑉𝑂𝐶𝑆|≡#|(𝑉𝐼𝐷𝑅, 𝑉 𝑂𝑇𝑇 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1, 𝑉CS1,𝑅𝑉𝑉1)

According to P2, P20, P30, V2, V3, and rule 2, we derive the following 

V4: 

𝑉𝑂𝐶𝑆|≡#(𝑉𝐼𝐷𝑅, 𝑉 𝑂𝑇𝑇  𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1, 𝑉CS1,𝑅𝑉𝑉1),VOCS|≡V~(𝑉𝐼𝐷𝑅, 𝑉 𝑂𝑇𝑇 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1, 𝑉CS1,𝑅𝑉𝑉1)

𝑉𝑂𝐶𝑆|≡V|≡(𝑉𝐼𝐷𝑅, 𝑉 𝑂𝑇𝑇 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1, 𝑉CS1,𝑅𝑉𝑉1)

According to V4, P8, P9, and rule 4, we derive the following: 

V5: 
VOCS |≡V| ⇒ 𝑅𝑉𝑣1 ,VOCS |≡ V |≡ 𝑅𝑉𝑣1 

VOCS|≡  𝑅𝑉𝑣1

According to M2, we get 
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V6: V◃(VIDR,RVCS1,TSCS1,C,OTT, VCS1)CSY1 

 According to P3, P27, and Rule 1, we derive the following

V7

𝑉|≡V  CSYone  VOCS ,V ⊲(TS𝑉𝑂𝐶𝑆1,𝑅𝑉𝑉𝑂𝐶𝑆1,V OTT    VOCS,𝑉𝐶𝑆1,C) 𝑉  𝐶𝑆𝑌𝑜𝑛𝑒  𝑉𝑂𝐶𝑆

𝑉|≡VOCS |∼ ( TS𝑉𝑂𝐶𝑆1,𝑅𝑉𝑉𝑂𝐶𝑆1,V OTT    VOCS, 𝑉𝐶𝑆1,C)

According to P15, P18 and rule 3, we derive the following 

V8: 
𝑉|≡#(TS𝐶𝑆1,𝑅𝑉𝐶𝑆1,)

𝑉|≡#(TS𝐶𝑆1,𝑅𝑉𝐶𝑆1,V OTT    VOCS, 𝑉𝐶𝑆1,C)

According to P4, P16, P25, P28, V7, V8, and rule 2, we derive the following 

V9: 

𝑉|≡#(TS𝐶𝑆1,𝑅𝑉𝐶𝑆1,V OTT VOCS,C),V|≡VOCS~(TS𝐶𝑆1,𝑅𝑉𝐶𝑆1,V OTT VOCS,C)

𝑉|≡VOCS|≡(TS𝐶𝑆1,𝑅𝑉𝐶𝑆1,V OTT VOCS ,C)

According to V9, P17, P26 and rule 4, we derive the following: 

V10: 
𝑉 |VOCS|⇒ 𝑅𝑉𝐶𝑆1,C   V |≡ VOCS|≡ 𝑅𝑉𝐶𝑆1,𝐶 

𝑉|≡  𝑅𝑉𝐶𝑆1,𝐶

According to M3: 

V11 VOCS ◃(VIDR, OTT, TSV2, RVV2, Ri, Ri+1) VXfour

According to P5, P19, P29, and Rule 1, we derive the following 

V12: 

𝑉𝑂𝐶𝑆|≡V VXfour  VOCS ,VOCS ⊲(VIDR, V OTT VOCS,TS𝑉2,𝑅𝑉𝑉2,𝑅1,𝑅𝑖+1) 𝑉   VXfour     𝑉𝑂𝐶𝑆

𝑉𝑂𝐶𝑆|≡V |∼ ( VIDR, V OTT VOCS,TS𝑉2,𝑅𝑉𝑉2,𝑅1,𝑅𝑖+1)
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According to P10, P14, and rule 3, we derive the following 

V13: 
𝑉𝑂𝐶𝑆|≡#(𝑇𝑆𝑉2 𝑎𝑛𝑑 𝑅𝑉𝑉2)

𝑇𝐴|≡#|(VIDR, V OTT VOCS,TS𝑉2,𝑅𝑉𝑉2,𝑅1,𝑅𝑖+1)

According to P11, P20, P21, P23, P30, V12, V13, and rule 2, we derive the following 

V14: 

𝑉𝑂𝐶𝑆|≡#(VIDR, V OTT VOCS,TS𝑉2,𝑅𝑉𝑉2,𝑅1,𝑅𝑖+1),V|≡VOCS~(VIDR, V OTT VOCS,TS𝑉2,𝑅𝑉𝑉2,𝑅1,𝑅𝑖+1)

𝑉𝑂𝐶𝑆|≡V|≡(VIDR, V OTT VOCS,TS𝑉2,𝑅𝑉𝑉2,𝑅1,𝑅𝑖+1)

According to V14, P12, P22, P24, and rule 4, we derive the following: 

V15: 
VOCS |≡V|⇒ 𝑅𝑉𝑣2,𝑅1,𝑅𝑖+1,VOCS |≡ V |≡ 𝑅𝑉𝑣2,𝑅1,𝑅𝑖+1

VOCS|≡  𝑅𝑉
𝑣2,𝑅𝑉𝑣2,𝑅1,𝑅𝑖+1

Based on P21, P23, V15, we can derive 

V16:   VOCS| ≡ | ≡ (V    VOCS)    (Goal 1_1) 

Based on P22, P24, V15, and V16, we derive the following 

V17:   VOCS|≡ (V   VOCS)   (Goal 1_2) 

As session key ssk = H (Ri|| (RV’VI1||   RV’VI2 ||RVCS1) and in combination with V4 and 

V14 we can derive 

V18:  VOCS| ≡V |≡ (V   VOCS)      (Goal 2_1) 

ssk 

Ri,Ri+1

Ri,Ri+1
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As session key ssk= H (Ri|| (RV’VI1||   RV’VI2 ||RVCS1) and combining with P31, V18, and 

Rule 4 

V19: VOCS|≡ (V  VOCS)  (Goal 2_2) 

 As session key ssk = H (Ri|| (RV’VI1||   RV’VI2 ||RVCS1) and combining with V9 we can 

derive 

V20:  V ≡VOCS|≡ (V   VOCS)   (Goal 2_3) 

As session key SK H (Ri|| (RV’VI1||   RV’VI2 ||RVVOCS1) and combining with P32, V20, and 

Rule 4. 

V21: V|≡ (V  VOCS)  (Goal 2_4) 

As OTTnew = H (OTT|| RVVi2|| C) and in combination with V4, V14 we can derive 

V22:  VOCS| ≡ V |≡ (V  VOCS)      (Goal 3_1) 

ssk 

ssk 

    ssk 

OTTnew 
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As OTTnew = H (OTT|| RVVi2|| C) and combining with P33, V22, and Rule 4, we can 

drive 

 V23: VOCS|≡ (V   VOCS)   (Goal 3_2) 

 As OTTnew = H (OTT|| RVVi2|| C) and combining with V9 we can derive 

V24:  V |≡VOCS|≡ (V   TA)    (Goal 3_3) 

 As OTTnew = H (OTT|| RVVi2|| C) and combining with P34, V24, and Rule 4 we can 

drive. 

V25: V|≡ (V   VOCS)   (Goal 3_4) 

The above logic proves that the proposed protocol achieves Goals 1.1 to 1.2, 2.1 

to 2.4, and 3.1-3.4 successfully. In other words, the proposed protocol achieves mutual 

authentication and secure session key agreement between V and VOCS. In summary, by 

achieving all the goals mentioned above, we demonstrate the validity of our proposed 

protocols. We proved that the presented three protocols are a secure mechanism to 

achieve mutual authentication and secret key generation to secure the communication 

between the involved parties. 

OTTnew 

OTTnew 

OTTnew 
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6.7.1.1.2.2.2 Phase 2: D-VOCS authentication 

In this section, we use BAN logic to verify the legitimacy of the authentication 

parameter ZU2 shared between driver and VOCS, which communicate in the presented 

protocol. To ensure the security of the proposed protocol under BAN logic, it needs to 

satisfy a set of security goals. The following section defines the main goals of the 

analysis of the presented authentication scheme. 

6.7.1.1.2.2.2.1 Goals identification 

Goal 1: ZU1 is well protected and believed by Di and VOCS. 

G1_1: VOCS believes that the Di believes that the ZU1 is a securely shared parameter 

between Di and VOCS. 

  VOCS| V and Di|≡ (Di VOCS) 

G1_2:  VOCS believes that ZU1 is a securely shared parameter between Di and VOCS. 

 VOCS|≡ (Di  VOCS) 

G2_1: Di believes that the VOCS believes the UVi is a securely shared parameter 

between Di and VOCS. 

Di| VOCS |≡ (Di VOCS) 

G2_2:  Di believes that UVi is a securely shared parameter between Di and VOCS. 

Di|≡ (Di VOCS) 

6.7.1.1.2.2.2.2 Messages idealization 

First, we transferred all transmitted messages into idealized forms as follows: 

ZU1 

ZU1 

UVi 

UVi 
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M1: Di VOCS: ({VIDR, TSvi, Ri,OTT, FP, PUi,  Di          VOCS})ssk

M1: VOCS       Di: ({TSCS1, Di          VOCS})ssk 

6.7.1.1.2.2.2.3 Main assumption 

The second step is to define some assumptions as initiative promises. The fundamental 

assumptions of the presented authentication scheme is as follows: 

P1: VOCS believes that ssk is a secure shared parameter between V and VOCS 

VOCS| ≡ (V  VOCS) 

P2: VOCS believes V believes that ssk is a secure shared parameter between V and 

VOCS. 

VOCS | ≡ V| ≡ (V   VOCS) 

P3: V believes that ssk is a secure shared parameter between V and VOCS 

V| ≡ (V  VOCS) 

P4: V believes VOCS believes that ssk is a secure shared parameter between V and 

VOCS. 

ZU1 

UVi 

 ssk 

ssk 

 ssk 

ssk 
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V | ≡ V| ≡ (V    VOCS) 

P5: VOCS believes TSV1 is fresh. 

VOCS| ≡ #(TSV1) 

P6: V believes TSCS1 is fresh. 

V| ≡ #(TSCS1) 

P7: VOCS believes that Di believes ZU1

VOCS| ≡ Di | ≡ ZU1 

P8: VOCS believes that Di has a jurisdiction over ZU1 

VOCS| ≡ Di ⇒ ZU1 

P9: Di believes that VOCS believes UVi

Di| ≡ VOCS | ≡ UVi 

P10: Di believes that VOCS has a jurisdiction over UVi 

Di| ≡ VOCS ⇒ UVi 

P11: VOCS believes VIDR is a secure shared parameter between V and VOCS. 

VOCS | ≡ (V   VOCS) 

VIDR 
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P12: VOCS believes V believes that VIDR is a secure shared parameter between V and 

VOCS. 

VOCS | ≡ V| ≡ (V   VOCS) 

P13: VOCS believes that Di believes FP

VOCS| ≡ Di | ≡ FP 

P14: VOCS believes that Di has a jurisdiction over FP 

  VOCS| ≡ Di ⇒ FP 

P15: VOCS believes that Di believes PUi

VOCS| ≡ Di | ≡ PUi 

P16: VOCS believes that Di has a jurisdiction over PUi 

VOCS| ≡ Di ⇒ PUi 

P17: VOCS believes that V believes Ri

VOCS| ≡ V | ≡ Ri 

P18: VOCS believes that V has a jurisdiction over Ri 

VOCS| ≡ V ⇒ Ri 

P19: VOCS believes that OTT is a secure shared parameter between V and VOCS 

V| ≡ (V  VOCS) 

VIDR 

 OTT 
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P20: VOCS believes V believes that OTT is a secure shared parameter between V and 

VOCS. 

V | ≡ VOCS| ≡ (V   VOCS) 

P21: V believes that OTT is a secure shared parameter between V and VOCS 

VOCS| ≡ (V  VOCS) 

P22: V believes V believes that OTT is a secure shared parameter between V and VOCS. 

VOCS | ≡ V| ≡ (V    VOCS) 

6.7.1.1.2.2.2.4 Analysis of D-VOCS authentication phase 

The third step is to start analyzing the authentication scheme to prove that the 

proposed scheme achieves mutual authentication between Di and VOCS. 

According to M1: 

V1:  VOCS◃({VIDR, TSvi, U1, FP, PUi,  Di          VOCS})ssk

According to P1, and Rule 1, we derive the following 

V2: 

𝑉𝑂𝐶𝑆|≡V  𝑠𝑠𝑘  VOCS ,VOCS ⊲(𝑉𝐼𝐷𝑅, 𝐷𝑖 𝑍𝑈1 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1,Ri,OTT,FP,PUi) 𝑉 𝑠𝑠𝑘     𝑉𝑂𝐶𝑆

𝑉𝑂𝐶𝑆|≡V |∼ ( (𝑉𝐼𝐷𝑅, 𝐷𝑖 𝑍𝑈1 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1,Ri,OTT,FP,PUi)

ZU1 

OTT 

 OTT 

OTT 
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According to P5 and rule 3, we derive the following 

V3: 
𝑉𝑂𝐶𝑆|≡#(𝑇𝑆𝑉1)

𝑉𝑂𝐶𝑆|≡#|(𝑉𝐼𝐷𝑅, 𝐷𝑖 𝑍𝑈1 𝑉𝑂𝐶𝑆,𝑇𝑆
𝑉1

,Ri,OTT,FP,PUi)

According to P2, P7,P12,P13,P15,P17,P20, V2,V3, and rule 2, we derive the following 

V4: 

𝑉𝑂𝐶𝑆|≡#(𝑉𝐼𝐷𝑅, 𝐷𝑖 𝑍𝑈1 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1,Ri,OTT,FP,PUi),VOCS|≡V and Di~(𝑉𝐼𝐷𝑅, 𝐷𝑖 𝑍𝑈1 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1,Ri,OTT,FP,PUi)

𝑉𝑂𝐶𝑆|≡V and Di|≡(𝑉𝐼𝐷𝑅, 𝐷𝑖 𝑍𝑈1 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1,Ri,OTT,FP,PUi)

According to P18, V4 and rule 4, we derive the following: 

V5: 
VOCS |≡V| ⇒ 𝑅𝑖 ,VOCS |≡ V |≡ Ri 

VOCS|≡  Ri

According to P8, P13, P16, V4 and rule 4, we derive the following: 

V6: 
VOCS |≡Di|⇒ 𝑍𝑈1,𝐹𝑃,𝑃𝑈𝑖 VOCS |≡ V |≡  𝑍𝑈1,𝐹𝑃,𝑃𝑈𝑖 

VOCS|≡   𝑍𝑈1,𝐹𝑃,𝑃𝑈𝑖

According to M2, we get 

V7: V ◃({TSCS1, Di          VOCS})ssk 

 According to P3, and Rule 1, we derive the following

V8
𝑉|≡V  𝑠𝑠𝑘  VOCS ,V ⊲(TS𝐶𝑆1,VOCS 𝑈𝑉𝑖  Di) 𝑉  𝑠𝑠𝑘  𝑉𝑂𝐶𝑆

𝑉|≡VOCS |∼ (TS𝐶𝑆1,VOCS 𝑈𝑉𝑖  Di)

According to P6 and rule 3, we derive the following 

UVi 
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      V9: 
𝑉|≡#(TS𝐶𝑆1  )

𝑉|≡#(TS𝐶𝑆1,VOCS 𝑈𝑉𝑖  Di)

According to P4, P9 and rule 2, we derive the following 

V10: 

𝑉|≡#(TS𝐶𝑆1,VOCS 𝑈𝑉𝑖  Di),V|≡VOCS~TS𝐶𝑆1,VOCS 𝑈𝑉𝑖  Di)

𝑉|≡VOCS|≡(TS𝐶𝑆1,VOCS 𝑈𝑉𝑖  Di)

According to V10, P10, and rule 4, we derive the following: 

V11: 
𝑉 |VOCS|⇒ 𝑈𝑉𝑖  ,V |≡ VOCS|≡ 𝑈𝑉𝑖 

𝑉|≡  𝑈𝑉𝑖  

Based on P7, V4, we can derive 

V12:   VOCS|≡ V |≡ (V  VOCS)    (Goal 1_1) 

Based on P8, V5, V6 and V12, we derive the following 

V13:   VOCS|≡ (V and Di   VOCS)      (Goal 1_2) 

Based on P9, V10, we can der 

V14:   V|≡ VOCS |≡ (V  VOCS)    (Goal 2_1) 

Based on P10, V11, and V14, we derive the following 

V15:  V|≡ (V  VOCS)  (Goal 2_1) 

ZU1 

ZU1 

UVi 

UVi 
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The above logic proves that the proposed protocol achieves Goals 1.1 to 1.2 and 

2.1 to 2.2 successfully. In other words, the proposed protocol achieves mutual 

authentication between Di and VOCS. In summary, by achieving all the goals mentioned 

above, we demonstrate the validity of the proposed protocol. 

6.7.1.2 Informal security analysis 

6.7.1.2.1 Security properties assessment 

The following section presents a detailed security analysis of the security 

properties of the proposed scheme. It demonstrates how the proposed scheme satisfies the 

security requirements for mutual authentication, session key agreement and resists 

various kinds of known attacks. Then, a comparison with other related schemes is 

presented. 

6.7.1.2.1.1 Protocol 1: V- TA mutual authentication 

6.7.1.2.1.1.1 Mutual authentication 

V and TA authenticate each other during the mutual authentication by generating 

and verifying the correctness X2, X4Y3, Y6, and generating the ssk. An adversary can’t 

generate VTA = H (TAIDR || MSKTA || VIDR||RTA) without knowing the VIDR of V, the 

TAIDR, MSKTA of the TA and the PUF response (RTA) of the TA. Furthermore, the 

adversary will not be able to generate X2 without having VTA, RVVi1 VTA1, and VIDR and 

can’t generate X4 without having VIDR, RVVi2 and CHXx
i+1. The generation of CHXx

i+1 

requires the generation of the PUF response (Ri) that can be generated only by V.   

