
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

8-2021

Lightweight mutual authentication and privacy preservation Lightweight mutual authentication and privacy preservation

schemes for IOT systems. schemes for IOT systems.

Samah Mansour
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Mansour, Samah, "Lightweight mutual authentication and privacy preservation schemes for IOT systems."
(2021). Electronic Theses and Dissertations. Paper 3710.
Retrieved from https://ir.library.louisville.edu/etd/3710

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ir.library.louisville.edu%2Fetd%2F3710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd/3710?utm_source=ir.library.louisville.edu%2Fetd%2F3710&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thinkir@louisville.edu

LIGHTWEIGHT MUTUAL AUTHENTICATION AND PRIVACY PRESERVATION

SCHEMES FOR IOT SYSTEMS

By

Samah Mansour

M.S., Grand Valley State University, USA, 2017

PhD., University of Louisville, USA 2006

M.A., University of Louisville, USA 2004

B.A., Ain Shams University, Egypt 1999

A Dissertation

Submitted to the Faculty of the

J.B. Speed School of Engineering of the University of Louisville

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in Computer Science and Engineering

Department of Computer Engineering and Computer

Science University of Louisville

Louisville, Kentucky

August 2021

Copyright 2021 by Samah Mansour

All rights reserved

ii

LIGHTWEIGHT MUTUAL AUTHENTICATION AND PRIVACY PRESERVATION

SCHEMES FOR IOT SYSTEMS

By

 Samah Mansour

M.S., Grand Valley State University, USA, 2017

PhD., University of Louisville, USA 2006

M.A., University of Louisville, USA 2004

B.A., Ain Shams University, Egypt 1999

A Dissertation Approved On

 July 23, 2021

 by the following Dissertation Committee:

Dr. Adrian P. Lauf, Dissertation Director

Dr. Adel Elmaghraby

Dr. Mehmed Kantardzic

Dr. Michael Losavio

iii

DEDICATION

This dissertation is dedicated to parents Mr. Sayed Mansour and Mrs. Afaf Aly, my husband Dr.

Mostafa El-Said, and my sons Adam El-Said and Ian El-Said, who always supported me and also

encouraged me to pursue my Ph.D

iv

ACKNOWLEDGMENTS

I would like to recognize my advisor, Dr. Adrian P. Lauf, for his mentorship. He

provided me ample guidance and encouragement as I navigated my way toward this

dissertation topic. Under his direction, I was given the creative freedom to grow and build

the skills necessary to succeed in the future as a scholar and researcher. I am immensely

grateful for all his efforts.

 I would also like to express my appreciation for the assistance provided by my

committee members: Mehmed Kantardzic, Adel Elmaghraby, and Michael Losavio. They

all offered various guidance and suggestions to improve my work and to ensure my

success. Their insightfulness and wisdom ultimately helped to refine my work into its

present form.

v

ABSTRACT

LIGHTWEIGHT MUTUAL AUTHENTICATION AND PRIVACY PRESERVATION

SCHEMES FOR IOT SYSTEMS

Samah Mansour

July 10, 2021

Internet of Things (IoT) presents a holistic and transformative approach for

providing services in different domains. IoT creates an atmosphere of interaction between

humans and the surrounding physical world through various technologies such as sensors,

actuators, and the cloud. Theoretically, when everything is connected, everything is at

risk. The rapid growth of IoT with the heterogeneous devices that are connected to the

Internet generates new challenges in protecting and preserving user’s privacy and

ensuring the security of our lives. IoT systems face considerable challenges in deploying

robust authentication protocols because some of the IoT devices are resource-constrained

with limited computation and storage capabilities to implement the currently available

authentication mechanism that employs computationally expensive functions. The

limited capabilities of IoT devices raise significant security and privacy concerns, such as

ensuring personal information confidentiality and integrity and establishing end-to-end

authentication and secret key generation between the communicating device to guarantee

secure communication among the communicating devices.

vi

The ubiquity nature of the IoT device provides adversaries more attack surfaces

which can lead to tragic consequences that can negatively impact our everyday connected

lives. According to [1], authentication and privacy protection are essential security

requirements. Therefore, there is a critical need to address these rising security and

privacy concerns to ensure IoT systems' safety. This dissertation identifies gaps in the

literature and presents new mutual authentication and privacy preservation schemes that

fit the needs of resource-constrained devices to improve IoT security and privacy against

common attacks. This research enhances IoT security and privacy by introducing

lightweight mutual authentication and privacy preservation schemes for IoT based on

hardware biometrics using PUF, Chained hash PUF, dynamic identities, and user’s static

and continuous biometrics. The communicating parties can anonymously communicate

and mutually authenticate each other and locally establish a session key using dynamic

identities to ensure the user’s unlinkability and untraceability. Furthermore, virtual

domain segregation is implemented to apply security policies between nodes. The

chained-hash PUF mechanism technique is implemented as a way to verify the sender’s

identity.

At first, this dissertation presents a framework called “A Lightweight Mutual

Authentication and Privacy-Preservation framework for IoT Systems” and this

framework is considered the foundation of all presented schemes. The proposed

framework integrates software and hardware-based security approaches that satisfy the

NIST IoT security requirements for data protection and device identification. Also, this

dissertation presents an architecture called “PUF Hierarchal Distributed Architecture”

(PHDA), which is used to perform the device name resolution.

vii

Based on the proposed framework and PUF architecture, three lightweight

privacy-preserving and mutual authentication schemes are presented. The Three different

schemes are introduced to accommodate both stationary and mobile IoT devices as well

as local and distributed nodes. The first scheme is designed for the smart homes domain,

where the IoT devices are stationary, and the controller node is local. In this scheme,

there is direct communication between the IoT nodes and the controller node.

Establishing mutual authentication does not require the cloud service's involvement to

reduce the system latency and offload the cloud traffic. The second scheme is designed

for the industrial IoT domain and used smart poultry farms as a use case of the Industrial

IoT (IIoT) domain. In the second scheme, the IoT devices are stationary, and the

controller nodes are hierarchical and distributed, supported by machine-to-machine

(M2M) communication. The third scheme is designed for smart cities and used IoV fleet

vehicles as a use case of the smart cities domain. During the roaming service, the mutual

authentication process between a vehicle and the distributed controller nodes represented

by the Roadside Units (RSUs) is completed through the cloud service that stores all

vehicle's security credentials. After that, when a vehicle moves to the proximity of a new

RSU under the same administrative authority of the most recently visited RSU, the two

RSUs can cooperate to verify the vehicle's legitimacy. Also, the third scheme supports

driver static and continuous authentication as a driver monitoring system for the sake of

both road and driver safety.

The security of the proposed schemes is evaluated and simulated using two

different methods: security analysis and performance analysis. The security analysis is

implemented through formal security analysis and informal security analysis. The formal

viii

analysis uses the Burrows–Abadi–Needham logic (BAN) and model-checking using the

automated validation of Internet security protocols and applications (AVISPA) toolkit.

The informal security analysis is completed by: (1) investigating the robustness of the

proposed schemes against the well-known security attacks and analyze its satisfaction

with the main security properties; and (2) comparing the proposed schemes with the other

existing authentication schemes considering their resistance to the well-known attacks

and their satisfaction with the main security requirements. Both the formal and informal

security analyses complement each other.

 The performance evaluation is conducted by analyzing and comparing the

overhead and efficiency of the proposed schemes with other related schemes from the

literature. The results showed that the proposed schemes achieve all security goals and,

simultaneously, efficiently and satisfy the needs of the resource-constrained IoT devices.

ix

TABLE OF CONTENTS

ABSTRACT ... v

LIST OF FIGURES ... xx

LIST OF TABLES .. xxiii

CHAPTER i INTRODUCTION AND DISSERTATION OVERVIEW .. 1

1.1 Challenges .. 5

1.2 Problem Definition ... 6

1.4 Main Contributions .. 10

1.5 Dissertation Outlines .. 11

CHAPTER II ACKGROUND AND LITERATURE REVIEW ... 13

2.1 Why IoT Security is Different ... 13

2.2 Security Goals .. 15

2.3 Authentication .. 16

2.4 Cryptographic Systems .. 17

2.4.1 Symmetric Cryptography ... 18

2.4.2 Asymmetric Cryptography ... 19

2.4.2.1 Diffie Hellman Key Exchange ... 21

2.4.2.2 Elliptic Curve Cryptography (ECC) .. 23

2.4.3 Message Authentication Code ... 28

2.4.4 Physical Unclonable Function (PUF) Technology .. 29

2.4.4.1 Concept of PUFs .. 29

2.4.4.2 Properties and Parameters of PUFs .. 31

2.4.4.3 PUF Applications ... 33

2.4.4.3.1 Low-cost Device Authentication... 33

2.4.4.3.2 Cryptographic Key Generation ... 33

2.4.4.3.3 Intellectual Property (IP) Protection ... 34

2.4.4.4 PUF Classification ... 34

2.4.4.4.1 Delay based PUFs – Arbiter PUF ... 35

2.5 Fog Computing .. 36

x

2.5.1 Cloud-Fog- Edge-Device Architecture .. 38

2.5.2 Cloud-Fog-Device Architecture ... 39

2.6 Biometric Authentication ... 39

2.7 Summary .. 41

CHAPTER III A LIGHTWEIGHT MUTUAL AUTHENTICATION AND PRIVACY-
PRESERVATION FRAMEWORK FOR IOT SYSTEMS ... 42

3.1 Security Goals to Build an Effective Authentication scheme .. 42

3.2 PUF Hierarchal Distributed Architecture (PHDA) .. 43

3.3 Lightweight Mutual Authentication and Privacy Preservation Framework for IoT

(LMAP2A).. 45

3.3.1 LMAP2A Phases .. 47

3.3.1.1 Device Enrollment Phase ... 47

3.3.1.2 Registration Phase .. 49

3.3.1.3 Mutual Authentication Phase ... 49

3.3.1.4 Key agreement phase ... 50

3.3.2 Components of the Architecture .. 50

3.3.2.1 Physical layer ... 50

3.3.2.2 Edge Layer ... 51

3.3.2.3 Fog Layer ... 51

3.3.2.4 Cloud Layer ... 51

3.3.3 How LMAP2A Address Security Challenges .. 52

3.4 Evaluation Process ... 55

3.4.1 Phase 1: Security Analysis ... 56

3.4.1.1 Informal Security Analysis .. 57

3.4.1.2 Formal Security Analysis ... 60

3.4.1.2.1 Burrows–Abadi–Needham Logic ... 60

3.4.1.2.1.1 BAN symbols and rules .. 60

3.4.1.2.1.2 BAN logic's rules .. 61

3.4.1.2.2 AVISPA Tool .. 61

3.4.2 Phase 2: Performance Analysis .. 65

3.5 Summary .. 65

CHAPTER IV LIGHTWEIGHT PRIVACY PRESERVATION AND MUTUAL AUTHENTI-
AUTHINICATION PROTOCOL FOR SMART HOMES USING PHYSICAL UNCLONABLE

FUNCTIONS ... 66

4.1 Motivation .. 67
4.2 Related Work ... 68

xi

4.3 IoT Smart Home Network Model and Security Goals ... 77

4.3.1 Smart Homes Network Model ... 78

4.3.2 IoT Virtual Domain Segregation .. 81

4.4 Proposed Scheme: Lightweight Privacy Preservation and Mutual Authentication

Protocol for Smart Homes Using Physical Unclonable Functions .. 82

4.4.1 Enrollment Phase ... 83

4.4.2 Registration Phase .. 85

4.4.3 Mutual Authentication Phase ... 86

4.4.4 Key Generation Phase .. 95

4.5 Evaluation Process ... 98

4.5.1 Security Validation of the Proposed Protocol .. 98

4.5.1.1 Formal Security Evaluation ... 99

4.5.1.1.1 Simulation-based Security Verification Using AVISPA 99

4.5.1.1.1.1 Simulation Overview .. 99

4.5.1.1.1.2 Simulation results .. 106

4.5.1.1.2 Formal Proof Based on BAN Logic ... 108

4.5.1.1.2.1 Goals Identification ... 109

4.5.1.1.2.2 Messages Idealization ... 110

4.5.1.1.2.3 Main Assumptions .. 111

4.5.1.1.2.4 Analysis of the Authentication Protocol ... 115

4.5.1.2 Informal Security Analysis .. 119

4.5.1.2.1 Security attack Scenarios .. 119

4.5.1.2.2 Security Properties Assessment .. 120

4.5.1.2.2.1 Mutual Authentication .. 121

4.5.1.2.2.2 Session key agreement and forward/backward security 121

4.5.1.2.2.3 Anonymity Unlinkability, and Untraceability Properties 123

4.5.1.2.2.4 Stolen database attack ... 123

4.5.1.2.2.5 Brute Force Attack .. 124

4.5.1.2.2.6 Replay attack ... 124

4.5.1.2.2.7 Eavesdropping attack .. 125

4.5.1.2.2.8 Impersonation attack ... 125

4.5.1.2.2.8.1 IG impersonation .. 125

4.5.1.2.2.8.2 IoT Node Impersonation .. 126

4.5.1.2.2.9 Data Modification attack ... 126

xii

4.5.1.2.2.10 Modeling Attacks .. 127

4.5.1.2.2.11 Physical Attack ... 127

4.5.1.2.2.12 IoT Device Counterfeit/Cloning ... 127

4.5.1.2.3 Comparison of Security Features .. 127

4.5.2 Performance Analysis .. 130

4.5.2.1 Storage requirements ... 130

4.5.2.2 Computational Complexity Analysis .. 131

4.5.2.3 Communicational Cost .. 138

4.6 Summary .. 141

CHAPTER V M2M DISTRIBUTED MULTI-LAYER LIGHTWEIGHT MUTUAL

AUTHENTICATION AND KEY AGREEMENT SCHEME USING CHAINED HASH PUF

IN INDUSTRIAL IOT SYSTEM ...142

5.1 Motivation .. 146

5.2 Security and functional requirements for M2M communications 149

5.2.1 Security requirements .. 149

5.2.2 Functional requirements ... 151

5.3 Security vulnerabilities and potential threats in M2M communication 152

5.4 Related Work ... 155

5.5 Industrial IoT (IIoT) network model and security goals .. 165

5.5.1 Smart poultry farm network model .. 165

5.5.2 Automated access control and privacy ... 171

5.5.2.1 IoT virtual domains segregation ... 172

5.5.3 Challenge-response mechanism based on PUF and chained hash PUF 172

5.5.4 Security Design Goals .. 174

5.5.5 Threat Model .. 176

5.6 Proposed Scheme: M2M Distributed Multi-Layer Lightweight Mutual Authentication

and Key Agreement Scheme Using Chained Hash PUF in Industrial IoT System.................. 177

5.6.1 Enrollment Phase ... 179

5.6.2 Registration Phase .. 180

5.6.3 Mutual authentication and key generation phases ... 184

5.6.3.1 Protocol 1: parent gateway-child gateway authentication and key generation 185

5.6.3.1.1 Step 1: Interaction Request ... 186

5.6.3.1.2 Step 2: Parent Gateway Response ... 189

5.6.3.1.3 Step 3: Parent Gateway Authentication .. 191

5.6.3.1.4 Step 4: Child Gateway Authentication .. 193

xiii

5.6.3.1.5 Key generation phase between PG and ChG .. 195

5.6.3.2 Protocol 2: child gateway-child gateway authentication and key generation .. 196

5.6.3.2.1 Step 1: Interaction Request ... 196

5.6.3.2.2 Step 2: ChG_2 Response ... 202

5.6.3.2.3 Step 3: ChG_2 Authentication .. 203

5.6.3.2.4 Step 4: ChG_1 Authentication .. 204

5.6.3.2.5 Key Generation Phase ... 205

5.6.3.3 Protocol 3: mini gateway–IoT node authentication and key generation 206

5.6.3.3.1 Step 1: Interaction Request ... 206

5.6.3.3.2 Step 2: mini-gateway response ... 208

5.6.3.3.3 Step 3: mini-gateway authentication ... 210

5.6.3.3.4 Step 4: IoT node authentication .. 212

5.6.3.3.5 Key generation phase .. 216

5.7 Evaluation Process ... 216

5.7.1 Security validation of the proposed scheme... 217

5.7.1.1 Formal Security Evaluation .. 217

5.7.1.1.1 Security Verification Using AVISPA ... 217

5.7.1.1.1.1 Protocol 1: parent gateway-child gateway mutual authentication 217

5.7.1.1.1.1.1 Protocol 1: parent gateway-child gateway simulation results 224

5.7.1.1.1.2 Protocol 2: child gateway-child gateway mutual authentication 226

5.7.1.1.1.2.1 Simulation results ... 232

5.7.1.1.1.3 Protocol 3: mini-gateway-IoT node mutual authentication................. 234

5.7.1.1.1.3.1 Simulation results ... 242

5.7.1.1.2 Formal proof Based on BAN logic ... 244

5.7.1.1.2.1 Protocol 1: Parent gateway-child gateway mutual authentication 244

5.7.1.1.2.1.1 Protocol 1 Goals Identification .. 244

5.7.1.1.2.1.2 Protocol 1 messages idealization ... 246

5.7.1.1.2.1.3 Protocol 1 main assumptions ... 246

5.7.1.1.2.1.4 Analysis of the authentication protocol .. 251

5.7.1.1.2.2 Protocol 2: Child gateway-child gateway mutual authentication 256

5.7.1.1.2.2.1 Protocol 2: Goals identification ... 256

5.7.1.1.2.2.2 Protocol 2: message idealization .. 257

5.7.1.1.2.2.3 Protocol 2 main assumptions ... 257

xiv

5.7.1.1.2.2.4 Protocol 2 Analysis of the authentication protocol 260

5.7.1.1.2.3 Protocol 3: mini-gateway _IoT node mutual authentication 264

5.7.1.1.2.3.1 Protocol 3 goals identification ... 264

5.7.1.1.2.3.2 Protocol 3 Messages Idealization ... 265

5.7.1.1.2.3.3 Protocol 3 main assumptions ... 265

5.7.1.1.2.3.4 Protocol 3 analysis of the authentication protocol 269

5.7.1.2 Informal Security Analysis ... 273

5.7.1.2.1 Security Properties Assessment .. 273

5.7.1.2.1.1 Protocol 1: parent gateway-child gateway mutual authentication 273

5.7.1.2.1.1.1 Mutual authentication .. 273

5.7.1.2.1.1.2 Session key agreement and forward /backward security 274

5.7.1.2.1.1.3 Anonymity unlinkability, and untraceability properties 275

5.7.1.2.1.1.4 Node stolen database attack ... 275

5.7.1.2.1.1.5 Brute force attack ... 276

5.7.1.2.1.1.6 Replay attack .. 276

5.7.1.2.1.1.7 Eavesdropping attack ... 276

5.7.1.2.1.1.8 Impersonation attack .. 277

5.7.1.2.1.1.9 Man-in-the-middle attack ... 278

5.7.1.2.1.2 Protocol 2: child gateway-child gateway mutual authentication 278

5.7.1.2.1.2.1 Mutual authentication .. 278

5.7.1.2.1.2.2 Session key agreement and forward/backward security 279

5.7.1.2.1.2.3 Anonymity unlinkability, and untraceability properties 279

5.7.1.2.1.2.4 Node stolen database attack ... 280

5.7.1.2.1.2.5 Brute force attack ... 280

5.7.1.2.1.2.6 Replay attack .. 280

5.7.1.2.1.2.7 Eavesdropping attack ... 281

5.7.1.2.1.2.8 Impersonation attack .. 281

5.7.1.2.1.2.9 Data modification attacks ... 282

5.7.1.2.1.2.10 Man-in-the-middle attack ... 284

5.7.1.2.1.3 Protocol 3: mini-gateway _IoT node mutual authentication 284

5.7.1.2.1.3.1 Mutual authentication .. 284

5.7.1.2.1.3.2 Session key agreement and forward/backward security 285

5.7.1.2.1.3.3 Anonymity unlinkability and untraceability properties 285

5.7.1.2.1.3.4 Node stolen database attack ... 286

xv

5.7.1.2.1.3.5 Brute force attack ... 286

5.7.1.2.1.3.6 Replay attack .. 286

5.7.1.2.1.3.6 Eavesdropping attack ... 287

5.7.1.2.1.3.7 Impersonation attack .. 287

5.7.1.2.1.3.7.1 MG impersonation .. 287

5.7.1.2.1.3.7.2 IoT node impersonation .. 288

5.7.1.2.1.3.8 Data modification attacks ... 288

5.7.1.2.1.3.9 Man-in-the-middle attack ... 290

5.7.1.2.1.3.10 Modeling attacks .. 290

5.7.1.2.1.3.11 Physical attack .. 290

5.7.1.2.1.3.12 IoT Device Counterfeit/Cloning .. 290

5.7.1.2.2 Comparison of Security Features .. 291

5.7.2 Performance Analysis .. 292

5.7.2.1 Storage requirements ... 293

5.7.2.2 Computational Complexity Analysis .. 293

5.7.2.3 Communication cost analysis ... 301

5.8 Summary ..304

CHAPTER VI THREE-FACTOR AUTHENTICATION AND PRIVACY PRESERVATION

FOR IOV SYSTEM SCHEME USING USER AND DEVICE BIOMETRICS306

6.1 Motivation .. 308

6.2 Security aspects of IoV .. 312

6.3 Security threats and attacks in IoV domain ... 315

6.4 Related Work ... 318

6.5 Three-Factor Authentication and Privacy Preservation Scheme Using User and Device

Biometrics for IoV System Network Model and Security Goals ... 329

6.5.1 Network Model .. 329

6.5.2 Driver biometric and vehicle biometric ... 335

6.5.2.1 Biometric authentication techniques ... 335

6.5.2.1.1 Driver's biometric authentication .. 335

6.5.2.1.2 Vehicle biometric mechanism based on PUF and chained hash PUF

authentication 336

6.5.3 Security goals ... 338

6.5.4 Network model assumptions .. 339

6.5.5 Threat model .. 340

xvi

6.6 Proposed authentication scheme: Multi-Factor Authentication and Privacy Preservation

Scheme Using User and Device Biometrics for IoV System ... 341

6.6.1 Enrollment Phase ... 343

6.6.2 Registration Phase .. 345

6.6.2.1 Vehicle – TA registration process ... 345

6.6.2.2 Vehicle – Vehicle Owner Cloud Server (VOCS) registration process 347

6.6.2.3 Driver - VOCS Registration .. 349

6.6.3 Mutual authentication phase .. 351

6.6.3.1 Protocol 1: Vehicle-TA mutual authentication and key generation phases 351

6.6.3.1.1 Step 1: Interaction Request ... 354

6.6.3.1.2 Step 2: TA Response ... 355

6.6.3.1.3 Step 3: TA authentication ... 357

6.6.3.1.4 Step 4: Vi authentication ... 358

6.6.3.1.5 Step 5: New Parameters Verification .. 360

6.6.3.1.6 Key generation .. 361

6.6.3.2 Protocol 2: Vehicle– Driver-Vehicle Owner Cloud Server (V-D-VOCS)

Authentication and Key Generation ... 362

6.6.3.2.1 Phase one: Vehicle -Vehicle Owner Cloud Server Mutual Authentication

362

6.6.3.2.1.1 Step 1: Interaction request ... 364

6.6.3.2.1.2 Step 2: VOCS response ... 366

6.6.3.2.1.3 Step 3: VOCS authentication .. 368

6.6.3.2.1.4 Step 4: Vi authentication ... 370

6.6.3.2.1.5 Key generation .. 372

6.6.3.2.2 Phase 2: Driver- Owner Cloud Server (VOCS) authentication 372

6.6.3.2.2.1 Step 1: Authentication request .. 373

6.6.3.2.2.2 Step 2: VOCS response ... 375

6.7 Evaluation Process ... 378

6.7.1 Security validation of the proposed scheme... 378

6.7.1.1 Formal security evaluation .. 378

6.7.1.1.1 Simulation-based security verification using AVISPA 378

6.7.1.1.1.1 Protocol 1: V-TA mutual authentication ... 379

6.7.1.1.1.1.1 Simulation overview .. 379

 6.7.1.1.1.1.2 Simulation results ... 385

xvii

6.7.1.1.1.2 Protocol 2: Vehicle-Driver-VOCS authentication 387

6.7.1.1.1.2.1 Phase 1: Vehicle -VOCS mutual authentication 387

6.7.1.1.1.2.1.1 Simulation overview .. 387

6.7.1.1.1.2.1.2 Simulation results ... 394

6.7.1.1.1.2.2 Phase 2: Driver-VOCS Authentication .. 396

6.7.1.1.1.2.2.1 Simulation Overview ... 396

6.7.1.1.1.2.2.2 Simulation Results ... 401

6.7.1.1.2 Formal proof based on BAN logic .. 403

6.7.1.1.2.1 Protocol 1: V-TA authentication ... 403

6.7.1.1.2.1.1 Goals identification .. 403

6.7.1.1.2.1.2 Messages idealization .. 405

6.7.1.1.2.1.3 Main assumptions .. 405

6.7.1.1.2.1.4 Analysis of the V-TA authentication protocol 410

6.7.1.1.2.2 Protocol 2: Vehicle- Driver-VOCS authentication 416

6.7.1.1.2.2.1 Phase 1: V-VOCS .. 416

6.7.1.1.2.2.1.1 Goals identification .. 416

6.7.1.1.2.2.1.2 Messages idealization... 418

6.7.1.1.2.2.1.3 Main assumptions .. 418

6.7.1.1.2.2.1.4 Analysis of the authentication V-VOCS phase 423

6.7.1.1.2.2.2 Phase 2: D-VOCS authentication ... 429

6.7.1.1.2.2.2.1 Goals identification .. 429

6.7.1.1.2.2.2.2 Messages idealization... 429

6.7.1.1.2.2.2.3 Main assumption .. 430

6.7.1.1.2.2.2.4 Analysis of D-VOCS authentication phase 433

6.7.1.2 Informal security analysis .. 436

6.7.1.2.1 Security properties assessment .. 436

6.7.1.2.1.1 Protocol 1: V- TA mutual authentication .. 436

 6.7.1.2.1.1.1 Mutual authentication .. 436

6.7.1.2.1.1.2 Session key agreement and forward/backward security 437

6.7.1.2.1.1.3 Anonymity unlinkability and untraceability properties 437

6.7.1.2.1.1.4 Database attack .. 438

6.7.1.2.1.1.5 Brute force attack ... 438

6.7.1.2.1.1.6 Replay attack .. 438

6.7.1.2.1.1.6 Eavesdropping attack ... 439

xviii

6.7.1.2.1.1.7 Impersonation attack .. 440

6.7.1.2.1.1.7.1 TA impersonation ... 440

6.7.1.2.1.1.7.2 Vehicle impersonation .. 440

6.7.1.2.1.1.8 Man-in-the-middle attack ... 441

6.7.1.2.1.1.9 Modeling attacks .. 443

6.7.1.2.1.1.10 Physical attack .. 443

6.7.1.2.1.1.11 Device counterfeit/cloning ... 443

 6.7.1.2.1.1.12 Session key agreement .. 443

6.7.1.2.1.2 Protocol 2: Vehicle-Driver-VOCS authentication 443

6.7.1.2.1.2.1 Phase 1: V- VOCS mutual authentication .. 443

6.7.1.2.1.2.1.1 Mutual authentication .. 444

6.7.1.2.1.2.1.2 Session key agreement and forward/backward security 444

6.7.1.2.1.2.1.3 Anonymity unlinkability, and untraceability properties 445

6.7.1.2.1.2.1.4 Session key security ... 445

6.7.1.2.1.2.1.5 Replay attack .. 446

6.7.1.2.1.2.1.6 Eavesdropping attack ... 446

6.7.1.2.1.2.1.7 Impersonation attack .. 447

6.7.1.2.1.2.1.7.1 VOCS impersonation ... 447

 6.7.1.2.1.2.1.7.2 Vehicle impersonation .. 448

 6.7.1.2.1.2.1.8 Data modification attacks .. 449

 6.7.1.2.1.2.1.9 Modeling attacks ... 450

 6.7.1.2.1.2.1.10 Physical attack ... 450

 6.7.1.2.1.2.1.11 Device counterfeit/cloning .. 450

 6.7.1.2.1.2.1.12 Session key agreement .. 450

 6.7.1.2.1.2.2 Phase 2: Driver -VOCS mutual authentication 451

6.7.1.2.1.2.2.1 Mutual authentication .. 451

6.7.1.2.1.2.2.2 Resisting offline password guessing attacks 452

6.7.1.2.1.2.2.3 Anonymity unlinkability, and untraceability properties 452

6.7.1.2.1.2.2.4 Replay attack .. 453

6.7.1.2.1.2.2.5 Eavesdropping attack ... 453

6.7.1.2.1.2.2.6 Impersonation attack .. 454

6.7.1.2.1.2.2.6.1 Driver impersonation ... 454

6.7.1.2.1.2.2.6.2 VOCS impersonation ... 454

6.7.1.2.1.2.2.6.3 Vehicle impersonation ... 455

xix

6.7.1.2.1.2.2.7 Data modification attacks ... 455

6.7.1.2.1.2.2.8 Biometric privacy protection.. 456

6.7.1.2.1.2.2.9 Three-factor security .. 457

6.7.1.2.2 Comparison of security features ... 457

6.7.2 Performance Analysis .. 460

6.7.2.1 Storage requirements... 460

6.7.2.2 Computational complexity analysis .. 461

6.7.2.3 Communicational Cost ... 470

6.8 Summary .. 473

CHAPTER VII CONCLUSIONG AND FUTURE... 475

7.1 Conclusion ... 475

7.2 Future Work ... 478

REFERENCES .. 480

APPENDIX A .. 494

APPENDIX B .. 498

APPENDIX C .. 511

CURRICULUM VITA .. 523

xx

LIST OF FIGURES

Figure 1: Cisco Forecast of the IoT Growth ... 4

Figure 2: McKensey Forecast to IoT Growth Per Domain ... 4

Figure 3: Symmetric Encryption Process .. 18

Figure 4: The Process of Asymmetric Encryption ... 20

Figure 5: Discrete Log Problem (DLP).. 21

Figure 6: Initialization Phase Diffie-Hellman protocol .. 22

Figure 7: Key Agreement Process Diffie-Hellman protocol ... 22

Figure 8: Key Agreement Phase Diffie-Hellman protocol ... 23

Figure 9: Elliptic Curve Discrete Logarithm Problem (ECDLP)... 24

Figure 10: Elliptic Curve Diffie Hellman Domain Parameters .. 25

Figure 11: Elliptic Curve Diffie Hellman Key Agreement Protocol ... 25

Figure 12 Hash-based MAC .. 29

Figure 13: PUF Challenge-Response Uniqueness .. 31

Figure 14: Main properties of PUF .. 32

Figure 15: Cryptographic key generation using PUFs .. 33

Figure 16: PUF Design .. 35

Figure 17: Fog computing architecture .. 38

Figure 18: PUF Hierarchal Distributed Architecture ... 45

Figure 19: Device Enrollment Phase ... 48

Figure 20: Device Enrollment Process... 49

Figure 21: LMAP2A Security Approaches .. 52

Figure 22: Proposed Framework Evaluation Process .. 56

Figure 23 AVISPA Architecture .. 64

Figure 24: IoT Smart Home Network .. 78

Figure 25: Key Components for Secure Communication .. 79

Figure 26: The Proposed Protocol Overview .. 80

Figure 27: Virtual Domain Segregation Based on Device Type.. 82

Figure 28: Registration Phase .. 86

Figure 29: Elliptic Curve Diffie Hellman Key Exchange Protocol ... 87

Figure 30: The Proposed protocol authentication process between N and IG 89

Figure 31: IoT Node Message Verification ... 91

Figure 32: Evaluating the IG Authentication Parameter .. 93

Figure 33: IoT Node Authentication Process ... 94

Figure 34: The Process of Generating ssk Using Hash Function and CRPs 95

Figure 35: The Process of Generating ssk Using ECDH ... 96

Figure 36: Algorithm 1 The mutual authentication between IoT device and the IG 98

xxi

Figure 37: Snapshot of the protocol simulation in AVISPA ... 107

Figure 38: CL-AtSe Summary Report ... 108

Figure 39: OFMC Summary Report .. 108

Figure 40: Comparison of the number of the IoT crypto operations across the protocols 134

Figure 41: Comparison of the number of IG crypto operations across the protocols 135

Figure 42: Comparison of the total number of crypto operations across the protocols 136

Figure 43: The IoT computational time across the different protocols .. 136

Figure 44: IG computational time across the different protocols .. 136

Figure 45: Total computational time across the different protocols .. 137

Figure 46: M2M Networks in the IoT Environment .. 143

Figure 47: Smart poultry farm network model .. 170

Figure 48: Security Design Goals .. 174

Figure 49: Registration Phase .. 183

Figure 50: Different types of relationships in the poultry farm network 184

Figure 51: The authentication process between PG and CG .. 186

Figure 52: Algorithm 1 The mutual authentication between PG device and the ChG 189

Figure 53: Verify the interaction request parameters ... 190

Figure 54: Evaluate the PG authentication parameter ... 192

Figure 55: Evaluate the ChG Authentication Parameter .. 193

Figure 56: Evaluate the PG received message ... 195

Figure 57: The authentication process between ChG_1 and ChG_2 ... 198

Figure 58: Evaluate the ChG interaction request parameters... 200

Figure 59: Algorithm 3 The mutual authentication between ChG1 device and the ChG2 202

Figure 60: Evaluate the ChG_2 authentication parameter ... 204

Figure 61: Evaluate the ChG_1 authentication parameter ... 205

Figure 62: MG-N mutual authentication process ... 208

Figure 63: Evaluate the IoT node interaction request parameter ... 209

Figure 64: Evaluate the MG authentication parameter .. 211

Figure 65: Evaluate the IG authentication parameter .. 213

Figure 66: Algorithm 4 the mutual authentication between IoT device and the MG 216

Figure 67: Snapshot of the protocol simulation in AVISPA ... 225

Figure 68: CL-AtSe summary report ... 226

Figure 69: OFMC summary report ... 226

Figure 70: Snapshot of the protocol simulation in AVISPA ... 233

Figure 71: CL-AtSe summary report .. 233

Figure 72: OFMC summary report .. 234

Figure 73: Snapshot of the protocol simulation in AVISPA .. 242

Figure 74: CL-AtSe summary report ... 243

Figure 75: OFMC summary report .. 243

Figure 76: Comparison of the number of IoT cryto operations across the protocols................... 297

Figure 77: Comparison of the number of the MG crypt operations across the protocols 297

Figure 78: Comparison of the total number of crypto operations across the protocols 298

Figure 79: The IoT computational time across the different protocols .. 299

Figure 80: MG computational time across the different protocols .. 299

xxii

Figure 81: Total computational time across the different protocols .. 300

Figure 82: The IoV environment with five communication components 310

Figure 83: Security threats and attacks in IoV domain ... 318

Figure 84: Proposed IoV network model ... 330

Figure 85: The registration process between V and TA .. 346

Figure 86: The Exchanged Messages between V and TA during the ... 347

Figure 87: The registration process between V and VOCS ... 348

Figure 88: The Exchanged Messages between V and VOCS during the 349

Figure 89: The registration process between D and VOCS ... 350

Figure 90: The exchanged messages between D and VOCS during the registration 350

Figure 91: V-TA mutual authentication process .. 352

Figure 92: Algorithm of the mutual authentication algorithm between V and TA 354

Figure 93: Evaluating the Vi Authentication Parameter .. 356

Figure 94: Evaluating the TA authentication parameter .. 358

Figure 95: Evaluating the V authentication parameter .. 359

Figure 96: TA -V Parameters Verification .. 361

Figure 97: V-VOCS Mutual Authentication Process ... 364

Figure 98: The mutual authentication between V and the VOCS .. 366

Figure 99: Evaluating the Vi authentication request message .. 367

Figure 100: Evaluating the VOCS authentication parameter ... 369

Figure 101: Evaluate the Vi authentication parameter .. 371

Figure 102: Di-VOCS mutual authentication process ... 373

Figure 103: Mutual Authentication between D and VOCS ... 375

Figure 104: Evaluating the driver authentication parameter .. 377

Figure 105: Evaluate the VOCS authentication response .. 377

Figure 106: Snapshot of the protocol simulation in AVISPA.. 385

Figure 107: CL-AtSe Summary Report ... 386

Figure 108: OFMC summary report .. 387

Figure 109: Snapshot of the Protocol Simulation in AVISPA ... 394

Figure 110: CL-AtSe summary report ... 396

Figure 111: OFMC summary report .. 396

Figure 112: Snapshot of the protocol simulation in AVISPA.. 401

Figure 113: CL-AtSe summary report ... 402

Figure 114: OFMC summary report .. 402

Figure 115: Comparison of the number of V crypto operations Across the schemes 465

Figure 116: Comparison of the number of the server crypto operations across the schemes 465

Figure 117 : Comparison of the number of the user crypto operations across the schemes 466

Figure 118: Comparison of the total number of crypto operations across the schemes.............. 466

Figure 119: V computational time across the different schemes ... 467

Figure 120: Server computational time across the different schemes ... 468

Figure 121 : U computational time across the different schemes .. 468

Figure 122: Total computational time across the different schemes .. 469

xxiii

LIST OF TABLES

Table 1: RSA Versus ECC Key size .. 27

Table 2: Notations Used in the Proposed Scheme ... 84

Table 3: Abstract Notation and AVISPA HLPSL Scripting Variables/Functions for Protocol

Specification .. 99

Table 4: Symbols for Protocol Specification ... 101

Table 5: A Summary of the Well-known Attacks .. 119

Table 6: Security feature comparison of the proposed scheme with other related Mutual

authentication and key agreement schemes. .. 128

Table 7: Storage Cost of the Proposed Scheme ... 130

Table 8: Execution Time of the Cryptographic Operations ... 132

Table 9: Comparison of computational costs for the authentication phase of the proposed scheme

and other related protocols. .. 133

Table 10: Size of the Message Parameters .. 138

Table 11: Communication Cost Comparison (bits) ... 139

Table 12: Main security requirements in the M2M communication .. 149

Table 13: Main functional requirements of M2M authentication protocols 151

Table 14: Main security threats in M2M networks, the potential consequences, and the possible

countermeasure .. 152

Table 15: Notations used in the scheme... 179

Table 16: Abstract notation and AVISPA HLPSL scripting variables/functions for protocol

specification ... 217

Table 17: Abstract notation and AVISPA HLPSL scripting variables/functions for protocol

specification ... 227

Table 18: Abstract notation and AVISPA HLPSL scripting variables/functions for protocol

specification ... 234

Table 19: Security feature comparison of the proposed mini-gateway _IoT node protocol with

other related mutual authentication and key agreement schemes. ... 292

Table 20: Storage cost of the proposed scheme ... 293

Table 21: Execution time of the cryptographic operations .. 294

Table 22: Comparison of computation costs for the authentication phase of the proposed scheme

and other related schemes. ... 295

Table 23: Size of the message parameters .. 301

Table 24: Communication cost comparison (bits) ... 302

Table 25: IoV security requirements .. 313

Table 26: Notations used in the scheme... 344

xxiv

Table 27: Abstract notation and AVISPA HLPSL scripting variables/functions for protocol

specification ... 379

Table 28: Abstract notation and AVISPA HLPSL scripting variables/functions for protocol

specification ... 387

Table 29: D-VOCS abstract notation and AVISPA HLPSL scripting variables/functions for

protocol specification ... 396

Table 30: Security feature comparison of the proposed scheme with other related mutual

authentication and key agreement schemes. .. 458

Table 31: Storage cost of our scheme .. 460

Table 32: Execution Time of the cryptographic operations .. 462

Table 33: Comparison of computation costs for the authentication phase of the proposed scheme

and other related schemes .. 463

Table 34: Main parameters of the messages and their sizes in bits ... 470

Table 35: Communication cost comparison (bits) ... 472

1

CHAPTER I

INTRODUCTION AND DISSERTATION OVERVIEW

The rapid increase in using the Internet means that more than 49% of the world

population is reachable at the click of a button, providing people with economic and

social opportunities. Internet of Things (IoT) is an old and new term at the same time.

Kevin Ashton mentioned this term in 1999 during a presentation at Proctor & Gamble to

link the idea of radio frequency identification (RFID) to the new topic of the Internet [1].

Internet of Things (IoT) is an emerging technology that is experiencing continuous

growth. IoT creates a small and smart interconnected world that enables human-to-devise

communication and device-to-device communication. IoT established an intelligent

environment in which there is a constant exchange of data and services. It is expected

that more than 21 billion devices will be interconnected by 2025 [2]. The predicted

exponential growth of IoT depends partially on both Moore's law and Koomey's law.

Moore's law states that the number of transistors on a chip doubles approximately every

two years [3]. As a result, powerful computers can be developed on the same sized chip.

Koomey's law explains that the number of computations per kilowatt-hour

roughly doubles every one and a half years [4]. Kevin Ashton describes that these two

laws enabled us to create powerful and energy-efficient computers. Those two laws are

telling us that we can perform the same amount of computations on a smaller chip while

consuming less energy. This means that computers become more computationally

effective as they become more energy efficient. The output is a small, powerful, and

energy-efficient computer that allows us to provide more advanced services with less

chip size at lower energy consumption. [5].

2

There is no universally accepted definition for IoT. The main idea of IoT is the

connection of many objects to communication and the exchange of data as well as

enabling people to communicate with these objects. IEEE's definition of IoT is: "Internet

of Things envisions a self-configuring, adaptive, complex network that interconnects'

things' to the Internet through the use of standard communication protocols. The things

offer services, with or without human intervention, through the exploitation of unique

identification, data capture and communication, and actuation capability. The service is

exploited through the use of intelligent interfaces and is made available anywhere,

anytime, and for anything taking security into consideration" [6].

According to the IEEE IoT definition [6], the IoT system consists of three main

layers: (1) a front layer that consists of the front-end devices such as sensors that sense

and gather data about the environment (2) a back layer that consists of back-end

computing and storage devices which provides analytics and intelligence, (3) a network

layer that provides the communication infrastructure which connects front-end sensors to

back end servers.

The Telecommunication Standardization Sector [7] defined IoT as "… a global

infrastructure for the information society, enabling advanced services by interconnecting

(physical and virtual) things based on existing and evolving interoperable information

and communication technologies".

According to the ITU, the physical world refers to anything in our physical world

that can be sensed, actuated, and connected. The virtual world refers to data and

information that can be collected, processed, stored, and accessed. By integrating both

the physical and virtual world, we can use a diverse collection of smart objects to collect,

3

process, and store data from any environment to make decisions and take actions at any

time.

In IoT, classical computing and communication devices as well as a wide range of

other gadgets that we use in our daily life, are connected in different domains such as

smart homes, health care, wearable devices, smart city, and others. Consequently, A large

number of devices will be connected. Those devices will have smart capabilities to

collect, analyze and even make decisions without any human interaction. Cisco forecasts

that the IoT market will be $14.4 trillion by 2022, with the majority invested in

improving customer experience. Other areas of investment are reducing the time-to-

market ($3T), cost reduction strategies ($2.5T), improving supply chain and logistics

($2.7T), and increasing employee productivity ($2.5T). Moreover, Cisco found that 50%

of IoT activity is in manufacturing, transformation, smart cities, and consumer markets

[8] as presented in figure 1.

4

Figure 1: Cisco Forecast of the IoT Growth

Analysts at McKinsey institutes [9] estimate that the annual economic

impact of IoT will grow from $3.9 trillion to $11.1 trillion by 2025. The growth

will be in different domains such as manufacturing, smart cities, retail

environments, cars, and the human body, as shown in figure 2[9].

Figure 2: McKensey Forecast to IoT Growth Per Domain

0

0.5

1

1.5

2

2.5

3

3.5

4

Improved
Customer

Experience

Reduced time
to market

Supply chain
and logistics

Reduced
costs

Increased
Employees

Productivity

Est.value of the global IoT market by 2022

0
0.5

1
1.5

2
2.5

3
3.5

4

1.2
0.9

0.2 0.4 0.6
0.2 0.2 0.2 0.1

3.7

1.7 1.6
1.2

0.9 0.9 0.7
0.3 0.2

IoT Growth in Trillions

Low High

5

 IoT technology is deployed in different domains such as surveillance devices in

smart cities, patient monitoring devices in health care, connected cars in vehicular

networks, wearable devices, and smart homes. IoT systems have a heterogeneous mix of

diverse devices, networking and communication protocols, and design methodologies,

making them complex subjects for designing a security framework. Therefore, security is

an essential requirement in the IoT environment, especially authentication, which is of

high interest given the damage that could happen from a malicious unauthenticated

device in an IoT system.

1.1 Challenges

The communication among IoT devices over the Internet and on local networks

needs to be secured to gain user trust. The implementation of the security system in IoT

requires the building of a Root of Trust (ROT). ROT can be defined as an element of a

system that offers services to verify the achievement of security-related goals such as

confidentiality, messages integrity, and authentication of the sending and receiving

devices [10]

Security and privacy are key challenges to make the IoT ecosystem. Typically,

IoT devices are characterized by their constrained resources, consisting of a small amount

of memory and computational power, which are not architecturally designed to employ

robust security techniques [11]. Besides, IoT devices are often deployed in open and

public places, which may cause them to be vulnerable to physical and cloning attacks.

We cannot deal with IoT in an ad-hoc manner using reactive approaches and being on the

defensive side. Instead, a proactive approach is required by being on the offensive side.

6

Also, any security solution designed for IoT devices must be computationally efficient

and able to detect any security violation of the IoT devices without sacrificing security.

The traditional security and protection techniques, including currently available

cryptographic solutions, secure protocols, and privacy preservation techniques, cannot be

re-implemented to secure resource-constrained devices. IoT systems must be used to ease

our lives and not harm our security and privacy. Therefore, any new solution must be

resource-efficient to fit devices with limited processing power, memory, and

communication bandwidth and to preserve user's privacy.

1.2 Problem Definition

IoT devices are pervasive in our everyday life. IoT spending is now forecast to

pass the $1 trillion projected market in 2022, reaching $1.1 trillion in 2023, for an annual

growth rate of 13%. Both smart homes and connected vehicles are estimated to be the

second-largest source of IoT spending [12]. Although there is a growth in the IoT market,

there are still concerns about the security and privacy of such systems. Because IoT

devices can monitor every aspect of people's lives, the user still has legitimate privacy

concerns. Moreover, companies worry about reputational damage from data getting into

the wrong hands, and governments fear security risks.

IoT security is different for several reasons. First, IoT devices are characterized

by their constrained resources consisting of a small amount of memory and

computational power, which are not architecturally designed to support robust security

techniques. Second, IoT systems have a heterogeneous mix of diverse devices and

networking protocols, which makes it complex to design a security framework given

7

raised scalability and interoperability issues. Third, IoT devices are connected to various

components, such as actuators or monitoring systems. The collected data by those devices

is vital for the functioning of the operation of the whole system. Fourth, IoT nodes store a

secret key in non-volatile memory (NVM), flash memory, or battery-operated static

random-access memory (SRAM). It has been proven that physical attacks such as

invasive, semi-invasive, or side-channel attacks and software attacks such as malware can

expose the key and lead to security breaches [13].

The IoT system can be subject to two main types of attacks: (i) attacks against the

IoT devices such as physical attacks on the device; (ii) attacks against the

communications such as a man in the middle attack that may lead to listening, modifying,

injecting, or re-routing the message. Also, the adversary can either compromise existing

IoT devices or inject malicious devices that can be used to launch different types of

attacks. Therefore, appropriate countermeasures must be taken to secure the IoT systems

from those attacks.

Traditional password-based or secret-key-based authentication schemes, in which

a shared secret is the only authentication factor, are not enough for addressing the security

problems, especially if the IoT devices are mobile devices. Many IoT devices have weak

passwords using manufacturer default passwords, making them vulnerable to botnets, such

as the Mirai IoT botnet [14]. Also, an adversary with physical access to an IoT device can

launch various physical or side-channel attacks to acquire the device's secret key, thus

compromising the device and the entire system. Moreover, hackers can connect rogue

devices to IoT networks using fake or multiple identities without being caught.

Furthermore, IoT devices may rely on user biometrics as another factor of authentication.

8

However, the biometric template affects the user's privacy if a hacking activity

compromises it. Therefore, protecting the user's privacy is a necessity for biometrics-based

authentication systems.

Privacy preservation is another major security component. The lack of privacy

preservation may allow the attacker to track and identify the user or the IoT device

identify, leading to a privacy breach. The lack of protecting users or IoT devices in smart

homes and health care will allow the adversary to identify the user's lifestyle and infer

sensitive information, which can potentially be life-threatening to the users. Therefore,

anonymity, unlinkability, undetectability, unobservability, and pseudonymity are

important characteristics to ensure privacy preservation and prevent attackers from

obtaining the user's real identity or the IoT device [15].

Two of the core NIST requirements for securable IoT devices are device

identification and data protection. Security, privacy, and trust are three main elements

that must be satisfied in any IoT application [16]. Device’s authentication, data

confidentiality, data integrity, trust management, and privacy are key challenges in

designing a secure IoT.

 Device authentication is the process of verifying the device's identity. Without

strong authentication, attackers can capture sensitive data and execute malicious actions.

Data integrity is the process of maintaining and ensuring the originality, accuracy, and

consistency of the data. Trust management guarantees trust in the devices and ensures

that data has been handled and processed in compliance with user needs and rights.

Privacy is essential to ensure that the user's data and credentials are preserved.

9

Ensuring security and privacy in the IoT systems can be achieved using: (1)

encryption that makes sensitive data useless to the adversary and (2) authentication

techniques that reject malicious devices that can cause harmful attacks.

There is a need for new robust authentication techniques to avoid the problems

mentioned above and, at the same time, can work on resource constraint devices. In this

dissertation, different IoT authentication architectures are presented that ensure security

and privacy preservation and present computational efficiency solutions to fit the nature of

the IoT devices.

1.3 Solution Approach

To address the aforementioned issues, authentication techniques that can deal

with a mix of diverse and resource constraint devices and protect users' security and

privacy should be developed. Unlike traditional Internet, a one-size-fits-all solution is not

applicable in the IoT ecosystem because the IoT domains and the use cases are different.

Consequently, the requirements are different. Therefore, more specialized solutions need

to be designed and developed.

The main goal of this dissertation is the design and development of new secure

mutual authentication and key exchange schemes for secure communication in the IoT

systems for both stationary and mobile IoT nodes. The proposed schemes are built on six

main foundations: (i) implementation of mutual authentication; (ii), the use of Physically

Unclonable Functions (PUFs) as the root of trust (iii) verification of hardware

counterfeiting; (iv) use of lightweight cryptosystem; (v) assurance of data integrity,

confidentiality and privacy preservation; and (vi) support system scalability.

10

1.4 Main Contributions

Designing lightweight authentication schemes for different IoT domains is

necessary. Transmitting user's data in a secure environment is crucial to preserve the

user's privacy and security. Our proposed schemes depend on modern lightweight

cryptography, PUF hardware's intrinsic security primitive, and user biometric features.

Cryptography techniques are used to generate a shared key, establish an encrypted

and secure channel of communication between the devices with the IoT systems, and

authenticate the devices. PUF is used to create a secure and robust authentication scheme

for devices and protect devices from counterfeiting along with the different cryptographic

protocols. Furthermore, both static and dynamic user biometric features are used to

complete initial and ongoing user authentication.

 The main contributions are as follows of this work are as follows:

• The development of PUF Hierarchal Distributed Architecture (PHDA) for device

name resolution to support system scalability and protect the IoT systems from

being counterfeited.

• Implement the Root of Trust (ROT) scheme in the IoT environment through the

utilization of PUF to ensure authenticity by using the challenge-response pair

protocol. Also, PUF is used to derive device-dependent security keys.

• The development of a zero-knowledge crypto solution known as “ Chained Hash

PUF” to maintain node tracking. It is considered the first of its kind technique in

the IoT authentication research field.

11

• The development of a Lightweight Mutual Authentication and Privacy

Preservation Framework for IoT (LMAP2A). The framework is developed to be

domain-independent for generalized usage in IoT environments. LMAP2A

integrates both software and hardware-based security approaches. Also, LMAP2A

applies the "defense in depth" concept by using multiple layers of security

countermeasures through an IoT system to provide redundancy in case a security

countermeasure fails, or a vulnerability is successfully exploited.

• Based on the proposed framework, three lightweight authentication schemes were

developed to support three different IoT systems. The three different schemes are

designed to support different node mobility and distribution requirements.

• Detailed security and performance evaluation of the presented three schemes.

1.5 Dissertation Outlines

The dissertation is organized as follows:

• Chapter 2 provides a detailed overview of IoT security, authentication, and

hardware security. Also, the chapter discusses related work on authentication and

key agreement for IoT.

• Chapter 3 presents the foundation framework that is called “Lightweight Mutual

Authentication and Privacy Preservation Architecture for IoT (LMAP2A)”. This

framework is considered the backbone and the road map of the schemes that are

presented in the following three chapters. This chapter also presents a PUF

Hierarchal Distributed Architecture (PHDA), which is used to perform the IoT

device name resolution.

12

• Chapter 4: presents the first authentication scheme titled “Lightweight Privacy

Preservation and Mutual Authentication Scheme for Smart Homes Using

Physical Unclonable Functions.” All devices in the proposed smart home use

case are stationary and within range.

• Chapter 5: presents the second authentication scheme titled “M2M Distributed

Multi-Layer Lightweight Mutual Authentication and Key Agreement Scheme

Using Chained Hash PUF in Industrial IoT System”. The chapter presents the

concept of the chained hash PUF and how it is used to authenticate IoT devices.

The poultry farm network model is multi-layer in nature, and the devices are

distributed and heterogeneous.

• Chapter 6: describes the third authentication scheme called “Three-Factor

Authentication and Privacy Preservation Scheme Using User and Device

Biometrics for IoV System.” All devices and users in the IoV network model are

mobile and require frequent authentication.

• Chapter 7: concludes the dissertation by discussing the contributions of the

research and outlining future work.

13

CHAPTER II

BACKGROUND AND LITERATURE REVIEW

To better present the contribution of this dissertation, an in-depth analysis of IoT

and the available solutions of IoT security are discussed. This chapter provides

background information about the Internet of Things, integrity, confidentiality,

authentication, privacy, and trust. Also, the use of a physical unclonable function (PUF)

as a hardware fingerprint is studied. Moreover, the use of fog computing as support to

IoT resource-constraint devices in data processing and information delivery is discussed.

2.1 Why IoT Security is Different

Internet of Things (IoT) is experiencing continuous growth. Not only classical

computing and communication devices are connected, but also a whole range of other

gadgets that are used in our daily life in different domains such as smart homes, health

care, wearable devices, smart city, and others. Consequently, tens and even hundreds of

billions of devices will be connected. In the IoT ecosystem, objects are connected via the

Internet without any human intervention. IoT enables the transfer and sharing of data

among living and nonliving objects to achieve specific goals. Those devices will have

smart capabilities to collect, analyze, and even make decisions without any human

interaction.

14

As described in [7], five main characteristics differentiate the IoT devices from

any other device: (i) Interconnectivity that indicates that all IoT devices can be connected

to the global information and communication infrastructure. IoT is based on the idea of

being able to interconnect everything ;(ii) heterogeneity where IoT systems have a mix of

various devices and networking protocols but can still interact with each other through

different networks. This feature is considered one of the main challenges in the IoT

ecosystem. ;(iii) dynamic changes where the devices can be in different states such as

connected, disconnected, waking up, and sleeping. The devices may change their state

dynamically which will, in turn, change the number of devices;(iv) limited resources

where the IoT devices experience limited CPU capabilities, memory, and power

resources; (v) large scale where the number of IoT devices grows exponentially and will

be larger than the number of devices in the current Internet. Most of the communication

will be device-to-device instead of human-to-device, and (vi) IoT devices are often

deployed unattended in open and public places which may cause them to be vulnerable to

physical and cloning attacks

The exponential growth of IoT is challenging from both security and technical

perspectives due to the heterogeneous mix of devices and communication protocols. At

least two challenges need to be carefully tackled: (1) security and privacy preservation

requirements to ensure a safe IoT environment; (2) the heterogonous nature of IoT that

makes one-size-fits-all security schemes unfeasible and inapplicable. When everything is

connected, multiple security threats will arise and put confidentiality, integrity,

availability, authenticity, privacy, and trust in risk.

15

2.2 Security Goals

Information Security refers to the processes and methodologies which are

designed and implemented to protect data, information, and systems. Information

security means protecting data, information, and systems from unauthorized access, use,

disclosure, disruption, modification, or destruction. National Institute of Standards and

Technology (NIST) and the IETF defined security metrics as a tool to facilitate decision-

making and improve the systems’ performance. Security metrics are used to measure the

security level because what we cannot measure, we cannot improve. Security metrics can

be used to identify the strength and weaknesses of the implemented security system.

NIST and IETF agree on a set of security goals that are necessary to achieve information

security. Those objectives are confidentiality, integrity, authenticity, availability, and

accountability of all messages [17]. The authors in [18] added auditability,

trustworthiness, non-repudiation, and privacy as additional security requirements.

• Confidentiality: the process of ensuring that data will be disclosed only to

authorized users or systems. This applies to data in storage, during processing,

and while in transit. Confidentiality is crucial for IoT devices because they might

handle critical personal information. For example, unauthorized access to user’s

data may lead to life-threatening situations.

• Integrity: is the process of ensuring that the data has not to be altered or

modified. The modification includes writing, changing the status, deleting,

creating, delaying, and replaying the messages. Integrity is important to provide a

16

reliable service. If a modification has occurred, it must be detected. The

compromisation of integrity can lead to serious consequences.

• Availability: A system should always be available to legitimate users and deliver

prompt and reliable service. Availability is essential to ensure that devices are

available for collecting data and prevents service interruptions.

• Scalability: The IoT system must be able to accept and register new IoT devices.

The IoT scheme must be able to adapt to new technologies and incorporate the

needed modifications [19].

• Privacy: It refers to the protection of sensitive data. Privacy implementation

requires securing end-to-end communication. Therefore, the transmission process

of the collected data should ensure that the data is not being tampered by an

adversary. Furthermore, the collected data must be stored in a secure

environment.

• Authenticity: It is the process of verifying the device's or user's identity.

Through authentication, we can verify the origin of a message, the date of the

message, and message content. There are two classes of authentication: entity

authentication and data authentication. Data authentication implies data integrity.

• Non-repudiation is the process that prevents both the sender and the receiver

from denying previous communication or actions.

2.3 Authentication

17

Authentication can be viewed as the first line of defense by ensuring the

enforcement of security measures. Authentication requires a handshake process that can

be done before an authorization is granted. Device authentication is the process of

verifying the device identity. Without strong authentication, an attacker can capture

sensitive data and execute malicious actions. Deploying robust authentication protocols

becomes one of the first steps to ensure the security of the whole system.

Authentication needs to be established to build secure communication between

the IoT devices before transferring any data. Traditional authentication techniques

depend on using one of the well-known authentication factors to identify users, such as a

secret that a user knows or a token that a user has. On the other hand, modern

authentication techniques combine several authentication factors to authenticate users or

devices in different ways, such as two factors authentication and multi-factor

authentication that use two or more independent channels for authentication. Two or

more factor authentication processes aim to create a layered defense system that

combines two or more independent authentication factors to make it hard and even

impossible to gain access to a target. The two-factor authentication techniques have been

widely used in recent years to ensure secure authentication in systems well as providing

an extra layer of protection and increase user trust in the system. The authentication

process can take two different formats: machine-to-machine authentication and user-to-

machine authentication.

2.4 Cryptographic Systems

18

One of the main techniques to achieve security goals is the implementation of

cryptographic algorithms. There are two main cryptographic algorithms: (1) symmetric

cryptography; (2) asymmetric cryptography.

2.4.1 Symmetric Cryptography

In symmetric cryptography, both the sender and receiver share the same secret

key (K) to encrypt and decrypt data [20]. When the shared secret key encrypts the

message, it needs to be decrypted by the same key. A symmetric key cipher f is used to

encrypt a plaintext message m and generates a ciphertext c = fK (m) to be sent. At the

receiver side, an inverse cipher f −1 is used to retrieve the plaintext m = f −1 K (c), as

illustrated in figure 3.

Figure 3: Symmetric Encryption Process

One of the fast and secure symmetric cryptography algorithms is the Advanced

Encryption Standard (AES). AES is a famous cipher that NIST has standardized to

replace DES and Triple DES [20]. AES supports key lengths of 128, 192, or 256 bits,

and the block length is 128 bits. AES does not require much memory, making it suitable

for resource constraint IoT devices [21].

One of the main properties of symmetric cryptography that can be viewed as a

drawback is the need to establish a secure channel of communication between the sender

19

and the receiver before exchanging the shared secret key between the two sides of the

communication. This is known as the key distribution problem [20]. The storage of the

shared secret key can introduce vulnerabilities to the secure system. A compromised

device will reveal all stored secret keys, and consequently, all communication on this

device would be accessible.

Although the problems mentioned above are universal of symmetric

cryptography, it is still the best tool for encryption. Several techniques can be

implemented to overcome the shortcomings. One of the techniques is called Diffie

Hellman key exchange techniques. This technique will allow parties to establish a shared

secret key over an insecure channel of communication. Diffie Hellman can be used in

conjunction with asymmetric cryptography.

2.4.2 Asymmetric Cryptography

Unlike symmetric cryptography, asymmetric cryptography, or what is also called

public-key cryptography (PCKS), allows users to communicate securely without the need

for a shared secret key. PCKS is considered more computationally expensive compared

to symmetric key cryptography. Both the sender and the receiver each have two keys

called the public key and the private key. The private keys are kept secret, while the

public keys are public and widely distributed. The receiver's public key is used for

encryption by the sender, and the receiver's private key is used for decryption by the

20

receiver, as illustrated in figure 4. When a sender encrypts a message using the receiver's

public key, only the receiver can decrypt the message using his private key.

Figure 4: The Process of Asymmetric Encryption

Besides encryption, PKCS can be used for key establishment and authentication

and non-repudiation [20]. Key establishment features in PKCS can be used to overcome

the key establishment issue in symmetric cryptography, where the two parties need to

communicate through a secure channel to exchange the shared secret key. By using

PKCS, the two sides can securely establish a shared key. Non-repudiation is the

technique that prevents any party from denying its actions. Non-repudiation and

authentication can be achieved through the use of a digital signature that employs PKCS.

The sender encrypts a message with his private key, and the receiver decrypts the

message using the sender's public key; the receiver is assured that the sender generated

the message, provided the public key is verified and trusted or extremely signed by a

trusted certifying authority.

Because PKCS is more computationally expensive than symmetric cryptography,

it cannot be used for encrypting the ongoing communication during the session duration.

Instead, symmetric cryptography is used. PKC can be used for the key establishment

21

stage, and then symmetric cryptography can be used to encrypt and decrypt all the

ongoing communication during the session. The key establishment can be divided into a

key transport protocol and a key agreement protocol [22]. One party creates the shared

secret key in the key transport mechanism and securely transfers it to the other party

using the receiver's public key to encrypt the shared secret key. An example of a key

transport mechanism is RSA.

On the other side, the shared secret key derivation process in the key agreement

mechanism is completed through the contribution of the two parties. This process causes

the two sides to influence the generated key and have the same key. An example of a key

agreement protocol is Diffie Hellman key exchange

2.4.2.1 Diffie Hellman Key Exchange

The Diffie-Hellman Key Exchange (DHKE) was the first PKC protocol that is based

on the Discrete Log Problem (DLP) [20]. The definition of DLP, as given in [20], is

presented in figure 5. When we select large numbers, computing the discrete logarithm to

identify the x value becomes a very time-consuming and challenging task [20].

Figure 5: Discrete Log Problem (DLP)

DHKE consists of two main phases: (a) an initialization phase and (b) a key-

agreement phase. During the initialization phase, the two parties need to agree upon a set

Given in the finite cyclic group Zp where p is the prime number

with a finite set of integers i = 0, 1, . . . , p − 1 and a primitive

element g ∈ Zp and another element h ∈ Zp . The DLP is the

problem of determining the integer 1 ≤ x ≤ p−1 such that:

 g x ≡ h modp

22

of parameters called domain parameters, as presented in figure 6. These domain

parameters are required to generate the secret key. By using the domain parameters, the

two sides can generate the same secret key over an insecure channel using the key

agreement phase.

 Figure 6: Initialization Phase Diffie-Hellman protocol

 Figure 7: Key Agreement Process Diffie-Hellman protocol

Diffie Hellman Initialization Phase

1. Select a large prime number P

2. select a positive integer g, such that g is a generator modulo p

3. publish both P and g

Alice Bob

23

Figure 8: Key Agreement Phase Diffie-Hellman protocol

During the key-agreement phase, both participants contribute to the key

establishment. Figures 7 and 8 show the key agreement process and phases of the Diffie

Hellman protocol. During the first step of the key agreement phase, Alice and Bob agree

on a large prime p and a nonzero integer g modulo p. Alice and Bob make the values of p

and g public knowledge. The next step is for Alice to pick a secret integer y that she does

not reveal to anyone, and Bob picks an integer x that he keeps secret. Bob and Alice use

their secret integers to compute their public keys. As a next step, both Alice and Bob

exchange their public keys. Alice sends R to Bob, and Bob sends G to Alice. Finally,

Bob and Alice use their secret integers to compute the secret key.

2.4.2.2 Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography (ECC) is a public key algorithm that was introduced

in 1987 by [23]and by [24]. ECC is considered lightweight compared to RSA because it

can achieve the same level of security with much fewer arithmetic operations [20]. For

example, 1024-bit RSA corresponds to 160-bit in ECC. Therefore, ECC can be used in

24

resource-constraint devices. The high security of ECC is based on the computation of the

ECC discrete logarithm problem (ECDLP). Solving this problem cannot be done

effortlessly [22]. Also, the Elliptic Curve Diffie-Hellman (ECDH) protocol can be used

to generate the secret key in a secure environment.

ECC is based on the ECDLP, which is based on the DLP. This makes DHKE

suitable for ECC. As described in [20], the elliptic curve over Zp, p > 3, is the set of all

pairs (x, y) ∈ Zp which fulfill:

y 2 ≡ x 3 + ax + b mod p

together with an imaginary point of infinity θ, where a, b ∈ Zp and the condition 4a 3 +

27b 2 ≠ 0 mod p. ECDLP is defined by [19] as described in figure 9.

Figure 9: Elliptic Curve Discrete Logarithm Problem (ECDLP)

ECDH key agreement protocol is based on the ECDLP. ECDH allows two parties

to establish a shared secret key over an insecure channel, where each of the parties has an

elliptic curve public-private key pair [19]. In the beginning, the two parties agree on the

ECC domain parameters that are presented in figure 10.

Given is an elliptic curve E. We consider a primitive element P and another element T.

The ECDLP problem is finding the integer d, where 1 ≤ d ≤ E, such that

 P + P + ... + P = dP = T

where E is the number of points on the curve

 d times

25

1. p: Field that the curve defined over

2. G: the generator or the primitive root

3. a, b: values define the curve

4. n: prime order of G

5. h: cofactor

Figure 10: Elliptic Curve Diffie Hellman Domain Parameters

 Figure 11: Elliptic Curve Diffie Hellman Key Agreement Protocol

Figure 11 describes the ECDH protocol. First, both Alice and Bob select a private

key that is a random integer d between {1,………n-1}. Second, each side will calculate

its public keys, which are QA for Alice and QB for Bob. Third, Alice and Bob exchange

their public keys over an insecure channel of communication. Last, each side calculates

 Alice Bob

Domain Parameters

 p,G,n,a,b,h

26

the secret key using its private key and the other side's public key. Once the two sides

have the same secret key, they can use symmetric encryption for all subsequent ongoing

communication.

Because one of the key features of the IoT ecosystem is handling resource-

constrained devices, ECC is preferred over RSA for the following reasons: (1) It uses a

shorter encryption key which in turn uses less memory, less storage, less power, and

fewer CPU resources; (2) ECC is based on the computation of the discrete logarithm

problem. Therefore, it is highly secured; (3) Zigbee Networking and Wi-Fi WPA 3

Standards specify ECDSA and ECDH as the algorithm of choice, and (4) The US

government publishes a set of standards algorithms approved for use in non-defense

applications called Suite B Cryptography. Currently, this standard includes only ECC for

authentication and key management. RSA has been completely removed.

Table 1 presents a comparison of RSA and ECC algorithms for the key size.

Column 1 shows the security level of that particular row. The security level is a measure

of the strength that a cryptographic algorithm achieves. The security level is usually

expressed in bits, where n-bit security means that the attacker would have to

perform 2n operations to break the cryptographic cipher. Column 2 shows the public key

size of RSA to achieve the corresponding security level. Column 3 shows the public key

size of ECC to accomplish the corresponding security level. Column 4 displays the key

size ratio between RSA ECC.

27

Table 1: RSA Versus ECC Key size

Minimum Size of Public Keys Key Size Ratio

Security Level in

bits

RSA ECC ECC to RSA

80 1024 160-223 1:6

112 2048 224-255 1:9

128 3072 256-383 1:12

192 7680 384-511 1:20

256 15360 512+ 1:30

The current common security requirement is to achieve a 128-bit security level.

As stated in table 1, an ECC key size of 256 can accomplish a 128-bit security level

compared to the RSA key size of 3072. This indicated that the ECC key size is 12 times

smaller than the RSA key size. This means that RSA is more computationally expensive

than ECC, and it requires more storage, more power, and more CPU Resources.

Therefore, ECC is considered the potential algorithm for resource-constrained IoT

devices. Because the main focus of this dissertation is IoT constrained devices, we will

adopt ECC as the chosen Cryptographic algorithm.

28

2.4.3 Message Authentication Code

A message authentication code (MAC) is a block of a few bytes that is used

to authenticate a message. The receiver can check this block and ensure that the message

is coming from the right sender and that an adversary hasn't modified it. A specific type of

MAC is called HMAC. HMAC stands for Hash-based MAC. HMAC is a special type of

message authentication code involving a cryptographic hash function and a secret

cryptographic key [25]. This scheme extends the error detection capability in verifying

data integrity as well as message authentication. HMAC can work with any cryptographic

hash function such as MD5, SHA-1, SHA-256, or SHA-512, combined with a shared secret

key [26]. Once the HMAC hash is calculated, the message must be sent alongside the

HMAC hash. In HMAC, the presence of a shared secret helps to establish authenticity

because it is generated during a key exchange process that requires the participation of the

two communication parties. Only those two parties know what the secret key is. Then,

they can verify that the message is from a legitimate source when the hash matches.

Figure 12 describes how HMAC is working. First, the sender and the receiver share

a secret key. Second, the sender creates the message and calculates the HMAC hash for the

message where the message and the key will be used as inputs to the algorithm. Third, the

sender will send the message alongside the HMAC hash. Fourth, the receiver will calculate

the HMAC hash. Fifth, the receiver will verify the message's integrity and authenticity by

comparing the received HMAC hash with the computed HMAC hash. If the two values are

the same, the receiver ensures that the message has not been corrupted or modified.

29

Figure 12 Hash-based MAC

2.4.4 Physical Unclonable Function (PUF) Technology

2.4.4.1 Concept of PUFs

With the quadratic growth of IoT devices, security and privacy become essential

requirements [27]. Most of the currently available security solutions depend on the

implementation of cryptography. The assumption is that the devices can securely store

the secret key and keep it away from an adversary. According to [28] and [29], this

assumption is not practical because physical attacks such as invasive, semi-invasive, or

side cha attacks can lead to key exposure and security breaches. Also, [29] highlighted

that some devices could be resource-constrained or do not have a nonvolatile memory to

store the secret key.

Message

SSK(K)

H((K ⊕ opad)|| H((K ⊕

ipad)||m))

MAC

Message

SSK(K)

H((K ⊕ opad)|| H((K ⊕

ipad)||m))

MAC

Message

MAC

MAC =?

30

An alternative solution is a hardware security primitive known as Physical

Unclonable Function (PUF). The PUF concept was first introduced by [30] in 2000. The

authors proposed the idea of the mismatch in silicon devices for integrated circuit (IC)

identification. The authors in [31] introduced Physical On-Way Functions. Then, [32]

proposed a Silicon Physical Random Functions and presented it as a PUF. PUF is new

hardware-based security primitive. A PUF is a function embedded in a physical device to

extract a secret from a complex physical system. The key idea behind PUF is the

exploitation of the “random physical disorder” or the “manufacturing variation” of the

silicon chips [33]. This manufacturing variation can not be controlled during the

fabrication process, and at the same time, it can not be refabricated intentionally. PUF

can be described as a function that returns a value called the response. This value can be

treated as a unique signature or a unique fingerprint of an integrated circuit for a given

challenge. Hence, we can define PUF as a Physical challenge-response procedure to

extract the signature of an integrated circuit. A PUF is similar to human fingerprints

because it produces a specific device signature to authenticate the device. PUF can be

used for device authentication and to protect from devices counterfeiting [34]. Also, the

unique secret key generated by the PUF can be used in different domains [35].

31

Figure 13: PUF Challenge-Response Uniqueness

2.4.4.2 Properties and Parameters of PUFs

Based on the PUF definition, we can extract two main properties of a PUF:(1) It is

unpredictable. A PUF is unpredictable because an attacker who can use a limited and

fixed amount of resources can only extract a small amount of information from the PUF's

secret response. (2) It is unclonable. This means that it is hard to produce two identical

PUFs from two different IC as described in figures 13 and 14 . PUFs take advantage of

the circuit characteristics related to the uncontrollable random variation in the

manufacturing process. Therefore, the less control present during the circuit's

manufacturing process, the harder the reproduction of an identical PUF. The author in

[36] added four additional properties which have been identified from multiple proposed

PUF definitions. These properties are:

1. Low cost. This means that the measurement circuit should be easy to implement

and low cost. From a theoretical point of view, the PUF response should be easy

to evaluate/produce.

32

2. Unique. The PUF response is extracted from the unique identity of the physical

entity. The set of challenge-response pairs should be sufficient to identify a PUF

among a given population uniquely.

3. Reproducible. This property distinguishes PUFs from True Random Number

Generators (TRNGs). The PUF response should be reproducible when introducing

the same challenge, even when it is under different environmental conditions.

4. Secure. When an invasive physical attack is performed, PUFs should produce an

error response when asked.

 Figure 14: Main properties of PUF

The authors in [37] proposed the construction of PUF-FSM as a controlled strong

PUF without the need for error correction codes and helper data by only using error-free

responses, which are fed in a finite state machine. This type of PUF is implemented in

our proposed schemes.

33

2.4.4.3 PUF Applications

There are four main applications that can use PUF.

2.4.4.3.1 Low-cost Device Authentication

The researcher in [38] proposed a low-cost device authentication based on a

challenge-response protocol. The proposed protocol can also be applied to IoT resource-

constrained devices. The authentication process ensures that an adversary cannot obtain

the PUF output that is used for authentication. PUFs are expected to have exponential

numbers of challenge-response pairs. This implies that the challenge can only be used for

only one time, which can overcome the man-in-the-middle attack.

2.4.4.3.2 Cryptographic Key Generation

The authors in [39] presented a PUF based process to generate a reliable

cryptographic key. The cryptographic key generation process is divided into two stages,

which are initialization and regeneration of the PUF response. Figure 15 described the

cryptographic key generation process using PUFs. The generated c key can be used with

different cryptographic algorithms such as Advanced Encryption Standard (AES), Rivest

Shamir and Adleman (RSA) or Elliptic Curve Cryptography (ECC) and others

Figure 15: Cryptographic key generation using PUFs

34

2.4.4.3.3 Intellectual Property (IP) Protection

Counterfeit and Intellectual Property (IP) theft are two related key problems in the

IoT ecosystem. Most of the counterfeit products are made from stolen Intellectual

Property. While counterfeiting is the process of creating cloned fake copies of IoT

devices, Intellectual Property is the process of unauthorized use of software in a fake

device in violation of the law. Because PUF responses are unpredictable and unclonable,

the PUF can be used as a hardware fingerprint to protect the IoT devices against

counterfeiting.

2.4.4.4 PUF Classification

There are two PUF classifications from the security perspective. The two classes

are strong PUF and weak PUF. The distinction between the two types of PUF depends on

the number of challenge-response pairs. A PUF is called strong when its challenge is

large, such as the arbiter PUF. On the other hand, Weak PUFs structures have one

challenge, such as SRAM PUFs. According to [33], a weak PUF has two main features:

(1) few challenges: A Weak PUF has only a few and fixed challenges; (2) Access-

restricted responses: the challenge-response interface needs to be restricted. In weak

PUF, it is assumed that the attacker cannot access PUF's responses. The authors of [40]

[41] defined the main features of strong PUF. The main features of strong PUF are (1)

Many challenges: Strong PUF has a large number of possible CRPs; (2) Unpredictability:

even if an adversary knows a large number of CRPs, he cannot predict unknown CRPs.

35

2.4.4.4.1 Delay based PUFs – Arbiter PUF

The arbiter PUF is a delay-based silicon PUF. The arbiter PUF structure

comprises two parallel, identical, and controllable delay paths and an arbiter circuit at the

end. It is composed of a sequence of switch components. The simplest way to implement

them is with a pair of 2-to-1 multiplexers. Each one interconnects two input ports to two

output ports with different configurations depending on the applied control bit (0 or 1). A

delay-based PUF exploits the random variations in delays of wires and gates on silicon.

Ideally, the delay between the red and blue lines should be 0 if they are symmetrically

laid out. In practice, the variation in the manufacturing process will introduce a random

delay between the two paths.