Additionally, the adversary cannot generate Y3 without having C, Y1, RVTA1, and RVVi1’.

Y1 consists of both VTA1’ and OTPVi. Furthermore, the adversary can’t generate Y6 



437 

without having RVTA2, Ri, RVvi2, C, and OTPVi.   In summary, VTA1’, OTPVi, CHXxi are 

considered secured parameters between V and TA. Ri is a value that can only be 

generated by V and RTA can only be generated by the TA. As a result, the proposed 

scheme can achieve mutual authentication between V and TA. 

6.7.1.2.1.1.2 Session key agreement and forward/backward security 

After completing the mutual authentication phase, V and the TA establish the 

shared secret key ssk. The ssk is a combination of RVVi1, RVVi2, RVTA1, and Ri. The ssk 

will be generated locally ssk = H (RVVi1 || RVVi2 || RVTA1 ||Ri). The secrecy of the ssk 

depends on the secrecy of RVVi1, RVVi2, RVTA1, and Ri. Because all those parameters are 

randomly selected for every new authentication session, the disclosed ssk will not cause 

the compromise of any future ssk. The forward/backward security property's objective is 

to ensure that any past or future shared secret keys will not be affected when any ssk is 

exposed. Even if an adversary obtains ssk of a session, he/she can’t compute any of the 

past. Future shared secret keys by using the disclosed ssk because the ssk is protected by: 

first, the uniqueness of the Ri where each CRP will be used only one time. The 

corresponding responses can’t be replicated or predicted because they are unique for each 

V because of the nature of the PUF.  Second:  the randomization of the RVVi1, RVVi2, and 

RVTA1.  As a result, the proposed scheme achieves the security of ssk. 

6.7.1.2.1.1.3 Anonymity unlinkability and untraceability properties 

Anonymity is of paramount importance to the IoVs. The identities of the vehicles 

need to be hidden to avoid profiling. For fully protected V privacy, strong anonymity 

with unlinkability is required. The V’s real identity VIDR is not transmitted during all 

phases in clear text format in the proposed protocol. Therefore, even if the adversary 
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eavesdrops on all communication messages, it is impossible to obtain the real identity of 

Vi. In addition, the new alias ID of the vehicle VIDAnew = H (C|| VIDA) cannot be 

regenerated without knowledge of C. Moreover, because C is fresh in each session, the 

attacker cannot link any two different VIDAnew’s to the same Vi. By using a new VIDAnew 

for each authentication session, the adversary will not be able to decide whether these 

authentication messages are from the same Vi or not. This means that Vi cannot be linked 

to different sessions. Consequently, the proposed protocol provides anonymity and 

unlinkability, and the adversary cannot trace the vehicles by intercepting messages. 

6.7.1.2.1.1.4 Database attack 

Suppose any Vi or the TA is compromised, and the adversary can steal VTA, 

VIDR CHX, and the OTP from the Vi’s or the TA’s database to impersonate the vehicle 

or the TA. In that case, the fake vehicle or the fake TA will fail the CRP verification 

process. 

6.7.1.2.1.1.5 Brute force attack 

The shared secret key ssk is generated locally by both the vehicle and the TA 

using the random secret parameters RVN1, RVN2, RVMG1, and Ri. Because this ssk 

depends on random parameters, the adversary cannot obtain it from the protocol. The 

probability of guessing is so negligible that the adversary will fail to guess the shared 

secret key's correct parameters, given that this ssk changes in every session. 

6.7.1.2.1.1.6 Replay attack 

To avoid the replay attack where an adversary tries to delay or repeat previously 

transmitted packets, the proposed protocol uses fresh nonce values and TS each time in 
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each message during the authentication process. The sender node generates the timestamp 

TS and then inserts the transmitted message in an encrypted format to ensure the attacker 

cannot replace it. Before trusting the freshness of the message, the receiver first verifies 

the timeliness of the timestamp. If the set threshold ΔT is exceeded, the receiver will 

reject the request and terminate the current session. If it is within ΔT, the receiver will 

calculate the verification message based on the received timestamp and the other message 

parameters to verify if it is equal to the received message. If they are not equal, the 

receiver will still reject the current session request. Therefore, if an adversary replays an 

intercepted message from the previous session, the other party will detect that the 

message is outdated and immediately terminate the session. Therefore, the protocol can 

be protected from replay. On another side, each CRP of the V is used only one time to 

ensure security against replay attacks. Hence, the proposed protocol protects against the 

replay attack 

6.7.1.2.1.1.6 Eavesdropping attack 

During the authentication phase, the adversary can intercept messages transmitted 

between Vi and the TA. All the intercepted messages will be useless because they are 

sent in an encrypted format using XOR and a one-way hash function. For the attacker to 

verify the received parameters, he/she needs to know the OTP, CHX, VTA, VIDR, TAIDR, 

MSKTA, RTA, and Ri, which are either composed of random values or are protected and 

out of the adversary's reach. The only two parameters that are sent in clear text are the 

Alias identities and session ID. The Alias identities and the session ID do not pose any 

threat because this information is constructed from random parameters that change in 

every session. The adversary will not be able to link the message to a particular device 
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because the proposed protocol uses alias identities that change in every session. 

Therefore, the proposed protocol protects against eavesdropping attacks. 

6.7.1.2.1.1.7 Impersonation attack 

In this attack, when the intruder eavesdrops on the messages transmitted from Vi 

to TA or vice versa, he/she can use the intercepted information for malicious actions, 

such as impersonating the vehicle or the TA and sending fabricated messages. 

6.7.1.2.1.1.7.1 TA impersonation 

According to the authentication phase in the proposed protocol, if an adversary 

wants to impersonate to be the TA, he/she needs to construct a message M2 <TAIDA, SID,

TSTA1, C’, Y2, Y3>. To construct this message, the adversary needs to have MSKTA, VIDR, 

RTA, TAIDR, and the OTPvi, which are considered to be well protected, and the adversary 

can’t compute the PUF response (RTA) of the TA. Also, for the adversary to construct M4 

< TAIDA, TSTA2, Y5, Y6>, he/she needs to be aware of the values of Ri,CHXx, and the 

CHXx+1
, which are well protected too. Therefore, the message sent by the adversary 

cannot pass the verification of V, so the vehicle will immediately terminate the session 

with the TA. Consequently, the proposed protocol can resist TA impersonation attacks. 

6.7.1.2.1.1.7.2 Vehicle impersonation 

To impersonate the vehicle, an adversary should intercept the messages 

exchanged in the previous sessions.  This attack will fail for numerous reasons. First, the 

Alias ID of the vehicle changes every authentication session. Second, due to PUF that is 

built into the vehicle and the characteristics of PUF, the adversary will not be able to 

generate legitimate responses.  Because the PUF responses are unique for each device, 
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the adversary will not be able to replicate the response even if he/she has the challenge.  

Third, if an adversary wants to impersonate the vehicle, he/she needs to construct a 

message M1<VIDA, TSVi, X1, X2>. In order to construct M1, the adversary needs to know 

VTA1, and the VIDR, which are considered secured parameters and never be transmitted in 

clear text format.  Also, for the adversary to construct M3 < VIDA, TSVi2, X4, X5>., he/she 

needs to have R, ChX, and the CHX+1, which are well-protected. Furthermore, the 

message is sent in an encrypted format using The Xor function and the one-way hash 

function of the message. Finally, the adversary cannot derive the secret values RVvi1,

RVvi2, RVTA1, RVTA2 to calculate the session key. Thus, our protocol protects against the 

impersonation attack. 

From another perspective, even if the adversary succeeded in compromising a 

vehicle, the adversary’s further attacks using the compromised vehicle only affect the 

communication related to that vehicle. Because each vehicle has its own secret key, the 

adversary can’t derive other non-compromised vehicles’ keys without knowing those 

vehicles' random information. Therefore, further attacks will not affect other 

communications. As a result, the proposed scheme is resistant to vehicle impersonation 

attacks. 

6.7.1.2.1.1.8 Man-in-the-middle attack 

Assuming that M1 < VIDA, TSVi1, X1, and X2 > has been tampered by an adversary 

M1* < VIDA
*, TSVi1

*
, X1

*
, X2

*>. After receiving the message, the adversary will first need 

to have VTA1, which is a secure parameter and requires the PUF response (RTA) of the TA 

to compute X1. Also, the adversary needs the VTA1 and VIDR the   to calculate X2 < H 

(VIDR || RVvi1 || VTA1|| TSVi1) >. Without all secret parameters, the adversary will not 
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generate a legitimate X2; if the message has been tampered with, the vehicle is considered 

illegal, and the TA will terminate the session immediately. 

Suppose the message M2 < TAIDA, SID, TSTA1, C’, Y2, Y3 > has been tampered 

with an adversary and sent to V M2* < TAIDA
*, SID

*
, TSTA1

*
, C’*, Y2

*
, Y3 

*>. After 

receiving the message, the adversary will first need to compute VTA1< H (MSKTA || VIDR || 

TAIDR|| RTA > using its master secret key, the vehicle's real identity of the trusted 

authority, and the PUF response of the TA.  Because these four parameters are secret and 

are only known to the TA, the adversary will not be able to correctly calculate VTA. 

Consequently, it will be impossible to calculate the valid Y3 to pass the vehicle 

verification. 

As for the message M3 < VIDA, TSVi2, X3, X4 > suppose an adversary tempered the 

message M3. Because each vehicle has a PUF chip and each chip is unique, the adversary 

will not be able to replicate or predict the response (Ri) of the real vehicle. Consequently, 

the adversary will not generate R and calculate the Chained hash PUF (CHXx+1). 

Therefore, the adversary will not be able to construct a generate X3 and X4 and send a 

legitimate message to the TA that can pass the TA’s vehicle authenticate. So, o after 

receiving the message M3* and verifying it, TA will terminate the session with the 

vehicle. Finally, assume M4 < TAIDA, TSTA2, Y5, Y6 > was tempered by an adversary M4* 

< TAIDA
*
, TSTA2

*, Y5
*
, Y6 

*>. Because the adversary does have Ri, he/she will not be able 

to construct Y4. In summary, the proposed protocol can resist all message modification 

attacks.  The proposed protocol can resist all message modification attacks. 
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6.7.1.2.1.1.9 Modeling attacks 

It is an attack where the adversary collects a large number PUF CRPs and uses a 

regression algorithm to build a model and predict responses for new challenges. All the 

challenges and the responses are transferred in an encrypted format by using a one-way 

hash function. Therefore, the adversary will not be able to collect enough useful CRPs to 

build a model and predict responses to new challenges. 

6.7.1.2.1.1.10 Physical attack 

According to the characteristics of PUF, any change or damage on the device with 

built-in PUF will render the PUF useless. Therefore, the physical attacks cannot obtain 

any useful information. We can conclude that the proposed protocol can ensure the 

physical security of the system. 

6.7.1.2.1.1.11 Device counterfeit/cloning 

Both the TA and vehicle are authenticated using the PUF. PUF responses are 

treated as hardware fingerprints that cannot be duplicated or cloned.  Therefore, using the 

PUF, the vehicle and the TA cannot be cloned. 

6.7.1.2.1.1.12 Session key agreement 

After confirming the identity of both the vehicle and the TA, each side will 

generate the session key ssk = H (Ri || RVvi1 || RVTA2
’ || (RVvi2 || RV’TA1). In summary, 

the session key between V and TA is established in the proposed protocol. 

6.7.1.2.1.2 Protocol 2: Vehicle-Driver-VOCS authentication 

6.7.1.2.1.2.1 Phase 1: V- VOCS mutual authentication 
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6.7.1.2.1.2.1.1 Mutual authentication 

  V and the VOCS authenticate each other during the mutual authentication by 

generating verifying the correctness VX3, VX8, CSY3. An adversary cannot prepare the 

authentication request message without having VCS1and VCS2 that are known only by the 

vehicle. Therefore, the adversary will not generate VX3 without having VIDR, VCS1, 

OTTvi, which are considered secure parameters. The adversary also cannot generate VX8 

without having Ri that can be generated only by V.  Additionally, the adversary cannot 

generate CSY3 without computing VCS1 = H (VOCSIDR || MSKVOCS || VIDR||RCS) and 

VCS2= H (VCS1 || VTID) because VOCSIDR, MSKVOCS, and VTID are only known to the 

VOCS. The RCS can only be generated by the VOCS.  In summary, VCS2 and VCS2 are 

considered secure parameters that are only known by the vehicle and need to be 

computed by the VOCS.  OTT is regarded as a secure parameter between V and VOCS. 

Ri and Ri+1 are values that V can only generate. RCS is a value that can be generated only 

by VOCS.  As a result, the proposed scheme can achieve mutual authentication between 

V and VOCS. 

6.7.1.2.1.2.1.2 Session key agreement and forward/backward security 

After completing the mutual authentication phase, the shared secret key ssk is 

established between V and the VOCS. The ssk is a combination of RVVi1, RVVi2, RVCS1, 

and Ri. The ssk will be generated locally ssk = H (RVVi1 || RVVi2 || RVCS1 ||Ri). The 

secrecy of the ssk depends on the secrecy of RVVi1, RVVi2, RVCS1, and Ri. Because all 

those parameters are randomly selected for every new authentication session, the 

disclosed ssk will not cause the compromise of any future ssk. The forward/backward 

security property's objective is to ensure that any past or future shared secret keys will not 
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be affected when any ssk is exposed. Even if an adversary obtains ssk of a session, he/she 

cannot compute any of the past or future shared secret keys. The ssk keys are protected 

by: (1) uniqueness of the Ri where each CRP will be used only one time, and (2) the 

randomization of RVVi1, RVVi2, and RVVOCS1.  As a result, the proposed scheme achieves 

the security of ssk. 

6.7.1.2.1.2.1.3 Anonymity unlinkability, and untraceability properties 

Anonymity is essential to protect user privacy and security. The identities of the 

vehicles need to be hidden to avoid profiling. For fully protected V privacy, strong 

anonymity with unlinkability is required. In the proposed protocol, the V’s real identity 

VIDR is not transmitted during all phases in clear text format. Therefore, even if the 

adversary eavesdrops on all communication messages, it is impossible to obtain the real 

identity of Vi. In addition, the new alias ID of the vehicle VIDAnew = H (VIDA || C|| OTT). 

Moreover, because C and OTT are fresh in each session, the attacker cannot link any two 

different VIDAnew’s to the same Vi. By using a new VIDAnew for each authentication 

session, the adversary will not be able to decide whether these authentication messages 

are from the same Vi or not. This means that Vi cannot be linked to different sessions. 

Consequently, the proposed protocol provides anonymity and unlinkability, and the 

adversary cannot trace the vehicles by intercepting messages. 

6.7.1.2.1.2.1.4 Session key security 

The shared secret key ssk is generated locally by both the vehicle and the VOCS 

using the random secret parameters RVV1, RVV2, RVCS1, and Ri where ssk = H (RVV1|| 

RVV2|| RVCS1|| Ri).  Because the ssk depends on random parameters, the adversary cannot 

obtain it from the protocol because the four random parameters are transferred in an 
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encrypted format.  Also, the Ri cannot be predicted or replicated because it is unique per 

PUF chip.  The probability of guessing it is so negligible that the adversary will fail to 

guess the shared secret key's correct parameters, given that this ssk changes in every 

session. Thus, the proposed protocol is secure to session key disclosure attacks. 

6.7.1.2.1.2.1.5 Replay attack 

During the replay attack, the adversary may attempt to delay or repeat previously 

transmitted authentication messages; the proposed protocol uses fresh nonce values and 

TS each time in each message during the authentication process. The sender node 

generates the timestamp TS and is then inserted in the transmitted message to ensure the 

attacker cannot replace it. Before trusting the freshness of the message, the receiver first 

verifies the timeliness of the timestamp. If the set threshold ΔT is exceeded, the receiver 

will reject the request and terminate the current session. If it is within ΔT, the receiver 

will calculate the verification message based on the received timestamp and the other 

message parameters to verify if it is equal to the received message. If they are not equal, 

the receiver will still reject the current session request. Therefore, if an adversary replays 

an intercepted message from the previous session, the other party will detect that the 

message is outdated and immediately terminate the session. Therefore, the protocol is 

protected from replay. On another side, each CRP is used only one time to ensure 

security against replay attacks. Hence, the protocol is protected against replay attacks. 

6.7.1.2.1.2.1.6 Eavesdropping attack 

During the authentication phase, the adversary can intercept messages transmitted 

between Vi and the VOCS. All the intercepted messages will be useless because they are 

sent in an encrypted format using XOR and a one-way hash function. For the attacker to 
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verify the received parameters, he/she needs to know the OTT, VCS1, VCS2, VIDR, 

VOCSIDR, MSKVOCS, Ri, RCS, and C that are either composed of random values or are 

protected and out of the adversary's reach. The only two parameters that are sent in clear 

text are the Alias identities and session ID. The Alias identities and the session ID do not 

pose any threat because this information is constructed from random parameters that 

change in every session. The adversary will not be able to link the message to a particular 

device because the proposed protocol uses alias identities that change in every session. 

Therefore, the proposed protocol protects against eavesdropping attacks. 

6.7.1.2.1.2.1.7 Impersonation attack 

In this attack, the adversary eavesdrops on the messages transmitted from Vi to 

VOCS or vice versa, he/she can use the intercepted information and attempts to 

masquerade to conduct malicious actions, such as impersonating the vehicle or the VOCS 

and sending fabricated messages. 

6.7.1.2.1.2.1.7.1 VOCS impersonation 

According to the authentication phase in the proposed protocol, if an adversary 

wants to impersonate to be the VOCS, he/she needs to construct a message M2 < 

VOCSIDA, SID, TSVi1, CSY2, CV, CSY3>. The adversary needs to have MSKVOCS, 

VIDR, VTID, and the OTT, which are well-protected to construct this message. Also, due 

to PUF that is built into the VOCS and the characteristics of PUF, the adversary will not 

be able to generate a legitimate RCS response. Therefore, the message sent by the 

adversary cannot pass the verification of V, so the vehicle will immediately terminate the 

session with the VOCS. Consequently, the proposed protocol can resist VOCS 

impersonation attacks. 
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6.7.1.2.1.2.1.7.2 Vehicle impersonation 

To impersonate the vehicle, an adversary should intercept the messages 

exchanged in the previous sessions.  This attack will fail for numerous reasons. First, the 

Alias ID of the vehicle changes every authentication session. Second, due to PUF that is 

built into the vehicle and the characteristics of PUF, the adversary will not be able to 

generate legitimate responses.  Because the PUF responses are unique for each device, 

the adversary will not be able to replicate the response even if he/she has the challenge.  

Third, if an adversary wants to impersonate the vehicle, he/she needs to construct a 

message M1 < VIDA, TSVi1, VX2, VX3 >. To construct M1, the adversary needs to have 

VCS1, VCS2, VIDR, and OTT well-protected. Also, M3 < VIDA, TSVi2, VX5, VX6, VX7, 

VX8>.  To construct this message, the adversary needs to have Ri. The adversary will not 

be able to generate Ri due to the PUF characteristics.  Furthermore, all messages are sent 

in an encrypted format using the XOR function and the one-way hash function. Thus, our 

protocol protects against the impersonation attack. 

From another perspective, even if the adversary succeeded in compromising a 

vehicle, the adversary’s further attacks using the compromised vehicle only affect the 

communication related to that vehicle. Because each vehicle has its own secret keys, the 

adversary can’t derive other non-compromised vehicles’ keys without knowing those 

vehicles' random information. Therefore, further attacks will not affect other 

communications. As a result, the proposed scheme is resistant to vehicle impersonation 

attacks. 
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6.7.1.2.1.2.1.8 Data modification attacks 

Assuming that M1 < VIDA, TSVi1, VX2, VX3 > has been tampered by an adversary 

M1* < VIDA
*, TSVi1

*
, VX2

*
, VX3

*
 >. After receiving the message, the adversary will first 

need to have VCS1, VCS2, and OTTP, which are secure parameters to compute VX1 < H 

(VCS2 || OTT)> and VX2 < VX1 ⊕ RVVi1>. Furthermore, without having all secret 

parameters, the adversary will not be able to generate a legitimate VX3 < H (VIDR|| VCS1|| 

TSVi1 || RVVi1|| OTT)) >. If the message has been tampered with, the vehicle is considered 

illegal, and the session will be terminated immediately by the VOCS. 

Now suppose the message M2 < VOCSIDA, SID, TSVOCS1, CSY2, CV, CSY3> has 

been tampered by an adversary and sent to V M2* < VOCSIDA
*, SID

*
, TSVOCS

*
, CSY2*,

CV*, CSY3
*
 >. After receiving the message, the adversary will first need to compute VCS1

< H (VOCSIDR || MSKVOCS || VIDR||RCS > and VCS2 <H (VCS1 || VTID > using its master 

secret key (MSKVOCS), the real identity of the vehicle (VIDR), the real identity of the 

VOCS (VOCSIDR), the PUF response of VOCS(RCS), and the vehicle type ID(VTID).  

Because these parameters are secret and are only known to the VOCS, the adversary will 

not correctly calculate VCS1 and VCS2. Also, the adversary will not be able to generate RCS 

and to get OTT.  Consequently, it will be impossible to calculate a valid CV. Finally, 

without having all the above-mentioned secret parameters, the adversary will not 

compute CSY3 to pass the vehicle verification. 

As for the message M3 < VIDA, TSVi2, VX5, VX6, VX7, VX8> suppose the message 

M3 was tampered with by an adversary. Because each vehicle has a PUF chip and each 

chip is unique, the adversary will not be able to replicate or predict the response (Ri) of 

the real vehicle. Consequently, the adversary will not be able to generate R and compute 
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VX4. Therefore, the adversary will not be able to construct a valid VX8 and send a 

legitimate message to the VOCS that can pass the VOCS’s vehicle authenticate. So, after 

receiving the message M3* and verifying it, VOCS will terminate the session with the 

vehicle. In summary, the proposed protocol can resist all message modification attacks. 

6.7.1.2.1.2.1.9 Modeling attacks 

It is an attack where the adversary collects a large number PUF CRPs and uses a 

regression algorithm to build a model and predict responses for new challenges. All the 

challenges and the responses are transferred in an encrypted format by using a one-way 

hash function. Therefore, the adversary will not collect enough useful CRPs to build a 

model and predict responses to new challenges. 

6.7.1.2.1.2.1.10 Physical attack 

According to the characteristics of PUF, any change or damage on the device with 

built-in PUF will render the PUF useless. Therefore, the physical attacks cannot obtain 

any useful information. We can conclude that the proposed protocol can ensure the 

physical security of the system. 

6.7.1.2.1.2.1.11 Device counterfeit/cloning 

Both the vehicle and the VOCS are authenticated using the PUF. PUF responses 

are treated as hardware fingerprints that cannot be duplicated or cloned.  Therefore, by 

the use of the PUF, the vehicle and the VOCS cannot be cloned. 

6.7.1.2.1.2.1.12 Session key agreement 

At the end of the authentication phase, after confirming the identity of both the 

vehicle and the VOCS, each side will generate the session key ssk =H (Ri|| RVvi1
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RVCS1||RVvi2) In summary, the session keys between V and VOCS is established in the 

proposed protocol. 

6.7.1.2.1.2.2 Phase 2: Driver -VOCS mutual authentication 

6.7.1.2.1.2.2.1 Mutual authentication 

After completing the mutual authentication between V and VOCS completed, the 

mutual authentication between the user (U) and the VOCS will be started with the help of 

the V. User’s authentication will use a three-factor authentication process by using the 

user’s password and biometrics combined with the PUF of V. U and the VOCS 

authenticate each other during the mutual authentication by verifying the correctness DV3

and UVi. U will insert his/her username and password using the vehicle’s touch screen 

and his/her fingerprint using the vehicle’s fingerprint scanner.  The collected data will be 

sent to the vehicle OBU through a secure channel.  V will generate a timestamp, 

calculates U1< (H (EID||Ri ||VIDR|| OTT)>, and computes ZU1<H (FP|| PUi>. Then, V 

calculates DV1 and DV2. Then, V uses its shared secret key with the VOCS (ssk) to 

encrypt the identity and the verification message before sending it to the VOCS.  

Once the VOCS receives the message, it will use the ssk to decrypt the received 

message. Then, VOCS will use the user ID and the vehicle ID to retrieve Ri, OTT, and 

VIDR from its database, thereby calculating the verification message DV2
* =< H (VIDR 

||TSvi1|| ZU1 || U1)> to authenticate U’s identity. Only the party with the secret values can 

retrieve ZU1 from Dv1.  Once the VOCS verify and authenticate the user, it will compute 

UVi < H (Ri|| TSVocs1|| ZU1|| OTT)> and encrypt the verification message using its ssk 
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with the vehicle. When the vehicle receives the message, it will decrypt it using ssk and 

calculate the verification message UVi* < H (Ri|| TSVocs1|| ZU1|| OTT)> to authenticate 

VOCS’s identity. So, by verifying the correctness of UVi*, U can confirm the identity of 

VOCS. Thus, U and VOCS complete the mutual authentication.

6.7.1.2.1.2.2.2 Resisting offline password guessing attacks 

The password in the proposed protocol is included in ZU1 = H (FP|| PUi) and DV1 

= ZU1 ⊕ U1.   U1< (H (EID||Ri || VIDR||OTT)>.  The EID is a fixed secret parameter stored 

on the VOCS.  The OTT is a secret parameter that is dynamically changing every 

authentication session.  Furthermore, Ri, which is a PUF response, cannot be obtained 

and can’t be predicted by the adversary due to the unique nature of PUF. Consequently, 

U1 cannot be calculated to complete the rest of the computation process. 

Moreover, the DV2 is protected by the ssk between the vehicle and the VOCS. In 

summary, the user’s password has two shields of protection through the xor function and 

is encrypted by the ssk. Therefore, the adversary cannot guess the password of the user. 

6.7.1.2.1.2.2.3 Anonymity unlinkability, and untraceability properties 

Anonymity is essential to protect user privacy and security. The identity of the 

user needs to be hidden to avoid profiling. The proposed protocol implements strong 

anonymity with unlinkability to protect user’s privacy. The user's real identity (EID) is 

transferred in hash and encrypted format using the ssk. Therefore, even if the adversary 

eavesdrops on all communication messages, it is impossible to obtain the user's EID or 

any other related data. Consequently, the proposed protocol provides anonymity and 

unlinkability, and the adversary cannot trace the user by intercepting messages. 
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6.7.1.2.1.2.2.4 Replay attack 

The proposed protocol uses fresh values and TS each time in each message during 

the authentication process. The vehicle generates the timestamp TS and is then inserted in 

the transmitted message to ensure the adversary cannot replace it. Before trusting the 

freshness of the message, the receiver first verifies the timeliness of the timestamp. If the 

set threshold ΔT is exceeded, the receiver will reject the request and terminate the current 

session. If it is within ΔT, the receiver will calculate the verification message based on 

the received timestamp and the other message parameters to verify if it is equal to the 

received message. If they are not equal, the receiver will still reject the current session 

request. Therefore, if an adversary replays an intercepted message from the previous 

session, the other party will detect that the message is outdated and immediately 

terminate the session. Therefore, the protocol is protected from replay. On another side, 

each CRP and OTT are used only one time to ensure security against replay attacks. 

Hence, our protocol protects against replay attacks. 

6.7.1.2.1.2.2.5 Eavesdropping attack 

During the authentication phase, the adversary can intercept messages transmitted 

between Vi and the VOCS. All the intercepted messages will be useless because all of 

them are sent in an encrypted format using the shared secret key (ssk) between Vi and the 

VOCS. For the attacker to decrypt the message, he/she needs to guess the ssk that is fresh 

for every authentication session and is assumed to be protected and out of the adversary's 

reach. The only two parameters that are sent in clear text are the Alias identities and 

session ID. The Alias identities and the session ID do not pose any threat because this 

information is constructed from random parameters that change in every session. The 
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adversary will not be able to link the message to a particular user or vehicle because the 

proposed protocol uses alias identities that change in every session. Therefore, the 

proposed protocol protects against eavesdropping attacks. 

6.7.1.2.1.2.2.6 Impersonation attack 

In this attack, the adversary eavesdrops on the messages transmitted from Vi to 

VOCS or vice versa. He/she can use the intercepted information and attempts to 

masquerade to conduct malicious actions, such as impersonating the user, vehicle, or the 

VOCS and sending fabricated messages. 

6.7.1.2.1.2.2.6.1 Driver impersonation 

According to the authentication phase, if the adversary wants to impersonate to be 

the user (U), he/she needs to construct a message M1 =< VIDA, UI, {TSVi1, DV1, DV2} ssk > 

to pass the VOCS’s verification.  The proposed protocol does not require storing a user’s 

data either on a user's personal device or the vehicle. Because the adversary can’t get the 

user’s biometric or the user’s password from the user side and can’t get the Ri, OTT, or 

the VIDR from the vehicle side, he/she will not be able to construct a valid U1 = < H 

(EID||Ri || VIDR||OTT)>, DV1 = < ZU1 ⊕ U1>, and DV2 < H (VIDR || TSvi1|| ZU1 || U1)>. 

Additionally, the adversary will not be able to predict the ssk that will be used to encrypt 

the user’s authentication request message. Therefore, the adversary cannot impersonate 

the user. 

6.7.1.2.1.2.2.6.2 VOCS impersonation 

According to the authentication phase in the proposed protocol, if an adversary 

wants to impersonate to be the VOCS, he/she needs to construct a message M2 < 
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(VOCSIDA, TSVocs1, UVi} ssk) >. To construct this message, the adversary needs to have 

OTT, TSCS1, ZU1, and Ri, which are considered to be well protected. Also, the adversary 

needs to generate the PUF response (RCS), which is considered to be impossible due to 

the nature of the PUF that can’t be replicated or predicted.  Furthermore, the adversary 

needs to know the ssk to encrypt the message before sending it out. Therefore, the 

message sent by the adversary cannot pass the verification of the user’s vehicle, so the 

vehicle will immediately terminate the user’s authentication session with the VOCS. 

Consequently, the proposed protocol can resist VOCS impersonation attacks. 

6.7.1.2.1.2.2.6.3 Vehicle impersonation 

Due to the PUF nature, the adversary can’t obtain the response or even knows the 

“challenge” that the vehicle received from the VOCS during their authentication process. 

Also, if the adversary wants to impersonate the vehicle, he/she needs to know the OTT, 

the VIDR, and the ssk to encrypt the message before sending it to the VOCS. In fact, the 

adversary cannot derive the secret values, the session key (ssk) shared with Vi cannot be 

generated, nor can message M1 < VIDA, UI, {TSVi1, DV1, DV2} ssk > be generated validly to 

communicate with VOCS. The protocol can resist impersonation attacks from the 

vehicle. 

6.7.1.2.1.2.2.7 Data modification attacks 

Assuming that M1 < VIDA, UI, {TSVi1, DV1, DV2} ssk > has been tampered with an 

adversary M1* < VIDA
*, UI

*
 {, TSVi1

*, DV1
*, DV2

*} ssk >. After receiving the message, the 

adversary will first need to have the ssk to decrypt the message. Also, the adversary needs 

to know the OTT, Ri, EID, and the VIDR, which are considered secure parameters to 

compute U1 < H (EID||VIDR || Ri || OTT)>. Additionally, the adversary needs to have the 
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user’s username, password, RCS, and fingerprint to construct ZU1 and DV1. Furthermore, 

without having all secret parameters, the adversary will not be able to generate a 

legitimate DV2 < H (VIDR || TSvi1|| ZU1 || U1)>> that is, if the message has tampered with, 

the vehicle is considered to be illegal. The session will be terminated immediately by the 

VOCS. 

Now suppose the message M2 < VOCSIDA, SID
*, TSVocs1, UVi} ssk > has been 

tampered with an adversary and sent to V M2* < VOCSIDA
*, SID

*
 , TSVocs1

*
 , UVi*}ssk* >. 

After receiving the message, the adversary will first need to have ssk to decrypt the 

message. The ssk is assumed to be protected and secure. Then the adversary needs to 

compute U1 < H (EID||VIDR || Ri || OTT)> Because these parameters are secret and are 

only known to VOCS and the vehicle, the adversary will not correctly calculate U1. Also, 

it is impossible to replicate the user’s fingerprint. Finally, without having all the above-

mentioned secret parameters, the adversary will not be able to compute UVi to pass the 

vehicle verification. In summary, the proposed protocol can resist all message 

modification attacks. 

6.7.1.2.1.2.2.8 Biometric privacy protection 

 In the proposed protocol, the user biometric samples are processed on the cloud 

side. There is no user biometric data stored or maintained on any user-related device or 

on the vehicle. The biometric templates of the continuous biometric are stored on the 

VOCS encrypted by ZU1.  The user biometric is transferred in encrypted format using 

both the xor function and the ssk between the Vi and the VOCS. This information does 

not endanger biometric privacy, even if it is leaked. Therefore, the proposed protocol 

supports biometric privacy protection. 
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6.7.1.2.1.2.2.9 Three-factor security 

The proposed protocol employs three factors to achieve user authentication of the 

user: biometric, password, and PUF response. Additionally, the proposed protocol 

employs continuous biometric authentication that is considered another layer of ongoing 

user authentication. 

6.7.1.2.2 Comparison of security features 

This section compares the proposed scheme security features with other related 

authentication schemes from the literature [156],[155],[154],[150], and [157] Table 30 

summarizes the comparison results of the proposed protocol with existing works against 

the imperative security threats and accomplishes diverse security features. From table 30, 

we can observe that the presented schemes in the literature satisfy most of the security 

properties. However, none of them protects against vehicle sensors counterfeiting. All of 

them depend on using CRPs that are generated outside the manufacturing process, so it 

does not provide any means to verify the originality of the sensors. Also, protocol [150] 

use the same alias ID for both the vehicle and RSU in every authentication session.  This, 

in turn, can lead to vehicle traceability and linkability. 

Furthermore, most of the proposed protocols [156, 155, 150, 157] implement 

computationally expensive cryptographic solutions such as elliptic curve cryptographic 

system (ECC) and fuzzy extractors to satisfy the security properties. Furthermore, the 

protocols [156,155, 150] depend on mobile devices and smart cards to authenticate users.  

The use of smart cards makes the user’s sensitive data subject to being stolen or subject 
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to physical attacks that can corrupt the whole system. Moreover, none of the presented 

protocols introduced using continuous biometrics to regularly verify the user’s identity to 

establish ongoing trust and ensure that the received data is coming from the same user 

initially authenticated. 

Table 30: Security feature comparison of the proposed scheme with other related mutual 

authentication and key agreement schemes. 