Figure 16: PUF Design

Figure 16 shows how the arbiter PUF works. The idea is to introduce an edge and

then make a race between the two paths and sample the top signal and the bottom one at

the end. Then, the arbiter circuit outputs a binary value to indicate which one of the two

36

paths is faster or slower. Because the two parallel paths are identical, the delay difference

between them is minor. Hence, two scenarios are possible to get the arbiter circuit

decision:

1. Even when designed identically, the delays of the two paths may not be equal.

This is due to the random silicon process variation. This random difference

between the high and the low path will determine the output of the arbiter circuit

and then the PUF response. And, because the random silicon process variation is

device specific, the arbiter output will be device specific.

2. It is also possible that even with the random process variation between the two

designed paths, the delay difference cannot be detectable by the arbiter circuit.

Therefore, the introduced edge will simultaneously reach the two inputs, so the

arbiter circuit produces a metastable state. Then, after a short random time, the

arbiter will output a value that is independent of the paths' race.

The authors in [37] proposed the construction of PUF-FSM as a controlled

strong PUF without the need for error correction codes and helper data by only using

error-free responses, which are fed in a finite state machine. This type of arbiter PUF

is implemented in my proposed architecture.

2.5 Fog Computing

Cloud computing enables IoT devices to provide data storage, cost-effective, and

on-demand services. However, [42] and [43] stated that the cloud-based IoT services

have some issues such as latency, lack of mobility support and security, and location

37

awareness. For example, sensor and actuators systems, and monitoring systems are too

latency-sensitive to be deployed on the cloud. Also, IoT devices produce a large amount

of confidential and sensitive data. At the same time, most of the IoT devices are resource-

constrained. One way to overcome the latency issue and to offload the security

operations from the IoT device is the use of a more resourceful entity such as a fog-based

node. Fog computing technology, also known as fog networking or fogging, was first

introduced by Cisco in 2014 as an extension of cloud computing that would work on the

edge of the end-users network [43] [44]. Fog computing puts most of the communication,

storage, and management at the edge of a network rather than on the centralized cloud,

which in turn will improve the service and reduce the latency that will be interpreted as

better service to the user.

There is no standard architecture for fog computing [45]. According to [46], fog

computing can be divided into cloud-fog-edge-device architecture and fog-device

architecture, as shown in Figure 17.

38

Figure 17: Fog computing architecture

2.5.1 Cloud-Fog- Edge-Device Architecture

As presented in figure 17, the Cloud-Fog-Edge-Device architecture has four

layers, which are the cloud layer, fog layer, edge layer, and device layer. By moving

down from the cloud layer to the other three layers, the storage and computing

capabilities decrease, and at the same time, the latency will decrease too. The cloud layer

consists of computing and permanent storage devices. The fog layer provides data

processing and temporary data storage near the IoT device. The use of the fog nodes can

support the mobility and the heterogeneity of the IoT device as well as reduce the latency

and provide service to a larger number of devices [47]. The edge layer provides local

gateways that can be used to process data locally instead of sending it to the fog or the

cloud. The device layer consists of both mobile and stationary IoT devices. These devices

can be anything equipped with different capacities of storage, communication,

processing, and computational capabilities.

39

2.5.2 Cloud-Fog-Device Architecture

In cloud-fog-device architecture, the cloud layer consists of computing and

permanent storage devices. Fog nodes provide different services to the IoT devices

without the intervention of the cloud layer. The implementation of this architecture

depends on the IoT application. This, in turn, depends on the needs and requirements of

IoT applications.

In summary, the main goal of fog computing is to improve the quality of provided

service to users and reduce the traffic to the cloud. Data processing occurs in a gateway

to minimize the amount of the transmitted data to the cloud. According to [48], fog

computing performs short-term analytics at the edge while the cloud performs long-term

analytics.

2.6 Biometric Authentication

Biometric features have become a key tool to authenticate mobile IoT devices.

Biometric identification allows the user to use physical features instead of human made

features to be authenticated and access systems. According to a survey by Javelin

Strategy & Research, in 2014, $16 billion was stolen by 12.7 million people who were

victims of identity theft in the US only [49]. The verification and authentication are

performed based on three different techniques: (1) something we know, such as a

password; (2) something we have such as tokens; or (3) something we are such as

physiological and behavioral characteristics. The authentication process may employ one

or more of the techniques mentioned above. There are two types of biometric

identification, physiological and behavioral [50]. Physiological identification is based on

40

direct human body features such as the face, fingerprint, or iris. Behavioral features are

based on indirect human features that are measured through feature extraction and

machine learning. Examples of behavioral biometrics are signature, keystroke dynamics,

gait, and voice [51].

The authors of [52] presented the benefits of using biometric authentication in the

IoT applications as follows:

1. Accurate information: the biometric features are more precise and secured

compared to password-based or token-based security. The use of biometric

features does not require the user to remember any security credentials.

Consequently, no adversary can steal or guess the security credential such as a

password or a token. Therefore, biometric authentication can be a long-term

security solution.

2. Accountability: A user who is using a service and access it by using his

biometric features cannot deny using the service.

3. Time-saving: Biometric authentication is fast to execute compared to

traditional security techniques.

4. User-friendly systems: it is easy for users to install biometric systems into

their devices. By 2025 there will be 1200 million people aged 60, and above

and by 2050 they will reach 2000 million. Therefore, the use of biometric

authentication will be more suitable and user-friendly for those who will use

IoT devices.

41

5. Convenience: It is a convenient security technique because users do not need

to remember a password or keep any identity cards for verification.

According to [53], authentication mechanisms can be divided into static and

dynamic authentication methods. Static authentication techniques authenticate users but

do not monitor post-authentication sessions to detect if it is the same user accessing the

system or not [54]. Dynamic authentication techniques monitor a system during the

lifetime of a session to detect if it is the same user accessing the system or not [55]. The

third proposed architecture will employ both static and dynamic biometric authentication

to identify and verify users.

2.7 Summary

 This chapter presents the basis for this work, and it influences every aspect of this

research. The chapter discusses why IoT security is different and presents the main

security goals. The chapter illustrates the different cryptographic techniques. Also, the

chapter introduces the PUF concept, including its properties, applications, and

classification. Furthermore, the chapter discusses the fog computing concept and its

different architecture. Finally, the chapter reviews biometric authentication and its main

advantages. In the subsequent chapters, it is assumed that readers have the necessary

background knowledge.

42

CHAPTER III

A LIGHTWEIGHT MUTUAL AUTHENTICATION AND

PRIVACY-PRESERVATION FRAMEWORK FOR IOT SYSTEMS

This chapter introduces an approach to authenticate IoT devices. This chapter

presents how the proposed approach addresses the IoT security and privacy preservation

challenges through a Lightweight Mutual Authentication and Privacy Preservation

Framework for IoT (LMAP2A). This chapter also presents a PUF Hierarchal Distributed

Architecture (PHDA), which can be used to perform the IoT device name resolution.

Additionally, this chapter describes how the LMAP2A framework achieves both the

security and privacy goals. Finally, this chapter discusses the evaluation process to assess

the security and performance of the schemes that will be designed based on the proposed

framework.

3.1 Security Goals to Build an Effective Authentication scheme

To build a secure authentication schemes and evaluate other existing ones, a set of

security goals must be defined and used as metrics to measure the authentication

architecture's robustness. The following metrics should be taken into account when

developing the IoT:

1. Mutual authentication: This means that the two communicating parties should

authenticate each other. We must not assume a point of trust.

43

2. Multiple authentication levels: Multiple levels of authentication are required, each with

different credentials. This feature is vital to implement the defense-in-depth concept [56].

Defense-in-depth requires using multiple layers of security countermeasures through an

IoT system to provide redundancy if a security countermeasure fails or a vulnerability is

successfully exploited.

3. Protection against well-known attacks: Security countermeasures should be in place to

mitigate against well-known attacks such as man-in-the-middle attacks, replay attacks,

eavesdropping, and brute force attacks.

4. Scalability: The architecture must be able to accommodate new devices and adapt and

incorporate new technologies. According to [19], IoT architecture should be able to

expand incrementally to support newly added devices or growing data volumes.

5. Anonymity: Anonymity is an essential feature to protect both a user's and device's

privacy. The IoT devices can communicate anonymously with either fog or the cloud

nodes without exchanging their real identities. It is essential to guarantee that the IoT

devices' IDs and messages can only be traced by a trusted fog node or the Cloud.

Anonymity ensures the IoT device's untraceability and unlinkability. The IoT device uses

a pseudonym when transmitting data. Consequently, the adversary cannot trace back the

device's identity from the pseudonym.

6. Counterfeiting resistance: The IoT devices should be secured from being cloned and

replaced with fake devices.

3.2 PUF Hierarchal Distributed Architecture (PHDA)

We present a PUF architecture that can support system scalability, protect the IoT

systems from the counterfeited devices and protect devices' privacy. To ensure system

44

scalability and flexibility, we propose PHDA as a device name resolution to store and

retrieve the devices' Challenge-Response Pairs (CRPs). The proposed architecture is

presented in figure 18. It stores the PUF data using a 3-tier architecture employing a

simple naming scheme. The first node at the top of the hierarchy is the centralized Grand

hub that maintains a reference to whom should be queried (Parent PUF Nodes) to obtain

a reference to who may know how to retrieve the PUF data for a certain IoT device in a

specific domain. The Parent PUF nodes maintain a reference to the service provider

container (Child PUF Node) that should be queried next to return the PUF CRPs for a

specific IoT device. The parent PUF nodes are organized based on different specific

categories of the IoT devices (e.g., medical equipment, home equipment, etc.) The Child

PUF nodes are organized based on different service providers. The Cloud or the fog

should communicate initially with the Grand PUF servers to retrieve the CRPs of the IoT

node. Moreover, the proposed architecture supports Over the Air (OTA) authentication

and assist in overcoming the counterfeiting problem.

45

Figure 18: PUF Hierarchal Distributed Architecture

3.3 Lightweight Mutual Authentication and Privacy Preservation Framework

for IoT (LMAP2A)

With the exponential growth of the IoT field, IoT devices' lightweight nature

makes security a significant concern. It highlights the need for designing schemes that

can fit the resource-constrained nature of the IoT devices and satisfy new security and

privacy requirements. When an IoT device and controller node need to interact securely,

they need to authenticate each other. In some cases, both the IoT node and the controller

node may need the cloud service's involvement to facilitate the authentication process.

Furthermore, to support the mobility of the IoT device, there is a need to allow the

46

controller nodes under the same administrative authority to interact with each other and

cooperate to verify the authenticity of the mobile IoT devices.

This work aims to present an frameework that can establish a secure connection

between a resource-constrained device and a resource-rich controller node. We propose a

secure, lightweight mutual authentication, key exchange, and privacy preservation

framework for the IoT systems. The proposed framework integrates software and

hardware-based security approaches that satisfy the NIST IoT security requirements for

data protection and device identification [16]. We call this framework A Lightweight

Mutual Authentication and Privacy Preservation Architecture for IoT (LMAP2A). The

proposed framework can authenticate both stationary and mobile IoT devices and

authenticate both local and distributed controller nodes. The controller nodes build and

manage trust relationships with other controller nodes. We assume that the granularity

and requirements of the IoT devices may vary depending on the IoT domain.

LMAP2A is developed to be domain independent for generalized usage in IoT

environments. Based on the proposed framework, three lightweight authentication

schemes are developed to support three different IoT systems. The three different

schemes are designed to support different node mobility and distribution requirements.

A use case scenario is designed to demonstrate each scheme. The first use case is

the smart home domain, where the IoT devices are stationary and the controller node is

local. In this use case, there is direct communication between the two parties.

Establishing mutual authentication does not require the cloud service's involvement to

reduce the system latency and offload the cloud traffic as the authentication data is stored

locally on the controller unit in a secure database. The second use case is smart poultry

47

farms, an example of the Industrial IoT (IIoT) domain. In the second use case, the IoT

devices are stationary, and the controller nodes are hierarchical and distributed, supported

by machine-to-machine (M2M) communication. The third use case is the internet of

vehicles (IoV) fleet vehicles as part of the smart city domain. During the roaming service,

the mutual authentication process between a vehicle and the distributed controller nodes

that are represented by the Road Side Units (RSUs) will be completed through the cloud

service to accommodate the mobility of the vehicle as it is going to hand off from an

RSU coverage to a different one depending on its speed. To avoid the unnecessary

repetition of the authentication phase, the authentication process will be handled by the

cloud service that stores all vehicle's security credentials. After that, when a vehicle

moves to the proximity of a new RSU under the same administrative authority of the

most recently visited RSU, the two RSUs can cooperate to verify the vehicle's legitimacy.

Also, the third use case supports driver static and continuous authentication as a driver

monitoring system for the sake of both road and driver safety.

The proposed framework consists of four main phases: the enrollment phase, the

registration phase, the mutual authentication phase, and the key agreement phase.

3.3.1 LMAP2A Phases

3.3.1.1 Device Enrollment Phase

The enrollment phase is completed at the manufacturer's site before the devices

are shipped to the service provider or user. First, the manufacturer will load the devices

with a real device ID. The manufacturer will then load the device with information and a

list of the supported cryptosystem techniques. Second, a large number of Challenge-

48

Response Pairs (CRPs) associated with the device's PUF are stored in a database that is

hosted on the manufacturer's Cloud, as shown in figures 19 and 20. The manufacturer

sends random challenges to the device. Then the device processes the challenges using

PUF and replies with the corresponding responses. The CRPs and devices' real IDs are

stored in a highly secured environment. Lastly, the manufacturer stores the CRPs in the

database and the real ID of the device. The manufacturer can then repeat this procedure

as much as needed.

Figure 19: Device Enrollment Phase

Enrollment of a device

49

Manufacturer Device

1. Choose CID

 CID ∈C {set of all possible challenges}

2. Challenge CID

3. PUF processing RID = f(CID)

4. Response RID

5. Store (CID, RID) pair to a database

6. Repeat Steps 1 to 5 N times

Figure 20: Device Enrollment Process

3.3.1.2 Registration Phase

During this phase, the communicating devices are assigned their Alias IDs,

getting the Alias ID and Real ID of the other party. The communicating parties will

communicate using their pseudonym IDs. Because the dynamic pseudonym IDs will be

changed every authentication session, they will offer the anonymity of the sender's ID,

receiver's ID, and the sender-receiver relationship, in addition to device untraceability

and end-to-end flow untraceability. Other authentication parameters will be calculated as

needed. All these data are loaded into the device's memory through a secured channel.

The controller node saves this data in its database and forwards it to the cloud service if

needed.

3.3.1.3 Mutual Authentication Phase

50

During this phase, the communicating parties securely verify each other's

identities that will be sent as part of a hash function or an encrypted message. This phase

can be completed through direct communication in case the communicating parties are

stationary. Also, this phase can be achieved through the cloud service when the IoT

device is mobile and is trying to communicate with a distributed controller node.

Different lightweight cryptographic primitives such as ECDH, one-way hash function,

AES, PUF, chained hash PUF, and Exclusive-OR are utilized in this phase.

3.3.1.4 Key agreement phase

During this phase, the two parties agree on a symmetric session key to encrypt the

data exchanged. Once the mutual authentication is completed, the two sides will generate

the new shared secret key (ssk) that will be derived from the shared secret parameters as

well as the PUF challenges and their corresponding responses. AES will be used as a

symmetric encryption algorithm to encrypt and decrypt all the subsequent data that will

be sent between the communicating parties.

3.3.2 Components of the Architecture

LMAP2A consists of four layers: the physical layer, edge layer, fog layer, and cloud

layer.

3.3.2.1 Physical layer

This layer consists of IoT devices that can be resource-constrained devices or

general-purpose computing devices. All IoT nodes are equipped with a PUF, and any

attempt to tamper with the PUF will change the device's behavior and render the device

useless.

51

3.3.2.2 Edge Layer

The edge layer consists of devices that have more resources than the IoT devices.

The edge devices support different communication protocols and facilitate the

communication between the IoT devices and the fog nodes. The edge nodes are within

one/two-hop distance from the IoT nodes. Edge resources have varying ranges of

computational capabilities, from highly capable devices such as mini data centers to less

capable such as tablets or smartphones. Edge layer resources are assumed to have device-

to-device connectivity within the layer and reliable connectivity to fog layer.

3.3.2.3 Fog Layer

The Fog layer resides on top of the edge. It consists of networking devices such as

routers and switches with high computing capabilities. The fog layer acts as an

interconnecting link between the IoT devices or the edge layer on one side and the cloud

on the other side. The fog layer can perform protocol conversion and provides other

services such as data aggregation, filtering, and dimensionality reduction. The devices on

the fog layer can also act as a local repository to temporarily store sensors' generated

data, provide local processing capability, and perform data cleaning, aggregation,

analysis, and interpretation techniques because it has a local database.

3.3.2.4 Cloud Layer

The cloud layer resides on top of the fog layer. It is a consolidation of devices

such as servers with the highest computing and storage capabilities. The cloud layer in

the LMAP2A consists of the PUF cloud, where the PUF challenges and responses (CRPs)

of the devices are stored, and the service provider cloud.

52

3.3.3 How LMAP2A Address Security Challenges

Identifying the security goals serves as a first step to ensure the implementation of

an efficient and lightweight mutual authentication security operation that can fit the IoT

devices' resource-constrained nature. The following section covers the main

characteristics of LMAP2A that satisfy the security goals. All the security characteristics

of LMAP2A will be inherited to the proposed schemes. LMAP2A employs different

cryptographic techniques, as presented in figure 21.

 Figure 21: LMAP2A Security Approaches

1. Device authentication: device authentication is achieved using physical

identifier. The physical identifier is applied through Physical Unclonable

Function (PUF) technology that acts as a hardware fingerprint. A delay-based

53

arbiter PUF-is used for authentication and secret key generation. An arbiter

PUF is used as the root of trust in our architecture. From the security

perspective, the employment of PUF in the proposed framework is considered

one of the key assets.

2. Key-length Security Level: based on the current security needs, the

employed security level is AES 128-bits. Therefore, cryptographic algorithms

are chosen to satisfy this security level.

3. No storage of shared secret keys locally: the proposed framework requires

that the secret keys are not stored on the resource-constrained IoT devices.

4. No use of a trusted third party: The proposed framework does not require

the use of a digital certificate that requires the involvement of a third party

during the mutual authentication process between the IoT node and the fog

node.

5. No sharing of Shared Symmetric Key (SSK) over the network: the

proposed framework does not require an exchange of shared secret symmetric

keys over the network to be resistant against side-channel attacks. All shared

secret keys are generated locally on the devices.

6. Confidentiality: To ensure the confidentiality of the data and to be sure that

only authorized users access it, the communication is encrypted. Symmetric

cryptography can be used to achieve confidentiality. However, symmetric

cryptography requires the two parties to share the same key, and this can be

achieved by a key-establishment protocol. AES is used as a symmetric

54

cryptography technique. Elliptic curve Diffie Hellman (ECHD) is used for

key establishment. ECDH is selected because it is lightweight and requires

less computation to fit the nature of the resource-constrained IoT devices.

ECDH is an acceptable standard and has low-overhead properties.

7. Data freshness: It is achieved using timestamp and nonce to ensure the

message's freshness.

8. Data integrity: It is achieved using either one-way function SHA-256 to

ensure the message has not been altered or modified.

9. Privacy and anonymity: The proposed framework uses both a real ID and an

Alias ID for each device. The nodes' real IDs will never be released in a

cleartext format. Also, the real IDs are transferred over the network in an

encrypted format. Furthermore, the IoT Alias ID is updated for every

authentication session. Accordingly, the adversary will not be able to monitor

the activities of the IoT devices.

10. Server Impersonation: to ensure the robustness of the proposed framework

against server impersonation attacks, the server authenticates itself to the IoT

node before conducting any further steps in the authentication process.

11. Defense in Depth: the proposed framework implements the defense in depth

concept by applying the multi-factor authentication technique.

12. Heterogeneity: LMAP2A supports different security configurations that can

be implemented in different circumstances to meet the diverse needs of the

IoT devices. The configuration options support both stationary and mobile IoT

55

devices as well as local and distributed controller nodes. Also, the

configuration supports the integration of the user's static and continuous

biometrics as another authentication feature. The framework configuration

includes multiple alternatives for cryptography strength and key lifetime, the

number of authentication factors, and session keys usage. For instance, in a

high-risk environment, short-term keys can be employed to limit the damage

when an IoT node is compromised.

13. Scalability: The scalability here refers to the framework's ability to expand

incrementally to support the newly added devices and growing data volumes.

The proposed approach addresses the first problem by introducing the PHDA

to store and retrieve the CRPs of the IoT devices, which can support Over the

Air (OTA) registration on the fly to accommodate new devices to be admitted

to the system. Also, the proposed framework allows the authenticated IoT

devices to move from one controller node to another and be authenticated to

the new controller node with the help of the most recently visited controller

node.

3.4 Evaluation Process

There is strong agreement among the IoT cybersecurity research community on

how to evaluate and compare the effectiveness of the authentication frameworks using

both security analysis and performance analysis [57], [58], [59], [60], [61], [62] and [63].

We plan to use and extend this approach to measure the effectiveness of the proposed

schemes. Figure 22 provides a roadmap for the evaluation process as follows:

56

Figure 22: Proposed Framework Evaluation Process

3.4.1 Phase 1: Security Analysis

The security analysis will be conducted using both formal and informal evaluations.

The formal security evaluation assesses the proposed schemes' resistance to some of the

well-known attacks using two approaches: Burrows–Abadi–Needham (BAN) logic and a

well-known rule-based simulation called AVIPSA. To confirm and demonstrate the

results of the formal security evaluation, we will conduct informal security evaluation to

analyze in details the strength of the proposed scheme against well-known attacks using

the best practice approach. The informal security analysis will use Dolev–Yao's threat

model as a foundation. In addition, during the informal security evaluation, we compare

the proposed schemes with the other existing authentication schemes considering their

Evaluation Process

Security
Analysis

Formal
Security

Security
Verification using

BAN Logic

Security
Verification

using AVISPA

Informal
Security
Analysis

Proposed
schemes

Resilient
against well

known
attacks

Satisfies
security

properties

Proposed schemes
against related

schemes

Resilient
against well

known
attacks

Satisfies
security

requirements

Performanc
e Analysis

Computational
complexity

analysis

Storage
requirements

Communicatio
n cost

57

resistance to the well-known attacks and their satisfaction with the main security

requirements.

3.4.1.1 Informal Security Analysis

Informal security analysis is completed to investigate the robustness of the

proposed framework against the well-known security attacks and analyze its satisfaction

with the main security properties. Dolev–Yao's threat model [64] is used to identify any

security issues in any of the presented protocols. It is a powerful adversarial model that is

widely accepted as the standard by which cryptographic protocols should be evaluated.

The threat model is based on the following two assumptions:

• Cryptography is secure:

1. The adversary is not able to decrypt a message without the key.

2. The adversary can't solve the private key pairing of a public key.

3. The adversary is not able to compute HMAC without the key.

4. The adversary is not able to guess an encryption key.

5. The adversary cannot guess a random number that is chosen as part of a

 security protocol or a random number.

• The adversary can do the following:

1. Obtain any message passing through the network.

2. Act as a legitimate user of the network where he can initiate a conversation

with any other user.

58

3. Construct and deconstruct messages.

4. Become the receiver to any sender and be able to read, store, and block every

message in transit.

5. Encrypt/decrypt if the encryption/decryption key is known.

6. Manipulate any message.

7. Send messages to any entity by impersonating any other entity.

To evaluate the security of the proposed schemes, we should assume that the

adversaries are everywhere in the network. Based on the Dolev-Yao threat model, those

adversaries may eavesdrop, manipulate, inject, alter, duplicate, or re-route messages.

Therefore, the following security attacks have been considered for examination:

1. Impersonation Attack: The adversary uses a trusted user's identity and

authentication credentials to get access and send malicious messages to other

entities [64].

2. Replay Attack: is a form of network attack in which a message is intercepted and

maliciously repeated or delayed. A malicious node may repeat the data

continuously, which will cause irregular and malicious behavior in the network

[65]

3. Man-in-the-Middle Attack: is a type of attack where the attacker inserts

him/herself into the conversation and tampers with the communication between

two parties. The attacker impersonates one or both parties and gains access to the

exchanged information between the two parties. This attack takes advantage of

59

the authentication process's weakness and modifies the communication between

the communicating entities.

4. Eavesdropping Attack: This is a passive attack. The attacker successfully

accesses some secret or confidential information by listening to the

communication between the entities [65].

5. Denial of Service (DoS) Attack: it is a type of attack where a malicious node

keeps sending messages to the receiver node and negatively consumes the

network's bandwidth to negatively impact service availability [65]. In summary,

the adversary overloads the system with too many requests causing it to crash

eventually.

6. Brute-force attack: An attacker performs an exhaustive search where he or she

uses a trial-and-error method to explore all possible passwords of the user [66].

7. Side-channel attack: This type of attack enables an adversary to extract secret

keys maintained in a security system. By observing the system's timer, the

amount of power consumed by the system to respond to various queries, the

adversary can figure out how the encryption algorithm is implemented [67].

8. Modeling attack: It is an attack where the adversary collects a large number PUF

CRPs and uses a regression algorithm to build a model and predict responses for

new challenges [68].

The next step in the informal security analysis is to compare the proposed

schemes with the other existing authentication schemes considering their resistance to the

60

above-mentioned well-known attacks and their satisfaction with the main security

requirements.

3.4.1.2 Formal Security Analysis

The formal security analysis will use a theoretical analysis technique called

Burrows–Abadi–Needham (BAN) and a simulation-based engine called AVISPA.

3.4.1.2.1 Burrows–Abadi–Needham Logic

BAN logic has been widely used for the formal evaluation and verification of

authentication protocols and to provide proof of the correctness of any authentication

protocol [69]. Therefore, this dissertation employs the widely accepted BAN logic to

prove that the proposed authentication protocols provide secure mutual authentication

between the IoT node and the fog node. The following paragraph presents a summarized

introduction about the essential symbols and rules of BAN logic.

3.4.1.2.1.1 BAN symbols and rules

BAN logic is based on a set of postulates and assumptions. BAN uses three

objects: principles, encryption keys, and logic formulas. The main notations used in BAN

are described as follows:

• P|≡X: P believes the statement X.

• #(X):X is fresh.

• P|⇒X: P has jurisdiction over the statement X.

• P ⊲ X: P sees the statement X.

• P|∼X: P once said the statement X.

• (X, Y): X or Y is one part of the formula (X, Y).

61

• {X}k: The formula X is encoded/encrypted using the key K.

• <X>Y: X combined with the formula Y.

• P K Q: K is a secret parameter shared between P and Q

3.4.1.2.1.2 BAN logic's rules

The following commonly used BAN logic rules are utilized to prove that the

authentication scheme ensures secure mutual authentication and key agreement:

• Message-meaning rule: If P believes that the K is shared with Q and P sees X

combined with K, then P believes Q said X.

𝑃| ≡ P K Q , P ⊲ < X > y

𝑃| ≡ Q | ∼ X

• Nonce-verification rule: If P believes X is fresh, and P believes Q once said X, then P

believes Q believes X.

𝑃|≡#(X),P|≡Q~X

𝑃|≡Q|≡X

• Freshness- Conjunction rule: If P believes that X is fresh, then P believes that (X, Y)

is fresh.

𝑃|≡#(X)

𝑃 |≡#(X,Y)

• Jurisdiction rule: If P believes that Q has jurisdiction over X and P believes Q

believes X, then P believes X.

𝑃| ≡ Q ⇒ X, P| ≡ Q| ≡ X

𝑃 | ≡ X

3.4.1.2.2 AVISPA Tool

62

Authors in [70] introduced Automated Validation of Internet Security Protocols

and Applications (AVISPA) to validate and assess the Internet Security Protocols and

Applications. AVISPA is widely accepted as a validation simulation in the research

community [71]. Also, the authors in [71] evaluated the specifications of several

industrial-scale security protocols that are currently being drafted or standardized. In

addition, the researchers in [57], [58], [62], and [63] used AVISPA to validate the

security features of their protocols. AVISPA is a role-oriented language where each agent

plays a distinct role during the execution of the given protocol. We will implement the

proposed framework using HLPSL (High-Level Protocols Specifications Language) and

then present the simulation results. HLPSL's semantics is based on Lamport's Temporal

Logic of Actions (TLA). HLPSL is used to verify security properties such as data secrecy

and authentication in message exchanges between agents. HLPSL provides a separate

section to define the security properties, called the goal section.

This tool uses a Dolev Yao attacker model presented in section 3.4.1.1, giving the

attacker complete control over the network. In general, it can be stated that this threat

model has full control over the network. AVISPA verifies the confidentiality, integrity,

authentication of communication and data origin, anonymity, non-repudiation, and key-

management properties of a given protocol or communication exchange. This tool is a

web-based, platform-independent realization and is compatible with standard operating

systems.

The protocol is determined, whether SAFE or not, based on predefined goals. The

safety of the protocol is evaluated based on the Dolev-Yao threat model. HLPSL

specifications are automatically translated into a lower language called the Intermediate

63

Format (IF) using the HLPSL2IF translator. These translations' main goal and designing

the IF language is to offer and serve as an adequate input to the various back-end of the

AVISPA toolkit.

AVISPA integrates different back-ends implementing a variety of automatic

analysis techniques for protocol falsification by finding an attack on the input protocol

and abstraction-based verification methods both for finite and infinite numbers of

sessions. AVISPA has the following four back-end tools:

• OFMC Model Checker: The On-the-Fly Model-Checker (OFMC) incorporates

several symbolic techniques and algebraic properties to explore the state space in a

demand-driven way.

• CL-AtSe Model Checker: The Constraint-Logic-based Attack Searcher (CL-

AtSe) translates any security protocol specification written as a transition relation

in IF language into a set of constraints that are effectively used to discover any

possible attack on the protocol.

• SATMC Model Checker: SAT-based Model checker (SATMC) constructs a

propositional formula based on the Transitional state obtained from the IF

specification. The propositional formula represents any violation of the security

properties, which can be translated into an attack.

• TA4SPModelChecker: The Tree Automata based on Automatic Approximations

for the Analysis of Security Protocols (TA4SP) identifies the vulnerability of a

protocol or predicts the protocol correctness by accurate estimation of the

intruder's capabilities.

64

The architecture of the AVISPA Tool is presented in figure 23. A user interacts

with the tool by specifying a security problem - a protocol paired with a security property

that the protocol is expected to achieve in the High-Level Protocol Specification

Language (HLPSL). The HLPSL is an expressive, modular, role-based, formal language

for modeling communication and security protocols. HLPSL specifications are

automatically translated into the IF by the HLPSL2IF translator. The Intermediate Format

(IF) is a lower-level language at a lower abstraction level. These translations, in turn,

serve as input to the various back-ends that are analysis tools of the AVISPA toolset.

Figure 23 AVISPA Architecture

The entities involved in the communication process are modeled as roles with

their message exchanges. Apart from the initiator and the receiver, the environment and

the session of the protocol are also roles in HLPSL. The roles can be basic or composed

depending on if they are constituent of one agent or more. A session is created between

the roles to achieve the required message exchanges. The session also considers an

Output Format (OF)

Intermediate Format (IF)

On-the-Fly Model-Checker
(OFMC)

Constraint-Logic-based Attack
Searcher (CL-AtSe)

SAT-based Model checker
(SATMC)

Tree Automata based on
Automatic Approximations

High-Level Protocol Specification Language (HLPSL)

HLPSL2IF translator

65

intruder in the process. Finally, the environment is created for all the sessions

simultaneously.

3.4.2 Phase 2: Performance Analysis

The proposed framework implement the performance evalution to analyze the

proposed schemes and compare them with other related protocols regarding

computational complexity, communication cost and storage requirements. The

computational complexity accounts for the execution time of the crypto operations such

as one-way hash function SHA-256, xor function, HMAC, PUF response generation,

performing ECC, encryption, and decryption using ECC and AES. The communication

cost computes the size of the message in bits. The message size varies depending on the

message content. Finally, the storage requirements calculate the needed storage space on

the communicating parties.

3.5 Summary

This chapter presents the proposed framework and the proposed PUF distributed

architecture. The different phases of the proposed framework are described. The

evaluation process and the employed tools that will be implemented to evaluate the

proposed work are presented in detail. The next chapter presents a new secure,

lightweight mutual authentication scheme for stationary and mobile IoT nodes.

66

CHAPTER IV

LIGHTWEIGHT PRIVACY PRESERVATION AND MUTUAL

AUTHENTICATION PROTOCOL FOR SMART HOMES USING

PHYSICAL UNCLONABLE FUNCTIONS

With the exponential growth of IoT technology, there is an increasing demand for

secure IoT authentication protocols. Most of the currently published protocols depend on

computationally expensive mechanisms such as public-key encryption. In contrast, most

IoT devices are resource-constrained, which may not handle such security approaches.

This chapter proposes a secure, lightweight mutual authentication, key exchange,

and a privacy preservation protocol for IoT smart homes and similar environments where

both the IoT device and the controller node are stationary and within range. The

presented protocol is called Lightweight Privacy Preservation and Mutual Authentication

Protocol for Smart Homes Using Physical Unclonable Functions. This protocol adopts

the cloud-fog-device architecture.

The IoT node communicates and establishes a session with the controller node

using dynamic anonymous identity, and the two sides agree on a symmetric key in an

unlinkable manner. The protocol also sets up virtual domain segregation based on the

IoT device's type to apply the same service agreement level and enforce the same security

67

policies on similar devices. We also evaluate the proposed protocol by using different

measures, namely, security and performance evaluation. The security evaluation will be

both formal and informal. The formal analysis uses the Burrows–Abadi–Needham logic

(BAN), the automated validation of internet security protocols and applications

(AVISPA) toolkit.

Furthermore, the protocol efficiency is evaluated and compared with other related

protocols. Through the informal analysis, we will assess the proposed protocol against

well-known security attacks. We also validate the efficiency of the proposed

authentication mechanism in terms of storage requirements, computational cost, and

communication overhead.

In Section 4.1, we first introduce the motivation of the work. Section 4.2 presents

the related work and the other existing protocols. Section 4.3 demonstrates the use of case

application and proceeds with defining the requirements that act as guidelines during the

proposed protocol design. In addition, the section discusses the IoT virtual domain

segregation process. Section 4.4 presents the proposed protocol. Section 4.5 illustrates the

protocol evaluation process, and finally, section 4.6 summarizes the chapter.

4.1 Motivation

There are two types of security threats, which are passive attacks and active attacks.

In passive attacks, the adversary tries to collect data and learn about the system without

affecting its resources. This type of attack can take the form of eavesdropping or traffic

analysis. Through eavesdropping, the adversary intercepts the ongoing communication

without consent from the authorized parties. Through traffic analysis, the adversary

68

monitors traffic patterns to deduce helpful information for later use. Both attacks are hard

to detect, and therefore we focus on preventing them.

On the other hand, in active attacks, the adversary tries to alter system resources or

affect their operations. The attackers may try to modify the data stream or introduce fake

data to the system. The most common active attacks are man-in-the-middle attacks, replay

attacks, message modification, and denial of service. In a man-in-the-middle attack, the

adversary tries to be a trusted node to gain privileges. A replay attack allows the adversary

to passively capture the messages and retransmit them to produce an unauthorized effect.

The main goal of the denial-of-service attack is to interrupt the availability of the system

[72].

4.2 Related Work

In [73], the authors propose an efficient IoT device authentication protocol that

employs the keyed hash algorithm. The proposed protocol avoids the use of a certificate

authority to fit the protocol to constrained applications. The proposed protocol increases

efficiency by minimizing the number of message exchanges. The results show that the

proposed authentication protocol improves the security level and reduces devices'

resource consumption.

The author of [74] presents PUF-based algorithms for resource-constrained IoT

devices. The author uses the PUF-based algorithm for device enrollment, authentication,

encryption, decryption, and digital signature generation. The author highlights the impact

of the environmental variations under which the IoT devices will be operating and

suggests using error correction codes to overcome PUF aging. The researcher concludes

69

that the implementation of PUF based elliptic curve protocols over elliptic curves are

ideal in the IoT environment. Also, he states that elliptic curve cryptography provides

security with low computational and storage requirements. Finally, the author argues that

PUF provides low-cost tamper resistance for IoT devices.

The authors in [75] propose a lightweight mutual authentication scheme for IoT

devices. A block cipher algorithm is employed in this scheme to conduct the mutual

authentication between the IoT device and the server. The protocol requires a secret key

to be initially stored in both the IoT device and the server. A session key is dynamically

generated using this secret key. The authentication mechanism is a typical application of

encryption/decryption cryptography algorithms in authenticating IoT devices. This, in

turn, makes the IoT device vulnerable to being compromised by an adversary who has

remote access to the IoT device and uses a side-channel attack technique.

In [76], the authors present an IoT authentication protocol based on PUF. Initially,

the IoT device registers its credentials, including the device serial number and fingerprint

generated using a PUF. Then, the gateway proves the device's authenticity by matching

the device's PUF fingerprint with what is stored in the gateway's repository. The IoT

device and the gateway share an initial secret key; the IoT device stores the secret key in

its non-volatile memory. The gateway stores the secret key in its repository. The initial

secret key is used to encrypt and decrypt the initial message processes. The proposed

authentication protocol requires that the IoT device stores an initial cryptographic key in

its secure non-volatile memory to set up an initial connection with the gateway. This

proposed protocol suffers from the same vulnerability that is previously presented in [75],

70

where storing an initial secret in IoT devices can be compromised by an intruder using a

firmware side-channel attack to retrieve the secret key.

The authors in [77] introduce a mutual authentication scheme for an IoT system.

In the proposed scheme, authentication occurs between the IoT device and the server.

The scheme is based on hashing feature extraction and asymmetric cryptography. The

authors improve IoT security and decreased computation and communication costs by

combining one-way hashing using SHA1 and feature extraction. This combination helps

avoid any collision attacks. The authors conduct a security analysis and conclude that the

proposed scheme is secure for application and consumes low computation and memory

resources.

The authors in [78] propose an IoT authentication scheme for a smart home

system. The presented protocol uses elliptic curve cryptography (ECC) for authenticating

IoT devices. The proposed protocol uses a Wi-Fi gateway to complete the initial system

configuration, authenticate IoT devices, and provide a means for the user to set up,

access, and control the system through an Android-based mobile device. The protocol

facilitates the authentication between a user and an IoT device via the home gateway. The

presented protocol does not support user traceability and user anonymity.

The authors of [79] propose a mutual authentication protocol using public-key

encryption and the IoT device's capability to calculate a predesigned functional operation.

The server and the IoT device store their private key and each others’ public key. The

proposed protocol has two main weaknesses. First, the IoT device and the server store their

long-term private key, which an adversary can extract by conducting firmware attack

techniques. Second, the proposed protocol employs public cryptography, which is

71

considered computationally expensive and resource-consuming for resource-constrained

IoT devices.

The authors in [80] present a Linear Feedback Shift Register (LFSR)-based PUF.

The proposed protocol is based on generating a response to a challenge, then feeding the

response to another PUF as a challenge. The two PUF responses are connected using the

LFSR. The length of the response can be increased by increasing the number of states of

LFSR without any changes in the hardware. The proposed protocol's main weaknesses

are the complexity of the proposed design and the absence of security analysis.

The proposed protocol in [81] presents a secure authentication method using zero-

knowledge proof for a smart home environment. The presented protocol does not require

any secret key during the authentication process between the IoT device and the home

gateway. Alternatively, the gateway provides the IoT node with a number to act as a

token during the authentication phase. This token can be used later by the IoT device to

prove its authenticity to the gateway.

The author of [82] proposes a two-factor one-time password (OTP) technique

based on a lightweight identity-based ECC scheme. The proposed protocol achieves both

efficiency and security because (1) the Key Distribution Center (KDC) does not require

any key storage, and (2) it does not store the private and public keys of the other devices.

This presented protocol consumed a small amount of resources.

In [83], the authors develop a secure and efficient architecture for authentication

and authorization of resource-constrained IoT devices. The proposed architecture aims to

maintain the security, privacy, and accuracy of patient data. The presented architecture

shifts the authentication task from the remote end-user to the distributed smart e-health to

72

accommodate the medical sensors' resource-constrained nature. The proposed

architecture is based on a certificate-based DTLS handshake protocol. The architecture is

tested via a healthcare prototype structure based on Pandaboard, Texas Instruments (TI)

SmartRF06 board and WiSMotes. The CC2538 module integrated into the TI board acts

as a smart gateway, and the WiSMotes act as medical sensor nodes. The effectiveness of

denial-of-service (DoS) attacks is mitigated through the distributed nature of the

proposed architecture. The results indicate that the proposed architecture minimized the

communication burden by 26% and reduced communications latency by 16% compared

to the delegation-based architecture.

Authors in [84] introduce a lightweight and secure session key establishment

scheme for smart home environments. Both the control unit and the sensors use a token to

establish trust and a secret session key. The short authentication token ensures mutual

authentication between the IoT resource-constrained device and the control unit. The

researchers use the AVISPA tool to verify the authentication and confidentiality

attributes. Also, the proposed scheme's security analysis proved that the proposed scheme

is secure against the Dolev-Yao attack model. The performance and efficiency of the

proposed scheme are evaluated using a testbed. The results indicated that the proposed

scheme achieved security goals as expected.

Authors in [85] present a machine-to-machine mutual authentication protocol that

relies on asymmetric cryptography for resource-constrained IoT nodes in the smart home

domain. The proposed protocol enables the IoT nodes to authenticate each other and

generate a dynamic shared secret using a pseudo-random generator in every session

without any human intervention. The researchers use SPAN/AVISPA toolkit as a security

73

evaluation tool. The results indicate that the introduced protocol is resilient against well-

known attacks, such as man-in-the-middle attacks, replay attacks, and eavesdropping

attacks. However, using the pseudo-random number generator to generate the shared

session key does not provide complete randomness to the key generation process.

Additionally, the use of asymmetric cryptography does not fit the resource-constrained

nature of smart home IoT devices.

In [86], the authors introduce a new authentication scheme to authenticate

resource-constrained IoT devices in smart homes. The proposed protocol uses PUF and

Physical Key Generation (PKG) as an alternative to public-key cryptography. The system

generates a secure key based on the PUF, producing unique physical parameters for each

IoT device. The presented protocol provides secrecy and authenticity against attackers.

The authors of [87] introduce a PUF based mutual authentication scheme between

the IoT devices and the gateway using the CRPs stored inside the gateway. The protocol

enables the users to authenticate themselves with the gateway to communicate with the

IoT device using a session key generated between them. Timestamp data are used to

ensure security against replay attacks.

The authors in [57] present a lightweight mutual authentication protocol for IoT.

The researchers use physically unclonable functions (PUFs) and XOR functions to

provide security. First, the proposed authentication protocol sends the same device ID in

a hash format for every authentication session. As a result, the adversary can trace the

activities of the IoT device. Therefore, this protocol does not protect the privacy of the

IoT device. Second, during the setup phase, the server retrieves the IoT CRP's from the

manufacturer’s cloud and stores them locally on its memory. This action may lead to

74

different problems. First, the protocol is not resistant to the stolen-verifier attack [61],

where the adversary can obtain verification information stored in the server. Second, if an

adversary hacks the server, the adversary could access all the CRP's, leading to server

impersonation attacks. Third, the adversary can also use the retrieved CRP's to conduct

modeling attacks by using the available challenges and responses to build a model and

predict the responses of new challenges. Fourth, storing all the CRP's on the server's local

storage will not support system scalability because it will require vast storage space. On

another side, the presented protocol supports mutual authentication but does not support

multiple authentication sessions concurrently.

The authors in [59] propose a PUF based secure communication and key generation

protocol for IoT. The researchers use the PUF to generate the public key. The presented

protocol has multiple weaknesses. First, the protocol sends the device's real ID in cleartext,

which does not preserve its privacy. Also, it does not protect anonymity and untraceability

security features. Second, the protocol does not authenticate the server first, leading to

server impersonation attacks. Consequently, the IoT node will calculate the responses and

calculate its private and public keys without verifying the server's authenticity. Third, during

the enrollment phase, the server sends challenges to the IoT node that generates the

corresponding responses. Those CRPs are stored on the server. This technique does not

protect the system from enrolling fake devices. The protocol does not have any mechanism

to ensure that the IoT device is an authentic device and not a cloned or a fake device.

Therefore, this protocol does not protect the IoT system against counterfeiting. Fourth, the

presented protocol does not support IoT system scalability. The server stores all the CRPs

of the IoT nodes, which requires considerable storage space on the server. This, in turn, may

75

hinder the system's scalability. Fifth, the protocol is not resilient against a stolen-verifier

attack where the adversary can obtain the CRPs that are stored on the server's storage. Sixth,

the protocol is not resistant to replay attacks because the time stamp has never been updated,

and therefore, there is no way to ensure the message's freshness.

The author in [60] proposes a mutual authentication protocol using PUF, ECC, and

simple XOR functions. The presented protocol has multiple weaknesses. The author in [60]

shares three weaknesses with [59]: (1) the protocol sends the device's real ID in clear text,

which does not preserve the device privacy and also does not protect anonymity and

untraceability security features; (2) the CRPs are generated and collected during the

enrollment phase. Those CRPs are stored on the server. This technique does not protect the

system from counterfeiting, and (3) the protocol is not resistant against the replay attack

because the timestamp is a constant value during the authentication process. Therefore, there

is no way to ensure the message's freshness.

Besides, the presented protocol is subject to a brute force attack. The adversary can

capture the IoT node's first message that contains the node ID and the TS in cleartext. The

server calculates a value called h11 = h (C1 ⊕ C2 ⊕ TS), a value called C'2 =

C2⊕h(R1⊕TS⊕D2), along the same C1 in cleartext. The adversary can brute force h11 to

get the value of C2. Once the adversary succeeds in getting the value of C2, he can XOR C2

with C'2 to get h (R1⊕ TS⊕D2). Because the adversary already has D2, and TS, he can

conduct a brute force attack to find R1. This significant weakness will corrupt the

authentication process and allow the adversary to collect enough CRPs to build a model that

can be used to predict responses for new challenges.

76

The authors in [61] introduce a lightweight and privacy-preserving two-factor

authentication protocol for IoT devices. The authors use PUFs as one of the

authentication techniques and an XOR function for data encryption. The presented

protocol protects the device's privacy and ensures the anonymity of the devices. The

researchers use the reverse fuzzy extractor to eliminate the issue that occurred because of

noise during the operation of the PUF. During the setup phase, the server sends the IoT

device the PUF challenges, and the IoT device responds with the corresponding PUF

responses. Because this process is completed during the setup phase, there is no way to

verify the IoT device's originality, making this protocol vulnerable to IoT device

counterfeiting. Also, the proposed protocol stores a long-term secret key that is used as

the first authentication factor for proving the legitimacy of the IoT device on the device's

non-volatile memory. This makes the IoT device vulnerable to being compromised by an

adversary who can use firmware attack techniques to retrieve the secret key.

Authors in [62] present a mutual authentication protocol for IoT devices using

physically unclonable functions. The researchers use PUFs and message authentication

code (MAC) to build the authentication protocol. The presented protocol is a lightweight

protocol, but it uses the real identity of the IoT device while completing the

authentication phase. As a result, the adversary can monitor the activity pattern of the

IoT device. Therefore, the protocol does not protect the privacy of the IoT device.

In [63], the authors introduce a lightweight mutual two-factor authentication scheme

using PUF and hashing algorithms to secure authentication and session key agreement

between the IoT device and the server. The researchers conduct a formal analysis using

BAN logic to validate the protocol's security. They also conduct informal analysis and

77

evaluate their proposed protocol against different types of attacks. The researchers

concluded that the proposed protocol fits the needs of resource-constrained IoT devices. The

presented protocol is a lightweight protocol, but it uses the IoT device's real identity during

the authentication phase, which does not protect the IoT device's anonymity and

untraceability.

Based on the work presented above, there are common limitations that are shared

among most of the presented schemes. First, in the schemes presented in [59,60,61], the

CRPs are generated and collected during the setup phase and outside the manufacturing

process. This does not allow the opportunity to discover counterfeited devices from original

devices. Second, using PUF generates considerable interest in terms of authentication. One

of the main drawbacks that is clear in many of the protocols mentioned above [57,59,60] is

storing challenge and response pairs on the server-side. Many of the presented protocols

store the CRPs on the server storage, which can be an obstacle to system scalability. This

is a significant problem with much of the literature regarding resource-constrained IoT

devices. Third, in some of the presented protocols [57, 59, 60,62,63], the researchers

overlook the IoT devices' privacy, which does not guarantee the anonymity and privacy of

the IoT device. Fourth, the proposed protocol [61] requires storing a secret key hash on the

IoT device's memory, which can be retrieved using side-channel attacks.

4.3 IoT Smart Home Network Model and Security Goals

78

4.3.1 Smart Homes Network Model

The use case presented in this section is illustrated in figure 24. It presents a

resource-rich Intelligent Gateway (IG) node that communicates with resource-constrained

IoT devices (N) in an untrusted field. The IG is the central device and is aware of all the

nodes within its network. It is also responsible for managing the data about each node and

starting and maintaining the network. Both the IoT device and the fog node that is

represented by the controller node are stationary. The communication between the IoT

device and the controller node is subject to both active and passive attacks. In passive

attacks, the adversary can eavesdrop on the communication. In active attacks, the intruder

may replay, modify, or delete specific communication messages.

 Figure 24: IoT Smart Home Network

Fo
g

La
ye

r

C
lo

u
d

La
ye

r

P
h

ys
ic

al

La
ye

r

79

Establishing a secure communication between an IoT device (N) and an

intelligent gateway (IG) node requires a secure protocol. Authentication, key agreement,

and access control are the four critical components of the scheme that we present in this

chapter, as demonstrated in figure 25.

 Figure 25: Key Components for Secure Communication

Figure 26 describes the proposed scheme. The protocol consists of four

participants: the IoT node (N), the Intelligent gateway node (IG), the service provider

cloud, and the manufacturer cloud. The local IoT network includes IoT nodes and an

intelligent gateway (IG) that acts as the central node. The IG node oversees starting and

maintaining the network, and it is aware of all the devices' alias identities and real identities.

IoT devices can be resource-constrained devices or general-purpose computing devices.

All IoT nodes and the IG are equipped with a PUF, and any attempt to tamper with the

PUF will change the device's behavior and render the device useless. The PUF hardware

80

security primitive is used as the root-of-trust, which provides device authenticity. The IG

simply is a secured node with more resources than the IoT device.

Figure 26: The Proposed Protocol Overview

The IG supports different communication protocols and acts as a communication

point between the IoT nodes and the local Internet. It receives data from various sensors,

performs protocol conversion, and provides other services such as data aggregation,

filtering, and dimensionality reduction. The IG will support different wireless protocols

and facilitate inter-device communication. The IG also acts as a local repository to

temporarily store sensors' generated data, provides local processing capability, and

performs data cleaning, aggregation, analysis, and interpretation techniques because it has

a local database. The IoT nodes communicate directly with the IG. A trust relationship and

81

a secure communication link exist between the IG and the service provider cloud

environment. The manufacturer assigns the IoT devices and the IGs real IDs that are stored

in the device's memory. Also, the service provider gives the IoT nodes and the IG alias

IDs.

The proposed scheme ensures data confidentiality by encrypting the exchanged

messages using the AES algorithm with a 128 bits key length as recommended by NIST

[16]. In addition, a one-way cryptographic hash function with a 256 bits length is used to

validate and ensure the integrity of the data transmitted between the two devices.

The IoT node will be given two different options for generating a shared secret

session key during the authentication process to add more flexibility to the proposed

protocol and accommodate IoT nodes with diverse computational resources. The IoT node

will select the option that is suitable to its resources and the security requirements.

The proposed protocol supports IoT devices' dynamic addition to the network

without causing any changes in the network's present security states. Adding a new IoT

device is controlled by the capabilities and the available resources of the IG, which is

assumed to be a powerful device because it stores separate information for each IoT device

in the network.

4.3.2 IoT Virtual Domain Segregation

To apply security policies that fit the needs of the different IoT devices, the

proposed protocol uses virtual segregation among the IoT devices. The IoT network is

virtually partitioned based on the type of the IoT device. The segregation process will

help the IG to control the communication process in the IoT network.

82

 Virtual segregation is an essential factor to secure the IoT network so that the

same policies and security rules can be applied on the IoT devices of the same type

regardless of

Figure 27: Virtual Domain Segregation Based on Device Type

where they are located. For example, as in figure 27, all motion sensors are in the same

virtual domain. The same is for the glass breaking sensors and lighting sensors. Each IoT

device is assigned a virtual domain ID(VID) and Type ID(TID) during the registration

phase.

4.4 Proposed Scheme: Lightweight Privacy Preservation and Mutual

Authentication Protocol for Smart Homes Using Physical Unclonable Functions

This section presents a lightweight mutual authentication and key agreement

protocol for stationary IoT devices. The abstract notations used to describe the

authentication protocol are listed in Table 2. The proposed protocol is based on LMAP2A

83

architecture that is presented in chapter 3. An IoT node (N) and an Intelligent gateway (IG)

are responsible for ensuring secure, anonymous mutual authentication and key exchange

in the proposed protocol. The proposed protocol consists of four phases: the enrollment

phase, registration phase, mutual authentication phase, and the key generation phase.

Depending on how the IoT node will choose to generate the session key, the key generation

phase can be executed in two different ways.

The enrollment phase will be completed during manufacturing. The Authoritative

entity will be in charge of completing the registration phase. Both the mutual authentication

and the key generation phases will be conducted between the IoT device and the IG without

any human involvement. The two parties are responsible for ensuring secure, anonymous

mutual authentication and key generation. The relationship between the IoT devices and

the IG is based on the client-server topology. It is assumed that the two communication

parties can have direct communication with each other.

4.4.1 Enrollment Phase

The enrollment phase is completed during the manufacturing process. The

manufacturers will assign a real ID to every IoT device and every intelligent gateway. Also,

the manufacturers will collect a set of CRPs for each IoT device and each intelligent

gateway during the enrollment phase. The manufacturers will test all the CRPs under

different temperature and voltage conditions and consider the aging effects to keep only

the error-free CRPs [[37]. Then, the manufacturers will load the CRPs of the IoT devices

and the intelligent gateways to the cloud of their service providers. The service provider

containers are part of the PUF architecture that is presented in Chapter 3.

84

Table 2: Notations Used in the Proposed Scheme

Notation Description

Authoritative Entity AE

IoT node N

Intelligent Gateway IG

NIDR IoT Node Real ID

NIDA IoT node Alias ID

IGIDR Intelligent Gateway Real ID

IGIDA The intelligent Gateway Alias ID

OTP One-time password

VDIDN IoT node virtual domain ID

TIDN IoT node Type ID

RVN The random value generated by the IoT

node

RVIG The random value generated by the IG

Auth1,Auth2, and Auth3 Authentication parameters

TSN Timestamp generated by the IoT node

TSIG Timestamp generated by the IG

PUF Physical unclonable function

C PUF Challenge

R PUF Response

PubN IoT device public key

PrivN IoT device private key

PubIG Intelligent gateway public key

PrivIG Intelligent gateway private key

OTPnew New OTP

NIDANew N new alias ID

85

SSK Shared secret session key

{}_ Encryption

H Hash function

⊕ Bitwise xor operation

4.4.2 Registration Phase

The main goal of this phase is to register the IoT device. Before operation in the

field, the Authoritative Entity (AE) will complete multiple tasks, as described in figure

28. First, The AE will assign the IoT node (N) an Alias identity (NIDA), virtual domain

ID(VDIDN), and type ID (TIDN). NIDA will be a fake ID that the IoT node will use to

communicate with the IG. NIDA will be dynamically changed in every authentication. The

goal of the NIDA is to protect and ensure the unlinkability and untraceability of the IoT

devices.

Additionally, the NIDA supports the anonymity of the node in each session. VDIDN

refers to the virtual domain that N belongs to, and the TIDN indicates the type of the IoT

device. Then the AE will use N's different ID's and the real ID of the IG to generate three

authentication parameters, which are Auth1 and Auth2, and Auth3 using a one-way hash

function and XOR operations.

 Second, the AE will use a random number generator to generate a one-time

password (OTP) between N and the IG. Once N is registered, both N and IG will generate

the OTP during every authentication session without any human involvement.

86

Third, the AE will retrieve CRP (CIG, RIG) of the IG from the PUF cloud. Fourth,

the AE will insert and store NIDR, NIDA, the VDIDN, the TIDN, and the OTP in the IG's

database and store Auth1, Auth2, Auth3, OTP, NIDA, RIG, and IGIDA in N's memory.

Figure 28: Registration Phase

The real identities of both the IoT node and the IG represent secure parameters

between the IoT node and the IG. The NIDR and the IGIDR will never be transmitted in a

plain text format and will be used during the authentication process between the IoT node

and the IG.

4.4.3 Mutual Authentication Phase

This phase includes implementing the two-factors authentication process and the

agreement on the technique of generating the secret session key (ssk) between the IoT

Step 1: The AE assigns an Alias ID to N

Step 2: The AE assigns N to its appropriate virtual domain and generates a VDIDN to the N.

Step 3: The AE generates and assigns a TIDN to each N based on its type

Step 4: AE communicates with the PUF cloud to retrieve a CRP (CIG, RIG of the IG.

Step 5: The AE calculates the three parameters using the VDIDN, TIDN, and the RIG: Auth1,

Auth2, and Auth3 as follows:

 Auth1: H (NIDR || IGIDR||RIG)

 Auth2: H(Auth1 ||IGIDR ||VDIDN)

 Auth3: H (Auth2|| IGIDR ||TIDN)

The VDIDN, the TIDN, and the RIG are only used to create Auth1 Auth2 and Auth3. Both the

VDIDN and the TIDN are only stored on the IG database. The IoT node does not know anything

about those two IDs and the RIG. The CIG is only stored on the IG database, and RIG is

unknown to both the IoT node and the IG because the IG will generate it on every

authentication session. Using these two IDs to generate the authentication parameters makes it

almost impossible for an adversary to identify any IoT node's VDIDN and the TIDN. Also, using

the RIG makes it impossible for an adversary to impersonate the IG.

Step 6: The AE generates a one-time token (OTT) that will be used as part of a one-time

password (OTP) using a random number generator

Step 7: The AE stores the Auth1, Auth2, Auth3, NIDA, IGIDA, and OTP in the IoT device

database.

Step 8: The AE inserts the NIDR, NIDA, IGIDA, PubIG, VDIDN, OTP, CIG, and TIDN of the IoT node

in the IG database.

87

node and the IG. The ssk will be generated either by employing a hash function or using

the Elliptic Curve Diffie Hellman Key exchange protocol.

This phase includes implementing the two-factor mutual authentication using the

PUF, one-way hash function, bitwise XOR operation, and symmetric encryption. The

security of exchanged messages in this phase is ensured by encrypting the messages

using the AES algorithm with a 128-bit key length. Besides, a one-way cryptographic

hash function with a length of 256 bits is used to validate and ensure the integrity of the

transmitted data between N and the IG.

During this phase, the two sides negotiate the session key generation technique.

The two sides will agree to either generate the session key by using a one-way hash

function or by using Elliptic Curve Diffie Hellman Key Exchange Protocol (ECDH). The

ECDH Key Exchange is a key-agreement protocol that can be used for deriving a shared

secret key [20]. Figure 29 describes the ECDH key exchange process.

N IG

Choose α = PriN, 1< α <n-1

Compute PubN ≡ αG mod p
 PubN

Choose: β = PriIG, 1<β<n-1

Compute: PubIG ≡ βG mod p

 PubIG

 ssk = PubIG α ssk = PubN β

Figure 29: Elliptic Curve Diffie Hellman Key Exchange Protocol

As presented in figure 30, this phase starts when N prepares the connection

request message that will be sent to the IG. The preparation process of this message

includes the following steps:

88

1. N generates a new TSN1 to avoid replay attacks

2. N Computes NX1

a. NX1 = H (Auth3|| OTP)

3. N selects a random parameter RVN and then calculates NX2

a. NX2 = XOR (RVN1, NX1)

4. N computes SN = H (NIDR|| NX1 ||TSN1 || RVN 1)

5. N sends a connection request message.

The connection request includes NIDA, TSN1, X2, and SN, as shown in 4.1.

N IG Conn-Req (NIDA, TSN1, NX2, SN) (4.1)

89

Figure 30: The Proposed protocol authentication process between N and IG

N IG

Generate: TSN1, RVN1

Compute:

NX1 = H (Auth3|| OTP)

NX2 = XOR (RVN1, NX1)

SN = H (NIDR|| NX1 ||TSN1 || RVN 1)

 M1: (NIDA, TSN1, NX2, SN)

 Check:|TRec−TSN11 |< ∆T

 Find: NIDA

 Read: NIDR VDIDN, TIDN, CIG, and OTP

 Compute:

 RIG = PUF(CIG)

 Auth1’ = H ((NIDR || IGIDR|| RIG)

 Auth2’ = H (Auth’1 ||IGIDR || VDIDN)

 Auth3’ = H (Auth2’|| IGIDR || TIDN)

 X1’ = H (Auth2’ || Auth3’|| OTP)

 RVN1’ = XOR (X2, X1
’)

 Verify: SN’ = H (NIDR|| X1’|| TSN1’ || RVN1
’)

 Generate: RVIG1, TSIG1, SID

Computes:

 G1 = H (Auth1’|| OTP|| RVN1’)

 CX = C1 ⊕ G1

 G2 = H (IGIDR||C1 || RVIG1 || TSIG1|| G1)

M2: (IGIDA, SID, TSIG1, CX, {RVIG1, G2} _R1)

Check:|TRec−TSIG1 |< ∆T

Compute:

G1’ = H (Auth1|| OTP|| RVN1)

C1’ = G1’ ⊕ CX

R1’ = PUF(C1’)

Verify

G2’= H (IGIDR||C1’ || RVIG1 || TSIG1|| G1’)

Generate: RVN2, TSN2

Compute

OTPnew= H (OTP|| CNI|| TSN2)

NIDAnew = H (NIDA || RVIG1)

N3 = H (TSN2||RVN2||OTPnew || NIDAnew ||RVIG1)

 M3: NIDA, SID. TSN2, {RVN2, N3}R1)

 Check:|TRec−TSIG1 |< ∆T

 Compute:

 OTPnew= H (OTP|| CNI|| TSN2)

 NIDAnew = H (NIDA || RVIG1)

 Verify:

 N3’ = H (TSN2||RVN2||OTPnew’ || NIDAnew
’ ||RVIG1)

 Store (OTPnew’, NIDAnew
’)

90

Once the IG receives the connection request, it will complete the following steps:

1. IG checks the validity of the received timestamp |TRec−TSN11 |< ∆T. TRec is

the time when the message is received, and ∆T is the maximum transmission

delay. The message will be dropped if the difference between the timestamp

and the time when the message is received higher than the expected maximum

transmission delay.

2. IG retrieves from its database the NIDR that corresponds to its NIDA. If the IG

did not find the NIDA in its database, it will ignore and drop the connection

request.

3. Once the IG finds the NIDR, it will retrieve it along with the VDIDN, TIDN, CIG,

and OTP of N.

4. The IG passes the challenge CIG to its PUF function and generates a response

RIG

5. The IG uses the generated RIG to compute Auth1' by applying a one-way hash

function, as described in 4.2. Based on the calculated Auth1', the IG calculates

Auth2' as presented in 4.3. Also, the IG calculates Auth3' by using Auth2' as

presented in 4.4.

Auth1’ = H ((NIDR || IGIDR|| RIG) (4.2)

Auth2’ = H (Auth’1 ||IGIDR || VDIDN) (4.3)

 Auth3’ = H (Auth2’|| IGIDR || TIDN) (4.4)

6. The IG computes X1’ = H (Auth2’ || Auth3’|| OTP)

91

7. The IG computes the RVN1’ = XOR (X2, X1
’)

8. The IG uses the calculated X1’, TSN1
'
, NIDR, and the RVN1' to generate SN',

which is a combination of NIDR, X1’, TSN1', the RVN1' using a one-way hash

function as shown in figure 31. If the computed value is equal to the received

value, the IG accepts the connection request; otherwise, it will drop it.

Figure 31: IoT Node Message Verification

Once the IG verifies the IoT node, the IG communicates with the Grand PUF

node to retrieve the PUF challenge (CNI) and their corresponding PUF responses (RNI)

through a secure communication channel. The IG will generate a random value RVIG, a

session ID to distinguish one session from the rest of the running sessions

simultaneously, and a timestamp TSIG1. The preparation process of the connection

response message includes the following steps:

1. IG selects a random parameter (RVIG1)

2. IG generates a new timestamp (TSIG1)

3. IG generates a session ID(SID)

4. IG computers G1 = H (Auth1’|| OTP|| RVN1’)

5. IG calculates CX = CNI ⊕ G1

6. IG calculates G2 = H (IGIDR||CNI || RVIG1 || TSIG1|| G1)

SN’ = H (NIDR|| X1’|| TSN1’ || RVN1
’)

If SN = SN' Then

The IG will accept the connection request

Else

The IG will drop the connection request

92

7. IG sends a connection response message

The connection response includes IGIDA, session ID(SID), TSIG1, RVIG1, CX, and G2, as

shown in 4.5. The message is encrypted by RNI because it is a secured parameter between

the N and the IG

 IG N Conn-Res (IGIDA, SID, TSIG1, CX, {RVIG1, G2}R1) (4.5)

Once N receives the connection response, it completes the following steps:

1. N checks the validity of the received timestamp |TSRec−TSIG1 |< ∆T. TRec is

the time when the message is received, and ∆T is the maximum transmission

delay. The message is dropped if the difference between the timestamp and

the time when the message is received higher than the expected maximum

transmission delay.

2. N retrieves from its database IGIDR that corresponds to its IGIDA. If N did not

find the IGIDA in its database, it will ignore and drop the connection response

8. N computes G1’ = H (Auth1|| OTP|| RVN1)

3. N calculates CNI’ = G1’ ⊕ CX

4. N computes RNI’ = PUF(CNI’)

5. Then N will use RNI' to decrypt the message to retrieve RVIG1 and G2

6. As presented in figure 32, N calculates G2'using a one-way hash function and

compares the generated G2' with the received G2. If the two values are the

same, N will accept the connection response and authenticate the IG;

otherwise, it will drop it.

93

G2’= H (IGIDR||CNI’ || RVIG1 || TSIG1|| G1’)

 If G2 = G2’Then

Then N will accept the connection response.

Else

N will drop the connection response

Figure 32: Evaluating the IG Authentication Parameter

After ensuring the correctness of the G2' and verifying the integrity of the sent

message, N completes the following steps:

1. N generates the TSN2

2. N generates the RVN2

3. N computes new OTP(OTPnew) = H (OTP|| CNI|| TSN2)

4. N computes a new alias ID(NIDAnew) = H (NIDA || RVIG1)

5. N computes N3 = H (TSN2||RVN2||OTPnew || NIDAnew ||RVIG1)

6. N selects its technique to generate the session key. N will send either T1 or T2.

a. If N decides to use a hash function to generate the session key, it will

send to the IG the hash function that it will use.

b. If N decides to use ECDH to generate the session key, N derives its

private and public keys using the ECC public domain parameters. N

selects a random secret key and calculates the corresponding public key

as Gα .

7. N sends to the IG a message containing RVN2, TSN2, and Nthree. Also, N will

send either the hash function as shown in 4.6a or the public key as shown in

4.6b that will be used to generate the session key. The message will be

encrypted by the RNI

94

 N IG NIDA, SID. TSN2, {RVN2, N3, SHA256} R1) (4.6.a)

N IG NIDA, SID, TSN2, {RVN2, N3, G
α} R1) (4.6.b)

Upon receiving N's message, IG completes the steps involved in this process, as

listed below.

1. IG verifies the TSN2. . IG checks the validity of the received timestamp

|TSRec−TSN2 |< ∆T. TSRec is the time when the message is received, and ∆T is

the maximum transmission delay. The message is dropped if the difference

between the timestamp and the time when the message is received higher than

the expected maximum transmission delay.

2. IG decrypts the message using the R1.

3. IG computes new OTP(OTPnew) = H (OTP|| CNI|| TSN2
’)

4. IG computes a new alias ID(NIDAnew) = H (NIDA || RVIG1)

5. IG computes the N3, which combines TSN2, RVN2, OTPnew, NIDAnew, and

RVIG1. If the calculated N3 equals the received N3, the IG will accept the

message and authenticate N; otherwise, it will end the session as presented in

figure 33. Also, the IG will store OTPnew and NIDAnew in its memory for the

next authentication session.

Figure 33: IoT Node Authentication Process

N3’ = H (TSN2
’||RVN2

’||ssk’|| OTPnew’ || NIDAnew
’ ||RVIG1)

If N3' = N3 Then
Integrity and authenticity are proved, and The IoT node will be

authenticated

Else

The IG node will end the session

95

4.4.4 Key Generation Phase

Once the mutual authentication is completed, the two sides will generate a shared

secret session key (ssk) using the technique they agreed upon during the authentication

phase.

Suppose the two sides agreed on using the hash function to generate the ssk. In

that case, the two sides will generate the ssk locally by hashing a combination of the PUF

responses and the generated random values as presented in 4.9. and figure 34 The

uniqueness of the PUF responses ensures the uniqueness of the generated ssk.

ssk = H (RNI
’ || CNI|| RVN1

’||RVIG1|| RVN2
’) (4.9)

If the two sides decided to use ECHD to generate the ssk, the two sides would

generate the ssk as presented in figure 35. AES will be used as a symmetric encryption

algorithm to encrypt and decrypt all the subsequent data that will be sent between N and

the IG.

If the key generation phase gets disrupted and the connection gets terminated for

any reason, the IoT device and the IG will have to repeat the entire mutual authentication

steps.

Figure 34: The Process of Generating ssk Using Hash Function and CRPs

96

Figure 35: The Process of Generating ssk Using ECDH

The algorithm for the proposed mutual authentication mechanism is shown in detailed

steps in figure 36.

Algorithm 1 The mutual authentication between IoT device and the IG

Input:

An IoT device with real identity (NIDR), alias identity (NIDA), IG real identity (IGIDR), IG

alias identity (IGIDR), Authentication parameters (Auth1, Auth2, and Auth3), G, and one

time password (OTP).

IG with with real identity (NIDR), alias identity (NIDA), IG real identity (IGIDR), IG alias

identity (IGIDR), the virtual domain ID(VIDA) and type ID (TID) of the IoT node, G, PUF

challenge (CIG), and one time password (OTP).

Output:

 Mutual authentication between the IoT device(N) and the IG.

Begin

1. The IoT device generates a random nonce RVN1, a timestamp TSN1, computes the

(XN1) H (Auth3, OTP), NX2 , xor(RVN1,NX1), and (SN) H(XN1,TSN1,RVN1,NIDR).

2. IoT device sends (NIDA, TSN1, XN2, SN) message to the server.

3. If (the IG finds NIDA in its repository) then

4. The IG retrieves NIDR, OTP, VIDA, CIG, and TIDA that belongs to the NIDA from

 its repository to its memory.IG passes the challenge CIG to its PUF function and

generates a RIG.

5. The IG calculates Auth1
’, Auth2’, and Auth3’. Then the IG computes NX1,

retrieves the RVN1 from XORing NX1 and NX2 and finally calculates SN’

 H (NX1, TSN1, RVN1, NIDR) message.

97

6. If (the calculated hash message in step 6 matches the hash message that was

In step 2) then

7. The IG communicates with the Grand PUF node to a CRP,

generates a timestamp TSIG1, generates a random nonce RVIG1, calculates the

hash value (G1) H (Auth1, OTP, RVN1) , computes (CX) xor(C1,G1) and

generates (G2) H (G1C1TSIG1, RVIG1, IGIDR);

8. The IG sends IGIDA, SID, TSIG1, CX, {RVIG1, G2}R1 message encrypted by R1

to N;

9. else

 Go to step 24;

 end if

10. else

Go to step 24;

11. end if

12. N verifies the time stamp, calculates G1’ to retrieves C1 from CX. N applies the

PUF function to calculate R1 for C1. .N uses R1 to decrypt the received message

and retrieves RVIG1 and G2. N generates G2’ H (G1, C1, TSIG1, RVIG1, IGIDR);

13. If (the calculated hash message in step 12 matches the hash message that was sent

in step 9) then

The authenticity of the IG is verified

14. N generates a timestamp TSN2, a random nonce RVN2, a private key(PRIVN) and

calculates its corresponding public key(PubN) using the ECC algorithm.

15. N computes new OTP(OTPnew) = H (OTP|| CNI|| TSN2)

16. N computes a new alias ID(NIDAnew) = H (NIDA || RVIG1)

17. N computes N3 = H (TSN2||RVN2||OTPnew || NIDAnew ||RVIG1)

18. N sends NIDA, SID, TSN2, {RVN2, PubN, N3}R1 message encrypted by R1 to

IG;

19. else

 Go to step 24.

end if

20. The IG verifies the TSN2, decrypts the message using R1 and generates (N3’) H

(TSN2
’||RVN2

’||ssk’|| OTPnew’ || NIDAnew
’ ||RVIG1)

21. If (the calculated hash message in step 20 matches the hash message that was sent

in step 18 then

98

 The authenticity of the IoT device is verified.

22. Mutual authentication between the IoT device and the server is established.

23. else

Go to step 24.

End if

24. Stop (terminates the connection).

 End

Figure 36: Algorithm 1 The mutual authentication between IoT device and the IG

4.5 Evaluation Process

The following section presents a detailed security and performance analysis of the

proposed protocol and compares the analysis results with other related schemes presented

in the literature.

4.5.1 Security Validation of the Proposed Protocol

In this section, we conducted both formal and informal security analysis. The

formal evaluation uses two different approaches. The first formal evaluation approach is

simulation-based by using the AVISPA tool to ensure that the proposed scheme is secure

against active and passive attacks such as replay attacks and man-in-the-middle attacks.

The second evaluation approach theorem proving-based uses Burrows, Abadi, and

Needham (BAN) belief logic of authentication to confirm that the authenticated

participants share the session key and the generated one-time password (OTP) securely in

the proposed scheme. The BAN logic can be used as an illustrative method of the

essential concepts of an authentication protocol and as a basic verification tool for a

security protocol. After completing the formal evaluation, we conduct an informal

99

security evaluation by examining the proposed protocol against the well-known attacks

and prove that the proposed protocol satisfies the main security properties.

4.5.1.1 Formal Security Evaluation

4.5.1.1.1 Simulation-based Security Verification Using AVISPA

The proposed protocol is simulated and tested using the AVISPA software, a

widely accepted tool for automatically validating the protocols' security features. The

messages involved in the cryptography and security of the authentication process are

taken into consideration.

4.5.1.1.1.1 Simulation Overview

The abstract notations used to describe the authentication protocol and the

corresponding AVISPA HLPSL scripting variables/functions are presented in table 3.

Also, table 4 shows the symbols that are used in AVISPA HLPSL scripting.

Table 3: Abstract Notation and AVISPA HLPSL Scripting Variables/Functions for

Protocol Specification

Notation Description

AE AE

N N

IG G

SID SIDNIG

NIDR NIDR

100

NIDA NIDA

IGIDR IGIDR

IGIDA IGIDA

Auth1, Auth2,Auth3 T,X,Y

TSIG TSoneIG,TstwoIG

TSN TsoneN,TstwoN

RVN1 Na

RVN2 Naa

RVIG1 Nb

TIDN TIDN

VDIDN VDIDN

R1, R2 Rone,Rtwo

RIG RG

C1, C2 Cone,Ctwo

CX CX

N1, N2, N3 None,Ntwo,Nthree

G1, G2 Gone,Gtwo

101

PubN Exp (GX,Pn)

PubIG IG_pub

NIDAnew NnewIDA

OTPNew NOTP

⊕ XOR

H H

Table 4: Symbols for Protocol Specification

Symbol Meaning

‘ The variable is locally computed by the

agent.

/\ Logical AND

{} Encryption

The main goals of the simulation are as follows:

1. Goal 1: The secrecy_of secNIDR represents that the NIDR is permanently

kept secret, known to only (N and IG).

2. Goal 2: The secrecy_of secOTP represents that OTP is kept secret to (N, IG)

only.

3. Goal 3: The secrecy_of secNa represents that Na is kept secret to (N, IG) only.

102

4. Goal 4: The secrecy_of secNb represents that Nb is kept secret to (N, IG)

only.

5. Goal 5: The secrecy_of secIGIDR represents that the IGIDR is permanently

kept secret, known to only (N and IG).

6. Goal 6: The secrecy_of secRone represents that Rone is kept secret to (N, IG)

only.

7. Goal 7: The secrecy_of secCone represents that Cone is kept secret to (N, IG)

only.

8. Goal 8: The secrecy_of secNaa represents that the secret key Naa is

permanently kept secret, known to only (N and IG).

9. Goal 9: The secrecy_of secNOPT represents that NOPT is permanently kept

secret, known to only (N and IG).

10. Goal 10: The secrecy_of secRG represents that RG is permanently kept secret,

known to only (N and IG).

11. Authentication Property 1: The authentication_on Nb represents that IG

generates Nb. If N securely receives Nb through a message, it authenticates

IG.

12. Authentication Property 2: The authentication_on Na represents that N

generates Na. If IG securely receives Na through a message, it authenticates

N.

To achieve the goals mentioned above, we wrote the HLPSL script for the

protocol. The entities involved in the communication process are modeled as roles with

103

their message exchanges. There are four defined roles: that are: (1) role_N that is played

by the IoT node; (2) role _IG that is played by the Intelligent gateway; (3) session, where

the session role and all its declarations are defined, and (4) environment, which

instantiates all agents, variables, and functions. When the agent locally computes the

variable, it is marked as primed (’). Also, the symbol /\ presents the conjunction (logical

AND). Notice that { }_denotes the encryption where the encryption key is identified

following a _ .