Security 

Property 

Proposed 

V-TA 

Proposed 

V-D-

VOCS 

[156] [155] [154] [150] [157] 

Mutual 

Authenticatio

n 

Yes Yes Yes Yes Yes Yes Yes 

Replay attack Yes Yes Yes Yes Yes Yes Yes 

Perfect 

forward/back

ward secrecy 

Yes Yes Yes Yes Yes Yes Yes 

Anonymity 

and 

untraceability 

Yes Yes Yes Yes Yes Yes No 

Resisting 

offline 

password 

guessing 

attacks 

Yes Yes Yes Yes NA Yes NA 

Resisting Data 

Modification 

attacks 

Yes Yes Yes Yes Yes Yes Yes 

Resilience 

against 

TA/VOCS 

impersonation 

attacks 

Yes Yes Yes Yes Yes Yes Yes 

Resilience 

against 

Yes Yes Yes Yes Yes Yes No 
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vehicle 

impersonation 

attacks 

Resilience 

against User 

impersonation 

attacks 

Yes Yes Yes Yes Yes NA NA 

Physical and 

cloning 

attacks 

Yes Yes Yes No Yes Yes Yes 

Biometric 

privacy 

protection 

Yes Yes Yes Yes Yes Na Na 

Resisting 

Vehicle 

counterfeiting 

Yes Yes No No No No No 

Session key 

agreement 

Yes Yes Yes Yes Yes Yes Yes 

As presented in table 30, the proposed scheme supports all the essential security 

features: First, the proposed scheme does not require any secret key storage or secret key 

sharing over the network. Second, all secret keys are computed locally on all the 

communicating parties. Third, in the proposed scheme, the vehicles use their one-time 

alias identity for each authentication session. Therefore, it will be difficult for an outside 

adversary to comprehend the activities of the vehicle. Fourth, the proposed scheme uses 

the PUF to protect the vehicles and VOCS against counterfeiting. Fifth, the proposed 

scheme uses both static and continuous biometric for user authentication to ensure that 

the received data belongs to the correct driver during the entire session. 

From table 30, we can conclude that the proposed scheme can support all the 

desired security properties, which are essential for IoV ecosystem security. 
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6.7.2 Performance Analysis 

In this section, we present a performance analysis of the proposed scheme. The 

performance analysis evaluates the storage requirements.  Also, we analyze the presented 

scheme's overhead and efficiency in terms of computational complexity and 

communication cost and compare its computational complexity and communication cost 

with the most relevant protocols in the literature proposed by [150], [154], [155] [156], 

and [157].  

6.7.2.1 Storage requirements 

Table 31: Storage cost of our scheme 

In the proposed scheme, each vehicle must store its real identity VIDR alias 

identity VIDA, alias identities of VOCSIDA and TAIDA, authentication parameters VTA1, 

VCS1, and VCS23, Chained hash CHX, one-time password OTP, and one-time token 

(OTT). We use SHA-1 and SHA-2 as two examples of hash function, and the output of 

SHA-1 is 128 or 160 bits and SHA-2 is 256 bits. By applying these settings, we obtain 

|VIDA | = 128, |VOCSIDA| = |TAIDA| = | VIDR | = 8 bits, and |OTP| = |OTT| = | VTA1 | = VCS1 

| = | VCS2 | CHX = 256 bits. Meanwhile, TA is required to store the tuple VIDA, VIDR, 

Node Storage cost (in bits) 

V 128 + 8 * 3 +256 * 6= 1688 b 

TA 128 * 2 + 3 * 8 +2 * 256 = 792 b 

VOCS 128 * 3 + 8 * 5 + 160 + 256 * 2 = 1096 b 
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TAIDA, TAIDR, OTP, and CHX. By applying these settings, we obtain |VIDA | = 128 bits, 

|TAIDA| = | VIDR | = | TAIDR | = 8 bits, |OTP| = |CHX| = 256 bits, and CTA=128 bit. Finally, 

VOCS is required to store the tuple VIDA, VIDR, VOCSIDA, VOCSIDR, EID, TID, Ui, OTT,

ZU2 and,BPUi.  By applying these settings, we obtain |VIDA |= |Ui| = 128 bits, |VOCSIDA| = 

|VOCSIDR| =| VIDR |= |EID| = |TID | = 8 bits, |BPUi| = 160 bits, Ccs = 128 bits, and |OTT| = | 

ZU2| = 256 bits. 

6.7.2.2 Computational complexity analysis 

We compare the computation cost of the proposed scheme with other related 

schemes [150], [154], [155], [156], and [157].  we do not consider XOR operations for 

computational cost analysis because the time for executing a bitwise XOR operation is 

negligible.  To analyze the performance of the proposed scheme with respect to other 

presented protocols in the literature, we conduct simulations of the cryptographic 

operations using dedicated hardware device including laptop computer and Raspberry Pi. 

Dell Inspiron Laptop with Intel Core i7, dual-core 2.7 GHz CPU, and 8 GB RAM to act 

as the server. We used a Raspberry Pi 4 Model B with 64-bit quad-core cortex A-72 

processor and 1 GB RAM to simulate the vehicle. We used PyCrytodome cryptographic 

and Fastecdsa libraries in Python 3.6. For these results, we considered the 128-bit arbiter 

PUF for PUF operation. The fuzzy extraction's execution time is almost the same as the 

ECC point multiplication and the execution time for modular exponentiation is double the 

time of the execution of the ECC point multiplication [58]. Table 32 presents the used 

notation and the execution time of each operation. 
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Table 32:  Execution Time of the cryptographic operations 

Operation Computation Time on IoT Computation Time 

on server 

H: time for executing a one-way 

hash function SHA (256) 

0.002 ms .001ms 

F: time for executing a fuzzy 

extractor 

5 ms 4 ms 

EM: time for executing an ECC 

point multiplication 

5 ms 4 ms 

EA: time for executing an ECC 

point addition 

5.5 ms 5 ms 

EXP: time for a modular 

exponentiation 

10  ms 8 ms 

HMAC: time for executing the 

HMAC 

2.7 ms 1.5 ms 

ENC: Time for Executing (AES-

CBC Encryption) 

0.18 ms .14 ms 

DEC: Time for executing (AES-

CBC Decryption) 

0.18 ms .14 ms 
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PUF: Time for executing PUF (128-

bit Arbiter) 

.12 ms .12 ms 

Table 33: Comparison of computation costs for the authentication phase of the proposed 

scheme and other related schemes

Entity [150] [154] [155] [156] [157] Proposed 

[V-TA] 

Proposed 

[V-D-

VOCS] 

Vehicle 2TPUF + 

13Th + 

2TF + 

1TENC + 

1TDEC + 

1TEM 

2Th + 

1TENC 

4Th + 

1TENC 

1TPUF + 

12Th 

+1TEM 

1TEM+ 

1TEA 

+2Th  

12Th + 

1TPUF 

14Th + 2TPUF 

Cost 2*.06 + 

13*.002 

+2*5+1*.

18+1* 

.18 + 

1*10 = 

20.51 ms 

2*.002 + 

1*.18 = 

.182 ms 

4*.002 

+1*.18 = 

.188 ms 

1*.06+12

*.002+1*

5 = 

 5.08 ms 

1* 5 + 

1*5.5 

+2*.002= 

10.50 ms 

12*.002 

+.06 = .086 

ms 

14 * .002 

+.06 *2 = 

.148 ms 

Server 9Th + 2TF 

+ 1TENC + 

1TDEC + 

2TEM 

4Th + + 

2TENC + 

1TDEC 

5TEM + 

1TEA+ 

1TENC + 

1TDEC + 

12Th 

19Th 

+1TEM 

1TEM+ 

1TEA 

+2Th 

13Th + 

1TPUF 

20Th + 2TPUF 

+  1TSE + 1TSD 

Cost 9 *.001 

+2*4+1* 

.14+1*.14

+2*8 = 

24.89 ms 

4 *.001 + 

2 *.14 + 

1*.14= 

.424 ms 

5*4 + 1*5 

+ 1*.14+ 

1*.14 

+12*.001 

= 25.29 

ms 

19 *.001 

+1*4= 

4.019 ms 

1 * 4 + 1* 

5 + 

2*.001 = 

9.002 ms 

13*.001 

+.06= .073 

ms 

20*.001 + 

.06 *2 

+.14+.14 = 

.42 ms 

User --------- --------- 5TEM + 

1TEA+ 

1TENC + 

9Th 

1TPUF + 

13Th 

+2TEM 

+1TENC  

------- --------- 3Th +1TENC + 

1TDEC 

Cost --------- -------- 5*5 + 

1*5.5 + 

1*.18+ 

1*.06 + 

13*.002 

+2*5+1* 

------- -------- .002*3 + .18 

+ .18= .37 

ms 
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Table 33 summarizes the computational complexity cost comparison between the 

proposed scheme and the other related vehicular networks schemes presented in the 

literature. The total run time of the V-TA scheme is .159 ms and the run time of  V-D-

VOCS is .94 ms. The results of the proposed scheme with other related protocols indicate 

that the V-TA protocol is more efficient than the other protocols.  The run time of the V-

D-VOCS is higher than [154] because it involves the authentication of the driver. The 

protocol in [155] performs the worst because it makes use of multiple ECC point 

multiplication and point addition which are computationally heavy.  The proposed 

scheme is more efficient than [150] that used scalar multiplication and asymmetric 

encryption. Also, protocols [155],[156], and [157] used ECC, which increased the run 

time. The main strengths of my proposed scheme are the avoidance of using long-term 

secret keys and securing the communicating devices from physical attacks and 

counterfeiting by employing the PUF and the chained hash PUF. 

9*.002 = 

30.70 ms 

.18= 

10.27 ms 

Total 

Cost 

44.80 

 ms 

.606 ms 56.18 ms 19.37 MS 19.50 ms .159ms .94 ms 
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Figure 115: Comparison of the number of V crypto operations Across the schemes 

Figure 116: Comparison of the number of the server crypto operations across the schemes 
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Figure 117 : Comparison of the number of the user crypto operations across the schemes 

Figure 118:  Comparison of the total number of crypto operations across the schemes 

Figure 115 displays the number of authentication operations of each type that are 

completed on the V side. Figure 116 depicts the number of authentication operations of 
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for each scheme. As depicted from the table and the figures, our proposed scheme used 

more hash functions than most of the other schemes to avoid computationally expensive 

cryptographic operations such as ECC and HMAC and, at the same time, achieve the 

same security goals.  The proposed scheme is the only protocol that used PUF as a 

hardware fingerprint on the server-side to secure the devices from counterfeiting and use 

the PUF response as an encryption key to avoiding storing long-term security keys on the 

communicating devices. Furthermore, using PUF on the server-side can protect the 

scheme from server impersonation and secure the server database to be stolen if the 

device got compromised. 

Figure 119: V computational time across the different schemes 
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Figure 120:  Server computational time across the different schemes 

Figure 121 : U computational time across the different schemes 
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Figure 122: Total computational time across the different schemes 

Figures 119, 120, 121, and 122 demonstrate the cost comparison of my 

authentication scheme with other similar schemes.  Figure 122 presents the total 

computational cost of each scheme.  Figure 119 displays the computation cost of each 

scheme for the V side, figure 120 depicts the computational cost of each scheme for the 

server-side, and figure 121 depicts the computational cost of each scheme for the user 

side. The results indicate that the V-TA and V-D-VOCS protocols have a lower 

computational cost for the V side compared to the rest of the protocols. On the server-

side, although the V-D-VOCS protocol has almost the same computational cost as [154], 

our proposed protocol includes user authentication. Also, it preserves both the driver and 

the vehicle privacy by using different alias IDs for every authentication session.  The V-

D-VOCS protocol has the lowest computational cost on the user side because it depends 

on the hash function and the PUF instead of expensive cryptographic approaches such as 

ECC and modular exponentiation.  The above results prove that the proposed scheme is 

suitable for IoV domain. 
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We can conclude that the proposed scheme has a higher security level than the 

rest of the protocols.  The proposed scheme achieves the main security goals of 

confidentiality, integrity, and authenticity besides accommodating IoV devices that are 

diverse in their capabilities. 

6.7.2.3 Communicational Cost 

The following section analyzes the communication cost of the proposed scheme. 

To reduce network congestion and to provide fast message transmission, the 

communication cost of the scheme should be as low as possible. For the communication 

cost analysis, we evaluate the communication cost in terms of the size of the message in 

bits. Then, we compared our proposed scheme to the other related schemes. Table 34 

presents a summary of the sizes of the message parameters. Table 35 lists the message 

parameters that are communicated among the communicating parties, along with their 

sizes. 

Table 34: Main parameters of the messages and their sizes in bits 

Message Parameters Size in Bits 

ID of N [ [57], [62], [63] 128 

ID of server [63] 8 

SID [57],  [62] 8 

Nonce [61], [63] 128 

CRP (C, R) [61], [62] 128 
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HMAC [63] 256 

Hash Function  [57], [62] 256 

Timestamp (TS) [63] 48 

ECC [60], [59] 256 

MAC [62] 256 

V-TA protocol 

• Message 1: In the transmission (V → TA), V sends the tuple, VIDA, TSvi1, X1, X2

Therefore, the size of this tuple is 128 + 48 + 128+256 = 560. bits. 

• Message 2: In the transmission (TA → V), TA sends the tuple, TAIDA, SID, TS TA1,

Y2, C’, Y3. Therefore, the size of this tuple is 8 +8 + 48 + 128+128+256 = 576 

bits. 

• Message 3: In the transmission (V → TA), V sends the tuple, VIDA, SID. TSVI2, X3,

X4. Therefore, the size of this tuple is 128 + 8 + 48+128 +256 = 568 bits. 

• Message 4: In the transmission (TA → V), TA sends the tuple, TAIDA, SiD TSTA2,

Y5, Y6. Therefore, the size of this tuple is 128 + 8 + 48+128 +256 = 568. bits. 

V-D-VOCS protocol 

• Message 1: In the transmission (V → VOCS), V sends the tuple, VIDA, TSvi1, VX2,

VX3.  Therefore, the size of this tuple is 128 + 48 + 128+256 = 560. bits. 

• Message 2: In the transmission (VOCS → V), TA sends the tuple, VOCSIDA, SID,

TSCS1, CSY2, CV, CSY3 Therefore, the size of this tuple is 8 +8 + 48 + 

128+128+256 = 576 bits.
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• Message 3: In the transmission (V → VOCS), V sends the tuple, VIDA, TSVi2,

VX5, VX6, VX7, VX8. Therefore, the size of this tuple is 128+48+ 128+ 

128+128+256 = 816. bits. 

Table 35: Communication cost comparison (bits) 

Message 

Number 

[150] [154] [155] [156] [157] V-TA 

Proposed 

scheme 

V-D-

VOCS 

Proposed 

scheme 

M1: 384 bits 256 bits 512 bits 1072 bits 816 bits 560 bits 560 bits 

M2: 384 bits 512 bits 384 bits 1072 bits 816 bits 576 bits 576 bits 

M3: 384 bits 392 bits 384 bits 816 bits 768 bits 568 bits 824 bits 

M4:  512 bits 384 bits 768 bits 816 bits ---- 448 bits 256 bits 

M5: ------- 392 bits ---- --- 136 bits 

M6: ------- 512 bits 

M7: ------- 256 bits 

Total 1664 

bits 

2704 

bits 

2048 

 bits 

3776 

 bits 

1792 

 bits 

2152 

 bits 

2352 

 bits 

The total communication costs of [150], [154], [155],[156], and [157] are 

1664,2704,2048,3776, and 1792 bits, respectively.  The total communication cost of the 

proposed V-TA protocol is 2152 and 2352 for V-D-VOCS scheme.  My two proposed 

protocols are less than [154 and 156]. My proposed protocols have lower communication 
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cost and, at the same time, achieved all the required security goals. Also, the proposed 

schemes have proper communication cost compared to [150], [155], and [157]. The V-

TA protocol requires sending only four messages to achieve mutual authentication. The 

messages contain timestamps, XOR functions, ciphered random numbers, and hash 

functions that prevent attacks such as data modification, replay, and impersonation. The 

V-D-VOCS protocol requires three messages to achieve mutual authentication between 

the vehicle and the VOCS and two messages to achieve mutual authentication between 

the driver and the VOCS. Even if the protocols of my proposed scheme are not the 

protocols with the lowest communication cost, they have a reasonable cost for IoV, and at 

the same time, they achieve more security properties than the protocols with less cost. 

6.8 Summary 

In this chapter, we designed a “Multi-Factor Authentication, and Privacy 

Preservation Protocol Using Biometrics and Chained Hash PUF for IoV’’ to solve 

security threats of the existing authentication schemes. The protocol enables a lightweight 

mutual authentication and an establishment of secret keys, which can be used to secure 

the exchanged messages between the communicating parties. The lightweight and the 

privacy-preserving properties are ensured as they are the essential characteristics of 

dynamic entities. Those properties are achieved through the use of PUF, chained hash 

PUF, hash functions, and XOR operations.  The proposed protocol is lightweight with a 

lower computation cost and execution time compared with the competitive schemes. We 

completed an in-depth security analysis against different strong adversarial attacks and 

found that the proposed protocol is resistant to these types of attacks. The lightweight 
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nature allows easy implementation of the protocol in different entities of the IoV domain 

such as the vehicle’s OBU, RSUs, infrastructure and sensors.  
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CHAPTER VII 

   CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

The Internet of Things (IoT) plays an essential role in all aspects of our daily 

lives. It benefits different fields, including smart homes, healthcare, smart cities, 

agriculture and others. The IoT consists of billions of connected devices over the internet 

that are able to gather and exchange data using IoT nodes and controllers. 

Adversaries are shifting their attention from traditional computers to IoT devices 

for malignant activities like exposing smart homeowner private information and/or to 

launch botnet attacks. Therefore, it is very critical to move fast to address the rising 

security and privacy concerns in IoT systems before severe disasters happen. Similar to 

traditional networks, the security of IoT networks depends mainly on how properly the 

authentication process is done and on how user’s privacy is preserved. However, the IoT 

infrastructure faces challenges in implementing and operating strong authentication 

schemes because of the resource constrained nature of the IoT devices that have limited 

computational and storage capabilities. 

The first contribution of this work is the introduction of PUF Hierarchal 

Distributed Architecture (PHDA). The main goals of PHDA are to support system 

scalability and to protect the system’s devices from being counterfeited. The PHDA acts 

as a device name resolution to store and retrieve the Challenge-Response Pairs (CRPs) of 
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the IoT devices. PHDA stores the PUF data using a 3-tier architecture employing a 

simple naming scheme. 

The second contribution of this work is the introduction of lightweight mutual 

authentication and privacy preservation protocol using PUF for smart home network 

model.  The proposed protocol is based on using PUF as a hardware fingerprint to 

authenticate the communicating devices. Also, another aspect of the securing the system 

depends on employing network segregation based on the IoT device type to mitigate the 

threats. Moreover, the security and privacy preservation of the proposed protocol is 

implemented using dynamic identities and temporary secret session keys that change in 

every session and are exchanged in an unlinkable and untraceable manner. 

The third contribution is the introduction of multi-layer distributed lightweight 

mutual authentication using chained hash PUF scheme for IIoT. A smart poultry farm is 

introduced as a network model.  The design of the proposed scheme fits the dynamic and 

distributed cyber-physical nature of the poultry farms to ensure the system's security. The 

proposed scheme enables a M2M communication, which provides the chance for devices 

inside the IIoT network to do data offloading and allows the IoT devices that are away 

from their gateways to get authenticated and communicate with their gateways through 

other IoT devices. Access control solution is integrated to support smart poultry farms' 

dynamic nature.  Therefore, an automated access control model based on virtual domain 

segregation of IoT network and device type is introduced. Also, the chained hash PUF 

value is used to create a type of tracking system between the IoT node and its gateway. 

The proposed scheme proves that it provides confidentiality, integrity, anonymity, 
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unlinkability, and untraceability properties while achieving mutual authentication 

between the communicating devices. 

The fourth contribution of this work is the presentation of three factor mutual 

authentication and Privacy Preservation Scheme using user and device biometrics scheme 

for IoV System. The proposed scheme employed user’s biometric to achieve static and 

continuous driver’s authentication process to ensure that the received data belongs to 

correct driver and identifies the fabricated data. The proposed scheme introduces 

employing central RSUs (CRSUs) between the RSUs and the TA to reduce the number of 

times a vehicle needs to authenticate with the RSUs. Furthermore, the proposed scheme 

uses PUFs and chained hash PUF to perform authentication via a challenge-response 

mechanism. The proposed scheme can perform authentication and establish a shared 

secret session key without the need to store any long-term keys on the vehicle’s OBU. 

The results prove that the proposed scheme is not only secure against different types of 

attacks but is also efficient enough for IoV. 

The PUF as a hardware security mechanism is used for key authentication and for 

encrypting the data on the server side where the key can be generated on the fly and does 

not need be stored. The two main advantages of this approach are: (1) the elimination of 

the need to store long term secret keys; and (2) the hardness of predicting the keys due of 

the unclonable and unpredictable nature derived from the PUFs. Also, the three proposed 

schemes eliminate the need for key exchanges between device and the server over the 

network because the devices generate the key locally using the securely shared random 

values and the PUF challenges and responses. 
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Additionally, through an intensive formal and informal security analysis of our 

protocols using the BAN logic and AVISPA tool, the results indicate that the proposed 

schemes are resilient against well- known attacks. The proposed schemes achieved the 

key security properties such anonymity, unlinkability, untracability and system scalability 

with a limited performance overhead. Also, we conduct performance analysis to evaluate 

the computational complexity and the computational cost and compare them with other 

proposed protocols in the literature. The results prove that the proposed schemes are in 

general more efficient than recently proposed protocols. 

7.2 Future Work 

We plan to extend the proposed scheme titled “Lightweight Privacy Preservation 

and Mutual Authentication Scheme for Smart Homes Using Physical Unclonable 

Functions”, to authenticate mobile devices and users. Also, We plan to extend the 

proposed scheme to account for node-to-node connectivity that can take place within the 

same virtual domain (intradomain) or across different domains(interdomains). 

Furthermore, our extended study will explore vulnerabilities resulted from the new form 

of connectivity that involves node-to-node communication. 

For the second scheme titled “M2M Distributed Multi-Layer Lightweight Mutual 

Authentication and Key Agreement Scheme Using Chained Hash PUF in Industrial IoT 

System”, we plan to enable an IoT device in one home network to communicate with an 

IoT device in another home network regardless of the underlying communication 

protocols. Also, we plan to extend the proposed scheme to facilitate in farm and cross 

farm authentication and communication between the IoT sensors on one side and the 

farmer/operators on the other side by examining the kind of operations the 
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farmer/operator need to complete that may require single level or multiple level access 

control based on the risk factor associated with the operation. Furthermore, in many 

farms the animals have sensors embedded, which require appropriate authorized access. 

These wearable and health monitoring devices are attached to livestock and collect 

sensitive data, which can be used by adversaries to control the animal or to send false 

data about the animal.  we plan to investigate how to conduct continuous authentication 

between the animal and the control unit in order to implement an ongoing verification of 

the animals and to identify the fabricated data. 

For the third scheme titled “Three-Factor Authentication and Privacy Preservation 

Scheme Using User and Device Biometrics for IoV System”, we plan to extend the work 

to implement machine learning based IDS to detect fake messages that are sent by 

authenticated malicious vehicles to alert authorities to revoke the shared secret keys and 

alert other vehicles. Also, we plan to explore more vehicular networking attacks and 

analyze them with the proposed scheme. 
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APPENDIX A 

role role_N 

(N:agent,G:agent,T:text,X:text,Y:text,NIDA:text,NIDR:text,IGIDR:text,IGIDA:text,GX:text,O

TP:text, H:hash_func,SND,RCV:channel  

 (dy)) 

 played_by N 

 def= 

local 

State:nat, 

TSoneN:text,TStwoN:text, 

None:hash(text.text), 

TSoneIG:text,TStwoIG:text, 

SIDNIG:text,Pn:text,Pg:text, 

Rone:text,Rtwo:text, 

Cone:text,Ctwo:text, 

Gtwo:hash(message.text.text.text.text), 

Nthree:hash(text.text.text.message.message), 

SN:hash(message.text.text.text), 

SSK:hash(text.text.text.text.text), 

NOTP:hash(text.text.text), 

NnewIDA:hash(text.text.text), 

Gone:hash(text.text.message), 

Na:text,Nb:text,NBB:text,Naa:text, 

        Gthree:hash(text.text.message.text),Ntwo:text, 

IG_pub:public_key 

init 

State:= 2 

transition 

1. State= 2 /\ RCV(start)

=|> State' :=4 

    /\ TSoneN' :=new() 

    /\ Na' := new() 

/\ None':= H(Y.OTP) 

    /\ Ntwo' := xor(Na',None')  

    /\ SN' :=H(None'.NIDR.TSoneN'.Na') 

    /\ SND(NIDA.TSoneN'.xor(Na',None').H(None'.NIDR.TSoneN'.Na')) 

    /\ secret(NIDR,secNIDR,{N,G}) 
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Figure A_1: HLPSL code for role IoT Node played by N 

role role_G  

(G:agent,N:agent,IGIDA:text,NIDA:text,NIDR:text,IGIDR:text,GX:text,OTP:text,CG:text,I

G_pub:public_key,H:hash_func,SND,RCV:channel(dy)) 

played_by G 

def= 

local 

State:nat, 

T:text,X:text,Y:text, 

TSoneN:text,TStwoN:text, 

TSoneIG:text,TStwoIG:text, 

SIDNIG:text,Pn:text,Pg:text, 

Rone:text,Rtwo:text, 

Cone:text,Ctwo:text, 

Gtwo:hash(message.text.text.text.text), 

Nthree:hash(text.text.text.message.message), 

SNG:hash(message.text.text.text), 

Ssk:hash(text.text.text.text.text), 

NOTP:hash(text.text.text), 

NnewIDA:hash(text.text.text), 

Gone:hash(text.text.message), 

Na:text,Nb:text,NAA:text,NB:text,Naa:text,CX:text, 

Gthree:hash(text.text.message.text), 

TG:hash(text.text.text), 

    /\ secret(OTP,secOTP,{N,G}) 

    /\ secret(Na,secNa,{N,G}) 

2. State=   4 /\

RCV(IGIDA.SIDNIG'.TSoneIG'.xor(Gone',Cone').{Nb'.Gtwo'}_Rone') 

=|> State' :=6 

    /\ TStwoN' :=new() 

    /\ Naa' :=new() 

    /\ Pn' :=new() 

/\ NnewIDA' := H(NIDA.Rone.Cone) 

/\ NOTP' := H(OTP.Cone'.TStwoN') 

    /\ Nthree' := H(Naa'.TStwoN'.Nb'.NOTP'.NnewIDA') 

    /\ SND(NIDA.SIDNIG.TStwoN'.{Naa'.exp(GX,Pn').Nthree'}_Rone') 

    /\ secret(Naa,secNaa,{N,G}) 

    /\ request(N,G,na,Na) 

    /\ secret(NOTP,secNOTP,{G,N}) 

    /\ witness(N,G,nb,Nb') 

end role 
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RG:text,Ntwo:text,None:hash(text.text) 

Init 

State:= 1 

transition 

1. State=1

/\RCV(NIDA.TSoneN'.xor(Na',None').SNG') 

=|> State' :=3  

   /\ Nb':= new() 

   /\ TSoneIG' :=new() 

/\ SIDNIG' := new() 

   /\ RG' := new() 

   /\ Rone' :=new() 

   /\ TG' := H(RG'.NIDR.IGIDR) 

/\ Gone' := H(OTP.Na'.TG') 

   /\ Cone' :=new() 

   /\ CX' := xor(Gone',Cone') 

   /\ Gtwo' :=H(Gone'.Cone'.TSoneIG'.Nb'.IGIDR) 

   /\ SND(IGIDA.SIDNIG'.TSoneIG'.xor(Gone',Cone'). 

{Nb'.H(Gone'.Cone'.TSoneIG'.Nb'.IGIDR)}_Rone') 

   /\ secret(IGIDR,secIGIDR,{G,N}) 

   /\ secret(OTP,secOTP,{G,N}) 

   /\ secret(Nb,secNb,{G,N}) 

   /\ secret(Rone,secRone,{G,N}) 

   /\ secret(Cone,secCone,{G,N}) 

   /\ secret(RG,secRG,{G,N}) 

   /\ witness(G,N,na,Na') 

2. State=3 /\

RCV(NIDA.SIDNIG.TStwoN'.{Naa'.exp(GX,Pn').Nthree'}_Rone) 

=|> State' :=5  

   /\request(G,N,nb,Nb) 

end role 

     Figure A_2: HLPSL code for role Intelligent Gateway played by IG 
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role session(N:agent,G:agent,T:text,X:text,Y:text,NIDA:text,IGIDA:text,NIDR:text, 

IGIDR:text,GX:text,OTP:text,CG:text,IG_pub:public_key, 

H:hash_func) 

def= 

local 

SND2,RCV2,SND1,RCV1:channel(dy) 

composition 

role_G(G,N,IGIDA,NIDA,NIDR,IGIDR,GX,OTP,CG,IG_pub,H,SND2,RCV2) 

role_N(N,G,T,X,Y,NIDA,NIDR,IGIDR,IGIDA,GX,OTP,H,SND1,RCV1)/\ 

end role 

  Figure A_3: HLPSL code for role session 

role environment() 

def= 

const 

n:agent,g:agent,t:text,x:text,y:text,nida:text,igida:text,nidr:text,igidr:text,gx:text,otp:tex

t,cg:text,ig_pub:public_key,h:hash_func,secNIDR, secOTP, secNa, secIGIDR, secNb, 

secRone, secCone,secNaa,secNOTP,secRG,na,nb:protocol_id 

intruder_knowledge = {n,g,gx,h,ig_pub} 

composition 

session(n,g,t,x,y,nida,igida,nidr,igidr,gx,otp,cg,ig_pub,h) 

end role 

Figure A_4:  HLPSL code for role environment 

 FigureA_5: HLPSL code for goal 

Goal 

secrecy_of secNIDR 

secrecy_of secOTP 

secrecy_of secNa 

secrecy_of secNb 

secrecy_of secIGIDR 

secrecy_of secRone 

secrecy_of secCone 

secrecy_of secNaa 

secrecy_of secNOTP 

secrecy_of secRG 

authentication_on na 

authentication_on nb 

end goal 
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APPENDIX B 

role 

role_C(C:agent,P:agent,PIDA:text,CIDA:text,PIDR:text,CIDR:text,OTP:text,MSK:tex

t,CPC:text,PAU:text,H:hash_func,SND,RCV:channel(dy)) 

played_by C 

def= 

local 

State:nat, 

TSoneC:text,TStwoC:text, 

TSoneP:text,TStwoP:text, 

RVCone:text,RVCtwo:text,RVPone:text, 

YxP:hash(text.text.text), 

Xone:text, 

Xtwo: hash(text.text.text.message), 

Xthree:text, 

Xfour: hash(text.text.text.message), 

Yonex:text, 

Ytwox: hash(text.text.text.message), 

Ythree:text, 

Yfour:text, 

YPx:hash(text.text.text.text.message.message), 

TKone:text,TKtwo:text, 

OTPnew:hash(text.text), 

CIDAnew:hash(text.text), 

Xc:hash(text.text), 

Yx:hash(text.text), 

Xcc:hash(text.text),CAU:text 

init 

State:= 2 

transition 

1. State= 2 /\ RCV(start)

=|> State' :=4 /\ TSoneC' :=new() 

    /\ RVCone' := new() 

    /\ Xc' := H(OTP.PAU) 

    /\ Xone' := xor(RVCone',H(OTP.PAU)) 

/\ Xtwo' := H(CIDR.TSoneC'.RVCone'.Xc') 

/\SND(CIDA.TSoneC'.xor(RVCone',H(OTP.PAU)). 

       H(CIDR.TSoneC'.RVCone'.H (OTP.PAU))) 

    /\secret(CIDR,secCIDR,{C,P}) 

    /\secret(OTP,secOTP,{C,P}) 

    /\secret(RVCone,secRVCone,{C,P}) 
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2. State=   4 /\

RCV(PIDA.TSoneP'.xor(H(OTP.CAU'),RVPone').Ytwox')=|> 

          State' :=6 

   /\ TStwoC' :=new() 

/\ RVCtwo' :=new() 

   /\ Xcc' := H(RVPone'.OTP)  

   /\ Xthree' := xor(RVCtwo',H(RVPone'.OTP)) 

   /\ Xfour' := H(CIDR.TStwoC'.RVCtwo'.Xcc') 

   /\ SND(CIDA.TStwoC'.xor(RVCtwo',H(RVPone'.OTP)). 

H(CIDR.TStwoC'.RVCtwo'.H(RVPone'.OTP))) 

   /\ request(C,P,rvcone,RVCone) 

   /\witness(C,P,rvpone,RVPone') 

   /\ secret(RVCtwo,secRVCTwo,{C,P}) 

1. State=  6 /\

RCV(PIDA.TStwoP'.xor(TKone',OTP).xor(TKtwo',TKone').YPx')=|> 

State' :=8 

end role 

      Figure B_1: HLPSL code for role Child Gateway Node played by C 

role role_P  

(P:agent,C:agent,PIDA:text,CIDA:text,PIDR:text,CIDR:text,OTP:text,MSK:text,CPP:t

ext,CAU:text,H:hash_func,SND,RCV:channel(dy)) 

played_by P 

def= 

local 

State:nat, 

TSoneC:text,TStwoC:text, 

TSoneP:text,TStwoP:text, 

RVCone:text,RVCtwo:text,RVPone:text, 

YxP:hash(text.text.text), 

Xone:text, 

XtwoP: hash(text.text.text.message), 

XthreeP:text, 

XfourP:hash(text.text.text.message), 

Yone:text, 

Ytwo: hash(text.text.text.message), 

Ythree:text, 

Yfour:text, 

YP:hash(text.text.text.text.message.message), 

TKone:text,TKtwo:text, 

OTPnew:hash(text.text), 

CIDAnew:hash(text.text), 

Xc:hash(text.text), 

Yx:hash(text.text),PAU:text, 
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Sk:hash(text.text.text.message) 

init 

State:= 1 

transition 

1. State=1

/\RCV(CIDA.TSoneC'.xor(RVCone',H(OTP.PAU')).XtwoP') 

    =|> State' :=3  

   /\ TSoneP' :=new() 

   /\ RVPone':= new() 

   /\ Yx':= H(OTP.CAU) 

   /\ Yone' := xor(H(OTP.CAU),RVPone') 

/\ Ytwo' := H(PIDR.TSoneP'.RVPone'.Yx') 

   /\ 

SND(PIDA.TSoneP'.xor(H(OTP.CAU),RVPone').H(PIDR.TSoneP'.RVPone'. 

H(OTP.CAU))) 

   /\ secret(PIDR,secPIDR,{P,C}) 

   /\ secret(OTP,secOTP,{P,C}) 

   /\ secret(RVPone,secRVPone,{P,C}) 

   /\ witness(P,C,rvcone,RVCone') 

2. State= 3 /\

RCV(CIDA.TStwoC'.xor(RVCtwo',H(RVPone.OTP)).XfourP') 

   =|> State' :=5    

   /\ TStwoP' :=new() 

   /\ TKone' := new() 

   /\ TKtwo' := new() 

   /\ Ythree' := xor(TKone',OTP) 

   /\ Yfour' := xor(TKtwo',TKone') 

   /\ OTPnew' := H(OTP.RVCtwo') 

   /\ CIDAnew' := H(CIDA.OTP) 

   /\ YP' := 

H(PIDR.TStwoP'.TKone'.TKtwo'.OTPnew'.CIDAnew') 

/\  

SND(PIDA.TStwoP'.xor(TKone',OTP).xor(TKtwo',TKone'). 