Figure A_1 in Appendix A shows the role of the Node N played by N. N is aware

of the N and IG agents in the protocol, and its alias identity and the IG alias identity.

Also, it is aware of its own real identity and the IG real identity that should be kept

secured. Furthermore, N is aware of the authentication parameters T, X, Y, the OTP

generated by the AE, the hash function H (·), and the send/receive channels Snd/Rcv. The

(dy) notation indicates that the channels are following the Dolev-Yao model.

At the first state, “state 2,” N receives a start message “Rcv(start)” as a signal to

begin the protocol run. All local variables are declared under the local section. N

generates new random values (TSoneN and Na) and computes None, Ntwo, and SN. The

computation process of the None, Ntwo, and SN follows the presented protocol

description. N sends (NIDA, TSoneN, Ntwo, SN) to the IG.

At the second transition, “State 4”, N receives the (IGIDA, SIDNIG, TSoneIG,

{CX, Gtwo} R1) message from the IG encrypted by R1. The computation TG, Gone,

Cone, and Gtwo follows the description of our protocol. At this transition, if the Gtwo

appears as expected by N, N authenticates the IG. After authenticating the IG, N

generates TStwoN and Naa. Also, N computes NOTP, NnewIDA and Nthree. The

104

computation process of Nthree follows the presented protocol description. Based on the

negotiation agreement regarding the algorithm that will be used to generate the session

key, N will generate its public key and send it to the IG as part of the message. The “end

role” at the end of the N role denotes the end of the role Node played by N.

Figure A_2 in Appendix A shows the role of the Intelligent Gateway played by

IG. The IG is aware of all agents in the protocol N and IG, its alias and real identities

(IGIDA, IGIDR), the alias and real identities (NIDA, NIDR) of the N node. IG knows its

public key (IG_pub), the OTP, the virtual domain of the IoT device VDIDN, the type of

the IoT device TIDN, the challenge (CG), the hash function H (·), and the send/receive

channels Snd/RcvAll local variables are defined under the local section.

At the first transition, “State 1”, IG receives the (NIDA, TSoneN, Ntwo, SNG)

message which is sent by N. IG uses the N’ alias ID to retrieve its NIDR, VDIDN,

TIDN, OTP, and CG. Once the IG verifies SNG, it will generate a fresh value Nb and a

TSoneIG. IG will compute TG, Gone, CX, and Gtwo according to the description of the

introduced scheme. Then the IG will send to N (IGIDA, SIDNID, TSoneIG, CX, {Nb,

Gtwo} R1) encrypted by R1. At the second transition, IG receives (SIDNIG.TStwoN'

{Naa'.exp(GX,Pn').Nthree'}_R1. The IG decrypts the message using R1. Then it will

compute NnewIDA and NOPT and verify Nthree in accordance with the description of

the presented protocol. The “end role” at the end of the IG role denotes the end of the role

Node played by IG.

Figure A_3 in Appendix A shows the session role where the two agents’ roles are

invoked, and all the session parameters are defined. First, all known constant parameters

and their declarations are presented. The predefined constants are T, X, Y, NIDA, NIDR,

105

IGIDA, IGIDR, GX, CG, OTP, VDIDN, and TIDN. IG_pub is defined as a public key,

and H is defined as the hash function. In the composition section, each agent's role is

invoked along with its constant values and functions. For example, The G role is invoked

with N and G as agents, NIDA, NIDR, IGIDA, IGIDR, VDIDN, TIDN, GX, CG, and

OTP and as predefined constants, IG_pub as a public key, H as the hash function, and

SND2 and RCV2 as the send and receive channels for G. Similarly, N role is invoked in

the same manner. The “end role” at the end of the session role indicates the end of this

role.

Figure A_4 in Appendix A shows the environment role. In this role, one or more

sessions are instantiated. First, all constants are instantiated and defined. The constants n,

and g are instantiated as agents representing agents N, and G. The ig_pub instantiates the

public key IG_pub. The constants t,x,y, nida, nidr , igida , igidr, vdidn, tidn,otp, gx and

cg instantiates T, X, Y, NIDA, NIDR, IGIDA, IGIDR, VDIDN, TIDN, OTP, GX and

CG, respectively. The function h instantiates the hash function H. The protocol identifiers

secNIDR,secOTP, secNa,secIGIDR, secNb, secRone, secCone ,secNaa,secNOTP,secRG,

na, and nb are also instantiated and defined. In the intruder knowledge section, all

relevant values that the intruder is assumed to know before the execution are provided.

The attacker is assumed to know n and g. He/ she is also assumed to know ig_pub, gx,

and the hash h. The session is instantiated with n, g, n,g,t,x,y, nida, igida, nidr, igidr, gx,

otp, cg,ig_pub, and h instances in the composition section. The “end role” at the end of

the environment role denotes the end of this role.

Figure A_5 in Appendix A shows the simulation goals which are declared under

the “goal” keyword using the protocol identifiers declared as ‘protocol_id’. The simulator

106

is dictated to check the secrecy NIDR, IGIDR, T, X,Na,Nb,Rone,Cone, Naa, RG and

NOTP at different states using ‘secrecy_of secNIDR’, ‘secrecy_of secOTP’, ‘secrecy_of

secNa’, ‘secrecy_of secNb, ‘secrecy_of secIGIDR’, ‘secrecy_of secRone’, ‘secrecy_of

secCone’, ‘secrecy_of secNaa’, ‘secrecy_of secNOTP’, and ‘secrecy_of secRG’. The

authentication is checked using ‘authentication_on na and ‘authentication_on nb’. The

“end role” at the end of the goal section denotes the end of this role.

4.5.1.1.1.2 Simulation results

The simulation results of the proposed scheme are based on OFMC and CL-AtSe,

which are considered two widely accepted backend model checkers to check and verify

that the protocol meets the specified security goals [71]. These backends help in the

automatic execution analysis of the security protocols. OFMC and CL-AtSe were used

because they support the bitwise XOR operation. OFMC and CL-Atse are multipurpose

automatic model analyzers for testing how efficient the security of the cryptographic

protocols. OFMC and CL-Atse receive an input a protocol described by a set of rules

generated by the AVISPA compiler and decide If an attack exists based on the Dolev-

Yao intruder threat model [88]. A security protocol animator (SPAN) is used to build a

Message Sequence Chart (MSC) of the protocol execution from the outlined HLPSL

specification. Moreover, SPAN automatically creates attacks on HLPSL specifications

using the well-known “Dolev-Yao” intruder model. The SPAN protocol simulation’s

MSC corresponding to our HLPSL specification is shown in Figure 37.

107

Figure 37: Snapshot of the protocol simulation in AVISPA

In AVISPA tool, the security properties such as authentication, integrity, and

secrecy are specified in a separate section. Therefore, when SPAN is executed, it verifies

if the protocol satisfies the specified properties. SPAN generates an attack trace if an

attack is found, and it will consider the protocol unsafe. The presented protocol's

simulation results are achieved by the OFMC back-end checker and the CL-AtSe back-

end checker. Figure 38 shows the CL-AtSe back-end checker report, which guarantees

that the protocol is SAFE and satisfies all the specified security goals. Figure 39 presents

the OFMC back-end checker report shows that the protocol is SAFE, thus meeting the

defined security goals. In summary, we can conclude that the proposed protocol is secure.

108

Figure 38: CL-AtSe Summary Report

Figure 39: OFMC Summary Report

4.5.1.1.2 Formal Proof Based on BAN Logic

109

This section uses BAN logic to verify the legitimacy of the shared secret session

key (ssk) and the new OTP (OTPnew) shared between N and IG. To ensure the security

of the proposed protocol under BAN logic, it needs to satisfy a set of security goals. The

following section defines the main goals of the analysis of the presented authentication

scheme.

4.5.1.1.2.1 Goals Identification

Goal 1: The N and the IG want to establish a secret shared session key (ssk) that is

believed by both, respectively.

G 1_1: N believes that the IG believes that the ssk is a securely shared parameter between

N and IG.

 N| ≡ IG | ≡ (N IG)

G1_2: N believes that ssk is a securely shared parameter between N and IG.

N| (N IG)

G1_3: IG believes that the N believes that the ssk is a securely shared parameter between

N and IG.

 IG| ≡ N | ≡ (N IG)

G1_4: IG believes that ssk is a securely shared parameter between N and IG.

IG| ≡ (N IG)

ssk

ssk

ssk

ssk

110

Goal 2: OTPnew is well protected and believed by N.

G2_1: N believes that the IG believes that the OTPnew is a securely shared parameter

between N and IG.

 N| ≡ IG | ≡ (N IG)

G2_2: N believes that OTPnew is a securely shared parameter between N and IG.

N| ≡ (N IG)

G2_3: IG believes that the N believes that the OTPnew is a securely shared parameter

between N and IG.

 IG| ≡ N | ≡ (N IG)

G2_4: IG believes that OTPnew is a securely shared parameter between N and IG.

IG| ≡ (N IG)

4.5.1.1.2.2 Messages Idealization

First, we transfer all transmitted messages into idealized form as follows:

M1: N IG:<NIDR, NX1, TSN1, RVN1> N OTP IG

M2: IG N: {IGIDR, C1, C2 G1, RVIG1, TSIG1} R1

M3: N IG: {NIDR, TSN2, RVN2, Gα } R1

OTPnew

OTPnew

OTPnew

OTPnew

111

4.5.1.1.2.3 Main Assumptions

The second step to be completed is to define some assumptions as initiative

promises. The fundamental assumptions of the presented authentication scheme are as

follows:

P1: IG believes that OTP is a securely shared parameter between N and IG

IG| ≡ (N IG)

P2: IG believes N believes that OTP is a securely shared parameter between N and IG

IG | ≡ N| ≡ (N IG)

P3: N believes that OTP is a secure shared parameter between N and IG

N| ≡ (N IG)

P4: N believes IG believes that OTP is a securely shared parameter between N and IG

N | ≡ IG| ≡ (N IG)

P5: IG believes that R1 is a securely shared parameter between N and IG

IG| ≡ (N IG)

P6: IG believes N believes that R1 is a securely shared parameter between N and IG

IG | ≡ N| ≡ (N IG)

P7: N believes that R1 is a securely shared parameter between N and IG

N| ≡ (N IG)

 OTP

 OTP

 OTP

 OTP

 R1

 R1

 R1

112

P8: N believes IG believes that R1 is a securely shared parameter between N and IG

N | ≡ IG| ≡ (N IG)

P9: IG believes TSN1 is fresh.

IG| ≡ #(TSN1)

P10: IG believes TSN2 is fresh.

IG| ≡ #(TSN2)

P11: IG believes RVN1 is fresh.

IG| ≡ #(RVN1)

P12: IG believes that N believes RVN1.

IG | ≡ N| ≡ RVN1

P13: IG believes that N has jurisdiction over RVN1. That is, N is an authority and believes

RVN1.

 IG | ≡ N ⇒ RVN1

P14: IG believes RVN2 is fresh.

IG| ≡ #(RVN2)

P15: IG believes that N believes RVN2.

IG | ≡ N| ≡ RVN2

 R1

113

P16: IG believes that N has jurisdiction over RVN2. That is, N is an authority and believes

RVN2.

 IG | ≡ N ⇒ RVN2

P17: N believes TSIG1 is fresh.

N| ≡ #(TSIG1)

P18: N believes RVIG1 is fresh.

N| ≡ #(RVIG1)

P19: N believes that IG believes RVIG1.

N | ≡ IG| ≡ RVIG1

P20: N believes that N has jurisdiction over RVIG1. That is, IG is an authority and

believes RVIG1.

 N | ≡ IG ⇒ RVIG1

P21: IG believes NIDR is a securely shared parameter between N and IG.

IG | ≡ (N IG)

P22: IG believes N believes that NIDR is a securely shared parameter between N and IG.

IG | ≡ N| ≡ (N IG)

P23: N believes IGIDR is a securely shared parameter between N and IG.

NIDR

NIDR

114

N | ≡ (N IG)

P24: N believes IG believes that IGIDR is a securely shared parameter between N and IG.

N | ≡ IG| ≡ (N IG)

P 25: IG believes α is fresh

IG ≡ #(α)

P26: IG believes that N believes α.

IG| ≡ N | ≡ α

P 27: IG believes that N has jurisdiction over α. That is, N is an authority and believes α.

IG| ≡ N ⇒ α

P28: N believes that IG believes C1

N| ≡ IG | ≡ C1

P29: N believes that IG has jurisdiction over C1

N| ≡ IG ⇒ C1

 P30: IG believes N believes that ssk is a securely shared parameter between N and IG

IG | ≡ N| ≡ (N IG)

P31: N believes IG believes that ssk is a securely shared parameter between N and IG

IGIDR

IGIDR

 ssk

 ssk

115

N | ≡ IG| ≡ (N IG)

P32: N believes that IG believes OPTnew

N| ≡ IG | ≡ OTPnew

P33: IG believes that N believes OPTnew

IG| ≡ N | ≡ OTPnew

4.5.1.1.2.4 Analysis of the Authentication Protocol

We then prove that the proposed protocol achieves the security goals based on the

idealized form of the messages, assumptions, and BAN logic rules. The proposed

authentication scheme analysis is shown below to prove that the protocol achieves mutual

authentication between N and IG.

According to M1:

V1: IG ◃:<NIDR,NX1,TSN1,RVN1> N OTP IG

According to P1, P21, and Rule 1, we derive the following

V2:
𝐼𝐺|≡N OTP IG,IG ⊲(N𝐼𝑅𝐷,NX1,TS𝑁1,RV𝑁1) 𝑁 𝑂𝑇𝑃 𝐼𝐺

𝐼𝐺| ≡N|∼(N𝐼𝑅𝐷,NX1,TS𝑁1,RV𝑁1)

According to P9, P11, and rule 3, we derive the following

V3:
𝐼𝐺|≡#(𝑇𝑆𝑁1 𝑎𝑛𝑑 𝑅𝑉𝑁1)

𝐼𝐺|≡#(N𝐼𝑅𝐷,NX1,TS𝑁1,RV𝑁1)|

According to P2, P22, V2, V3, and rule 2, we derive the following

116

V4:

𝐼𝐺|≡#(N𝐼𝑅𝐷,NX1,TS𝑁1,RV𝑁1),IG|≡N~(N𝐼𝑅𝐷,NX1,TS𝑁1,RV𝑁1)

𝐼𝐺|≡N|≡(N𝐼𝑅𝐷,NX1,TS𝑁1,RV𝑁1)

According to V4, P12, P13, and rule 4, we derive the following:

V5:
IG |≡N| ⇒ ,RV𝑁1 ,IG |≡ N |≡ ,RV𝑁1

IG|≡ ,RV𝑁1

According to M2:

V6: N ◃{IGIDR, C1,G1,RVIG1,TSIG1}R1

According to P7, P23, and Rule 1, we derive the following

V7:

𝑁|≡IG R1 N,IG ⊲(IG𝐼𝐷𝑅,C1,G1,RV𝐼𝐺1,TS𝐼𝐺1) 𝑁 𝑅1 𝐼𝐺

𝑁|≡IG |∼ (IG𝐼𝐷𝑅,C1,G1,RV𝐼𝐺1,TS𝐼𝐺1)

According to P17, P18, and rule 3, we derive the following

V8:
𝑁|≡#(RV𝐼𝐺1,TS𝐼𝐺1)

𝑁|≡#(IG𝐼𝐷𝑅,C1,G1,RV𝐼𝐺1,TS𝐼𝐺1)|

According to P8, P24, V7, V8, and rule 2, we derive the following

V9:

𝑁|≡#(IG𝐼𝐷𝑅,C1,G1,RV𝐼𝐺1,TS𝐼𝐺1),N|≡IG~(IG𝐼𝐷𝑅,C1,G1,RV𝐼𝐺1,TS𝐼𝐺1)

𝑁|≡IG|≡(IG𝐼𝐷𝑅,C1,G1,RV𝐼𝐺1,TS𝐼𝐺1)

117

According to P19, P20, P28, P29, V9, and rule 4, we derive the following:

V10:
𝑁 |≡IG|⇒RV𝐼𝐺1,C1, N |≡ IG |≡ RV𝐼𝐺1,C1,C2 ,

N|≡ RV𝐼𝐺1,C1,C2 ,

According to M3, we get

V11: IG ◃ {NIDR, TSN2, RVN2, Gα} R1

According to P5, P21, and Rule 1, we derive the following

V12:

 IG|≡N R1 IG ,IG ⊲(𝑁𝐼𝐷𝑅,TS𝑁2,RV𝑁2,Gα) 𝑁 𝑅1 𝐼𝐺

𝐼𝐺|≡N |∼(𝑁𝐼𝐷𝑅,TS𝑁2,RV𝑁2,Gα)

According to P10, P14, P25, and rule 3, we derive the following

V13:
𝐼𝐺|≡#(TS𝑁2,RV𝑁2,α)

𝐼𝐺|≡#(𝑁𝐼𝐷𝑅,TS𝑁2,RV𝑁2,Gα)

According to P6, P22, V12, V13, and rule 2, we derive the following

V14:

𝐼𝐺|≡#(𝑁𝐼𝐷𝑅,TS𝑁2,RV𝑁2,Gα),IG|≡N~(I𝑁𝐼𝐷𝑅,TS𝑁2,RV𝑁2,Gα)

𝐼𝐺|≡N|≡(𝑁𝐼𝐷𝑅,TS𝑁2,RV𝑁2,Gα)

According to P15, P16, P26, P27, V14, and rule 4, we derive the following:

V15:
𝐼𝐺 |≡N| ⇒ RV𝑁2,α ,IG |≡ N |≡ RV𝑁2,R2,α

𝑁|≡ RV𝑁2,α

If both N and the IG agreed on generating the ssk using the hash function:

118

By combining V9 and Rule 2, we get

 V16: N | ≡ IG|(N IG) (Goal 1_1)

From assumption P31, V10, V16, and Rule 4, we get:

V17: N| ≡ (N IG) (Goal 1_2)

By combining V4, V14, and Rule 2, we get

V18: IG | ≡ N| ≡ (N IG) (Goal 1_3)

From assumption P30, V5, V15, V18, and Rule 4, we get:

V19: IG| ≡ (N IG) (Goal 1_4)

By combining V9 and Rule 2, we can derive

V20: N|≡IG|≡ (N IG) (Goal 2 _1)

From assumptions P4, P32, V10, V20, and Rule 4, we derive

V21: N|≡ (N IG) (Goal 2_2)

By combining V14 and Rule 2, we can derive

 V22: IG|≡N|≡ (N IG) (Goal 2 _3)

From assumptions P2, P33, V15, V22, and Rule 4, we derive

V23: IG|≡ (N IG) (Goal 2_4)

Thus, by achieving all the goals mentioned above, we demonstrate the validity of the

proposed scheme. we formally prove our protocol correctness as a secure mechanism to

achieve mutual authentication and key agreement between the IoT node and the IG.

ssk

ssk

ssk

ssk

OTPnew

OTPnew

OTPnew

OTPnew

119

4.5.1.2 Informal Security Analysis

This section examines the security of the proposed protocol against well-known

security attacks and satisfies the main security properties. The security of the protocol is

explored against various known attacks. This section will provide brief descriptions of

different types of attacks against IoT systems. A description of how the proposed

protocol successfully resisted the well-known attacks and achieved the proposed security

properties is presented.

4.5.1.2.1 Security attack Scenarios

Table 5 presents a short definition of the well-known threats that an attacker can

launch on an IoT system and the main security properties that can ensure the systems’

security

Table 5: A Summary of the Well-known Attacks

Attack name Attack definition

Man-in-the-middle An attack where an adversary can intercept the traffic

between two communication parties and possibly modifies

the communicated information.

Forward/forward

secrecy

This is a security feature to ensure that even if the most

recent key is hacked, a minimal amount of sensitive data is

exposed, and no future keys will not be affected

Anonymity and

Unlinkability

properties

Anonymity: is a feature to ensure the privacy of the device

120

Unlinkability: is a property that does not enable an

adversary to determine whether two events occurring in the

system are related or not.

A brute-force attack It is an attack where the adversary can try every possible

combination of letters, numbers, and symbols to guess a

secret key or a password.

Replay attack A network attack where legitimate data transmission is

maliciously repeated or delayed to disrupt communications.

Eavesdropping attack A type of passive attack where the adversary sniffs

sensitive data from insecure communication networks.

Impersonating/spoofing

attacks

An attack where an adversary pretends to be a trusted node

in an IoT system.

Modeling attack An attack that employs machine learning prediction

algorithms to predict unknown CRPs from the known ones.

Physical attack A hardware attack where an adversary physically accesses

the hardware’s semiconductor to read the stored secrets on

it or discover its structure [89]

IoT device

counterfeiting

Imitating real IoT devices with the intent to steal, destroy,

or replace the original devices.

4.5.1.2.2 Security Properties Assessment

The following section presents a detailed security analysis of the security

properties of the proposed protocol. It demonstrates how the proposed protocol satisfies

121

the security requirements for mutual authentication, session key agreement and resists

various kinds of known attacks. Then, a comparison with other related protocols is

presented.

4.5.1.2.2.1 Mutual Authentication

Before sending the first message, N chooses a random number (RVN1) and

computes NX1, NX2, and SN. For the IG to retrieve RVN1 and compute Auth2 and Auth3,

the IG needs to compute Auth1. The computation of Auth1 requires that the IG passes the

stored PUF challenge to the PUF function to compute the PUF response (RIG). An

adversary can’t generate Auth1 = H ((NIDR || IGIDR || RIG) without knowing the NIDR of N

and the IGIDR of the IG and the PUF response (RIG). Also, the adversary cannot verify

Auth2 = H (Auth1 ||IGIDR|| VDIDN) and Auth3 = H (Auth2|| IGIDR||TIDN) without having the

VDIDN and TIDN that are securely stored and known only by the IG.

N and IG authenticate each other by verifying the correctness of G2 = H

(IGIDR||C1’ ||RVIG1 || TSIG1|| G1’) and N3 = H (R2 || RVN2|| TSN2 || RVIG1’). The adversary

cannot generate G2 without having G1 = H (Auth1|| OTP|| RVN1). Due to the PUF nature

that is resilient to prediction and replication, the adversary cannot guess or generate RIG

to construct Auth1 that is an element of G1. Also, the adversary does not know the OTP

that is considered a secured shared parameter between N and the IG. Additionally, the

adversary cannot generate N3 without having R2, which can be generated only by N. In

summary, the adversary cannot generate either G2 or N3 without knowing RIG. As a

result, the proposed scheme can achieve mutual authentication between N and IG.

4.5.1.2.2.2 Session key agreement and forward/backward security

122

According to the proposed scheme, N and the IG can agree on generating the

session key in one of two different ways. The selection of the key generation technique

will depend on the IoT node’s capabilities and what it can support. During the session

key agreement phase, both N and the IG locally generate the session key ssk in one of the

following two ways.

By using the first technique, the session key ssk = (Gα)β is established between N

and the IG using the ECDH algorithm to protect future communication. The secrecy of

the ssk depends on the secrecy of β and α. The D-H key agreement scheme is based on

ECDH; therefore, the disclosed session key will not cause the compromise of any future

session key. The forward/backward security property's objective is to ensure that any past

or future session keys will not be affected when any session key ssk is exposed. Even if

an adversary obtains ssk of a session, he/she cannot compute any of the past and future

session keys by using the disclosed ssk because the ssk is protected by the randomization

of the β and α and the discrete logarithm problem of the Elliptic curve algorithm. As a

result, the proposed scheme achieves session key security.

By using the second technique, the session key ssk = h (R1||C1|| RVN1|| RVN2

||RVIG1) is established between N and the IG to protect future communication. In the

proposed scheme, ssk is generated locally. The secrecy of the ssk depends on the secrecy

of RVN1, RVN2, RVIG1, C1 and R1. Because RVN1, RVN2 and RVIG1 are randomly selected

for every new authentication session and R1 cannot be replicated or predicted because it

is unique for each N due to the nature of the PUF, the disclosed ssk will not cause the

compromise of any future ssk. The forward/backward security property's objective is to

ensure that any past or future shared secret keys will not be affected when any ssk is

123

exposed. Even if an adversary obtains ssk of a session, he/she cannot compute any of the

past and future shared secret keys by using the disclosed ssk because the ssk is protected

by the randomization of R1|| C1|| RVN1|| RVN2 ||RVIG1. As a result, the proposed scheme

achieves the security of ssk.

4.5.1.2.2.3 Anonymity Unlinkability, and Untraceability Properties

For fully protected N privacy, strong anonymity with unlinkability is required. In

the proposed protocol, the N’s real identity NIDR is not transmitted during all phases in

clear text format. Therefore, even if the adversary eavesdrops on all communication

messages, it is impossible to obtain the IoT node's real ID. In addition, the new alias ID

of the IoT node NIDANew = H (NIDA || R1||C1). Because C1 and R1 are fresh in each

session, the attacker cannot link any two different NIDA’s to the same N and cannot trace

a given IoT device to N’s messages. By using a new NIDA for each authentication session,

the adversary will not be able to decide whether these authentication messages are from

the same N or not. This means that device N cannot be linked to different sessions.

Consequently, the proposed protocol provides anonymity and unlinkability, and the

adversary cannot trace the devices by intercepting messages.

4.5.1.2.2.4 Stolen database attack

On the IoT node side, if any IoT node is compromised and the adversary is able to

steal Auth1, Auth2, Auth3, NIDR, and the OTP from the IoT node’s database to

impersonate the IoT node, the fake node will fail the CRP verification process. On the IG

side, if the IG is compromised and the adversary is able to steal NIDR, IGIDR, VDIDN,

TIDN, and OTP from the IG database to impersonate the IG, the fake IG will fail to

calculate the RIG.

124

4.5.1.2.2.5 Brute Force Attack

The first optional technique to generate the session key ssk is done locally by both

the IoT node and the IG using the ECDH algorithm. Due to the discrete logarithm

problem of the ECDH, guessing the session key is a time-consuming and challenging

task. The probability of guessing is so negligible that the attacker will fail to guess the

correct session key, given that this session key changes in every session.

The optional technique to generate the session key ssk is generated locally by both

the IoT node and the IG using RVN2 and the generated nonce values from the two sides.

All the ssk components are transferred in an encrypted format either by using a bitwise

XOR function or by using R1. Also, the session key's secrecy depends on the security of

the communication between the IoT node and the IG and the response's uniqueness.

Because no other IoT node can duplicate the responses, the adversary cannot obtain it

from the protocol. The probability of guessing the session key is so negligible that the

adversary will fail to guess the correct parameters given that this session key changes in

every session.

4.5.1.2.2.6 Replay attack

The proposed protocol overcame the replay attack by using timestamps. The

timestamp TS is generated by the sender node and then inserted in a hash function to

ensure the adversary cannot replace it. Furthermore, Each CRP is used only one time to

provide security against replay attacks. Hence, the protocol protects against replay

attacks.

125

4.5.1.2.2.7 Eavesdropping attack

During the authentication phase, the adversary can intercept messages transmitted

between N and the IG. All the intercepted messages will be useless because they are sent

in an encrypted format using a one-way hash function and symmetric encryption. For the

attacker to decrypt the messages, he/she needs to know R1 that can only be generated by

N. The only two parameters that are sent in clear text are the Alias identities and session

ID. The Alias identities and the session ID do not pose any threat because this

information is constructed from random parameters that change in every session. The

adversary will not be able to link the message to a particular device because the proposed

protocol uses alias identities that vary in every session. Therefore, the proposed protocol

protects against eavesdropping attacks.

4.5.1.2.2.8 Impersonation attack

In this attack, when the intruder eavesdrops on the messages transmitted from N

to IG or vice versa, he/she can use the intercepted information for malicious actions, such

as impersonating the IoT device or the IG and sending fabricated messages.

4.5.1.2.2.8.1 IG impersonation

This attack will not succeed for several reasons. First, each IG has an Alias ID

and Real ID. The real ID is known only for IoT devices. The real ID of the IG will never

be released in clear text format. Also, for the IG to compute Auth1, it needs to compute

the PUF response (RIG), which is one of the Auth1 parameters. Due to the PUF nature,

RIG cannot be predicted or replicated by another device. The IoT device will verify the

126

IG's real ID and G2= H (IGIDR||C1 || RVIG1 || TSIG1|| G1) before proceeding with the

authentication process.

4.5.1.2.2.8.2 IoT Node Impersonation

To impersonate the IoT node, an adversary should intercept the messages

exchanged in the previous sessions. However, in the proposed scheme, the adversary

cannot produce valid messages without having R1 that is used to encrypt the second,

third, and fourth authentication messages. Also, this attack will fail for numerous reasons.

First, the alias ID of the IoT node changes every authentication session. Second, the fake

IoT node will not be able to generate legitimate responses because the PUF responses are

unique for each device.

From another perspective, even if the adversary succeeded in compromising an

IoT node, the adversary’s further attacks using the compromised node only affect the

communication related to that node. Because each IoT node has its own secret keys, the

adversary cannot derive other non-compromised IoT nodes’ keys without knowing those

nodes' random information. Therefore, further attacks will not affect other

communications. As a result, the proposed scheme is resistant to IoT node impersonation

attacks.

4.5.1.2.2.9 Data Modification attack

As discussed in the replay attack, eavesdropping, and impersonation attacks, the

data modification attack is defeated because the real identity of IoT node NIDR, the

timestamp TS, the symmetric key, the one-way hash function, the nonce values RVN1,

RVN2, and RVIG1, and the CRPs are unknown to the attacker. Therefore, the man-in-the-

middle attack is prevented. The IoT device and the IG do not exchange sensitive data

127

such as real identities, nonce values, PUF responses R in plaintext over the insecure

communication channel. This supports data confidentiality. The only exchanged data in

plaintext during authentication are the alias identities, the timestamps (TSN1, TSN2,

TSIG1), and hashed messages. In such a setting, a data modification attack will not benefit

from any captured data. Furthermore, if an adversary modifies the transferred data, the

intended receiver will detect the data modification by matching the hashed messages and

drop the connection.

4.5.1.2.2.10 Modeling Attacks

This is an attack where the adversary collects a large number PUF CRPs and uses

a regression algorithm to build a model and predict responses for new challenges. All the

PUF challenges and the responses are transferred in an encrypted format. Therefore, the

adversary will not be able to collect enough useful CRPs to build a model and predict

responses to new challenges.

4.5.1.2.2.11 Physical Attack

Any attempt to tamper with the IoT device will change the PUF embedded chip's

behavior and, consequently, renders the PUF useless.

4.5.1.2.2.12 IoT Device Counterfeit/Cloning

Both the IG and the IoT device are authenticated using the PUF. PUF responses

are treated as hardware fingerprints that cannot be duplicated or cloned. Therefore, by

the use of the PUF, the IoT devices and the IG cannot be cloned.

4.5.1.2.3 Comparison of Security Features

128

We compare the proposed protocol's security features with other related

authentication and key agreement schemes [57,59,60,61,62,63]. Table 6 shows the

comparison results. The table indicates that the proposed protocol is secure against all the

imperative security threats and accomplishes diverse security features.

Two of the proposed protocols [57,59] require secret key storage, which may

compromise the secret key. Consequently, the adversary can exploit the compromised

key to conduct different types of attacks and possibly reconstruct the secret key. Also,

many of the proposed schemes, such as [57] and [60-63], used the IoT node's real

identity to exchange messages with the server, which is against protecting the anonymity

and unlinkability of the IoT devices. Furthermore, several proposed schemes such as

[61], [60],[59], and [62] did not protect their schemes against replay attack.

Table 6: Security feature comparison of the proposed scheme with other related Mutual

authentication and key agreement schemes.

Security

Property

[57] [61] [60] [59] [62] [63] Proposed

Protocol

Resilience to IG

the

Impersonation

Attack

No No No No No Yes Yes

Resilience to

IoT the

Impersonation

Attack

Yes Yes Yes No Yes Yes Yes

Resilience to

Replay Attack

Yes No No No No Yes Yes

Resilience to

Device

Counterfeit

Yes No Yes Yes Yes Yes Yes

129

Resilience to

Modeling

Attack

Yes Yes Yes Yes Yes Yes Yes

Resilience to

the Data

Modification

Attack

Yes Yes Yes No Yes Yes Yes

Anonymity and

Untraceability

No Yes No No No No Yes

Requires Key

Storage

yes Yes No No No No No

Resilience to

brute force

attack

Yes No No Yes Yes Yes Yes

Resilience to

Physical attacks

 Yes Yes Yes Yes Yes Yes Yes

 Mutual

Authentication

 Yes Yes Yes Yes Yes Yes Yes

Two-factor

authentication

 No Yes No No No No Yes

On the other hand, the proposed protocol supports multiple essential security

features: First, the proposed protocol does not require any secret key storage or secret key

sharing over the network. Second, each IoT device maintains two authentication factors

by using OTP and PUF to prove its legitimacy to the IG. Third, all secret keys are

computed locally on both the IoT node and the IG. Fourth, the proposed protocol does

not store any CRPs on the IG, but they are frequently retrieved from the PUF cloud.

Fifth, the IoT devices use a one-time alias identity for each authentication session in the

proposed protocol. Therefore, it will be difficult for an outside adversary to comprehend

130

the activities of the IoT devices. Sixth, the proposed protocol overcomes the noise issue

in PUF operation by using error-free CRPs [[37] and [90]. From table 6, we can

conclude that the proposed protocol can support all the desired security properties, which

are essential for IoT devices' security.

4.5.2 Performance Analysis

In this section, we present a performance analysis of the proposed protocol. The

performance analysis evaluates the storage requirements. Also, we analyze the preset

protocol's overhead and efficiency in terms of computational complexity and

communication overhead, and storage constraints. We then compare our mutual

authentication mechanism to the most relevant protocols in the literature proposed by

[57], [59], [60],[61], [62], and [63].

4.5.2.1 Storage requirements

 Table 7: Storage Cost of the Proposed Scheme

Node Storage cost (in bits)

N 128 + 256 * 3 + 8* 3 + 256 = 1024 + 64 =

1176 bits

IG 128 + 8 * 5 +256 + 128 = 552 bits

131

In the proposed protocol, each IoT node must store its real identity NIDR alias

identity NIDA, the real identity of the IGIDR, alias identity IGIDA, authentication parameters

Auth1, Auth2 and Auth3, one-time password OTP. We use SHA-256 as an example of

hash function. By applying these settings, we obtain |NIDA | =128 bits, |Auth1 | = |Auth2 |

= |Auth3 | = 256 bits, while |NIDR | = |IGIDR| = |IGIDA| =8 bits and |OTP| = 256 bits. On the

other hand, IG is required to store the tuple NIDA, NIDR, IGIDA, IGIDR, VDIDN, TIDN, OTP

and CIG. By applying these settings, we obtain |NIDA | = 128 bits, while |NIDR | = |IGIDA| =

|IGIDR| = |VDIDN | = |TIDN |= 8 bits |OTP| = 256 bits and the CIG =128 bits. Table 7

summarizes the storge cost of the proposed scheme.

4.5.2.2 Computational Complexity Analysis

We compare the computational complexity of the proposed protocol with other

related protocols [57,59–63]. We only focus on comparing the authentication phase

because the key generation phase is executed differently from one protocol to another.

Because the time for executing a bitwise XOR operation is negligible, we do not consider

XOR operations for computational cost analysis. To analyze the performance of the

proposed protocol with respect to other presented protocols in the literature, we conduct

simulations of the cryptographic operations using Dell Inspiron Laptop with Intel Core

i7, dual-core 2.7 GHz CPU, and 8 GB RAM to act as the IG. We use a Raspberry Pi 4

Model B with 64-bit quad-core cortex A-72 processor and 1 GB RAM to simulate an IoT

device. The simulations used PyCryptodome cryptographic and Fastecdsa libraries in

Python. For these results, we considered the 128-bit arbiter PUF for PUF operation. The

fuzzy extraction's execution time is almost the same as the ECC point multiplication and

the execution time for modular exponentiation is double the time of the execution of the

132

ECC point multiplication [58]. Table 8 presents the used notation and the execution time

of each operation.

Table 8: Execution Time of the Cryptographic Operations

Operation Computation Time on IoT Computation Time on

IG

H: time for executing a one-way

hash function

0.002 ms .001 ms

FE: time for executing a fuzzy

extractor

5 ms 4 ms

EM: time for executing an ECC

point multiplication

5 ms 4 ms

EXP: time for a modular

exponentiation

10 8

HMAC: time for executing the

HMAC

2.7 ms 1.5 ms

MAC 2.9 ms 1.23 ms

ENC: Time for Executing (AES 128

Encryption)

0.18 ms .14 ms

DEC: Time for executing (AES-

CBC Decryption)

0.18 ms .14 ms

133

PUF: Time for executing PUF (128-

bit Arbiter)

.12 ms .12 ms

Table 9 and figures 40, 41, and 42 summarize the computational complexity

comparison between the proposed protocol and the other related protocols presented in

the literature. Table 9 lists the number of cryptographic operations of each type for each

protocol. Figure 40 displays the number of cryptographic operations of each type that are

completed on the IoT side. Figure 41 depicts the number of cryptographic operations of

each type that are completed on the IG side. Figure 42 demonstrates the total number of

cryptographic operations of each type that are complete for each protocol. As depicted

from the table and the figures, the proposed protocol used more hash functions than most

of the other schemes and used AES 128 symmetric encryption to avoid computationally

expensive cryptographic operations such as MAC and HMAC while achieving the same

security goals. On the IoT side, all the protocols used the same number of PUF. Our

proposed protocol is the only one that used PUF on the IG side to protect the protocol

from IG impersonation

Table 9: Comparison of computational costs for the authentication phase of the proposed

scheme and other related protocols.

Entity [57] [59] [60] [61] [62] [63] Proposed

Scheme

Using a

hash

function

Proposed

Scheme

Using

ECC

IoT 8TH+

2TPUF

3TH+

2TPUF+

2TEM

5TH+

2TPUF+

3TEM+

1TENC

3TH+

2TPUF+

1T FE Gen

2TH +

3TMAC+

1TENC +

1TDEC +

2TPUF+

2TPUF +

3HMAC
7TH

+1TPUF+1

TENC +

1TDEC

7TH +

1TPUF+1

TENC +

1TDEC +

1TEM

134

IoT Cost .26 ms 11.20 ms 16.39 ms 5.25ms 9.3ms 8.34 ms .49ms 5.49 ms

IG 9TH+

2TEXP
6TH+ 5TH

+2TEM+

1 DEC

5TH+

1TFE Rec
2TH +

3TMAC+

1TENC +

3HMAC 10TH

+1TPUF+

1TENC +

1TDEC

10TH

+1TPUF+1

TENC +

1TDEC

IG Cost 16.01 ms .006 ms 8.16 ms 4.01ms 3.83ms 4.5ms .41ms .41ms

Total

Cost

16.27 ms 11.21 ms 24.55 ms 9.26ms 13.13ms 12.84ms .90ms 5.9 ms

 Figure 40: Comparison of the number of the IoT crypto operations across the protocols

0
1
2
3
4
5
6
7
8
9

[57] [59] [60] [61] [62] [63] Proposed
Scheme Using

a hash
function

Proposed
Scheme Using

ECC

N
U

M
B

ER
 O

F
O

P
ER

A
TI

O
N

IOT USED CRYPTO OPERATIONS

Hash MAC HMAC ENC DEC EM PUF FEGen

135

Figure 41: Comparison of the number of IG crypto operations across the protocols

 Figure 42: Comparison of the total number of crypto operations across the protocols

0

2

4

6

8

10

12

[57] [59] [60] [61] [62] [63] Proposed
Scheme

Using a hash
function

Proposed
Scheme

Using ECC

N
U

M
B

ER
 O

F
O

P
ER

A
TI

O
N

IG USED CRYPTO OPERATIONS

Hash MAC HMAC ENC DEC EM PUF FEGen EXP

0

2

4

6

8

10

12

14

16

18

[57] [59] [60] [61] [62] [63] Proposed
Scheme

Using a hash
function

Proposed
Scheme

Using ECC

Hash MAC HMAC ENC DEC EM PUF FEGen EXP

136

 Figure 43: The IoT computational time across the different protocols

Figure 44: IG computational time across the different protocols

0.24

11.2

16.39

5.25

9.3
8.34

0.49

5.49

0

2

4

6

8

10

12

14

16

18

[57] [59] [60] [61] [62] [63] Proposed
Scheme

Using a hash
function

Proposed
Scheme

Using ECC

IO
T

C
O

M
P

U
TA

TI
O

N
A

L
C

O
M

P
LE

X
IT

Y
IN

 M
S

16.07

0.006

8.16

4.01 3.83
4.5

0.41 0.41IG
 c

o
m

p
u

ta
ti

o
n

al
 c

o
m

p
le

xi
ty

 in
 m

s

137

Figure 45: Total computational time across the different protocols

Table 9 and figures 43,44, and 45 demonstrate the cost comparison of the

presented protocol with other similar protocols from the literature. Table 9 and figure 45

present the computational cost of each protocol. Figure 43 displays the computation cost

of each protocol for the IoT side, and figure 44 depicts the computational cost of each

scheme for the IG side. The results indicate that the proposed protocol has the lowest

computational cost for the IoT side compared to [59,60,62, and 63]. These results prove

that our proposed protocol is suitable for IoT resource-constrained devices. Although our

proposed protocol has a higher computational cost on the IoT side than [57] and [61], the

presented protocol ensured data confidentiality and user anonymity which are essential

security goals.

From table 9 and figure 45, it is observed that while [57], [59],[60],[61],[62] and

[63] take approximately 16.27, 11.21, 24.55, 9.26, 13.13, and 12.840, the proposed

protocol takes only either .90 or 5.9. The protocol in [60] performs the worst due to the

16.27

11.21

24.55

9.26

13.13 12.84

0.9

5.9

0

5

10

15

20

25

30

Total Cost

To
ta

l c
o

m
p

u
ta

ti
o

n
al

 c
o

m
p

le
xi

ty
 in

 m
s

[57] [59]

[60] [61]

[62] [63]

Proposed Scheme Using a hash function Proposed Scheme Using ECC

138

higher number of ECC point operations involved. Also, the protocol in [57] has a bad

performance due to the use of modular exponentiation. Furthermore, both protocols [62

and 63] have high computational cost due to using many MAC and HMAC functions that

are computationally heavy. In summary, our proposed protocol is more efficient than

other related protocols and has a higher security level than the rest of the protocols. The

proposed protocol achieved the main security goals of confidentiality, integrity, and

authenticity besides accommodating IoT devices that are diverse in their capabilities.

4.5.2.3 Communicational Cost

The following section analyzes the communication cost of the proposed protocol.

To reduce network congestion and to provide fast message transmission, the

communication costs of the protocol should be as low as possible. For the communication

cost analysis, we evaluate the communication cost in terms of the size of the message in

bits. Then, we compare the proposed protocol to the other related protocols. Table 10

presents a summary of the sizes of the message parameters. Table 11 lists the message

parameters that are communicated between the server and the IoT device along with their

sizes.

 Table 10: Size of the Message Parameters

Message Parameters Size in Bits

ID of N [[57], [62], [63] 128

ID of server [63] 8

SID [57], [62] 8

139

Nonces [61], [63] 128

CRP (C, R) [61], [62] 128

HMAC [63] 256

Hash Function [57], [62] 256

Timestamp (TS) [63] 48

ECC [60], [59] 256

MAC [62] 256

• Message 1: In the transmission (N → IG), N sends the tuple, NIDA, TSN1, NX2, SN

Therefore, the size of this tuple is 128 + 48 + 128+256 = 560. bits.

• Message 2: In the transmission (IG → N), IG sends the tuple, IGIDA, SID, TSIG1,

CX {RVIG1, G2} R1. Therefore, the size of this tuple is 8 +8 + 48 + 128+128+256 =

576 bits.

• Message 3_1: In case the two parties decided to use the hash function to generate

the session key. In the transmission (N → IG), N sends the tuple, NIDA, SID.

TSN2{RVN2, N3, SHA256} R1) Therefore, the size of this tuple is 128 + 8 + 48+128

+256 = 568. bits.

• Message 3_2: In case the two parties decided to use ECC to generate the session

key. In the transmission (N → IG), N sends the tuple, NIDA, SID. TSN2,{RVN2, N3,

Gα }R1) Therefore, the size of this tuple is 128 + 8 + 48+128 +256 = 824 bits.

Table 11: Communication Cost Comparison (bits)

140

Message

Number

[57] [59] [60] [61] [62] [63] Proposed

scheme_

hash

Proposed

scheme_

ECC

M1: N→ S 256 bits 128 bits 176 bits 256 bits 256 bits 432 bits 560 bits 560 bits

M2: S→ N 512 bits 304 bits 640 bits 512 bits 768 bits 432 bits 576 bits 576 bits

M3: N→S 688 bits 1024 bits 512 bits 640 bits 768 bits 304 bits 568 bits 824 bits

M4: S→ N 384 bits 1024 bits 1024 bits ---- ---- 480 bits --- ---

M5: N→S 640 ------ ---- ---

Total 2480

bits

2480

bits

2352

 bits

1408

 bits

1792

 bits

1648

 bits

1704

 Bits

1960

 bits

The total communication costs of [57], [59], [60], [61], [62], and [63] are

2480,2480,2352,1408,1792, and 1648 bits, respectively. If the proposed protocol uses a

hash function to generate a session key, the total communication cost is 1704. Still, if the

two communicating sides decide to use ECC to generate the session key, the total

communication cost is 1960 bits. Compared to the other presented protocols that used

ECC to generate the session key [59 and 60], our proposed protocol has a lower

communication cost and, at the same time, achieved all the required security goals. While

if the two communicating parties decided to use the hash function, the communication

cost of my proposed protocol is less than [57 and 62], while it is higher than [61 and 63].

As given in table 6, protocols in [57], [61], [62], and [63] are incapable of achieving all

the security goals.

141

4.6 Summary

This chapter presents a two-factor mutual authentication protocol for IoT systems

between an IG and an IoT device. The proposed protocol introduces a mechanism for

secure session key establishment. The protocol provides confidentiality, integrity,

anonymity, unlinkability, and untraceability capabilities while achieving mutual

authentication between the IoT and the IG devices. The proposed protocol is assessed

using both security and performance analysis. The security analysis used both formal and

informal techniques. The formal evaluation employed used the BAN logic and AVISPA

simulation to verify the proposed protocol's security. The results showed that the

proposed scheme is safe. The informal security analysis also showed that the presented

protocol is resistant to common attacks and satisfies the main security properties.

Furthermore, we evaluated the protocol's efficiency in terms of storage requirements,

communication, and computational cost and compared it with other related protocols.

The presented protocol achieves the required low computational complexity for resource-

constrained IoT devices.

142

CHAPTER V

M2M DISTRIBUTED MULTI-LAYER LIGHTWEIGHT MUTUAL

AUTHENTICATION AND KEY AGREEMENT SCHEME USING

CHAINED HASH PUF IN INDUSTRIAL IOT SYSTEM

The emergence of Industry 4.0 and the Internet revolution changed the

manufacturing atmosphere and created an integrated environment between the virtual

world and the physical world. Although the Internet made the world smaller, there is still

a gap between the physical and cyber worlds. With the rise of the IoT, all objects in the

cyber world and the physical world have become interconnected. This integration can be

viewed as a physical–digital-physical information chain that happens through three

simple steps: physical to digital, digital to digital, and digital to physical. During the first

step, data is collected from the surrounding environment through IoT sensors. In the

second step, the collected data is processed and analyzed. The third stage consists of

transmitting the decisions to the physical world through actuators.

With the emergence of Industrial IoT(IIoT), machine-to-machine (M2M)

communication is essential to build IIoT environments that enable heterogeneous devices

such as sensors, actuators, and gateways to communicate without any human intervention

through a wireless or wired link. [91]. These IoT devices have a connection to the Internet

either directly or through another device. Their connection to the Internet makes them

143

 Figure 46: M2M Networks in the IoT Environment

available any time and from everywhere in the world to their users. M2M communication

is a network where smart devices communicate through wireless and wired technologies.

According to [92], the M2M communication system consists of three interconnected

layers as presented in figure 46: (1) a M2M area layer that includes a M2M area network

with M2M gateways; (2) a communication network layer that includes wired/wireless

Gateway

Gateway

End User

End User

Public Network

MSP

IoT Devs

IoT Devs

https://www.flickr.com/photos/voteprime/4604586822
https://www.flickr.com/photos/voteprime/4604586822
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.flickr.com/photos/voteprime/4604586822
https://www.flickr.com/photos/voteprime/4604586822
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/

144

networks; and (3) an application services layer consisting of the end-users and required

applications. However, this connectivity makes them accessible to adversaries who can

attack a device to access sensitive data or use actuators to perform harmful actions that

can damage the system [93] and [94]. IIoT devices produce a massive amount of

confidential and sensitive data. Several cryptographic mechanisms can be applied to

protect the IoT devices from cyber-attacks, but they are not suitable for the resource

constraint nature of the IoT devices. One way to solve this problem is to offload some

security-related operations from resource-constrained IoT devices to more resource-rich

IoT devices. In IIoT, devices' authentication is crucial to achieving a trusted

communication among the communicating devices. However, most of the currently

employed M2M authentication protocols in the IIoT domain are based on asymmetric

cryptography with a high computational cost. Consequently, those authentication

schemes are not the best suitable solution for resource-constrained IoT devices, leading to

many security issues in the IIoT environment.

This chapter introduces lightweight privacy-preserving M2M mutual

authentication and key agreement scheme. The presented protocol is called M2M

Distributed Multi-Layer Lightweight Mutual Authentication and Key Agreement Scheme

Using Chained Hash PUF in Industrial IoT System. The proposed scheme enables the

devices to verify each others' identities and perform secure, anonymous authentication

while the real identities stay secret. It will also allow the devices to locally generate

shared secret keys to ensure the confidentiality and integrity of the exchanged data. The

proposed scheme utilizes PUF as a hardware security approach and the chained hash

concept. The scheme also employs an access control method and implements virtual

145

domain segregation to protect the IoT devices from any arbitrary access by other

unauthorized devices. The proposed scheme employs lightweight operations of XOR and

a one-way hash function; thus, the scheme does not have a high impact on the device's

computational and battery resources. It only requires between 3 and 4 messages to be

exchanged between the communicating parties for the mutual authentication and key

agreement. We evaluate the proposed scheme by using different measures, namely,

security and performance evaluation. The security evaluation will be both a formal and

informal security evaluation. The formal analysis used the Burrows–Abadi–Needham

logic (BAN) as a formal validation of the proposed authentication scheme and the

automated validation of the internet security protocols and applications (AVISPA)

toolkit.

Furthermore, the scheme efficiency is evaluated and compared with other related

schemes. Through the informal analysis, we will assess the proposed scheme against

well-known security attacks. Furthermore, we also validate the efficiency of the

proposed scheme and compares its performance in terms of computational cost and

communication overhead with other related schemes.

 In Section 5.1, we first introduce the motivation of the work. Section 5.2 discusses

the security and functional requirements for M2M communication. Section 5.3 presents

the security vulnerabilities and potential threats in M2M communication. Section 5.4

presents the related work and the other existing protocols. Section 5.5 demonstrates the

network model and the security goals. Section 5.6 presents the proposed protocol. Section

5.7 illustrates the protocol evaluation process, and finally, section 5.8 summarizes the

chapter.

146

5.1 Motivation

The implementation of IIoT can lead to many benefits to the industry, such as

monitoring and optimizing the supply chains. Also, the use of IIoT can lead to early

detection of machine failure, which can prevent production delay, equipment damage, or

injuries to workers [95]. IIoT showed a significant interest in implementing M2M

communication in wireless networks. Some characteristics of M2M communication

within the IoT ecosystem are as follows: [96]

1. Heterogeneity of devices: IoT devices are different due to their

functionalities and applications.

2. Device coexistence and collaboration: the different IoT devices

communicate with each other anytime.

3. Diverse networks and networking standards: Because the IoT ecosystem

consists of heterogeneous devices, they can use various communication

standards such as cellular systems, WiFi, Bluetooth, Zigbee, or others to

facilitate communication between devices.

4. Device limitations: Most IoT devices are resource-constrained with limited

capabilities in terms of battery life, memory, and processing power.

5. Multihop communication: Most IoT devices are equipped with limited

transceiver systems. Therefore, they will only be capable of short-range

transmissions and will need to route information over multiple hops.

The emergence of M2M significantly impacts peer-to-peer networks and is

expected to influence the IoT. Most of the current IoT domains require higher data rates,

147

low latency, and better quality of service (QoS) from the wireless networks [91] and [97].

With the exponential increase in IoT devices, the implementation of M2M technology

becomes necessary to provide better services. M2M communication can improve wireless

networks' performance by eliminating the need for a central node, reducing the overall

communication latency, and offloading central node traffic [98]. Furthermore, M2M

communication provides autonomous and energy-efficient systems.

In M2M communication, IoT devices can take different forms of communication.

The communication can be through a single hup or multiple hops. Also, communication

can be intra-domain or inter-domain. Single-hop communication is where there is direct

communication between source and destination without any other device involvement.

On the other hand, multi-hop communication is where an intermediate device exists as a

relay or an access point between the source and the destination devices. Intra-domain

communication is where the interaction will be among the devices within the same

network. In contrast, inter-domain is referring to communication among the devices of

different networks.

The communication systems employ nonstandard hard-wired communication

technologies among communication and industrial devices [99]. On the other hand, the

evolution of the IIoT, the industrial environment saw changes where the heterogeneous

communication technologies employ wireless standards to assure communication,

compatibility, and remote operation and control of the different devices through the

Internet. Given that IIoT sensors are designed to be resource-constrained, these sensors

tend to have some security drawbacks.

148

To meet the industrial requirements, smarter sensors capable of more complex

operations are developed. However, there are still several challenges facing IoT sensors.

First, there is still a gap between the security requirements and the currently implemented

security solutions. According to [100], few of the currently available solutions adopt the

security by design approach, which provides a new attack surface for the attackers. The

attacker can cause physical damage, threaten human life, manipulate the final product by

compromising the production processes or increasing the used resources. Second,

machines operating on a production floor typically last for several decades, and it is not

always economically feasible to replace the old equipment with the latest technology.

Therefore, finding solutions that can ensure security to modern manufacturing technology

and the old systems is essential. Third, another major issue is the authenticity of the IIoT

device and identifying the counterfeited devices.

One of the main challenges in M2M communication is security because of such

systems' dynamic nature [101]. While designing M2M systems, we should keep in mind

how to prevent threats and vulnerabilities rather than curing them. Unfortunately, most

M2M research focuses on other topics such as interference management, route discovery,

and resource optimization rather than security. Security also is an essential issue in

wireless networks because of the exchanged information over the network that can be

eavesdropped on, modified, or corrupted by an adversary. M2M communications face

several security threats that can affect privacy, authentication, confidentiality, integrity,

network availability, and QoS.

Most of the currently employed cryptographic primitives are not suitable for the

resource-constrained nature of IIoT devices, which negatively impacts the ability to

149

conduct authentication, identification, integrity, and verification of those devices. Most of

the proposed authentication protocols employ public-key cryptography [102], [103],

[104], [105], [106]. The long key length and the computational complexity of such

cryptosystems make them hard to be implemented in resource-constrained devices due to

their limited memory and limited power supply [107], [108]. Because identification and

authentication are the cornerstones of providing security, new lightweight authentication

approaches and securing those resource-constrained devices are necessary.

5.2 Security and functional requirements for M2M communications

To ensure the effectiveness of the M2M communication, there are security and

functional requirements that need to be satisfied.

5.2.1 Security requirements

The communication channels between two IoT nodes (M2M) or an IoT node and

a gateway are subject to several attacks. Because most IoT domains require a high level

of security, several security measures need to be addressed and satisfied. Table 12

presents the main security requirements in the M2M communication

Table 12: Main security requirements in the M2M communication

Security Requirement Description

Confidentiality This requirement prevents an adversary from disclosing

transmitted data and ensures that only the authorized

entities can read the exchanged data in a M2M

communications system.

150

Integrity This requirement ensures that the data has not been

modified or altered by an adversary. Data integrity

requirement is crucial in M2M communication systems

because unauthorized data modification can lead to severe

consequences.

Availability The availability requirement ensures that the M2M

application systems can access the service anytime and is

always available.

Authentication Authentication is one of the main requirements to ensure

the security of the M2M communication. Through

authentication, the device can verify each other's identity

and authenticity before exchanging sensitive information.

Anonymity It is essential to secure the device's anonymity and

unlinkability to ensure data privacy when an attacker

illegally exposes sensitive information.

Access control It is vital to limit data access and communicate with other

devices to the authorized devices.

Non-repudiation This requirement ensures that no device can deny sending

a message that it originated.

Data freshness This feature implies that received messages are fresh and

are not a replayed old messages sent by an adversary.

151

5.2.2 Functional requirements

Besides the security requirements, there are functional requirements that can

ensure the quality and applicability of the authentication protocols. Table 13 presents the

main functional requirements of M2M authentication protocols

Table 13: Main functional requirements of M2M authentication protocols

Feature Description

Scalability This feature ensures the ability of the

system to add new nodes easily

Efficiency This feature ensures communication

efficiency by minimizing the number of

the exchanged messages between the

communicating parties.

Low computational cost The M2M systems need to employ

lightweight cryptographic primitives to

support the resource-constrained nature of

the IoT devices.

Storage needs The authentication protocols must request

minimum storage on the IoT nodes.

A distributed scheme IoT nodes should communicate, if

applicable, directly and not require a

152

central server's support to execute the

authentication phase.

5.3 Security vulnerabilities and potential threats in M2M communication

M2M networks consist of a heterogeneous mix of devices ranges from resource-

constrained devices to resource-rich devices. Most of the resource-constraint devices are

IoT nodes. The resource-rich devices are gateways in charge of managing the connection

among the IoT devices on one side and between the internal and external networks on the

other side. M2M networks consist of many IoT nodes and one or more gateways. IoT

nodes are simple devices equipped with some specific sensing technology to collect real-

time data and transmit the collected data to the gateway in a single-hop or multi-hop

format. Once the gateways receive the IoT node data, they can either process the received

data or send it to a back-end server for processing and storage [95],[98], [105], [106].

 Table 14 presents a description of the main security threats in M2M networks,

the potential consequences, and the possible countermeasure.

Table 14: Main security threats in M2M networks, the potential consequences, and the

possible countermeasure

153

Security Threat Potential Consequence Countermeasure

Eavesdropping: is a

type of attack where the

adversary listens to the

exchanged messages

between the

communicating parties

to learn things about the

network and try to find a

way to be inside it.

1. They are exposing

sensitive and private data.

1. Using secure

communication links

that implement modern

cryptographic

primitives.

2. Establish security

association between

the communicating

parties after

performing mutual

authentication between

them.

Hacking the long term

key of the IoT

node/gateway

1. device impersonation 1. Store the long-term

keys in a Hardware

Security Module

(HSM) located inside

the devices and is

tamper-resistance. This

makes it impossible for

attackers to discover

154

the values of long-term

keys.

2. Limiting the lifetime of

the session key.

Modifying/replacing

long term keys in

IoT/gateway

DoS attack 1. Store the long-term

keys in a HSM located

inside the devices and

is tamper-resistance.

2. Allowing the

modification of stored

sensitive data and long-

term key after

completing strong

mutual authentication.

Modifying messages

between entities

Loss of message integrity 1. Use of modern

cryptographic

primitives to secure

message's

confidentiality and

integrity

2. Limiting the lifetime of

the session keys

155

3. Establish a security

association between

the communicating

entities.

Replaying sniffed

message to entities

1. Unauthorized access to the

system

2. Impersonating the IoT

node/gateway

1. Use of a timestamp or

sequence number to

ensure message

freshness

Physical attack where

the attacker tries to

take control of a device

and then extract any

information from it,

instead of destroying it

1. Impersonating the

legitimate devices

2. Gain root-level access

on the device and

compromise the

device, which allows

the attacker to move

freely and attack other

devices to bring the

whole system down.

1. The use of hardware-

based security provides

robustness because it

makes it hard for the

attacker to alter or

replicate the device's

physical features.

5.4 Related Work

156

The following section introduces an analysis of some of the presented

authentication protocols in the literature. The authors in [109] propose a user

authentication and key agreement protocol for heterogeneous ad hoc wireless sensor

networks for achieving energy efficiency, user anonymity, and mutual authentication.

The researchers used hash functions and XOR operations to implement the authentication

process. They present a heterogeneous environment with two or more types of nodes:

resource-constrained sensor nodes and more powerful gateways. The researchers state

that their proposed protocol ensures high security and performance features. However,

the presented protocol has multiple weaknesses. First, both the user and the sensor are

using fixed masked IDs, which can lead to a lack of user anonymity and linkability and

traceability attacks. Second, the authentication process does not require any user input;

therefore, stealing the smart card can lead to a user impersonation attack. Third, the

proposed protocol does not support two-factor authentication. Fourth, suppose a sensor

node became compromised; in that case, an attacker can monitor this sensor node and

obtain the session key shared between another sensor node and the user who has ever

connected to this compromised sensor node.

Authors in [110] present a modified version of the protocol presented by [109].

The researchers propose a remote user authentication and key agreement protocol to

access IoT nodes that are part of the wireless sensor networks where the network consists

of multiple gateway nodes. The proposed protocol has multiple phases: the system setup

phase, user registration phase, login phase, authentication phase, password update phase,

and dynamic node addition phase. The researchers assume that each sensor node is

assigned to the nearest gateway based on minimum distance. The proposed protocol used

157

the one-way hash and the XOR as lightweight cryptographic functions. The proposed

protocol used a long-time session key, which can make it subject to session key

disclosure. Also, the protocol transmits the sensors' real identities in clear text, which

does not support the anonymity and unlinkability security features.

Authors in [111] present a lightweight authentication protocol that relies on

digital signatures. The proposed authentication protocol presents a lightweight signature

solution using Hierarchical Identity Based Signature (HIBS). It consists of five phases;

two setup phases, extraction phase, signing phase, and verification phase. The presented

protocol uses an identity-based signature to generate signing and verification keys. The

identity-based signature uses the user's identity to generate the signing and verification

keys. The protocol consists of three layers. The first layer is called the Root Private Key

Generator (Root PKG) and is located in the cloud. The second layer is called sub-PKGs,

which act as agents and are located in the fog. The third layer is users' layer, which

consists of end-users. Each sub-PKG is responsible for the public and private keys

generation of its registered mobile users. The use of the sub PKG reduces the overheads

on the Root PKG. The researchers compared their work to other related protocols in light

of the key distribution method, key generation method, and security attack model. The

results indicate that the presented protocol is resilient to multiple attacks such as linking

signature, replay attack, key eavesdropping attack, and signature forgery attack.

The authors in [91] introduce a proxy-based key establishment protocol for IoT

using the Diffie Hellman (D.H.) algorithm. The proposed protocol allows any two

unknown, resource-constrained devices to initiate secure end-to-end (E2E)

communication. The constrained devices should maintain secured connections with the

158

neighbor nodes that are less resource-constrained devices in the local networks in which

they are deployed. The less constrained devices act as proxies and are performing

expensive cryptographic operations on behalf of the resource-constrained node. The

proposed protocol aims to allow two resource-constrained devices located into two

different networks to generate a shared secret key. The proxies into the two different

networks will support the resource-constrained devices in computing the shared secret

key. The researchers assumed that the proxies of the two different networks could

securely communicate with each other. The researchers also assumed that the resource-

constrained IoT nodes have a list of the neighbor proxies and their corresponding pre-

shared keys for authentication. Although the proposed protocol is proposed for resource-

constrained devices, it requires the resource-constrained devices to store multiple pre-

shared keys of the different proxies. Also, the protocol requires storing the pre-shared key

and reusing them for each authentication session which may lead to a side-channel attack.

The authors in [93] introduce a lightweight authentication and key agreement

scheme for heterogeneous ad hoc wireless sensor networks. The proposal relies on XOR

and hash functions. The researcher put in their consideration five main factors: (1)

ensuring user anonymity, (2) requiring no complex computations, (3) performing mutual

authentication, (4) providing a user-friendly scheme, and (5) ensuring the correctness of

the session key. The proposed protocol consists of six phases: predeployment phase,

registration phase, login phase, authentication phase, password-change phase, and

dynamic node addition phase. The proposed protocol requires lots of computations, and it

is subject to node capture attacks.

159

The authors in [94] propose a group authentication and key agreement (GROUP-

AKA) protocol designed for M2M communication. The authors successfully prevent the

DoS attack, but the protocol does not handle the privacy preservation problem.

Furthermore, the proposed protocol is computationally expensive because it employs a

public cryptology approach.

In [97], the authors proposed a lightweight mutual authentication and key

agreement protocol for M2M communications in IIoT environment between resource-

constrained sensors and a router, including a trusted platform module (TPM). The

protocol is based on hash and XOR operations. The authors assume that the proposed

protocol is characterized by low computational cost, low communication cost, and low

storage overhead. The authors in [98] demonstrate that the proposed protocol by [97] is

vulnerable against DoS, and router impersonation attacks. Also, they prove that the

adversary could trace the smart sensor by eavesdropping on only one session.

Furthermore, the researchers present how an untrusted smart sensor can obtain the

router's secret key and the session key that another sensor established with the router.

The authors in [100] present a smart card-based authentication scheme for

heterogeneous ad hoc wireless sensor networks. They introduce two versions of the

proposed protocol. The first version of the protocol is called P1. P1 has four phases:

predeployment phase, registration phase, authentication phase, and password changing

phase. The researchers claimed that P1 is lightweight but does not provide perfect

forward secrecy. Therefore, they introduce the second version of the protocol called P2.

The researchers mentioned that P2 could guarantee perfect forward secrecy. They explain

that P2 is an advanced version of P1 and shares with P1 the same procedures in the

160

predeployment, registration, and password changing phases. P1 is lightweight because it

mainly uses XOR and one-way hash function, but P2 uses public-key cryptography to

make it more computationally intensive. The two versions of the proposed protocol do

not achieve a proper mutual authentication as the user's identity is not verified by the

sensor. Therefore, the protocol is executed even if the user's inputs are wrong. The

proposed protocol does not support the unlinkability security feature where the sensor

I.D. (SID) is static and sent over the network in clear text format. Finally, the validity of

the user's identity is not checked by any party. Therefore, the authentication phase will

still be executed even if the user inputs a wrong identity.

The authors in [102] introduce an authentication, authorization, and accounting

(AAA) system for IIoT. The proposed protocol is based on the Next Generation Access

Control (NGAC) standard that provides access control in different environments. The

proposed system provides access control and security to heterogeneous IIoT devices in a

local cloud. The proposed authentication mechanism employs X.509 certificates. The use

of the digital certificate makes the proposed solution not suitable for resource-constrained

devices. According to [103], using the X.509 certificate and the public-key certificate

management causes performance bottlenecks and makes the proposed scheme not

applicable to resource-constrained IoT devices.

Authors in [104] present a mutual authentication protocol between an IoT node

and a fog node using the HMAC and XOR function. The two sides have a fixed shared

secret key. The proposed protocols used challenge-response negotiation. The presented

protocol is vulnerable to various types of security attacks and violates security

requirements. First, the protocol exchanges messages between the IoT node and the fog

161

node using their real identities, which do not preserve the user's privacy. Consequently,

the proposed protocol does not provide anonymity and unlinkability, and the adversary

can trace the devices by intercepting messages. The first message that the fog node sent

to the IoT node contains K ⊕ CA ⊕ CB where the K is the fixed share secret key, C.A. is

the nonce value that is generated by the IoT node and was sent to the fog node in clear

text format. C.B. is the nonce value that was generated by the fog node. Once the IoT node

receives the message from the fog node, it increments the timestamp by one and

calculates a new HMAC using the K, the ID of the IoT node, and CB. The adversary can

intercept the messages and conduct a brute force attack by guessing the CB and the K.

Then, the adversary can verify his guess by recomputing the XOR values using the

guessed CB. and K. Also, the adversary can intercept the last message that was sent from

the IoT node to the fog node and recompute the HMAC by using the guessed K and CB.

If the recalculated HMAC value is equal to the intercepted HMAC value, this will ensure

that the guessed K and CB. are correct. Then the adversary can use the guessed key to

decrypt all subsequent messages.

The authors in [105] introduce an efficient authentication scheme for M2M

networks in IoT-enabled cyber-physical systems. The researchers present four different

protocols to achieve four different authentication tasks. The four main elements of the

presented protocol are gateways, mobile users, IoT devices connected to the gateway, and

IoT devices that are not connected to the gateways but connected to the IoT devices that

are connected to the gateway. The authentication protocols are achieved used symmetric

cryptography and a one-way hash function. The first protocol enables the mobile user to

authenticate with any gateway mutually. The second protocol enables the mobile user to

162

mutually authenticate with any of the IoT nodes that are within the domain of this

gateway the user is authenticated to in protocol 1. The third protocol allows the IoT nodes

to mutually authenticate each other, given the condition that at least one of the IoT nodes

is connected to the gateway. The fourth protocol allows IoT nodes that are not connected

to the gateway to mutually authenticate each other with the IoT node connected to the

gateway. Although the four protocols are lightweight, all of them require the storage of

long-term shared secret keys, which can make the system vulnerable to several attacks,

such as side-channel attacks, to obtain the secret key. Second, the different devices

exchange messages using their real identities that make the protocols violate privacy

preservation and do not satisfy the untracability and unlikability security features.

Finally, the proposed protocols have unnecessary steps that can be avoided to reduce the

computational complexity and the computational cost. For example, the mobile user can

send a message directly to the gateway requesting to perform mutual authentication with

one of the IoT devices instead of sending the message to the IoT node. Then the node

forwards the message to the gateway.

The authors in [106] propose three new lightweight, efficient authentication

protocols for IoT-based healthcare applications. The first protocol is an improvement of

the protocol proposed by [105]. The second protocol is the M2C (machine to the cloud)

mutual authentication protocol that is based on a one-way hash function. The third

protocol is M2M mutual authentication protocol using Elliptic Curve Cryptography ECC.

Although the researcher claimed that the M2M authentication protocol is efficient and

suitable for resource-constrained devices, it does not fit the resource-constrained devices.

The third protocol used digital signatures and ECC, which are computationally expensive

163

and consume a lot of power from IoT devices. Also, the exchanged messages did not

include any IDs. Therefore, it is not clear how the recipient can identify the sender and

verify each other's identities. The protocols cannot mitigate against a replay attack.

The authors in [107] propose an Identity-Based Cryptography (IBC) without Key-

Escrow (AIBCwKE) authentication scheme. The scheme covers most known attacks;

however, the scheme requires IoT devices and mobile devices to perform

computationally expensive cryptographic operations. The IoT nodes perform multiple

bilinear pairing operations on elliptic curves in addition to several point multiplications

and exponentiations. These computational requirements are not suitable for resource-

constrained devices.

Authors in [112] propose a new Token-Based Lightweight User Authentication

(TBLUA) for IoT devices. The presented protocol consists of the following phases: (i)

Offline smart device and gateway registration, (ii) User reservation, (iii) Token

distribution between the gateway and smart devices, and (iv) Login and Authentication.

The proposed protocol is secure against replay attacks, user impersonation attacks, and

password guessing attacks. Also, it satisfies the user anonymity as well as perfect

forward secrecy features. On the other hand, similar to many other authentication

schemes, it requires storing long-time security keys and does not ensure against devices

counterfeiting.

The authors in [95] introduce an authentication protocol for resource-constrained

IIoT devices. The proposed protocol is based on simple operations such as XOR,

addition, subtraction, and a hash function. The protocol consists of two phases: (1) the

registration phase, where IoT node and gateway exchange secrets that they will later use

164

to prove their identities, and (2) the mutual authentication phase, where the authentication

and session key generation process is completed. The protocol is resilient against replay,

impersonation, tracking, man-in-the-middle attacks, and identity guessing attacks. Also,

it satisfies multiple security requirements such as perfect forward secrecy, device

anonymity, mutual authentication, and data integrity. The only limitation of this protocol

is storing several long-term secret keys on the IoT node.

Based on the work presented above, there are common limitations that are shared

among most of them. First, many suggested protocols used computationally expensive

cryptographic operations that do not fit the IoT devices' resource-constrained nature.

Second, most of the proposed protocols did not focus on ensuring the originality of the IoT

devices and secure the system from integrating counterfeited devices. However, this is

considered a major concern in the IIoT domain. Third, many of the proposed protocols do

not implement multiple authentication levels, which is the core of the defense-in-depth

concept. Fourth, in some of the presented protocols, the researchers overlooked the IoT

devices' privacy, which does not guarantee the IoT device's anonymity and privacy. Fifth,

many of the proposed protocols require storing long-term secret keys on the IoT device's

memory, which can be retrieved using side-channel attacks. Sixth, most of the proposed

protocols did not account for gateways load, leading to slowing down the system response

and not responding to authentication requests promptly. This will, in turn, negatively impact

the system's scalability. Seventh, most of the presented protocols may suffer from losing the

authentication service entirely due to the design's single point failure.

165

5.5 Industrial IoT (IIoT) network model and security goals

This section will present a smart poultry farm network model and introduce the

proposed authentication scheme's security mechanisms and components. Then, the threat

model and the involved attack surface will be discussed.

5.5.1 Smart poultry farm network model

One of the industries that can make good use of IoT technology is poultry farms.

In such an environment, it is essential to monitor the environmental quality to ensure the

healthy growth of the chicken and, at the same time, to reduce chicken loss. Therefore,

there is a need for a smart monitoring system. The environmental parameters can be

measured by using wireless sensors. Collected data can be transmitted through a gateway

to the employer's control station to monitor the farm's operation and production. The use

of IoT sensors can be a solution to build a smart poultry farm. The implementation of an

automated real-time monitoring system of the environmental parameters can: (1) increase

productivity and at the same time reduce cost and time; and (2) facilitate the data analysis

process that can help in making faster and better decisions. However, IoT and smart

communication technologies introduce a vast exposure to cybersecurity threats and

vulnerabilities in smart poultry farming environments. Such threats can disturb the

operation and the production of the farm. This chapter introduces a distributed

lightweight mutual authentication and key generation protocol that fits the poultry farms'

dynamic and distributed cyber-physical nature to ensure the system's security.

In the proposed scheme, an IoT node (N) mini gateways (MG), Intermediate

gateway (IG), and central gateway (CG) are responsible for ensuring secure, anonymous

166

mutual authentication and key generation. The proposed scheme is based on a challenge-

response technique and is developed as a secure and efficient mutual authentication

scheme without requiring high computational and communication costs. The use of

symmetric cryptography may generate security issues due to key exchanges over public

channels. To solve this issue, the proposed scheme does not exchange keys over the

network and does not use the devices' real identities, and consequently, it is not affected

by these problems. The proposed scheme enables a M2M communication, which

provides the chance for devices inside the IIoT network to do data offloading and allows

the IoT devices that are away from their gateways to get authenticated and communicate

with them through other IoT devices.

Figure 47 illustrates the network model of the farm. The cage is divided into three

levels (Level 1, Level 2, and Level 3). The three levels are identical. Each level has a

dedicated gateway called the Intermediate gateway (IG). The three IGs are connected to a

central gateway that is in charge of the whole cage. Each level is divided into three zones

(Zone A, Zone B, and Zone C). The three zones are identical. Each zone is controlled by

a mini-gateway (MG). All MGs can communicate with each other to exchange data. Each

zone is divided into multiple virtual domains where the IoT devices are located. Each virtual

domain has the more powerful IoT nodes closer to the MG. There are four main players: the

central gateway (CG), the intermediate gateways, the mini-gateways, and IoT nodes(N).

• The central gateway (CG): CG is a central device for starting and maintaining the

network. It is aware of all the devices' real identities. The CG achieves multiple

tasks: (1) it is in charge of authenticating the intermediate gateways; (2) it supports

the mini-gateways while authenticating the IoT devices; and (3) it is in charge of

167

sending the collected data from the intermediate gateways to the cloud. The CG also

acts as a local repository to temporarily store the data generated from the whole cage

and provides a local processing capability, and performs data cleaning, aggregation,

analysis, and interpretation techniques because it has a local database. Then it will

send the collected data to the cloud.

• Intermediate Gateways (IG): the intermediate gateway controls starting and

maintaining the level-based network. The IGs achieve multiple tasks: (1) they are

in charge of authenticating the mini-gateways; (2) The IG also acts as a local

repository to temporarily store the data generated from its level and provides a local

processing capability and performs data cleaning, aggregation, analysis, and

interpretation techniques because it has a local database. The IGs store the received

data in buffers and forward them to the central gateway.

• Mini-gateways (MGs): MGs are less powerful than IGs. Each MG is in charge of

a zone and acts as a connection point between the IG and the IoT devices. MGs are

used to offload the IG and distribute the authentication process among multiple MGs

under the authority of the IG. The MGs will be in charge of authenticating all the

IoT nodes. Each MG acts as a local repository to temporarily store the data generated

from its zone and provides a local processing capability, and performs data cleaning,

aggregation, analysis, and interpretation techniques because it has a local database.

The MGs store the received data in buffers and forward them to their IGs., which

aggregate the information of different MGs and redirect it to the central gateway.

• IoT nodes: Those are the limited resources devices that are used to collect and send

data to its MG. The IoT nodes are not allowed to communicate directly with the IG

168

or the CG. If either the CG or the MG receives any message from any IoT node, it

will drop it. Some IoT nodes are connected directly to the MG, while others are

connected indirectly through other connected IoT nodes to MG. The IoT devices

include temperature sensors, water sensors, CO2 sensors, NH2 sensors, static pressure

sensors, and actuators.

The presented scheme consists of four main layers: the physical, edge, fog, and

cloud layers. The bottom layer is the physical layer consisting of sensors and actuators

distributed in the cage. These devices include different types of sensors such as temperature

sensors and water sensors, and actuators to take actions. The sensors are responsible for

sensing and collecting data from the surrounding environment. The collected data helps in

actuating other devices such as the ventilation system. The sensors collect real-time data

about water, temperature, CO2 level, or NH2 level, which can be sent to the edge, fog, or

cloud systems to provide recommendations and enable automation. For example, data

collected by the temperature sensors are processed at the edge to determine the amount of

air or heat that is needed in the cage, optimize the airing or the heating schedule, and

support the farm operation.

The next layer up is the edge layer that consists of the mini gateways. Each virtual

domain has its own mini gateway that provides communication among smart objects and

acts as the link between the smart device and the intermediate gateway. The MG in the

edge layer oversees conducting real-time data cleaning, aggregation, analysis, and

making decisions within its virtual domain.

 The third layer up is the fog layer that consists of the intermediate gateways and

the central gateway. The fog layer oversees local real-time data cleaning, aggregation,

169

analysis, and making decisions. This layer's integration reduces the computation and data

analysis load off the centralized cloud layer. The fog layer consists of two sub-layers. The

bottom sublayer consists of the intermediate gateways. Each Intermediate gateway

oversees the cleaning, aggregating, and analyzing the data of its level. The top sublayer

consists of the central gateway. The central gateway aggregate and analyze the data of the

whole cage. Security monitoring, device failure prediction, and anomaly detection systems

can be deployed for real-time monitoring of abnormal events and classifying these events

as malicious or benign.

The cloud layer is generally virtualized in data centers and communicates with the

other layers using the Internet. The network model presented in figure 47 has two clouds.

The first one is the cloud of the service provider, where the collected data that has been

sent through the edge layer will be stored on Distributed File System (DFS). This stored

data will be used to conduct further analysis and to mine knowledge. The second cloud is

the PUF cloud, where the manufacturers store the CRPs of their produced devices. The

CRPs will be used to authenticate the devices and ensure the originality of the devices to

protect the farms from integrating counterfeited devices.

The IoT nodes such as sensors and actuators represent the sensing layer that is used

to sense/control the industrial world and acquire data. The MGs, IGs, and the CG represent

the aggregation layer responsible for collecting and processing the data and then sending

information to the cloud. All MGs can communicate directly with each other. Each IoT

node can communicate directly with its MG but can't communicate with either the IG or

the CG. A trust relationship and a secure communication link exist between the CG. and

the service provider cloud environment.

170

Figure 47: Smart poultry farm network model

The manufacturer assigns the IoT nodes real IDs that are stored on their memory.

The service provider gives the IoT nodes Alias IDs. The Alias ID will be changed every

authentication session. The goal of the alias ID is to protect the device's anonymity and

ensure the device's untraceability.

171

All devices are stationary. The communication between any two devices is subject

to both active and passive attacks. In passive attacks, the adversary can eavesdrop on the

communication. In active attacks, the intruder may replay, modify, or delete specific

communication messages. Moreover, IoT devices can be destroyed or stolen. The

message header containing the device Alias ID is sent in a clear text while the payload is

encrypted and authenticated. A one-way cryptographic hash function with a 256 bits

length is used to validate and ensure the integrity of the data transmitted between the two

devices.

The number of IoT devices can vary throughout the lifetime of the network.

Moreover, because the addition of new IoT devices to the network is highly likely, the

proposed scheme accommodates system scalability. The proposed scheme supports the

dynamic addition of IoT devices to the network without changing the network's security

states. The dynamic addition of new IoT devices is a shared responsibility between the

CG and the MG., which are assumed to be powerful devices.

5.5.2 Automated access control and privacy

The nature of the multi-layered architecture of the poultry farms highlights the

chances of cyber threats challenges. Therefore, an access control solution needs to be

integrated to support smart poultry farms' dynamic nature. Efficient access control and

privacy protection are necessary to protect sensitive data [113], [114]. Therefore, an

automated access control model based on virtual domain segregation of IoT network and

device type is introduced.

172

5.5.2.1 IoT virtual domains segregation

The proposed scheme creates virtual segregation among the IoT devices. Virtual

segregation's primary goals are to (1) improve security through applying security policies

that fit the different IoT devices' needs and increase the data's confidentiality;(2) improve

the network performance through eliminating the unnecessary traffic; and (3) improve

and ease the management of the network.

 The IoT network is virtually partitioned based on the type of IoT device. Each

virtual domain is connected to its MG to manage and control that virtual domain. If an

MG of a specific virtual domain goes down, its neighbor gateway that is located at the

same level would temporarily take over the connection management. At the same time, it

will notify the IG that its neighbor MG is out of service. All MGs within the same level

periodically exchange heartbeats signals to ensure their availability over time and share a

common database that lists those sensors under the authority of each MG. The IoT

devices are organized in a multi-tier architecture where the top layer (L1) houses the most

powerful IoT nodes within the MG range. The lower layer (L2) includes the IoT nodes

that are distant and out of range from the MG but within their peers' range sitting at the

top layer. The L1 IoT nodes will be used as a relay between the L2 IoT nodes and the

MG. Each virtual domain has a unique virtual Domain ID (VDID) and a unique Group

address (GAD). The GAD will equal the hardware address of the MG. Each device has a

typeID (TID) that is shared among all devices with the same type.

5.5.3 Challenge-response mechanism based on PUF and chained hash PUF

The proposed scheme achieves mutual authentication by implementing a PUF

challenge-response and chained hash PUF value authentication mechanism. The idea

173

behind using the chained hash PUF value is to create a type of tracking system that stores

a value related to interaction over time between the IoT node and the MG. The chained

hash PUF value is utilized to present a historical factor for authenticating the IoT node.

Employing both the PUF and the chained hash PUF mechanisms to generate a cumulative

value from all previous authentication sessions ensures mutual authentication. The two-

way challenge/response authentication technique allows the MG to check the authenticity

of the IoT node, and at the same time, enables the IoT node to ensure that it is not

communicating with a malicious MG. The use of the PUF proves the originality of the

devices and protects the IoT ecosystem from impersonation attacks. The use of the

cumulative chained hash PUF value depends on the ability of the IoT node and MG to

show proof of knowledge of past chained hash PUF values.

 In the proposed scheme, during the registration phase, both the sending IoT node

and the MG hash the first PUF response RH1 along with the real ID of the IoT node and

produce a hashed value named CHX. Then, for all subsequent authentication sessions, the

IoT node hashes the previously-stored chained CHX along with the new PUF response

(Rx) to generate a new chained hash CHxN. On the other side, the MG will apply the

same technique to ensure the authenticity of the received hashed value upon receiving the

data. First, the MG retrieves the Rx value from its database. Second, the MG hashes the

retrieved Rx with the previously stored chained CHx-1. Then, the MG compares the

computed value CHXN' = h (RX, CHx-1) with the one that was received CHXN from the IoT

node. If it matches, it will authenticate the sender IoT node N. Once the authentication is

completed; the two sides will store the CHXN in their databases and use the CHx-1 along

with the exchanged random values to generate the shared session key(ssk).

174

The proposed mechanism chains the blocks of hashed response values together by

hashing the new hash value with previously generated hash values and the realID of the

IoT node. Thus, the mechanism looks like a blockchain technology at first glance, but it

does not utilize blockchains with its overheads. Because the RX values cannot be

predicted or replicated due to the nature of the PUF, the adversary can't predict the

chained hash value.

5.5.4 Security Design Goals

To ensure the security and efficiency of communication in the IIoT domain, the

security goals that are presented in figure 48 need to be achieved in the proposed

protocol.

Figure 48: Security Design Goals

Security Goals

Confidentiality

Symmetric
encryption

Integrity

SHA- 256

Message
Freshness

Time Stamp
and nonce

Unlinkability
and

Anonymity

Alias IDs

Forward/Back
ward security

Message 's
confidentiality

Counterfeiting
and hardware

security

PUF

175

• Confidentiality: This is achieved through symmetric encryption.

• Resistance to data modification attack: An adversary cannot tamper with the

communication data to break its integrality: This is achieved by using a strong

hash function such as SHA-256.

• Anonymity and unlinkability: The sensors’ identity information cannot be

exposed to anyone outside its level. This is achieved through using an Alias ID/

pseudonym that will be changed for every authentication session. The adversary

cannot trace back the device's real ID from the pseudonym. Using pseudonyms

also ensures that when an IoT device uses network resources multiple times, it

will be hard to link these uses together by an adversary.

• Resistance to the Replay Attack: An adversary cannot reuse the previously

exchanged valid information to steal sensitive data. This attack can be avoided by

ensuring the message's freshness by using timestamps and nonce values.

• Forward/backward security: This is satisfied by ensuring the confidentiality of

all messages.

• Counterfeiting and hardware security: This is achieved through using the PUF

• Mutual Authentication: Each communicating pair should authenticate each other

to avoid potential malicious attacks.

• Resistance to the Impersonation Attack: An adversary pretends to be a

registered entity. The implementation of the PUF concept can avoid this attack.

176

• High Efficiency: To encounter the communication demands of the resource-

constrained IoT devices in industrial systems, the proposed schems should have

low-computation cost and communication overhead.

5.5.5 Threat Model

The Dolev–Yao (DY) threat model [64] is applied in the presented protocol. In

the DY threat model, any two communicating parties (in the context, IoT node and MG,

MG and IG, and IG and CG) communicate with each other via insecure public channels.

During the interaction process, an adversary can eavesdrop, intercept, and modify the

transmitted data of both parties. The service provider cloud and the PUF cloud are

assumed to be fully trusted in the presented scheme.

 The following assumptions about security properties and adversary abilities are made.

1. The used communication channel during the registration process is secure.

2. The one-way hash function is collision-resistant.

3. The gateways and IoT nodes have protection against tampering.

4. Replay attack: An adversary can capture messages from old authentication sessions

and replay them in the current session.

5.Message modification attack: the adversary can tamper with intercepted messages.

7. Injection attack: the adversary can send fake messages.

6. Impersonation attack: The adversary can pretend to be a legitimate gateway or sensor

node.

177

5.6 Proposed Scheme: M2M Distributed Multi-Layer Lightweight Mutual

Authentication and Key Agreement Scheme Using Chained Hash PUF in Industrial

IoT System

This work focuses on resource-constrained IoT devices that are not suitable for

traditional security methods to protect communication with the gateway and IoT devices.

Deploying a massive number of IoT devices in the IIoT environment may consume a

considerable amount of energy. Therefore, there is a need to optimize the communication

tasks among the IoT devices to reduce the consumed energy [115]. The proposed scheme

aims to achieve low computing-resource usage by reducing computational complexity

and the computational cost of IoT devices, which will reduce the energy cost of the IIoT

system and extend the battery life of the IoT devices.

Because most IoT devices are resource-constrained, we use lightweight

cryptographic operations during exchanged authentication messages. To achieve this

goal, a lightweight mutual authentication and key agreement scheme for M2M

communication between a CG and IG, IG and MG, and finally between N and MG are

proposed in this section.

The proposed scheme consists of four main phases: the enrollment phase,

registration phase, mutual authentication phase, and key agreement phase. The enrollment

phase will be completed during manufacturing. The Authoritative entity (AE) will oversee

completing the registration phase. Both the mutual authentication and the key generation

phases will be completed between CG and IG, IG and MG, and N and the MG without any

human involvement. Every two parties are responsible for ensuring a secure, anonymous

mutual authentication and key generation process. The relationship between CG and IG,

178

IG and MG, and N and MG is based on infrastructure communication mode. The

relationship among the different MGs and the relationship among the IoT nodes within the

same virtual domain is based on peer-to-peer topology. The mutual authentication and the

key generation phases are broken down as follows:

1. Mutual authentication and key agreement between CG and IG.

2. Mutual authentication and key agreement between IG and MG.

3. Mutual authentication and key agreement between two different MGs.

4. Mutual authentication between MG and N.

The proposed scheme allows any two devices in the M2M network to authenticate

each other and exchange data mutually. Moreover, the IoT nodes are not necessarily

required to be directly connected to their mini gateway at the time of authentication. It is

important to highlight that the authenticated devices must be within the same virtual

domain. Any communication between any two IoT nodes from two different virtual

domains must be through the mini gateway of each of them. The proposed scheme

utilizes a one-way hash function, PUF, chained hash PUF and simple XOR function

between any two mutually authenticated devices.

Furthermore, IoT nodes use Alias IDs (pseudonyms) instead of their real IDs

during the communication process. Alias IDs support the anonymity of senders' IDs,

receivers' IDs, and the sender-receiver relationship. The abstract notations used to

describe the proposed authentication scheme are listed in table 15. The scheme phases are

presented below.

179

5.6.1 Enrollment Phase

The enrollment phase is completed during the manufacturing process. The

manufacturer will assign a real ID to every IoT device and gateways. All devices are

equipped with a PUF, and any attempt to tamper with the PUF will change the device's

behavior and render the device useless and must be replaced. The PUF hardware security

primitive is used as the root-of-trust, which provides device authenticity.

The manufacturer will also collect a set of CRPs for each device during the

enrollment phase. The manufacturer will test all the CRPs under different temperature

and voltage conditions and consider the aging effects to keep only the error-free CRPs

[37]. Then, the manufacturer will load the CRPs of the devices to the cloud of their

service provider. The service provider container is part of the PUF architecture that is

presented in chapter 2. The main goals of PUF are to protect the devices from

counterfeiting and generate a relevant, unique key for the device. The uniqueness of the

generated key in the network would be guaranteed based on the diversity and the

manufacturing variations that generate the PUF. The generated PUF responses will be

used to generate the symmetric keys.

Table 15: Notations used in the scheme

Notation Description

Authoritative Entity AE

IoT node N

Mini-Gateway MG

Intermediate Gateway IG

Central Gateway CG

180

NIDR IoT Node Real ID

NIDA IoT node Alias ID

MGIDR Mini-Gateway Real ID

MGIDA Mini-Gateway Alias ID

IGIDR Intermediate Gateway Real ID

IGIDA Intermediate Gateway Alias ID

CGIDR Central Gateway Real ID

CGIDA Central Gateway Alias ID

OTP One-time password

Token TK

MSK Master secret key

GID Group ID

TIDN IoT node Type ID

RV Random values

S1, S2, and S3 Authentication parameters

TS Timestamp generated by the IoT node

PUF Physical unclonable function

C Challenges

R Response

H Hash function

5.6.2 Registration Phase

In this phase, the Authoritative Entity (AE) securely registers CG, IG, MG, and N.

Before operation in the field, the AE will complete multiple tasks, as described in figure

49. First, the AE will assign alias IDs to the CG, IGs, MGs, and N nodes. The alias IDs

will be fake IDs that devices will use to communicate with each other. Alias IDs will act

as pseudonym IDs and will be dynamically changed in every authentication session. The

181

goal of the Alias ID goal is to protect and ensure the unlinkability and untraceability of

the device and support the anonymity of each device in each session. Second, the AE will

retrieve CRPs (CCG, RCG, CIG, RIG, CCMG, RMG) of the CG, IG, and MG, respectively, from

the PUF cloud

 Third, AE will use a random number generator to generate three random values

to be used as for one-time passwords (OTP) between CG and each IG. There will be a

unique OTP between the CG and each IG. Also, the AE will generate a master secret key

(MSKCI) to be only known to the CG and the three IGs. Once the IG is registered, IG and

CG will generate the OTP during every authentication session without any human

involvement. Then, the AE will insert and store CGIDR, CGIDA, IGIDR, IGIDA, MSKCI, and

OTPCI in the IG's database and store CGIDR, CGIDA, IGIDR, IGIDA, MSKCI, and OTP CI of

each IG in CG’ memory.

Fourth, AE will use a random number generator to generate three random values

to be used as one-time passwords (OTP) between the IG of each level and its MGs. There

will be a unique OTP between the IG and each MG within the same level. Also, The AE

will generate a master secret key (MSKIM) to be only known to the IG and the MGs

inside the same level. Once MGs are registered, both IG and MG will generate the OTP

during every authentication session without any human involvement. The AE will insert

and store MGIDR, MGIDA, MSKIM, and OTPIM in the MG's database and store IGIDR,

IGIDA, MGIDR, MGIDA, MSKIM, and OTPIM of each MG in IG’ memory.

Fifth, AE will assign the IoT node Group ID(GIDN), and type ID (TIDN). The GIDN

refers to the virtual domain that N belongs to, and the TIDN indicates the type of the IoT

device. Second, the AE will use a random number generator to generate a one-time

182

token (OTT) to be used as part of a one-time password (OTP) between N and the MG.

Once N is registered, both N and MG will generate the OTT during every authentication

session without any human involvement. Then the AE will use N’s different IDs and the

CG-IG Registration

Step1: AE uses a random number generator to generate a random value to be used as a

one-time password (OTPCi) between CG and each IGi.

Step 2: AE generates a master secret key (MSKCI) only known to the CG and its IGs.

Step 3: AE communicates with the PUF cloud to retrieve a CRP (CCG, RCG) of the CG

and CRP (CIGi, RIGi) of the IGi

Step 4: The AE calculates the authentication parameters as follows:

CGA = H (CGIDR || IGiIDR|| RCG)

CIAi = H (H (CGIDR || IGiIDR|| RIGi)

Step 5: AE inserts and stores CGIDR, CGIDA, IGIDR, IGIDA, MSKCI, CGA, CIGi, and

OTPCi in the IG's database. The MSKCI is stored in an encrypted format using the RIGi.

The IGi only knows the CIGi. RIGi is unknown to the IGi. To calculate CIAi and decrypt

the OTPCi and the MSKCI, the IGi needs to feed the CIGi to the PUF function to

compute the RIGi.

Step 6: The AE inserts and stores CGIDR, CGIDA, IGiIDR, IGiIDA, MSKCI, CIAi, CCG, and

OTPCi in CG’ memory. The MSKCI is stored in an encrypted format using the RCG. The

CG only knows the CCG. RCG is unknown to the CG. To calculate CGA and decrypt the

OTPCi and the MSKCI, the CG needs to feed the CCG to the PUF function to compute

the RCG.

IG-MG Registration

Step1: AE uses a random number generator to generate a random value to be used as a

one-time password (OTPIM) between IG and the MGi.

Step 2: AE generates a master secret key (MSKIM) to be only known to the IG and the

three MGs that are within the same level.

Step 3: AE communicates with the PUF cloud to retrieve a CRP (CMGi, RMGi) of the

MGi.

Step 4: The AE calculates the following authentication parameter as follows:

MGAi = H (IGiIDR || MGiIDR|| RMGi)

IMAi = H (IGiIDR || MGiIDR|| RIGi)

Step 5: AE inserts and stores MGIDR, MGIDA, MSKIM, MGAi, and OTPIM in the IG's

database. The MSKIM is stored in an encrypted format using the RIGi. The IGi only

knows the CIGi. RIGi is unknown to the IGi. To calculate IMAi, and decrypt the MSKIM

and OTPIM, the IGi needs to feed the CIGi to the PUF function to compute the RIGi.

Step 6: AE inserts and stores IGIDR, IGIDA, MGIDR, MGIDA, MSKIM, IMAi,CMGi, and

OTPIM in the MGi’s memory. The MSKIM is stored in an encrypted format using the

RMGi. The MGi only knows the CMGi. RMGi is unknown to the MGi. To calculate MGAi

183

Figure 49: Registration Phase

MG's real ID to generate three different authentication parameters, which are S1

and S2, and S3, using a one-way hash function and XOR operations. Then, the AE will

insert and store NIDR, NIDA, the MGIDA, GIDN, TIDN, and the OTT in the MG's database and

store S1, S2, S3, OTT, NIDA, MGIDR, and MGIDA in N’ memory.

The real identities of the devices represent a secure parameter between the devices

within the network. The real IDs will never be transmitted in a plain text format and will

be used during the authentication process between every two devices.

and decrypt the MSKIM and OTPIM, the MGi needs to feed the CMGi to the PUF

function to compute the RMGi.

MG-N Registration

Step 1: The AE assigns N to its appropriate virtual domain and generates a GIDN to the

N.

Step 3: The AE generates and assign a TIDN to each N based on its type

Step 4: The AE calculates the three parameters: S1, S2, and S3 as follows:

 S1: h (NIDR || MGIDR ||RMGi)

 S2: h (S1 ||MGIDR || GIDN)

 S3: h (S2|| MGIDR ||TIDN)

GIDN, TIDN and RMGi are only used to create S1, S2, and S3. Both the GIDN and the TIDN

are only stored on the MGi. The IoT node does not know anything about those two IDs

and the RMGi. The CMGi is only stored on the MGi database. RMGi is unknown to both

the IoT node and the MGi because the MGi will compute RMGi on every authentication

session. Using GIDN and TIDN to generate the authentication parameters makes it almost

impossible for an adversary to be able to identify the GIDN and the TIDN of any IoT

node. Also, using the RMGi makes is impossible for an adversary to impersonate the

MGi.

Step 5: AE generates a one-time token (OTT) that will be used as part of a one-time

password (OTP) using a random number generator

Step 6: AE stores the S1, S2, S3, NIDA, MGIDA, MGIDR, and OTT in the IoT device

database.

Step 7: AE inserts the NIDR, NIDA, GIDN, TIDN, and OTT of the IoT node in the MG

database.

184

5.6.3 Mutual authentication and key generation phases

This phase will cover three different protocols. The protocol depends on the

relationship between every two nodes. Figure 50 presents the different types of

relationships that we have in the poultry farm IoT network. We have a parent-child

relationship, and this is presented as the relationship between a gateway and the other

gateway that is above it. The two examples of the parent-child relationship are the CG-IG

relationship and the IG-MG relationship. The second type of relationship is the child-

child relationship. This type of relationship is between two gateways at the same level.

The two examples in the presented network are IG-IG relationship and MG-MG

relationship. The third type of relationship is between a gateway and IoT.

Figure 50: Different types of relationships in the poultry farm network

185

5.6.3.1 Protocol 1: parent gateway-child gateway authentication and key

generation

This protocol presents the mutual authentication process between parent gateway

(PG) and child gateway (ChG) and establishes a session key for data transfer. As

presented in figure 51, this process starts when ChG prepares the authentication request

message that will be sent to the PG. Also, the algorithm for the proposed parent gateway-

child gateway mutual authentication mechanism is shown in detailed steps in figure 52.

The steps involved in this process are listed below.

Child Gateway (ChG) Parent Gateway (PG)

Generate: TSChG1, RVChG1

Compute:

X1 = H (OTP || AuthP)

X2 = X1 ⊕ (RVChG1)

X3 = H (ChGIDR || TS ChG1 || RVChG1 || X1)

 M1: (ChGIDA, TSChG1, X2, X3)

 Check:|TRec− TS ChG1 |< ∆T

 Find: ChGIDA

 Read: ChGIDR Cp, OTP

 Compute:

 RP = PUF(CP)

 AuthP’ = H (PGIDR || ChGIDR || RP)

 X1’ = H (OTP || AuthP’)

 RV’ChG1 = X2 ⊕ X’1

 Verify: X3
’ = H (ChGIDR || TS ChG1 || RVChG1

’
 || X1

’)

 Generate: TSPG1, RVPG1, SID

Computes:

 Yx = H (OTP || Authc)

 Y1 = RVPG1 ⊕ H (Yx || RVChG1)

 Y2 = H (PGIDR || TSPG1 || RVPG1 || RVChG1 || Yx)

 M2: (PGIDA, SID, TSPG1Y1, Y2)

Check:|TRec− TSPG1 |< ∆T

Read: CC, OTP

Compute:

RC = PUF(CC)

AuthC’ = H (PGIDR || ChGIDR || RC)

YX’ = H (OTP || AuthC’)

186

Figure 51: The authentication process between PG and CG

5.6.3.1.1 Step 1: Interaction Request

1. ChG generates a new TSChG1 to avoid replay attacks

2. ChG computes X1

a. X1 = H (OTP || AuthP)

RVPG1
’ = H (Yx’ ⊕ RVChG1) ⊕ Y1

Verify

Y2
’
 = = H (ChGIDR || TS’PG1 || RV’PG1 || RVChG1 Yx)

Generate: TSChG2, RVChG2

Compute

Xcc = H (RV’PG1|| OTP)

X4 = H(Xcc)⊕ RVChG2

X5 = H (ChGIDR || TSChG2 || RVChG2|| (RV’PG1 || Xcc)

 M3: ChGIDA, SID, TSChG2, X4, X5)

 Check:|TS’Rec− TSChG2 |< ∆T

 Compute:

 Xcc’ = H (OTP|| RV’PG1)

 RV’ChG2 = H(Xcc’) ⊕ X4

 Verify:

 H (ChGIDR || TS’ChG2 || RV’ChG2|| RVPG1|| Xcc)

 Generate: TSPG2, TK12 and Tk13

 Compute

 Y3= H(OTP) ⊕ TK12

Y4 = TK12⊕ TK13

 OTPx = H (OTPx-1 || RVChG1)

 ChGIDAx = H (OTP|| ChGIDA)

 H5 = H (ChGIDR || TSPG2 || TK12|| TK13

 ||OTPX|| ChGIDAx|)

M4: (PGIDA, SID, TSPG2, Y3, Y4, Y5)

Check: |TS’Rec− TSCG2 |< ∆T

Compute:

TK12
’= H(OTP) ⊕ Y3

TK13
’ = TK12

’⊕ Y4

OTP’x = H (OTPx-1 || RVChG1)

ChG’IDAx = H (OTP|| ChGIDA)

Verify

Y5’ = H (ChGIDR || TS’PG2 || TK’12|| TK’13 || OTP’X || ChG’IDAx)

Store (OTP’x ’, ChG’IDAx
 ’)

187

3. ChG selects a random parameter RVChG1 and then calculates X2

a. X2 = X1 ⊕ (RVChG1)

4. ChG computes X3 = H (ChGIDR || TS ChG1 || RVChG1 || X1)

5. ChG sends the message to the PG.

The message includes ChG IDA, TSChG1, X2, and X3, as shown in 5.1.

ChG PG M1(ChGIDA, TSChG1, X2, X3) (5.1)

Algorithm 2 The mutual authentication between PG device and the ChG

Input:

Child gateway (ChG) device with real identity (PGIDR), alias identity (PGIDA), IG real

identity (ChGIDR), IG alias identity (ChGIDR), master secret key (MSK), PUF

Challenge (CChG), the Authp authentication parameter, and one time password (OTP)

PG device with real identity of the PG (PGIDR), alias identity of the PG (PGIDA), ChG

real identity (ChGIDR), IG alias identity (ChGIDR), master secret key (MSK), one-time

password (OTP), PUF challenge (Cp), and the authentication parameter Authc

Output:

 Mutual authentication between the CG and the IG

Begin

1. The ChG device generates a random nonce RVChG1, a timestamp TSChG1, X1 =

H (OTP || AuthP) X2 = X1 ⊕ (RVChG1), and X3 = H (ChGIDR || TS ChG1 || RVChG1 || X1)

2. ChG device sends <ChGIDA, TSChG1, X2, X3 > message to the PG.

3. If (the PG finds ChGIDA in its repository) then

4. The PG retrieves ChGIDR, OTP, and Cp from its repository to its memory;

5. The PG passes the challenge Cp to its PUF function and generates a

response RPG

6. The PG calculates Authp’. Then the PG computes X1’, retrieves the

RV’ChG1 from XORing X1 and X2 and finally calculates X3’ = H (ChGIDR || TS

ChG1 || RVChG1 || X1)

188

7. If (the calculated hash message in step 6 matches the hash message that

was sent in step 2) then

8. The PG generates a timestamp TSP1, generates a random nonce

RVP1, calculates the hash value Yx = H (OTP || Authc), Y1 = RVPG1 ⊕ H

(Yx || RVChG1), and Y2 = H (PGIDR || TSPG1 || RVPG1 || RVChG1 || Yx)

9. The PG sends PGIDA, SID, TSP1, TSPG1Y1, and Y2 message ChG.

10. else

11. Go to step 42.

12. end if

13. else

14. Go to step 42.

15. end if

16. ChG verifies the time stamp and retrieves CC, OTP. ChG computes RC =

PUF(CC), AuthC’ = H (PGIDR || ChGIDR || RC), and retrieves RVChG1. ChG generates
Y2

’
 = = H (ChGIDR || TS’PG1 || RV’PG1 || RVChG1, Yx)

17. If (the calculated hash message in step 16 matches the hash message that

was sent in step 9)

18. then

19. The authenticity of the PG is verified

20. ChG generates a timestamp TSChG2 and a random nonce RVChG2, ChG Xcc = H

(RV’PG1|| OTP), X4 = H(Xcc)⊕ RVChG2, and X5 = H (ChGIDR || TSChG2 || RVChG2|| (RV’PG1 ||

Xcc)

21. ChG sends <ChGIDA, SID, TSChG2, X4, X5> message to PG.

22. else

23. Go to step 42.

24. end if

25. The PG verifies the TSChG2, PG computes Xcc’ = H (OTP|| RV’PG1) and retrieving

RV’ChG2 by xoring = H(Xcc’) and X4. Also, PG generates X5’ = H (ChGIDR || TSChG2 ||

RVChG2|| (RV’PG1 || Xcc)

26. If (the calculated hash message in step 25 matches the hash message that

was sent in step 21

27. then

28. The authenticity of the IG device is verified.

29. PG generates a timestamp TSPG2 TK12 and Tk13. Also, PG computes
Y3= H(OTP) ⊕ TK12, Y4 = TK12⊕ TK13, OTPx = H (OTPx-1 || RVChG1),

189

ChGIDAx = H (OTP|| ChGIDA), and Y5 = H (ChGIDR || TSPG2 || TK12|| TK13 ||OTPX||

ChGIDAx|)

30. PG sends < PGIDA, SID, TSPG2, Y3, Y4, Y5> message to ChG.

31. , ChG Xcc = H (RV’PG1|| OTP), X4 = H(Xcc)⊕ RVChG2, and X5 = H (ChGIDR || TSChG2 ||

RVChG2|| (RV’PG1 || Xcc)

32. ChG <ChGIDA, SID, TSChG2, X4, X5> message to PG.

33. else

34. Go to step 42.

35. end if

36. ChG verifies the TSPG2. Also, ChG computes TK12
’= H(OTP) ⊕ Y3, TK13

’ = TK12
’⊕

Y4, OTP’x = H (OTPx-1 || RVChG1), ChG’IDAx = H (OTP|| ChGIDA). Finally, ChG generates

Y5’ = H (ChGIDR || TS’PG2 || TK’12|| TK’13 || OTP’X || ChG’IDAx)

37. If (the calculated hash message in step 36 matches the hash message that

was sent in step 32

38. then

39. ChG stores OTP’x’, ChG’IDAx
 in its database

40. else

41. Go to step 42.

 End if

42. Stop (terminates the connection)

 End

 Figure 52: Algorithm 1 The mutual authentication between PG device and the ChG

5.6.3.1.2 Step 2: Parent Gateway Response

Once the PG receives the connection request, it will complete the following steps:

1. PG checks the validity of the received timestamp | TS’Rec− TSChG1 |< ∆T.

TS’Rec is the time when the message is received, and ∆T is the maximum

transmission delay. The message will be dropped if the difference between the

timestamp and the time when the message is received higher than the expected

maximum transmission delay.

190

2. PG retrieves from its database the ChGIDR that corresponds to its ChGGIDA. If

the PG did not find the IGIDA in its database, it will ignore and drop the

received message.

3. PG will retrieve the Cp and pass it to the PUF function to compute the RP

a. RP = PUF(Cp)

4. PG computes AuthP’ = H (PGIDR || ChGIDR || RP)

5. PG computes the X1’ = H (OTP || AuthP’)

6. PG computes the RV’ChG1 = X2 ⊕ X’1

7. The PG uses the calculated X1’, TSChG1
'
, ChGIDR, and the RV’ChG1 to verify

X3', which is a combination of ChGIDR, X1’, TSChG1
'
, and RV’ChG1 using a one-

way hash function as shown in figure 53. If the computed value is equal to the

received value, the PG accepts the connection request; otherwise, it will drop

it.

Figure 53: Verify the interaction request parameters

Once the PG accepts the interaction request, it generates a random value RVPG1

and time stamp TSPG1. Also, the PG generates a session ID. The session ID aims to

distinguish one session from the rest of the running sessions simultaneously. The PG

prepares and sends an interaction response to the ChG. The preparation process of the

connection response message includes the following steps:

X3
’ = H (ChGIDR || TS ChG1 || RVChG1

’
 || X1

’)

If X3 = X3
’ Then

The PG will accept the interaction request

Else

The PG will drop the interaction request

191

1. PG generates a new TSPG1

2. PG Calculates Yx

a. Yx = H (OTP || Authc)

3. PG selects a random parameter RVPG1 and then calculates Y1

a. Y1 = RVPG1 ⊕ H (Yx || RVChG1)

4. PG generates a session ID(SID)

5. PG calculates Y2 = H (PGIDR || TSPG1 || RVPG1 || RVChG1 || Yx)

6. PG sends an interaction response message

The interaction response includes PGIDA, session ID(SID), TSPG1, Y1, and Y2, as shown in

5.2.

PG ChG Conn-Res (PGIDA, SID, TSPG1, Y1, Y2) (5.2)

5.6.3.1.3 Step 3: Parent Gateway Authentication

Once ChG receives the connection response, it completes the following steps:

1. ChG checks the validity of the received timestamp | TS’Rec- TSPG1 |< ∆T.

TS’Rec is when the message is received, and ∆T is the maximum transmission

delay. The message is dropped if the difference between the timestamp and

the time when the message is received higher than the expected maximum

transmission delay.

2. ChG will retrieve the CC and pass it to the PUF function to compute the RC

a. RC = PUF(CC)

192

3. ChG computes AuthC’ = H (PGIDR || ChGIDR || RC)

4. ChG computes the YX’ = H (OTP || AuthC’)

5. ChG calculates the RVPG1
’ = H (Yx’ ⊕ RVChG1) ⊕ Y1

6. As presented in figure 54, ChG calculates Y2’ using a one-way hash function

and compares the generated Y2’ to the received Y2. If the two values are the

same, ChG will accept the interaction response and authenticate the PG.;

otherwise, it will drop it.

Y2
’
 = = H (ChGIDR || TS’PG1 || RV’PG1 || RVChG1. Yx)

 If Y2 = Y2’ Then

Then ChG will accept the connection response.

Else

ChG will drop the connection response

Figure 54: Evaluate the PG authentication parameter

Once the ChG authenticates the PG, it generates a random value RVChG2 and time

stamp TSCHG2. The ChG prepares and sends another message to the PG. The preparation

process of the message includes the following steps:

1. ChG generates a new TSChG2

2. ChG computers Xcc

a. Xcc = H (RV’PG1|| OTP)

3. ChG selects a random parameter RVChG2 and then calculates X4

a. X4 = H(Xcc)⊕ RVChG2

4. ChG calculates X5

a. X5 = H (ChGIDR || TSChG2 || RVChG2|| (RV’PG1 || Xcc)

5. ChG sends the message to the PG

193

The message includes ChGIDA, session ID, TSChG2, X4, and X5, as shown in 5.3.

ChG PG (ChGIDA,SID, TSChG2, X4 ,X5) (5.3)

5.6.3.1.4 Step 4: Child Gateway Authentication

Once the PG receives the message, it will complete the following steps:

1. PG checks the validity of the received timestamp | TS’Rec− TSChG2 |< ∆T.

TS’Rec is the time when the message is received, and ∆T is the maximum

transmission delay. The message will be dropped if the difference between the

timestamp and the time when the message is received higher than the expected

maximum transmission delay.

2. PG computes Xcc’ = H (OTP|| RV’PG1)

3. PG computers RV’ChG2 = H(Xcc’) ⊕ X4

4. The PG uses the TS’ChG2, Xcc’, RVPG1 and, RV’ChG2 to generate X5’ using a

one-way hash function as shown in figure 55. If the computed value is equal

to the received value, the PG accepts the message and authenticates the ChG;

otherwise, it will drop the connection.

 Figure 55: Evaluate the ChG Authentication Parameter

X5’ = H (ChGIDR || TS’ChG2 || RV’ChG2|| RVPG1|| Xcc)

If X5 = X5
’ Then

The PG will accept the message

Else

The PG will drop the connection

194

Once the PG accepts the message, it will generate a new timestamp TSPG2. Also,

the PG will generate two news tokens that the ChG can use to complete a mutual

authentication with the other two ChGs. The PG will also compute a new OTP and a new

alias ID for the ChG to be used for the next authentication session. The PG prepares and

sends a message to the ChG. The preparation process of the message includes the

following steps:

1. PG generates a new TSPG2

2. PG generates two new tokens TK12 and Tk13, and then calculates and then

calculates Y3 and Y4

a. Y3= H(OTP) ⊕ TK12

b. Y4 = TK12⊕ TK13

3. PG calculate a new OTP

a. OTPx = H (OTPx-1 || RVChG1)

4. PG calculate a new Alias ID for the ChG

a. ChGIDAx = H (OTP|| ChGIDA)

5. PG calculates Y5 = H (ChGIDR || TSPG2 || TK12|| TK13 ||OTPX|| ChGIDAx|)

6. PG sends the message to the ChG

The message includes PGIDA, SID, TSPG2, Y3, Y4, and Y5, as shown in 5.4.

PG ChG M4 (PGIDA, SID, TSPG2, Y3, Y4, Y5) (5.4)

Once the ChG receives the message, it will complete the following steps:

195

1. ChG checks the validity of the received timestamp | TS’Rec− TSCG2 |< ∆T.

TS’Rec is the time when the message is received, and ∆T is the maximum

transmission delay. The message will be dropped if the difference between the

timestamp and the time when the message is received higher than the expected

maximum transmission delay.

2. ChG computes the TK12 and TK13

a. TK12
’= H(OTP) ⊕ Y3

b. TK13
’ = TK12

’⊕ Y4

3. ChG computes the OTP’x = H (OTPx-1 || RVChG1)

4. ChG computes the ChG’IDAx = H (OTP|| ChGIDA)

5. The ChG uses TS’PG2, TK’12, TK’13, OTP’x and ChG’IDAx to generate Y5’

using a one-way hash function as shown in figure 56. If the computed value is

equal to the received value, the ChG accepts the message, saves the tokens in

its database, and updates its database with the new OTP and the new Alias ID.

Figure 56: Evaluate the PG received message

5.6.3.1.5 Key generation phase between PG and ChG

Once the mutual authentication is completed, the two sides will generate a shared

secret session key (ssk) that will be used to encrypt all the subsequent communication

between the PG and the ChG. The ssk will be a combination of the generated random

Y5’ = H (ChGIDR || TS’PG2 || TK’12|| TK’13 || OTP’X || ChG’IDAx)

If Y5 = Y8
’ Then

The ChG will accept the message and update its database

Else

The ChG will drop the connection

196

values as presented in 5.5. SHA 256 will be used to generate the ssk. AES 128 bits will

be used to encrypt and decrypt the messages.

ssk = H (RVChG1|| RVChG2|| RVPG1 || OTP) (5.5)

5.6.3.2 Protocol 2: child gateway-child gateway authentication and key generation

This protocol presents the mutual authentication process between any two nodes

that inherit the child-child relationship. The two-child gateways will complete mutual

authentication and establishes a session key for data transfer. As presented in figure 57,

this process starts when ChG_1 prepares the interaction request message that will be sent

to the ChG_2. In the case the MG-MG mutual authentication, the two gateways must be

inside the same level. Each child node knows the MSK. In the case of the intermediate

gateways, all the IGs share the same MSK with their parent gateway, which is the CG. In

the case of the mini gateways. The mini gateways within the same level share the MSK

with their parent gateways, the IG. Also, each child gateway knows the tokens that it

received from its parent gateway to use during the mutual authentication with another

child gateway. Furthermore, each child gateway knows its real and alias IDs and the other

child gateways' real and alias IDs that they are eligible to authenticate with them

mutually. The algorithm for the proposed Child Gateway -Child Gateway mutual

authentication mechanism is shown in detailed steps in figure 59. The steps involved in

this process are listed below.

5.6.3.2.1 Step 1: Interaction Request

1. ChG_1 generates a new TSChG_11

2. ChG_1 calcilates Rj

197

a. Rj = H (TK|| ChG_2IDR)

3. ChG_1 selects a random parameter RVChG_11 and then calculates T1

a. T1 = RVChG_11 ⊕ Rj

4. ChG_1 computes T2 = H (ChG_1IDR || TS ChG_11 || RVChG_11 ||Rj)

5. ChG_1 sends an interaction request message.

198

 Figure 57: The authentication process between ChG_1 and ChG_2

The connection request includes ChG_1IDA, TSChG_11, T1, and T2, as shown in 5.7.

Child Gateway_1 (ChG_1) Child Gateway_2 (ChG_2)

Generate: TSChG_11, RVChG_11

Compute:

Rj = H (TK|| ChG_2IDR)

T1 = RVChG_11 ⊕ Rj

T2 = H (ChG_1IDR || TS ChG_11 || RVChG_11 ||Rj)

 M1: (ChGIDA1, TSChG_11, T1, T2)

 Check| TSRec_11Rec− TS’ChG_11 |< ∆T

 Find: ChGIDA1

 Read: ChG_1IDR, TK, CC_2

 Compute:

 Rj’ = H (TK || ChG_2IDR)

 RV’ChG_11 = Rj’ ⊕ T1

 Verify: T2
’ = H (ChG_1IDR || TS’ChG_11 ||

 RV’ChG_11 ||Rj’)

 Generate: TS ChG_21, RVChG_21, SID

Computes:

 RC_2 = PUF(CC_2)

 Decrypt:

 MSK ={MSK} RC_2

Computes:

D1 = H (RVChG_11 ||MSK || TK)

 D2 = RVChG_21 ⊕ D1

D3 = H (ChG_2IDR || TS ChG_21 || RVChG_21|| D1)

 M2: (ChG_2IDA, SID, TS ChG_21, D2, D3)

Check: | TS Rec- TS’ ChG21 |< ∆T

Read: CC_1

Compute:

RC_1 = PUF(CC_1)

Decrypt:

MSK ={MSK} RC_2

Compute:

D1’ = H (RVChG_11 ||MSK || TK)

RVChG_21 = D1’ ⊕ D2

Verify

D3’ = = H (ChG_2IDR || TS’ ChG_21 || RV’ ChG_21 ||D1)

Generate: TSChG12, RVChG12

Compute

T3 = H (TK|| RVChG_21|| MSK)

T4 = T3 ⊕ RVChG_12

T5 = H (ChG_1IDR || TSCHG_12 || RVChG_12 || T3)
 M3: (ChG_1IDA, SID, TSCHG_12, T4, T5)

 Check: TSRec - TS’ChG_12 |< ∆T

 Compute:

 T3
’ = H (TK|| RVChG_21|| MSK)

 RV’ChG12 = T3
’ ⊕ T4

 Verify:

 T5
’ = H ((ChG_1IDR || TSCHG_12 || RVChG_12 || T3)

199

ChG_1 ChG_2 Conn-Req (ChGIDA, TSChG_11, T1, T2) (5.7)

 Once the ChG_2 receives the interaction request, it will complete the following

steps:

1. ChG_2 checks the validity of the received timestamp | TSRec_11Rec− TS’ChG_11 |<

∆T. TSRec_ is the time when the message is received, and ∆T is the maximum

transmission delay. The message will be dropped if the difference between the

timestamp and the time when the message is received higher than the expected

maximum transmission delay.

2. ChG_2 retrieves from its database the ChG_1IDR that corresponds to its

ChG_1IDA. If the ChG_2 did not find the ChG_1IDA in its database, it will ignore

and drop the interaction request.

3. Once the ChG_2 finds the ChG_1IDR, it will retrieve it along with the token (TK)

of ChG_1.

4. ChG_2 computes Rj’ = H (TK || ChG_2IDR)

5. ChG_2 computes the RV’ChG_11 = Rj’ ⊕ T1

6. The ChG_2 uses ChGIDR, TS’ChG_11, Rj’, and the RVChG_11 using a one-way hash

function as shown in figure 58 to verify T2’. If the computed value is equal to the

received value, the ChG_2 accepts the interaction request; otherwise, it will drop

it.

200

Figure 58: Evaluate the ChG interaction request parameters

Algorithm 3 The mutual authentication between IG device and the MG

Input:

First Child gateway (ChG1) device with real identity (ChGIDR1), alias identity

(ChGIDA1), ChG_2 real identity (ChGIDR2), IG alias identity (ChGIDR2), master secret

key (MSK), PUF Challenge (CChG1), and the TK.

Second Child gateway (ChG2) with real identity (ChGIDR1), alias identity (ChGIDA1),

ChG_2 real identity (ChGIDR2), IG alias identity (ChGIDR2), master secret key (MSK),

PUF Challenge (CChG2), and the TK.

Output:

 Mutual authentication between the ChG1 and the ChG2

Begin

1. The ChG1 device generates a random nonce RVChG_11 and a timestamp

TSChG_11. ChG1 computes Rj = H (TK|| ChG_2IDR), T1 = RVChG_11 ⊕ Rj, and

T2 = H (ChG_1IDR || TS ChG_11 || RVChG_11 ||Rj)

2. ChG1 device sends < ChGIDA1, TSChG_11, T1, T2 > message to the ChG2.

3. If (the ChG2 finds ChGIDA1 in its repository)

4. then

5. The ChG2 verifies the timestamp TSChG_11 and retrieves ChG_1IDR, TK, CC_2

from its repository to its memory.

6. The ChG2 computes Rj’ = H (TK || ChG_2IDR) and retrieves RV’ChG_11 from

xoring Rj’ and T1. Then ChG2 generates T2
’ = H (ChG_1IDR || TS’ChG_11 ||

RV’ChG_11 ||Rj’)

7. If (the calculated hash message in step 6 matches the hash message that was in

step 2) then

8. The ChG2 generates TS ChG_21 and RVChG_21, SID

9. The ChG2 passes the challenge CC_2 to its PUF function and generates a

T2
’ = H (ChG_1IDR || TS’ChG_11 || RV’ChG_11 ||Rj’)

If T2 = T2
’ Then

The ChG_2 will accept the interaction request

Else

The ChG_2 will drop the interaction request

201

response RC_2. Then the ChG2 decrypts the MSK using RC_2.

10. The ChG2 computes D1 = H (RVChG_11 ||MSK || TK), D2 = RVChG_21 ⊕

D1, D3 = H (ChG_2IDR || TS ChG_21 || RVChG_21|| D1)

11. ChG2 device sends < ChG_2IDA, SID, TS ChG_21, D2, D3> message to the

ChG1.

12. else

13. Go to step 34.

14. end if

15. else

16. Go to step 34.

17. end if

18. ChG1 verifies the timestamp and retrieves CC_1. The ChG1 passes the

challenge CC_1 to its PUF function and generates a response RC_1. ChG1

computes D1’ = H (RVChG_11 ||MSK || TK) and retrieves RVChG_21 from xoring

D2 and D1. Then ChG1 generates D3’ = = H (ChG_2IDR || TS’ ChG_21 || RV’

ChG_21 ||D1)

19. If (the calculated hash message in step 18 matches the hash message that was

 sent in step 11)

 then

20. The authenticity of the ChG2 device is verified.

21. ChG1 generates a time stamp TSChG12 and a nonce value RVChG12

22. ChG1 computes T3 = H (TK|| RVChG_21|| MSK), T4 = T3 ⊕ RVChG_12, and T5 =

H (ChG_1IDR || TSCHG_12 || RVChG_12 || T3)

23. ChG1 device sends < ChG_1IDA, SID, TSCHG_12, T4, T5> message to the ChG2

24. else

25. Go to step 34.

26. end if

27. The ChG2 verifies the timestamp TSCHG_12. It computes T3
’ = H (TK||

RVChG_21|| MSK) and retrieves RVChG_12 by XORing = T3 and T4. Also, ChG2

generates T5
’ = H ((ChG_1IDR || TSCHG_12 || RVChG_12 || T3)

28. If (the calculated hash message in step 27 matches the hash message that was

sent in step 23

29. then

30. The authenticity of the ChG1 device is verified.

202

31. else

32. Go to step 34.

33. end if

34. Stop (terminates the connection)

 End

 Figure 59: Algorithm 3 The mutual authentication between ChG1 device and the ChG2

5.6.3.2.2 Step 2: ChG_2 Response

Once the ChG_2 accepts the interaction request, it will retrieve its stored PUF

challenge (CC_2) and feed it to the PUF function to calculate the PUF response (RC_2).

Then ChG_2 will use RC_2 to decrypt the stored MSK. Also, it generates a random value

RVChG_21 and time stamp TS ChG_21. Furthermore, the ChG_2 generates a session ID. The

session ID aims to distinguish one session from the rest of the running sessions

simultaneously. The ChG_2 prepares and sends a connection response to the ChG_1. The

preparation process of the connection response message includes the following steps:

1. ChG_2 retrieves its CC_2 from its database and computes RC_2

a. RC_2 = PUF(CC_2)

2. ChG_2 decrypt the MSK using RC_2

3. ChG_2 calculates D1

a. D1 = H (RVChG_11 ||MSK || TK)

4. ChG_2 generates a new TSChG-21

5. ChG_2 selects a random parameter RVChG_21 and then calculates D2

a. D2 = RVChG_21 ⊕ D1

6. ChG_2 generates a session ID (SID)

203

7. ChG_2 calculates D3 = H (ChG_2IDR || TS ChG_21 || RVChG_21|| D1)

8. ChG_2 sends the message to ChG_1

The message includes ChG_2IDA, session ID (SID), D2, and D3, as shown in 5.6. The

timestamps present information about when an event occurred, which makes this value

important.

ChG_2 ChG_1 (ChG_2IDA, SID, D2, D3) (5.8)

5.6.3.2.3 Step 3: ChG_2 Authentication

Once ChG_1 receives the connection response, it completes the following steps:

1. ChG_1 checks the validity of the received timestamp | TS Rec- TS’ ChG21 |< ∆T. TS

Rec is the time when the message is received, and ∆T is the maximum transmission

delay. The message is dropped if the difference between the timestamp and the

time when the message is received higher than the expected maximum

transmission delay.

2. ChG_1 retrieves its CC_1 from its database and computes RC_1

a. RC_1 = PUF(CC_1)

3. ChG_1 decrypt the MSK using RC_1

4. ChG_1 computes D1’ = H(RVChG_11 ||MSK || TK)

5. ChG_1 calculates the RVChG_21 = D1’ ⊕ D2

6. As presented in figure 60, ChG calculates D3’ using a one-way hash function and

compares the generated D3’with the received D3. If the two values are the same,

ChG_1 will authenticate ChG_2; otherwise, it will drop the message.

204

D3’ = = H (ChG_2IDR || TS’ ChG_21 || RV’ ChG_21 ||D1)

If D3 = D3’ Then

Then ChG_1 will Authenticate ChG_2

Else

ChG will drop the message

Figure 60: Evaluate the ChG_2 authentication parameter

Once the ChG_1 authenticate ChG_2, it generates a random value RVChG_12 and

time stamp TSChG_12. The ChG_1 prepares and sends another message to the ChG_2. The

preparation process of the message includes the following steps:

1. ChG_1 generates a new TSChG_12

2. ChG_1 calculates T3

a. T3 = H (TK|| RVChG_21|| MSK)

3. ChG_1 generate a new random value RVChG_12 and computers T4

a. T4 = T3 ⊕ RVChG_12

4. ChG_1 calculates T5

a. T5 = H (ChG_1IDR || TSCHG_12 || RVChG_12 || T3)

5. ChG_1 sends the message to the ChG_2

The message includes ChG_1IDA, SID, TSChG_21, T4, and T5, as shown in 5.9.

ChG_1 ChG_2 (ChG_1IDA, SID, TSCHG_12 T4, T5) (5.9)

5.6.3.2.4 Step 4: ChG_1 Authentication

Once the ChG_2 receives the message, it will complete the following steps:

205

1. ChG_2 checks the validity of the received timestamp TSRec - TS’ChG_12 |< ∆T.

TS’ChG_12 is the time when the message is received, and ∆T is the maximum

transmission delay. The message will be dropped if the difference between the

timestamp and the time when the message is received higher than the expected

maximum transmission delay.

2. ChG_2 computesT3
’ = H (TK|| RVChG_21|| MSK)

3. ChG_2 computers RV’ChG12 = T3
’ ⊕ T4

4. The ChG_2 uses TS’CHG_12, the RV’ChG12, and T3
’ to generate T5’ using a one-

way hash function and XOR function as shown in figure 61. If the computed

value is equal to the received value, the ChG_2 accepts the message and

authenticate ChG_1; otherwise, it will drop the connection.

Figure 61: Evaluate the ChG_1 authentication parameter

5.6.3.2.5 Key Generation Phase

Once the mutual authentication is completed, the two sides will generate a shared

secret session key (ssk) that will be used to encrypt all the subsequent communication

between ChG_1 and ChG_2. The ssk will be a combination of the generated random

values and the TK as presented in 5.10. SHA 256 will be used to generate the ssk. AES

128 bits will be used to encrypt and decrypt the messages.

ssk = H (RVChG_11 ||RVChG_21 || RVChG_12 || TK) (5.10)

T5
’ = H (ChG_1IDR || TSCHG_12 || RVChG_12 || T3)

If T5= T5’ Then

The ChG_2 will accept the message and authenticate ChG_1

Else

The ChG_2 will drop the connection

206

5.6.3.3 Protocol 3: mini gateway–IoT node authentication and key generation

This protocol presents the mutual authentication process between a mini-gateway

(MG) and an IoT node(N). The two devices will complete mutual authentication and

establish a session key for data communication. As presented in figure 62, this process

starts when Ni prepares the connection request message that will be sent to the MG. All

IoT nodes inside the same virtual domain share a group ID (GID). Also, all IoT nodes

with the same type share a typeID (TID). Each IoT node stores three authentication

parameters that will be used during the authentication process. Each IoT node knows its

real and alias IDs, its MG's real and alias IDs, the OTT, the three authentication

parameters, and the chained hash PUF value. The steps involved in this process are listed

below.

As presented in figure 62, this phase starts when NW prepares the connection

request message that will be sent to the MG. The steps involved in this process are listed

below.

5.6.3.3.1 Step 1: Interaction Request

1. N generates a new TSN1 to avoid replay attacks

2. N computes X1

a. X1 = H (S2 ||S3)

207

IoT(N) Mini Gateway (MG)

Generate: TSN1, RVN1

Compute:

X1 = H (S2 ||S3)

X2 = RVN1 ⊕ OTT

SN = H (NIDR||TSN1 || RVN1|| X1)

 M1: (NIDA, TSN1, X2, SN)

 Check:|TSRec− TS’N1 |< ∆T

 Find: NIDR

 Read: GIDN, TIDN, CMG, and OTT

 Compute:

 RMG = PUF(CMG)

 S’1 = H ((NIDR || MGIDR || RMG)

 S’2 = H (S’1 || MGIDR || GIDN)

 S’3 = H (S2’|| MGIDR || TIDN)

X1
’
 = H (S2

’
 ||S3

’)

 RV’N1 = OTT’ ⊕ X2

 Verify: SN’ = H (NIDR|| TS’N1, || RV’N1 || X1)

 Generate: TSMG1, RV1MG, SID

Computes:

 Y1 = H (S’1|| S’2)

 Y2 = RVMG1 ⊕OTT

 C’ = C ⊕ H(RVMG1)

 Y3 = H (MGIDR || TSMG1 || RVN1 || RVMG1 ||C||Y1)

 M2: (MGIDA, SID, TSMG1, Y2, C’, Y3)

Check: |TS’Rec−TS’MG1 |< ∆T

Compute:

Y1’ = H (S’1|| S’2)

RV’MG1 = Y2 ⊕ OTT

CX = C’ ⊕ H(RV’MG1)

Verify

Y3’ = H (MGIDR || TSMG1 || RVN1 || RVMG1 ||C||Y1)

Generate: TSN2, RVN2

Read: CHXi

Compute

Ri = PUF(C’)

CHXi+1 = H (Ri || CHXi)

Ci+1 = H (RV’MG1 || RVN1)

Ri+1 = PUF (Ci+1)

X3 = RVN2 ⊕ CHXi+1

Rx = H (RVN2|| CHXi+1) ⊕ Ri+1

OTTnew = H (OTPnew-1|| C’ || Ri)

NIDAnew = H (RVMG1|| NWIDAnew-1)

X4 = H (NIDR|| TSN2|| RVN2 || CHXi+1 || Ri+1 || Ci+1 || OTTnew || NIDAnew)

 M3: (NIDA, TSN2, X3, Rx, X4)

 Check: |TS’Rec− TS’N2 |< ∆T

208

Figure 62: MG-N mutual authentication process

3. N selects a random parameter RVN1 and then calculates X2

4. X2 = RVN1 ⊕ OTT

5. N computes SN = H (NIDR||TSN1 || RVN1|| X1)

6. N sends a connection request message.

The connection request includes NIDA, TSN1, X2, and SN, as shown in 5.11.

N MG (NIDA, TSN1, X2, SN) (5.11)

5.6.3.3.2 Step 2: mini-gateway response

Once the MG receives the connection request, it will complete the following steps:

1. MG checks the validity of the received timestamp |TSRec− TS’N1 |< ∆T. TSRec is

the time when the message is received, and ∆T is the maximum transmission

delay. The message will be dropped if the difference between the timestamp and

the time when the message is received is higher than the expected maximum

transmission delay.

2. MG retrieves from its database the NIDR that corresponds to its NIDA. If the MG

did not find the NIDA in its database, it will ignore and drop the connection

request.

 Read: R’i and the CHX’i

 Compute:

 CHX’i+1 = H (R’i || CHX’i)

C’i+1 = H (RVMG1 || RV’N1)

RV’N2 = X3 ⊕ CHXi+1

 Ri+1’ = Rx ⊕ H (RV’N2|| CHXi+1)

 OTTnew = H (OTPnew-1|| C’ || Ri)

 NIDAnew = H (RVMG1|| NWIDAnew-1)

 Verify:

 X4’ = X4 = H (NIDR|| TS’N2|| RV’N2 || CHX’i+1

 || R’x || C’i+1|| OTTnew || NIDAnew)

 Store: CHXi+1, OTTnew, NIDAnew, C’i+1, Ri+1

209

3. Once the MG finds the NIDR, it will retrieve it along with the GIDN, TIDN, CMG, and

OTT of N.

4. MG passes the challenge CMG to its PUF function and generates a response RMG

a. RMG = PUF(CMG)

5. MG uses the generated RMG to compute S1' by applying a one-way hash function.

Based on the calculated Auth1', the IG calculates Auth2' as presented in 5.12.

Also, the MG calculates S2’ and S3’as presented in 5.13 and 5.14.

S’1 = H ((NIDR || MGIDR || RMG) (5.12)

 S’2 = H (S’1 || MGIDR || GIDN) (5.13)

 S’3 = H (S2’|| MGIDR || TIDN) (5.14)

6. MG computes X1
’
 = H (S2

’
 ||S3

’)

7. MG computes the RV’N1 = OTT ⊕ X2

8. The MG uses NIDR, TSN1, RVN1, and X1 to generate using a one-way hash

function, as shown in figure 63. If the computed value is equal to the received

value, the MG accepts the connection request; otherwise, it will drop it.

Figure 63: Evaluate the IoT node interaction request parameter

Once the MG accepts the message, it generates a timestamp and a random value

RVMG. Also, the MG generates a session ID. The session ID aims to distinguish one

SN’ = H (NIDR|| TS’N1, || RV’N1 || X1)

If SN = SN” Then

 The MG will accept the connection request

Else

The MG will drop the connection request

210

session from the rest of the running sessions simultaneously. Furthermore, the MG will

retrieve a challenge(C) from its database. The MG prepares and sends a connection

response to the IoT node. The preparation process of the connection response message

includes the following steps:

1. MG calculates Y1

a. Y1 = H (S’1|| S’2)

2. MG selects a random parameter RV1MG and then calculates Y2

a. Y2 = RVMG1 ⊕ OTT

3. MG generates a new TSMG1

4. MG generates a session ID(SID)

5. C’ = C ⊕ H(RVMG1)

6. MG calculates Y3

Y3 = H (MGIDR || TSMG1 || RVN1 || RVMG1 ||C||Y1)

7. MG sends a connection response message

The connection response includes MGIDA, session ID(SID), TSMG1, Y2, C’, and Y3, as

shown in 5.15.

MG NW Conn-Res (MGIDA, SID TSMG1, Y2, C’, Y3) (5.15)

5.6.3.3.3 Step 3: mini-gateway authentication

Once N receives the connection response, it completes the following steps:

211

1. N checks the validity of the received timestamp |TS’Rec−TS’MG1 |< ∆T.

S’MGRec is the time when the message is received, and ∆T is the maximum

transmission delay. The message is dropped if the difference between the

timestamp and when the message is received is higher than the expected

maximum transmission delay.

2. N calculates Y1’ = H (S’1|| S’2)

3. N calculates the RV’MG1 = Y2 ⊕ OTT

4. N calculates the CX = C’ ⊕ H(RV’MG1)

5. As presented in figure 64, N calculates Y3’ using a one-way hash function and

compares the generated Y3’ with the received Y3. If the two values are the

same, N will authenticate MG; otherwise, it will drop it.

Figure 64: Evaluate the MG authentication parameter

Once N accepts the received message and authenticates MG, it will complete the

following steps

1. N will input the received challenge Cx to its PUF and obtains the response Ri.

a. Ri = PUF(C’)

2. N will retrieve the chained hash response s(CHXi) from its memory and calculate

the new value of the chained has responses (CHXi+1) as follows

Y3’ = H (MGIDR || TSMG1 || RVN1 || RVMG1 ||C||Y1)

 If Y3’ = Y3 Then

Then N will accept the connection response and authenticate MG

Else

N will drop the connection response

212

a. CHXi+1 = H (Ri || CHXi)

b. N will compute a new challenge (Ci+1). Then N will input the Ci+1
 into a

PUF function to obtains a new CRP for the next authentication session

where:

• Ci+1 = H (RV’MG1 || RVN1)

• Ri+1 = PUF (Ci+1)

3. N generates a new TSN2 to avoid replay attacks

4. N selects a random parameter RVN2 and then calculates X3

a. X3 = RVN2 ⊕ CHXi+1

5. N calculates Rx = H (RVN2|| CHXi+1) ⊕ Ri+1

6. N generate a new OTTnew

a. OTTnew = H (OTTnew-1|| C’ || Ri)

7. N calculate a new Alias ID for the N

a. NIDAnew = H (RVMG1|| NWIDAnew-1)

8. N calculate X4

a. X4 = H (NIDR|| TSN2|| RVN2 || CHXi+1 || Ri+1 || Ci+1 || OTTnew || NIDAnew)

9. N sends the message to the MG

The message includes NIDA, SID, TS’N2, RV’N2, X3, Rx, and X4, as shown in 5.16.

N MG (NIDA, TSN2, X3, Rx, X4) (5.16)

5.6.3.3.4 Step 4: IoT node authentication

213

Once MG receives the message, it completes the following steps:

1. MG checks the validity of the received timestamp |TS’Rec− TS’N2 |< ∆T. TS’Rec is

the time when the message is received, and ∆T is the maximum transmission

delay. The message is dropped if the difference between the timestamp and the

time when the message is received is higher than the expected maximum

transmission delay.

2. MG will retrieve the R’i and the CHX’i from its databased and computes CHX’i+1

a. CHX’i+1 = H (R’i || CHX’i)

3. MG calculates the new challenge C’i+1 = H (RVMG1|| RV’N1)

4. MG calculates the RV’N2 = X3 ⊕ CHXi+1

5. MG computes the Ri+1’ = Rx ⊕ H (RV’N2|| CHXi+1)

6. MG computes OTTnew = H (OTTnew-1|| C’ || Ri)

7. MG computes NIDAnew = H (RVMG1|| NWIDAnew-1)

As presented in figure 65, MG calculates X4’ using a one-way hash function and

compares the generated X4’ with the received X4. MG will authenticate N; otherwise,

it will drop it if the two values are the same.

X4’ = X4 = H (NIDR|| TS’N2|| RV’N2 || CHX’i+1 || R’x || C’i+1|| OTTnew || NIDAnew)

 If X4’ = X4

Then

Then MG will authenticate the N.

Else

MG will drop the connection response

 Figure 65: Evaluate the IG authentication parameter

214

After authenticating the N, the MG will store the new CRP (C’i+1, R’i+1) in its

database for the next authentication session. Also, The MG will override the old CHXi

with the new chained hash response value CHXi+1. Then the MG will store the new OTT

and the new alias ID for the N. The algorithm for the proposed IoT- mini gateway mutual

authentication mechanism is shown in detailed steps in figure 66.

Algorithm 4 The mutual authentication between IoT device and the MG

Input:

An IoT device with real identity (NIDR), alias identity (NIDA), MG real identity

(MGIDR), MG alias identity (IGIDR), Authentication parameters (S1, S2, and S3), and

one-time token (OTT)

MG with real identity (NIDR), alias identity (NIDA), MG real identity (MGIDR), MG

alias identity (MGIDR), the virtual domain Group ID(GID) and type ID (TID) of the IoT

node, PUF challenge (CMG), and one-time token (OTT)

Output:

 Mutual authentication between the IoT device(N) and the MG

Begin

1. The IoT device generates a random nonce RVN1, a timestamp TSN1, computes the

X1 = H (S2 ||S3), X2 = RVN1 ⊕ OTT, and SN = H (NIDR||TSN1 || RVN1|| X1)

2. IoT device sends (NIDA, TSN1, X2, SN) message to the MG.

3. If (the MG finds NIDA in its repository)

4. then

5. MG verifies the timestamp TSN1 and retrieves NIDR, OTT, GID, CMG, and

 TID that belongs to the NIDA from its repository to its memory.

6. The MG passes the challenge CMG to its PUF function and generates a

 response MG. The MG calculates S1
’, S2’, and S3’. Then the MG computes

X1’, retrieves the RVN1 from XORing OTT and NX2 and finally calculates

SN’ =H (NIDR||TSN1 || RVN1|| X1) message

7. If (the calculated hash message in step 7 matches the hash message that was

215

sent in step 2)

8. then

9. MG generates a timestamp TSMG1, generates a random nonce RVMG1,

10. retrieves the challenge (Ci) from its database. Then, MG calculates

Y1 = H (S’1|| S’2), Y2 = RVMG1 ⊕OTT, C’ = C ⊕ H(RVMG1) and

Y3 = H (MGIDR || TSMG1 || RVN1 || RVMG1 ||C||Y1)

11. The MG sends < MGIDA, SID, TSMG1, Y2, C’, Y3> message to N.

12. else

13. Go to step 34.

14. end if

15. else

16. Go to step 34.

17. end if

18. N verifies the time stamp, calculates Y1’ = H (S’1|| S’2) and retrieves RVMG1 from

xoring OTT and Y2 and C from xoring C’ and H(RVMG1). Then, N generates Y3’ =

H (MGIDR || TSMG1 || RVN1 || RVMG1 ||C||Y1).

Also, N computes C1 from CX. N applies the PUF function to calculate R1 for

C1.

19. If (the calculated hash message in step 18 matches the hash message that was sent

in step 11)

20. then

21. The authenticity of the MG is verified

22. N generates a timestamp TSN2, a random nonce RVN2, and retrieves CHXi
. N

computes Ri = PUF(C’), CHXi+1 = H(Ri || CHXi), Ci+1 = H (RV’MG1 || RVN1), Ri+1

= PUF (Ci+1), X3 = RVN2 ⊕ CHXi+1 , Rx = H (RVN2|| CHXi+1) ⊕ Ri+1, OTTnew =

H (OTPnew-1|| C’ || Ri), NIDAnew = H (RVMG1|| NWIDAnew-1), and X4 = H(NIDR||

TSN2|| RVN2 || CHXi+1 || Ri+1 || Ci+1 || OTTnew || NIDAnew)

23. N sends < NIDA, TSN2, X3, Rx, X4 > message to MG.

24. else

25. Go to step 34.

26. end if

27. The MG verifies the TSN2 and retrieves R’i and the CHX’i. N computes CHX’i+1 =

H (R’i || CHX’i), C’i+1 = H (RVMG1 || RV’N1), RV’N2 = X3 ⊕ CHXi+1, Ri+1’ = Rx ⊕
H (RV’N2|| CHXi+1), OTTnew = H (OTPnew-1|| C’ || Ri, NIDAnew = H (RVMG1||

216

NWIDAnew-1). Then N generates X4’ = X4 = H (NIDR|| TS’N2|| RV’N2 || CHX’i+1 || R’x

|| C’i+1|| OTTnew ||NIDAnew)

28. If (the calculated hash message in step 27 matches the hash message that was sent

in step 23)

29. then

30. The authenticity of the IoT device is verified.

31. else

32. Go to step 34.

33. End if

34. Stop (terminates the connection)

35. End

Figure 66: Algorithm 4 the mutual authentication between IoT device and the MG

5.6.3.3.5 Key generation phase

Once the mutual authentication is completed, the two sides will generate a shared

secret session key (SK) that will be used to encrypt all the subsequent communication

between N and MG. The two sides will generate the ssk locally by hashing a combination

of the PUF responses and the generated random values, as presented in 5.17. The

uniqueness of the PUF responses ensures the uniqueness of the generated ssk.

ssk = H (RVN1 || Ri || RVN2 || RV’MG1) (5.17)

5.7 Evaluation Process

The following section presents a detailed security and performance analysis of the

proposed scheme and compares the analysis results with other related schemes presented

in the literature.

217

5.7.1 Security validation of the proposed scheme

In this section, we conduct both formal and informal security analysis. The formal

evaluation uses two different approaches. The first formal evaluation approach is

simulation-based using AVISPA tool to ensure that the proposed scheme is secure against

active and passive attacks such as replay attacks and man-in-the-middle attacks. The

second evaluation approach theorem proving-based to perform the logical verification

using BAN logic to confirm that the authenticated participants share the secret parameters

securely in the proposed protocols. The BAN logic is used as an illustrative method of the

essential concepts of an authentication protocol and as a basic verification tool for a

security protocol. After completing the formal evaluation, we examine the proposed

protocols against the well-known attacks and prove that the proposed protocols satisfy the

main security properties.

5.7.1.1 Formal Security Evaluation

5.7.1.1.1 Security Verification Using AVISPA

5.7.1.1.1.1 Protocol 1: parent gateway-child gateway mutual authentication

The abstract notations used to describe the authentication protocol and the

corresponding AVISPA HLPSL scripting variables/functions are presented in table 16.

Table 16: Abstract notation and AVISPA HLPSL scripting variables/functions for

protocol specification

Notation Description

PG Parent gateway

ChG Child gatetway

218

ChGIDR CIDR

ChGIDA CIDA

PGIDR PIDR

PGIDA PIDA

MSK MSK

OTP OTP

Xc Xc

RVChG1 RVCone

X1 Xone

X2 Xtwo

Yx Yx

Y1 Yone

Y2 Ytwo

RVPG1 RVPone

Xcc Xcc

X3 Xthree

X4 Xfour

219

RVChG2 RVCtwo

TK11, TK12 TKone, TKtwo

YxP YxP

Y3 Ythree

Y4 Yfour

YP YP

OTPx OTPnew

ChGIDAx CIDAnew

Sk SK

TSPG TSoneP,TstwoP

TSChG TsoneC,TstwoC

⊕ XOR

H H

The main goals of the simulation are as follows:

13. Goal 1: The secrecy_of secRVCone represents that RVCone is kept secret to

(C, P) only.

14. Goal 2: The secrecy_of secRVCtwo represents that RVCtwo is kept secret to

(C, P) only.

220

15. Goal 3: The secrecy_of secRVPone represents that RVPone is kept secret to

(C, P) only

16. Goal 4: The secrecy_of secOTP represents that OTP is kept secret to (C, P)

only

17. Goal 5: The secrecy_of secTKone represents that TKone is kept secret to (C,

P) only.

18. Goal 6: The secrecy_of secTKtwo represents that TKtwo is kept secret to (C,

P) only.

19. Goal 7: The secrecy_of secOTPnew represents that the secret key secOTPnew

is permanently kept secret, known to only (C and P).

20. Goal 8: The secrecy_of secCIDR represents that the NIDR is permanently

kept secret, known to only (C and P).

21. Goal 9: The secrecy_of secPIDR represents that the IGIDR is permanently

kept secret, known to only (C and P).

22. Goal 10: The secrecy_of secCIDAnew represents that CIDAnew is

permanently kept secret, known to only (C and P).

23. Authentication Property 1: The authentication_on RVPone represents that P

generates RVPone. If N securely receives RVPone through a message, it

authenticates P.

24. Authentication Property 2: The authentication_on rvcone represents that C

generates RVCone. If P securely receives rvpone through a message, it

authenticates C.

221

To achieve the goals mentioned above, we wrote the HLPSL script for the

protocol. The entities involved in the communication process are modeled as roles with

their message exchanges. There are four defined roles: that are: (1) role_C that is played

by the child gateway; (2) role _P that is played by the parent gateway; (3) session, where

the session role and all its declarations are defined, (4) and environment, which

instantiates all agents, variables, and functions.

Figure B_1 in Appendix B presents the role of the child gateway that is played by

C. C is aware of the C and P agents in the protocol, its alias identity (CIDA), and the P

alias identity (PIDA). Also, it is aware of its own real identity (CIDR) and P real identity

(PIDR) that should be kept secured. Furthermore, C is aware of MSK and OTP that are

generated by the parent gateway, its PUF challenge (CPC), the parent gateway

authentication parameter (PAU), the hash function H (·), and the send/receive channels

Snd/Rcv. The (dy) notation indicates that the channels are following the Dolev-Yao

model. At the first state “state 2,” C receives a start message “Rcv(start)” as a signal to

begin the protocol run. The keyword ‘Played_by C’ denotes that the role of the child

gateway is played by agent C. All employed local variables in this role are defined under

the local section. C generates new random values (TSoneC and RVCone) and computes

Xc, Xone, and Xtwo. The computation process of the Xc, Xone, and Xtwo follows the

presented protocol description. C sends CIDA, TSoneC, Xone, Xtwo to P.

At the second transition, “State 4”, C receives the (PIDA, SIDNIG, TSoneP,

Yone, Ytwo) message from the P. The computation of Yx, Yone, and Ytwo follows the

description of the protocol. At this transition, if the Ytwo appears as expected by C and C

correctly verified RVPone, then C authenticates P. Then C generates new random values

222

(TStwoC and RVCtwo) and computes Xcc, Xthree, and Xfour. The computation process

of the Xcc, Xthree, and Xfour follows the presented protocol description. C sends CIDA,

TStwoC, Xthree, Xfour to P.

 At the third transition, “State 6”, C received the (PIDA, SIDNIG, TStwoP,

Ythree, Yfour, YPx) from P. C calculates and verifies the received Tokens, new OTP,

and New Alias ID. After completing the verification process, C will store the tokens, its

new alias ID and the new NOTP on its own memory. C will use the new NOPT during

the next authentication session. The “end role” at the end of the C role denotes the end of

the role Node played by C.

Figure B_2 in Appendix B shows the role of the Parent Gateway played by P. is

aware of all agents in the protocol (C and P), its alias and real identities (PIDA, PIDR),

the Alias and real identities (CIDA, CIDR) of the C node. P knows the OTP, the MSK, its

PUF challenge (CPP), C authentication parameter (CAU), the hash function H(·), and the

send/receive channels Snd/Rcv.

At the first transition, “State 1”, P receives the (CNIDA, TSoneC, Xone, Xtwo)

message which was sent by C. The extraction and computation of RVCone, Xc, Xone,

and Xtwo follow the presented scheme's description. Once the P verifies Xtwo, it

generates a fresh value RVPone and a TSoneP and computes Yx, Yone, and Ytwo. Then

the P sends to C (PIDA, SIDNID, TSoneP, Yone, Ytwo). The computation of Yone and

Ytwo follows the description of the introduced scheme.

At the second transition, “State 3”, P received the (CIDA, SIDNIG,

TStwoC,Xthree, Xfour) from the C. The computation of the Xthree and Xfour followed

223

the description of the presented protocol. At this transition, if the Xfour is proved to be

valid by P, P will authenticate C. Consequently, P will generate a new alias ID for C and

a new OTP. The computations of NnewIDA and OPTnew follows the description of the

presented protocol. Also, the P generates two tokens that act as a one-time secret code

that C can use to authenticate its peer Cs. P will then send to C (PIDA, SIDNIG,

TStwoP, Ythree, Yfour, and YP). The “end role” at the end of the P role denotes the end

of the role Node played by P.

Figure B_3 in Appendix B demonstrates the session role where all the two agents’

roles are invoked and all the session parameters are defined. Both the parent gateway and

the child gateway roles are invoked with C and P as agents. CIDA, PIDA, CIDR, PIDR,

OTP, MSK, CPC, PAU, CPP, CAU are predefined as constants. H is defined as the hash

function. SND1, RCV1, SND2, and RCV2 are defined as send and receive channels for

C and P. The “end role” at the end of the session role indicates the end of this role.

Figure B_4 in Appendix B shows the environment role. In this role, one or more

sessions are instantiated. First, all constants are instantiated and defined. The constants, c,

and p are instantiated as agents representing agents C and P. The constants cida, pida,

cidr, pidr, otp, msk, cpp,cau,cpc, and pau instantiates CIDA, PIDA, CIDR, PIDR, OTP,

MSK, CPP,CAU,CPC,and PAU respectively. The function h instantiates the hash

function H. The protocol identifiers are secNIDR, secPIDR, secOTP, secMSK,

secRVoneC, secRVtwoC, secRVoneP, secTKone, secTKtwo, secOTPnew,secCIDAnew,

secYxP, rvcone and rvpone are also instantiated and defined. In the intruder knowledge

section, all relevant values that the intruder is assumed to know before the execution are

provided. The attacker is assumed to know c and p. He/ she is also assumed to know the

224

hash h. The session is instantiated with c, p, cida, cidr, pida,pidr,otp, msk,

cpp,cau,cpc,pau and h instances in the composition section. The “end role” at the end of

the environment role denotes the end of this role.