H(PIDR.TStwoP'.TKone'.TKtwo'.H(OTP.RVCtwo').H (CIDA.OTP))) 

    /\request(P,C,rvpone,RVPone) 

   /\secret(TKone,secTKone,{P,C}) 

   /\secret(TKtwo,secTKtwo,{P,C}) 

   /\secret(OTPnew,secOTPnew,{P,C}) 

   /\secret(CIDAnew,secCIDAnew,{P,C}) 

   /\secret(YxP,secYxP,{P,C}) 
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 end role 

Figure B_2: HLPSL code for role Parent Gateway played by P 

role 

session(C:agent,P:agent,CIDA:text,PIDA:text,CIDR:text,PIDR:text,OTP:text,MSK:tex

t,CPC:text,PAU:text,CPP:text,CAU:text,H:hash_func) 

def= 

local 

SND2,RCV2,SND1,RCV1:channel(dy) 

composition 

role_C(C,P,PIDA,CIDA,PIDR,CIDR,OTP,MSK,CPC,PAU,H,SND1,RCV1)/\ 

role_P(P,C,PIDA,CIDA,PIDR,CIDR,OTP,MSK,CPP,CAU,H,SND2,RCV2) 

end role 

Figure B_3: HLPSL code for role session 

role environment() 

def= 

const  

c:agent,p:agent,cida:text,pida:text,cidr:text,pidr:text,otp:text,msk:text,cpp:text,cau:text,

cpc:text,pau:text,h:hash_func, secCIDR, 

secOTP,secRVCone,secRVCTwo,secPIDR,secRVPone,secTKone,secTKtwo,secOTPn

ew,secCIDAnew,secYxP,rvcone,rvpone:protocol_id 

intruder_knowledge = {c,p,h} 

composition 

session(c,p,cida,pida,cidr,pidr,otp,msk,cpp,cau,cpc,pau,h) 

end role 

Figure B_4 HLPSL code for role environment 
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Goal 

secrecy_of secCIDR 

secrecy_of secOTP 

secrecy_of secRVCone 

secrecy_of secRVPone 

secrecy_of secPIDR 

secrecy_of secRVCTwo 

secrecy_of secTKone 

secrecy_of secTKtwo 

secrecy_of secOTPnew 

secrecy_of secCIDAnew 

authentication_on rvcone 

authentication_on rvpone 

end goal 

Figure B_5: HLPSL code for goal 

role 

role_Cone(Cone:agent,Ctwo:agent,ConeIDA:text,CtwoIDA:text,ConeIDR:text,CtwoI

DR:text,TK:text,MSK:text,H:hash_func,SND,RCV:channel(dy)) 

played_by Cone 

def= 

local 

  State:nat, 

TSoCone:text,TStCone:text, 

TSoCtwo:text,TStCtwo:text, 

RCone:text,RCtwo:text,RCCone:text,RCCTwo:text, 

Tone:text,Tfour:text, 

Ttwo: hash(text.text.text.message), 

Tthree: hash(text.text.text), 

Tfive: hash(text.text.text.message), 

Dtwo:text, 

Dthreex: hash(text.text.text.message), 

Done: hash(text.text.text), 

Rj:hash(text.text), 

Sk:hash(text.text.text.text) 

init 

State:= 2 

transition 

1. State= 2 /\ RCV(start)

=|> State' :=4 /\ TSoCone' :=new() 
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    /\ Rj' := H(TK.CtwoIDR) 

    /\ RCone' := new() 

    /\ Tone' := xor(RCone',Rj') 

/\ Ttwo' := H(ConeIDR.TSoCone'.RCone'.Rj') 

/\SND(CtwoIDA.xor(RCone',Rj').H(ConeIDR.TSoCone'.RCone'. 

H(ConeIDR.TSoCone'.RCone'.H(TK.CtwoIDR)))) 

    /\secret(ConeIDR,secConeIDR,{Cone,Ctwo}) 

    /\secret(MSK,secMSK,{Cone,Ctwo}) 

    /\secret(TK,secTK,{Cone,Ctwo}) 

    /\secret(RCone,secRCone,{Cone,Ctwo}) 

2. State=   4 /\

RCV(CtwoIDA.xor(H(RCone'.MSK.ConeIDR),RCCone').Dthreex')=|> 

State' :=6 

   /\ TStCone' :=new() 

/\ RCtwo' :=new() 

   /\ Tthree' := H(TK.MSK.RCCone')  

   /\ Tfour' := xor(RCtwo',H(TK.MSK.RCCone')) 

   /\ Tfive' := 

H(ConeIDR.TStCone'.RCtwo'.H(TK.MSK.RCCone')) 

   /\ request(Cone,Ctwo,rcone,RCone) 

   /\ SND(ConeIDA.xor(RCtwo',H(TK.MSK.RCCone')). 

H(ConeIDR.TStCone'.RCtwo'.H(TK.MSK.RCCone'))) 

   /\ secret(RCtwo,secRCtwo,{Ctwo,Cone}) 

   /\witness(Cone,Ctwo,rccone,RCCone') 

end role 

      Figure B_6:  HLPSL code for role first child gateway played by Cone 

role role_Ctwo 

(Cone:agent,Ctwo:agent,ConeIDA:text,CtwoIDA:text,ConeIDR:text,CtwoIDR:text,TK

:text,MSK:text,H:hash_func,SND,RCV:channel(dy)) 

played_by Ctwo 

def= 

local 

State:nat, 

TSoCone:text,TStCone:text, 

TSoCtwo:text,TStCtwo:text, 

RCone:text,RCtwo:text,RCCone:text,RCCTwo:text, 
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Tone:text,Tfour:text, 

Tthree: hash(text.text.text), 

Ttwox: hash(text.text.text.message), 

Tfive: hash(text.text.text.message), 

Dtwo:text, 

Dthree: hash(text.text.text.message), 

Done:hash(text.text.text), 

Rj:hash(text.text), 

Sk:hash(text.text.text.text) 

init 

State:= 1 

transition 

1. State=1

/\RCV(CtwoIDA.xor(RCone',Rj').Ttwox') 

    =|> State' :=3  

   /\ TSoCtwo' :=new() 

   /\ Done' := H(RCone'.MSK.ConeIDR) 

   /\ RCCone':= new() 

   /\ Dtwo' := xor(Done',RCCone') 

/\ Dthree' := H(CtwoIDR.TSoCtwo'.RCCone'. 

H(RCone'.MSK.ConeIDR))  

/\ SND(CtwoIDA.xor(H(RCone'.MSK.ConeIDR),RCCone') 

.H(CtwoIDR.TSoCtwo'.RCCone'.H(RCone'.MSK.ConeIDR))) 

   /\secret(CtwoIDR,secCtwoIDR,{Ctwo,Cone}) 

   /\secret(MSK,secMSK,{Ctwo,Cone}) 

   /\secret(RCCone,secRCCone,{Ctwo,Cone}) 

   /\witness(Ctwo,Cone,rcone,RCone') 

2. State=3 /\ RCV(ConeIDA.xor(RCtwo',H(TK.MSK.RCCone')).Tfive')

   =|> State' :=5  

   /\ request(Ctwo,Cone,rccone,RCCone) 

end role 

    Figure B_7: HLPSL code for role second child gateway played by Ctwo

role 

session(Cone:agent,Ctwo:agent,ConeIDA:text,CtwoIDA:text,ConeIDR:text,CtwoIDR:

text,TK:text,MSK:text,H:hash_func) 

def= 

local 

SND2, RCV2, SND1, RCV1: channel(dy) 

composition 
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role_Cone(Cone,Ctwo,ConeIDA,CtwoIDA,ConeIDR,CtwoIDR,TK,MSK,H,S

ND1,RCV1)/\ 

role_Ctwo(Cone,Ctwo,ConeIDA,CtwoIDA,ConeIDR,CtwoIDR,TK,MSK,H,S

ND2,RCV2) 

end role 

Figure B_8: HLPSL code for role session 

role environment() 

def= 

const  

cone:agent,ctwo:agent,coneida:text,ctwoida:text,coneidr:text,ctwoidr:text,tk:text,msk:t

ext,h:hash_func, 

secConeIDR,secMSK,secTK,secRCone,secRCCone,secCtwoIDR,secRCtwo,rc

cone,rcone:protocol_id 

intruder_knowledge = {cone,ctwo,h} 

composition 

session(cone,ctwo,coneida,ctwoida,coneidr,ctwoidr,tk,msk,h) 

end role 

Figure B_9:  HLPSL code for role environment 

Goal 

secrecy_of secConeIDR 

secrecy_of secMSK 

secrecy_of secRCone 

secrecy_of secRCtwo 

secrecy_of secTK 

secrecy_of secRCCone 

secrecy_of secCtwoIDR 

authentication_on rcone 

authentication_on rccone 

end goal 

Figure B_10:  HLPSL code for security goals 
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role role_N 

(N:agent,MG:agent,T:text,X:text,Y:text,NIDA:text,NIDR:text,MGIDR:text,MGIDA:te

xt,CHX:text,OTT:text,H:hash_func,SND,RCV:channel 

 (dy)) 

 played_by N 

 def= 

local 

State:nat, 

TSoneN:text,TStwoN:text, 

Xone:hash(text.text), 

TSoneMG:text,TStwoMG:text,RX:text, 

SIDNIG:text, 

Rone:text,Rtwo:text, 

Cone:text,Ctwo:text,CMG:text, 

CHXnew:hash(text.text), 

SN:hash(message.text.text.text), 

Yone:hash(text.text), 

Ythreex:hash(message.text.text.text.text), 

NOTT:hash(text.text.text), 

NnewIDA:hash(text.text.text), 

Xfour:hash(text.text.text.message.message.message.message.text.text), 

Na:text,Nb:text,Xtwo:text,Naa:text,Xthree:text, 

Ytwo:text 

init 

State:= 2 

transition 

1. State= 2 /\ RCV(start)

=|> State' :=4 /\ TSoneN' :=new() 

    /\ Na' := new() 

/\ Xone':= H(X.Y) 

    /\ Xtwo' := xor(Na',OTT) 

    /\ SN' :=H(H(X.Y).NIDR.TSoneN'.Na') 

    /\ 

SND(NIDA.TSoneN'.xor(Na',H(X.Y)).H(H(X.Y).NIDR.TSoneN'.Na')) 

    /\ secret(NIDR,secNIDR,{N,MG}) 

    /\ secret(OTT,secOTT,{N,MG}) 

    /\ secret(Na,secNa,{N,MG}) 

    /\ secret(X,secX,{N,MG}) 

    /\ secret(Y,secY,{N,MG}) 

2. State=   4 /\ RCV(MGIDA.SIDNIG'.TSoneMG'.xor(Nb',OTT)
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.xor(Cone',Nb').TSoneMG'.Ythreex') 

=|>  State' :=6 

   /\ TStwoN' :=new() 

/\ Rone' := new() 

   /\ CHXnew' := H(CHX.Rone') 

   /\ Ctwo' := H(Na.Nb') 

   /\ Rtwo':=new() 

       /\ Naa':=new() 

   /\ Xthree':=xor(Naa',CHXnew') 

   /\ RX' :=xor(Rtwo',H(Nb'.CHXnew')) 

   /\ NOTT' := H(OTT.Cone'.Rone') 

   /\ NnewIDA' := H(NIDA.Nb') 

   /\Xfour' := H(NIDR.TStwoN'.Rone'.H(CHX.Rone') 

.H(OTT.Cone'.Rone').H(NIDA.Nb').H(Na.Nb').Rtwo'.Naa') 

/\SND(NIDA.SIDNIG'.TStwoN'.xor(Naa',H(CHX.Rone')) 

.xor(Rtwo',H(Nb'.H(CHX.Rone'))).Xfour') 

  /\secret(Rone,secRone,{N,MG}) 

  /\secret(CHXnew,secCHXnew,{N,MG}) 

  /\secret(Naa,secNaa,{N,MG}) 

  /\secret(Rtwo,secRtwo,{N,MG}) 

  /\secret(NOTT,secNOTT,{N,MG}) 

  /\secret(NnewIDA,secNnewIDA,{N,MG}) 

  /\request(N,MG,na,Na) 

  /\witness(N,MG,nb,Nb')          

end role 

Figure B_11: HLPSL code for role IoT Node played by N 

role role_MG  

MG:agent,N:agent,MGIDA:text,NIDA:text,NIDR:text,MGIDR:text,CHX:text,OTT:te

xt,H:hash_func,SND,RCV:channel(dy)) 

 played_by MG 

 def= 

local 

State:nat, 

T:text,X:text,Y:text,RX:text, 

TSoneN:text,TStwoN:text, 

TSoneMG:text,TStwoMG:text, 

SIDNIG:text, 

Rone:text,Rtwo:text, 

Cone:text,Ctwo:text,CMG:text, 

CHXnew:hash(text.text), 

Ythree:hash(message.text.text.text.text), 

SNG: hash(message.text.text.text), 

Yone:hash(text.text), 
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NOTT:hash(text.text.text), 

NnewIDA:hash(text.text.text), 

Xfour:hash(text.text.text.message.message.message.message.text.text), 

Na:text,Nb:text,Naa:text,Xthree:text, 

Ytwo:text 

init 

State:= 1 

transition 

1. State=1

/\RCV(NIDA.TSoneN'.xor(Na',OTT).SNG') 

    =|> State' :=3  

   /\ Yone' :=H(T.X) 

   /\ Nb':= new() 

/\ Ytwo' :=xor(Nb',OTT) 

   /\ TSoneMG' :=new() 

   /\ Cone' := new() 

   /\ CMG' :=xor(Cone',Nb') 

/\ Ythree' := H(H(T.X).TSoneMG'.Nb'.Na'.Cone')

/\ SIDNIG' := new() 

   /\ 

SND(MGIDA.SIDNIG'.TSoneMG'.xor(Nb',OTT).xor(Cone',Nb').TSoneMG'.H(H 

(T.X).TSoneMG'.Nb'.Na'.Cone')) 

   /\secret(MGIDR,secMGIDR,{MG,N}) 

   /\secret(OTT,secOTT,{MG,N}) 

   /\secret(Nb,secNb,{MG,N}) 

   /\secret(Cone,secCone,{MG,N}) 

   /\witness(MG,N,na,Na') 

1. State=3

/\ RCV(NIDA.SIDNIG.TStwoN'.xor(Naa',H(CHX.Rone')) 

.xor(Rtwo',H(Nb.H(CHX.Rone'))).H 

(NIDR.TStwoN'.Rone'.H(CHX.Rone') 

.H(OTT.Cone.Rone').H(NIDA.Nb).H(Na.Nb).Rtwo'.Naa')) 

   =|> State' :=5   

  /\request(MG,N,nb,Nb) 

end role 

      Figure B_12: HLPSL code for mini-gateway node played by MG 

role 

session(N:agent,MG:agent,T:text,X:text,Y:text,NIDA:text,MGIDA:text,NIDR:text,M

GIDR:text,CHX:text,OTT:text,H:hash_func) 

 def= 

local 

SND2,RCV2,SND1,RCV1:channel(dy) 

composition 
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role_N(N,MG,T,X,Y,NIDA,NIDR,MGIDR,MGIDA,CHX,OTT,H,SND1,RCV

1)/\ 

role_MG(MG,N,MGIDA,NIDA,NIDR,MGIDR,CHX,OTT,H,SND2,RCV2) 

 end role 

Figure B_13. HLPSL code for role session 

Figure B_14: HLPSL code for role environment 

Goal 

secrecy_of secNIDR 

secrecy_of secOTT 

secrecy_of secNa 

secrecy_of secX 

secrecy_of secY  

secrecy_of secNb 

secrecy_of secMGIDR 

secrecy_of secCone 

secrecy_of secRone 

secrecy_of secCHXnew 

secrecy_of secNaa 

secrecy_of secRtwo 

secrecy_of secNOTT 

secrecy_of secNnewIDA 

authentication_on na 

authentication_on nb 

role environment() 

 def= 

const 

n:agent,mg:agent,t:text,x:text,y:text,nida:text,mgida:text,nidr:text,mgidr:text,chx:text,o

tt:text,h:hash_func, 

     secNIDR, secOTT, secNa,secX, 

secY,secMGIDR,secNb,secCone,secRone,secCHXnew,secNaa,secRtwo,secNOTT,sec

NnewIDA,na,nb:protocol_id 

 intruder_knowledge = {n,mg,h} 

composition 

session(n,mg,t,x,y,nida,mgida,nidr,mgidr,chx,ott,h) 

end role 
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 end goal 

Figure B_15:  HLPSL code for goal 
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APPENDIX C 

role 

role_V(TA:agent,V:agent,TAIDA:text,VIDA:text,VIDR:text,VTA:text,CHX:text,OTP

:text,H:hash_func,SND,RCV:channel(dy)) 

played_by V 

def= 

local 

State:nat, 

TSoneV:text,TStwoV:text, 

TSoneTA:text,TStwoTA:text,RX:text, 

SIDNIG:text, 

Rone:text, 

Cone:text,Ctwo:text,CMG:text, 

CHXnew:hash(text.text), 

Xtwo:hash(text.text.text.text.text), 

Yone:hash(text.text.text), 

Ythreex:hash(message.text.text.text.text), 

NOTP:hash(text.text.text), 

NnewIDA:hash(text.text), 

Xthree:text, 

Xfour:hash(text.text.text.text.text.message), 

Na:text,Nb:text,Xone:text,Naa:text,Nbb:text 

init 

State:= 2 

transition 

1. State= 2 /\ RCV(start)

=|> State' :=4 /\ TSoneV' :=new() 

    /\ Na' :=new() 

    /\ Xone' :=xor(Na',H(VTA)) 

    /\ Xtwo' :=H(VIDR.TSoneV'.Na'.OTP.VTA) 

    /\  SND(VIDA.TSoneV'.xor(Na',H(VTA)) 

.H(VIDR.TSoneV'.Na'.OTP.VTA)) 

    /\ secret(VIDR,secVIDR,{V,TA}) 

    /\ secret(OTP,secOTP,{V,TA}) 

    /\ secret(Na,secNa,{V,TA}) 

    /\ secret(VTA,secVTA,{V,TA}) 

2. State= 4 /\ RCV(TAIDA.SIDNIG'.xor(Nb',H(VTA.OTP.Na')).

xor(Cone',H(Nb'.CHX)).TSoneTA'.Ythreex')=|> 

State' :=6 
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   /\ TStwoV' :=new()  

/\ Rone' := new() 

   /\ CHXnew' := H(CHX.Rone') 

   /\ Naa':=new() 

   /\ Xthree':=xor(Naa',H(Nb'.CHXnew')) 

   /\Xfour' := H(VIDR.TStwoV'.Rone'.Naa'. 

xor(Naa',H(Nb'.CHXnew')).H(CHX.Rone')) 

/\SND(VIDA.SIDNIG'.TStwoV'.xor(Naa',H(Nb'.CHXnew')) 

.H(VIDR.TStwoV'.Rone'.Naa'.xor(Naa',H(Nb'.CHXnew')) 

.H(CHX.Rone'))) 

  /\secret(Rone,secRone,{V,TA}) 

  /\secret(CHXnew,secCHXnew,{V,TA}) 

  /\secret(Naa,secNaa,{V,TA}) 

  /\request(V,TA,na,Na) 

  /\witness(V,TA,nb,Nb') 

3. State=   6 /\ RCV(TAIDA.SIDNIG.xor(Nbb',H(Naa'.Rone')).

H(TStwoTA'.xor(Nbb',H(Naa'.Rone')) 

.H(OTP.Nbb'.Rone').H(Cone'.VIDA))) 

    =|> State' :=8 

end role 

       Figure C_1: HLPSL code for role Vin T_VA authentication protocol 

role role_TA  

(TA:agent,V:agent,TAIDA:text,VIDA:text,VIDR:text,VTA:text,CHX:text,OTP:text,H:

hash_func,SND,RCV:channel(dy)) 

played_by TA 

def= 

local 

State:nat, 

TSoneV:text,TStwoV:text, 

TSoneTA:text,TStwoTA:text, 

SIDNIG:text, 

Rone:text, 

Cone:text,CMG:text, 

CHXnew:hash(text.text), 

Yfour:hash(text.text), 

Ysix:hash(text.text.message.message), 

Yone:hash(text.text.text), 

NOTP:hash(text.text.text), 

NnewIDA:hash(text.text), 

Na:text,Nb:text,Naa:text,Nbb:text,  

Ytwo:text, 
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Ythree:hash(message.text.text.text.text), 

Yfive:text, 

State:= 1 

transition 

1. State=1

/\RCV(VIDA.TSoneV'.xor(Na',H(VTA)).   