Figure B_5 in Appendix B presents the simulation goals which are declared under

the “goal” keyword using the protocol identifiers declared as ‘protocol_id’. The simulator

is dictated to check the secrecy CIDR, PIDR, OTP,MSK,RVoneC,RvtwoC, RVoneP,

TKone, TKtwo, OTPnew, and CIDAnew at different states using secrecy_of secCIDR’,

‘secrecy_of secPIDR’, ‘secrecy_of secRVoneC’, ‘secrecy_of secRVtwoC’, ‘secrecy_of

secRVoneP’, ‘secrecy_of secOTP’, ‘secrecy_of secTKone, secrecy_of secTKtwo,

‘secrecy_of secOTPnew, and ‘secrecy_of secCIDAnew’. The authentication is checked

using ‘authentication_on rvonec and ‘authentication_on rvonep’. The “end role” at the

end of the goal section denotes the end of this role.

 5.7.1.1.1.1.1 Protocol 1: parent gateway-child gateway simulation results

A security protocol animator (SPAN) is used to build a Message Sequence Chart

(MSC) of the protocol execution from the outlined HLPSL specification. Moreover,

SPAN automatically creates attacks on HLPSL specifications using the well-known

“Dolev-Yao” intruder model. The SPAN protocol simulation’s MSC corresponding to the

HLPSL specification is shown in figure 67.

225

Figure 67: Snapshot of the protocol simulation in AVISPA

In the AVISPA tool, the security properties such as authentication, integrity, and

secrecy are specified in a separate section. Therefore, when SPAN is executed, it verifies

if the protocol satisfies the specified properties. SPAN generates the attack trace if any

attack is found, and it will consider the protocol unsafe. The presented protocol's

simulation results are achieved by the OFMC back-end checker and the CL-AtSe back-

end checker. Figure 68 shows the CL-AtSe back-end checker report, which guarantees

that the protocol is SAFE and satisfies all the specified security goals. Figure 69 presents

the OFMC back-end checker report shows that the protocol is SAFE, thus meeting the

defined security goals. In summary, we can conclude that the proposed protocol is secure.

226

Figure 68: CL-AtSe summary report

Figure 69: OFMC summary report

5.7.1.1.1.2 Protocol 2: child gateway-child gateway mutual authentication

The abstract notations used to describe the authentication protocol and the

corresponding AVISPA HLPSL scripting variables/functions are presented in table 17.

227

Table 17: Abstract notation and AVISPA HLPSL scripting variables/functions for

protocol specification

Notation Description

Cone First child gateway

Ctwo Second child gateway

ChG_1IDR ConeIDR

ChG_1IDA ConeIDA

ChG_2IDR CtwoIDR

ChG_2IDA CtwoIDA

MSK MSK

TK TK

Rj Rj

RVChG11 RCone

T1 Tone

T2 Ttwo

T3 Tthree

D1 Done

D2 Dtwo

228

D3 Dthree

RVChG21 RCCone

T4 Tfour

T5 Tfive

RVChG21 RCCone

TK TK

TSChG11, TSChG12 TSoCone,TStCone

TSChG21 TSoCtwo

⊕ XOR

H H

The main goals of the simulation are as follows:

1. Goal 1: The secrecy_of secRCone represents that RCone is kept secret to

(Cone, Ctwo) only.

2. Goal 2: The secrecy_of secRCCone represents that RCCone is kept secret to

(Cone, Ctwo) only.

3. Goal 3: The secrecy_of secRCtwo represents that RCtwo is kept secret to

((Cone, Ctwo) only

229

4. Goal 4: The secrecy_of secTK represents that TK is kept secret to ((Cone,

Ctwo) only

5. Goal 5: The secrecy_of secMSK represents that MSK is kept secret to ((Cone,

Ctwo) only.

6. Goal 6: The secrecy_of secConeIDR represents that the secConeIDR is

permanently kept secret, known to only (Cone and Ctwo).

7. Goal 7: The secrecy_of secCtwoIDR represents that the secCtwoIDR is

permanently kept secret, known to only (Cone and Ctwo).

8. Authentication Property 1: The authentication_on RCone represents that

ChG_1 generates RCone. If ChG_2 proves that it securely receives and

successfully verifies RCone, ChG_1 authenticate ChG_2.

9. Authentication Property 2: The authentication_on RCCone represents that

ChG_2 generates RCCone. If ChG_1 proves that it securely receives and

successfully verifies RCone, ChG_2 authenticate ChG_1

To achieve the goals mentioned above, we wrote the HLPSL script for the

protocol. The entities involved in the communication process are modeled as roles with

their message exchanges. There are four defined roles: that are: (1) role_Cone that is

played by the first child gateway; (2) role_Ctwo that is played by the second child

gateway; (3) session, where the session role and all its declarations are defined, (4) and

environment, which instantiates all agents, variables, and functions.

As presented figure B_6 in Appendix B, the role of the first child gateway is

played by Cone. Cone is aware of the Cone and Ctwo agents in the protocol, and its alias

230

identity (ConeIDA), and the Ctwo alias identity (CtwoIDA). Also, it is aware of its own

real identity (ConeIDR) and the Ctwo real identity (ConeIDR) that should be kept secured.

Furthermore, Cone is aware of the master secret key (MSK) and one-time token (TK) that

are generated by the parent gateway, the hash function H (·), and the send/receive

channels Snd/Rcv. The (dy) notation indicates that the channels are following the Dolev-

Yao model.

At the first state “state 2,” Cone receives a start message “Rcv(start)” as a signal to

begin the protocol run. The keyword ‘Played_by Cone’ denotes that agent Cone plays the

role of the child gateway. All employed local variables in this role are defined under the

local section. Cone generates new random values (TSoCone and RCone) and computes Rj,

Tone, and Ttwo. The computation process of the Rj, Tone, and Ttwo follows the presented

protocol description. Cone sends (ConeIDA, Tone, Ttwo) to the Ctwo.

At the second transition, “State 4”, Cone receives the (CtwoIDA, SIDNIG, Dtwo,

Dthree) message from the Ctwo. At this transition, if the Dtwo appears as expected by Cone

and Cone correctly verified Dtwo and RCone, then Cone authenticates Ctwo. Then Cone

generates new random values (TStCone and RCtwo) and computes Tthree, Tfour, and

Tfive. The computation process of the Tthree, Tfour, and Tfive follows the presented

protocol description. Cone sends (ConeIDA, Tfour, Tfive) to the Ctwo. The “end role” at

the end of the Cone role denotes the end of the role Node played by Cone.

Figure B_7 in Appendix B shows the role of the second child Gateway played by

Ctwo. Ctwo is aware of all agents in the protocol (Cone and Ctwo), its alias and real identities

(CtwoIDA, CtwoIDR), the Alias and real identities (ConeIDA, ConeIDR) of the Cone

231

node. Ctwo knows the TK, the MSK, the hash function H (·), and the send/receive

channels Snd/Rcv.

At the first transition, “State 1”, Ctwo receives the (ConeIDA, Tone, Ttwo)

message which was sent by Cone. Once the Ctwo verifies Ttwo, it generates a fresh value

RCCone and a TSoCtwo and computes Done, Dtwo, and Dthree. Then the Ctwo will send

to Cone (CtwoIDA, SIDNID, Dtwo, Dthree). At this transition, if the Tfive appears as

expected by Ctwo and Ctwo correctly verified Tfive and RCCone, then Ctwo authenticates

Cone. The “end role” at the end of the Ctwo role denotes the end of the role Node played

by Ctwo

Figure B_8 in Appendix B shows the session role where the two agents’ roles are

invoked, and all the session parameters are defined. First, all known constant parameters

and their declarations are presented. The predefined constants are ConeIDR, CtwoIDA,

CtwoIDR, ConeIDA, TK, and MSK as predefined constants, and H as the hash function.

A send and receive channel is assigned to each agent under the local section. The “end

role” at the end of the session role indicates the end of this role.

Figure B_9 in Appendix B shows the environment role. In this role, one or more

sessions are instantiated. First, all constants are instantiated and defined. The constants,

cone, and ctwo are instantiated as agents representing agents Cone and Ctwo. The

constants coneida, coneidr, ctwoida, ctwoidr, tk and msk instantiates ConeIDA,

ConeCIDR, CtwoIDA, CtwoIDR, TK, and MSK, respectively. The function h instantiates

the hash function H. The protocol identifiers are secConeIDR, secCtwoIDR, secTK,

secMSK, secRCone, secRCCone, secRCtwo, rcone and rccone are also instantiated and

defined. In the intruder knowledge section, all relevant values that the intruder is assumed

232

to know before the execution are provided. The attacker is assumed to know cone and

ctwo. He/ she is also assumed to know the hash h. The session is instantiated with cone,

ctwo, coneida, coneidr, ctwoida, ctwoidr,tk, msk, and h instances in the composition

section. The “end role” at the end of the environment role denotes the end of this role.

Figure B_10 in Appendix B shows the simulation goals which are declared under

the “goal” keyword using the protocol identifiers declared as ‘protocol_id’. The simulator

is dictated to check the secrecy ConeIDR, CtwoIDR, TK, MSK, RCCone, RCtwo, and

RCCone, at different states using secrecy_of secConeIDR’, ‘secrecy_of secCtwoIDR’,

‘secrecy_of secRCone’, ‘secrecy_of secRCtwo’, ‘secrecy_of secRCCone’, ‘secrecy_of

secMSK’, and ‘secrecy_of secTK. The authentication is checked using

‘authentication_on rcone’ and ‘authentication_on rccone’. The “end role” at the end of

the goal section denotes the end of this role.

5.7.1.1.1.2.1 Simulation results

The SPAN protocol simulation’s MSC corresponding to our HLPSL specification

is shown in Figure 70. In the AVISPA tool, security properties such as authentication,

integrity, and secrecy are specified in a separate section. Therefore, when SPAN is

executed, it verifies if the protocol satisfies the specified properties. SPAN generates the

attack trace if an attack is found, and it considers the protocol unsafe. The presented

protocol's simulation results are achieved by the OFMC back-end checker and the CL-

AtSe back-end checker. Figure 71 shows the CL-AtSe back-end checker report, which

guarantees that the protocol is SAFE and satisfies all the specified security goals. Figure.

72 presents the OFMC back-end checker report shows that the protocol is SAFE, thus

233

meeting the defined security goals. In summary, we can conclude that the proposed

protocol is secure.

Figure 70: Snapshot of the protocol simulation in AVISPA

Figure 71: CL-AtSe summary report

234

Figure 72: OFMC summary report

5.7.1.1.1.3 Protocol 3: mini-gateway-IoT node mutual authentication

The abstract notations used to describe the authentication protocol and the

corresponding AVISPA HLPSL scripting variables/functions are presented in table 18.

Table 18: Abstract notation and AVISPA HLPSL scripting variables/functions for

protocol specification

Notation Description

N N

MG MG

SID SIDNIG

NIDR NIDR

235

NIDA NIDA

MGIDR MGIDR

MGIDA MGIDA

S1, S2, S3 T, X, Y

X1 Xone

X2 Xtwo

X3 Xthree

X4 Xfour

Y1 Yone

Y2 Ytwo

Y3 Ythree

Y4 Yfour

RX RX

Sk Skk

TSMG1 TSoneMG

TSN1, TSN2 TsoneN,TstwoN,

RVN1 Na

236

RVN2 Naa

RVMG Nb

Ri Rone

Ri+1 Rtwo

C Cone

Ci+1 Ctwo

C’ CMG

CHX CHX

CHXi+1 CHXnew

⊕ XOR

H H

NIDAnew NnewIDA

OTPN NOTP

The main goals of the simulation are as follows:

1. Goal 1: The secrecy_of secNa represents that Na is kept secret to (N, MG)

only.

2. Goal 2: The secrecy_of secNb represents that Nb is kept secret to (N, MG)

only

237

3. Goal 3: The secrecy_of secNaa represents that Naa is kept secret to (N, MG)

only

4. Goal 4: The secrecy_of secOTT represents that OTP is kept secret to (N, MG)

only

5. Goal 5: The secrecy_of secNIDR represents that the NIDR is permanently

kept secret, known to only (N and MG).

6. Goal 6: The secrecy_of secMGIDR represents that the MGIDR is

permanently kept secret, known to only (N and MG).

7. Goal 7: The secrecy_of secX represents that X is permanently kept secret,

known to only (N and MG).

8. Goal 8: The secrecy_of secY represents that Y is permanently kept secret,

known to only (N and MG).

9. Goal 9: The secrecy_of secCone represents that Cone is permanently kept

secret, known to only (N and MG).

10. Goal 10: The secrecy_of secRone represents that Rone is permanently kept

secret, known to only (N and MG).

11. Goal 11: The secrecy_of secCHXnew represents that CHXnew is

permanently kept secret, known to only (N and MG).

12. Goal 12: The secrecy_of secRtwo represents that Rtwo is permanently kept

secret, known to only (N and MG).

13. Goal 13: The secrecy_of secNOTT represents that NOTP is permanently kept

secret, known to only (N and MG).

238

14. Goal 14: The secrecy_of secNnewIDA represents that NnewIDA is

permanently kept secret, known to only (N and MG).

15. Authentication Property 1: The authentication_on na represents that N

generates Na. If MG securely receives Na through a message, it authenticates

N.

16. Authentication Property 2: The authentication_on Nb represents that MG

generates Nb. If N securely receives Nb through a message, it authenticates

MG.

To achieve the goals mentioned above, we wrote the HLPSL script for the

protocol. The entities involved in the communication process are modeled as roles with

their message exchanges. There are four defined roles: that are: (1) role_N that is played

by the IoT node; (2) role _MG that is played by the mini-gateway gateway; (3) session,

where the session role and all its declarations are defined, (4) and environment, which

instantiates all agents, variables, and functions.

Figure B_11 in Appendix B presents the role of node N. Node N is aware of the N

and MG agents in the protocol, its alias identity (NIDA), and the MG alias identity

(MGIDA). Also, it is aware of its own real identity (NIDR) and the MG real identity

(MGIDR) that should be kept secured. Furthermore, N is aware of the three

authentication parameters (S1, S2, S3), one-time token (OTP), the hash function H (·), and

the send/receive channels Snd/Rcv. The (dy) notation indicates that the channels are

following the Dolev-Yao model. At the first state “state 2,” N receives a start message

“Rcv(start)” as a signal to begin the protocol run. All local variables are declared under

the local section. At the first transition, “State 2”, N generates new random values

239

(TSoneN and Na) and computes Xone, Xtwo, and SN. The computation process of the

Xone,Xtwo, and SN follows the presented protocol description. N sends (NIDA,

TSoneN, Xtwo, SN) to the MG.

At the second transition, “State 4”, N receives the (MGIDA, SIDNIG, TSoneMG,

Ytwo, CMG, Ythree) message from the MG. At this transition, if the Ythree appears as

expected by N, then N authenticates the MG. After authenticating the MG, N generates a

new challenge CTwo and calculates the corresponding response Rtwo. Also, N generates

a new OTT (NOTT) and a new Alias ID (NnewIDA) to be used in the next authentication

session. Then N will store its new NnewIDA, and the new NOTT on its own memory.

The “end role” at the end of the N role denotes the end of the role Node played by N.

Figure B_12 in Appendix B shows the role of the mini gateway played by MG.

The MG is aware of all agents in the protocol (N and MG), its alias and real identities

(MGIDA, MGIDR), the Alias and real identities (NIDA, NIDR) of the N node. MG

knows the OTT, the virtual domain ID of N(GID), the typeID of N(TID), and the hash

function H (·), and the send/receive channels Snd/Rcv. The MG does not know S1, S2, or

S3 parameters that will be locally computed later using N's received authentication

parameters. All local variables are defined under the local section. At the first transition,

“State 1”, MG receives the (NIDA, TSoneN, Xtwo, SNG) message which was sent by N

in role node played by N. MG uses the N’ alias ID to retrieve its real ID, GID, TID, and

its OTT. MG verify the received SNG’. Once the MG verifies SNG, MG generates a

fresh value Nb and a TSoneMG. Also, MG retrieved N’s PUF challenge (Cone) from its

memory. Then, MG computes Yone, Ytwo, Ythree, and CMG. Then the MG will send to

240

N (MGIDA, SIDNID, TSoneMG, Ytwo, CMG, Ythree). The computation for Ythree

follows the description of the introduced scheme.

At the second transition, “State 3”, MG received the (NIDA, SIDNIG, TSTwoN,

Xthree, RX, Xfour) from N. The computation of the Xfour followed the description of

the presented protocol. At this transition, if the Xfour is proved to be valid by MG, IG

will authenticate the N. Consequently, the MG stores the new C, new R, new alias ID for

N, and a new OTT in its database for the next authentication session. The computation of

NnewIDA and NOTT follows the description of the presented protocol. The “end role” at

the end of the IG role denotes the end of the role Node played by IG.

Figure B_13 in Appendix B shows the session role where the two agents’ roles

are invoked, and all the session parameters are defined. First, all known constant

parameters and their declarations are presented. The predefined constants are NIDR,

MGIDA, MGIDR, NIDA, OTT, T, X, Y, and CHX as predefined constants, and H as the

hash function. A send and receive channel is assigned to each agent under the local

section. The “end role” at the end of the session role indicates the end of this role.

Figure B_14 in Appendix B shows the environment role. In this role, one or more

sessions are instantiated. First, all constants are instantiated and defined. The constants n

and mg are instantiated as agents representing agents N and MG. The constants t,x,y,

nida, nidr , mgida , mgidr, ott,and chx instantiates T, X, Y, NIDA, NIDR, IGIDA,

IGIDR, OTT, and CHX, respectively. The function h instantiates the hash function H.

The protocol identifiers are secNIDR, secMGIDR, secOTT, secCHXnew, secNnewIDA,

secNOTP, secX,secY,secRtwo, secNa, secNb, secRtwo, secNaa, secRone, secCone, na,

and nb are also instantiated and defined. In the intruder knowledge section, all relevant

241

values that the intruder is assumed to know before the execution are provided. The

attacker is assumed to know n and mg. He/ she is also assumed to know the hash h. The

session is instantiated with n, mg, nida, nidr, mgida,mgidr,t,x,y, ott,chx, and h instances

in the composition section. The “end role” at the end of the environment role

denotes the end of this role.

Figure B_15 in Appendix B shows the simulation goals which are declared under

the “goal” keyword using the protocol identifiers declared as ‘protocol_id’. The simulator

is dictated to check the secrecy NIDR, MGIDR, X,Y,Na,Nb,Naa,OTT,

Rone,Rtwo,Cone,CHXnew,NOTP,NnewIDA, and OTT at different states using

secrecy_of secNIDR’, ‘secrecy_of secMGIDR’, ‘secrecy_of secX’, ‘secrecy_of secY’,

‘secrecy_of secCone’ ,‘secrecy_of secRone’, ‘secrecy_of secRtwo’, ‘secrecy_of secNa’,

‘secrecy_of secNb’, ‘secrecy_of secNaa’, ‘secrecy_of secOTT’, ‘secrecy_of

secChXnew’, ‘secrecy_of secNnewIDA’ and ‘secrecy_of secNOTT’. The authentication

is checked using ‘authentication_on na’ and ‘authentication_on nb’. The “end role” at the

end of the goal section denotes the end of this role.

242

5.7.1.1.1.3.1 Simulation results

The SPAN protocol simulation’s MSC corresponding to the HLPSL specification

is shown in figure 73. Figure 74 shows the CL-AtSe back-end checker report, which

guarantees that the protocol is SAFE and satisfies all the specified security goals. Figure.

75 presents the OFMC back-end checker report shows that the protocol is SAFE, thus

meeting the defined security goals. In summary, we can conclude that the proposed

SMART protocol is secure.

Figure 73: Snapshot of the protocol simulation in AVISPA

243

Figure 74: CL-AtSe summary report

Figure 75: OFMC summary report

244

5.7.1.1.2 Formal proof Based on BAN logic

5.7.1.1.2.1 Protocol 1: Parent gateway-child gateway mutual authentication

In this section, we use BAN logic to verify the legitimacy of the session key (ssk), the

TK12, TK13, and OTPx that are shared between the communicating entities C and P. To

ensure the security of the proposed protocol under BAN logic, it needs to satisfy a set of

security goals. The following section defines the main goals of the analysis of the

presented authentication scheme.

5.7.1.1.2.1.1 Protocol 1 Goals Identification

Goal 1: The C and the P want to establish a shared secret key (ssk) key that is

believed by each other.

G1_1: P believes that the C believes that the ssk is a securely shared parameter between

C and P.

P| ≡ C|≡ (C P)

G1_2: P believes that ssk is a securely shared parameter between C and P.

P|≡ (C P)

G1_3: C believes that the P believes that the ssk is a securely shared parameter between

C and P.

 C| ≡ P | ≡ (C P)

ssk

ssk

ssk

245

G1_4: C believes that ssk is a securely shared parameter between C and P.

 C| ≡ (C P)

Goal 2: TK12 and TK13 are well protected and believed by C.

G2_1: C believes that the P believes that the TK12 and TK13 are securely shared

parameters between C and P.

C| ≡ P | ≡ (C P)

G2_2: C believes that TK12 and TK13 are securely shared parameters between C and P.

C| ≡ (C P)

Goal 3: P and C want to generate a secret one-time password (OTPx) that is

believed by each other.

G3_1: P believes that C believes that the OTPx is a securely shared parameter between P

and C.

P| ≡ C|≡ (C P)

G3_2: P believes that OTPx is a securely shared parameter between C and P.

P|≡ (C P)

ssk

TK12 and TK13

 TK12 and TK13

OTPx

OTPx

246

G3_3: C believes that the P believes that the OTPx is a securely shared parameter

between C and P.

 C| ≡ P | ≡ (C P)

G3_4: C believes that OTPx is a securely shared parameter between C and P.

C| ≡ (C P)

5.7.1.1.2.1.2 Protocol 1 messages idealization

First, we transfer all transmitted messages into idealized form as follows:

M1: C P:(ChGIDR, TSCHG1, RVCHG1) X1

M2: P C:(PGIDR, TSPG1, RVPG1) YX

M3: C P:(ChGIDR, TSCHG2, RVCHG2) XCC

M4: P C:(PGIDR, TSPG2, TK12, TK13) OTP

5.7.1.1.2.1.3 Protocol 1 main assumptions

The second step to be completed is to define some assumptions as the initiative

promises. The fundamental assumptions of the presented authentication scheme are as

follows:

P1: P believes that X1 is a secure shared parameter between C and P

P| ≡ (C P)

OTPx

OTPx

 X1

247

P2: P believes C believes that that X1 is a secure shared parameter between C and P

P | ≡ C| ≡ (C P)

P3: C believes that Yx is a secure shared parameter between C and P

C| ≡ (C P)

P4: C believes P believes that Yx is a secure shared parameter between C and P

C | ≡ P| ≡ (C P)

P5: P believes that Xcc is a secure shared parameter between C and P

P| ≡ (C P)

P6: P believes C believes that Xcc is a secure shared parameter between C and P

P | ≡ C| ≡ (C P)

P7: C believes that OTP is a secure shared parameter between C and P

C| ≡ (C P)

P8: C believes P believes that OTP is a secure shared parameter between C and P

C | ≡ P| ≡ (C P)

P9: P believes that OTP is a secure shared parameter between C and P

P| ≡ (C P)

P10: P believes P believes that OTP is a secure shared parameter between C and P

P | ≡ C| ≡ (C P)

 Yx

 Xcc

 OTP

 X1

 Yx

 Xcc

 OTP

 OTP

 OTP

248

P 11: P believes ChGIDR is a secure shared parameter between C and P.

P | ≡ (C P)

P 12: P believes C believes that ChGIDR is a secure shared parameter between C and P.

P | ≡ C| ≡ (C P)

P13: C believes PGIDR is a secure shared parameter between C and P.

C | ≡ (C P)

P14: C believes P believes that PGIDR is a secure shared parameter between C and P.

C | ≡ P| ≡ (C P)

P 15: P believes TSChG1 is fresh.

P| ≡ #(TSChG1)

P 16: P believes TSChG2 is fresh.

P| ≡ #(TSChG2)

P 17: C believes TSPG1 is fresh.

C| ≡ #(TSPG1)

ChGIDR

ChGIDR

PGIDR

PGIDR

249

P 18: C believes TSPG2 is fresh.

C| ≡ #(TSPG2)

P 19: P believes RVChG1 is fresh.

P| ≡ #(RVChG1)

P20: P believes that C believes RVChG1.

P| ≡ C | ≡ RVChG1

P21: P believes that C has jurisdiction over RVChG1. That is, C is an authority and

believes RVChG1.

 P| ≡ C ⇒ RVChG1

P 22: P believes RVChG2 is fresh.

P| ≡ #(RVChG2)

P23: P believes that C believes RVChG2.

P| ≡ C | ≡ RVChG2

P24: P believes that C has jurisdiction over RVChG2. That is, C is an authority and

believes RVChG2.

 P| ≡ C ⇒ RVChG2

P 25: C believes RVPG1 is fresh.

C| ≡ #(RVPG1)

250

P26: C believes that P believes RVPG1.

C| ≡ P | ≡ RVPG1

P27: C believes that P has jurisdiction over RVPG1. That is, P is an authority and believes

RVPG1.

 C| ≡ P ⇒ RVPG1

P28: P believes C believes that SK is a secure shared parameter between C and P.

P | ≡ C| ≡ (C P)

P 29: C believes P believes that SK is a secure shared parameter between C and P.

C | ≡ P| ≡ (C P)

P 30: C believes that P believes TK12.

C| ≡ P | ≡ TK12

P31: C believes that P has jurisdiction over TK12, which is securely shared parameter

between C and P. That is, P is an authority and believes TK12.

C| ≡ P ⇒ (C P)

P 32: C believes that P believes TK13.

C| ≡ P | ≡ TK13

P33: C believes that P has jurisdiction over TK13, which is securely shared parameter

between C and P. That is, P is an authority and believes TK13.

C| ≡ P ⇒ (C P)

 ssk

 ssk

TK12

TK13

251

P34: C believes that P believes OPTx.

C| ≡ P | ≡ OTPx

P35: P believes that C believes OPTx.

P| ≡ C | ≡ OTPx

5.7.1.1.2.1.4 Analysis of the authentication protocol

We then prove that the proposed protocol achieves the security goals based on the

idealized form of the messages, assumptions, and BAN logic rules. The proposed

authentication scheme analysis is shown below to prove that the protocol achieves mutual

authentication between C and P.

According to M1:

V1: P◃(ChGIDR, TSChG1, RVChG1
)X1

According to P1, P11, and Rule 1, we derive the following:

V2:
𝑃|≡C X1 P ,P ⊲(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺1,𝑅𝑉𝐶ℎ𝐺1) 𝐶 𝑋1 𝑃

𝑃|≡C |∼ (𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺1,𝑅𝑉𝐶ℎ𝐺1)

According to P15, P19, and rule 3, we derive the following:

V3:
𝑃|≡#(𝑇𝑆𝐶ℎ𝐺1 𝑎𝑛𝑑 𝑅𝑉𝐶ℎ𝐺1)

𝑃|≡#(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺1,𝑅𝑉𝐶ℎ𝐺1)|

252

According to P2, P12, V2, V3, and rule 2, we derive the following:

V4:

𝑃|≡#(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺1,𝑅𝑉𝐶ℎ𝐺1),P|≡C~(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺1,𝑅𝑉𝐶ℎ𝐺1)

𝑃|≡C|≡(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺1,𝑅𝑉𝐶ℎ𝐺1)

According to V4, P20, P21, and rule 4, we derive the following:

V5:
P |≡C| ⇒ 𝑅𝑉𝐶ℎ𝐺1 ,P |≡ C |≡𝑅𝑉𝐶ℎ𝐺1

P|≡ 𝑅𝑉𝐶ℎ𝐺1

According to M2:

V6: C (PIDR, TSPG1, RVPG1) Yx

According to P3, P13 and Rule 1, we derive the following:

V7:
𝐶|≡P Yx C ,P ⊲(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺1,𝑅𝑉𝑃𝐺1) 𝐶 𝑌𝑥 𝑝

𝐶|≡P |∼ (P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺1,𝑅𝑉𝑃𝐺1)

According to P17, P25, and rule 3, we derive the following:

V8:
𝐶|≡#(𝑇𝑆𝑃𝐺1and 𝑅𝑉𝑃𝐺1)

𝐶|≡#(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺1,𝑅𝑉𝑃𝐺1)|

According to P4, P14, V7, V8 and rule 2, we derive the following:

V9:
𝐶|≡#(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺1,𝑅𝑉𝑃𝐺1),C|≡P~(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺1,𝑅𝑉𝑃𝐺1)

𝐶|≡P|≡(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺1,𝑅𝑉𝑃𝐺1)

According to P26, P27, V9, and rule 4, we derive the following:

253

V10:
𝐶 |≡P|⇒𝑅𝑉𝑃𝐺1 ,C |≡ P |≡ 𝑅𝑉𝑃𝐺1

C|≡ 𝑅𝑉𝑃𝐺1

According to M3:

V11: P (ChGIDR, TSChG2, RVChG2) Xcc

According to P5, P11, and Rule 1, we derive the following:

V12:
𝑃|≡C XCC P ,P ⊲(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺2,𝑅𝑉𝐶ℎ𝐺2) 𝐶 𝑋𝐶𝐶 𝑃

𝑃|≡C |∼ (𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺2,𝑅𝑉𝐶ℎ𝐺2)

According to P16, P22, and rule 3, we derive the following:

V13:
𝑃|≡#(𝑇𝑆𝐶ℎ𝐺2 𝑎𝑛𝑑 𝑅𝑉𝐶ℎ𝐺2)

𝑃|≡#(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺2,𝑅𝑉𝐶ℎ𝐺2)|

According to P6, P12, V12, V13, and rule 2, we derive the following:

V14:

𝑃|≡#(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺2,𝑅𝑉𝐶ℎ𝐺2),P|≡C~(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺2,𝑅𝑉𝐶ℎ𝐺2)

𝑃|≡C|≡(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝑆𝐶ℎ𝐺2,𝑅𝑉𝐶ℎ𝐺2)

According to V14, P23, P24, and rule 4, we derive the following:

V15:
P |≡C| ⇒ 𝑅𝑉𝐶ℎ𝐺2 ,P |≡ C |≡𝑅𝑉𝐶ℎ𝐺2

P|≡ 𝑅𝑉𝐶ℎ𝐺2

According to M4:

254

V16: C (PIDR, TSPG2, TK12, TK13) OTP

According to P7, P13, V16 and Rule 1, we derive the following:

V17:
𝐶|≡P OTP C ,P ⊲(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺2 ,𝑇𝐾1,𝑇𝐾

2,
) 𝐶 𝑂𝑇𝑃 𝑃

𝐶|≡P |∼ (P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺2, 𝑇𝐾12,𝑇𝐾13)

According to P18 and rule 3, we derive the following:

V18:
𝐶|≡#(𝑇𝑆𝑃𝐺2)

𝐶|≡#(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺2 ,𝑇𝐾1,𝑇𝐾2)|

According to P8, P14, V17, V18 and rule 2, we derive the following:

V19:
𝐶|≡#(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺2, 𝑇𝐾12,𝑇𝐾

13
),C|≡P~(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺2, 𝑇𝐾12,𝑇𝐾

13
)

𝐶|≡P|≡(P𝐼𝐷𝑅,𝑇𝑆𝑃𝐺2, 𝑇𝐾12,𝑇𝐾
13

)

According to P30, P31, P32, P33, V19, and rule 4, we derive the following:

V20:
𝐶 |≡P|⇒ 𝑇𝐾12,𝑇𝐾13 ,C |≡ P |≡ 𝑇𝐾12,𝑇𝐾13

C|≡ 𝑇𝐾12,𝑇𝐾13

As ssk = H (RVChG1|| RVChG2 || RVPG1 || OTP) and in combination with P9, V4, V14 we

can derive

V21: P| ≡C|≡ (C P) (Goal 1_1)

 As ssk = H (RVChG1|| RVChG2 || RVPG1 || OTP) and in combination with P10, P28, V5,

V15 and V21

V22: P|≡ (C P) (Goal 1_2)

ssk

ssk

255

 As ssk = H (RVChG1|| RVChG2 || RVPG1 || OTP) and in combination with P7, V9, we can

derive

V23: C| ≡P|≡ (C P) (Goal 1_3)

 As ssk = H (RVChG1|| RVChG2 || RVPG1 || OTP) and combining with P8, P29, V10, and

V23

V24: C|≡ (C P) (Goal 1_4)

Based on V20, we can derive

V25: C| ≡ P| ≡ (C P) (Goal 2_1)

Based on P30, P32, V20, and V25, we derive the following

 V26: C|≡ (C P) (Goal 2_2)

As OTPx = H (OTP || RVChG1) and in combination with P9 and V4 we can derive

V27: P| ≡C|≡ (C P) (Goal 3_1)

 As OTPx = H (OTP || RVChG1) and in combination with P10, P35, V5, V15 and V27

V28: P|≡ (C P) (Goal 3_2)

As OTPx = H (OTP || RVChG1) and in combination with P7 we can derive

V29: C| ≡P|≡ (C P) (Goal 3_3)

ssk

ssk

NOTP, TK1, TK2

NOTP, TK1, TK2

OTPx

OTPx

OTPx

256

 As OTPx = H (OTP || RVChG1) and combining with P8, P34, and V29

V30: C|≡ (C P) (Goal 3_4)

Therefore, the above logic proves that the proposed protocol achieves the goals

1_1 to 1_4, goals 2-1 to 2-2, and goals 3_1 to 3_4 successfully. Thus, we prove that the

shared secret key ssk, OTPx, TK12, and TK13 are trusted by both C and the P. Based on

the above results, the achievement of goals 1_1 to 1_4, 2_1 to 2_2, and 3_1 to 3_4 proves

that the proposed protocol achieves the mutual authentication and the ssk, OTPx, TK12,

and TK13 are securely shared between C and P.

5.7.1.1.2.2 Protocol 2: Child gateway-child gateway mutual authentication

5.7.1.1.2.2.1 Protocol 2: Goals identification

Goal 1: The ChG_1 and the ChG_2 want to establish a shared secret key (ssk) key

that is believed by each other.

G1_1: ChG_2 believes that the ChG_1 believes that the ssk is a securely shared

parameter between ChG_1 and ChG_2.

ChG_2|≡ChG_1|≡ (ChG_1 ChG_2)

G1_2: ChG_2 believes that ssk is a securely shared parameter between ChG_1 and

ChG_2.

ChG_2|≡ (ChG_1 ChG_2)

ssk

ssk

OTPx

257

G1_3: ChG_1 believes that the ChG_2 believes that the ssk is a securely shared

parameter between ChG_1 and ChG_2.

ChG_1|≡ChG_2|≡ (ChG_1 ChG_2)

G1_4: ChG_1 believes that ssk is a securely shared parameter between ChG_1 and

ChG_2.

ChG_1|≡ (ChG_1 ChG_2)

5.7.1.1.2.2.2 Protocol 2: message idealization

First, we transferred all transmitted messages into idealized form as follows.

M1: ChG_1 ChG_2:(ChGIDR_1, TK, TSChG11, RVChG11) Rj

M2: ChG_2 ChG_1:(ChGIDR_2, TK, MSK, TSChG21, RVChG21) D1

M3: ChG_1 ChG_2:(ChGIDR_1, TK, MSK, TSChG12, RVChG12) T3

5.7.1.1.2.2.3 Protocol 2 main assumptions

The second step to be completed is to define some assumptions as of the initiative

promises. The fundamental assumptions of the presented authentication protocol are as

follows:

P1: ChG_2 believes that Rj is a secure shared parameter between ChG_2 and ChG_1

ChG_2| ≡ (ChG_1 ChG_2)

P2: ChG_2 believes ChG_1 believes that Rj is a secure shared parameter between ChG_1

and ChG_2

ssk

ssk

 Rj

Rj

258

ChG_2 | ≡ ChG_1| ≡ (ChG_1 ChG_2)

P3: ChG_1 believes that D1 is a secure shared parameter between ChG_1 and ChG_2

ChG_1| ≡ (ChG_1 ChG_2)

P4: ChG_1 believes ChG_2 believes that D1 is a secure shared parameter between

ChG_1 and ChG_2

ChG_1 | ≡ ChG_2| ≡ (ChG_1 ChG_2)

P5: ChG_2 believes that T3 is a secure shared parameter between ChG_1 and ChG_2

ChG_2| ≡ (ChG_1 ChG_2)

P6: ChG_2 believes ChG_1 believes that T3 is a secure shared parameter between ChG_1

and ChG_2

ChG_2 | ≡ ChG_1| ≡ (ChG_1 ChG_2)

P 7: ChG_2 believes TSChG11 is fresh.

ChG_2| ≡ #(TSChG11)

P 8: ChG_2 believes TSChG12 is fresh.

ChG_2 | ≡ #(TSChG12)

P 9: ChG_1 believes TSChG21 is fresh.

ChG_1| ≡ #(TSChG21)

P 10: ChG_2 believes RVChG11 is fresh.

ChG_2 | ≡ #(RVChG11)

D1

T3

D1

T3

259

P11: ChG_2 believes that ChG_1 believes RVChG11.

ChG_2 | ≡ ChG_1 | ≡ RVChG11

P12: ChG_2 believes that ChG_1 has jurisdiction over RVChG11. That is, ChG_1 is an

authority and believes RVChG11.

 ChG_2 | ≡ ChG_1 ⇒ RVChG11

P 13: ChG_2 believes RVChG12 is fresh.

ChG_2 | ≡ #(RVChG12)

P14: ChG_2 believes that ChG_1 believes RVChG12.

ChG_2 | ≡ ChG_1 | ≡ RVChG12

P15: ChG_2 believes that ChG_1 has jurisdiction over RVChG12. That is, ChG_1 is an

authority and believes RVChG12.

 ChG_2 | ≡ ChG_1 ⇒ RVChG12

P 16: ChG_1 believes RVChG21 is fresh.

ChG_1 | ≡ #(RVChG21)

P17: ChG_1 believes that ChG_2 believes RVChG21.

ChG_1| ≡ ChG_2 | ≡ RVChG21

P18: ChG_1 believes that ChG_2 has jurisdiction over RVPG1. That is, ChG_2 is an

authority and believes RVChG21.

260

 ChG_1 | ≡ ChG_2 ⇒ RVChG21

P19: ChG_1 believes that TK is a secure shared parameter between ChG_1 and ChG_2

ChG_1 | ≡ ChG_1 ChG_2)

P20: ChG_1 believes ChG_2 believes that TK is a secure shared parameter between

ChG_1 and ChG_2

ChG_1 | ≡ ChG_2| ≡ (ChG_1 ChG_2)

P21: ChG_2 believes that TK is a secure shared parameter between ChG_1 and ChG_2

ChG_2 | ≡ ChG_1 ChG_2)

P22: ChG_2 believes ChG_1 believes that TK is a secure shared parameter between

ChG_1 and ChG_2

ChG_2 | ≡ ChG_1| ≡ (ChG_1 ChG_2)

P 23: ChG_2 believes ChG_1 believes that ssk is a secure shared parameter between

ChG_2 and ChG_1

ChG_2 | ≡ ChG_1| ≡ (ChG_1 ChG_2)

P 24: ChG_1 believes ChG_2 believes that ssk is a secure shared parameter between

ChG_1and ChG_2

ChG_1 | ≡ ChG_2 | ≡ (ChG_1 ChG_2)

5.7.1.1.2.2.4 Protocol 2 Analysis of the authentication protocol

ssk

 ssk

 TK

TK

 TK

TK

261

We then prove that the proposed protocol achieves the security goals based on the

idealized form of the messages, assumptions, and BAN logic rules. The proposed

authentication protocol analysis is shown below to prove that the protocol achieves

mutual authentication between ChG_1 and ChG_2.

According to M1:

V1: ChG_2◃(ChGIDR_1, TK, TSChG11, RVChG11
)

According to P1 and Rule 1, we derive the following

V2:

ChG_2|≡ChG_1 Rj ChG_2 ,ChG_2 ⊲(𝐶ℎ𝐺𝐼𝐷𝑅,𝑇𝐾,𝑇𝑆𝐶ℎ𝐺1,𝑅𝑉𝐶ℎ𝐺1) ChG_1 𝑅𝑗 ChG_2

ChG_2|≡ChG_1 |∼ (𝐶ℎ𝐺𝐼𝐷𝑅_1,𝑇𝐾,𝑇𝑆𝐶ℎ𝐺11,𝑅𝑉𝐶ℎ𝐺11)

According to P7, P10, and rule 3, we derive the following

V3:
ChG_2|≡#(𝑇𝑆𝐶ℎ𝐺11 𝑎𝑛𝑑 𝑅𝑉𝐶ℎ𝐺11)

ChG_2|≡#(𝐶ℎ𝐺𝐼𝐷𝑅_1,𝑇𝐾,𝑇𝑆𝐶ℎ𝐺11,𝑅𝑉𝐶ℎ𝐺11)|

According to P2, V2, V3, and rule 2, we derive the following

V4:

ChG_2|≡#(𝐶ℎ𝐺𝐼𝐷𝑅1 ,TK,𝑇𝑆𝐶ℎ𝐺11,𝑅𝑉𝐶ℎ𝐺11),ChG_2|≡ChG_1~(𝐶ℎ𝐺𝐼𝐷𝑅_1,𝑇𝐾,𝑇𝑆𝐶ℎ𝐺11,𝑅𝑉𝐶ℎ𝐺11)

ChG_2|≡ChG_1|≡(𝐶ℎ𝐺𝐼𝐷𝑅_1,𝑇𝐾,𝑇𝑆𝐶ℎ𝐺11,𝑅𝑉𝐶ℎ𝐺11)

According to P11, P12, and rule 4, we derive the following:

V5:
ChG_2 |≡ChG_1| ⇒ 𝑅𝑉𝐶ℎ𝐺11 ,ChG_2 |≡ ChG_1 |≡𝑅𝑉𝐶ℎ𝐺11

ChG_2|≡ 𝑅𝑉𝐶ℎ𝐺11

According to M2:

262

V6: ChG_1 (𝐶ℎ𝐺𝐼𝐷𝑅_2, TK, MSK, TSChG21, RVChG21) D1

According to P3 and Rule 1, we derive the following

V7:

ChG_1 |≡ChG_2 D1 ChG_1 ,ChG_2 ⊲(𝐶ℎ𝐺𝐼𝐷𝑅_2,𝑇𝑆𝐶ℎ𝐺21,𝑅𝑉𝐶ℎ𝐺21) 𝐶ℎ𝐺_2 𝐷1 𝐶ℎ𝐺_1

𝐶ℎ𝐺_1|≡𝐶ℎ𝐺_2 |∼ (𝐶ℎ𝐺𝐼𝐷𝑅_2,𝑇𝐾,𝑀𝑆𝐾,𝑇𝑆𝐶ℎ𝐺21,𝑅𝑉𝐶ℎ𝐺21)

According to P9, P16, and rule 3, we derive the following

V8:
ChG_1|≡#(𝑇𝑆𝐶ℎ𝐺21and 𝑅𝑉𝐶ℎ𝐺21)

ChG_1|≡#(𝐶ℎ𝐺𝐼𝐷𝑅_2,𝑇𝑆𝐶ℎ𝐺21,𝑅𝑉𝐶ℎ𝐺21)|

According to P4, V7, V8 and rule 2, we derive the following

V9:

ChG_1|≡#(𝐶ℎ𝐺𝐼𝐷𝑅_2,𝑇𝑘,𝑀𝑆𝐾,𝑇𝑆𝐶ℎ𝐺21,𝑅𝑉𝐶ℎ𝐺21),ChG_1|≡ChG_2~(𝐶ℎ𝐺𝐼𝐷𝑅_2,𝑇𝑘,𝑀𝑆𝐾,𝑇𝑆𝐶ℎ𝐺21,𝑅𝑉𝐶ℎ𝐺21)

ChG_1|≡ChG_2|≡(𝐶ℎ𝐺𝐼𝐷𝑅_2,𝑇𝐾,𝑀𝑆𝐾,𝑇𝑆𝐶ℎ𝐺21,𝑅𝑉𝐶ℎ𝐺21)

According to P17, P18, V9, and rule 4, we derive the following:

V10:
ChG_1 |≡ChG_2|⇒𝑅𝑉𝐶ℎ𝐺21 ,ChG_1 |≡ ChG_2 |≡ 𝑅𝑉𝐶ℎ𝐺21

ChG_1|≡ 𝑅𝑉𝐶ℎ𝐺21

According to M3:

V11: ChG_2◃(ChGIDR_12,Tk,MSK, TSChG12, RVChG12
)

According to P5 and Rule 1, we derive the following

263

V12:

ChG_2|≡ChG_1 T3 ChG_2 ,ChG_2 ⊲(𝐶ℎ𝐺𝐼𝐷𝑅,TK,MSK,𝑇𝑆𝐶ℎ𝐺12,𝑅𝑉𝐶ℎ𝐺12) ChG_1 𝑇3 ChG_2

ChG_2|≡ChG_1 |∼ (𝐶ℎ𝐺𝐼𝐷𝑅_1𝑇𝐾,𝑀𝑆𝐾,,𝑇𝑆𝐶ℎ𝐺121,𝑅𝑉𝐶ℎ𝐺11)

According to P8, P13, and rule 3, we derive the following

V13:
ChG_2|≡#(𝑇𝑆𝐶ℎ𝐺12 𝑎𝑛𝑑 𝑅𝑉𝐶ℎ𝐺12)

ChG_2|≡#(𝐶ℎ𝐺𝐼𝐷𝑅_1,𝑇𝑆𝐶ℎ𝐺12,𝑅𝑉𝐶ℎ𝐺12)|

According to V12, V13, and rule 2, we derive the following

V14:

ChG_2|≡#(𝐶ℎ𝐺𝐼𝐷𝑅1 ,𝑇𝐾,𝑀𝑆𝐾,𝑇𝑆𝐶ℎ𝐺12,𝑅𝑉𝐶ℎ𝐺12),ChG_2|≡ChG_1~(𝐶ℎ𝐺𝐼𝐷𝑅_1,𝑇𝐾,𝑀𝑆𝐾,𝑇𝑆𝐶ℎ𝐺12,𝑅𝑉𝐶ℎ𝐺12)

ChG_2|≡ChG_1|≡(𝐶ℎ𝐺𝐼𝐷𝑅_1,𝑇𝐾,𝑀𝑆𝐾,𝑇𝑆𝐶ℎ𝐺12,𝑅𝑉𝐶ℎ𝐺12)

According to P14, P15, V14, and rule 4, we derive the following:

V15:
ChG_2 |≡ChG_1| ⇒ 𝑅𝑉𝐶ℎ𝐺12 ,ChG_2 |≡ ChG_1 |≡𝑅𝑉𝐶ℎ𝐺12

ChG_2|≡ 𝑅𝑉𝐶ℎ𝐺12

As ssk = H (RVChG11|| RVChG12 || RVChG21|| TK) and in combination with V4, V14 and P21

we can derive

V16: ChG_2|≡ChG_1|≡(ChG_2 ChG_1) (Goal 1_1)

 As ssk = H (RVChG11|| RVChG12 || RVChG21|| TK) and in combination with P22, P23, V5,

V15 and V16.

 V17: ChG_2|≡ (ChG_1 ChG_2) (Goal 1_2)

 As ssk = H (RVChG11|| RVChG12 || RVChG21|| TK) and in combination with P19 and V9, we

can derive

ssk

ssk

ssk

264

V18: ChG_1| ≡ ChG_2|≡ (ChG_1 ChG_1) (Goal 1_3)

 As ssk = H (RVChG1|| RVChG2 || RVPG1) and combining with P20, P24, V10, and V18.

 V19: ChG_1|≡ (ChG_1 ChG_2) (Goal 1_4)

Therefore, the above logic proves that the proposed protocol achieves the goals

1_1 to 1_4 successfully. Thus, we prove that the shared secret key ssk is trusted by both

ChG_1 and the ChG_2. Based on the above results, the achievement of goals 1_1 to 1_4

proves that the proposed protocol achieves mutual authentication, and the session key ssk

is securely shared between ChG_1 and ChG_2.

5.7.1.1.2.3 Protocol 3: mini-gateway _IoT node mutual authentication

5.7.1.1.2.3.1 Protocol 3 goals identification

Goal 1: Ci+1, Ri, and Ri+1 are well protected and believed by MG.

G1_1: MG believes that the N believes that the Ci+1, Ri, and Ri+1 are securely shared

parameters between N and MG.

MG| ≡ N | ≡ (N MG)

G1_2: MG believes that Ci+1, Ri and Ri+1 are securely shared parameters between N and

MG.

MG| ≡ (N MG)

Goal 2: The N and the MG want to establish a shared secret key (ssk) key that is

believed by each other.

ssk

Ri, Ri+1, Ci+1

Ri, Ri+1, Ci+1

265

G2_1: MG believes that the N believes that the ssk is a securely shared parameter

between N and MG.

 MG| ≡ N|≡ (N MG)

G2_2: MG believes that ssk is a securely shared parameter between N and MG.

MG|≡ (N MG)

G2_3: N believes that the MG believes that the ssk is a securely shared parameter

between N and MG.

 N| ≡ MG | ≡ (N MG)

G2_4: N believes that ssk is a securely shared parameter between N and MG.

N| ≡ (N MG)

5.7.1.1.2.3.2 Protocol 3 Messages Idealization

First, we transfer all transmitted messages into idealized form as follows:

M1: N MG:(NIDR, S2, S3, TSN1, RVN1) OTT

M2: MG N:(MGIDR, S1, S2, RVMG1, TSMG, C) OTT

M 3: N MG:(NIDR, TSN2, RVN2, NOTP, NnewIDA) CHXi+1

5.7.1.1.2.3.3 Protocol 3 main assumptions

ssk

ssk

ssk

ssk

266

The second step to be completed is to define some assumptions as the initiative

promises. The fundamental assumptions of the presented authentication scheme are as

follows:

P1: MG believes that OTT is a secure shared parameter between N and MG

 MG| ≡ (N MG)

P2: MG believes N believes that OTT is a secure shared parameter between N and MG.

MG | ≡ N| ≡ (N MG)

P3: N believes that OTT is a secure shared parameter between N and MG.

N| ≡ (N MG)

P4: N believes MG believes that OTT is a secure shared parameter between N and MG.

N | ≡ MG| ≡ (N MG)

P5: MG believes that CHXi+1 is a secure shared parameter between N and MG.

MG| ≡ (N MG)

P6: MG believes N believes that CHXi+1 is a secure shared parameter between N and

MG.

 OTT

OTT

 CHXi+1

CHXi+1

 OTT

OTT

267

MG | ≡ N| ≡ (N MG)

P7: MG believes TSN1 is fresh.

MG| ≡ #(TSN1)

P8: MG believes TSN2 is fresh.

MG| ≡ #(TSN2)

P9: N believes TSMG1 is fresh.

N| ≡ #(TSMG1)

P10: MG believes RVN1 is fresh.

MG| ≡ #(RVN1)

P11: MG believes that N believes RVN1.

MG | ≡ N| ≡ RVN1

P12: MG believes that N has jurisdiction over RVN1. That is, N is an authority and

believes RVN1.

 MG | ≡ N ⇒ RVN1

P13: MG believes RVN2 is fresh.

MG| ≡ #(RVN2)

P14: MG believes that N believes RVN2.

MG | ≡ N| ≡ RVN2

268

P15: MG believes that N has jurisdiction over RVN2. That is, N is an authority and

believes RVN2.

 MG | ≡ N ⇒ RVN2

P16: N believes RVMG1 is fresh.

N| ≡ #(RVMG1)

P17: N believes that MG believes RVMG1.

N | ≡ MG| ≡ RVMG1

P18: N believes that MG has jurisdiction over RVMG1. That is, MG is an authority and

believes RVMG1.

 N | ≡ MG ⇒ RVMG1

P19: MG believes that N has jurisdiction over Ri

MG| ≡ N ⇒ Ri

P20: MG believes that N believes Ri

MG| ≡ N | ≡ Ri

P21: MG believes that N has a jurisdiction over Ri+1

MG| ≡ N ⇒ Ri+1

P22: MG believes that N believes Ri+1

MG| ≡ N | ≡ Ri+1

269

P23: MG believes that N has a jurisdiction over Ci+1

 MG| ≡ N ⇒ Ci+1

P24: MG believes that N believes Ci+1

 MG| ≡ N | ≡ Ci+1

P25: MG believes N believes that ssk is a secure shared parameter between N and MG

 MG | ≡ N| ≡ (N MG)

P26: N believes MG believes that ssk is a secure shared parameter between N and MG

 N | ≡ MG| ≡ (N MG)

5.7.1.1.2.3.4 Protocol 3 analysis of the authentication protocol

We then prove that the proposed protocol achieves the security goals based on the

idealized form of the messages, assumptions, and BAN logic rules. The proposed

authentication protocol analysis is shown below to prove that the protocol achieves

mutual authentication between N and MG.

According to M1:

V1: IG ◃(NIDR, S2,S3,TSN1,RVN1
)OTP

According to P1 and Rule 1, we derive the following

V2:
𝑀𝐺|≡N OTT MG ,MG ⊲(𝑁𝐼𝐷𝑅,𝑆2,𝑆3,𝑇𝑆𝑁1,𝑅𝑉𝑛1) 𝑁 𝑂𝑇𝑇 𝑀𝐺

𝑀𝐺|≡N |∼ ((𝑁𝐼𝐷𝑅,𝑆2,𝑆3,𝑇𝑆𝑁1,𝑅𝑉𝑛1)

ssk

 ssk

270

According to P7, P10, and rule 3, we derive the following

V3:
𝑀𝐺|≡#(𝑇𝑆𝑁1 𝑎𝑛𝑑 𝑅𝑉𝑁1)

𝑀𝐺|≡#|(𝑁𝐼𝐷𝑅,𝑆2,𝑆3,𝑇𝑆𝑁1,𝑅𝑉𝑛1)

According to V2, V3, and rule 2, we derive the following

 V4:
𝑀𝐺|≡#(𝑁𝐼𝐷𝑅 ,𝑆2,𝑆3,𝑇𝑆𝑁1 ,𝑅𝑉𝑛1),MG|≡N~(𝑁𝐼𝐷𝑅 ,𝑆2,𝑆3 ,𝑇𝑆𝑁1,𝑅𝑉𝑛1)

𝑀𝐺|≡N|≡(𝑁𝐼𝐷𝑅 ,𝑆2,𝑆3,𝑇𝑆𝑁1 ,𝑅𝑉𝑛1)

According to P11, P12, V4 and rule 4, we derive the following:

V5:
MG |≡N| ⇒ 𝑅𝑉𝑛1 ,MG |≡ N |≡ 𝑅𝑉𝑛1

MG|≡ 𝑅𝑉𝑛1

According to M2, we get

V6: N ◃ (MGIDR, S1, S2, RVMG1, TSMG, C) Y2

According to P3 Rule 1, we derive the following

V7:
𝑁|≡N OTT MG ,N ⊲(MG𝐼𝐷𝑅, 𝑇𝑆𝑀𝐺1,𝑆1,𝑆2,𝑅𝑉𝑀𝐺1,C) 𝑁 𝑂𝑇𝑇 𝑀𝐺

𝑁|≡MG |∼ (MG𝐼𝐷𝑅, 𝑇𝑆𝑀𝐺1,𝑆1,𝑆2,𝑅𝑉𝑀𝐺1,C)

According to P9, P16 and rule 3, we derive the following

V8:
𝑁|≡#(𝑇𝑆𝑀𝐺1,𝑅𝑉𝑀𝐺1

)

𝑁|≡#(MG𝐼𝐷𝑅, 𝑇𝑆𝑀𝐺1,𝑆1,𝑆2,𝑅𝑉𝑀𝐺1,C)

According to V7, V8, and rule 2, we derive the following

V9:

𝑁|≡#(MG𝐼𝐷𝑅, 𝑇𝑆𝑀𝐺1,𝑆1,𝑆2,𝑅𝑉𝑀𝐺1,C),N|≡MG~(MG𝐼𝐷𝑅, 𝑇𝑆𝑀𝐺1,𝑆1,𝑆2,𝑅𝑉𝑀𝐺1,C)

𝑁|≡MG|≡(MG𝐼𝐷𝑅, 𝑇𝑆𝑀𝐺1,𝑆1,𝑆2,𝑅𝑉𝑀𝐺1,C)

271

According to P17, P18 and rule 4, we derive the following:

V10:
𝑁 |MG| ⇒ 𝑅𝑉𝑀𝐺1,N |≡ MG |≡ 𝑅𝑉𝑀𝐺1

𝑁|≡ 𝑅𝑉𝑀𝐺1

According to M3:

V11 IG ◃(NIDR,TSN2,RVN2,OTPN, NnewIDA, Ci+1 ,Ri, Ri+1)CHXi
+1

According to P5 and Rule 1, we derive the following

V12:

𝑀𝐺|≡N CHXi+1 MG ,MG ⊲(𝑁𝐼𝐷𝑅,𝑁𝑂𝑇𝑃,𝑁𝑛𝑒𝑤𝐼𝐷𝐴,𝑇𝑆𝑁2,𝑅𝑉𝑛2, 𝑁 𝐶𝑖+1,𝑅𝑖,𝑅𝑖+1 𝑀𝐺) 𝑁 𝐶𝐻𝑋𝑖+1 𝑀𝐺

𝑀𝐺|≡N |∼ ((𝑁𝐼𝐷𝑅,𝑁𝑂𝑇𝑃,𝑁𝑛𝑒𝑤𝐼𝐷𝐴,𝑇𝑆𝑁2,𝑅𝑉𝑛2, 𝑁 𝐶𝑖+1,𝑅𝑖,𝑅𝑖+1 𝑀𝐺)

According to P8, P13 and rule 3, we derive the following

V13:
𝑀𝐺|≡#(𝑇𝑆𝑁2 𝑎𝑛𝑑 𝑅𝑉𝑁2)

𝑀𝐺|≡#|(𝑁𝐼𝐷𝑅,𝑁𝑂𝑇𝑃,𝑁𝑛𝑒𝑤𝐼𝐷𝐴,𝑇𝑆𝑁2,𝑅𝑉𝑛2,𝑁 𝐶𝑖+1,𝑅𝑖,𝑅𝑖+1 𝑀𝐺)

According to V12, V13, and rule 2, we derive the following:

V14

𝑀𝐺|≡#(𝑁𝐼𝐷𝑅,𝑁𝑂𝑇𝑃,𝑁𝑛𝑒𝑤𝐼𝐷𝐴,𝑇𝑆𝑁2,𝑅𝑉𝑛2,𝑁 𝐶𝑖+1,𝑅𝑖,𝑅𝑖+1 𝑀𝐺),MG|≡N~(𝑁𝐼𝐷𝑅,𝑁𝑂𝑇𝑃,𝑁𝑛𝑒𝑤𝐼𝐷𝐴,𝑇𝑆𝑁2,𝑅𝑉𝑛2 𝑁 ,𝐶𝑖+1,𝑅𝑖,𝑅𝑖+1 𝑀𝐺)

𝑀𝐺|≡N|≡(𝑁𝐼𝐷𝑅,𝑁𝑂𝑇𝑃,𝑁𝑛𝑒𝑤𝐼𝐷𝐴,𝑇𝑆𝑁2,𝑅𝑉𝑛2,𝑁 𝐶𝑖+1,𝑅𝑖,𝑅𝑖+1 𝑀𝐺)

According to P14, P15, P19, P20, P21, P22, P23, P24, V14, and rule 4, we derive the

following:

V15:
MG |≡N| ⇒ 𝑅𝑉𝑛2,𝐶𝑖+1,𝑅𝑖,𝑅𝑖+1 ,MG |≡ N |≡ 𝑅𝑉𝑛2,𝐶𝑖+1,𝑅𝑖,𝑅𝑖+1

MG|≡ 𝑅𝑉𝑛2,𝐶𝑖+1,𝑅𝑖,𝑅𝑖+1

Based on V15, we can derive

V16: MG| ≡|N ≡ (N MG) (Goal 1_1)

Ci+1, Ri, Ri+1

272

Based on P20, P22, P24, V15, and V16, we derive the following

V17: MG|≡ (N MG) (Goal 1_2)

As session key ssk = h ((RVN1|| RVN2 || RVMG1 || Ri) and in combination with V9, we

can derive

V18: N| ≡MG|≡ (N MG) (Goal 2_1)

 As session key ssk = h ((RVN1|| RVN2 || RVMG1 || Ri) and combining with P26, V10 and

V18

V19: N|≡ (N MG) (Goal 2_2)

 As session key ssk = h ((RVN1|| RVN2 || RVMG1 || Ri) and combining with V4 and V14,

we can derive

V20: IG ≡N|≡ (N MG) (Goal 2_3)

 As session key ssk = h ((RVN1|| RVN2 || RVMG1 || Ri) and combining with P25, V5, V15,

and V20.

V21: MG|≡ (N MG) (Goal 2_4)

Hence, the above logic proves that the proposed protocol achieves Goals 1_1 -

1_2 and 2_1 - 2_4 successfully. In other words, the proposed protocol achieves mutual

authentication. Also, it has been proved that Ci+1, Ri, Ri+1, and ssk are securely shared

between the communicating parties.

Ci+1,Ri,Ri+1

ssk

ssk

ssk

ssk

273

In summary, by achieving all the goals mentioned above, we demonstrate the

validity of the proposed protocols. We proved that the presented three protocols are

secure mechanisms to perform mutual authentication and secret key generation to secure

the communication between the involved parties.

5.7.1.2 Informal Security Analysis

This section examines that the proposed protocols are secure against well-known

security attacks and satisfy the main security properties. The security of the protocols is

explored against various known attacks. This section will provide brief descriptions of

different types of attacks against the smart poultry farming IoT systems. A description of

how the proposed protocols successfully resisted the well-known attacks and achieved

the proposed security properties will be presented.

5.7.1.2.1 Security Properties Assessment

The following section presents a detailed security analysis of the security

properties of the three proposed protocols. It demonstrates how the proposed protocols

satisfy the security requirements for mutual authentication and session key agreement and

resist various known attacks. Then, a comparison with other related schemes is presented.

5.7.1.2.1.1 Protocol 1: parent gateway-child gateway mutual authentication

5.7.1.2.1.1.1 Mutual authentication

During the mutual authentication process, PG and the ChG authenticate each

other by verifying the correctness of the X3, X5, Y2, and Y5. Also, the two sides verify the

freshness of the RVChG1, RVChG2, RVPG1 and generating the ssk. The ssk is generated by

274

using the OTP that is known only to PG and the ChG, the nonce values RVChG1 and

RVChG2 generated by ChG, and the nonce value (RVPG1) generated by the PG. An

adversary can’t generate X1 = H (OTP || AuthP) without knowing the ChGIDR of ChG,

PGIDR of the PG, and OTP, which are considered secret shared parameters between ChG

and PG well as knowing Authp that is only known to ChG. Also, the adversary can’t

generate Yx = H (OTP || AuthC) without knowing the ChGIDR of ChG, PGIDR of the PG,

and OTP, which are considered secret shared parameters between ChG and PG well as

knowing Authc that is only known to PG. Furthermore,the adversary cannot verify X3 =

H (ChGIDR || TS ChG1 || RVChG1 || X1), Y2 = H(PGIDR || TSPG1 || RVPG1 || RVChG1 || Yx), X5 =

H(ChGIDR || TSChG2 || RVChG2|| (RV’PG1 || Xcc), and Y5 = H (ChGIDR || TSPG2 || TK12|| TK13

||OTPX|| ChGIDAx| without knowing the PUF responses for both ChG and PG,OTP,

PGIDR,ChGIDR, RVChG1, RVChG2, and RVPG1. As a result, the proposed scheme can

achieve mutual authentication between PG and the ChG.

5.7.1.2.1.1.2 Session key agreement and forward /backward security

At the end of the mutual authentication phase, the shared secret key ssk is

established between ChG and the PG. The ssk is a combination of the OTP, RVChG1,

RVChG2, and RVPG1. The goal of the ssk is to protect all the communication between PG

and ChG. The ssk will be generated locally. The secrecy of the ssk depends on the

secrecy of OTP, RVChG1, RVChG2, and RVPG1. Because all those parameters are randomly

selected for every new authentication session, the disclosure of the ssk will not cause the

compromise of any future ssk. The forward/backward security property's objective is to

ensure that any past or future shared secret keys will not be affected when any ssk is

exposed. Even if an adversary obtains ssk of a session, he/she can’t compute any of the

275

past and future shared secret keys by using the disclosed ssk because the ssk is protected

by the randomization of the OTP, RVChG1, RVChG2, and RVPG1. As a result, the proposed

scheme achieves the security of ssk.

5.7.1.2.1.1.3 Anonymity unlinkability, and untraceability properties

For fully protected ChG and PG privacy, strong anonymity with unlinkability is

required. In the proposed protocol, the ChG’s and PG’s real identities ChGIDR and PGIDR

are not transmitted during all phases in clear text format. Therefore, even if the adversary

eavesdrops on all communication messages, it is impossible to obtain real identities. In

addition, the new alias ID of the ChG node ChGnewIDA = h (ChGIDA. OTP). Because

OTP is fresh in each session, the attacker cannot link any two different ChGIDA’s to the

same ChG and cannot trace a given ChGIDA to ChGIDR’s messages. By using a new

ChGIDA for each authentication session, the adversary will not be able to decide whether

these authentication messages are from the same ChG or not. This means that ChG cannot

be linked to different sessions. Consequently, the proposed protocol provides anonymity

and unlinkability, and the adversary cannot trace the devices by intercepting messages.

5.7.1.2.1.1.4 Node stolen database attack

Due to the nature of the PUF, if an adversary can compromise a locally stored

database at one of the communicating parties, he/she will fail to prove himself/herself

because the PUF response can’t be replicated or predicted. Besides, the secret keys are

different every session, which overcomes the issue of having any secret key exposed.

Also, the lifetime of the ssk’s parameters is only one authentication session, and then they

276

will be destroyed. Furthermore, the proposed protocol is resilient against any device's full

comptonization by employing node behavioral analysis where the node transaction,

including traffic type, timing, and frequency, will be monitored and cross-compared to

similar devices.

5.7.1.2.1.1.5 Brute force attack

The shared secret key ssk is generated locally by both the ChG node and the PG

using the random secret parameters OTP, RVChG1, RVChG2, and RVPG1. Because this ssk

depends on random parameters, the adversary cannot obtain it from the protocol. The

probability of guessing is so negligible that the adversary will fail to guess the shared

secret key's correct parameters, given that this ssk changes in every session.

5.7.1.2.1.1.6 Replay attack

The proposed protocol overcame the replay attack by using timestamps and nonce

values. The timestamp TS and the nonce value are generated by the sender node and then

inserted in the transmitted message in an encrypted format to ensure the adversary cannot

replace it. Furthermore, the OTP is used only one time to ensure security against replay

attacks. Hence, the protocol protects against the replay attack.

5.7.1.2.1.1.7 Eavesdropping attack

During the authentication phase, the adversary can intercept the messages

transmitted between PG and ChG_1. All the intercepted messages will be useless because

they are sent encrypted using the XOR and one-way hash function. For the attacker to

verify the received parameters, he/she needs to know the PUF responses, the real

277

identities of the communicating parties, and the OTP that are protected and out of the

adversary's reach. The only two parameters that are sent in clear text are the Alias

identities and session ID. The Alias identities and the session ID do not pose any threat

because this information is constructed from random parameters that change in every

session. The adversary will not link the message to a particular device because the

proposed protocol uses alias identities that vary in every session. Therefore, the proposed

protocol protects against eavesdropping attacks.

5.7.1.2.1.1.8 Impersonation attack

In this attack, when the intruder eavesdrops on the messages transmitted from

ChG to PG or vice versa, he/she can use the intercepted information for malicious

actions, such as impersonating the ChG device or the PG and sending fabricated

messages.

This attack will not succeed for several reasons. First, each device has an Alias ID

and Real ID. The real IDs are known only for the communicating parties. The Real IDs

will never be released in clear text format. The two sides will verify the real ID of each

other before proceeding with the authentication process. Furthermore, without the

knowledge of the OTP and the PUF response, the adversary will not be able to generate

any of the different authentication parameters to prove itself to the other side.

In the current protocol, if an attacker impersonates GhG and sends (ChGIDA ,

TSoneChG, X2, X3) or (ChGIDA , TSoneChG , X4, X5)which might be previously

eavesdropped during the transmission between GhG and PG, to PG. This attack will fail

for certain reasons. First, the temporary identity of GhGIDA changes in every session.

278

Second, both X3 and X5 are protected using the message parameters' one-way hash

function, which includes the timestamp, OTP, and GhGIDR.

On the other side, if the attacker impersonates PG and sends (PGIDA, TSonePG1,

Y1, Y2) or (PGIDA, TSonePG2, Y3, Y4, Y5) which might be previously eavesdropped

during the transmission between ChG and PG, to ChG. This attack will fail because both

Y2 and Y5 are protected using the secret parameters' one-way hash function, which

includes the timestamp, OTP, and PGIDR. Finally, without the knowledge of the OTP,

RVChG1, RVChG2, and RVPG1, the attacker will not be able to generate the same SK. Thus,

the protocol protects against the impersonation attack.

5.7.1.2.1.1.9 Man-in-the-middle attack

As discussed in the replay attack, eavesdropping, and impersonation attacks, the

man-in-the-middle attack is defeated because the communication parties' real identities

and the secret parameters OTP and the PUF responses are unknown to the attacker.

Therefore, the man-in-the-middle attack is prevented.

5.7.1.2.1.2 Protocol 2: child gateway-child gateway mutual authentication

5.7.1.2.1.2.1 Mutual authentication

During the mutual authentication process, ChG_1 and ChG_2 authenticate each

other by verifying the correctness of the T2, T5, and D3. Also, the two sides verify the

freshness of the RVChG_11, RVChG_12, and RVChG_21 and generate the SK. The ssk is

generated by using the TK known only to ChG_1 and the ChG_2, the nonce values

RVChG_11 and RVChG_12 generated by ChG_1 nonce value (RVChG_21) generated by

the ChG_2. An adversary can’t generate T2, T5, and D3 without knowing the ChG1IDR,

ChG2IDR, TK, and MSK. Because the MSK is stored on each side in an encrypted format

279

using the PUF response of that side as an encryption key, both ChG_1 and the ChG_2

need to compute their PUF responses to retrieve MSK. As a result, the proposed scheme

can achieve mutual authentication between ChG_1 and ChG_2.

5.7.1.2.1.2.2 Session key agreement and forward/backward security

After completing the mutual authentication phase, the shared secret key ssk is

established between ChG_1 and ChG_2. The ssk is a combination of the TK, RVChG11,

RVChG12, and RVChG21. The goal of the ssk is to protect all the communication between

ChG_1 and ChG_2. The ssk is generated locally. The secrecy of the ssk depends on the

secrecy of the TK, RVChG11, RVChG12, and RVChG21. Because all those parameters are

randomly generated for every new authentication session, the disclosure of the ssk will

not cause the compromise of any future ssk. Even if an adversary obtains ssk of a session,

he/she can’t compute any of the past or future shared secret keys by using the disclosed

ssk because the ssk is protected by the randomization of the TK, RVChG11, RVChG12, and

RVChG21. As a result, the proposed scheme achieves the security of ssk.

5.7.1.2.1.2.3 Anonymity unlinkability, and untraceability properties

For fully protected ChG_1 and ChG_2 privacy, strong anonymity with

unlinkability is required. In the proposed protocol, the ChG’s and ChG’s real identities

ChG_1IDR and ChG_2IDR are not transmitted during all phases in clear text format.

Therefore, even if the adversary eavesdrops on all communication messages, it is

impossible to obtain real identities. In addition, a new alias ID will be assigned to each

ChG for every authentication session as presented in protocol 1. By using a new ChGIDA

for each authentication session, the adversary will not be able to decide whether these

authentication messages are from the same ChG or not. This means that ChG cannot be

280

linked to different sessions. Consequently, the proposed protocol provides anonymity and

unlinkability, and the adversary cannot trace the devices by intercepting messages.

5.7.1.2.1.2.4 Node stolen database attack

If the ChG_1 or the ChG_2 is hacked, the MSK is encrypted by the PUF response

of the ChG. For the adversary to retrieve the MSK, he/she needs to calculate the PUF

response, which is impossible due to the nature of the PUF that can’t be predicted or

replicated. From another perspective, the ssk is different every session, which overcomes

the issue of having any secret key exposed. Furthermore, the proposed protocol is

resilient against any device's full compromising by employing node behavioral analysis

where the node transaction, including traffic type, timing, and frequency, will be

monitored and cross-compared to similar devices.

5.7.1.2.1.2.5 Brute force attack

The shared secret key ssk is generated locally by both the ChG_1 node and the

ChG_2 using the random secret parameters TK, RVChG11, RVChG12, and RVChG21. Because

this ssk depends on random parameters, the adversary cannot obtain it from the protocol.

The probability of guessing is so negligible that the adversary will fail to guess the shared

secret key's correct parameters, given that this ssk changes in every session.

5.7.1.2.1.2.6 Replay attack

The proposed protocol overcame the replay attack by using timestamps and nonce

values. The timestamp TS and nonce values are generated by the sender node and then

inserted in the transmitted message so that it ensures the attacker cannot replace it. Before

trusting the received TS, the receiver verifies the TS's integrity by recalculating the

281

received hash value that includes secret parameters between the two communicating

parties. The attacker cannot reconstruct the hash value because he/she does not know the

TK, MSK, and the real identities of the communicating parties. Therefore, any replay

attack attempts will fail. Hence, the protocol protects against replay attack.

5.7.1.2.1.2.7 Eavesdropping attack

During the authentication phase, the adversary can intercept the messages

transmitted between ChG_1 and ChG_2. All the intercepted messages will be useless

because they are sent in an encrypted format using the XOR function and one-way hash

function. For the attacker to verify the received parameters, he/she needs to know the TK

and MSK, which are composed of random values and are protected and out of the

adversary's reach. The TK is changed every authentication session, and the PUF response

encrypts the MSK. The only two parameters that are sent in clear text are the Alias

identities and session ID. The Alias identities and the session ID do not pose any threat

because this information is constructed from random parameters that change in every

session. The adversary will not link the message to a particular device because the

proposed protocol uses alias identities that change in every session. Therefore, the

proposed protocol protects against eavesdropping attacks.

5.7.1.2.1.2.8 Impersonation attack

In this attack, when the intruder eavesdrops on the messages transmitted from

ChG_1 to ChG_2 or vice versa, he/she can use the intercepted information for malicious

actions, such as impersonating the ChG_1 device or the ChG_2 and sending fabricated

messages.

282

This attack will not succeed for several reasons. First, each device has an Alias ID

and Real ID. The real IDs are known only for the communicating parties. The Real IDs

will never be released in clear text format. The two sides will verify the real ID of each

other before proceeding with the authentication process. Furthermore, without the

knowledge of the TK and the MSK, the adversary will not be able to generate any of the

authentication parameters to prove himself/herself to the other side.

In the current protocol, if an attacker impersonates GhG_1 and sends (ChGIDA,

TSChG_11, T1, T2) or (ChG_1IDA, SID, TSCHG_12, T4, T5), which might be previously

eavesdropped during the transmission between GhG_1 and ChG_2, to ChG_2, this attack

will fail for certain reasons. First, the temporary identity of GhGIDA changes in every

session. Second, for T1, T2, T4, and T5, the adversary will not be able to reconstruct

them without knowing the TK, MSK, the real identity of the receiving node, and its own

real identity.

On the other side, if the attacker impersonates GhG_2 and sends (ChG_2IDA, SID

,D2, D3), which might be previously eavesdropped on during the transmission between

ChG_1 and ChG_2, to ChG_1, this attack will fail because D3 is protected using the one-

way hash function of the message parameters. D2 message includes TK and RVChG, which

are different for every authentication session, and MSK that is encrypted by GhG_2 PUF

response. Finally, without knowing the TK, RVChG11, RVChG12, and RVCHG21, the attacker

will not be able to generate the same ssk. Thus, the protocol protects against the

impersonation attack.

5.7.1.2.1.2.9 Data modification attacks

283

Assuming that M1 < ChGIDA1, TSChG_11, T1, T2 > has been tampered by an

adversary M1* < ChGIDA1
*, TSChG_11

*
, T1

*
, T2

*
 >. After receiving the message, the

adversary will first need to have TK and ChG_2IDR, which are secure parameters to

compute Rj <H (TK|| ChG_2IDR)> and T1< RVChG_11 ⊕ Rj>. Furthermore, without having

all secret parameters, the adversary will not be able to generate a legitimate T2 = H

<ChG_1IDR || TS ChG_11 || RVChG_11 ||Rj>, that is, if the message has been tampered, the

ChG_1 is considered to be illegal, and the session will be terminated immediately by the

ChG_2.

Now suppose the message M2 < ChG_2IDA, SID, TSChG12, D2, D3> has been

tampered with by an adversary and sent to V M2* < ChG_2IDA
 *, SID

*
 , TSChG12

*
, D2*, D3*

>. After receiving the message, the adversary will first need to compute <D1 = H

(RVChG_11 ||MSK || TK)> and <D2 = RVChG_21 ⊕ D1> using TK, MSK, and the random

generated value received from ChG_1. Because each ChG_2 has a PUF chip and each

chip is unique, the adversary will not be able to replicate or predict the response(R) of the

real ChG_2. Consequently, the adversary will not be able to generate R and decrypt the

MSK to compute D1. Also, the TK is secret and is only known to the ChG_1 and ChG_2,

the adversary will not correctly calculate D1 and D2. Finally, without having all above-

mentioned secret parameters, the adversary will not be able to compute <D3 = H

(ChG_2IDR || TS ChG_21 || RVChG_21|| D1)> to pass the ChG_2 authentication.

As for the message M3 <ChG_1IDA, SID, TSCHG12, T4, T5)> suppose the message

M3 was tempered by an adversary. Because ChG_1 has a PUF chip and each chip is

unique, the adversary will not be able to replicate or predict the response(R) of the real

ChG_2. Consequently, the adversary will not be able to generate R and decrypt the MSK

284

to compute T3. Furthermore, also the TK is secret and is only known to the ChG_1 and

ChG_2; the adversary will not correctly calculate T3 and T4. Furthermore, the adversary

will not be able to construct a valid T5and send a legitimate message to ChG_2 that can

pass the authenticate verification. So, o after receiving the message M3* and verifying it,

ChG_2 will terminate the session with ChG_1. In summary, the proposed protocol can

resist all message modification attacks.

5.7.1.2.1.2.10 Man-in-the-middle attack

As discussed in the replay attack, eavesdropping, and impersonation attacks, the

man-in-the-middle attack is defeated because the communication parties' real identities

and the secret parameters TK and MSK are unknown to the attacker. Therefore, the man-

in-the-middle attack is prevented.

5.7.1.2.1.3 Protocol 3: mini-gateway _IoT node mutual authentication

5.7.1.2.1.3.1 Mutual authentication

N and the MG authenticate each other during the mutual authentication by

verifying the SN, Y3, and X4. An adversary cannot generate S1 = h (NIDR || MGIDR||| RMG)

without knowing the NIDR of N and the MGIDR of the MG and compute the PUF response

(RMG). Also, the adversary cannot verify S2 = h (S1 ||MGIDR) ⊕ GIDN and S3 = h ((S2||

MGIDR) ⊕TIDN without knowing the GIDN and TIDN. Furthermore, the adversary will not

be able to generate Y3 = H (MGIDR || TSMG1 || RVN1 || RVMG1 ||C||Y1) without having S1,

S2 OTT, MGIDR, || RVMG1 and RVN1. Also, the adversary cannot generate X4 without

having the R that can only be generated by N and having CHX, which is considered a

285

secure parameter between N and MG. As a result, the proposed scheme can achieve

mutual authentication between N and MG.

5.7.1.2.1.3.2 Session key agreement and forward/backward security

After successfully completing the mutual authentication phase, the shared secret

key ssk is established between N and the MG. The ssk is a combination of RVN1, RVN2,

RVMG1, and Ri. The ssk will be generated locally. The secrecy of the ssk depends on the

secrecy of RVN1, RVN2, RVMG1, and Ri. Because all those parameters are randomly

selected for every new authentication session, the disclosed ssk will not cause the

compromise of any future ssk. Even if an adversary obtains the ssk of a session, he/she

can’t compute any of the past or future shared secret keys by using the disclosed ssk. The

ssk is protected by the uniqueness of the Ri where each CRP will be used only one time.

The corresponding responses can’t be replicated or predicted because they are unique for

each N because of the nature of the PUF. Second: the randomization of the RVN1, RVN2,

and RVMG1. As a result, the proposed scheme achieves the security of ssk.

5.7.1.2.1.3.3 Anonymity unlinkability and untraceability properties

Protecting the privacy of N requires strong anonymity with unlinkability. The N’s

real identity NIDR is not transmitted during all phases in clear text format in the

proposed protocol. Therefore, even if the adversary eavesdrops on all communication

messages, it is impossible to obtain the IoT node's real ID. In addition, the new alias ID

of the IoT node NIDA2 = h(NIDA1.RVMG). Because RVMG1 is fresh in each session, the

attacker cannot link any two different NIDA’s to the same N and cannot trace a given IoT

device to N’s messages. By using a new NIDA for each authentication session, the

adversary will not be able to decide whether these authentication messages are from the

286

same N or not. This means that device N cannot be linked to different sessions.

Consequently, the proposed protocol provides anonymity and unlinkability, and the

adversary cannot trace the devices by intercepting messages.

5.7.1.2.1.3.4 Node stolen database attack

If any IoT node is compromised and the adversary can steal S1, S2, S3, NIDR,

CHX, and the OTT from the IoT node’s database to impersonate the IoT node, the fake

node will fail the CRP verification process. The proposed protocol is resilient against a

full compromising of the IoT node by employing node behavioral analysis where the

node transaction, including traffic type, timing, and frequency, will be monitored and

cross-compared to the previous data from the same virtual domain. Also, if an MG was

compromised and the adversary can steal its database, the adversary will fail to generate

RMG to compute S1 that is needed for N to authenticate the MG.

5.7.1.2.1.3.5 Brute force attack

The shared secret key ssk is generated locally by both the IoT node and the MG

using the random secret parameters RVN1, RVN2, RVMG1, and Ri. Because this ssk

depends on random parameters, the adversary cannot obtain it from the protocol. The

probability of guessing is so negligible that the adversary will fail to guess the shared

secret key's correct parameters, given that this ssk changes every session.

5.7.1.2.1.3.6 Replay attack

The sender node generates the timestamp TS and is then inserted in the

transmitted message to ensure the attacker cannot replace it. Before trusting the received

TS, the receiver verifies the TS's integrity by recalculating the received hash value that

includes secret parameters between the two communicating parties. Furthermore, Each

287

CRP is used only one time to ensure security against replay attacks. Hence, the proposed

protocol protects against the replay attack

5.7.1.2.1.3.6 Eavesdropping attack

During the authentication phase, the adversary can intercept messages transmitted

between N and the MG. All the intercepted messages will be useless because they are

sent in an encrypted format using XOR and a one-way hash function. To verify the

received parameters, the attackers need to know the RMG, OTT, CHX, NIDR, MGIDR, and

Ri, which are composed of random values and are protected and out of the adversary's

reach. The only two parameters that are sent in clear text are the Alias identities and

session ID. the Alias identities and the session ID do not pose any threat because this

information is constructed from random parameters that change in every session. The

adversary will not be able to link the message to a particular device because the proposed

protocol uses alias identities that change in every session. Therefore, the proposed

protocol protects against eavesdropping attack.

5.7.1.2.1.3.7 Impersonation attack

In this attack, when the intruder eavesdrops on the messages transmitted from N

to MG or vice versa, he/she can use the intercepted information for malicious actions,

such as impersonating the IoT device or the MG and sending fabricated messages.

5.7.1.2.1.3.7.1 MG impersonation

This attack will not succeed for several reasons. First, Each MG has an Alias ID

and Real ID. The real ID is known only for IoT devices. The MG's Real ID will never be

288

released in Clear Text format. The IoT device will verify the MG's Real ID before

proceeding with the authentication process. Second, the proposed protocol uses the Y3

value to authenticate the MG node. Without the knowledge of S1, S2 OTT, MGIDR,

RVMG1, and RVN1, the attacker cannot construct a valid Y3. To compute S1, the adversary

needs to have the PUF response RMG that the MG can only generate.

5.7.1.2.1.3.7.2 IoT node impersonation

To impersonate the IoT node, an adversary should intercept the messages

exchanged in the previous sessions. This attack will fail for numerous reasons. First, the

Alias ID of the IoT node changes every authentication session. Second, the fake IoT node

will not be able to generate legitimate responses because the PUF responses are unique

for each device. Third, X4 is protected using the one-way hash function of the message,

including CHX, Ri, and TS. Thus, the protocol protects against the impersonation attack.

From another perspective, even if the adversary succeeded in compromising an

IoT node, the adversary’s further attacks using the compromised node only affect the

communication related to that node. Because each IoT node has its own secret keys, the

adversary can’t derive other non-compromised IoT nodes’ keys without knowing those

nodes' random information. Therefore, further attacks will not affect other

communications. As a result, the proposed scheme is resistant to IoT node impersonation

attacks.

5.7.1.2.1.3.8 Data modification attacks

Assuming that M1 < NIDA, TSN1, X2, SN > has been tampered by an adversary

M1* < NIDA
 *, TSN1

*
, X2

*
, SN * >. After receiving the message, the adversary will first

need to have S2, S3, OTT, and NIDR, which are secure parameters to compute X1 <H (S2

289

||S3) and X2< RVN1 ⊕ OTT>. Furthermore, without having all secret parameters, the

adversary will not be able to generate a legitimate SN = < H (NIDR||TSN1 || RVN1|| X1)>,

that is, if the message has been tampered, N is considered to be illegal, and the session

will be terminated immediately by the MG.

Now suppose the adversary needs to modify M2 <MGIDA, SID, TSMG1, Y2, C’, Y3 > to be

M2* < MGIDA
 *, SID

*
, TSMG1

*
, Y2*, C’*, Y3

*
 >. After receiving the message, the adversary

will first need to compute <Y1 = H (S’1|| S’2) > and <Y2 = RVMG1 ⊕OTT> using S’1 S’2 and

OTT. To compute S1, the adversary needs to have the PUF response (RMG). Because the

MG has a PUF chip and each chip is unique, the adversary will not be able to replicate or

predict the response (RMG) of the real ChG_2. Consequently, the adversary will not be

able to generate R to compute S1. Also, the OTT is secret and is only known to the N and

MG, and the adversary will not correctly calculate Y1 and Y2. Finally, without having ll

above mentioned secret parameters, the adversary will not be able to compute <Y3 =

H(MGIDR || TSMG1 || RVN1 || RVMG1 ||C||Y1)> to pass the N authentication.

As for the message M3 < NIDA, TSN2, X3, Rx, X4)> suppose an adversary tempered

the message M3. Because N has a PUF chip and each chip is unique, the adversary will

not be able to replicate or predict the response (Ri) to compute CHX+1 of the real N.

Also, the OTT is secret and is only known to N and MG. Therefore, the adversary will

not correctly calculate X3 and Rx. Furthermore, the adversary will not be able to construct

a valid X4 and send a legitimate message to MG that can pass the authenticate

verification. So, o after receiving the message M3* and verifying it, MG will terminate

the session with N. In summary, the proposed protocol can resist all message

modification attacks.

290

5.7.1.2.1.3.9 Man-in-the-middle attack

As discussed in the replay attack, eavesdropping, and impersonation attacks, the

man-in-the-middle attack is defeated because of the employment of the real identity of

IoT node NIDR, the timestamp TS, the one-way hash function, the nonce values generated

by both the IoT and MG, and the CRPs that are unknown to the attacker. Moreover, the

chained-hash value CHX is protected using a one-way hash function. Therefore, the man-

in-the-middle attack is prevented.

5.7.1.2.1.3.10 Modeling attacks

It is an attack where the adversary collects a large number of PUF CRPs and uses

a regression algorithm to build a model and predict responses for new challenges. All the

challenges and their corresponding responses are transferred in an encrypted format by

using a a one-way hash function. Therefore, the adversary will not be able to collect

enough useful CRPs to build a model and predict responses to new challenges.

5.7.1.2.1.3.11 Physical attack

Any attempt to tamper with the IoT device will change the PUF embedded chip's

behavior and, consequently, renders the PUF useless.

5.7.1.2.1.3.12 IoT Device Counterfeit/Cloning

The IoT device is authenticated through the use of the PUF. PUF responses are

treated as hardware fingerprints that cannot be duplicated or cloned. Therefore, by the

use of the PUF, IoT devices cannot be cloned.

291

5.7.1.2.2 Comparison of Security Features

We compare the proposed MG-IoT protocol security features with other related

authentication and key agreement protocols [97,104,105,106,95]. Table 19 shows the

comparison results. The table indicates that the proposed protocol is secure against all the

imperative security threats and accomplishes diverse security features. The protocols

[104-105] used the IoT node real identity to exchange messages with the server, which is

against protecting the anonymity and the unlinkability of the IoT devices. Furthermore,

the researchers in [106] do not defend their protocol against the replay attack. Also, none

of the proposed protocols protects against IoT device counterfeiting, database stealing, or

physical attacks.

On the other side, the proposed Mg-IoT protocol supports multiple essential

security features: First, the proposed protocol does not require any secret key storage or

secret key sharing over the network. Second, all secret keys are computed locally on all

the communicating parties. Third, the mini-gateway and the IoT device use their one-time

alias identity for each authentication session in the proposed protocol. Therefore, it will

be difficult for an outside adversary to comprehend the activities of the IoT devices.

Fourth, the proposed protocol used the PUF to protect the IoT device against

counterfeiting and used the PUF responses as an encryption key to protect the device

database if the device got compromised. From table 19, we can conclude that the

proposed protocol in this chapter can support all the desired security properties, which are

essential for IoT devices' security.

292

Table 19: Security feature comparison of the proposed mini-gateway _IoT node protocol

with other related mutual authentication and key agreement schemes.

Security Property [97] [104] [105] [106] [95] Proposed

protocol

Resilience to IG the

Impersonation

Attack

No No Yes Yes Yes Yes

Resilience to IoT the

Impersonation

Attack

Yes No Yes Yes Yes Yes

Resilience to Replay

Attack

Yes Yes Yes No Yes Yes

Resilience to Device

Counterfeit

No No No No No Yes

Resilience to

Modeling Attack

NA NA NA NA NA Yes

Anonymity and

Untraceability

Yes No No Yes Yes Yes

Resilience to

Physical attacks

No No No No No Yes

Resilience to

Database stealing

No No No No No Yes

Mutual

Authentication

Yes Yes Yes Yes Yes Yes

5.7.2 Performance Analysis

In this section, we present a performance analysis of the proposed protocol. The

performance analysis evaluates the storage requirements. Also, we analyze the presented

protocol's overhead and efficiency in terms of computational complexity and

communication overhead and compare its computational complexity and communication

cost with the most relevant protocol in the literature proposed by [97], [104],[105], [106]

and [95].

293

5.7.2.1 Storage requirements

Table 20: Storage cost of the proposed scheme

Table 20 presents the storage requirements for the proposed protocol. The

calculation considered only the authentication protocol between the IoT node and the

mini gateway. In the proposed protocol, each IoT node must store its real identity NIDR

alias identity NIDA, the real identity of the MGIDR, alias identity MGIDA, authentication

parameters S1, S2 and S3, Chained hash CHX,and one-time token OTT. We use SHA-1

and SHA-2 as two examples of hash function, and the output of SHA-1 is 160 bits and

SHA-2 is 256 bits. By applying these settings, we obtain |NIDA | = 128 bit. |S1 | = |S2 | =

|S3 | = |CHX| = |OTT| = 256 bits and |NIDR | = |MGIDR| = |MGIDA| = 8 bits.

On the other hand, MG is required to store the tuple NIDA, NIDR, MGIDA, MGIDR,

GIDN, TIDN, OTT, C and R. By applying these settings, we obtain |NIDA | = 128. |NIDR | =

|MGIDR| = |GIDN | = |MGIDA| |TIDN |=8 bits, |C| = |R| = 128 bits, and |CHX| = |OTP| = 256

bits.

5.7.2.2 Computational Complexity Analysis

We compare the computation cost of the proposed scheme with other related

schemes [97], [104],[105], [106] and [95]. We only focus on comparing the mutual

authentication phase between the MG and the IoT. Because the time for executing a

bitwise XOR operation is negligible, we do not consider XOR operations for

Node Storage cost (in bits)

N 128+ 256 * 5 + 8 * 3 = 1432 b

MG 128*3+ 256 * 2 + 8 * 5 = 936 b

294

computational cost analysis. To analyze the performance of the proposed protocol with

respect to other presented protocols in the literature, we conducted simulations of the

cryptographic operations using Dell Inspiron Laptop with Intel Core i7, dual-core 2.7

GHz CPU, and 8 GB RAM to act as the IG. we used a Raspberry Pi 4 Model B with 64-

bit quad-core cortex A-72 processor and 1 GB RAM to simulate an IoT device. The

simulations used PyCryptodome cryptographic and Fastecdsa libraries in Python. For

these results, we considered the 128-bit arbiter PUF for PUF operation. The fuzzy

extraction's execution time is almost the same as the ECC point multiplication and the

execution time for modular exponentiation is double the time of the execution of the ECC

point multiplication [58]. Table 21 presents the used notation and the execution time of

each operation.

Table 21: Execution time of the cryptographic operations

Operation Computation Time on IoT Computation Time

on MG

H: time for executing a one-way

hash function

0.002 ms .001 ms

F: time for executing a fuzzy

extractor

5 ms 4 ms

EM: time for executing an ECC

point multiplication

5 ms 4 ms

295

EXP: time for a modular

exponentiation

10 ms 8 ms

HMAC: time for executing the

HMAC

2.7 ms 1.5 ms

ENC: Time for Executing (AES-

CBC Encryption)

0.18 ms .14 ms

DEC: Time for executing (AES-

CBC Decryption)

0.18 ms .14 ms

PUF: Time for executing PUF (128-

bit Arbiter)

.12 ms .12 ms

Table 22: Comparison of computation costs for the authentication phase of the proposed

scheme and other related schemes.

Entity [97] [104] [105] [106] [95] Proposed

Protocol

IoT 7Th 1THMAC 3Th

+2TTSE +

TTSD

2TTP + 3Th 8Th 10Th +

2TPUF

CosT 7*.002 =
.014 ms

1* 2.7 =
2.7ms

3*.002 +
.18*2
+.18 = .55
ms

2*5 +
3*.002 =
10.006
ms

8*.002 =
.016 ms

10 * .002
+.12 *2 =
.26 ms

MG 8Th 1THMAC 3Th

+TTSE +

2TTSD

2TTP + 3Th 8Th 13Th +

TPUF

Cost 8 *.001 =
.008 ms

1 * 1.5 =
1.5 ms

3*.001
+2*.14
+.14 = .45
ms

2* 4 +
3*.001=
8.003 ms

8 *.001 =
.008 ms

13*.001
+.1 = .13
ms

Total

Cost

.022 ms 4.2 ms 1 ms 18.009
ms

.024 ms .39 ms

296

Table 22 summarizes the computational cost comparison between the proposed

protocol and the other related protocols presented in the literature. The total run time of

the proposed protocol is .39 ms. When comparing the proposed protocol with other

related protocols, we found that the proposed protocol is more efficient than [104] that

used HMAC to complete the mutual authentication process, and [105] that used

symmetric encryption. Furthermore, the proposed proposal is more efficient than [106]

that used scaler multiplication. Although the proposed protocol's computable cost is

more than [97 and 95], the proposed protocol does not require any secret key storage and

is secure against database stealing. One of the main strengths of the proposed protocol is

securing the IoT devices from physical attacks and counterfeiting by employing the PUF

and the CHX.

297

 Figure 76: Comparison of the number of IoT cryto operations across the protocols

Figure 77: Comparison of the number of the MG crypt operations across the protocols

7

1

3

2

1

3

2

8

10

2

0

2

4

6

8

10

12

Hash HMAC ENC DEC EM PUF

N
U

M
B

ER
 O

F
O

P
ER

A
T

IO
N

S

IOT USED CRYPTOHRAPHIC FUNCTIONS

[97] [104] [105] [106] [95] Proposed Protocol

8

3 3

8

13

1 1
2 2

1

0

2

4

6

8

10

12

14

[97] [104] [105] [106] [95] Proposed
Protocol

N
U

M
B

ER
 O

F
O

P
ER

A
T

IO
N

S

MG USED CRYPTOGRAPHIC FUNCTIONS

Hash HMAC ENC DEC EM PUF

298

 Figure 78: Comparison of the total number of crypto operations across the protocols

Table 22 and figures 76,77 and 78 summarize the computational complexity

comparison between the proposed protocol and the other related protocols presented in

the literature. Table 22 listed out the number of operations of each type for each protocol

considered. Figure 76 displays the number of authentication operations of each type that

are completed on the IoT side. Figure 77 depicts the number of authentication operations

of each type that are completed on the MG side. Figure 79 demonstrates the total number

of cryptographic operations of each type that are complete for each protocol. As depicted

from the table and the figures, the proposed protocol used more hash functions than most

of the other protocols to avoid computationally expensive cryptographic operations such

as ECC and HMAC and, at the same time, achieve the same security goals. The proposed

protocol is the only protocol that used PUF as a hardware fingerprint to secure the

devices from counterfeiting and avoid storing long-term security keys on the

communicating devices. The proposed protocol is the only one that used PUF on the MG

15

2

6

3 3

6
4

16

23

3

0

5

10

15

20

25

Hash HMAC ENC DEC EM PUF

N
U

M
B

ER
 O

F
O

P
ER

A
TI

O
N

S

USED CRYPTOGRAPHIC FUNCTIONS

[97] [104] [105] [106] [95] Proposed Protocol

299

side to protect the protocol from MG impersonation and secure the MG database to be

stolen in case the device is compromised.

 Figure 79: The IoT computational time across the different protocols

Figure 80: MG computational time across the different protocols

IoT

0.014

2.7

0.55

10.006

0.016 0.26

C
o

m
p

u
ta

ti
o

n
al

 c
o

m
p

le
xi

ty
 in

 m
s

[97] [104] [105] [106] [95] Proposed Protocol

MG

0.008

1.5

0.45

8.003

0.008 0.13

M
G

 C
o

m
p

u
ta

ti
o

n
al

 C
o

m
p

le
xi

ty
 in

 m
s

[97] [104] [105] [106] [95] Proposed Protocol

300

 Figure 81: Total computational time across the different protocols

Table 22 and figures 79, 80 and 81 demonstrate the cost comparison of the

authentication protocol with other similar protocols. Table 22 and figure 81 present the

total computational cost of each protocol. Figure 79 displays the computation cost of

each protocol for the IoT side, and figure 80 depicts the computational cost of each

protocol for the MG side. The results indicate that the proposed protocol has a lower

computational cost for the IoT side than [104,105, and 106]. Although the proposed

protocol is higher than [97 and 95], the proposed protocol is resilient against

impersonation attacks and does not require long-term secret key storage. The above

results prove that the proposed protocol is suitable for IoT resource-constrained devices.

From table 22 and figure 81, we observe that while [97], [104],[105],[106], and

[95] take approximately 0.022, 4.2, 1, 18.009, and 0.024 ms, the proposed protocol takes

only .39 ms. The protocol in [106] performs the worst due to the high number of ECC

point operations involved. Also, the protocol in [104] has a bad performance due to the

Total

0.022

4.2

1

18.009

0.024 0.39

To
ta

l C
o

m
p

u
ta

ti
o

n
al

 C
o

m
p

le
xi

ty
 in

 m
s

[97] [104] [105] [106] [95] Proposed Protocol

301

use of HMAC, which is computationally expensive. Furthermore, protocol [105] has a

high computational cost due to multiple encryption and decryption calculations.

We can conclude that the proposed protocol has a higher security level than the

rest of the protocols. The proposed protocol achieved the main security goals of

confidentiality, integrity, and authenticity besides accommodating IoT devices that are

diverse in their capabilities.

5.7.2.3 Communication cost analysis

The following section analyzes the communication cost of the proposed MG-IoT

protocol. To reduce network congestion and provide fast message transmission, the

communication costs of the protocol should be as low as possible. For the communication

cost analysis, we evaluate the communication cost in terms of the size of the message in

bits. Then, we compare the proposed protocol to the other related protocols. Table 23

presents a summary of the sizes of the message parameters. Table 24 lists the message

parameters that are communicated between the server and the IoT device, along with

their sizes.

 Table 23: Size of the message parameters

Message Parameters Size in Bits

ID of N [[57], [62], [63] 128

ID of server [63] 8

SID [57], [62] 8

Nonces [61], [63] 128

302

CRP (C, R) [61], [62] 128

HMAC [63] 256

Hash Function [57], [62] 256

Timestamp (TS) [63] 48

ECC [60], [59] 256

MAC [62] 256

• Message 1: In the transmission (N → MG), N sends the tuple, NIDA, TSN1, X2, SN.

Therefore, the size of this tuple is 128 + 48 + 128+256 = 560 bits.

• Message 2: In the transmission (MG 1→ N), IG sends the tuple, MGIDA, SID,

TSMG1, Y2, C’, Y3. Therefore, the size of this tuple is 8 +8 + 48 + 128+128+256 =

576 bits.

• Message 3: In the transmission (N → MG), N sends the tuple, NIDA, SID. TSN2, X3,

RX, X4. Therefore, the size of this tuple is 128 + 8 + 48+128 +128+256+256 =

952. bits.

 Table 24: Communication cost comparison (bits)

Message

Number

[97] [104] [105] [106] [95] Proposed

scheme

M1: N→ S 640 bits 136 bits 136 bits 128 bits 560 bits 560 bits

M2: S→ N 512 bits 568 bits 296 bits 512 bits 560 bits 576 bits

303

M3: N→S 128 bits 256 bits 672 bits 256 bits 304 bits 568 bits

M4: S→ N ------ ------ 536 bits ---- 304 bits ---

M5: N→S ------ ------ 144 bits ---- ---

Total 1280 bits 960 bits 2056 bit 896 bits 1728 bits 1824 bits

Table 24 presents the communication cost of the proposed protocol and the

comparison schemes. Four protocols have less communication cost than the proposal,

which are [97,104,106 and 95] with differences of 30%, 47%, 51% and 5% respectively.

The proposed protocol requires sending only three messages to achieve mutual

authentication, and they contain timestamps, XOR-ciphered random numbers, and hash

functions. Sending this information prevents attacks such as data modification, replay,

and impersonation [28]. The protocols that have less communication cost do not send all

this information, and some of them used real identities of the IoT nodes during the

communication process; consequently, they have been found vulnerable to some of the

attacks, as can be seen in the above-presented comparison. The proposed protocol has a

lower communication cost than [105] and a reasonable cost compared to [95]. Therefore,

even if the proposal is not the protocol with the lowest communication cost, it is suitable

for IIoT. At the same time, it achieves more security properties than the protocols with

less cost.

304

5.8 Summary

This chapter presents a mutual authentication scheme for M2M communication in

IIoT. The proposed scheme introduces a mechanism for secure session key

establishment. the proposed scheme targets to have low computational complexity and

low computational cost to be suitable for resource-constrained IIoT devices. To achieve

the lightweight feature, the scheme is based on the lightweight operations XOR and hash

functions. The scheme provides confidentiality, integrity, anonymity, unlinkability, and

untraceability capabilities while achieving mutual authentication between the

communicating devices. The proposed scheme is assessed using both security and

performance analysis. The security analysis used both formal and informal techniques.

The formal evaluation employed used the BAN logic and AVISAP simulation to verify

the proposed protocol's security. The informal security analysis also showed that the

presented scheme is resistant to common attacks and satisfies the main security properties

such as confidentiality, integrity, mutual authentication, perfect forward and backward

secrecy. Furthermore, we evaluated the MG-IoT protocol's efficiency in terms of storage

requirements, communication cost, and computational complexity and compared it with

other related protocols. The results proved that the proposed protocol has a higher attack

resistance compared to the other protocols.

 In summary, the presented protocol achieves the required low computational

complexity for resource-constrained IIoT devices. Furthermore, the proposed protocol's

high security and low computational complexity allow resource-constrained IIoT devices

to implement a security service, protect data privacy, and prevent attacks such as device

305

impersonation, data modification, and man-in-the-middle attacks that can interrupt the

system operations.

306

CHAPTER VI

THREE-FACTOR AUTHENTICATION AND PRIVACY

PRESERVATION SCHEME USING USER DEVICE

BIOMETRICS FOR IOV SYSTEM

With the rise of the smart city concept and the growing demands for smart

vehicles, the Internet of Vehicles (IoV) emerged as new technology. IoV is an emerging

concept in intelligent transportation systems (ITS). IoV is considered an extension of the

Vehicle-to-Vehicle (V2V) communication network. IoV is connected in an adhoc

networking environment that employs each vehicle in the network as a node, called

Vehicular Ad Hoc Network (VANET). The goal of IoV is to enhance the existing

capabilities of VANETs by integrating them with the Internet of Things (IoT). The

emergence of the IoV in the transportation system is related to several factors such as the

large network scale, compatibility with personal devices, the reliability of the Internet,

and the high-performance processing capabilities. The IoV will lead to the reduction of

accidents, levels of pollution, and traffic congestion. IoV is also essential for autonomous

vehicles because it will allow them to communicate with other vehicles surrounding them

instantaneously.

Despite the promising aspects of the IoV, it is subject to several security threats

because sensitive data is transmitted through an insecure channel in the IoV-based smart

city environment. It can be a rich environment for passive and active attacks where the

adversary can intercept, modify, or delete messages during the communication

307

process. The driver needs to determine whether the received message is authentic or not.

In IoV, vehicles' authentication is crucial to achieve a trusted communication among the

communicating vehicles. However, most of the currently employed authentication

protocols in the IoV domain are based on asymmetric cryptography with a high

computational cost.

This chapter introduces an efficient and privacy-preserving IoV mutual

authentication and key agreement scheme. The presented protocol is called Three-Factor

Authentication and Privacy Preservation Scheme Using User and Device Biometrics for

IoV System. The proposed scheme enables the communicating devices to verify each

other’s identities and perform secure, anonymous authentication while the real identities

stay secret. It will also allow the communicating parties to locally generate shared secret

keys to ensure the confidentiality and integrity of the exchanged data. The proposed

scheme utilizes PUF as a hardware security approach and the chained hash PUF concept.

The proposed scheme employs lightweight operations of XOR and a one-way hash

function; thus, the scheme does not significantly impact the device's computational and

battery resources. We evaluate the proposed scheme by using different measures, namely,

security and performance evaluation. The security evaluation will be both formal and

informal security evaluation. The formal analysis used the Burrows–Abadi–Needham

logic (BAN), the automated validation of internet security protocols and applications

(AVISPA) toolkit.

Furthermore, the scheme efficiency is evaluated and compared with other related

schemes. Through the informal analysis, we will assess the proposed scheme against

well-known security attacks. Furthermore, we also validate that the proposed

308

authentication mechanism is efficient in storage requirements, computational cost, and

communication overhead.

 In Section 6.1, we first introduce the motivation of the work. Section 6.2 discusses

the security aspects of the IoV. Section 6.3 presents the security threats and potential

attacks in IoV communication. Section 6.4 presents the related work and the other

existing protocols. Section 6.5 demonstrates the network model and the security goals.

Section 6.6 presents the proposed protocols. Section 6.7 illustrates the protocol evaluation

process, and finally, section 6.8 summarizes the chapter.

6.1 Motivation

Every year, approximately 1.3 million people die, and more than 7 million people

are injured in around 8 million traffic accidents. People waste more than 90 billion hours

because of traffic problems (accidents and traffic jams), causing a loss of 2% of the

global gross domestic product, and vehicular travel generates 220 million metric tons of

carbon equivalent [116]. The cost of personal transportation in cars is about $3 trillion

per year in the United States, and 40% of this cost is related to crashes, parking, roads,

traffic services, and pollution [117]. The authors in [118] stated that the number of all

vehicles, whether commercial or passenger, used worldwide is more than one billion, and

it is expected by 2035 to be around 2 billion [119].

The technological advances in the last few years led to the emergence of "Smart

Cities". Improving road safety, traffic monitoring, and passengers' comfort are the main

goals of designing new intelligent transportation systems (ITSs) in smart cities. One of

the main goals of the Intelligent Transportation System (ITS) is tackling the above-

309

mentioned issues by providing smart mechanisms that are efficient, accessible, and

secure.

Modern vehicles need to integrate smart sensors, powerful computational units,

IP-based connectivity to the Internet and communicate with other vehicles and other

devices in the surrounding environment. According to [120], the implementation of the

IoV requires the integration of intelligent devices, capable processors with powerful

computing and communication capabilities, internal sensors, external sensors such as

cameras, location tracking, sensors to detect the physical, mental and emotional condition

of the driver, and actuators to take actions to create an intelligent system that can support

the needs of smart cities and the ITS.

IoV can be defined as a network of vehicles equipped with sensors, software, and

technologies that enable exchanging information between the car and its surroundings

through different communication media to connect and exchange data over the Internet

according to agreed standards. IoV is composed of three fundamental components: 1) the

inter-vehicular network; 2) the intravehicular network; and 3) vehicular mobile Internet

[121]. IoV supports six types of network communication, as presented in figure 82:

Vehicle-to-Vehicle (V2V): An ad hoc communication enables each vehicle to contact its

neighbor vehicles directly. This type of communication is used to exchange information

about the speed and position of surrounding vehicles.

Vehicle-to-Roadside unit (V2R): An ad hoc communication facilitates exchanging

information between vehicles and roadside units (RSU). RSUs are used as data storage

servers. Unlike V2V, V2R allows long-distance communication. Besides, RSUs can act

as an intermediate hop between the vehicle and the destination.

310

Vehicle-to-Infrastructure (V2I): An ad hoc communication where the vehicle can

connect to the Internet to get different internet services.

Vehicle to Personal Devices (V2P): refers to the interaction between vehicles and

personal devices such as tablets and smartphones. Personal devices can be related to the

driver, passengers, cyclists, or pedestrians. This kind of communication can be used to

create awareness for vulnerable users, road users or connect the vehicle with other

devices to share files such as music or video streaming.

Vehicle-to-Sensor (V2S): this can also be called intra-vehicle communication. The main

goal of this type of communication is to monitor the vehicle's internal performance, such

as speed, tire pressure, and oil pressure, through the On-Board Units (OBUs).

Vehicle-to-everything (V2X): this communication allows the vehicle to communicate

with everything in the surrounding environment.

Figure 82: The IoV environment with five communication components

311

Based on the above-mentioned different types of communication that the IoV

supports, IoV enables vehicles to connect to the Internet, constructing an interconnected

cluster of vehicles that can exchange data about traffic, road safety, and others [122].

Furthermore, IoV facilitates communication with drivers, passengers, pedestrians,

cyclists for entertainment and safety goals using different communication standards.

IoV will add individual, societal and environmental benefits as described below

[120]:

 Individual Level: The implementation of IoV reduces the vehicle running cost by

lowering insurance rates, reducing operation costs, and minimizing the time spent in

traffic, which in turn will increase productivity and reduce fatal accidents

Societal Level: IoV supports the smart city evolution by lowering road operational costs,

reducing the number of accidents, and providing real-time traffic updates that can better

control congestion through traffic management and road network optimization.

Environmental Level: reducing traffic and controlling congestion through traffic

management will reduce the production of CO2, which will positively impact the green

environment.

Because IoV is one of the main components of the ITS, the security of the IoV is

an essential factor. The IoV domain vehicles are equipped with the onboard unit (OBU)

and application unit (AU) to communicate with the other vehicles. These units help

exchange messages between vehicles and infrastructure, such as Internet-based roadside

units (RSUs). The vehicles collect sensitive data about traffic jams, accidents, and

weather conditions. The collected data is sent to the nearest access points for further

action. This data can be transferred to other vehicles to avoid traffic jams and take an

312

alternative route in severe road conditions or accidents. Because most of the IoV

ecosystem's communication is wireless, it is subject to different security risks. In IoV,

most of the channels the vehicles use for communication are not secure, and therefore,

the adversary can eavesdrop and tamper their messages.

On another perspective, transferring a driver's data to a trusted authority (TA) can

lead to a security threat such as data eavesdropping, data modification, or data fabrication

[123], which can negatively impact the driver's privacy, data confidentiality, and data

integrity. Therefore, a secure authentication protocol is essential for IoV to establish trust

in the system. Developing secure and efficient mutual authentication schemes and

establish trust are major challenges of an IoV domain. There is limited work on

developing lightweight mutual authentication protocols for the IoV domain. Most of the

available work depends on heavy cryptographical methodologies to authenticate and

secure the communication between the communicating parties. This chapter's main goals

are to (1) present a lightweight mutual authentication protocol for IoV that preserves user

privacy and (2) establish a mechanism to continually verify that the received data is

coming from the authenticated driver. The proposed authentication scheme should detect

and discover whenever someone else different from the authorized driver is driving the

car during the lifetime of the authentication session to maintain the same level of trust

among the authenticated entities and ensure the security of the IoV ecosystem.

6.2 Security aspects of IoV

According to [124], IoV integrates diverse devices, technologies, services, and

standards, which will increase the need to secure exchanged data and communication.

The authors in [125] argued that the heterogeneity of the IoV domain has many security

313

vulnerabilities. The operation of vehicles in an open and vulnerable environment makes

the IoV vulnerable to cyberattacks and raises serious problems during V2V, V2I, V2R,

and V2P communication. An adversary can exploit existing vulnerabilities, eavesdrop,

manipulate, or delete vehicular data streams with destructive effects. Suppose the

adversary succeeds in taking control of the vehicle. In that case, he/she can control the

vehicle's brakes, heating system, or turning on or off the car, which in turn can present

significant harm to road safety, including driver, passenger, pedestrian, and road

infrastructure [126] and [127]. Therefore, it is a necessity to ensure security a high

priority for the IoV.

IoV has several security requirements that must be addressed, and security

solutions must be implemented to ensure user security and privacy. Table 25 presents the

main security requirements, the potential attacks that threaten each requirement, and the

mitigation techniques.

Table 25: IoV security requirements

The Security Requirement The definition

Data Integrity The sent and the received data are original

and have not to be modified or altered

[128]

Data Confidentiality Data need to be protected to ensure the

secrecy of the data between the parties

participating in the IoV [129] and [130].

314

Authentication To ensure that communication is

occurring between the legitimate nodes.

The identities of the vehicles must be

verified [131] and [132]

Access Control Vehicles must be able to only access data

and data they are eligible to gain access

to. Each participating node/vehicle has

been assigned different roles and

privileges to access the network [133].

Non-repudiation It is preventing a vehicle from denying

sending data to another vehicle. [134].

Availability It is ensuring that the system is always

available to service the vehicles and users.

Also, to ensure the ongoing

communication between the vehicles

under different conditions [132].

Anti-jamming A technique that can be employed to

prevent malicious vehicles from sending

fake/interfering messages to the

surrounding vehicles to interrupt

communication among vehicles [135].

315

Message Freshness Enable the vehicle to verify that the

received messages are fresh and are not

replayed by an adversary.

Privacy The vehicle's driving route driving is

related to people's privacy, and therefore

it must stay untraceable and get

compromised by unauthorized access

[136].

6.3 Security threats and attacks in IoV domain

IoV is exposed to different types of attacks and threats. To enhance the security of

IoV, it is vital to understand the existing attacks in IoV. In this section, several security

attacks in the IoV domain are discussed in the following section and presented in figure

83.

Sybill attack: The adversary creates some fake vehicles that use fake ids around the

victim vehicles and sends fake messages such as traffic jamming messages, wrong

directions, or false positions to misguide and deceive the surrounding innocent vehicles.

consequently, the whole network is disturbed, and it is risky for users' lives [123], [137],

and [138]

Denial of service (DoS) attack: This attack threatens the availability security

requirement. It aims to prevent legitimate and innocent users from using network

services and resources [122] by making them unavailable. It overloads the

communication channel so that no communication occurs among the authentic vehicles,

316

which is a severe problem. Communication is vital in safety applications because timely

information is required to avoid accidents [139]. The DoS attack can take different forms,

such as (1) Communication channel jamming, which will hinder users from the network

by jamming the communication channel. In this type of DoS attack, the adversary will

intentionally use a high-power transmitter to continuously transmit a signal at a higher

power level on the same channel frequency as the target. The target can be: (1)

communication between vehicles or between vehicles and RSUs; (2) Network

overloading where the adversary sends fake traffic to other vehicles or RSUs in the

network to keep the other node busy and prevent them from performing their tasks and

eventually the performance of the network is reduced; or (3) Packet dropping in which

the adversary makes the information unavailable to other nodes by dropping the packets

which carry essential information, so communication is affected.

Node impersonation attack This attack is a violation of authentication in a network. In

IoV domain, each vehicle has a unique identity to identify itself, and this unique identity

is useful in case of any unsafe situations. In a node impersonation attack, the adversary

may use the id of an authenticated node to send malicious messages to other nodes on the

network. In such a case, the innocent vehicles assume that a message is received from a

legitimate node; thus, confidential information is violated [139].

 Man in the middle (MITM) attack: This attack violates data integrity and privacy goal.

In this attack, the adversary position himself/herself between the legitimate

communicating parties. As a result, the adversary may eavesdrop on their

communication, modify the sniffed message, or inject fake messages. At the same time,

two communicating parties assume that they are directly communicating with each other.

317

Consequently, the message's integrity and authenticity are negatively impacted, and the

network security is compromised [123] and [133].

Replay attack: this type of attack repeatedly broadcasting the already sent message by

the adversary to deceive the other vehicles in the network by dropping the priority

messages from the queue. The system performance would be affected by frequent

replaying, and bandwidth cost also increases [136].

Brute force attack: session key/symmetric keys play a vital role in cryptographic

algorithms in securing the information. In this attack, the adversary tries all possible

combinations and already existed dictionaries to steal sensitive information such as

passwords. The attacker makes multiple attempts as the brute force approach takes time

in decoding the encrypted information [122].

Eavesdropping attack: In this attack, the attacker acts as a passive illegitimate listener to

the exchange message between the communicating parties to collect private, confidential

data of the drivers or the passenger to use it against their privacy without even letting

them know.

318

 Figure 83: Security threats and attacks in IoV domain

6.4 Related Work

Authenticating vehicles in the IoV domain is a security requirement that has been

studied by several researchers in conjunction with achieving other security requirements.

The authors in [140] present the possible vulnerabilities and threats of connected vehicles

from three different aspects. The first aspect is the vehicle itself that consists of three

main elements: electronic control units (ECUs), in-vehicle networks, and the gateway of

319

standardized public communications such as 3G/4G, Wi-Fi, and Bluetooth. The second

aspect is the connection between the mobile device to the vehicle. The third aspect is the

communication technologies used by the vehicle to communicate with the surrounding

environment. Authors in [141] classified possible attacks of connected vehicles into

physical attacks such as physical damage of the vehicle, close-proximity attacks to

obfuscate sensor information and inject faulty data in ECUs within a range of

approximately 10 meters, and remote attacks, including accessing ECUs and sensors via

insecure communication paths over remote wireless access. The authors in [142]

explained that connected vehicles are more vulnerable to cyber threats than traditional

vehicles due to the communication between the connected vehicle and the surrounding

external environment and the increased internal communications among the system's

internal components.

 The authors in [143] present a lightweight mutual authentication protocol for IoV

using cryptographic operations. The presented protocol enables a vehicle and a server to

establish a secret key to secure the ongoing communication while minimizing the

computational cost associated with the process through a trusted authority server. The

protocol consists of four main parties: the vehicle, the vehicle server, the trusted

authority, and the registration authority. The protocol proved to be secure against

impersonation attacks because the malicious vehicles cannot generate request messages

as it involves passing through the second mandatory phase. Furthermore, the protocol is

resilient against data modification, replay attacks, and password guessing attacks. On the

other hand, the protocol does not clarify how the trusted authority can identify the

320

vehicles without using an ID. Also, the presented protocol uses a long-term secret key

during the authentication process, which can be retrieved using side-channel attacks.

Authors in [144] proposed an authentication scheme that focused on

authentication, privacy preservation, integrity, and non-repudiation. The researcher used

Timed Efficient Stream Loss-tolerant Authentication (TESLA). The authors in [145]

presented TESLA as a broadcast authentication scheme to provide V2V communication

using ECDSA to sign the first packet that is sent by each vehicle. Because ECDSA is

computationally expensive, the researchers in [144] used the Bloom filtering (B.)

technique as an alternative to ECDSA. In the presented protocol, the RSUs are

responsible for generating a group of pseudonyms for each vehicle. The vehicle rapidly

changes its pseudonyms in fixed time slots ensuring privacy. The vehicles are grouped

according to their similar characteristics like speed and location. The authentication of

the vehicle is verified against the BF value. Any new vehicle that initiates a

communication would request a BF value from the corresponding RSU and key from the

vehicle that it needs to communicate with. The proposed scheme can protect the system

against malicious nodes, preserve the user's privacy, and helps in reducing delay and

latency.

Author [146] presents an authentication scheme resistant to secret key

compromisation by presenting a key insulation concept. It has a Private Key Generation

(PKG) algorithm that generates a set of keys for both the vehicles and RSUs. They also

suggested adding to the vehicle an additional Tampered Proof Devices device (TPD) that

acts as a helper. They assume that the TPD is physically secure but computationally

limited, and its stored information can never be disclosed. The presented scheme is based

321

on elliptic curve cryptography (ECC). The scheme has four phases. The first phase is the

initialization phase, where the PKG generates parameters of ECC. The PKG generates the

private keys and calculates the corresponding public keys of TPD and RSUs. The second

phase is the key generation phase, where the vehicles create their secret keys using the

public keys of OBU and TPD and some randomized parameters. The third phase is the

signing phase, where the OBU sends the signature to the RSU for verification. The fourth

step is verification, where the RSU verifies the received signature from the vehicle for

authentication. The proposed scheme is secure against various chosen plaintext attacks

and forgery attacks as its private key is of two parts: one part is with TPD, and the other

is with the vehicle itself. On the other side, it is computationally expensive due to the

generation of multiple private and public keys and the use of digital signatures.

The authors in [147] present a two-level authentication key exchange scheme

employing the Elliptic Curve Cryptography (ECC). During the first authentication level,

the cluster head (CH) vehicle is verified and authenticated by the CA. Then the

authenticated CH will be responsible for authenticating the vehicles within the cluster in

the second level of authentication. The protocol consists of four different phases. The

first phase is the pre-deployment of vehicles phase, where the CA assigns the vehicle the

needed authentication parameters that will be verified during the authentication phase.

The second phase is the cluster head verification, where the CA verifies and authenticates

the CH vehicle. The third phase is the authentication and key agreement of the vehicles.

During this phase, the cluster head verifies and authenticates the vehicles within the

cluster. After completing the authentication process, the CH establishes a session key for

their secure communications in the future. The last phase is Dynamic Vehicles Addition,

322

where new vehicles can be dynamically added to the cluster. The presented protocol is

not clear how the CA and the CH identify the vehicles without receiving any vehicle ID.

Also, the proposed protocol is very computationally expensive due to the extensive use of

public cryptography and digital signature. Finally, the protocol depends on the CH to

verify and authenticate all the vehicles that are within the cluster. This design will

generate a significant overhead on the CH, and at the same time, it is vulnerable to a

single-point failure. Moreover, the cluster head will always be changing depending on

the vehicle speed and position; therefore, the CH will often be altered, reducing the

authentication session lifetime as the new CH will be elected and a new authentication

process will be conducted.

Authors in [148] introduced secure and efficient message authentication protocols

for IoV communication such as V2V, V2S, V2R, V2I, and V2P. The proposed protocol

consists of four phases: initial setup, registration, authentication, and communication.

The presented protocol cannot resist various security threats such as secret key

disclosure, MITM, and impersonation attacks and does not ensure authentication. The

adversary can conduct an impersonation attack because he/she can masquerade as a

legitimate vehicle. Also, the adversary can conduct a secret key disclosure attack by

being able to extract the secret credentials {Za, Ua, Wa} stored in a smart card. Then, the

adversary will be able to compute and retrieve the vehicle server's secret key KVS = Za

⊕ h(Ua||Wa), and random nonce pa = Aa ⊕ h (KVS ||T1). Consequently, the adversary

can execute a secret key disclosure attack by calculating Ce = De ⊕ KVS ⊕ pa and

masquerade as a legitimate vehicle and also can conduct a man-in-the-middle attack.

Finally, because the adversary can obtain the VS's secret key KVS and symmetric key

323

between each entity. Then, the adversary can generate authentication request messages,

verify response messages, and achieve message authentication with other entities

successfully. Consequently, the proposed scheme does not ensure secure message

authentication.

The researchers in [149] present an efficient message authentication protocol for

IoV in a smart city environment, called IoV-SMAP. The proposed protocol consists of

three phases that are initialization, registration, and authentication. The vehicle server

registers all IoV entities in the communication system during the initialization phase and

generates a secret master key (KV). The proposed protocol does not present a technique

on how the IoV entities can verify the identities of each other. Therefore, the protocol

can be subject to an impersonation attack and also a man in a middle attack.

Furthermore, by impersonating and acting as a legitimate vehicle, the adversary

will be able to generate the session key between each entity. Then, the adversary can

generate authentication request messages, verify response messages, and successfully

achieve message authentication with other entities. Consequently, the proposed scheme

does not ensure secure message authentication. The proposed IoV-SMAP can resist

security drawbacks and provide user anonymity and mutual authentication.

The authors in [150] present a two-factor authentication and key agreement

protocol for IoV by combining a password with the PUF. The proposed protocol

preserves user's anonymity. The protocol consists of three parties: (1) the User (Ui) that

receives data from the vehicle sensors and statistical data from the data center;(2) the

Data Center (DC) that manages and stores data collected by vehicle sensors; (3) and the

Vehicle Secret Key (Vsk) that is located in the vehicle to collect data from the

324

surrounding environment. The protocol consists of three phases that are system setup,

registration, login, and authentication. During the setup phase, the DC generates its own

public-private key pair (pk, sk) and publishes its pk to users and vehicles for encrypting

the subsequent messages. During the registration phase, both the user and the vehicle

sensor are registered to the DC. During the authentication phase, the DC authenticates

both the user and the vehicle and generates a session key with each of them. On the

proposed protocol, the user and the vehicle sensor do not authenticate the CD first before

sending the PUF responses, which can lead to DC impersonation. Because the vehicle

sensor generates its PUF challenge, there is no way to verify is the vehicle sensor is

original or counterfeited.

The authors in [151] propose a platform for secure data sharing and storage in

VANETs using blockchain. The proposed authentication scheme requires the vehicle to

prove its ID before sharing any data. One of the main weaknesses of the proposed

protocol is using blockchain that added overhead to the proposed protocol and did not

support its scalability. Similarly, the researchers in [152] and [153] introduced other

authentication and key management protocols that employ blockchain, which inherit the

same weaknesses as [151].

The authors in [154] present an efficient protocol for mutual authentication in the

IoV. The proposed protocol uses physical unclonable functions as part of the

authentication process. The researchers claim that the proposed protocol Protects against

physical and cloning attacks and preserves user's privacy. The proposed protocol consists

of three phases that are: Device registration, authentication, and CRP update. Each

vehicle needs to register itself with the trusted authority (TA) during the device

325

registration phase before it can become a part of the IoV. During the authentication

phase, the vehicles are authenticated to the TA and the RSUs and generate a session key.

Once the authentication process is completed, the authenticated vehicle can communicate

with the RSUs using the session key. The third phase is the CRP update, where the TA

can update the CRPs of the vehicles. The proposed protocol preserves the user's privacy.

However, the proposed protocol does not support ensuring the device's originality before

completing the registration process.

The authors in [155] present a cloud-centric three-factor authentication and key

agreement protocol that integrates passwords, biometrics, and smart cards to ensure

secure access to both cloud and Autonomous Vehicles (AVs). At the end of the

authentication process, two session keys are negotiated. The first key is between the user

and AV to support secure remote control of the AV, and the second key is negotiated

between the mobile device and the cloud. The proposed protocol has three entities,

including the user, the vehicle, and the cloud. The protocol consists of 6 phases: system

setup, AV registration, user registration, user authentication, password, biometrics

change, and smart card revocation. During the setup phase, the cloud generates and

advertises the Elliptic Curve Cryptosystem (ECC) public parameters and generates an ID.

In the AV registration phase, the cloud generates and distributes a secret key for each

AV. In the user registration phase, the cloud issues a smart card storing the secret key to

each user. During the user authentication phase, the authentication mechanism is

employed to verify the user identity and build secure channels among the cloud, the AV,

and the user. Although the protocol achieves its security goals, it is computationally

expensive due to the extensive use of the ECC scaler multiplier and the Fuzzy extraction.

326

Therefore, this protocol does not support the required system efficiency and does not

support system scalability. Furthermore, the protocol does not support physical security.

The authors in [156] present a physical unclonable function (PUF) based on three-

factor authentication and key agreement protocol to ensure that the system is secure even

if the user devices or sensors are compromised. The researchers used password,

biometrics, and PUF as the three authentication parameters. The proposed protocol

combined the user characteristic through the use of biometric and the device

characteristic through the use of the PUF. The protocol consists of five stages: system

setup, registration, login and authentication, password update, and biometric update.

Although the proposed protocol is secure, it has several limitations: (1) it depends heavily

on scaler multiplier for ECC and fuzzy extractor, which are computationally expensive;

(2) although the proposed protocol used PUF as a hardware fingerprint, the proposed

protocol can't verify the originality of the devices and sensors before completing the

registration process which in turn does not protect the IoV ecosystem from the devices

counterfeiting; and (3) the lack of efficient computation negatively impact the scalability

of the proposed protocol.

The authors in [157] propose a lightweight and secure authentication and

attestation scheme for attesting vehicles on the roads. The presented protocol proposed a

security scheme using PUFs to perform a combined authentication and attestation

protocol for the IoV network. The Roadside Units initially authenticate the Vehicle

Onboard Units (OBUs) (RSUs), and then the attestation process is to be completed at the

edge servers. The authors state that they used PUFs for generating on-the-fly secret

information that can be used as part of the authentication process. The proposed protocol

327

consists of five main entities: the vehicle Vi, the RSU Rj, the edge server ES, the IoV

cloud server IoV C, and the trusted authority TA. The RSUs are responsible for

authenticating the vehicles. The proposed protocol consists of the initialization phase,

Registration phase, Vehicle-RSU authentication phase, and Attestation phase. Although

the proposed protocol is lightweight, it has several limitations. First, it uses the same

pseudoID for both the vehicle and RSU in every authentication session. This, in turn, can

lead to vehicle traceability and linkability. Second, the same challenge and response are

used in every authentication session. If a hacker succeeded in retrieving the challenge and

the response, they could impersonate the vehicle. Third, the authentication session can't

be transferred from one RSU to another within the same cluster, limiting the protocol

scalability.

Many of the above-presented protocols share the same common limitations. First,

many suggested protocols used computationally expensive cryptographic operations that do

not support system scalability and, at the same time, do not support devices with limited

memory and computational capabilities. Second, most of the proposed protocols did not

focus on the ensure the authenticity of the communicating devices and secure the system

from integrating counterfeited devices. However, this is considered a significant concern in

the IoV domain. Third, many proposed protocols do not implement multiple authentication

levels, which is the core of the defense-in-depth concept. Fourth, in some of the presented

protocols, the researchers overlooked the devices' privacy, which, in response, does not

guarantee the anonymity and privacy of the IoT device and, at the same time, allows devices

traceability. Fifth, many of the proposed protocols require storing long-term secret keys that

can be retrieved using side-channel attacks. Sixth, some of the proposed protocols, such as

328

[157], use the same CRP for every authentication session and store the CRP on the vehicle's

OBU. If the device is compromised, the adversary may obtain the CRP and impersonated

the vehicle.

The available literature shows the necessity of using multi-factor authentication to

implement the defense-in-depth concept. Also, it highlights the need for lightweight

authentication protocols that fit the limited resources devices and support the system

scalability. The proposed scheme in this chapter combines both the driver's biometric

parameters and the PUF as unique identifiers to authenticate the vehicle and the driver.

Using only one of the two mechanisms will lead to limitations in the presented scheme.

Using the driver's biometric only will authenticate the driver, but the vehicle's authenticity

will be questionable.

On the other hand, using only the PUF to authenticate the vehicle will authenticate

the vehicle but will not enable us to verify the authenticity of the driver. Therefore, we

propose combining both the vehicle and the driver biometric to implement a secure and

robust authentication protocol that facilitates building a root of trust among all the

communication parties. The proposed protocol will achieve three levels of authentication,

namely, V2V, V2I, U2I.

329

6.5 Three-Factor Authentication and Privacy Preservation Scheme Using User

and Device Biometrics for IoV System Network Model and Security Goals

We present an IoV network model and introduce the security mechanisms and

components of the proposed scheme. Then, we will discuss the main security goals.

6.5.1 Network Model

Figure 84 presents the network model of the proposed scheme. We propose a

four-layer architecture consisting of 6 main entities: the driver (D), the Vehicle (V), RSU,

central RSU (CRSU), the vehicle owners cloud server (VOCS), and trusted authority

(TA). The vehicles and drivers are at the lowest layer. The vehicles and drivers are

connected wirelessly to the next layer, which consists of RSUs. The RSUs are connected

to a central RSU that is located in the third layer. This connection may be wired or

wireless. Finally, the CRSU is connected to both the service provider cloud server and the

trusted authority (TA.) through a wired connection. There are several types of

communication modes, such as Vehicle to Vehicle (V2V), Vehicle to Infrastructure

(V2I), user to infrastructure (U2I).

The responsibility of the TA is to perform the registration of V, RSUs, CRSUs,

and the D prior to placement in the network. Each V has an OBU, which processes and

stores all vehicles' information [158]. Vehicles are also equipped with sensors that sense

and process surrounding information and send that information to the OBU of the vehicle

[159]. Each vehicle is connected with the Internet and can also send and receive data

using the Internet [160]. D-VOCS, RSU-CRSU, V-VOCS, and CRSU-TA

communications occur through the Internet. V2V and V-RSU communication also occur

through the Internet, but it is preferable to have dedicated short-range communications

(DSRC) [161].

330

Figure 84: Proposed IoV network model

• The Vehicle is equipped with sensors, ECUs and in-vehicle networks, and

onboard units (OBUs). The OBU is a device that is implanted in a vehicle, and it

is used to send and receive data to other OBUs or RSUs. Furthermore, a PUF chip

is embedded in the OBU and used as the vehicle fingerprint. By using OBUs,

vehicles can communicate with each other as well as with the RSUs. The

communication among them is based on the DSRC protocol [155]. Therefore, any

attempt to tamper or separate the PUF from the OBU renders the PUF useless

[162] and [163]

331

• The Driver: The system continuously monitors the driver's behavior to make sure

that he/she is the authorized driver on the vehicle and he/she is in good health

condition.

• Roadside Unit (RSU): It is a stationary device located along the roads and at

intersections. RSU gathers information about the road traffic and broadcasts it to

the OBUs within the communication range. Also, an RSU can communicate with

other RSUs and the CRSU to exchange messages related to road traffic through a

secure channel.

• Central RSU (CRSU): The CRSU is a device that is in charge of a group of

RSUs, and it is considered the intermediate communication channel between the

RSU and the T.A. The CRSU collects and aggregates the data from all its RSUs

and sends it to the T.A. for further analysis and storage.

• Vehicle Owner Cloud Server: The VOCS is responsible for the vehicle's data

storage and data analysis and the driver's collected data. The VOCS is in charge

of registering the vehicle and the driver on the company level. The analyzed data

results will help the organization monitor the driver's health and behaviors and

allow the company to monitor the activities of the vehicle as an asset.

• Trusted Authority (TA): The TA is responsible for data storage and data

analysis. The TA collects real-time traffic information, road conditions, and

environmental data from the CRSUs and analyzes them for situational awareness.

All vehicles, RSUs, and CRSUs, need to register with the TA. The TA is assumed

to be completely trustable, hard to compromise, and powerful. In addition, it has

sufficient computation and storage capacity.

332

The proposed scheme consists of four main layers: the physical layer that consists

of the vehicles and the driver, the edge layer consists of the RSUs, the fog layer that

consists of the central RSUs, and the cloud layer that consists of the trusted authority

(TA), the Vehicle Owner Cloud Server (VOCS), and the PUF cloud. The Vehicle on

Layer I is equipped with different types of internal and external sensors collecting data in

real-time. This work focuses on sensors that collect real-time data from the vehicle

surrounding environment, such as radar, lidar, 360 camera, proximity sensors, and lane

tracking sensors. The collected data is sent to the designated ECUs units for further

processing and reporting. Data that has to be reported will be sent over by the appropriate

ECU to the OBU unit to be transmitted to the RSU. The OBU has an implanted PUF

chip that will be used during the authentication process. The driver's fingerprint will be

collected via the in-vehicle fingerprint scanner. Additionally, the driver's biometric

features such as EKG or ECG will be continuously collected by using a steering wheel-

based sensor for real-time driver's verification.

The edge layer is a series of individual RSUs that are under the authority of a

single Central RSU. RSUs collect real-time data from the vehicle and acts as a relay

between the vehicle and the Central RSU. In addition, the RSU facilitates V2V

communication. Furthermore, when a vehicle moves to the proximity of a new RSU, to

verify the vehicle's authenticity, the most recently visited RSU will help the new RSU.

The fog layer houses the CRSUs, where the CRSU interconnect multiple

individual RSUs. The CRSU plays a major role in facilitating vehicle communication

that involves the following activities: (1) vehicle authentication; (2) handover between

neighbor RSUs; (3) maintain authentication session and parameters during the vehicle

333

trips that may cross multiple RSUs. Furthermore, the CRSU will be in charge of data

cleaning, aggregation, analysis, and decision-making. The main goal of this distributed

architecture of the RSUs is to create a scalable architecture for vehicle systems that

exhibit flexible admission control and avoiding single-point failure. Additionally, it

enables the vehicle to be authenticated just once using its PUF when it is within the

CRSU range. This, in turn, reduces the expected latency and the computational

complexity of each new authentication session. The RSUs on the edge layer and CRSUs

on the fog layer participate in local decision-making such as reroute vehicles to reduce

traffic jams or avoid road constructions or predict the probability of accidents in a

specific area. Based on local decision-making, the alarm system gives a warning

message to the driver of that particular vehicle.

The cloud layer is generally virtualized in data centers and communicates with the

other layers using the Internet. The architecture presented in figure 84 has three clouds.

The first one is the cloud of the Vehicle Owner Cloud Server (VOCS.), where the

collected data from the vehicles and the drivers will be stored and analyzed to be utilized

as an organizational monitoring system. This stored data will be used to conduct further

analysis and mine knowledge to help the organization make better decisions regarding

their business. The VOSC is responsible for the registration of the vehicles. The VOCS is

in charge of generating the communicating credentials for the vehicles, such as alias

identities, OTP, and secret keys to be used during the authentication process. After

storing the generated credentials in the vehicle's memory, the vehicles can be deployed in

the field. The VOCS is also responsible for registering the driver and stores the template

334

of his/her biometrics to be used during the authentication process. The driver can also

access the data of the deployed vehicles from the VOCS.

The second cloud is the cloud of the trusted authority (TA), where the collected

data that has been sent through the fog layer will be stored on Distributed File System

(DFS). This stored data will be used to conduct further analysis and to mine knowledge.

The TA is responsible for registering various network communicating entities, including

the vehicle, the RSU, and the CRSU. RSUs, CRSUs. TA collaborates in large-scale

decision-making, such as traffic conditions for a whole city. The TA is in charge of

generating the communicating credentials for the vehicles, such as alias identities, OTP,

and other authentication parameters. The third cloud is the PUF cloud, where the

manufacturers store the CRPs of the vehicles, RSUs, CRSUs, TA, and VOCS. The CRPs

will be used to authenticate the vehicle as well as ensure the authenticity of the devices to

protect the IoV ecosystem from integrating counterfeited devices.

The manufacturer assigns each vehicle a unique secret ID. The VOCS assigns the

vehicle and the driver unique alias IDs. Also, the TA assigns the vehicle an alias ID. The

Alias IDs will be changed every authentication session. The main goal of the alias ID is to

protect the vehicle and the driver's anonymity and ensure their untraceability.

The communication between any two entities is subject to both active and passive

attacks. In passive attacks, the adversary can eavesdrop on the communication. In active

attacks, the intruder may replay, modify, or delete specific communication messages. The

message header that contains the device Alias ID is sent in clear text while the payload is

sent in an encrypted format. The number of vehicles can vary throughout the lifetime of

the network. Because adding a new vehicle to the network is highly possible, the

335

proposed protocol accommodates system scalability. The proposed scheme supports the

dynamic addition of vehicles to the IoV network without changing the network's security

states.

6.5.2 Driver biometric and vehicle biometric

Ensuring the security of the IoV ecosystems requires ongoing authentication of

the communicating entities and verification of the collected data from both the vehicle

and the driver to establish trust. An authentication mechanism is needed to ensure the

validity of the data before being used to analyze the collected data about the driver and

the vehicle surrounding environment. Furthermore, there is no proof that the collected

data is still related to the same driver during the authentication session once the driver got

authenticated. To ensure safety and security, the fleet vehicle in the IoV ecosystem

requires continuous monitoring of the driver. Therefore, the received data from the

driver need to be verified and validated continuously to ensure that it is coming from the

same driver during the whole authentication session [145] and [146]. The IoV system

needs to ensure that the driver's received data belongs to the authenticated driver and also

is obtained from the authenticated vehicle. This can be achieved by using user biometric

and vehicle biometric that the PUF represents.

6.5.2.1 Biometric authentication techniques

6.5.2.1.1 Driver's biometric authentication

During an authentication session, the verification process can be performed based

on one or more of the following three different factors: (1) something we know such as a

password or unique identification value; (2) something we have such as token or secret

keys; and (3) something we are such as biometric features like fingerprint, voice, face, or

336

electrocardiography (ECG). Biometric authentication is considered a decisive

authentication factor compared to other authentication credentials because it is a unique

identifier for each human and cannot be transferred or replicated [164]. Authentication

mechanisms can be categorized as static and continuous authentication methods [165].

Static authentication can be treated as an initial authentication where the user can be

authenticated to the system. Still, there is no post-authentication monitoring technique to

ensure that the same user is initially authenticated [166].

On the other hand, continuous authentication mechanisms monitor a system

during the lifetime of the authentication session to verify and ensure that it is the same

user who accesses the system [167]. The proposed scheme employs both static and

continuous authentication of the driver to ensure the same driver during the whole

authentication session. In addition, the constant collection of the driver's biometric will

be an effective method to monitor the driver's health condition. The proposed scheme

will authenticate the driver using his/her biometric in the fingerprint format as the static

biometric feature and the driver's biometric in the ECG or EKG format as the continuous

biometric feature.

6.5.2.1.2 Vehicle biometric mechanism based on PUF and chained hash PUF

authentication

The PUF technique uses the hardware properties of the vehicle for unique

identification. The proposed scheme achieves mutual authentication by implementing a

challenge-response authentication mechanism. In the proposed scheme, during the

registration phase, both the vehicle and the TA hash the response of a PUF challenge and

the TA master secret key to produce a hashed value named CHX. Then, for all

337

subsequent authentication sessions, the vehicle hashes the previously-stored chained

CHXx-1 along with the new Rx, to generate a new chained hash CHXx. The TA retrieves

the Rx value from its database and hash the retrieved R with the previously stored

chained CHXx-1. Then, it compares the resulting value (CHXx' = h (R'|| CHXx-1)) with

the received CHXx’. If it matches, it will authenticate the vehicle node. Once the

authentication is completed, the two communicating parties will store the CHXx in their

databases and use the CHXx-1 along with the exchanged random values to generate the

shared session key(ssk).

During the driver authentication, the hash value of the combination of the vehicle

Rx and the user static biometric will be calculated before being sent to the VOCS to

authenticate the driver. This process aims to secure the driver's privacy and ensure the

security of the biometric feature.

The proposed scheme chains the blocks of hashed response values together by

hashing the new PUF response value with previously generated chained hash PUF values

and the vehicle's real identity. Thus, my mechanism looks like a blockchain technology at

first glance, but it does not utilize blockchains. Because the PUF response value cannot

be predicted or replicated, the adversary can't predict the chained hash PUF value. The

chained hash PUF value is used to present a historical factor for authenticating the

vehicle and the driver. Employing the chained hash PUF mechanism and user biometric

technique ensures mutual authentication through a challenge-response scheme which is

essential in IoV ecosystem security. The two-way challenge/response authentication

technique allows the communicating parties to check the device’s authenticity and, at the

same time, enables the communicating parties to ensure that they are not communicating

338

with a malicious node. The use of the PUF proves the device's identity and ensures its

originality. The use of the cumulative chained hash PUF value proves the ability of the

communicating parties to show proof of knowledge of past chained hash PUF value.

6.5.3 Security goals

Because security attacks on the vehicles in the IoV ecosystem may cause physical

damage and loss of human lives, security requirements became vital in the IoV domain.

Single-factor authentication is not sufficient to validate the security of the vehicles and

users in the IoV domain. A 3-factor authentication protocol is a promising alternative to

secure the IoV ecosystem. This chapter presents a three-factor authentication

schemewith the following goals:

1. Mutual authentication: The goal of mutual authentication is to ensure that the

communication is occurring only among the legitimate parties as well as ensuring

that only the legitimate parties have access to the vehicles, the RSU, VOCS, and

the TA. Therefore, the legitimate parties should be able to prove they are

who/what they claim.

2. Secret session key (ssk) perfect secrecy: the ssk of one session should not be

derived even if the adversary reveals the ssks of previous sessions.

3. User/vehicle anonymity: the proposed scheme should be able to preserve

user/vehicle anonymity. The adversary must not identify the user's or vehicle's

real identity by capturing any communication message.

4. User /vehicle untraceability: the scheme should preserve user's and vehicle's

privacy and ensure that an adversary can't trace the user's actions and status as

well as vehicle location.

339

5. Biometric privacy protection: The leakage of a user's biometric template can

cause serious privacy risks once being leaked. To preserve biometric privacy, no

biometric template will be saved in cleartext on the VOCS.

6. System scalability: the scheme should be scalable and be able to accommodate

the growing number of vehicles. This goal can be achieved by reducing the

communication overhead and reducing the number of times a vehicle needs to

authenticate to the RSUs.

7. Low latency: Because the IoV is dynamic and the vehicle movement is so

frequent and fast, the proposed scheme needs to be efficient and not

computationally expensive. One way to achieve this goal is by reducing the

required data to complete the authentication process and employing lightweight

cryptosystems.

8. Counterfeiting and physical protection: This goal can be achieved by using the

PUF.

6.5.4 Network model assumptions

 We make the following assumptions.

• Every vehicle is equipped with a PUF.

• The communication between a vehicle's OBU and PUF is considered secure.

• Every vehicle is equipped with a fingerprint scanner.

• Every vehicle is equipped with a smart steering wheel that can collect data about

the driver’s health.

340

• Every vehicle is equipped with a keypad for the driver to insert his username and

password.

• The communication between the vehicle's OBU and the fingerprint scanner is

considered secure.

• The communication between the vehicle's OBU and the smart steering wheel is

considered secure.

• The communication between CRSU and TA is considered to be secure.

• The communication between the RSUs and the CRSU is considered secure.

6.5.5 Threat model

Assume vehicle x sends an authentication request to the VOCS, an adversary S is

able to replay, eavesdrop, tamper, and inject packets sent by a vehicle or by the driver.

Moreover, S may gain physical access to vehicles and exploit physical attacks to retrieve

stored secret data. The following assumptions about security properties and adversary

abilities are made.

1. The used communication channel during the registration process is secure.

2. The one-way hash function is collision resistant.

3. The vehicle's OBU has protection against tampering.

4. Replay attack: An adversary can capture messages from old authentication sessions

and replay them in the current session.

5. Eavesdropping attack: the adversary can eavesdrop on the communication channel

between the vehicle and the infrastructure.

6. Message modification attack: the adversary can tamper with intercepted messages.

341

7. Injection attack: the adversary can send counterfeit messages.

8. Impersonation attack: The adversary can pretend to be a legitimate vehicle or a driver

and sends a message to the infrastructure. Also, the adversary can impersonate the

infrastructure and sends a message to the vehicle.

9. Physical attack: the adversary can conduct a physical attack on vehicles to extract

stored secrets in memory. Any physical attack will tamper with the PUF and destroys it.

6.6 Proposed authentication scheme: Multi-Factor Authentication and Privacy

Preservation Scheme Using User and Device Biometrics for IoV System

Fleet vehicles are a special type of vehicle that may share their data with more

than one destination. On the road, the fleet vehicle is treated as any other regular vehicle

that can collect data from the surrounding environment to support the intelligent

transportation system. From another perspective, the fleet vehicles need to continuously

communicate their data and the drivers' data with the vehicle owning company as a

mechanism of fleet monitoring. This work focuses on authenticating the fleet vehicles in

the IoV ecosystem to the road infrastructure and authenticating both the vehicle and the

driver to the cloud server of the vehicle-owning company. The continuous growth of the

number of fleet vehicles on the road highlights the need to optimize the communication

tasks and the authentication process to reduce the consumed energy and support the

system scalability. According to [168], a fleet monitoring system adds several benefits to

businesses. First, it will allow businesses to collect real-time data about the driver's

behaviors for driver safety and build trust between the drivers and their managers to

increase drivers' retention. Second, the implementation of fleet monitoring allows

businesses to track the vehicle to be able to identify the vehicle location at a given time.

342

Fleet tracking will provide businesses with real-time data about the vehicle operation that

can reduce the vehicle cost and help businesses make better decisions about new vehicle

acquisition. At the same time, an effective tracking system can ensure vehicle safety.

Third, it provides the businesses with a dynamic and accurate Electronic Logging Device

(ELD) compliant system to track the vehicle's hours of service to reduce the accidents

that fatigued drivers can cause.

This work proposes a lightweight mutual authentication and key agreement

scheme for communication between vehicle to road infrastructure and authentication and

key agreement between the vehicle and user to the VOCS. Furthermore, to reduce the

latency and support the system scalability, the proposed scheme will present how an RSU

can communicate and collaborate with other RSU under the same CRSU to verify the

legitimacy of a roaming vehicle's expedited authentication process. The proposed scheme

aims to build trust among all communication parities while reducing the computational

complexity and the computational cost, ensuring security and preserving privacy during

the authentication process and all subsequent communication, and supporting system

scalability.

The proposed scheme consists of four phases: the enrollment phase, registration

phase, mutual authentication phase, and key agreement phase. The enrollment phase will

be completed during manufacturing. The trusted authority (TA) will complete the

registration phase when the vehicle communicates with the road infrastructure. The vehicle

owner cloud server (VOCS) will complete the registration phase when the vehicle is

communicating with the owning company monitoring system. The mutual authentication

and the key agreement phases will be completed between V and TA, V and VOCS, and

343

Driver and VOCS without any human involvement. Every two parties are responsible for

ensuring a secure, anonymous mutual authentication and key generation. V and TA, Driver

and VOCS, and V and VOCS are based on the client-server topology. The relationship

among the different vehicles is based on peer-to-peer topology. The mutual authentication

and the key generation phases are broken down into other sub-phases

5. The mutual authentication and key agreement between V and TA

6. The mutual authentication and key agreement between V and VOCS

7. The mutual authentication and key agreement between D and VOCS

The proposed scheme utilizes a one-way hash function, simple XOR function or

symmetric encryption between the communicating devices. Furthermore, both vehicles

and drivers use Alias IDs (pseudonyms) instead of using their real IDs during the

communication process. Alias IDs support the anonymity of senders' IDs, receivers' IDs,

and the sender-receiver relationship. The abstract notations used to describe the proposed

authentication scheme are listed in table 26. The scheme phases are presented below.

6.6.1 Enrollment Phase

The manufacturer will collect a set of CRPs for each vehicle, RSUs, CRSUs, and

the cloud servers during the enrollment phase. The manufacturer will test all the CRPs

under different temperature and voltage conditions and consider the aging effects to keep

only the error-free CRPs. Then, the manufacturer will load the CRPs of the vehicle, the

RSUs, the CRSUs and the servers to the cloud of their service providers. The service

provider container is part of the PUF architecture that is presented in chapter 2. The main

goals of PUF are to be used as the device biometric that is unique per device, protect the

344

device from having counterfeited parts, and generate a relevant, unique key for the

device. The uniqueness of the generated key in the network would be guaranteed based

on the diversity and the manufacturing variations that generate the PUF. The generated

PUF responses will be used to generate the symmetric keys.

Table 26: Notations used in the scheme

Notation Description

Trusted Authority TA

Vehicle Vi

Vehicle owner cloud server VOCS

Driver Di

VIDR Vehicle Real ID

VIDA Vehicle Alias ID

TAIDR Trusted Authority Real ID

TAIDA Trusted Authority Alias ID

VOCSIDR Vehicle Owner Cloud Server Real ID

VOCSIDA Vehicle Owner Cloud Server Alias ID

OTP One Time password

OTT One Time Token

MSK Master Secret Key

PUF Physical unclonable function

CHx Chained hash PUF

C Challenges

R Response

VTA1 Authentication parameter between V and

TA

VCS1, VCS2 Authentication parameters between V and

VOCS

345

VTID Vehicle Type ID

RV Random values

Ui Username

PUi User password

FP User’s fingerprint

BBU User’s behavioral biometric

ZU1, ZU2 Authentication parameters between D and

VOCS

TS Timestamp

H Hash function

6.6.2 Registration Phase

6.6.2.1 Vehicle – TA registration process

Each vehicle needs to register itself with the TA before being deployed in the

field and be part of the IoV system. The TA can be a state-wide entity where all vehicles

need to be registered with this TA. The vehicle will send a registration request to the TA,

including its ID. Once the TA receives the registration request, it will complete multiple

tasks, as described in figures 85 and 86. First, the TA will assign alias IDs to each

vehicle. The alias ID will be a fake ID that the vehicle will use to communicate with

other communication parities in the IoV domain. Alias IDs will act as pseudonym IDs

and will be dynamically changed in every authentication. The goal of the Alias ID goal is

to protect and ensure the unlinkability and untraceability of the vehicle and to support the

anonymity of each vehicle in each session.