H(VIDR.TSoneV'.Na'.OTP.VTA)) 

    =|> State' :=3 

   /\ TSoneTA' :=new() 

   /\ Nb':= new() 

   /\ Yone' := H(VTA.OTP.Na') 

/\ Ytwo' := xor(Nb',H(VTA.OTP.Na')) 

   /\ Cone' := new() 

   /\ CMG'  := xor(H(Nb'.CHX),Cone') 

/\ Ythree' := H(H(VTA.OTP.Na').TSoneTA'.Nb'.Cone'.Na')       

/\ SIDNIG' := new()  

   /\ SND(TAIDA.SIDNIG'.xor(Nb',H(VTA.OTP.Na')) 

.xor(Cone',H(Nb'.CHX)).TSoneTA'.H(H(VTA.OTP.Na'). 

TSoneTA'.Nb'.Cone'.Na')) 

   /\secret(OTP,secOTP,{TA,V}) 

   /\secret(Nb,secNb,{TA,V}) 

   /\secret(Cone,secCone,{TA,V}) 

   /\witness(TA,V,na,Na') 

2. State=3 /\ RCV(VIDA.SIDNIG.TStwoV'

.xor(Naa',H(Nb'.CHXnew')).H(VIDR.TStwoV'.Rone'.Naa' 

.xor(Naa',H(Nb'.CHXnew')).H(CHX.Rone'))) 

   =|> State' :=5   

   /\ TStwoTA' :=new() 

   /\ Nbb' := new() 

/\Yfour' := H(Naa'.Rone') 

   /\Yfive' := xor(Nbb',H(Naa'.Rone')) 

/\NOTP' := H(OTP.Nbb'.Rone') 

   /\NnewIDA' := H(Cone.VIDA) 

   /\Ysix' := H(TStwoTA'.xor(Nbb',H(Naa'.Rone')) 

.H(OTP.Nbb'.Rone').H(Cone.VIDA) 

.H(H(CHX.Rone').Na.Nb.Naa'.Nbb')) 

   /\SND(TAIDA.SIDNIG.xor(Nbb',H(Naa'.Rone')) 

.H(TStwoTA'.xor(Nbb',H(Naa'.Rone')) 

.H(OTP.Nbb'.Rone').H(Cone.VIDA))) 

/\request(TA,V,nb,Nb) 
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  /\secret(NOTP,secNOTP,{V,TA}) 

  /\secret(NnewIDA,secNnewIDA,{V,TA}) 

end role 

Figure C-2:  HLPSL code for role TA 

role 

session(V:agent,TA:agent,VIDA:text,TAIDA:text,VIDR:text,VTA:text,CHX:text,OTP

:text,H:hash_func) 

def= 

local 

SND2,RCV2,SND1,RCV1:channel(dy) 

composition 

role_V(TA,V,TAIDA,VIDA,VIDR,VTA,CHX,OTP,H,SND1,RCV1)/\ 

role_TA(TA,V,TAIDA,VIDA,VIDR,VTA,CHX,OTP,H,SND2,RCV2) 

end role 

Figure C_3. HLPSL code for role session 

role environment() 

def= 

const 

v:agent,ta:agent,vida:text,taida:text,vidr:text,vta:text,chx:text,otp:text,h:hash_func, 

secVIDR,secOTP,secNa,secX,secNb,secCone,secRone,secCHXnew,secNaa,se

cNOTP,secVTA,secNnewIDA,na,nb:protocol_id 

intruder_knowledge = {v,ta,h} 

composition 

session(v,ta,vida,taida,vidr,vta,chx,otp,h) 

end role 

Figure C_4. HLPSL code for role environment 

.Goal 

secrecy_of secVIDR 

secrecy_of secOTP 

secrecy_of secNa 

secrecy_of secVTA 

secrecy_of secNb 

secrecy_of secCone 

secrecy_of secRone 

secrecy_of secCHXnew 

secrecy_of secNaa 

secrecy_of secNOTP 
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secrecy_of secNnewIDA 

authentication_on na 

authentication_on nb 

end goal 

Figure C_5: HLPSL code for goal 

role role_V(CS: 

agent,V:agent,CSIDA:text,VIDA:text,VIDR:text,VCS1:text,VCS2:text,OTT:text,H:ha

sh_func,SND,RCV:channel(dy)) 

played_by V 

def= 

local 

State:nat, 

TSoneV:text,TStwoV:text, 

VXtwo:hash(text.text.text.text.text), 

TSoneCS:text,TStwoCS:text,RX:text, 

SIDNIG:text, 

Rone:text,Rtwo:text, 

Cone:text,Ctwo:text, 

VXthree:hash(text.text), 

Yone:hash(text.text.text), 

Ythreex:hash(message.text.text.text.text), 

NOTT:hash(text.text.text), 

VnewIDA:hash(text.text.text), 

VXfour:text,  

VXfive:text,VXsix:text, 

VXseven:hash(message.text.text.text.text.message.message.message), 

XCSYfive:hash(text.message.message.message), 

Na:text,Nb:text,Xone:text,Naa:text, 

VXone:text, 

Sk:hash(text.text.text.text.text) 

init 

State:= 2 

transition 

1. State= 2 /\ RCV(start)

         =|> State' :=4 /\ TSoneV' :=new() 

    /\ Na' :=new() 

    /\ VXone' :=xor(Na',H(VCS2.OTT)) 

    /\ VXtwo' :=H(VIDR.TSoneV'.Na'.OTT.VCS1) 

    /\ SND(VIDA.TSoneV'.xor(Na',H(VCS2.OTT)). 

H(VIDR.TSoneV'.Na'.OTT.VCS1)) 
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    /\ secret(VIDR,secVIDR,{V,CS}) 

    /\ secret(OTT,secOTT,{V,CS}) 

    /\ secret(Na,secNa,{V,CS}) 

    /\ secret(VCS1,secVCS1,{V,CS}) 

    /\ secret(VCS2,secVCS2,{V,CS}) 

2. State= 4 /\ RCV(CSIDA.SIDNIG'.xor(Nb',H(VCS1.OTT))

.xor(Cone',H(Nb'.H(VCS1.OTT))).TSoneCS'.H(VIDR.H 

(VCS1.OTT).TSoneCS'.Nb'.Cone'.Na')) 

    =|>   State' :=6 

   /\ TStwoV' :=new()  

/\ Rone' := new() 

   /\ Ctwo' := H(Na'.Nb') 

   /\ Rtwo':=new() 

   /\ Naa':=new() 

   /\ VXthree' := H(OTT.Nb') 

   /\ VXfour':=xor(Naa',H(H(OTT.Nb').VIDR)) 

   /\VXfive' :=xor(Rone',H(H(OTT.Nb').Naa')) 

   /\VXsix' := xor(Rtwo',H(Rone'.Cone')) 

   /\NOTT' := H(OTT.Naa'.Nb') 

/\VnewIDA' := H(Cone'.VIDA.OTT) 

   /\VXseven' := H(H(OTT.Nb'). 

TStwoV'.Rone'.Naa'.Rtwo'. 

H(Na'.Nb').H(OTT.Naa'.Nb'). 

H(Cone'.VIDA.OTT)) 

   /\ SND(VIDA.SIDNIG.TStwoV' 

.xor(Naa',H(H(OTT.Nb').VIDR))     

.xor(Rone',H(H(OTT.Nb').Naa')).xor(Rtwo',H 

(Rone'.Cone')).H(H(OTT.Nb'). 

TStwoV'.Rone'.Naa'.Rtwo'.H(Na'.Nb').H(OTT.Naa'.Nb').H 

(Cone'.VIDA.OTT))) 

  /\secret(Rone,secRone,{V,CS}) 

  /\secret(Rtwo,secRtwo,{V,CS}) 

  /\secret(Naa,secNaa,{V,CS}) 

  /\secret(NOTT,secNOTT,{V,CS}) 

  /\secret(VnewIDA,secVnewIDA,{V,CS}) 

  /\request(V,CS,na,Na) 

  /\witness(V,CS,nb,Nb') 

end role 

Figure C_6: HLPSL code for V in V-VOCS authentication protocol 
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role role_CS  

(CS:agent,V:agent,CSIDA:text,VIDA:text,VIDR:text,OTT:text,TID:text,H:hash_func,

SND,RCV:channel(dy)) 

played_by CS 

def= 

local 

State:nat, 

VCS1:text,VCS2:text,  

TSoneV:text,TStwoV:text, 

TSoneCS:text, 

SIDNIG:text, 

Rone:text,Rtwo:text, 

Cone:text,CV:text, 

CSYone:hash(text.text), 

CSYtwo:text, 

CSYthree:hash(text.message.text.text.text.text), 

NOTT:hash(text.text.text), 

VnewIDA:hash(text.text.text), 

Na:text,Nb:text,Naa:text 

init 

State:= 1 

transition 

1. State=1

/\RCV(VIDA.TSoneV' 

.xor(Na',H(VCS2'.OTT)).H(VIDR.TSoneV'.Na'.OTT.VCS1')) 

    =|> State' :=3 

   /\ TSoneCS' := new() 

   /\ Nb':= new() 

   /\ CSYone' :=H(VCS1'.OTT) 

/\ CSYtwo' :=xor(Nb',H(VCS1'.OTT)) 

   /\ Cone' :=new() 

   /\ CV' :=xor(Cone',H(Nb'.H(VCS1'.OTT))) 

/\ CSYthree' := 

H(VIDR.H(VCS1'.OTT).TSoneCS'.Nb'.Cone'.Na')

/\ SIDNIG' := new()  

   /\ SND(CSIDA.SIDNIG'.xor(Nb',H(VCS1'.OTT)) 

.xor(Cone',H(Nb'.H(VCS1'.OTT))).TSoneCS' 

.H(VIDR.H(VCS1'.OTT).TSoneCS'.Nb'.Cone'.Na')) 

   /\secret(OTT,secOTT,{CS,V}) 
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   /\secret(Nb,secNb,{CS,V}) 

   /\secret(Cone,secCone,{CS,V}) 

   /\witness(CS,V,na,Na') 

2. State=3 /\ RCV(VIDA.SIDNIG.TStwoV'

.xor(Naa',H(H(OTT.Nb').VIDR)) 

.xor(Rone',H(H(OTT.Nb).Naa')) 

.xor(Rtwo',H(Rone'.Cone')).H(H(OTT.Nb').TStwoV' 

        .Rone'.Naa'.Rtwo'.H(Na'.Nb').H(OTT.Naa'.Nb') 

.H(Cone'.VIDA.OTT))) 

       =|> State' :=5   

end role 

Figure C_7: HLPSL code for V 

role 

session(V:agent,CS:agent,CSIDA:text,VIDA:text,VIDR:text,VCS1:text,VCS2:text,OT

T:text,TID:text,H:hash_func) 

def= 

local 

SND2,RCV2,SND1,RCV1:channel(dy) 

composition 

role_V(CS,V,CSIDA,VIDA,VIDR,VCS1,VCS2,OTT,H,SND1,RCV1)/\ 

role_CS(CS,V,CSIDA,VIDA,VIDR,OTT,TID,H,SND2,RCV2) 

end role 

Figure C_8: HLPSL code for session 

role environment() 

def= 

const 

v:agent,cs:agent,csida:text,vida:text,vidr:text,vcs1:text,vcs2:text,ott:text,tid:text,h:hash

_func, 

secVIDR,secOTT,secNa,secNb,secCone,secRone,secRtwo,secNaa,secNOTT,se

cVCS1,secVCS2,secVnewIDA,na,nb:protocol_id 

intruder_knowledge = {v,cs,h} 

composition 

session(v,cs,csida,vida,vidr,vcs1,vcs2,ott,tid,h) 

end role 

Figure C_9: HLPSL code for environment 
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Goal 

secrecy_of secVIDR 

secrecy_of secOTT 

secrecy_of secNa 

secrecy_of secVCS1 

secrecy_of secVCS2 

secrecy_of secNb 

secrecy_of secCone 

secrecy_of secRone 

secrecy_of secRtwo 

secrecy_of secNaa 

secrecy_of secNOTT 

secrecy_of secVnewIDA 

authentication_on na 

authentication_on nb 

end goal 

Figure C_10: HLPSL code for goals 

role 

role_U(CS:agent,V:agent,CSIDA:text,VIDA:text,VIDR:text,VCS1:text,VCS2:text,OT

T:text,UI:text,Rone:text,SIDNIG:text,Sk:symmetric_key,H:hash_func,SND,RCV:chan

nel(dy)) 

played_by V 

def= 

local 

State:nat, 

TSoneV:text, 

Uone:hash(text.text.text), 

Utwo:text, 

Uthree:hash(text.message.message.text), 

TSoneCS:text, 

PUI:text,FP:text, 

ZUone:hash(text.text), 

Uv:hash(text.text.text.message) 

init 

State:= 2 

transition 

1. State= 2 /\ RCV(start)

=|> State' :=4       /\ TSoneV' :=new() 
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    /\ Uone' :=H(VIDR.Rone.OTT) 

    /\ FP' :=new() 

    /\ PUI' :=new() 

    /\ ZUone' :=H(FP'.PUI') 

    /\ Utwo' := xor(Uone',ZUone) 

    /\ Uthree' := H(VIDR.Uone'.ZUone'.TSoneV') 

    /\ SND(VIDA.TSoneV'.UI. 

{xor(Uone',ZUone'). 

H(VIDR.Uone'.ZUone'.TSoneV')}_Sk) 

    /\ secret(VIDR,secVIDR,{V,CS}) 

    /\ secret(OTT,secOTT,{V,CS}) 

    /\ secret (PUI,secPUI,{V,CS}) 

    /\ witness(V,CS,uone,Uone') 

2. State= 4 /\ RCV(CSIDA.SIDNIG.TSoneCS'.{Uv'}_Sk)

    =|>   State' :=6 

end role 

Figure C_11: HLPSL code for V 

role role_CS  

(CS:agent,V:agent,CSIDA:text,VIDA:text,VIDR:text,VCS1:text,VCS2:text,OTT:text,

UI:text,Rone:text,SIDNIG:text,Sk:symmetric_key,H:hash_func,SND,RCV:channel(dy

)) 

played_by CS 

def= 

local 

State:nat, 

TSoneV:text, 

TSoneCS:text, 

Uone:hash(text.text.text), 

ZUone:hash(text.text),ZUthree:text, 

Uv:hash(text.text.text.message), 

PUI:text 

init 

State:= 1 

transition 

1. State=1

/\RCV(VIDA.TSoneV'.UI. {xor(Uone',ZUone').         

H(VIDR.Uone'.ZUone'.TSoneV')}_Sk) 

    =|> State' :=3 
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   /\ TSoneCS' := new() 

   /\ Uv' := H(TSoneCS'.Rone.OTT.ZUone') 

   /\ SND(CSIDA.SIDNIG.TSoneCS'. 