346

Second, the TA will send the vehicle a PUF challenge to use the PUF function to

calculate the corresponding PUF response. The TA will use the PUF response as a seed to

calculate the chained hash PUF by calculating the hash value of the PUF response

concatenated with the secret vehicle ID. Third, TA will use the PUF function to generate

the PUF response (RTA) of its challenge (CTA). The challenge will be stored on the

memory of the TA, and the response will be calculated for every authentication session.

Fourth, TA will use a random number generator to generate a random value to be used as

one-time passwords (OTP) between V and the TA. There will be a unique OTP between

each vehicle and the TA. Finally, the TA will insert and store VIDR, TAIDR, VIDA, TAIDA,

OTP, and the CHXx, in the OBU of each vehicle.

Vehicle-TA Registration

Step1: The vehicle sends a registration request to the TA, including its ID (VIDR).

Step 2: The TA searches its database to check if the vehicle is registered. If it is not

registered, it sends a message to the vehicle, including a PUF challenge, so the response

can be used as a seed to create the chained hash PUF

Step 3: Once the vehicle receives the challenge, it will use the PUF function to calculate

the response and send it to the TA.

Step 4: Once the TA receives the response, it will verify the received response and

compares it with the retrieved one from the PUF cloud. After the successful verification,

the TA will generate a nonce (a) and will use the PUF function to generate the response

of its challenge and complete the following calculations:

1. Calculates the chained hash (CHXxi)= H (Rv || VIDR)

2. Generates an OTPVi

3. RTA = PUF(CTA)

4. Calculates an authentication parameter VTA1 = H (TAIDR || MSKTA || RTA|| VIDR).

The vehicle does not know the TAIDR, RTA, nor MSKTA.

5. Calculates an Alias ID for the vehicle VIDA = H (R1|| a || VIDR)

Finally, the TA stores the VIDR, VIDA, CTA, OTPVi. CHXxi and the vehicle stores on its

OBU the VIDA, OTPVi. CHXxi, VTA1.

 Figure 85: The registration process between V and TA

347

Vehicle TA

VIDR, Generate a nonce a VIDR

The VIDR is already registered?

 If no, TA communicates with the PUF cloud

 to retrieve a vehicle’s CRP.

Cv

Rv = PUF(Cv) VIDR, Rv

1. Verify the PUF response, and if it is

correct, TA will complete the following

calculation:

2. Generate a nonce (a)

3. Generate the PUF response of its

challenge RTA= PUF(CTA)

4. VTA1 = H (TAIDR || MSKTA ||RTA|| VIDR)

5. Generates an OTPVi

6. CHXxi = H (Rv || VIDR)

7. VIDA = H (Rv|| a || VIDR)

Store: VIDR, VIDA, CTA, OTPVi. CHXxi

 VIDA,OTPVi. CHXxi, VTA1

Store VIDA, TAIDA, OTPVi. CHXxi, VTA1

Figure 86: The Exchanged Messages between V and TA during the

6.6.2.2 Vehicle – Vehicle Owner Cloud Server (VOCS) registration process

Each vehicle needs to register itself with its VOCS before being deployed in the

field. The VOCS is the owning company cloud server that is in charge of authenticating

the vehicle and storing and analyzing the collected data from the vehicle. The vehicle will

send a registration request to the VOCS, including its real ID. Once the VOCS receives

the registration request, it will complete multiple as described in figure 87 and 88. First,

the VOCS will assign an alias ID to each vehicle. The alias ID will be a fake ID that the

vehicle will use to communicate with the VOCS. Alias IDs will act as pseudonym IDs

348

and will be dynamically changed in every authentication. The goal of the Alias ID goal is

to protect and ensure the unlinkability and untraceability of the vehicle and to support the

anonymity of each vehicle in each session.

Second, VOCS will use a random number generator to generate a nonce (b) to be

used in generating the vehicle’s alias ID and a random value to be used as a one-time

token (OTT) between V and the VOCS. There will be a unique OTT between each

vehicle and the VOCS. Third, the VOCS will generate a PUF response (RCS) to its

challenge. Fourth, VOCS will use vehicle real ID, its real ID, the RVOCS, and its MSK to

generate authentication parameters using a one-way hash function XOR operations.

Finally, the VOCS will insert and store VIDR, VIDA, VOCSIDA, OTT, and authentication

parameters VCS1 and VCS2.

Vehicle-VOCS Registration

Step1: The vehicle will send a registration request to the VOSC, including its ID (VIDR).

Step 2: VOSC searches its database to check if the vehicle is registered. If not registered,

The VOCS will complete the following calculations:

1. Calculates an authentication parameter VCS1 = H (VOCSIDR || MSKCS || RCS||

VIDR). The vehicle does not know the VOCSIDR, RCS, nor the MSKCS.

2. The VOCS generates and assigns a VTIDN to each vehicle based on its type.

3. Calculates an authentication parameter VCS2 = H (VCS1 ||VTID). The vehicle does

not know the VTID. The VTID is only used to create VCS2. VTID is only stored on

the VOCS. The vehicle does not know anything about the VTID. Using the

VOCSIDR, RCS, the MSKCS, and VTID to generate the authentication parameters

makes it almost impossible for an adversary to identify the VTID of any vehicle or

to identify the VOCSIDR, RCS, or the MSKCS of the VOCS.

4. Generates a One-Time-Token OTTVi

5. Generates a nonce (b)

6. Calculates an Alias ID for the vehicle VIDA = H (b || VIDR).

Steps 3: Finally, the VOCS stores the VIDR, CCS, VIDA, OTTVi. VTID and the vehicle stores

on its OBU the VIDA, OTTVi, VCS1, VCS2

Figure 87: The registration process between V and VOCS

349

Vehicle VOCS

 VIDR VIDR

The VIDR,is already registered?

 If no, VOCS generates the following parameters

1. VCS1 = H (VOCSIDR || MSKCS || VIDR|| Rcs)

2. VCS2 = H (VCS1 ||VTID)

3. Generates an OTTVi

4. Generate a nonce (b)

5. VIDA = H (b || VIDR)

Store: VIDR, VIDA, OTTVi.

VIDA, OTTVi, VCS1, VCS2

Store VIDA, OTTVi, VCS1, VCS2

Figure 88: The Exchanged Messages between V and VOCS during the

6.6.2.3 Driver - VOCS Registration

Each driver needs to register himself/herself with its VOCS before driving any

vehicle. The VOCS is the owning company cloud server that is in charge of

authenticating the driver and storing and analyzing the collected data from the driver.

During the registration process, the driver will complete the following tasks: (1) the

driver will select a username and a password using the vehicle's touch screen; (2) the

driver will use the vehicle fingerprint scanner to create a biometric template that will be

used for static authentication; and (3) For the continuous authentication, we propose to

use a built-in sensor in the vehicle steering wheel to collect the driver's ECG or EKG.

The driver's ECG or EKG features are extracted to create a biometric template, and it will

be used for the continuous authentication process. The driver computes the authentication

350

parameter ZU1 = H (FPU || PUi). VOCS will generate the PUF response (RUCS) of its

challenge (CUCS) and computes the authentication parameter ZU2 = H (Zu1 || RUCS). VOCS

will store Ui and CUCS in clear text and the EID, BBUi, and ZU2 encrypted by the PUF

response (RUCS) into its database for later authentication. The registration process is

presented in figures 89 and 90.

Driver-VOCS Registration

Step1: The driver will complete the following tasks:

1. Generate a username (Ui) and password PUi) using the vehicle's touch screen.

2. Capture fingerprint features (FPUi) using a vehicle fingerprint scanner to create a

biometric template that will be used for static authentication

3. Capture the blood pressure or the ECG features (BBUi) using a built-in sensor in

the vehicle steering wheel to create a biometric template that will be used for

continuous authentication.

4. computes Zu1 = H (FPU || PUi)

Step 2: VOSC searches its database to check if the user is registered. If not registered,

the VOCS will:

1. Generate the PUF response of its challenge RUCS = PUF(CUcs).

2. Compute Zu2 = H (Zu1 || RUcs).

3. Store the Ui, and CUCS in cleartext. EID, ZU2, and BBUi in its database are

encrypted by the PUF response for further comparison during the authentication

process.

Figure 89: The registration process between D and VOCS

Driver VOCS

Employee ID(EID)

The driver will complete the following tasks:

1. Generate a username (Ui)

2. Generate a password PUi)

3. Capture a fingerprint features (FPU)

4. Capture the EKG or the ECG features (BBUi)

5. Comptes Zu1 = H (FPU || PUi)

EID, Ui, ZU1 BBUi

1. Generate a PUF response Rcs =

PUF(CUCSU)

2. Computes ZU2 = H (ZU1 || RUcs)

3. Stores: EID, Ui, BBUi, ZU2, CUCS

 Figure 90: The exchanged messages between D and VOCS during the registration

 process

351

6.6.3 Mutual authentication phase

This phase will cover two different protocols. The first protocol is to achieve

mutual authentication between the vehicle and the TA. The second protocol is to achieve

mutual authentication among vehicle, driver, and the VOCS.

6.6.3.1 Protocol 1: Vehicle-TA mutual authentication and key generation

phases

Vehicle to TA mutual authentication process will be executed when a vehicle Vi

wants to send the data that it collects from the surrounding environment to the TA with

the help of the RSU as presented in figures 91 and 92 . However, the RSU can’t validate

the legitimacy of the Vi. Therefore, the RSU needs to interact with the TA to

authenticate the Vi.

V TA

Generate: TSVi1, RVVi1

Compute:

X1 = RVVi1 ⊕ H(VTA1)

X2 = H (RVVi1 || VTA1 || TSVi1 || VIDR)

 M1: (VIDA, TSVi1, X1, X2)

 Check| TSRec_11Rec− TS’Vi1|< ∆T

 Find: VIDA

 Read: VIDR, OTP, CTA, MSKTA

 Compute:

 RTA = PUF(CTA)

 VTA1’ = H (MSKTA || VIDR || RTA ||TAIDR)

 RV’Vi1 = H (VTA1’) ⊕ X1

 Verify: X2
’ = H (RVVi1 || VTA1’ || TSVi1’|| VIDR)

 Generate: TSTA1, RVTA1, SID

 Retrieve: Vi CRP, CHXx

Computes:

 Y1 = H (VTA1’ ||OTPVi)

 Y2 = RVTA1 ⊕ Y1

 C’ = H (CHXx|| RVTA1) ⊕ C

 Y3 = H (C || TSTA1 || Y1 ||RVTA1 || RVVi1’)

352

Figure 91: V-TA mutual authentication process

 M2: (TAIDA, SID, TS TA1, Y2, C’, Y3)

Check: | TS Rec- TS’ TA1 |< ∆T

Compute:

Y1
’ = H (VTA1’ ||OTPVi)

RVTA1’ = Y1 ⊕ Y2

C’X = C’ ⊕ H (H (CHXx|| RVTA1
’)

Verify

Y3’ = H (C || TSTA1 || Y1
’ ||RVTA1

’
 || RVVi1’)

Generate: TSVi2, RVVi2

Compute

Ri = PUF (C’X)

CHXx+1
 = H (Ri || CHXx)

X3 = RVVi2 ⊕ H (RVTA1|| CHXx+1)

X4 = H (VIDR|| TSVi2|| RVVi2 || CHXx+1)

 M3: (VIDA, SID, TSVi2, X3, X4)

 Check: TSRec - TS’Vi2 |< ∆T

 Compute:

 CHAx+1
’ = H (R’i || CHXx)

 RV’vi2 = X3 ⊕ (RVTA1|| CHXx+1
’)

 Verify:

 X4’ = H (VIDR|| TSVi2
’|| RVVi2

’
 || CHXx+1

’)

 Generate: TSTA2, RVTA2

 Compute

 Y4 = H (RVVi2
’|| Ri)

 Y5 = RVTA2 ⊕ Y4

 OTPnew = H (OTPnew-1|| RVTA2 || Ri)

 VIDAnew = H (C|| VIDA)

 Y6 = H (VIDR ||Y4|| TSTA2 || RVTA2 || OTPnew|| VIDAnew)

 M4: (TAIDA, SiD TSTA2, Y5, Y6)

Check: |TS’Rec− TSTA2 |< ∆T

Compute:

RV’TA2 = Y4 ⊕ H (RVVi2
’|| Ri)

OTPnew’ = H (OTPnew-1|| RVTA2
’ || Ri)

VIDAnew
’ = H (C’X || VIDA)

Verify:

Y6’ = H (VIDR ||Y4
’|| TSTA2 || RVTA2 || OTPnew

’|| VIDAnew
’)

Store (OOTPnew’,’VIDAnew’’)

353

Algorithm 6: The mutual authentication between V and TA

Input:

V with real identity (VIDR), alias identityVIDA), TA alias identity (TAIDR),

Authentication parameters (VTA1), one-time password (OTPvi), and the chained

hash PUF (CHXxi)

TA with real identity (VIDR), alias identity (VIDA), TA real identity (TAIDR), TA

alias identity (TAIDR), PUF challenge (CTA), and one time password (OTP), and

the chained hash PUF (CHXxi).

Output:

 Mutual authentication between the vehicle (N) and the Trusted Authority (TA)

Begin

1. V generates a random nonce RVvi1, a timestamp TSvi1, computes X1 = RVVi1 ⊕
H(VTA1) and X2 = H (RVVi1 || VTA1 || TSVi1 || VIDR).

2. V sends (VIDA, TSvi1, X1, X2) message to TA.

3. If (TA finds VIDA in its repository)

4. then

5. TA retrieves VIDR, OTP, and CTA that belongs to the VIDA from its repository to its

memory.

6. The TA passes the challenge CTA to its PUF function and generates a response

 RTA.

7. TA calculates VTA1. Then the TA retrieves RVvi1 from XORing X1 and H(VTA1)

and finally calculates X2’ = H (RVVi1 || VTA1 || TSVi1 || VIDR).

8. If (the calculated hash message in step 6 matches the hash message that was

 sent in step 2)

9. then

10. The TA communicates with the Grand PUF node to retrieve a CRP of the Vi,

generates a timestamp TSTA1, generates a random nonce RVTA1, calculates Y1

= H (VTA1’ ||OTPVi), Y2 = RVTA1 ⊕ Y1 , C’ = H(CHXx|| RVTA1) ⊕ C, and

Y3 = H (C || TSTA1 || Y1 ||RVTA1 || RVVi1’)

11. The TA sends TAIDA, SID, TSTA1, Y2, C’, Y3 to V.

12. else

13. Go to step 42.

14. end if

15. else

16. Go to step 42.

17. end if

18. V verifies the time stamp, calculates Y1
’ = H (VTA1’ ||OTPVi), retrieves RVTA1’

and C’X. V computes Y3’ = H (C || TSTA1 || Y1 ||RVTA1 || RVVi1’)

19. If (the calculated hash message in step 18 matches the hash message that was sent

in step 11)

20. then

21. The authenticity of the TA is verified

22. V generates a timestamp TSvi2 and a random nonce RVvi2. V computes Ri =

354

 PUF (C’X), CHXx+1
 = H (Ri || CHXx), X3 = RVVi2 ⊕ H (RVTA1|| CHXx+1) and

X4 = H (VIDR|| TSVi2||RVVi2 || CHXx+1)

23. V sends VIDA, SID, TSvi2, X3, X4 to TA.

24. else

25. Go to step 42.

26. end if

27. The TA verifies the TSvi2, computes CHXx+1
’ = H (R’i || CHXx), retrieves

RV’vi2 = X3 ⊕ (RVTA1|| CHXx+1
’) and generates X4’ = H (VIDR|| TSVi2

’|| RVVi2
’
 ||

CHXx+1
’)

28. If (the calculated hash message in step 27 matches the hash message that was sent

in step 23

29. then

30. The authenticity of V is verified.

31. TA generates TSTA2 and RVTA2. Then TA computes Y4 = H (RVVi2
’|| Ri), Y5 = RVTA2 ⊕ Y4,

OTPnew = H (OTPnew-1|| RVTA2 || Ri), VIDAnew = H (C|| VIDA1) and, Y6 = H (VIDR ||Y4|| TSTA2 || RVTA2 ||

OTPnew|| VIDAnew)

32. TA sends TAIDA, SiD TSTA2, Y5, Y6 to V.

33. else

34. Go to step 42.

35. End if

36. V verifies the TSTA2, computes RV’TA2 = Y4 ⊕ H (RVVi2
’|| Ri), OTPnew’ = H (OTPnew-1|| RVTA2

’

|| Ri), VIDAnew
’ = H (C’X || VIDA) and verifies Y6’ = H (VIDR ||Y4

’|| TSTA2 || RVTA2 || OTPnew
’|| VIDAnew

’)

37. If (the calculated hash message in step 36 matches the hash message that was sent

in step 32

38. then

39. V stores the received data in its database

40. else

41. Go to step 42

42. Stop (terminates the connection).

43. End

 Figure 92: Algorithm of the mutual authentication algorithm between V and TA

This scheme consists of the following steps:

6.6.3.1.1 Step 1: Interaction Request

6. Vi generates a new TSVi1 to avoid replay attacks

7. Vi selects a random parameter RVVi1 and then calculates X1

a. X1 = RVVi1 ⊕ H(VTA1)

8. Vi computes X2 = H (RVVi1 || VTA1 || TSVi1 || VIDR)

9. Vi sends the authentication request to the TA.

355

The authentication request includes VIDA, TSVi1, X1, and X2, as shown in 6.1. The

timestamp presents information about when an event occurred, which makes this value

important.

 Vi TA Authentication-Req (VIDA, TSVi1, X1, X2) (6.1)

6.6.3.1.2 Step 2: TA Response

Once the TA receives the authentication request, it will complete the following steps:

1. TA checks the validity of the received timestamp | TS’Rec− TS’Vi1 |< ∆T. TS’Rec is

the time when the message is received, and ∆T is the maximum transmission

delay. The message will be dropped if the difference between the timestamp and

the time when the message is received is higher than the expected maximum

transmission delay.

2. TA retrieves from its database the VIDR that corresponds to its VIDA. If the TA did

not find the VIDA in its database, it would send a message to the vehicle to

complete the registration process.

3. Once the TA finds the VIDA, it will retrieve the CTA of the Vi.

4. TA computes RTA = PUF(CTA)

5. TA computes the VTA1’ = H (MSKTA || VIDR || RTA ||TAIDR)

6. TA computes the RV’Vi1 = H (VTA1’) ⊕ X1

7. TA computes X2’ = H (TS’Vi1 || RV’Vi1 || VIDR || VTA1’)

If the computed value of X2’ is equal to the received value, the TA accepts the

authentication request; otherwise, it will drop it as shown in figure 95.

356

Figure 93: Evaluating the Vi Authentication Parameter

Once the TA accepts the authentication request, it will retrieve a Vi CRP from the

PUF cloud and generates a random value RVTA1 and time stamp TSTA1. Also, the TA

generates a session ID. The session ID aims to distinguish one session from the rest of

the running sessions simultaneously. The TA prepares and sends a connection response to

the Vi. The preparation process of the connection response message includes the

following steps:

1. TA retrieve a Vi CRP from the PUF cloud

2. TA generates a new TSTA1 to avoid replay attacks

3. TA calculates Y1

a. Y1 = H (VTA1’ ||OTPVi)

4. TA generates a random parameter RVTA1 and then calculates Y1

a. Y2 = RVTA1 ⊕ Y1

5. TA calculates C’

a. C’ = H (CHXx|| RVTA1) ⊕ C

6. TA calculates Y3 = H (C || TSTA1 || Y1 ||RVTA1 || RVVi1’)

7. TA generates a session ID(SID)

8. TA sends a connection response message

X2
’ = H (TS’Vi1 || RV’Vi1 || VIDR || VTA1’)

If X2 = X2
’ Then

The TA will accept the authentication request

Else

The TA will drop the authentication request

357

The connection response includes TAIDA, session ID (SID), TSTA1, C’, Y2, and Y3, as

shown in 6.2. The timestamps present information about when an event occurred, which

makes this value important.

TA Vi M2(TAIDA, SID, TSTA1, C’, Y2, Y3) (6.2)

6.6.3.1.3 Step 3: TA authentication

Once the Vi receives M2, it will complete the following steps:

6. Vi checks the validity of the received timestamp |TSRec−TS’TA1 |< ∆T. TSRec

is the time when the message is received, and ∆T is the maximum

transmission delay. The message is dropped if the difference between the

timestamp and when the message is received is higher than the expected

maximum transmission delay.

7. Vi calculates Y1
’ = H (VTA1’ ||OTPVi)

8. Vi calculates RVTA1’ = Y1 ⊕ Y2

9. Vi calculates the C’X = C’ ⊕ H (H (CHXx|| RVTA1
’)

10. As presented in figure 94, Vi calculates Y3’ using a one-way hash function

and compares the generated Y3’ with the received Y3. If the two values are the

same, Vi will authenticate TA; otherwise, it will drop it.

Y3’ = H (C || TSTA1 || Y1
’ ||RVTA1

’
 || RVVi1’)

 If

Y3’ = Y3

Then

Then Vi will accept M2 and authenticate TA

358

Else

Vi will drop M2

Figure 94: Evaluating the TA authentication parameter

Once Vi accepts the received message and authenticates TA, it will complete the

following steps

1. Vi will input the received challenge Cx’ to its PUF and obtains the response Ri.

2. Vi will retrieve the chained hash responses (CHXx) from its memory and calculate

the new value of the chained has responses (CHXx+1) as follows

a. CHXx+1
 = H (Ri || CHXx)

3. Vi generates a new TSVi2 to avoid replay attacks

4. Vi selects a random parameter RVVi2 and then calculates X3

a. X3 = RVVi2 ⊕ H (RVTA1|| CHXx+1)

5. Vi calculate X4

a. X4 = H (VIDR|| TSVi2|| RVVi2 || CHXx+1)

6. Vi sends the message to the TA

The message includes VIDA, SID, TSVi2, X3 and X4 as shown in 6.3.

Vi TA (VIDA, TSVi2, X3, X4) (6.3)

6.6.3.1.4 Step 4: Vi authentication

Once TA receives the message, it completes the following steps:

359

1. TA checks the validity of the received timestamp |TS’Rec− TS’vi2 |< ∆T. TS’Rec is

the time when the message is received, and ∆T is the maximum transmission

delay. The message is dropped if the difference between the timestamp and the

time when the message is received is higher than the expected maximum

transmission delay.

2. TA will retrieve the R’i and the CHXx from its databased and computes CHX’i+1

a. CHXx+1
’ = H (R’i || CHXx)

3. TA calculates the RV’vi2 = X3 ⊕ (RVTA1|| CHXx+1
’)

4. TA calculates X4’ = H (VIDR|| TSVi2
’|| RVVi2

’
 || CHXx+1

’)

As presented in figure 95, TA calculates X4’ using a one-way hash function and

compares the generated X4’ with the received X4. If the two values are the same, TA

will authenticate Vi; otherwise, it will drop it.

X4’ = X4 = H (VIDR|| TSVi2
’|| RVVi2

’
 || CHXx+1

’)

 If X4’ = X4Then

Then TA will authenticate the Vi.

Else

TA will drop the message

Figure 95: Evaluating the V authentication parameter

After authenticating the Vi, the TA will override the old CHXx
 with the new

chained hash responses value CHXx+1. Then the TA will generate a new OTP and the

new alias ID for the Vi and store them on its database.

1. TA generates a new timestamp TSTA2

2. TA calculates Y4

a. Y4 = H (RVVi2
’|| Ri)

360

3. TA selects a random parameter RVTA2 and then calculates Y5

a. Y5 = RVTA2 ⊕ Y4

4. TA computes OTPnew = H (OTPnew-1|| RVTA2 || Ri)

5. TA computes VIDAnew = H (C|| VIDA)

6. TA calculates Y6

a. Y6 = H (VIDR ||Y4|| TSTA2 || RVTA2 || OTPnew|| VIDAnew)

7. TA sends the message to the Vi. The message includes TAIDA, SID, TSTA2, Y5, and

Y6, as shown in 6.4.

TA Vi (TAIDA, TSTA2, Y5, Y6) (6.4)

6.6.3.1.5 Step 5: New Parameters Verification

Once Vi receives the message, it completes the following steps:

1. Vi checks the validity of the received timestamp |TS’Rec− TS’TA2 |< ∆T. TS’Rec is

the time when the message is received, and ∆T is the maximum transmission

delay. The message is dropped if the difference between the timestamp and the

time when the message is received is higher than the expected maximum

transmission delay.

2. Vi calculates the RV’TA2 = Y4 ⊕ H (RVVi2
’|| Ri)

3. Vi computes OTPnew’ = H (OTPnew-1|| RVTA2
’ || Ri)

4. Vi computes VIDAnew
’ = H (C’X || VIDA)

5. Vi calculates Y6’

361

a. Y6’ = H (VIDR ||Y4
’|| TSTA2 || RVTA2 || OTPnew

’|| VIDAnew
’)

As presented in figure 96, Vi calculates Y6’ using a one-way hash function and

compares the generated Y6’ with the received Y6. If the two values are the same, Vi

will accept the message; otherwise, it will drop it.

Y6’ = Y6 = H (VIDR ||Y4
’|| TSTA2 || RVTA2 || OTPnew

’|| VIDAnew
’)

 If Y6’ = Y6 Then

Then Vi will accept the message.

Else

Vi will drop the message

Figure 96: TA -V Parameters Verification

After verifying and accepting the message, the Vi, will store the OTPnew, VIDAnew,

in its database for the next authentication session.

6.6.3.1.6 Key generation

Once the mutual authentication is completed, the two sides generate a shared

secret session key (ssk) using the technique they agreed upon during the authentication

phase. The two sides generate the ssk locally by hashing a combination of PUF response

and the generated random values as presented in 6.5. The uniqueness of the PUF

responses ensures the uniqueness of the generated ssk.

ssk= H (Ri || (RVvi1 || RVTA2 || RVvi2 || RV’TA1) (6.5)

Then the TA will send the ssk of Vi to the CRSU through a secure channel. Once

the CRSU received the key it will share it will all its RSU to communicate with Vi. By

using the ssk, Vi can communicate with all RSUs that are within the same CRSU.

However, when Vi enters an area of another CRSU, it has to authenticate itself with the

TA again. Finally, the RSU that communicates with Vi will share the secret broadcast

362

key (SKB) with it that Vi can use to communicate with other vehicles within the same

CRSU. The RSU will send the SKB to Vi encrypted by the ssk.

6.6.3.2 Protocol 2: Vehicle– Driver-Vehicle Owner Cloud Server (V-D-VOCS)

Authentication and Key Generation

This authentication phase consists of two phases. The first one handles the mutual

authentication process between a vehicle (Vi) and a vehicle owner cloud server (VOCS).

The second one focuses on the mutual authentication between the driver (Di) and the

VOCS where the vehicle acts as a relay between Di and VOCS. The first phase must be

completed first before starting on the second phase.

6.6.3.2.1 Phase one: Vehicle -Vehicle Owner Cloud Server Mutual

Authentication

As presented in figures 97 and 98, this process starts when Vi prepares an

authentication request message that will be sent to the VOCS. All vehicles of the same

type share a typeID (VTID). Each vehicle stores two authentication parameters that will

be used during the authentication process. Furthermore, all OBUs in the vehicles are

equipped with PUF chips that will be used to build a root of trust. Each vehicle knows its

Real and alias IDs, the alias ID of the VOCS, the OTT, and the two authentication

parameters. The steps involved in this process are listed below.

363

V VOCS

Generate: TSvi1, RVvi1

Compute:

VX1 = H (VCS2 || OTT)

VX2 = H(VX1) ⊕ RVVi1

VX3 = H (VIDR|| VCS1|| TSVi1 || RVVi1|| OTT)

 M1: (VIDA, TSvi1, VX2, VX3)

 Check:|TSRec− TS’vi1 |< ∆T

 Find: VIDA

 Read: VIDR, VTID, CCS, and OTT

 Compute:

 RCS = PUF(CCS)

VCS1 = H (VOCSIDR || MSKVOCS || VIDR|| Rcs).

VCS2 = H (VCS1 || VTID)

VX1’ = H (VCS2’ || OTT)

 RV’Vi1 = VX2 ⊕ VX1’

 Verify: VX3
’ = H (VIDR|| VCS1

’|| TSVi1
’
 || RVVi1

’|| OTT)

 Generate: TSCS1, RVCS1, SID

Computes:

 CSY1 = H (VIDR|| VCS1’ || OTT)

 CSY2 = H(CSY1) ⊕ RVCS1

 CV = C ⊕ H (CSY1 || RVCS1)

 CSY3 = H (VOCSIDR || CSY1|| TSCS1 || RVVi1 ||C || VCS1|| RVCS1)

 M2: (VOCSIDA, SID, TSCS1, CSY2, CV, CSY3)

Check: |TS’Rec−TS’CS1 |< ∆T

Compute:

CSY1’ = H (VIDR|| VCS1’ || OTT)

RV’CS1 = H(CSY1) ⊕ CSY2

C’ = CV ⊕ H (RV’CS1 || CSY1’)

Verify

CSY3
’ = H (VOCSIDR || CSY1

’|| TSCS1
’
 || RVVi1 ||C’ || VCS1

’|| RVCS1
’)

Generate: TSvi2, RVvi2

Compute

Ri = PUF(C’)

Ci+1 = H (RV’CS1 || RVvi1)

Ri+1 = PUF (Ci+1)

VX4 = H (OTT|| RVCS1)

VX5= RVvi2 ⊕ H (VX4|| VIDR)

VX6 = H (VX4|| RVVi2) ⊕ Ri

VX7 = H (C’|| R’) ⊕ Ri+1

OTTnew = H (OTT|| RVVi2|| C)

VIDAnew = H (VIDA || C|| OTT)

VX8 = H (VX4 || RVVi2 || TSVi2 || Ri || Ci+1 || Ri+1 || OTTnew ||VIDAnew)

 M3: (VIDA, SID, TSVi2, VX5, VX6, VX7, VX8)

364

Figure 97: V-VOCS Mutual Authentication Process

6.6.3.2.1.1 Step 1: Interaction request

1. Vi generates a new TSVi1 to avoid replay attacks

2. Vi computes VX1 = H (VCS2 || OTT)

3. Vi selects a random parameter RVVi1 and then calculates VX2

a. VX2 = VX1 ⊕ RVVi1

4. Vi computes VX3 = H (VIDR|| VCS1|| TSVi1 || RVVi1|| OTT)

5. Vi sends a authentication request message.

The authentication request includes VIDA, TSvV1, VX2, and VX3 as shown in 6.6.

Vi VOCS Auth-Req (VIDA, TSVi1, VX2, VX3) (6.6)

Algorithm 6:_Protocol 2_ Phase 1: The mutual authentication between V-VOCS

Input:

Vehicle with real identity (VIDR), alias identity (VIDA), VOCS real identity (VOCSIDR),

VOCS alias identity (VOCSIDR), Authentication parameters (VCS1, VCS2), and one time

token (OTT).

 Check: |TS’Rec− TS’vi2 |< ∆T

 Read: R’i

 Compute:

 VX4’ = H (RVCS1 || OTT)

 RV’VI2 = VX5
’
 ⊕ H (VX4’|| VIDR)

 Ri
’ = VX6’ ⊕ H (RVVi2|| VX4’)

 Ci+1 = H (RV’CS1 || RVVi1)

 Ri+1’ = VX7’ ⊕ H (C’|| Ri
’)

 OTTnew’ = H (OTT|| RVVi2|| C)

 VIDAnew’ = H (VIDA || C|| OTT)

 Verify:

 VX8 = H (VX4 || RVVi2 || TSVi2 || Ri || Ci+1 || Ri+1 || OTTnew ||

 VIDAnew)

 Store: OTTnew, VIDAnew, C’i+1, Ri+1

365

VOCS with with real identity (VIDR), alias identity (VIDA), VOCS real identity

(VOCSIDR), VOCS alias identity (VOCSIDR), the vehicle type ID(VTID) Master secret

key (MSKcs), PUF challenge (CCS), and one-time token (OTT).

Output:

 Mutual authentication between the vehicle (V) and the VOCS.

Begin

1. V generates a random nonce RVvi1, a timestamp TSvi1, computesVX2 =

H(VX1) ⊕ RVVi1 and VX3 = H (VIDR|| VCS1|| TSVi1 || RVVi1|| OTT)

2. V sends (VIDA, TSvi1, VX2, VX3) message to the VOCS.

3. If (the VOCS finds VIDA in its repository).

4. then

5. The VOCS retrieves VIDR, OTT, CCS, and VTID that belongs to the VIDA

from its repository to its memory. The VOCS passes the challenge CCS to its

PUF function and generates a

 response RCS

6. The VOCS calculates VCS1’ and VCS2’. Then the VOCS computes VX1,

 retrieves the RVvi1 from XORing VX2 ⊕ VX1’ and finally calculates VX3’

H (VIDR|| VCS1|| TSVi1 || RVVi1|| OTT)

7. If (the calculated hash message in step 7 matches the hash message that was

sent in step 2)

8. then

9. The VOCS communicates with the Grand PUF node to retrieve a CRP

of Vi, generates a timestamp TSCS1, generates a random nonce RVCS1,

calculates CSY1 = H (VIDR|| VCS1’ || OTT), CSY2 = H (CSY1) ⊕ RVCS1, CV = C ⊕ H (CSY1 ||

RVCS1), and CSY3 = H(VOCSIDR || CSY1|| TSCS1 || RVVi1 ||C || VCS1|| RVCS1).

10. The VOCS sends VOCSIDA, SID, TSCS1, CSY2, CV, CSY3 to Vi.

11. else

Go to step 29.

 end if

12. else

Go to step 29.

 end if

13. V verifies the time stamp, calculates CSY1
’ to retrieves RVCS1

’ and C’ from CV.

V generates CSY3’ H (VOCSIDR || CSY1|| TSCS1 || RVVi1 ||C || VCS1|| RVCS1).

14. If (the calculated hash message in step 14 matches the hash message that was

sent in step 11)

15. then

366

 The authenticity of the VOCS is verified

16. V generates a timestamp TSvi2 and a random nonce RVvi2. V computes Ri =

PUF(C’), Ci+1 = H (RV’CS1 || RVvi1), Ri+1 = PUF (Ci+1), VX4 = H (OTT|| RVCS1), VX5= RVvi2

⊕ H (VX4||VIDR) ,VX6 = H (VX4|| RVVi2) ⊕ Ri, VX7 = H (C’|| R’) ⊕ Ri+1, OTTnew =

H(OTT|| RVVi2|| C), IDAnew = H (VIDA || C|| OTT), VX8 = H (VX4 || RVVi2 || TSVi2 || Ri || Ci+1 || Ri+1

|| OTTnew || VIDAnew)

17. V sends VIDA, SID, TSVi2, VX5, VX6, VX7, VX8 to VOCS.

18. else

19. Go to step 29

20. end if

21. V verifies the time stamp TSvi2, calculates VX4
’ to retrieves RViv2’, VX6, and VX7.

V generates VX8 = H (VX4 || RVVi2 || TSVi2 || Ri || Ci+1 || Ri+1 || OTTnew || VIDAnew)

22. If (the calculated hash message in step 22 matches the hash message that was

sent in step 18)

23. then

24. The authenticity of V is verified.

25. Mutual authentication between V and the VOCS is established.

26. else

27. Go to step 29

28. End if

29. Stop (terminates the connection).

 End

Figure 98: The mutual authentication between V and the VOCS

6.6.3.2.1.2 Step 2: VOCS response

Once the VOCS receives the authentication request, it will complete the following steps:

1. VOCS checks the validity of the received timestamp |TSRec− TS’Vi1 |< ∆T. TSRec

is the time when the message is received, and ∆T is the maximum transmission

delay. The message will be dropped if the difference between the timestamp and

the time when the message is received is higher than the expected maximum

transmission delay.

367

2. VOCS retrieves from its database the VIDR that corresponds to its VIDA. If the

VOCS did not find the NIDA in its database, it will ignore and drop the

authentication request.

Once the VOCS finds the VIDR, it will retrieve it along with the VTID, its PUF Challenge

that relates to this Vi and OTT of Vi.

1. VOCS generates the PUF response Rcs = PUF(Ccs)

2. VOCS generates VCS1 = H (VOCSIDR || MSKVOCS || VIDR|| Rcs).

3. VOCS generates VCS2 = H (VCS1 || VTID)

4. VOCS computes VX1’ = H (VCS2’ || OTT)

5. VOCS computes the RV’Vi1 = VX2 ⊕ VX1’

The VOCS uses the calculated VCS2, TS’Vi1, OTT, and the RV’Vi1 to generate

VX3’, a combination of VIDR, VCS3, TS’Vi1, OTT, and the RV’Vi1 using a one-way hash

function as shown in figure 99. If the computed value is equal to the received value, the

VOCS accepts the authentication request; otherwise, it will drop it.

Figure 99: Evaluating the Vi authentication request message

Once the VOCS accepts the message, it generates a timestamp and a random

value RVCS1. Also, the VOCS generates a session ID. The session ID aims to distinguish

VX3’ = H (VIDR|| VCS1
’|| TSVi1

’
 || RVVi1

’|| OTT)

If VX3 = VX3’ Then

The VOCS will accept the authentication request

Else

The VOCS will drop the connection request

368

one session from the rest of the running sessions simultaneously. Furthermore, the VOCS

will retrieve a PUF CRP from the PUF cloud to authenticating the vehicle. The VOCS

prepares and sends an authentication response to the Vi. The preparation process of the

authentication response message includes the following steps:

1. VOCS generates a new TSCS1 to avoid replay attacks

2. VOCS calculates CSY1

a. CSY1 = H (VIDR|| VCS1’ || OTT)

3. VOCS selects a random parameter RVCS1 and then calculates CSY2

a. CSY2 = H(CSY1) ⊕ RVCS1

4. VOCS generates a session ID(SID)

5. CV = C ⊕ H (CSY1 || RVCS1)

6. VOCS calculates CSY3

7. CSY3 = H (VOCSIDR || CSY1|| TSCS1 || RVVi1 ||C || VCS1|| RVCS1)

8. VOCS sends an authentication response message

The connection response includes VOCSIDA, session ID(SID), TSCS1, CSY2, CV, and

CSY3, as shown in 6.7.

VOCS Vi Auth-Res (VOCSIDA, SID, TSVi1, CSY2, CV, CSY3) (6.7)

6.6.3.2.1.3 Step 3: VOCS authentication

Once Vi receives the authentication response, it completes the following steps:

369

1. Vi checks the validity of the received timestamp |TS’Rec−TS’CS1 |< ∆T. TSRec is

the time when the message is received, and ∆T is the maximum transmission

delay. The message is dropped if the difference between the timestamp and the

time when the message is received is higher than the expected maximum

transmission delay.

2. Vi calculates CSY1’ = H (VIDR|| VCS1’ || OTT)

3. Vi calculates the RV’CS1 = H(CSY1) ⊕ CSY2

4. Vi calculates the C’ = CV’⊕ H (RV’CS1 || CSY1’)

5. As presented in figure 100, Vi calculates CSY3’ using a one-way hash function

and compares the generated CSY3’ with the received CSY3. If the two values are

the same, Vi will authenticate VOCS; otherwise, it will drop it.

CSY3’ = H (VOCSDR || CSY2
’|| TSCS1

’
 || RVVi1

’ ||C’ || VCS1
’|| RVCS1

’)

If CSY3’ = CSY3 Then

Then Vi will accept the authentication response and authenticate VOCS

Else

Vi will drop the authentication response

Figure 100: Evaluating the VOCS authentication parameter

Once Vi accepts the received message and authenticates VOCS, it will complete the

following steps

1. Vi will input the received challenge C’ to its PUF and obtains the response Ri.

a. Ri = PUF(C’)

2. Vi will compute the H (RV’CS1 || RVVi1) to generate a new challenge (Ci+1). Then

Vi will input the Ci+1
 into a PUF function to obtains a new Ri+1 where:

a. Ci+1 = H (RV’CS1 || RVVi1)

370

b. Ri+1 = PUF (Ci+1) to be used in the next authentication session.

3. Vi generates a new TSVi2 to avoid replay attacks

4. Vi calculates VX4 = H (OTT|| RVCS1)

5. Vi selects a random parameter RVVi2 and then calculates VX5

a. VX5= RVvi2 ⊕ H (VX4|| VIDR)

6. Vi calculates VX6

a. VX6 = H (VX4|| RVVi2) ⊕ Ri

7. Vi calculates VX7

a. VX7 = H (C’|| R’) ⊕ Ri+1

8. Vi will generate a new OTT(OTTnew)

OTTnew = H (OTT|| RVVi2|| C)

9. Vi will generate a new Alias ID (VIDAnew)

a. VIDAnew = H (VIDA || C|| OTT)

10. Vi calculates VX8

a. VX8 = H (VX4 || RVVi2 || TSVi2 || Ri || Ci+1 || Ri+1 || OTTnew || VIDAnew)

11. Vi sends the message to the VOCS

The message includes VIDA, TS’Vi2, VX5, VX6, VX7, and VX8 as shown in 6.8.

 Vi VOCS (VIDA, TSVi2, VX5, VX6, VX7, VX8) (6.8)

6.6.3.2.1.4 Step 4: Vi authentication

Once VOCS receives the message, it completes the following steps:

371

1. VOCS checks the validity of the received timestamp |TS’Rec− TS’Vi2 |< ∆T.

TS’Rec is the time when the message is received, and ∆T is the maximum

transmission delay. The message is dropped if the difference between the

timestamp and the time when the message is received is higher than the expected

maximum transmission delay.

2. VOCS calculates VX4’ = H (RVCS1 || OTT)

3. VOCS calculates the RV’VI2 = VX5
’
 ⊕ H (VX4’|| VIDR)

4. VOCS computes the Ri
’ =VX6’ ⊕ H (RVVi2|| VX4’)

5. VOCS computes Ci+1 = H (RV’CS1 || RVVi1)

6. VOCS computes the Ri+1’ = VX7’ ⊕ H (C’|| Ri
’)

7. VOCS Computes OTTnew’ = H (OTT|| RVVi2|| C)

8. VOCS computes VIDAnew’ = H (VIDA || C|| OTT)

9. VOCS compures VX8’ = H (VX4
’ || RVVi2’ || TSVi2 || Ri’ || Ci+’1 || Ri+1’ || OTTnew’

|| VIDAnew’)

As presented in figure 101, VOCS calculates VX8’ using a one-way hash function and

compares the generated VX8’ with the received VX8. If the two values are the same,

VOCS will authenticate Vi; otherwise, it will drop it.

VX8’ = VX8 = H (VX4
’ || RVVi2’ || TSVi2 || Ri’ || Ci+’1 || Ri+1’ || OTTnew’ || VIDAnew’)

 If VX8’ = VX8

Then

 Then VOCS will authenticate the Vi.

Else

VOCS will drop the connection response

Figure 101: Evaluate the Vi authentication parameter

372

After authenticating the Vi, the VOCS will store the new CRP, OTTnew, and VIDAnew in

its database for the next authentication session.

6.6.3.2.1.5 Key generation

Once the mutual authentication is completed, the two sides will generate a shared

secret session key (ssk). The two sides will generate the ssk locally by combining the

PUF responses and the generated random values. The uniqueness of the PUF responses

ensures the uniqueness of the generated ssk.

ssk = H (R|| (RV’VI1|| RV’VI2 ||RVCS1))

6.6.3.2.2 Phase 2: Driver- Owner Cloud Server (VOCS) authentication

This sub-phase presents a mutual authentication process between a Driver (Di)

and a vehicle owner cloud server (VOCS). The two devices will complete mutual

authentication. The mutual authentication between Di and VOCS should be completed

after completing the mutual authentication between the vehicle and the VOCS. The

authentication between Di and VOCS will be completed through the vehicle, where it

will act as a relay between the two ends. All the exchanged messages will be encrypted

by the ssk between the vehicle and the VOCS. Also, the vehicle OTT and Ri will be used

to authenticate the driver to the VOCS. Using some of the vehicle parameters ensures that

the driver parameters are collected and sent through the authenticated vehicle.

As presented in figures 102 and 103, this phase starts when Vi prepares the

authentication request message on behalf of Di that will be sent to the VOCS. The steps

involved in this process are listed below.

373

6.6.3.2.2.1 Step 1: Authentication request

1. Di will insert his/her username (Ui) and the password (PUi).

2. Di will use the vehicle’s fingerprint scanner to capture fingerprint biometric

characteristics (FP)

3. The Ui, PUi, Su, and the FP will send to the vehicle’s OBU through a secured

channel

Figure 102: Di-VOCS mutual authentication process

Di VOCS

Generate: TSvi1, RVvi1

Compute:

U1 = H (EID||Ri |VIDR||| OTT)

ZU1 = H(FP||PUi)

DV1 = ZU1 ⊕ U1

DV2 = H (VIDR ||TSvi1|| ZU1 || U1)

 M1: (VIDA, {Ui, TSVi1, DV1, DV2}ssk)

 Check:|TSRec− TS’vi1 |< ∆T

 Find: VIDA Ui

 Read: VIDR, CUCS, OTT, and Ri

 Decrypt the message using the ssk

 Compute:

 RuCS = PUF(CuCS)

 Read: EID, ZU2

Compute:

 U1
’ = H (EID ||VIDR||Ri || OTT)

 ZU1
’ = DV1⊕ U1

’

 ZU2
’ = H (ZU1

’ || RuCS)

 Verify:

 DV2
’ = H (VIDR ||ZU1

’
 ||TSvi1’|| U1’)

 Generate: TSCS1

Computes:

 UVi = H (Ri|| TScs1|| ZU1|| OTT)

 M2: (VOCSIDA, {TScs1 , UVi}ssk)

374

Algorithm 7_Protocol 2_Phase 2: The mutual authentication between D and the

VOCS

Input:

V with real identity (VIDR), alias identity (VIDA), VOCS real identity (VOCSIDR), VOCS

alias identity (VOCSIDR), one-time-token (OTT), PUF response (Ri), and Authentication

parameters (VCS1, VCS2)

VOCS with with real identity (VIDR), alias identity (VIDA), VOCS real identity (VOCSIDR),

VOCS alias identity (VOCSIDR), the vehicle type ID(VTID) Master secret key (MSKcs),

PUF challenge (CCS), and one time token (OTT)

Output:

 Mutual authentication between Driver (Di) and the VOCS

Begin

1. D inserts the Employee ID(EID), username (Ui), password (PUi) and fingerprint (FP).

V generates a timestamp TSvi1 and random nonce RVvi1. V computes computes U1 = H

(EID||Ri |VIDR||| OTT), ZU1 = H(FP||PUi), DV1 = ZU1 ⊕ U1, DV2 = H (VIDR ||TSvi1|| ZU1 ||

U1)

2. V sends VIDA, {Ui, TSVi1, DV1, DV2}ssk to VOCS encrypted by the ssk between V and

VOCS.

3. If (the VOCS finds VIDA in its repository)

4. then

5. VOCS decrypts the message and retrieves the Ui. Then VOCS will retrieve the PUF

challenge that corresponds to the Ui and feed it to the PUF function. VOCS uses the

PUF response to decrypt the driverer’s data, including EID, ZU2, and BBUi, that are

stored on its database.

6. The VOCS calculates U1
’ and retrieves ZU1 from xoring U1 with DV1. Finally, VOCS

calculates DV2 = H (VIDR ||TSvi1|| ZU1 || U1)

7. If (the calculated hash message in step 6 matches the hash message that was sent

In step 2)

8. then

9. The authenticity of the D is verified.

10. VOCS communicates generates a timestamp TSCS1 and computes UVi = H (Ri||

TScs1||ZU1||OTT)

11. VOCS sends (VOCSIDA, {TScs1, UVi}ssk) message encrypted by ssk to Vi

12. else

13. Go to step 21.

14. end if

15. else

16. Go to step 21.

17. end if

18. V verifies the time stamp, decrypts the message using ssk and computes UVi’ = = H

(Ri|| TScs1|| ZU1|| OTT)

19. If (the calculated hash message in step 18 matches the hash message that was sent in

step 11) then

 The authenticity of the VOCS is verified

375

20. else

21. Stop (terminates the connection);

 End

Figure 103: Mutual Authentication between D and VOCS

The Vi will complete the following steps:

1. Vi generates a new TSVi1 to avoid replay attacks

2. Vi computes U1

a. U1 = H (EID||Ri |VIDR||| OTT)

3. Vi computes ZU1

a. ZU1 = H(FP||PUi)

4. Vi computes DV1

a. DV1 = ZU1 ⊕ U1

5. Vi computes DV2

a. DV2 = H (VIDR ||TSvi1|| ZU1 || U1)

1. Vi sends an authentication request message encrypted by the ssk between Vi and

VOCS.

The authentication request includes VIDA, TSVi1, DV1, and DV2 as shown in 6.9.

Vi VOCS Auth-Req (VIDA, {Ui, TSVi1, DV1, DV2}ssk) (6.9)

6.6.3.2.2.2 Step 2: VOCS response

Once the VOCS receives the authentication request, it will complete the following steps:

1. VOCS decrypts the message using ssk

376

2. VOCS retrieves from its database the VIDR that corresponds to its VIDA. If the

VOCS did not find the VIDA in its database, it will ignore and drop the

authentication request.

3. VOCS checks the validity of the received timestamp |TSRec− TS’Vi1 |< ∆T. TSRec

is the time when the message is received, and ∆T is the maximum transmission

delay. The message will be dropped if the difference between the timestamp and

the time when the message is received higher than the expected maximum

transmission delay.

4. Once the VOCS finds the VIDR, OTT and Ri of Vi

5. VOCS retrieves its PUF challenge (CuCS) and computes the corresponding PUF

response (RuCS) uses the RCS to decrypt and retrieve EID, ZU2

a. RuCS = PUF((CuCS)

6. VOCS computes U1
’ = H (EID ||VIDR||Ri || OTT)

7. VOCS retrieves ZU1
’

a. ZU1
’ = DV1⊕ U1

’

8. VOCS computes ZU2
’ = H (ZU1

’ || RuCS) and compares it with the stores ZU2

9. VOCS calculates DV2

b. DV2
’ = H (VIDR ||ZU1

’
 ||TSvi1’|| U1’)

If the computed value is equal to the received value, as shown in figure 104, the VOCS

accepts the authentication request and authenticates the driver; otherwise, it will drop it.

377

Figure 104: Evaluating the driver authentication parameter

Once the VOCS accepts the message, it generates a timestamp. The VOCS

prepares and sends an authentication response to the Vi. The preparation process of the

authentication response message includes the following steps:

1. VOCS generates a new TSCS1 to avoid replay attacks

2. VOCS generates UVi

3. UVi = H (Ri|| TScs1|| ZU1|| OTT)

4. VOCS sends an authentication response message

The authentication response includes VOCSIDA, UVi, and TSCS1 encrypted by the ssk, as

shown in 6.10.

VOCS Vi Auth-Res (VOCSIDA, TScs1, UVi} ssk) (6.10)

Once the Vi receives the authentication response message, it will verify the response, Vi

calculates UVi’. If the computed value is equal to the received value, as shown in figure

105, the Vi accepts the authentication response and ensures the authenticity of the VOCS.

Figure 105: Evaluate the VOCS authentication response

DV2
’ = H (VIDR ||TSvi1

’|| ZU1 || U1
’)

If DV2
’ = DV2 Then

The VOCS will authenticate Di

Else

The VOCS will drop the authentication request

UVi
’ = H (Ri|| TScs1|| ZU1|| OTT)

If UVi = UVi
’ Then

The VOCS will be verified

Else

The Vi will drop the authentication response

378

Once the authentication phase is completed, the process of continuous biometric

authentication will start. The vehicle will periodically collect the drivers’ BBUi using the

built-in sensor in the steering wheels and sends the driver’s BBUi as part of its data. Every

time the VOCS receives the driver’s BBUi, it will compare it against the stored BPi

template to ensure that he/she is the same driver, monitor their health condition, and

monitor the driver’s behaviors.

6.7 Evaluation Process

The following section presents a detailed security and performance analysis of the

proposed scheme and compares the analysis results with other related schemes presented

in the literature.

6.7.1 Security validation of the proposed scheme

In this section, we conduct both a formal and informal security analysis. The

formal evaluation uses two different approaches: First, we validate the proposed scheme

using the AVISPA tool to ensure that the proposed scheme is secure against active and

passive attacks such as replay attacks and man-in-the-middle attacks. Second, we then

perform the logical verification using BAN logic to confirm that the authenticated

participants share the secret parameters securely in the proposed protocols. After

completing the formal evaluation, we examine the proposed protocols against the well-

known attacks and prove that the proposed protocols satisfy the main security properties.

6.7.1.1 Formal security evaluation

6.7.1.1.1 Simulation-based security verification using AVISPA

379

The proposed protocols are simulated and tested using the AVISPA software, a

widely accepted tool for automatically validating the schemes’ security features. The

messages involved in the cryptography and security of the authentication process are

taken into consideration.

6.7.1.1.1.1 Protocol 1: V-TA mutual authentication

 6.7.1.1.1.1.1 Simulation overview

The abstract notations used to describe the authentication scheme and the

corresponding AVISPA HLPSL scripting variables/functions are presented in table 27.

Table 27: Abstract notation and AVISPA HLPSL scripting variables/functions for

protocol specification

Notation Description

TA Trusted Authority

V Vehicle

VIDR VIDR

VIDA VIDA

TAIDA TAIDA

VTA1 VTA

RVvi1 Na

OTPvi OTP

380

TSvi1 TSoneV

RVTA1 Nb

C Cone

CHXx CHX

TSTA1 TSoneTA

Ri Rone

CHXx+1 CHXnew

TSvi2 TStwoV

RVvi2 Naa

TSTA2 TStwoTA

RVTA2 Nbb

OTPnew NOTP

VIDAnew NnewIDA

⊕ XOR

H H

The main goals of the simulation are as follows:

• Goal 1: The secrecy_of secNa represents that RVvi1 is kept secret to (V, TA)

only.

381

• Goal 2: The secrecy_of secNaa represents that RVvi2 is kept secret to (V,

TA) only.

• Goal 3: The secrecy_of secNb represents that RVTA1 is kept secret to ((V, TA)

only.

• Goal 4: The secrecy_of secVTA represents that VTA1 is kept secret to (V, TA)

only.

• Goal 5: The secrecy_of secCHX represents that CHXx is kept secret to ((V,

TA) only.

• Goal 6: The secrecy_of secRone represents that Ri is kept secret to (V, TA)

only.

• Goal 7: The secrecy_of secCone represents that C’ is kept secret to (V, TA)

only.

• Goal 8: The secrecy_of secNOTP represents that OTPnew is kept secret to

(V, TA) only.

• Goal 9: The secrecy_of secNnewIDA represents that VIDAnew is kept secret to

(V, TA) only.

• Goal 10: The secrecy_of secVIDR represents that the VIDR is kept secret to

(V, TA) only.

• Authentication Property 1: The authentication_on nb represents that TA

generates RVTA1. If V securely receives RVTA1 through a message, it

authenticates TA.

382

• Authentication Property 2: The authentication_on na represents that V

generates RVvi1. If TA securely receives RVvi1 through a message, it

authenticates V.

To achieve the goals mentioned above, we wrote the HLPSL script for the

protocol. The entities involved in the communication process are modeled as roles with

their message exchanges. There are four defined roles: that are: (1) role_V that is played

by the vehicle; (2) role _TA that is played by the trusted authority; (3) session, where the

session role and all its declarations are defined, (4) and environment, which instantiates

all agents, variables, and functions.

As presented in Figure C_1 in Appendix C, the role of the vehicle is played by V.

V is aware of the Vi and TA agents in the protocol, and its alias identity and the TA alias

identity. Also, it is aware of its own real identity and the CHX that should be kept

secured. Furthermore, V is aware of the OTP that is generated by the TA, the VTA

authentication parameter, the hash function H (·) and the send/receive channels Snd/Rcv.

The (dy) notation indicates that the channels are following the Dolev-Yao model. The

keyword ‘Played_by V’ denotes that the role of the vehicle is played by agent V. All

employed local variables in this role are defined under the local section.

At the first state “state 2,” V receives a start message “Rcv(start)” as a signal to

begin the protocol run. V generates new random values (TSoneV and Na) and computes

Xone and Xtwo. The computation process of the Xone and Xtwo follows the presented

protocol description. V sends VIDA, TSoneV, Xone, and Xthree to the TA. At the second

transition, “State 4”, V receives the (TAIDA, SIDNIG, TSoneTA, Ytwo, CX and Ythree)

message from the TA. The computation of Ytwo, CX, and Ythree follows the description

383

of our protocol. At this transition, if Ythree appears as expected by V and V correctly

verified nb, V authenticates TA. Then V generates a timestamp (TStwoV), new random

value (Naa), and computes CHxnew, Xthree, and Xfour. The computation process of

Xthree, Xfour, and CHxnew follows the presented protocol description. V sends VIDA,

TStwoV, Xthree, and Xfour to TA. At the third transition, “State 6”, V received the

(TAIDA, SIDNIG, TStwoTA, Yfive, and Ysix) from the TA. V calculates and verifies

the received new OTPnew, and NnewIDA by following the presented protocol's

description. After completing the verification process, Vstores its new alias ID and the

new OTP on its own memory for the next authentication session. The “end role” at the

end of the V role denotes the end of the role played by V.

Figure C_2 in Appendix C shows the role of the trusted authority played by TA.

The TA is aware of all agents in the protocol (V and TA), its alias and real identities

(TAIDA, TAIDR), the Alias and real identities (VIDA, VIDR) of the vehicle. TA knows

the OTP, the CHX, the hash function H (·), and the send/receive channels Snd/Rcv.

At the first transition, “State 1”, TA receives the (VIDA, TSoneV, Xone, and

Xtwo) message which was sent by V. TA uses the alias ID of V to retrieve its real ID, its

PUF challenge, the CHX, and OTP. TA uses the calculated VTA value to extract the V's

random generated value. Furthermore, TA uses V’s real identity, TSoneV, Na, and the

VTA to compute and verify the received Xtwo’. The computation and extraction of Na,

Xone, and Xtwo follow the presented scheme's description. Once the TA verifies Xtwo, it

generates a new value Nb and a TSoneT and computes Yone, Ytwo, CX and Ythree.

Then the TA sends to V (TAIDA, SIDNID, TSoneT, Ytwo, CX,Ythree). The

computation for Yone, Ytwo, CX, Ythree follows the description of the introduced

384

scheme. t the second transition, “State 3”, TA received the (VIDA, SIDNIG, TStwoV,

Xthree, and Xfour) from the V. The computation of the Xthree and Xfour followed the

description of the presented protocol. At this transition, if Xfour is proved to be valid by

TA, TA will authenticate V. Consequently, the TA will generate a new alias ID for V and

a new OTP. The computations of NnewIDA and NOPT will follow the description of the

presented protocol. The TA will then send to V (TAIDA, SIDNIG, TStwoT, Yfive,Ysix

). The “end role” at the end of the TA role denotes the end of the role played by TA.

Figure C_3 in Appendix C shows the session role where all the two agents’ roles

are invoked, and all the session parameters are defined. Both the TA and V roles are

invoked with TA and V as agents, VIDA, VIDR, TAIDA, OTP, VTA, and CHX are

predefined as constants, H as the hash function, and SND1 and RCV1 as well as SND2

and RCV2 as the send and receive channels for V and TA. The “end role” at the end of

the session role indicates the end of this role.

Figure C_4 in Appendix C shows the environment role. In this role, one or more

sessions are instantiated. First, all constants are instantiated and defined. The constants, v,

and ta are instantiated as agents representing agents V and TA. The constants vida, vidr

,taida , otp,vta, and chx instantiates VIDA, VIDR, TAIDA, OTP,VTA, and CHX. The

function h instantiates the hash function H. The protocol identifiers are secVIDR,

secOTP, secNa, secNb,secNaa, secCone, secRone, secNOTP,secVIDAnew, secCHXnew,

secVTA, na, and nb are also instantiated and defined. In the intruder knowledge section,

all relevant values that the intruder is assumed to know before the execution are provided.

The attacker is assumed to know v and TA. He/ she is also assumed to know the hash h.

The session is instantiated with v, ta, vida, vidr, taida, otp, chx, vta, and h instances in the

385

composition section. The “end role” at the end of the environment role denotes the end of

this role.

Figure C_5 in Appendix C shows the simulation goals which are declared under

the “goal” keyword using the protocol identifiers declared as ‘protocol_id’. The simulator

is dictated to check the secrecy VIDR, OTP,Na,Nb,

VTA,Cone,Rone,CHXnew,Naa,NOTP, and VnewIDA at different states using

secrecy_of secVIDR’, ‘secrecy_of secOTP’, ‘secrecy_of secNa’, ‘secrecy_of secNb,

‘secrecy_of secVTA’, ‘secrecy_of secCone’, ‘secrecy_of secRone, secrecy_of

secCHXnew, ‘secrecy_of secNaa, ‘secrecy_of secNOTP’, and ‘secrecy_of

secNnewIDA’. The authentication is checked using ‘authentication_on na’ and

‘authentication_on nb’. The “end role” at the end of the goal section denotes the end of

this role.

6.7.1.1.1.1.2 Simulation results

The SPAN protocol simulation’s MSC corresponding to our HLPSL specification

is shown in Figure. 106.

Figure 106: Snapshot of the protocol simulation in AVISPA

386

In AVISPA tool, the security properties such as authentication, integrity, and

secrecy are specified in a separate section. Therefore, when SPAN is executed, it verifies

if the protocol satisfies the specified properties. SPAN will generate the attack trace if an

attack is found and considers the protocol unsafe. The presented protocol's simulation

results are achieved by the OFMC back-end checker and the CL-AtSe back-end checker.

Figure 107 shows the CL-AtSe back-end checker report, which guarantees that the

protocol is SAFE and satisfies all the specified security goals. Figure 108 presents the

OFMC back-end checker report shows that the protocol is SAFE, thus meeting the

defined security goals. In summary, we can conclude that the proposed protocol is secure.

Figure 107: CL-AtSe Summary Report

387

Figure 108: OFMC summary report

6.7.1.1.1.2 Protocol 2: Vehicle-Driver-VOCS authentication

6.7.1.1.1.2.1 Phase 1: Vehicle -VOCS mutual authentication

6.7.1.1.1.2.1.1 Simulation overview

The abstract notations used to describe the authentication process and the

corresponding AVISPA HLPSL scripting variables/functions are presented in table 28.

Table 28: Abstract notation and AVISPA HLPSL scripting variables/functions for

protocol specification

Notation Description

VOCS CS

Vi Vehicle

VIDR VIDR

388

VOCSIDR CSIDR

VOCSIDA CSIDA

MSK MSK

OTT OTT

VTID TID

RVvi1 Na

TSvi1 TSoneV

VCS1 VCS1

VCS2 VCS2

TSCS1 TSoneCS

RVCS1 Nb

C Cone

CV CV

SIDNIG SID

TSvi2 TStwoV

RVvi2 Naa

Ri Rone

389

Ci+1 Ctwo

Ri+1 Rtwo

OTTnew NOTT

VIDAnew VnewIDA

⊕ XOR

H H

The main goals of the simulation are as follows:

1. Goal 1: The secrecy_of secVIDR represents that the VIDR is permanently

kept secret, known to only (V, VOCS)

2. Goal 2: The secrecy_of secOTT represents that OTT is kept secret to (V, CS)

only.

3. Goal 3: The secrecy_of secVCS1 represents that VCS1 is kept secret to (V, CS)

only.

4. Goal 4: The secrecy_of secVCS2 represents that VCS2 is kept secret to (V, CS)

only.

5. Goal 5: The secrecy_of secNa represents that RVvi1 is kept secret to (V, CS)

only.

390

6. Goal 6: The secrecy_of secNb represents that RVTA1 is kept secret to (V, CS)

only.

7. Goal 7: The secrecy_of secCone represents that C is kept secret to ((V, CS)

only.

8. Goal 8: The secrecy_of secRone represents that Ri is kept secret to ((V, CS)

only

9. Goal 9: The secrecy_of secRtwo represents that Ri+1 is kept secret to ((V,

CS) only.

10. Goal 10: The secrecy_of secNaa represents that RVvi2 is kept secret to (V,

CS) only.

11. Goal 11: The secrecy_of secNOTT represents that OTTnew is kept secret to

(V, CS) only.

12. Goal 12: The secrecy_of secVnewIDA represents that the secret key

secVIDAnew is permanently kept secret, known to only (V, CS).

13. Authentication Property 1: The authentication_on Nb represents that CS

generates Nb. If V securely receives Nb through a message, it authenticates

CS.

14. Authentication Property 2: The authentication_on Na represents that V

generates Na. If CS securely receives Na through a message, it authenticates

V.

To achieve the goals mentioned above, we wrote the HLPSL script for the

protocol. The entities involved in the communication process are modeled as roles with

391

their message exchanges. There are four defined roles: that are: (1) role_V that is played

by the vehicle; (2) role _CS that is played by the vehicle owner cloud server; (3) session,

where the session role and all its declarations are defined, (4) and environment, which

instantiates all agents, variables, and functions.

As presented in Figure C_6 in Appendix C, the role of the vehicle is played by V.

V is aware of the V and CS agents in the protocol, and its alias identity and the CS alias

identity. Also, it is aware of its own real identity VIDR real identity that should be kept

secured. Furthermore, V is aware of the VCS1, VCS2, OTT, the hash function H (·), and

the send/receive channels Snd/Rcv. The (dy) notation indicates that the channels are

following the Dolev-Yao model. The keyword ‘Played_by V’ denotes that the role of the

vehicle is played by agent V. All employed local variables in this role are defined under

the local section.

At the first state “state 2,” V receives a start message “Rcv(start)” as a signal to

begin the protocol run. V generates new random values (TSoneV and Na and computes

VXone and VXtwo. The computation process of the VXone and VXtwo follows the

presented protocol description. V sends VIDA, TSoneV, VXone, and VXtwo to the CS.

At the second transition, “State 4”, V receives the CSIDA, SIDNIG, TSoneCS,

Ytwo, CV and Ythree) message from the CS The computation of CSYtwo, CV, and

CSYthree follows the description of our protocol. At this transition, if the CSYthree

appears as expected by V and V correctly verified Nb, then V authenticates CS. Then V

generates new random values TStwoV and Naa. Also, V generates a new challenge

(Ctwo) and calculates its response (Rtwo), its new alias ID(VnewIDA), and a new

OTT(NOTT). The computations of Ctwo, Rtwo,VnewIDA, NOTT, VXfour,Vxfive,

392

Vxsix, and Vxseven follow the description of the presented protocol. V sends (VIDA,

TStwoV, VXfour, VXfive, Vxsix, and Vxseven) to CS. The “end role” at the end of the

V role denotes the end of the role played by V.

Figure C_7 in Appendix C shows the role of the Vehicle owner cloud server

played by CS. The CS is aware of all agents in the protocol (V and CS), its alias and real

identities (CSIDA, CSIDR), the Alias and real identities (VIDA, VIDR) of the vehicle.

CS knows the OTT, the TID, the hash function H (·), and the send/receive channels

Snd/Rcv.

At the first transition, “State 1”, CS receives the (VIDA, TSoneV, VXone, and

VXtwo) message, which V. CS sent uses the alias ID of V to retrieve its real ID, TID, and

OTT and its own PUF challenge. CS uses the calculated VSC1 and VCS2 to extract the

V's random generated value. Also, CS uses V’s real identity, TSoneV, Na, OTT, and the

VCS1to compute and verify the received VXtwo’. The computation and extraction of Na,

TSoneV, and VXtwo follow the presented scheme's description. Once the CS verifies

VXtwo’, it generates a fresh value Nb and a TSoneCS and computes CSYone, CSYtwo,

CV, and CSYthree. Then the CS sends to V (CSIDA, SIDNID, TSoneCS, CSYtwo,

CV,CSYthree). The computation for CSYone, CSYtwo, CV, CSYthree follows the

description of the introduced scheme.

At the second transition, “State 3”, CS received the (VIDA, SIDING, TStwoV,

VXfour, VXfive, VXsix, and VXseven) message from the V. The computation of the

VXfour, VXfive, VXsix, and VXseven follows the description of the presented protocol.

At this transition, CS calculates and verifies the received new token (NOTT), New Alias

ID (VnewIDA), new challenge (Ctwo), and new response (Rtwo) by following the

393

presented protocol's description. Suppose VXseven is proved to be valid by CS. In that

case, CS authenticates V. The “end role” at the end of the CS role denotes the end of the

role played by CS.

 Figure C_8 in Appendix C shows the session role where the two agents’ roles are

invoked and defined all the session parameters. Both the CS and V roles are invoked with

CS and V as agents, VIDA, VIDR, CSIDA, VCS1, VCS2, OTT, and TID are predefined

as constants, H as the hash function, and SND1 and RCV1 as well as SND2 and RCV2 as

the send and receive channels for V and CS. The “end role” at the end of the session role

indicates the end of this role.

Figure C_9 in Appendix C shows the environment role. In this role, one or more

sessions are instantiated. First, all constants are instantiated and defined. The constants, v,

and cs are instantiated as agents representing agents V and CS. The constants vida, vidr,

csida ,vcs1,vcs2, otp, and tid instantiates VIDA, VIDR, CSIDA, VCS1,VCS2,OTT, and

TID, respectively. The function h instantiates the hash function H. The protocol

identifiers are secVIDR, , secOTT, secNa, secNb,secNaa, secCone, secRone, secRtwo,

secNaa, secNOTT,secVCS1, secVCS1, secVnewIDA, na and nb are also instantiated and

defined. In the intruder knowledge section, all relevant values that the intruder is assumed

to know before the execution are provided. The attacker is assumed to know v and cs. He/

she is also assumed to know the hash h. The session is instantiated with v, cs, vida, vidr,

csida, vcs1, vcs2, ott, tid, and h instances in the composition section. The “end role” at

the end of the environment role denotes the end of this role.

Figure C_10 in Appendix C shows the simulation goals, which are declared under

the “goal” keyword using the protocol identifiers declared as ‘protocol_id’. The simulator

394

is dictated to check the secrecy VIDR, OTT,Na,VCS1,VCS2, Nb,

Cone,Rone,Rtwo,Naa,NOTT, and VnewIDA at different states using secrecy_of

secVIDR’, ‘secrecy_of secOTT’, ‘secrecy_of secNa’, ‘secrecy_of secVCS1’, ‘secrecy_of

secVCS2’, ‘secrecy_of secNb, ‘secrecy_of secCone’, ‘secrecy_of secRone, secrecy_of

secRtwo, ‘secrecy_of secNaa,‘secrecy_of secNOTT’, and ‘secrecy_of secVnewIDA’ .

The authentication is checked using ‘authentication_on na’ and ‘authentication_on nb’.

The “end role” at the end of the goal section denotes the end of this role.

6.7.1.1.1.2.1.2 Simulation results

The SPAN protocol simulation’s MSC corresponding to our HLPSL specification

is shown in figure 109.

Figure 109: Snapshot of the Protocol Simulation in AVISPA

In AVISPA tool, the security properties such as authentication, integrity, and

secrecy are specified in a separate section. Therefore, when SPAN is executed, it verifies

if the protocol satisfies the specified properties. SPAN will generate the attack trace if an

395

attack is found, and it will consider the protocol unsafe. The presented protocol's

simulation results are achieved by the OFMC back-end checker and the CL-AtSe back-

end checker. Figure 110 shows the CL-AtSe back-end checker report, which guarantees

that the protocol is SAFE and satisfies all the specified security goals. Figure. 111

presents the OFMC back-end checker report shows that the protocol is SAFE, thus

meeting the defined security goals. In summary, we can conclude that the proposed

protocol is secure.

396

Figure 110 : CL-AtSe summary report

Figure 111: OFMC summary report

6.7.1.1.1.2.2 Phase 2: Driver-VOCS Authentication

6.7.1.1.1.2.2.1 Simulation Overview

After completing the mutual authentication between the vehicle and the VOCS,

the driver’s authentication to the VOCS will be started. The vehicle will be used as the

communication medium between the driver and the VOCS. The abstract notations used to

describe the authentication protocol and the corresponding AVISPA HLPSL scripting

variables/functions are presented in table 29.

Table 29: D-VOCS abstract notation and AVISPA HLPSL scripting variables/functions

for protocol specification

VOCS CS

397

Vi Vehicle

VIDR VIDR

VOCSIDR CSIDR

VOCSIDA CSIDA

OTT OTT

UI Ui

PUi PUI

Ssk SK

VTID TID

TSvi1 TSoneV

VCS1 VCS1

VCS2 VCS2

TSCS1 TSoneCS

Ri Rone

⊕ XOR

H H

The main goals of the simulation are as follows:

398

1. Goal 1: The secrecy_of secVIDR represents that the VIDR is permanently

kept secret, known to only (V, CS)

2. Goal 2: The secrecy_of secOTT represents that OTT is kept secret to (V, CS)

only

3. Goal 3: The secrecy_of secRone represents that Ri is kept secret to ((V, CS)

only

4. Goal 4: The secrecy_of secSk represents that SKis kept secret to (V, CS)

only.

5. Goal 5: The secrecy_of secPUI represents that PUI is kept secret to (V, CS)

only.

6. Authentication Property 1: The authentication_on Uone represents that the

user generates Uone. If CS securely receives Uone through a message, it

authenticates U.

To achieve the goals mentioned above, we wrote the HLPSL script for the

protocol. The entities involved in the communication process are modeled as roles with

their message exchanges. There are four defined roles: that are: (1) role_V that is played

by the vehicle that represents the user; (2) role _CS that is played by the vehicle owner

cloud server; (3) session, where the session role and all its declarations are defined, (4)

and environment, which instantiates all agents, variables, and functions.

As presented in figure C_11 in Appendix C, the role of the vehicle is played by V.

V is aware of the V and CS agents in the protocol, and its alias identity and the CS alias

identity. Also, it is aware of its own real identity VIDR that should be kept secured.

399

Furthermore, V is aware of the VCS1, VCS2, OTT, UI, Rone, SIDIG, SK, the hash

function H (·), and the send/receive channels Snd/Rcv. The (dy) notation indicates that

the channels are following the Dolev-Yao model. The keyword ‘Played_by V’ denotes

that the role of the vehicle is played by agent V. All employed local variables in this role

are defined under the local section. At the first state “state 2,” V receives a start message

“Rcv(start)” as a signal to begin the protocol run. V generates a timestamp (TSoneV) and

computes Uone, ZUone,Utwo, and Uthree. The computation process of the Uone, ZUone,

Utwo, and Uthree follows the presented protocol description. V sends VIDA, Ui,

TSoneV, Utwo, and Uthree to the CS. At the second transition, “State 4”, V receives the

CSIDA, SIDNIG, TSoneCS, and UV) message from the CS. At this transition, if the UV

appears as expected by V and V correctly verified UV, this proves that the response came

from the real CS, and the user got successfully authenticated to the CS. The “end role” at

the end of the V role denotes the end of the role played by V.

Figure C_12 in Appendix C shows the role of the vehicle owner cloud server

played by CS. The CS is aware of all agents in the protocol (V and CS), its alias and real

identities (CSIDA, CSIDR), the Alias and real identities (VIDA, VIDR) of the vehicle.

CS knows the OTT, the TID, UI, Rone, SIDING, SK, the hash function H (·), and the

send/receive channels Snd/Rcv. The (dy) notation indicates that the channels are

following the Dolev-Yao model. The keyword ‘Played_by CS’ denotes that agent CS

plays the role of the vehicle owner cloud server. All employed local variables in this role

are defined under the local section. At the first transition, “State 1”, CS receives the

(VIDA, TSoneV, UI, Utwo, Uthree) message from V. At this transition, Uthree is proved

to be valid by CS, CS authenticates the user. Then, CS generates a fresh TSoneCS and

400

computes Uv. Then the CS sends to V (CSIDA, SIDNID, {TSoneCS, UV}ssk). The

computation for Uv, follows the description of the introduced scheme. The “end role” at

the end of the CS role denotes the end of the role played by CS.

Figure C_13 in Appendix C shows the session role where the two agents’ roles

are invoked and defined all the session parameters. Both the CS and V roles are invoked

with CS and V as agents, CSIDA, VIDA, VIDR, CSIDR, VCS1, VCS2, OTT, UI, Rone,

SIDNIG, TID, and SK are predefined as constants, H as the hash function, and SND1 and

RCV1 as well as SND2 and RCV2 as the send and receive channels for V and CS. The

“end role” at the end of the session role indicates the end of this role.

Figure C_14 in Appendix C shows the environment role. In this role, one or more

sessions are instantiated. First, all constants are instantiated and defined. The constants, v,

and cs are instantiated as agents representing agents V and CS. The constants csida, vida,

vidr , csidr ,vcs1,vcs2, ott,ui, rone, siding, tid, and sk instantiates CSIDA,VIDA, VIDR,

CSIDR, VCS1,VCS2,OTT,UI,Rone, SIDNIG, TID, and SK, respectively. The function h

instantiates the hash function H. The protocol identifiers are secVIDR, secOTT, secRone,

secSK, secPUI, and uone are also instantiated and defined. In the intruder knowledge

section, all relevant values that the intruder is assumed to know before the execution are

provided. The attacker is assumed to know v and cs. He/ she is also assumed to know the

hash h. The session is instantiated with v, cs, csida, vida, vidr, csidr, vcs1, vcs2, ott, ui,

rone, siding, tid, sk, and h instances in the composition section. The “end role” at the end

of the environment role denotes the end of this role.

C_15 in Appendix C shows the simulation goals, which are declared under the

“goal” keyword using the protocol identifiers declared as ‘protocol_id’. The simulator is

401

dictated to check the secrecy VIDR, OTT, Rone, SK, and PUI at different states using

secrecy_of secVIDR’, ‘secrecy_of secOTT’, ‘secrecy_of secRone’, ‘secrecy_of secSK’,

and ‘secrecy_of secPUI. The authentication is checked using ‘authentication_on uone’.