{H(TSoneCS'.Rone.OTT.ZUone')}_Sk) 

   /\request(CS,V,uone,Uone')  

end role 

Figure C_12: HLPSL code for CS 

role 

session(V:agent,CS:agent,CSIDA:text,VIDA:text,VIDR:text,VCS1:text,VCS2:text,OT

T:text,UI:text,Rone:text,SIDNIG:text, Sk:symmetric_key ,H:hash_func) 

def= 

local 

SND2, RCV2, SND1, RCV1: channel (dy) 

composition 

role_V(CS,V,CSIDA,VIDA,VIDR,VCS1,VCS2,OTT,UI,Rone,SIDNIG,Sk, 

H,SND1,RCV1)/\ 

role_CS (CS, V, CSIDA, VIDA, VIDR, VCS1, VCS2, OTT, UI, Rone, 

SIDNIG, Sk, H, SND2, RCV2) 

end role 

Figure C_13: HLPSL code for session 

role environment() 

def= 

const 

v:agent,cs:agent,csida:text,vida:text,vidr:text,vcs1:text,vcs2:text,ott:text,ui:text,rone:te

xt,sidnig:text,sk:symmetric_key,h:hash_func,secVIDR,secOTT,secRone,secSk,secPUI, 

uone:protocol_id 

intruder_knowledge = {v,cs,h} 

composition 

session(v, cs,csida,vida,vidr,vcs1,vcs2,ott,ui,rone,sidnig,sk,h) 

end role 

Figure C-14: HLPSL code for environment 
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Goal 

secrecy_of secVIDR 

secrecy_of secOTT 

secrecy_of secRone 

secrecy_of secSk 

secrecy_of secPUI 

authentication_on uone 

end goal 

Figure C_15: HLPSL code for goals 
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o Contributed to the development of the prospectus and the

proposal for the new Cybersecurity undergraduate major.

• Cybersecurity M.S. New Program. (May 2018 – Winter 2019).

o Led the task force effort in developing prospectus and the

proposal for the new Cybersecurity graduate program.

• New B.S./M.S. Combined Degree in Cybersecurity

o Authored four new program B.S./M.S. proposals and study

plans for cybersecurity, Computer Science and Cybersecurity,

Information Systems and Cybersecurity, and Information

Technology and Cybersecurity

B.S. Information Technology B.S. New Program (W-17) 

o Contributed to the development of the prospectus and the

proposal for the new Information Technology major

• Cyber Range Proposal Task Force

o This task force was charged with writing a proposal for GVSU

to host a Michigan Cyber Range hub. We wrote the proposal,

but the decision was made not to submit it.

• Program Change Request for the Healthcare Information

Systems Minor

o I wrote the proposal for a program change request
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o The goal of the change was to include CIS 331 as an option for

students who are seeking the HIS minor

• CIS 280/ 221: Excel Concepts and Applications I (August

2019-Current)

o I wrote the proposal for a new Excel Concepts and

Applications I course.

• CIS 380/ 322: Excel Concepts and Applications I

o Currently, I am working on the development of this course

• CIS 455/555-Applied Cryptography

o Dr. Andrew Kalafut and I wrote the proposal for a new Applied

Cryptography course.

• CIS 619-Data Analytics for Cybersecurity

o I wrote the proposal for a new Data Analytics for

Cybersecurity course.

• CIS 331: Data Analysis Tools and Techniques

o Dr. Jonathan Leidig, Dr. Greg Schymik, and I wrote a course

change proposal in order to change the course title, description

and content.

o I developed the course material and started to teach this course

from Fall 2018

• CIS 231: Problem Solving Using Spreadsheet

o Changed the course structure and developed new material

PUBLICATIONS 

• 2019, Mansour, S and Lauf, A. “Hardware Root of Trust for IoT

Security In Smart Home Systems” (submitted). IEEE Consumer

Communications & Networking Conference. 10-13 January 2020,

Las Vegas, USA.

• 2018, Mansour, S “Social Media Analysis of Users' Responses to

Terrorism Using Sentiment Analysis and Text Mining”. Cyber

Physical Systems and Deep Learning Conference, November 5-7

2018, Chicago, IL

• 2018, El-Said, M. M., Mansour, S., Bhuse, V, “DSRC Based Sensor-

Pooling Protocol for Connected Vehicles in Future Smart Cities” The

Cyber Physical Systems and Deep Learning Conference, November 5

- 7 2018, Chicago, Illinois, USA

• 2017, A Comparative Study Among Mobile Forensics Tools for

Android Based Smartphones. M.Sc. Thesis, College of Engineering

and Computing, Grand Valley State University
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• 2017, El-Said, M. M., Arendsen, A., & Mansour, S. S. “DSRC

Performance Analysis in Foggy Environment for Intelligent Vehicles

System.” The International Journal on Recent and Innovation Trends

in Computing and Communication, Volume: 5 Issue: 5, ISSN: 2321-

8169, 2017, pp 807-812. (Work is done in 2016 and published after

review in 2017)

• 2017, Mansour, S. “Terrorist Watcher: An Interactive Web-based

Visual Analytical Tool of Terrorist’s Personal Characteristics”.

International Journal of Data Mining & Knowledge Management

Process (IJDKP), Volume 6, ISSN: 2230 - 9608[Online]; 2231 -

007X

• 2017, El-Said, M. M., Arendsen, A., & Mansour, S. M. A

“Lightweight Message Authentication Framework in the Intelligent

Vehicles System” The International Journal of Engineering And

Science (IJES), Volume 06 - Issue 06, ISSN (e):2319 –1813 ISSN

(p):2319 –1805, pp 33-39

• 2016, Mansour, S. “Cloud Computing and Digital Forensics

Challenges”.  7th Annual International Conference on ICT: Big Data,

Cloud and Security (ICT-BDCS 2016)., Singapore.

• 2016, El-Said, M. M., Arendsen, A., & Mansour, S. S. “DSRC

Performance Analysis in Foggy Environment for Intelligent Vehicles

System.” The International Journal on Recent and Innovation

Trends in Computing and Communication, Volume: 4 Issue: 12,

ISSN: 2321-8169, 2016

• 2016, El-Said, M. M., Arendsen, A., & Mansour, S. M. A

“Lightweight Message Authentication Framework in the Intelligent

Vehicles System.” The International Journal of Engineering And

Science (IJES), Volume 06 - Issue 12 ISSN: 2319 – 1813 ISBN: 2319

– 1805, 2016

• 2015, El-Said M, Arendsen A and Mansour S “Detect and Defend

System on a Stick (D2S2) Against GPS Spoofing Attack”, The 14th

Annual Security Conference is scheduled for May 19-21, 2015 Las

Vegas, Nevada, USA

• 2012, Mansour S and El-Said M “Building a Bi-Directional Bridge

Between Social Presence and Interaction in Online Games” 17th

International Conference on Computer Games, (CGAMES 2012)

• 2011, Mansour S and El-Said M “Building a Bi-Directional Bridge

Between Social Presence and Interaction in Online Games” 17th

International Conference on Computer Games, (CGAMES 2012)
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• 2010, Mansours, S. El-Said, M. and Bennett, L. “Does the Use of

Second Life Affect Students' Feeling of Social Presence in E-

Learning?” The 8th International Conference on Education and

Information Systems, Technologies and Applications: EISTA 2010,

June 29th - July 2nd, 2010 – Orlando, Florida, USA

• 2009, Mansour, S & Reynolds, J.  Development of a Baccalaureate

Major in Information Technology:  Adding a Third Dimension to a

Comprehensive Computing Program. Proceedings of the 10th ACM

conference on SIG-Information Technology Education, Fairfax,

Virginia, USA

• 2009, El-Said, M. & Mansour, S “Game Based Learning Creating

a Triangle of Success: Play, Interact and Learn”. International

Journal of Intelligent Games & Simulation. (Invited Paper).

• 2009, Mansour, S., Rude-Parkins, C., & Bennett, L. An Empirical

Study: Assessment of Students’ Learning performance Using 3D

Leaning Environments in Online Courses. Journal of Systemics,

Cybernetics and Informatics

• 2008, Mansour, S., & El-Said, M.  Multi-Player Role Playing

Games: A Link between Fun and Learning. The International

Journal of Learning, 15 (11) 229-240

• 2008, Mansour, S & El-Said, M. The Relationship between

Educational Serious Games, Gender, and Students’ Social

Interaction. WSEAS Transactions on Computers, 7(6)640-649.

• 2008, Mansour, S., El-Said, M., & Nandigam, J. (2008). An

Empirical Study to Measure Students Learning Performance Using

Serious Games. The 12th International Conference on Computer

Games: AI, Animation, Mobile, Interactive Multimedia & Serious

Games

• 2008, Mansour, S., Rude-Parkins, C., & Bennett, L. (2008). How the

Use of Second Life Affects E-Learners’ Perceptions of Social

Interaction in Online Courses. Proceedings of the 6th International

Conference on Education and Information Systems, Technologies

and Applications (EISTA). Orlando, Florida

• 2008, Mansour, S., & El-Said, M. (2008). The Impact of Multi-

Players Serious Games on the Social Interaction among Online

Students versus Face-to-Face Students.  Proceedings of the 7th
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International conference on Advances on Applied Computer and 

Applied Computational Science (WSEAS), Hangzhou, China  

• 2007, S. Mansour, M. El-Said, C. Rude-Parkins, & J. Nandigam. The

Interactive Effect of Avatar Visual Fidelity and Behavioral Fidelity

in the Collaborative Virtual Reality Environment on the Perception

of Social Interaction, WSEAS Transactions on Communications, 8

(5) 1501-1509.

• 2006, Mansour, S., El-Said, M., Rude-Parkins, C., & Nandigam, J.

(2006). The Interactive Effect of Avatar Visual Fidelity and

Behavioral Fidelity in the Collaborative Virtual Reality Environment

on the Perception of Social Interaction.  Proceedings of the 10th 

International conference of World Scientific and Engineering

Academy and Society (WSEAS). Athens, Greece.

• 2006, Mansour, S., Rude-Parkins, C., & El-Said, M. The Effect of the

Type of Communication Medium on Learners’ Perceptions of Social

Interaction in E-Learning. In E. Pearson & P. Bohman (Eds.),

Proceedings of the 17th World Conference on Educational

Multimedia, Hypermedia & Telecommunications (ED-MEDIA)

2006 ((pp. 1274-1281), Orlando, Florida.

• 2005, Mansour, S., Rude-Parkins, C., & El-Said M. The Relationship

between the Avatar’s Behavioral Fidelity and Social Interaction in

3d Collaborative Learning-Based Games. Proceedings of the 7th

International Conference on Computer Games: AI and Mobile

Systems (CGAIM 2005), Angoulem, France.

• 2005, El-Said, M. & Mansour, S.  A Hybrid Anthropomorphism

Model To Enhance The Social Presence In 3D Virtual Multi-Players

Games. Proceedings of the 6th International Conference on

Computer Games: AI and Mobile Systems (CGAIM 2005),

Louisville, KY.

GRANTS 

• 2019, CyberGen (will be submitted on Oct 25, 2019) (Joint

collaboration with Bhuse, V, El-Said, M., Kalafut, A., Wang, X

• 2018, Grand Valley State University Cyber Range Hub Site

Initiative", Michigan Economic Development Corporation (MEDC),

$259,800.00, (Joint collaboration with Leidig, P., El-Said, M.,

Kalafut, A., Bhuse, V.  Wang, X (we did not submit it)

• 2016, XRY Complete Digital Forensic Kit” Sponsored by the

MSAB Incorporated, (Mobile Forensic Trial Kit - worth $7,990.00

provided by MSAB Corporate). (Joint collaboration with El-Said,

M.)
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• 2016, Digital Forensics for Mobile Devices. Sponsored by CSCE,

Grand Valley State University, $400.00.

• 2013, A Novel Approach in the Delivery of Occupational Safety and

Health Training for the Beverage Industry”.   MIOSHA (Michigan

Occupational Safety and Health Administration. Funded $45,000.00.

(Joint collaboration with Huizen, D.)

• 2010, Using Second Life for Developing Interactive Games to Teach

Computer Science Programming Skills. $1,980.00 ((funded by the

FTLC Grand Valley State Univ).

• 2009, Web Based Mobile Learning environment (M-WEB-

Learning). 5,274.00 (funded by the FTLC Grand Valley State Univ)

• 2008, Immersive Education: using Second life to teach computing

and information systems, 4,274.00 (funded by the FTLC Grand

Valley State Univ) (Joint collaboration with Nandigam, J)

• 2008, Proactive Intrusion Detection System (IDS) using Baseline

Recording, Analysis and Real time Monitoring $4,912.50 (funded by

the FTLC Grand Valley State Univ) (Joint collaboration with El-

Said, M)

• 2006, Learning by Doing: An Adapted Teaching Philosophy in the

Wireless Courses, $1750 (funded by the FTLC, Grand Valley State

Univ) (Joint collaboration with El- Said, M).

• 2006, Building an Interactive Collaborative Virtual Reality Teaching

Environment, $2970 (funded by FTLC-Grand Valley State Univ)

(Joint collaboration with  El- Said, M.).

• 2005, Building an Interactive Constructivist Approach in Teaching

the Next Generation of Autonomic Mobile Computing Networks,

$1560 (funded by FTLC-Grand Valley State Univ) (Joint

collaboration with   Prof. El- Said,M.).

PROFESSIONAL ACTIVITIES 

Reviewer for Conferences and Journals 
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• 10th International Conference on Society and Information

Technologies: ICSIT 2019

• Complex Adaptive Systems conference 2018

• 8th International Conference on Society and Information

Technologies: ICSIT 2017

• SIGITE/RIIT, 2016

• 7th International Conference on Society and Information

Technologies: ICSIT 2016

• International Conference on Society and Information Technologies:

ICSIT 2015

• The 19th International Computer Games Conference, AI, Animation,

Interactive Multimedia, Virtual Worlds and Serious Games,

(CGAMES 2014), Louisville, Kentucky. - International Conference

on Society and Information Technologies: ICSIT 2014

• member of the ISTE SIG 1-to-1 Computing,2013

• International Conference on Society and Information Technologies:

ICSIT 2013

• International Conference on Society and Information Technologies:

ICSIT 2012

• International Conference on Society and Information Technologies:

ICSIT 2011 o International Conference on Engineering and Meta-

Engineering: ICEME 2011

• The 17th International Computer Games Conference: AI, Interactive

Multimedia, Virtual Worlds and Serious Games (CGAMES'12)

• International Conference on Engineering and Meta-Engineering:

ICIME 2010

• The 3rd International Multi-Conference on Engineering and

Technological Innovation (IMETI 2010)

• International Conference on Society and Information Technologies:

ICSIT 2010

• Journal of Computer Assisted Learning

• The International Journal of Learning

Professional Society Memberships 

• Internet of Things, West Michigan (IoTWM), Member, Grand

Rapids, MI, USA, (2017 - Present)

• West Michigan Cyber Security Consortium, Board Member, Grand

Rapids, MI, USA, (2017 - Present).

ADVISING and MENTORING STUDENTS’ PROJECTS 

• Honors Senior Project: Investigating the Sense of Belonging Among Various Super

Smash Bros. Gaming Communities

o The goal of this research project was to analyze the perception of individuals

within the Melee, Project M, and Smash 4 communities to see if there is any

variation in the sense of belonging in each community and if so, why?

• Data Parsing
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o This project was developed for the Little Sprouts pre-kindergarten schools as a

collaboration with Take Flight Enterprises, LLC.  The specific procedure was part of

an overhaul of the schools’ current records. The project work involves the following

tasks: opening an Excel data file, importing the output file from the WebGUI, and

running a parsing procedure.

• Production Capacity

o This project focused on developing a simulation a tool that can be used in a real-

world industry setting.  The simulation tool calculates how much capacity is needed

in the upcoming periods of the machine’s running time window as well as it shows

how much that machine’s capacity will cost. One of the main features of this project

was how to figure out the product’s unit price, which depends on several factors such

as: industry average price, industry average quantity sold, production capacity,

beginning inventory, and ending inventory.

• Improving Mental Math: The Method Behind the Program –

o The main objective of the game was to test the basic mental math skills of students.

The program is allowing the teacher to set the range of numbers to be included in the

test, the amount of questions, and a time limit. Then they would be able to administer

the test to the class and monitor the results. Based on those results, the teacher could

cater any review needed changed. The program allows the students to log in, save and

send their scores to their teachers. This would allow the teacher to establish trends in

the individual students score. With this, the teacher could then work on a specific range

for each student and instead of using one quiz, each student could work on their own

personalized quiz.A pilot study was conducted at Central Grand Rapids High School

(CHS). Based on the students’ input, the student changed some aspects of the project.

The teacher in CHS decided to adopt and use the game in their classes.

• Fractions Are Our Friends

o This game was designed to teach fractions to elementary school students. In

order to validate the impact of the game on helping students to get a better

understanding of the fraction concepts.

o A crossover experimental design was used to conduct the experiment

o The experiment was designed to answer the following questions:

▪ Does the use of a game as a teaching tool impact the students’ learning?

▪ What is the impact of providing students with instant feedback on

motivating students to answer the questions correctly?

▪ Is there a relationship between the format of delivering the quiz (

paper/game) and the students’ inspiration to take the quiz?

▪ What is the impact of using educational serious games on motivating

students from low socioeconomically status and low performance level

in math to learn mathematical complex concepts?

SERVICE 

o Grand Valley State University

• Women in Computing
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• GVSU Engineering Engineer Day

• Revise the required courses for the IS and IT minor programs.

o The Pennsylvania State University

• Spring 2004, Committee for internationalizing the curriculum.

• Fall 2003-Spring 2004, Committee on Diversity.

• Fall 2003-Spring 2004, Consultant for the design and development

of online statistics courses for the School of Nursing.

o The Housing and Residence Life Department, University of Louisville

• Spring 2003, Resident Director Search Committee.

• Spring 2003, Student Life Awards Committee.

• Fall 2002, Assistant Director For Administrative Services Search

Committee.

• Fall 2002, Associate Director for Facilities Search Committee.

• Spring 2002, Director Search Committee.

• Spring 2001-Spring 2003, Annual Resident Assistants Retreat

Planning Committee.
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