The “end role” at the end of the goal section denotes the end of this role.

6.7.1.1.1.2.2.2 Simulation Results

The SPAN protocol simulation’s MSC corresponding to the HLPSL specification

is shown in figure 112.

Figure 112: Snapshot of the protocol simulation in AVISPA

In AVISPA tool, the security properties such as authentication, integrity, and

secrecy are specified in a separate section. Therefore, when SPAN is executed, it verifies

if the protocol satisfies the specified properties. SPAN will generate the attack trace if an

attack is found, and it will consider the protocol unsafe. The presented protocol's

simulation results are achieved by the OFMC back-end checker and the CL-AtSe back-

end checker. Figure 113 shows the CL-AtSe back-end checker report, which guarantees

that the protocol is SAFE and satisfies all the specified security goals. Figure. 114

presents the OFMC back-end checker report shows that the protocol is SAFE, thus

meeting the defined security goals. In summary, we can conclude that the proposed

protocol is secure.

402

Figure 113: CL-AtSe summary report

Figure 114: OFMC summary report

403

6.7.1.1.2 Formal proof based on BAN logic

6.7.1.1.2.1 Protocol 1: V-TA authentication

In this section, we use BAN logic to verify the legitimacy of OTPnew and the

session key (ssk) that are shared between V and TA that communicate in the presented

protocol. To ensure the security of the proposed protocol under BAN logic, it needs to

satisfy security goals. The following section defines the main goals of the analysis of the

presented authentication scheme.

6.7.1.1.2.1.1 Goals identification

Goal 1: V and TA want to establish a shared secret key (ssk) that is believed by each

other.

G1_1: TA believes that the V believes that the ssk is a securely shared parameter between

V and TA.

 TA| ≡ V|≡ (V TA)

G1_2: TA believes that ssk is a securely shared parameter between V and TA.

 TA|≡ (V TA)

G1_3: V believes that TA believes that the ssk is a securely shared parameter between V

and TA.

 V| ≡ TA | ≡ (V TA)

ssk

ssk

ssk

404

G1_4: V believes that the ssk is a securely shared parameter between V and TA.

V| ≡ (V TA)

Goal 2: V and TA want to generate a one-time password (OTPnew) that is believed

by each other.

G2_1: TA believes that the V believes that the OTPnew is securely shared parameters

between V and TA.

TA| ≡ V | ≡ (V VOCS)

G2_2: TA believes that OTPnew is securely shared parameter between V and TA.

TA| ≡ (V TA)

G2_3: V believes that the TA believes that the OTPnew is securely shared parameters

between V and TA.

V| ≡ TA | ≡ (V TA)

ssk

 OTPnew

 OTPnew

 OTPnew

405

G2_4: V believes that OTPnew is securely shared parameter between V and TA.

V| ≡ (V TA)

6.7.1.1.2.1.2 Messages idealization

First, we transfer all transmitted messages into idealized form as follows.

M1: V TA:(VIDR, TSv1, RVv1) VTA1

M2: TA V:(RVTA1, TSTA1, OTPVi , C)Yone

M 3: V TA:(VIDR, TSV2, RVV2, OTPVi , Ri) CHXi+1

M 4: TA V:(VIDR, TSTA2, RVTA2) Yfour

6.7.1.1.2.1.3 Main assumptions

The second step is to define some assumptions as initiative promises. The

fundamental assumptions of the presented authentication scheme are as follows:

P1: TA believes that VTA is a secure shared parameter between V and TA

TA| ≡ (V TA)

P2: TA believes V believes that VTA is a secure shared parameter between V and TA.

TA | ≡ V| ≡ (V TA)

 VTA

VTA

 OTPnew

406

P3: V believes that Yone is a secure shared parameter between V and TA

V| ≡ (V TA)

P4: V believes TA believes that Yone is a secure shared parameter between V and TA.

V | ≡ TA| ≡ (N MG)

P5: TA believes that CHXi+1 is a secure shared parameter between V and TA

TA| ≡ (V TA)

P6: TA believes V believes that CHXi+1 is a secure shared parameter between V and TA.

TA | ≡ V| ≡ (V TA)

P7: V believes that Yfour is a secure shared parameter between V and TA

V| ≡ (V TA)

P8: V believes TA believes that Yfour is a secure shared parameter between V and TA.

V | ≡ TA| ≡ (V TA)

P9: TA believes RVV1 is fresh.

TA| ≡ #(RVV1)

 Yone

 CHXi+1

Yonr

CHXi+1

 Yfour

Yfour

407

P10: TA believes that V believes RVV1.

TA | ≡ V| ≡ RVV1

P11: TA believes that V has jurisdiction over RVV1. That is, V is an authority and

believes RVV1.

 TA | ≡ V ⇒ RVV1

P12: TA believes TSV1 is fresh.

TA| ≡ #(TSV1)

P13: TA believes RVV2 is fresh.

TA| ≡ #(RVV2)

P14: TA believes that V believes RVV2.

TA | ≡ V| ≡ RVV2

P15: TA believes that V has jurisdiction over RVV2. That is, V is an authority and

believes RVV2.

 TA | ≡ V ⇒ RVV2

P16: TA believes TSV2 is fresh.

TA| ≡ #(TSV2)

P17: V believes RVTA1 is fresh.

V| ≡ #(RVTA1)

408

P18: V believes that TA believes RVTA1.

V | ≡ TA| ≡ RVTA1

P19: V believes that TA has jurisdiction over RVTA1. That is, TA is an authority and

believes RVTA1.

 V | ≡ TA ⇒ RVTA1

P20: V believes RVT2 is fresh.

V| ≡ #(RVTA2)

P21: V believes that TA believes RVTA2.

V | ≡ TA| ≡ RVTA2

P22: V believes that TA has jurisdiction over RVTA2. That is, TA is an authority and

believes RVTA2.

 V | ≡ TA ⇒ RVTA2

P23: V believes TSTA1 is fresh.

V| ≡ #(TSTA1)

P24: V believes TSTA2 is fresh.

V| ≡ #(TSTA2)

P25: TA believes VIDR is a secure shared parameter between V and TA.

TA | ≡ (V TA)

VIDR

409

P26: TA believes V believes that VIDR is a secure shared parameter between V and TA.

TA | ≡ V| ≡ (V TA)

P27: TA believes that V believes Ri

TA| ≡ V | ≡ Ri

P28: TA believes that V has a jurisdiction over Ri

 TA| ≡ V ⇒ Ri

P29: V believes TA believes that OTP is a secure shared parameter between V and TA.

V | ≡ TA| ≡ (V MG)

P30: V believes that OTP is a secure shared parameter between V and TA

V| ≡ (V TA)

P31: TA believes that OTP is a secure shared parameter between V and TA

TA| ≡ (V TA)

P32: TA believes V believes that OTP is a secure shared parameter between V and TA.

TA | ≡ V|≡ (V TA)

VIDR

OTP

 OTP

OTP

 OTP

410

P33: TA believes that CHXx+1 is a secure shared parameter between V and TA

 TA| ≡ (V TA)

P34: TA believes V believes that CHXx is a secure shared parameter between V and TA.

TA | ≡ V| ≡ (V TA)

P35: TA believes V believes that ssk is a secure shared parameter between V and TA

TA | ≡ V| ≡ (V TA)

P36: V believes TA believes that ssk is a secure shared parameter between V and TA

V | ≡ TA| ≡ (V TA)

P37: TA believes V believes that OTPnew is a secure shared parameter between V and

TA

TA | ≡ V| ≡ (V TA)

P38: V believes TA believes that OTPnew is a secure shared parameter between V and

TA

V | ≡ TA| ≡ (V TA)

6.7.1.1.2.1.4 Analysis of the V-TA authentication protocol

We then prove that the proposed protocol achieves the security goals based on the

idealized form of the messages, assumptions, and BAN logic rules. The proposed

ssk

 ssk

OTPnew

OTPnew

 CHXx+1

CHXx+1

411

authentication scheme analysis is shown below to prove that the protocol achieves mutual

authentication between V and TA.

According to M1:

V1: TA ◃:(VIDR, TSv1, RVv1) VTA1

According to P1, P25 and Rule 1, we derive the following

V2:

𝑇𝐴|≡V VTA TA ,TA ⊲(𝑉𝐼𝐷𝑅, ,𝑇𝑆𝑉1,𝑅𝑉𝑉1) 𝑉 𝑉𝑇𝐴 𝑇𝐴

𝑇𝐴|≡V |∼ ((𝑉𝐼𝐷𝑅,𝑇𝑆𝑉1,𝑅𝑉𝑉1)

According to P9, P12, and rule 3, we derive the following

V3:
𝑇𝐴|≡#(𝑇𝑆𝑉1 𝑎𝑛𝑑 𝑅𝑉𝑉1)

𝑇𝐴|≡#|(𝑉𝐼𝐷𝑅, 𝑇𝑆𝑉1,𝑅𝑉𝑉1)

According to P2, P26, V2, V3, and rule 2, we derive the following

V4:
𝑇𝐴|≡#(𝑉𝐼𝐷𝑅, ,𝑇𝑆𝑉1,𝑅𝑉𝑉1),TA|≡V~(𝑉𝐼𝐷𝑅,𝑇𝑆𝑉1,𝑅𝑉𝑉1)

𝑇𝐴|≡V|≡(𝑉𝐼𝐷𝑅, 𝑇𝑆𝑉1,𝑅𝑉𝑉1)

According to V4, P10, P11, and rule 4, we derive the following:

V5:
TA |≡V| ⇒ 𝑅𝑉𝑣1 ,TA |≡ V |≡ 𝑅𝑉𝑣1

TA|≡ 𝑅𝑉𝑣1

According to M2, we get

V6: V◃ (RVTA1, TSTA1, OTPVi, C) Yone

412

 According to P3, P 29 and Rule 1, we derive the following

V7:

𝑉|≡V Yone TA ,V ⊲(TS𝑇𝐴1,𝑅𝑉𝑇𝐴1,V OTP TA,C) 𝑉 𝑌𝑜𝑛𝑒 𝑇𝐴

𝑉|≡TA |∼ (TS𝑇𝐴1,𝑅𝑉𝑇𝐴1,V OTP TA ,C)

According to P17, P23 and rule 3, we derive the following

V8:
𝑉|≡#(TS𝑇𝐴1,𝑅𝑉𝑇𝐴1,)

𝑉|≡#(TS𝑇𝐴1,𝑅𝑉𝑇𝐴1,V OTP TA,C)

According to P30, V7, V8, and rule 2, we derive the following

V9:

𝑉|≡#(TS𝑇𝐴1,𝑅𝑉𝑇𝐴1,V OTP TA,C),V|≡TA~(TS𝑇𝐴1,𝑅𝑉𝑇𝐴1,V OTP TA,C)

𝑉|≡TA|≡(TS𝑇𝐴1,𝑅𝑉𝑇𝐴1,V OTP TA,C)

According to V9, P18, P19 and rule 4, we derive the following:

V10:
𝑉 |TA| ⇒ 𝑅𝑉𝑇𝐴1,V |≡ TA |≡ 𝑅𝑉𝑇𝐴1

𝑉|≡ 𝑅𝑉𝑇𝐴1

According to M3:

V11 TA ◃(VIDR, TSV2, RVV2, OTPVi ,Ri) CHXi+1

According to P5, P25, P27, P31 and Rule 1, we derive the following

V12:

𝑇𝐴|≡V CHXx+1 TA ,TA ⊲(VIDR,TS𝑉2,𝑅𝑉𝑉2,V Ri TA,V OTP TA) 𝑉 𝐶𝐻𝐴𝑥+1 𝑇𝐴

𝑇𝐴|≡V |∼ (VIDR, TS𝑉2,𝑅𝑉𝑉2,V Ri TA, V OTP TA)

413

According to P13, P16, and rule 3, we derive the following

 V13:
𝑇𝐴|≡#(𝑇𝑆𝑉2 𝑎𝑛𝑑 𝑅𝑉𝑉2)

𝑀𝑇𝐴|≡#|(VIDR,TS𝑉2,𝑅𝑉𝑉2,V Ri TA,V OTP TA)

According to P6, P26, P32, V12, V13, and rule 2, we derive the following

V14:

𝑇𝐴|≡#(TS𝑉2,𝑅𝑉𝑉2,V Ri TA,V OTP TA),V|≡TA~(TS𝑇𝐴1,𝑅𝑉𝑇𝐴1,V Ri TA,V OTP TA)

𝑇𝐴|≡V|≡(TS𝑇𝐴1,𝑅𝑉𝑇𝐴1,V Ri TA,V OTP TA)

According to V14, P15, P28 and rule 4, we derive the following:

V15:
TA |≡V|⇒ 𝑅𝑉𝑣2 ,Ri TA |≡ V |≡ 𝑅𝑉𝑣2,𝑅𝑖

TA|≡ 𝑅𝑉𝑣2,𝑅𝑖

According to M4, we get

V16: V ◃(VIDR, TSTA2,RVTA2, OTPvi) Yfour

 According to P7, P29, and Rule 1, we derive the following

V17:

𝑇𝐴|≡V Yfour TA ,V ⊲(VIDR,TS𝑇𝐴2,𝑅𝑉𝑇𝐴2, V OTP TA) 𝑉 𝑌𝑓𝑜𝑢𝑟 𝑇𝐴

𝑉|≡TA |∼ (VIDR,TS𝑇𝐴2,𝑅𝑉𝑇𝐴2,V OTP TA)

According to P20, P24 and rule 3, we derive the following

V18:
𝑉|≡#(𝑇𝑆𝑇𝐴2, 𝑅𝑉𝑇𝐴2,)

𝑉|≡#(VIDR,TS𝑇𝐴2,𝑅𝑉𝑇𝐴2,V OTP TA)

414

According to P8, P30, V17, V18, and rule 2, we derive the following

V19:

𝑉|≡#(VIDR,TS𝑇𝐴2,𝑅𝑉𝑇𝐴2,V OTP TA),V|≡TA~(VIDR,TS𝑇𝐴2,𝑅𝑉𝑇𝐴2,V OTP TA)

𝑉|≡TA|≡(VIDR,TS𝑇𝐴2,𝑅𝑉𝑇𝐴2,V OTP TA)

According to V19, P21, P22 and rule 4, we derive the following:

V20:
𝑉 |TA| ⇒ 𝑅𝑉𝑇𝐴2,V |≡ TA |≡ 𝑅𝑉𝑇𝐴2

𝑉|≡ 𝑅𝑉𝑇𝐴2

As session key ssk = H (Ri || (RVvi1|| RVTA2 ||RVvi2 || RV’TA1) and in combination with

P10, P14, V4 and V14, we can derive

V21: TA| ≡V |≡ (V TA) (Goal 1_1)

 As session key ssk = H (Ri || (RVvi1|| RVTA2 ||RVvi2 || RV’TA1) and combining with P27,

P35 and V5, V15, V21

V22: TA|≡ (V TA) (Goal 1_2)

 As session key ssk = H (Ri || (RVvi1|| RVTA2 ||RVvi2 || RV’TA1) and combining with P18,

P21, V9 and V19 we can derive

V23: V ≡TA|≡ (V TA) (Goal 1_3)

 As session key ssk = H (Ri || (RVvi1|| RVTA2 ||RVvi2 || RV’TA1) and combining with P36,

V10, V20 and V23.

V24: V|≡ (V TA) (Goal 1_4)

ssk

ssk

ssk

ssk

415

As OTPnew = H (OTP||RVTA2
 || Ri) and in combination with P27, P31 and V14, we can

derive

V25: TA| ≡ V |≡ (V TA) (Goal 2_1)

 As OTPnew = H (OTP||RVTA2
 || Ri) and combining with P32, P37, and V15, PV25

 V26: TA|≡ (V TA) (Goal 2_2)

As OTPnew = H (OTP||RVTA2
 || Ri) and combining with P21, P29 and V19 we can derive

V27: V ≡TA|≡ (V TA) (Goal 2_3)

 As OTPnew = H (OTP||RVTA2
 || Ri) and combining with P30, P38, V20, and V27.

V28: V|≡ (V TA) (Goal 2_4)

Hence, the above logic proves that the proposed protocol successfully achieves

Goals 1.1 to 1.4 and 2.1 to 2.4. In other words, the proposed protocol achieves mutual

authentication and secure session key agreement between V and TA.

OPTnew

OTPnew

OTPnew

OTPnew

416

6.7.1.1.2.2 Protocol 2: Vehicle- Driver-VOCS authentication

6.7.1.1.2.2.1 Phase 1: V-VOCS

In this section, we use BAN logic to verify the legitimacy of the session key (ssk),

Ri+1, and OTTnew that are shared between V and VOCS, which communicate in the

presented phase. To ensure the security of the proposed protocol under BAN logic, it

needs to satisfy a set of security goals. The following section defines the main goals of

the analysis of the presented authentication scheme.

6.7.1.1.2.2.1.1 Goals identification

Goal 1: Ri+1 is well protected and believed by VOCS.

G1_1: VOCS believes that the V believes that the Ri+1 is securely shared parameters

between V and VOCS.

VOCS| ≡ V | ≡ (V VOCS)

G1_2: VOCS believes that Ri+1 is securely shared parameters between V and VOCS.

VOCS| ≡ (V VOCS)

Goal 2: The V and the VOCS want to establish a One Time Token (OTT) key that

each other believes.

G2_1: VOCS believes that the V believes that the OTTNew is a securely shared

parameter between V and VOCS.

Ri+1

Ri+1

OTTnew

417

 VOCS| V|≡ (V VOCS)

G2_2: VOCS believes that OTTnew is a securely shared parameter between V and

VOCS.

VOCS|≡ (V VOCS)

G2_3: V believes that the VOCS believes that the OTTnew is a securely shared

parameter between V and VOCS.

 V| ≡ VOCS | ≡ (V VOCS)

G2_4: V believes that OTTnew is a securely shared parameter between V and VOCS.

V| ≡ (V VOCS)

Goal 3: The V and the VOCS want to establish a shared secret key (ssk) that each

other believes.

G3_1: VOCS believes that the V believes the ssk is a securely shared parameter between

V and VOCS.

 VOCS| ≡ V|≡ (V VOCS)

G3_2: VOCS believes that sskis a securely shared parameter between V and VOCS.

VOCS|≡ (V VOCS)

G3_3: V believes that the VOCS believes that the ssk is a securely shared parameter

between V and VOCS.

ssk

ssk

OTTnew

OTTnew

OTTnew

ssk

418

 V| ≡ VOCS | ≡ (V VOCS)

G3_4: V believes that ssk is a securely shared parameter between V and VOCS.

V| ≡ (V VOCS)

6.7.1.1.2.2.1.2 Messages idealization

First, we transferred all transmitted messages into idealized form as follows.

M1: V VOCS:(VIDR, TSv1, RVv1, OTT, VCS1) VX1

M2: VOCS V:(VIDR, RVTA1, TSTA1, C, OTT, VCS1) CSY1

M 3: V VOCS:(VIDR, OTT, TSV2, RVV2, C
i+1 Ri, Ri+1) VXfour

6.7.1.1.2.2.1.3 Main assumptions

The second step to be completed is to define some assumptions as the initiative

promises. The fundamental assumptions of the presented authentication scheme are as

follows:

P1: VOCS believes that VX1 is a secure shared parameter between V and VOCS

VOCS| ≡ (V VOCS)

P2: VOCS believes V believes that VX1 is a secure shared parameter between V and

VOCS.

 VX1

ssk

419

VOCS | ≡ V| ≡ (V VOCS)

P3: V believes that CSY1 is a secure shared parameter between V and VOCS

V| ≡ (V VOCS)

P4: V believes VOCS believes that CSY1 is a secure shared parameter between V and

VOCS.

V | ≡ VOCS| ≡ (V VOCS)

P5: VOCS believes that VX4
 is a secure shared parameter between V and VOCS

VOCS| ≡ (V VOCS)

P6: VOCS believes V believes that VX4
 is a secure shared parameter between V and

VOCS.

VOCS | ≡ V| ≡ (V VOCS)

P7: VOCS believes RVV1 is fresh.

VOCS| ≡ #(RVV1)

P8: VOCS believes that V believes RVV1.

VOCS | ≡ V| ≡ RVV1

VX1

 CSY1

 VX4

CSY1

VX4

420

P9: VOCS believes that V has jurisdiction over RVV1. That is, V is an authority and

believes RVV1.

 VOCS | ≡ V ⇒ RVV1

P10: VOCS believes RVV2 is fresh.

 VOCS| ≡ #(RVV2)

P11: VOCS believes that V believes RVV2.

VOCS | ≡ V| ≡ RVV2

P12: VOCS believes that V has jurisdiction over RVV2. That is, V is an authority and

believes RVV2.

 VOCS | ≡ V ⇒ RVV2

P13: VOCS believes TSV1 is fresh.

VOCS| ≡ #(TSV1)

P14: VOCS believes TSV2 is fresh.

VOCS| ≡ #(TSV2)

P15: V believes RVVOCS1 is fresh.

V| ≡ #(RVVOCS1)

P16: V believes that VOCS believes RV VOCS1.

V | ≡ VOCS| ≡ RVVOCS1

421

P17: V believes that VOCS has jurisdiction over RVVOCS1. That is, VOCS is an authority

and believes RVVOCS1.

 V | ≡ VOCS ⇒ RVVOCS1

P18: V believes TSVOCS1 is fresh.

V| ≡ #(TSVOCS1)

P19: VOCS believes VIDR is a secure shared parameter between V and VOCS.

VOCS | ≡ (V VOCS)

P20: VOCS believes V believes that VIDR is a secure shared parameter between V and

VOCS.

 VOCS | ≡ V| ≡ (V VOCS)

P21: VOCS believes that V believes Ri

VOCS| ≡ V | ≡ Ri

P22: VOCS believes that V has a jurisdiction over Ri

VOCS| ≡ V ⇒ Ri

P23: VOCS believes that V believes Ri+1

VOCS| ≡ V | ≡ Ri+1

P24: VOCS believes that V has a jurisdiction over Ri+1

VIDR

VIDR

422

VOCS| ≡ V ⇒ Ri+1

P25: V believes that VOCS believes C

V| ≡ VOCS | ≡ C

P26: V believes that VOCS has a jurisdiction over C

VOCS| ≡ V ⇒ C

P27: V believes that OTT is a secure shared parameter between V and VOCS

V| ≡ (V VOCS)

P28: V believes VOCS believes that OTT is a secure shared parameter between V and

VOCS.

V | ≡ VOCS| ≡ (V VOCS)

P29: VOCS believes that OTT is a secure shared parameter between V and VOCS

VOCS| ≡ (V VOCS)

P30: VOCS believes V believes that OTT is a secure shared parameter between V and

VOCS.

VOCS | ≡ V| ≡ (V VOCS)

OTT

 OTT

 OTT

OTT

423

P31: VOCS believes V believes that ssk is a secure shared parameter between V and

VOCS

VOCS | ≡ V| ≡ (V VOCS)

P32: V believes VOCS believes that ssk is a secure shared parameter between V and

VOCS

V | ≡ VOCS| ≡ (V VOCS)

P33: VOCS believes V believes that OTTnew is a secure shared parameter between V

and VOCS

VOCS | ≡ V| ≡ (V VOCS)

P34: V believes VOCS believes that OTTnew is a secure shared parameter between V

and VOCS

V | ≡ VOCS| ≡ (V VOCS)

6.7.1.1.2.2.1.4 Analysis of the authentication V-VOCS phase

We then prove that the proposed protocol achieves the security goals based on the

idealized form of the messages, assumptions, and BAN logic rules. The proposed

authentication protocol analysis is shown below to prove that the protocol achieves

mutual authentication between V and VOCS.

ssk

 ssk

OTTnew

OTTnew

424

According to M1:

V1: VOCS ◃:(:(VIDR, TSv1, RVv1, OTT, VCS1) VX1

According to P1, P19, P29, and Rule 1, we derive the following

V2:

𝑉𝑂𝐶𝑆|≡V VX1 VOCS ,VOCS ⊲(𝑉𝐼𝐷𝑅, 𝑉 𝑂𝑇𝑇 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1, 𝑉CS1,𝑅𝑉𝑉1) 𝑉 𝑉𝑋1 𝑉𝑂𝐶𝑆

𝑉𝑂𝐶𝑆|≡V |∼ ((𝑉𝐼𝐷𝑅, 𝑉 𝑂𝑇𝑇 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1, 𝑉CS1,𝑅𝑉𝑉1)

According to P7, P13, and rule 3, we derive the following

V3:
𝑉𝑂𝐶𝑆|≡#(𝑇𝑆𝑉1 𝑎𝑛𝑑 𝑅𝑉𝑉1)

𝑉𝑂𝐶𝑆|≡#|(𝑉𝐼𝐷𝑅, 𝑉 𝑂𝑇𝑇 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1, 𝑉CS1,𝑅𝑉𝑉1)

According to P2, P20, P30, V2, V3, and rule 2, we derive the following

V4:

𝑉𝑂𝐶𝑆|≡#(𝑉𝐼𝐷𝑅, 𝑉 𝑂𝑇𝑇 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1, 𝑉CS1,𝑅𝑉𝑉1),VOCS|≡V~(𝑉𝐼𝐷𝑅, 𝑉 𝑂𝑇𝑇 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1, 𝑉CS1,𝑅𝑉𝑉1)

𝑉𝑂𝐶𝑆|≡V|≡(𝑉𝐼𝐷𝑅, 𝑉 𝑂𝑇𝑇 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1, 𝑉CS1,𝑅𝑉𝑉1)

According to V4, P8, P9, and rule 4, we derive the following:

V5:
VOCS |≡V| ⇒ 𝑅𝑉𝑣1 ,VOCS |≡ V |≡ 𝑅𝑉𝑣1

VOCS|≡ 𝑅𝑉𝑣1

According to M2, we get

425

V6: V◃(VIDR,RVCS1,TSCS1,C,OTT, VCS1)CSY1

 According to P3, P27, and Rule 1, we derive the following

V7

𝑉|≡V CSYone VOCS ,V ⊲(TS𝑉𝑂𝐶𝑆1,𝑅𝑉𝑉𝑂𝐶𝑆1,V OTT VOCS,𝑉𝐶𝑆1,C) 𝑉 𝐶𝑆𝑌𝑜𝑛𝑒 𝑉𝑂𝐶𝑆

𝑉|≡VOCS |∼ (TS𝑉𝑂𝐶𝑆1,𝑅𝑉𝑉𝑂𝐶𝑆1,V OTT VOCS, 𝑉𝐶𝑆1,C)

According to P15, P18 and rule 3, we derive the following

V8:
𝑉|≡#(TS𝐶𝑆1,𝑅𝑉𝐶𝑆1,)

𝑉|≡#(TS𝐶𝑆1,𝑅𝑉𝐶𝑆1,V OTT VOCS, 𝑉𝐶𝑆1,C)

According to P4, P16, P25, P28, V7, V8, and rule 2, we derive the following

V9:

𝑉|≡#(TS𝐶𝑆1,𝑅𝑉𝐶𝑆1,V OTT VOCS,C),V|≡VOCS~(TS𝐶𝑆1,𝑅𝑉𝐶𝑆1,V OTT VOCS,C)

𝑉|≡VOCS|≡(TS𝐶𝑆1,𝑅𝑉𝐶𝑆1,V OTT VOCS ,C)

According to V9, P17, P26 and rule 4, we derive the following:

V10:
𝑉 |VOCS|⇒ 𝑅𝑉𝐶𝑆1,C V |≡ VOCS|≡ 𝑅𝑉𝐶𝑆1,𝐶

𝑉|≡ 𝑅𝑉𝐶𝑆1,𝐶

According to M3:

V11 VOCS ◃(VIDR, OTT, TSV2, RVV2, Ri, Ri+1) VXfour

According to P5, P19, P29, and Rule 1, we derive the following

V12:

𝑉𝑂𝐶𝑆|≡V VXfour VOCS ,VOCS ⊲(VIDR, V OTT VOCS,TS𝑉2,𝑅𝑉𝑉2,𝑅1,𝑅𝑖+1) 𝑉 VXfour 𝑉𝑂𝐶𝑆

𝑉𝑂𝐶𝑆|≡V |∼ (VIDR, V OTT VOCS,TS𝑉2,𝑅𝑉𝑉2,𝑅1,𝑅𝑖+1)

426

According to P10, P14, and rule 3, we derive the following

V13:
𝑉𝑂𝐶𝑆|≡#(𝑇𝑆𝑉2 𝑎𝑛𝑑 𝑅𝑉𝑉2)

𝑇𝐴|≡#|(VIDR, V OTT VOCS,TS𝑉2,𝑅𝑉𝑉2,𝑅1,𝑅𝑖+1)

According to P11, P20, P21, P23, P30, V12, V13, and rule 2, we derive the following

V14:

𝑉𝑂𝐶𝑆|≡#(VIDR, V OTT VOCS,TS𝑉2,𝑅𝑉𝑉2,𝑅1,𝑅𝑖+1),V|≡VOCS~(VIDR, V OTT VOCS,TS𝑉2,𝑅𝑉𝑉2,𝑅1,𝑅𝑖+1)

𝑉𝑂𝐶𝑆|≡V|≡(VIDR, V OTT VOCS,TS𝑉2,𝑅𝑉𝑉2,𝑅1,𝑅𝑖+1)

According to V14, P12, P22, P24, and rule 4, we derive the following:

V15:
VOCS |≡V|⇒ 𝑅𝑉𝑣2,𝑅1,𝑅𝑖+1,VOCS |≡ V |≡ 𝑅𝑉𝑣2,𝑅1,𝑅𝑖+1

VOCS|≡ 𝑅𝑉
𝑣2,𝑅𝑉𝑣2,𝑅1,𝑅𝑖+1

Based on P21, P23, V15, we can derive

V16: VOCS| ≡ | ≡ (V VOCS) (Goal 1_1)

Based on P22, P24, V15, and V16, we derive the following

V17: VOCS|≡ (V VOCS) (Goal 1_2)

As session key ssk = H (Ri|| (RV’VI1|| RV’VI2 ||RVCS1) and in combination with V4 and

V14 we can derive

V18: VOCS| ≡V |≡ (V VOCS) (Goal 2_1)

ssk

Ri,Ri+1

Ri,Ri+1

427

As session key ssk= H (Ri|| (RV’VI1|| RV’VI2 ||RVCS1) and combining with P31, V18, and

Rule 4

V19: VOCS|≡ (V VOCS) (Goal 2_2)

 As session key ssk = H (Ri|| (RV’VI1|| RV’VI2 ||RVCS1) and combining with V9 we can

derive

V20: V ≡VOCS|≡ (V VOCS) (Goal 2_3)

As session key SK H (Ri|| (RV’VI1|| RV’VI2 ||RVVOCS1) and combining with P32, V20, and

Rule 4.

V21: V|≡ (V VOCS) (Goal 2_4)

As OTTnew = H (OTT|| RVVi2|| C) and in combination with V4, V14 we can derive

V22: VOCS| ≡ V |≡ (V VOCS) (Goal 3_1)

ssk

ssk

 ssk

OTTnew

428

As OTTnew = H (OTT|| RVVi2|| C) and combining with P33, V22, and Rule 4, we can

drive

 V23: VOCS|≡ (V VOCS) (Goal 3_2)

 As OTTnew = H (OTT|| RVVi2|| C) and combining with V9 we can derive

V24: V |≡VOCS|≡ (V TA) (Goal 3_3)

 As OTTnew = H (OTT|| RVVi2|| C) and combining with P34, V24, and Rule 4 we can

drive.

V25: V|≡ (V VOCS) (Goal 3_4)

The above logic proves that the proposed protocol achieves Goals 1.1 to 1.2, 2.1

to 2.4, and 3.1-3.4 successfully. In other words, the proposed protocol achieves mutual

authentication and secure session key agreement between V and VOCS. In summary, by

achieving all the goals mentioned above, we demonstrate the validity of our proposed

protocols. We proved that the presented three protocols are a secure mechanism to

achieve mutual authentication and secret key generation to secure the communication

between the involved parties.

OTTnew

OTTnew

OTTnew

429

6.7.1.1.2.2.2 Phase 2: D-VOCS authentication

In this section, we use BAN logic to verify the legitimacy of the authentication

parameter ZU2 shared between driver and VOCS, which communicate in the presented

protocol. To ensure the security of the proposed protocol under BAN logic, it needs to

satisfy a set of security goals. The following section defines the main goals of the

analysis of the presented authentication scheme.

6.7.1.1.2.2.2.1 Goals identification

Goal 1: ZU1 is well protected and believed by Di and VOCS.

G1_1: VOCS believes that the Di believes that the ZU1 is a securely shared parameter

between Di and VOCS.

 VOCS| V and Di|≡ (Di VOCS)

G1_2: VOCS believes that ZU1 is a securely shared parameter between Di and VOCS.

 VOCS|≡ (Di VOCS)

G2_1: Di believes that the VOCS believes the UVi is a securely shared parameter

between Di and VOCS.

Di| VOCS |≡ (Di VOCS)

G2_2: Di believes that UVi is a securely shared parameter between Di and VOCS.

Di|≡ (Di VOCS)

6.7.1.1.2.2.2.2 Messages idealization

First, we transferred all transmitted messages into idealized forms as follows:

ZU1

ZU1

UVi

UVi

430

M1: Di VOCS: ({VIDR, TSvi, Ri,OTT, FP, PUi, Di VOCS})ssk

M1: VOCS Di: ({TSCS1, Di VOCS})ssk

6.7.1.1.2.2.2.3 Main assumption

The second step is to define some assumptions as initiative promises. The fundamental

assumptions of the presented authentication scheme is as follows:

P1: VOCS believes that ssk is a secure shared parameter between V and VOCS

VOCS| ≡ (V VOCS)

P2: VOCS believes V believes that ssk is a secure shared parameter between V and

VOCS.

VOCS | ≡ V| ≡ (V VOCS)

P3: V believes that ssk is a secure shared parameter between V and VOCS

V| ≡ (V VOCS)

P4: V believes VOCS believes that ssk is a secure shared parameter between V and

VOCS.

ZU1

UVi

 ssk

ssk

 ssk

ssk

431

V | ≡ V| ≡ (V VOCS)

P5: VOCS believes TSV1 is fresh.

VOCS| ≡ #(TSV1)

P6: V believes TSCS1 is fresh.

V| ≡ #(TSCS1)

P7: VOCS believes that Di believes ZU1

VOCS| ≡ Di | ≡ ZU1

P8: VOCS believes that Di has a jurisdiction over ZU1

VOCS| ≡ Di ⇒ ZU1

P9: Di believes that VOCS believes UVi

Di| ≡ VOCS | ≡ UVi

P10: Di believes that VOCS has a jurisdiction over UVi

Di| ≡ VOCS ⇒ UVi

P11: VOCS believes VIDR is a secure shared parameter between V and VOCS.

VOCS | ≡ (V VOCS)

VIDR

432

P12: VOCS believes V believes that VIDR is a secure shared parameter between V and

VOCS.

VOCS | ≡ V| ≡ (V VOCS)

P13: VOCS believes that Di believes FP

VOCS| ≡ Di | ≡ FP

P14: VOCS believes that Di has a jurisdiction over FP

 VOCS| ≡ Di ⇒ FP

P15: VOCS believes that Di believes PUi

VOCS| ≡ Di | ≡ PUi

P16: VOCS believes that Di has a jurisdiction over PUi

VOCS| ≡ Di ⇒ PUi

P17: VOCS believes that V believes Ri

VOCS| ≡ V | ≡ Ri

P18: VOCS believes that V has a jurisdiction over Ri

VOCS| ≡ V ⇒ Ri

P19: VOCS believes that OTT is a secure shared parameter between V and VOCS

V| ≡ (V VOCS)

VIDR

 OTT

433

P20: VOCS believes V believes that OTT is a secure shared parameter between V and

VOCS.

V | ≡ VOCS| ≡ (V VOCS)

P21: V believes that OTT is a secure shared parameter between V and VOCS

VOCS| ≡ (V VOCS)

P22: V believes V believes that OTT is a secure shared parameter between V and VOCS.

VOCS | ≡ V| ≡ (V VOCS)

6.7.1.1.2.2.2.4 Analysis of D-VOCS authentication phase

The third step is to start analyzing the authentication scheme to prove that the

proposed scheme achieves mutual authentication between Di and VOCS.

According to M1:

V1: VOCS◃({VIDR, TSvi, U1, FP, PUi, Di VOCS})ssk

According to P1, and Rule 1, we derive the following

V2:

𝑉𝑂𝐶𝑆|≡V 𝑠𝑠𝑘 VOCS ,VOCS ⊲(𝑉𝐼𝐷𝑅, 𝐷𝑖 𝑍𝑈1 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1,Ri,OTT,FP,PUi) 𝑉 𝑠𝑠𝑘 𝑉𝑂𝐶𝑆

𝑉𝑂𝐶𝑆|≡V |∼ ((𝑉𝐼𝐷𝑅, 𝐷𝑖 𝑍𝑈1 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1,Ri,OTT,FP,PUi)

ZU1

OTT

 OTT

OTT

434

According to P5 and rule 3, we derive the following

V3:
𝑉𝑂𝐶𝑆|≡#(𝑇𝑆𝑉1)

𝑉𝑂𝐶𝑆|≡#|(𝑉𝐼𝐷𝑅, 𝐷𝑖 𝑍𝑈1 𝑉𝑂𝐶𝑆,𝑇𝑆
𝑉1

,Ri,OTT,FP,PUi)

According to P2, P7,P12,P13,P15,P17,P20, V2,V3, and rule 2, we derive the following

V4:

𝑉𝑂𝐶𝑆|≡#(𝑉𝐼𝐷𝑅, 𝐷𝑖 𝑍𝑈1 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1,Ri,OTT,FP,PUi),VOCS|≡V and Di~(𝑉𝐼𝐷𝑅, 𝐷𝑖 𝑍𝑈1 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1,Ri,OTT,FP,PUi)

𝑉𝑂𝐶𝑆|≡V and Di|≡(𝑉𝐼𝐷𝑅, 𝐷𝑖 𝑍𝑈1 𝑉𝑂𝐶𝑆,𝑇𝑆𝑉1,Ri,OTT,FP,PUi)

According to P18, V4 and rule 4, we derive the following:

V5:
VOCS |≡V| ⇒ 𝑅𝑖 ,VOCS |≡ V |≡ Ri

VOCS|≡ Ri

According to P8, P13, P16, V4 and rule 4, we derive the following:

V6:
VOCS |≡Di|⇒ 𝑍𝑈1,𝐹𝑃,𝑃𝑈𝑖 VOCS |≡ V |≡ 𝑍𝑈1,𝐹𝑃,𝑃𝑈𝑖

VOCS|≡ 𝑍𝑈1,𝐹𝑃,𝑃𝑈𝑖

According to M2, we get

V7: V ◃({TSCS1, Di VOCS})ssk

 According to P3, and Rule 1, we derive the following

V8
𝑉|≡V 𝑠𝑠𝑘 VOCS ,V ⊲(TS𝐶𝑆1,VOCS 𝑈𝑉𝑖 Di) 𝑉 𝑠𝑠𝑘 𝑉𝑂𝐶𝑆

𝑉|≡VOCS |∼ (TS𝐶𝑆1,VOCS 𝑈𝑉𝑖 Di)

According to P6 and rule 3, we derive the following

UVi

435

 V9:
𝑉|≡#(TS𝐶𝑆1)

𝑉|≡#(TS𝐶𝑆1,VOCS 𝑈𝑉𝑖 Di)

According to P4, P9 and rule 2, we derive the following

V10:

𝑉|≡#(TS𝐶𝑆1,VOCS 𝑈𝑉𝑖 Di),V|≡VOCS~TS𝐶𝑆1,VOCS 𝑈𝑉𝑖 Di)

𝑉|≡VOCS|≡(TS𝐶𝑆1,VOCS 𝑈𝑉𝑖 Di)

According to V10, P10, and rule 4, we derive the following:

V11:
𝑉 |VOCS|⇒ 𝑈𝑉𝑖 ,V |≡ VOCS|≡ 𝑈𝑉𝑖

𝑉|≡ 𝑈𝑉𝑖

Based on P7, V4, we can derive

V12: VOCS|≡ V |≡ (V VOCS) (Goal 1_1)

Based on P8, V5, V6 and V12, we derive the following

V13: VOCS|≡ (V and Di VOCS) (Goal 1_2)

Based on P9, V10, we can der

V14: V|≡ VOCS |≡ (V VOCS) (Goal 2_1)

Based on P10, V11, and V14, we derive the following

V15: V|≡ (V VOCS) (Goal 2_1)

ZU1

ZU1

UVi

UVi

436

The above logic proves that the proposed protocol achieves Goals 1.1 to 1.2 and

2.1 to 2.2 successfully. In other words, the proposed protocol achieves mutual

authentication between Di and VOCS. In summary, by achieving all the goals mentioned

above, we demonstrate the validity of the proposed protocol.

6.7.1.2 Informal security analysis

6.7.1.2.1 Security properties assessment

The following section presents a detailed security analysis of the security

properties of the proposed scheme. It demonstrates how the proposed scheme satisfies the

security requirements for mutual authentication, session key agreement and resists

various kinds of known attacks. Then, a comparison with other related schemes is

presented.

6.7.1.2.1.1 Protocol 1: V- TA mutual authentication

6.7.1.2.1.1.1 Mutual authentication

V and TA authenticate each other during the mutual authentication by generating

and verifying the correctness X2, X4Y3, Y6, and generating the ssk. An adversary can’t

generate VTA = H (TAIDR || MSKTA || VIDR||RTA) without knowing the VIDR of V, the

TAIDR, MSKTA of the TA and the PUF response (RTA) of the TA. Furthermore, the

adversary will not be able to generate X2 without having VTA, RVVi1 VTA1, and VIDR and

can’t generate X4 without having VIDR, RVVi2 and CHXx
i+1. The generation of CHXx

i+1

requires the generation of the PUF response (Ri) that can be generated only by V.

Additionally, the adversary cannot generate Y3 without having C, Y1, RVTA1, and RVVi1’.

Y1 consists of both VTA1’ and OTPVi. Furthermore, the adversary can’t generate Y6

437

without having RVTA2, Ri, RVvi2, C, and OTPVi. In summary, VTA1’, OTPVi, CHXxi are

considered secured parameters between V and TA. Ri is a value that can only be

generated by V and RTA can only be generated by the TA. As a result, the proposed

scheme can achieve mutual authentication between V and TA.

6.7.1.2.1.1.2 Session key agreement and forward/backward security

After completing the mutual authentication phase, V and the TA establish the

shared secret key ssk. The ssk is a combination of RVVi1, RVVi2, RVTA1, and Ri. The ssk

will be generated locally ssk = H (RVVi1 || RVVi2 || RVTA1 ||Ri). The secrecy of the ssk

depends on the secrecy of RVVi1, RVVi2, RVTA1, and Ri. Because all those parameters are

randomly selected for every new authentication session, the disclosed ssk will not cause

the compromise of any future ssk. The forward/backward security property's objective is

to ensure that any past or future shared secret keys will not be affected when any ssk is

exposed. Even if an adversary obtains ssk of a session, he/she can’t compute any of the

past. Future shared secret keys by using the disclosed ssk because the ssk is protected by:

first, the uniqueness of the Ri where each CRP will be used only one time. The

corresponding responses can’t be replicated or predicted because they are unique for each

V because of the nature of the PUF. Second: the randomization of the RVVi1, RVVi2, and

RVTA1. As a result, the proposed scheme achieves the security of ssk.

6.7.1.2.1.1.3 Anonymity unlinkability and untraceability properties

Anonymity is of paramount importance to the IoVs. The identities of the vehicles

need to be hidden to avoid profiling. For fully protected V privacy, strong anonymity

with unlinkability is required. The V’s real identity VIDR is not transmitted during all

phases in clear text format in the proposed protocol. Therefore, even if the adversary

438

eavesdrops on all communication messages, it is impossible to obtain the real identity of

Vi. In addition, the new alias ID of the vehicle VIDAnew = H (C|| VIDA) cannot be

regenerated without knowledge of C. Moreover, because C is fresh in each session, the

attacker cannot link any two different VIDAnew’s to the same Vi. By using a new VIDAnew

for each authentication session, the adversary will not be able to decide whether these

authentication messages are from the same Vi or not. This means that Vi cannot be linked

to different sessions. Consequently, the proposed protocol provides anonymity and

unlinkability, and the adversary cannot trace the vehicles by intercepting messages.

6.7.1.2.1.1.4 Database attack

Suppose any Vi or the TA is compromised, and the adversary can steal VTA,

VIDR CHX, and the OTP from the Vi’s or the TA’s database to impersonate the vehicle

or the TA. In that case, the fake vehicle or the fake TA will fail the CRP verification

process.

6.7.1.2.1.1.5 Brute force attack

The shared secret key ssk is generated locally by both the vehicle and the TA

using the random secret parameters RVN1, RVN2, RVMG1, and Ri. Because this ssk

depends on random parameters, the adversary cannot obtain it from the protocol. The

probability of guessing is so negligible that the adversary will fail to guess the shared

secret key's correct parameters, given that this ssk changes in every session.

6.7.1.2.1.1.6 Replay attack

To avoid the replay attack where an adversary tries to delay or repeat previously

transmitted packets, the proposed protocol uses fresh nonce values and TS each time in

439

each message during the authentication process. The sender node generates the timestamp

TS and then inserts the transmitted message in an encrypted format to ensure the attacker

cannot replace it. Before trusting the freshness of the message, the receiver first verifies

the timeliness of the timestamp. If the set threshold ΔT is exceeded, the receiver will

reject the request and terminate the current session. If it is within ΔT, the receiver will

calculate the verification message based on the received timestamp and the other message

parameters to verify if it is equal to the received message. If they are not equal, the

receiver will still reject the current session request. Therefore, if an adversary replays an

intercepted message from the previous session, the other party will detect that the

message is outdated and immediately terminate the session. Therefore, the protocol can

be protected from replay. On another side, each CRP of the V is used only one time to

ensure security against replay attacks. Hence, the proposed protocol protects against the

replay attack

6.7.1.2.1.1.6 Eavesdropping attack

During the authentication phase, the adversary can intercept messages transmitted

between Vi and the TA. All the intercepted messages will be useless because they are

sent in an encrypted format using XOR and a one-way hash function. For the attacker to

verify the received parameters, he/she needs to know the OTP, CHX, VTA, VIDR, TAIDR,

MSKTA, RTA, and Ri, which are either composed of random values or are protected and

out of the adversary's reach. The only two parameters that are sent in clear text are the

Alias identities and session ID. The Alias identities and the session ID do not pose any

threat because this information is constructed from random parameters that change in

every session. The adversary will not be able to link the message to a particular device

440

because the proposed protocol uses alias identities that change in every session.

Therefore, the proposed protocol protects against eavesdropping attacks.

6.7.1.2.1.1.7 Impersonation attack

In this attack, when the intruder eavesdrops on the messages transmitted from Vi

to TA or vice versa, he/she can use the intercepted information for malicious actions,

such as impersonating the vehicle or the TA and sending fabricated messages.

6.7.1.2.1.1.7.1 TA impersonation

According to the authentication phase in the proposed protocol, if an adversary

wants to impersonate to be the TA, he/she needs to construct a message M2 <TAIDA, SID,

TSTA1, C’, Y2, Y3>. To construct this message, the adversary needs to have MSKTA, VIDR,

RTA, TAIDR, and the OTPvi, which are considered to be well protected, and the adversary

can’t compute the PUF response (RTA) of the TA. Also, for the adversary to construct M4

< TAIDA, TSTA2, Y5, Y6>, he/she needs to be aware of the values of Ri,CHXx, and the

CHXx+1
, which are well protected too. Therefore, the message sent by the adversary

cannot pass the verification of V, so the vehicle will immediately terminate the session

with the TA. Consequently, the proposed protocol can resist TA impersonation attacks.

6.7.1.2.1.1.7.2 Vehicle impersonation

To impersonate the vehicle, an adversary should intercept the messages

exchanged in the previous sessions. This attack will fail for numerous reasons. First, the

Alias ID of the vehicle changes every authentication session. Second, due to PUF that is

built into the vehicle and the characteristics of PUF, the adversary will not be able to

generate legitimate responses. Because the PUF responses are unique for each device,

441

the adversary will not be able to replicate the response even if he/she has the challenge.

Third, if an adversary wants to impersonate the vehicle, he/she needs to construct a

message M1<VIDA, TSVi, X1, X2>. In order to construct M1, the adversary needs to know

VTA1, and the VIDR, which are considered secured parameters and never be transmitted in

clear text format. Also, for the adversary to construct M3 < VIDA, TSVi2, X4, X5>., he/she

needs to have R, ChX, and the CHX+1, which are well-protected. Furthermore, the

message is sent in an encrypted format using The Xor function and the one-way hash

function of the message. Finally, the adversary cannot derive the secret values RVvi1,

RVvi2, RVTA1, RVTA2 to calculate the session key. Thus, our protocol protects against the

impersonation attack.

From another perspective, even if the adversary succeeded in compromising a

vehicle, the adversary’s further attacks using the compromised vehicle only affect the

communication related to that vehicle. Because each vehicle has its own secret key, the

adversary can’t derive other non-compromised vehicles’ keys without knowing those

vehicles' random information. Therefore, further attacks will not affect other

communications. As a result, the proposed scheme is resistant to vehicle impersonation

attacks.

6.7.1.2.1.1.8 Man-in-the-middle attack

Assuming that M1 < VIDA, TSVi1, X1, and X2 > has been tampered by an adversary

M1* < VIDA
*, TSVi1

*
, X1

*
, X2

*>. After receiving the message, the adversary will first need

to have VTA1, which is a secure parameter and requires the PUF response (RTA) of the TA

to compute X1. Also, the adversary needs the VTA1 and VIDR the to calculate X2 < H

(VIDR || RVvi1 || VTA1|| TSVi1) >. Without all secret parameters, the adversary will not

442

generate a legitimate X2; if the message has been tampered with, the vehicle is considered

illegal, and the TA will terminate the session immediately.

Suppose the message M2 < TAIDA, SID, TSTA1, C’, Y2, Y3 > has been tampered

with an adversary and sent to V M2* < TAIDA
*, SID

*
, TSTA1

*
, C’*, Y2

*
, Y3

*>. After

receiving the message, the adversary will first need to compute VTA1< H (MSKTA || VIDR ||

TAIDR|| RTA > using its master secret key, the vehicle's real identity of the trusted

authority, and the PUF response of the TA. Because these four parameters are secret and

are only known to the TA, the adversary will not be able to correctly calculate VTA.

Consequently, it will be impossible to calculate the valid Y3 to pass the vehicle

verification.

As for the message M3 < VIDA, TSVi2, X3, X4 > suppose an adversary tempered the

message M3. Because each vehicle has a PUF chip and each chip is unique, the adversary

will not be able to replicate or predict the response (Ri) of the real vehicle. Consequently,

the adversary will not generate R and calculate the Chained hash PUF (CHXx+1).

Therefore, the adversary will not be able to construct a generate X3 and X4 and send a

legitimate message to the TA that can pass the TA’s vehicle authenticate. So, o after

receiving the message M3* and verifying it, TA will terminate the session with the

vehicle. Finally, assume M4 < TAIDA, TSTA2, Y5, Y6 > was tempered by an adversary M4*

< TAIDA
*
, TSTA2

*, Y5
*
, Y6

*>. Because the adversary does have Ri, he/she will not be able

to construct Y4. In summary, the proposed protocol can resist all message modification

attacks. The proposed protocol can resist all message modification attacks.

443

6.7.1.2.1.1.9 Modeling attacks

It is an attack where the adversary collects a large number PUF CRPs and uses a

regression algorithm to build a model and predict responses for new challenges. All the

challenges and the responses are transferred in an encrypted format by using a one-way

hash function. Therefore, the adversary will not be able to collect enough useful CRPs to

build a model and predict responses to new challenges.

6.7.1.2.1.1.10 Physical attack

According to the characteristics of PUF, any change or damage on the device with

built-in PUF will render the PUF useless. Therefore, the physical attacks cannot obtain

any useful information. We can conclude that the proposed protocol can ensure the

physical security of the system.

6.7.1.2.1.1.11 Device counterfeit/cloning

Both the TA and vehicle are authenticated using the PUF. PUF responses are

treated as hardware fingerprints that cannot be duplicated or cloned. Therefore, using the

PUF, the vehicle and the TA cannot be cloned.

6.7.1.2.1.1.12 Session key agreement

After confirming the identity of both the vehicle and the TA, each side will

generate the session key ssk = H (Ri || RVvi1 || RVTA2
’ || (RVvi2 || RV’TA1). In summary,

the session key between V and TA is established in the proposed protocol.

6.7.1.2.1.2 Protocol 2: Vehicle-Driver-VOCS authentication

6.7.1.2.1.2.1 Phase 1: V- VOCS mutual authentication

444

6.7.1.2.1.2.1.1 Mutual authentication

 V and the VOCS authenticate each other during the mutual authentication by

generating verifying the correctness VX3, VX8, CSY3. An adversary cannot prepare the

authentication request message without having VCS1and VCS2 that are known only by the

vehicle. Therefore, the adversary will not generate VX3 without having VIDR, VCS1,

OTTvi, which are considered secure parameters. The adversary also cannot generate VX8

without having Ri that can be generated only by V. Additionally, the adversary cannot

generate CSY3 without computing VCS1 = H (VOCSIDR || MSKVOCS || VIDR||RCS) and

VCS2= H (VCS1 || VTID) because VOCSIDR, MSKVOCS, and VTID are only known to the

VOCS. The RCS can only be generated by the VOCS. In summary, VCS2 and VCS2 are

considered secure parameters that are only known by the vehicle and need to be

computed by the VOCS. OTT is regarded as a secure parameter between V and VOCS.

Ri and Ri+1 are values that V can only generate. RCS is a value that can be generated only

by VOCS. As a result, the proposed scheme can achieve mutual authentication between

V and VOCS.

6.7.1.2.1.2.1.2 Session key agreement and forward/backward security

After completing the mutual authentication phase, the shared secret key ssk is

established between V and the VOCS. The ssk is a combination of RVVi1, RVVi2, RVCS1,

and Ri. The ssk will be generated locally ssk = H (RVVi1 || RVVi2 || RVCS1 ||Ri). The

secrecy of the ssk depends on the secrecy of RVVi1, RVVi2, RVCS1, and Ri. Because all

those parameters are randomly selected for every new authentication session, the

disclosed ssk will not cause the compromise of any future ssk. The forward/backward

security property's objective is to ensure that any past or future shared secret keys will not

445

be affected when any ssk is exposed. Even if an adversary obtains ssk of a session, he/she

cannot compute any of the past or future shared secret keys. The ssk keys are protected

by: (1) uniqueness of the Ri where each CRP will be used only one time, and (2) the

randomization of RVVi1, RVVi2, and RVVOCS1. As a result, the proposed scheme achieves

the security of ssk.

6.7.1.2.1.2.1.3 Anonymity unlinkability, and untraceability properties

Anonymity is essential to protect user privacy and security. The identities of the

vehicles need to be hidden to avoid profiling. For fully protected V privacy, strong

anonymity with unlinkability is required. In the proposed protocol, the V’s real identity

VIDR is not transmitted during all phases in clear text format. Therefore, even if the

adversary eavesdrops on all communication messages, it is impossible to obtain the real

identity of Vi. In addition, the new alias ID of the vehicle VIDAnew = H (VIDA || C|| OTT).

Moreover, because C and OTT are fresh in each session, the attacker cannot link any two

different VIDAnew’s to the same Vi. By using a new VIDAnew for each authentication

session, the adversary will not be able to decide whether these authentication messages

are from the same Vi or not. This means that Vi cannot be linked to different sessions.

Consequently, the proposed protocol provides anonymity and unlinkability, and the

adversary cannot trace the vehicles by intercepting messages.

6.7.1.2.1.2.1.4 Session key security

The shared secret key ssk is generated locally by both the vehicle and the VOCS

using the random secret parameters RVV1, RVV2, RVCS1, and Ri where ssk = H (RVV1||

RVV2|| RVCS1|| Ri). Because the ssk depends on random parameters, the adversary cannot

obtain it from the protocol because the four random parameters are transferred in an

446

encrypted format. Also, the Ri cannot be predicted or replicated because it is unique per

PUF chip. The probability of guessing it is so negligible that the adversary will fail to

guess the shared secret key's correct parameters, given that this ssk changes in every

session. Thus, the proposed protocol is secure to session key disclosure attacks.

6.7.1.2.1.2.1.5 Replay attack

During the replay attack, the adversary may attempt to delay or repeat previously

transmitted authentication messages; the proposed protocol uses fresh nonce values and

TS each time in each message during the authentication process. The sender node

generates the timestamp TS and is then inserted in the transmitted message to ensure the

attacker cannot replace it. Before trusting the freshness of the message, the receiver first

verifies the timeliness of the timestamp. If the set threshold ΔT is exceeded, the receiver

will reject the request and terminate the current session. If it is within ΔT, the receiver

will calculate the verification message based on the received timestamp and the other

message parameters to verify if it is equal to the received message. If they are not equal,

the receiver will still reject the current session request. Therefore, if an adversary replays

an intercepted message from the previous session, the other party will detect that the

message is outdated and immediately terminate the session. Therefore, the protocol is

protected from replay. On another side, each CRP is used only one time to ensure

security against replay attacks. Hence, the protocol is protected against replay attacks.

6.7.1.2.1.2.1.6 Eavesdropping attack

During the authentication phase, the adversary can intercept messages transmitted

between Vi and the VOCS. All the intercepted messages will be useless because they are

sent in an encrypted format using XOR and a one-way hash function. For the attacker to

447

verify the received parameters, he/she needs to know the OTT, VCS1, VCS2, VIDR,

VOCSIDR, MSKVOCS, Ri, RCS, and C that are either composed of random values or are

protected and out of the adversary's reach. The only two parameters that are sent in clear

text are the Alias identities and session ID. The Alias identities and the session ID do not

pose any threat because this information is constructed from random parameters that

change in every session. The adversary will not be able to link the message to a particular

device because the proposed protocol uses alias identities that change in every session.

Therefore, the proposed protocol protects against eavesdropping attacks.

6.7.1.2.1.2.1.7 Impersonation attack

In this attack, the adversary eavesdrops on the messages transmitted from Vi to

VOCS or vice versa, he/she can use the intercepted information and attempts to

masquerade to conduct malicious actions, such as impersonating the vehicle or the VOCS

and sending fabricated messages.

6.7.1.2.1.2.1.7.1 VOCS impersonation

According to the authentication phase in the proposed protocol, if an adversary

wants to impersonate to be the VOCS, he/she needs to construct a message M2 <

VOCSIDA, SID, TSVi1, CSY2, CV, CSY3>. The adversary needs to have MSKVOCS,

VIDR, VTID, and the OTT, which are well-protected to construct this message. Also, due

to PUF that is built into the VOCS and the characteristics of PUF, the adversary will not

be able to generate a legitimate RCS response. Therefore, the message sent by the

adversary cannot pass the verification of V, so the vehicle will immediately terminate the

session with the VOCS. Consequently, the proposed protocol can resist VOCS

impersonation attacks.

448

6.7.1.2.1.2.1.7.2 Vehicle impersonation

To impersonate the vehicle, an adversary should intercept the messages

exchanged in the previous sessions. This attack will fail for numerous reasons. First, the

Alias ID of the vehicle changes every authentication session. Second, due to PUF that is

built into the vehicle and the characteristics of PUF, the adversary will not be able to

generate legitimate responses. Because the PUF responses are unique for each device,

the adversary will not be able to replicate the response even if he/she has the challenge.

Third, if an adversary wants to impersonate the vehicle, he/she needs to construct a

message M1 < VIDA, TSVi1, VX2, VX3 >. To construct M1, the adversary needs to have

VCS1, VCS2, VIDR, and OTT well-protected. Also, M3 < VIDA, TSVi2, VX5, VX6, VX7,

VX8>. To construct this message, the adversary needs to have Ri. The adversary will not

be able to generate Ri due to the PUF characteristics. Furthermore, all messages are sent

in an encrypted format using the XOR function and the one-way hash function. Thus, our

protocol protects against the impersonation attack.

From another perspective, even if the adversary succeeded in compromising a

vehicle, the adversary’s further attacks using the compromised vehicle only affect the

communication related to that vehicle. Because each vehicle has its own secret keys, the

adversary can’t derive other non-compromised vehicles’ keys without knowing those

vehicles' random information. Therefore, further attacks will not affect other

communications. As a result, the proposed scheme is resistant to vehicle impersonation

attacks.

449

6.7.1.2.1.2.1.8 Data modification attacks

Assuming that M1 < VIDA, TSVi1, VX2, VX3 > has been tampered by an adversary

M1* < VIDA
*, TSVi1

*
, VX2

*
, VX3

*
 >. After receiving the message, the adversary will first

need to have VCS1, VCS2, and OTTP, which are secure parameters to compute VX1 < H

(VCS2 || OTT)> and VX2 < VX1 ⊕ RVVi1>. Furthermore, without having all secret

parameters, the adversary will not be able to generate a legitimate VX3 < H (VIDR|| VCS1||

TSVi1 || RVVi1|| OTT)) >. If the message has been tampered with, the vehicle is considered

illegal, and the session will be terminated immediately by the VOCS.

Now suppose the message M2 < VOCSIDA, SID, TSVOCS1, CSY2, CV, CSY3> has

been tampered by an adversary and sent to V M2* < VOCSIDA
*, SID

*
, TSVOCS

*
, CSY2*,

CV*, CSY3
*
 >. After receiving the message, the adversary will first need to compute VCS1

< H (VOCSIDR || MSKVOCS || VIDR||RCS > and VCS2 <H (VCS1 || VTID > using its master

secret key (MSKVOCS), the real identity of the vehicle (VIDR), the real identity of the

VOCS (VOCSIDR), the PUF response of VOCS(RCS), and the vehicle type ID(VTID).

Because these parameters are secret and are only known to the VOCS, the adversary will

not correctly calculate VCS1 and VCS2. Also, the adversary will not be able to generate RCS

and to get OTT. Consequently, it will be impossible to calculate a valid CV. Finally,

without having all the above-mentioned secret parameters, the adversary will not

compute CSY3 to pass the vehicle verification.

As for the message M3 < VIDA, TSVi2, VX5, VX6, VX7, VX8> suppose the message

M3 was tampered with by an adversary. Because each vehicle has a PUF chip and each

chip is unique, the adversary will not be able to replicate or predict the response (Ri) of

the real vehicle. Consequently, the adversary will not be able to generate R and compute

450

VX4. Therefore, the adversary will not be able to construct a valid VX8 and send a

legitimate message to the VOCS that can pass the VOCS’s vehicle authenticate. So, after

receiving the message M3* and verifying it, VOCS will terminate the session with the

vehicle. In summary, the proposed protocol can resist all message modification attacks.

6.7.1.2.1.2.1.9 Modeling attacks

It is an attack where the adversary collects a large number PUF CRPs and uses a

regression algorithm to build a model and predict responses for new challenges. All the

challenges and the responses are transferred in an encrypted format by using a one-way

hash function. Therefore, the adversary will not collect enough useful CRPs to build a

model and predict responses to new challenges.

6.7.1.2.1.2.1.10 Physical attack

According to the characteristics of PUF, any change or damage on the device with

built-in PUF will render the PUF useless. Therefore, the physical attacks cannot obtain

any useful information. We can conclude that the proposed protocol can ensure the

physical security of the system.

6.7.1.2.1.2.1.11 Device counterfeit/cloning

Both the vehicle and the VOCS are authenticated using the PUF. PUF responses

are treated as hardware fingerprints that cannot be duplicated or cloned. Therefore, by

the use of the PUF, the vehicle and the VOCS cannot be cloned.

6.7.1.2.1.2.1.12 Session key agreement

At the end of the authentication phase, after confirming the identity of both the

vehicle and the VOCS, each side will generate the session key ssk =H (Ri|| RVvi1

451

RVCS1||RVvi2) In summary, the session keys between V and VOCS is established in the

proposed protocol.

6.7.1.2.1.2.2 Phase 2: Driver -VOCS mutual authentication

6.7.1.2.1.2.2.1 Mutual authentication

After completing the mutual authentication between V and VOCS completed, the

mutual authentication between the user (U) and the VOCS will be started with the help of

the V. User’s authentication will use a three-factor authentication process by using the

user’s password and biometrics combined with the PUF of V. U and the VOCS

authenticate each other during the mutual authentication by verifying the correctness DV3

and UVi. U will insert his/her username and password using the vehicle’s touch screen

and his/her fingerprint using the vehicle’s fingerprint scanner. The collected data will be

sent to the vehicle OBU through a secure channel. V will generate a timestamp,

calculates U1< (H (EID||Ri ||VIDR|| OTT)>, and computes ZU1<H (FP|| PUi>. Then, V

calculates DV1 and DV2. Then, V uses its shared secret key with the VOCS (ssk) to

encrypt the identity and the verification message before sending it to the VOCS.

Once the VOCS receives the message, it will use the ssk to decrypt the received

message. Then, VOCS will use the user ID and the vehicle ID to retrieve Ri, OTT, and

VIDR from its database, thereby calculating the verification message DV2
* =< H (VIDR

||TSvi1|| ZU1 || U1)> to authenticate U’s identity. Only the party with the secret values can

retrieve ZU1 from Dv1. Once the VOCS verify and authenticate the user, it will compute

UVi < H (Ri|| TSVocs1|| ZU1|| OTT)> and encrypt the verification message using its ssk

452

with the vehicle. When the vehicle receives the message, it will decrypt it using ssk and

calculate the verification message UVi* < H (Ri|| TSVocs1|| ZU1|| OTT)> to authenticate

VOCS’s identity. So, by verifying the correctness of UVi*, U can confirm the identity of

VOCS. Thus, U and VOCS complete the mutual authentication.

6.7.1.2.1.2.2.2 Resisting offline password guessing attacks

The password in the proposed protocol is included in ZU1 = H (FP|| PUi) and DV1

= ZU1 ⊕ U1. U1< (H (EID||Ri || VIDR||OTT)>. The EID is a fixed secret parameter stored

on the VOCS. The OTT is a secret parameter that is dynamically changing every

authentication session. Furthermore, Ri, which is a PUF response, cannot be obtained

and can’t be predicted by the adversary due to the unique nature of PUF. Consequently,

U1 cannot be calculated to complete the rest of the computation process.

Moreover, the DV2 is protected by the ssk between the vehicle and the VOCS. In

summary, the user’s password has two shields of protection through the xor function and

is encrypted by the ssk. Therefore, the adversary cannot guess the password of the user.

6.7.1.2.1.2.2.3 Anonymity unlinkability, and untraceability properties

Anonymity is essential to protect user privacy and security. The identity of the

user needs to be hidden to avoid profiling. The proposed protocol implements strong

anonymity with unlinkability to protect user’s privacy. The user's real identity (EID) is

transferred in hash and encrypted format using the ssk. Therefore, even if the adversary

eavesdrops on all communication messages, it is impossible to obtain the user's EID or

any other related data. Consequently, the proposed protocol provides anonymity and

unlinkability, and the adversary cannot trace the user by intercepting messages.

453

6.7.1.2.1.2.2.4 Replay attack

The proposed protocol uses fresh values and TS each time in each message during

the authentication process. The vehicle generates the timestamp TS and is then inserted in

the transmitted message to ensure the adversary cannot replace it. Before trusting the

freshness of the message, the receiver first verifies the timeliness of the timestamp. If the

set threshold ΔT is exceeded, the receiver will reject the request and terminate the current

session. If it is within ΔT, the receiver will calculate the verification message based on

the received timestamp and the other message parameters to verify if it is equal to the

received message. If they are not equal, the receiver will still reject the current session

request. Therefore, if an adversary replays an intercepted message from the previous

session, the other party will detect that the message is outdated and immediately

terminate the session. Therefore, the protocol is protected from replay. On another side,

each CRP and OTT are used only one time to ensure security against replay attacks.

Hence, our protocol protects against replay attacks.

6.7.1.2.1.2.2.5 Eavesdropping attack

During the authentication phase, the adversary can intercept messages transmitted

between Vi and the VOCS. All the intercepted messages will be useless because all of

them are sent in an encrypted format using the shared secret key (ssk) between Vi and the

VOCS. For the attacker to decrypt the message, he/she needs to guess the ssk that is fresh

for every authentication session and is assumed to be protected and out of the adversary's

reach. The only two parameters that are sent in clear text are the Alias identities and

session ID. The Alias identities and the session ID do not pose any threat because this

information is constructed from random parameters that change in every session. The

454

adversary will not be able to link the message to a particular user or vehicle because the

proposed protocol uses alias identities that change in every session. Therefore, the

proposed protocol protects against eavesdropping attacks.

6.7.1.2.1.2.2.6 Impersonation attack

In this attack, the adversary eavesdrops on the messages transmitted from Vi to

VOCS or vice versa. He/she can use the intercepted information and attempts to

masquerade to conduct malicious actions, such as impersonating the user, vehicle, or the

VOCS and sending fabricated messages.

6.7.1.2.1.2.2.6.1 Driver impersonation

According to the authentication phase, if the adversary wants to impersonate to be

the user (U), he/she needs to construct a message M1 =< VIDA, UI, {TSVi1, DV1, DV2} ssk >

to pass the VOCS’s verification. The proposed protocol does not require storing a user’s

data either on a user's personal device or the vehicle. Because the adversary can’t get the

user’s biometric or the user’s password from the user side and can’t get the Ri, OTT, or

the VIDR from the vehicle side, he/she will not be able to construct a valid U1 = < H

(EID||Ri || VIDR||OTT)>, DV1 = < ZU1 ⊕ U1>, and DV2 < H (VIDR || TSvi1|| ZU1 || U1)>.

Additionally, the adversary will not be able to predict the ssk that will be used to encrypt

the user’s authentication request message. Therefore, the adversary cannot impersonate

the user.

6.7.1.2.1.2.2.6.2 VOCS impersonation

According to the authentication phase in the proposed protocol, if an adversary

wants to impersonate to be the VOCS, he/she needs to construct a message M2 <

455

(VOCSIDA, TSVocs1, UVi} ssk) >. To construct this message, the adversary needs to have

OTT, TSCS1, ZU1, and Ri, which are considered to be well protected. Also, the adversary

needs to generate the PUF response (RCS), which is considered to be impossible due to

the nature of the PUF that can’t be replicated or predicted. Furthermore, the adversary

needs to know the ssk to encrypt the message before sending it out. Therefore, the

message sent by the adversary cannot pass the verification of the user’s vehicle, so the

vehicle will immediately terminate the user’s authentication session with the VOCS.

Consequently, the proposed protocol can resist VOCS impersonation attacks.

6.7.1.2.1.2.2.6.3 Vehicle impersonation

Due to the PUF nature, the adversary can’t obtain the response or even knows the

“challenge” that the vehicle received from the VOCS during their authentication process.

Also, if the adversary wants to impersonate the vehicle, he/she needs to know the OTT,

the VIDR, and the ssk to encrypt the message before sending it to the VOCS. In fact, the

adversary cannot derive the secret values, the session key (ssk) shared with Vi cannot be

generated, nor can message M1 < VIDA, UI, {TSVi1, DV1, DV2} ssk > be generated validly to

communicate with VOCS. The protocol can resist impersonation attacks from the

vehicle.

6.7.1.2.1.2.2.7 Data modification attacks

Assuming that M1 < VIDA, UI, {TSVi1, DV1, DV2} ssk > has been tampered with an

adversary M1* < VIDA
*, UI

*
 {, TSVi1

*, DV1
*, DV2

*} ssk >. After receiving the message, the

adversary will first need to have the ssk to decrypt the message. Also, the adversary needs

to know the OTT, Ri, EID, and the VIDR, which are considered secure parameters to

compute U1 < H (EID||VIDR || Ri || OTT)>. Additionally, the adversary needs to have the

456

user’s username, password, RCS, and fingerprint to construct ZU1 and DV1. Furthermore,

without having all secret parameters, the adversary will not be able to generate a

legitimate DV2 < H (VIDR || TSvi1|| ZU1 || U1)>> that is, if the message has tampered with,

the vehicle is considered to be illegal. The session will be terminated immediately by the

VOCS.

Now suppose the message M2 < VOCSIDA, SID
*, TSVocs1, UVi} ssk > has been

tampered with an adversary and sent to V M2* < VOCSIDA
*, SID

*
 , TSVocs1

*
 , UVi*}ssk* >.

After receiving the message, the adversary will first need to have ssk to decrypt the

message. The ssk is assumed to be protected and secure. Then the adversary needs to

compute U1 < H (EID||VIDR || Ri || OTT)> Because these parameters are secret and are

only known to VOCS and the vehicle, the adversary will not correctly calculate U1. Also,

it is impossible to replicate the user’s fingerprint. Finally, without having all the above-

mentioned secret parameters, the adversary will not be able to compute UVi to pass the

vehicle verification. In summary, the proposed protocol can resist all message

modification attacks.

6.7.1.2.1.2.2.8 Biometric privacy protection

 In the proposed protocol, the user biometric samples are processed on the cloud

side. There is no user biometric data stored or maintained on any user-related device or

on the vehicle. The biometric templates of the continuous biometric are stored on the

VOCS encrypted by ZU1. The user biometric is transferred in encrypted format using

both the xor function and the ssk between the Vi and the VOCS. This information does

not endanger biometric privacy, even if it is leaked. Therefore, the proposed protocol

supports biometric privacy protection.

457

6.7.1.2.1.2.2.9 Three-factor security

The proposed protocol employs three factors to achieve user authentication of the

user: biometric, password, and PUF response. Additionally, the proposed protocol

employs continuous biometric authentication that is considered another layer of ongoing

user authentication.

6.7.1.2.2 Comparison of security features

This section compares the proposed scheme security features with other related

authentication schemes from the literature [156],[155],[154],[150], and [157] Table 30

summarizes the comparison results of the proposed protocol with existing works against

the imperative security threats and accomplishes diverse security features. From table 30,

we can observe that the presented schemes in the literature satisfy most of the security

properties. However, none of them protects against vehicle sensors counterfeiting. All of

them depend on using CRPs that are generated outside the manufacturing process, so it

does not provide any means to verify the originality of the sensors. Also, protocol [150]

use the same alias ID for both the vehicle and RSU in every authentication session. This,

in turn, can lead to vehicle traceability and linkability.

Furthermore, most of the proposed protocols [156, 155, 150, 157] implement

computationally expensive cryptographic solutions such as elliptic curve cryptographic

system (ECC) and fuzzy extractors to satisfy the security properties. Furthermore, the

protocols [156,155, 150] depend on mobile devices and smart cards to authenticate users.

The use of smart cards makes the user’s sensitive data subject to being stolen or subject

458

to physical attacks that can corrupt the whole system. Moreover, none of the presented

protocols introduced using continuous biometrics to regularly verify the user’s identity to

establish ongoing trust and ensure that the received data is coming from the same user

initially authenticated.

Table 30: Security feature comparison of the proposed scheme with other related mutual

authentication and key agreement schemes.

Security

Property

Proposed

V-TA

Proposed

V-D-

VOCS

[156] [155] [154] [150] [157]

Mutual

Authenticatio

n

Yes Yes Yes Yes Yes Yes Yes

Replay attack Yes Yes Yes Yes Yes Yes Yes

Perfect

forward/back

ward secrecy

Yes Yes Yes Yes Yes Yes Yes

Anonymity

and

untraceability

Yes Yes Yes Yes Yes Yes No

Resisting

offline

password

guessing

attacks

Yes Yes Yes Yes NA Yes NA

Resisting Data

Modification

attacks

Yes Yes Yes Yes Yes Yes Yes

Resilience

against

TA/VOCS

impersonation

attacks

Yes Yes Yes Yes Yes Yes Yes

Resilience

against

Yes Yes Yes Yes Yes Yes No

459

vehicle

impersonation

attacks

Resilience

against User

impersonation

attacks

Yes Yes Yes Yes Yes NA NA

Physical and

cloning

attacks

Yes Yes Yes No Yes Yes Yes

Biometric

privacy

protection

Yes Yes Yes Yes Yes Na Na

Resisting

Vehicle

counterfeiting

Yes Yes No No No No No

Session key

agreement

Yes Yes Yes Yes Yes Yes Yes

As presented in table 30, the proposed scheme supports all the essential security

features: First, the proposed scheme does not require any secret key storage or secret key

sharing over the network. Second, all secret keys are computed locally on all the

communicating parties. Third, in the proposed scheme, the vehicles use their one-time

alias identity for each authentication session. Therefore, it will be difficult for an outside

adversary to comprehend the activities of the vehicle. Fourth, the proposed scheme uses

the PUF to protect the vehicles and VOCS against counterfeiting. Fifth, the proposed

scheme uses both static and continuous biometric for user authentication to ensure that

the received data belongs to the correct driver during the entire session.

From table 30, we can conclude that the proposed scheme can support all the

desired security properties, which are essential for IoV ecosystem security.

460

6.7.2 Performance Analysis

In this section, we present a performance analysis of the proposed scheme. The

performance analysis evaluates the storage requirements. Also, we analyze the presented

scheme's overhead and efficiency in terms of computational complexity and

communication cost and compare its computational complexity and communication cost

with the most relevant protocols in the literature proposed by [150], [154], [155] [156],

and [157].

6.7.2.1 Storage requirements

Table 31: Storage cost of our scheme

In the proposed scheme, each vehicle must store its real identity VIDR alias

identity VIDA, alias identities of VOCSIDA and TAIDA, authentication parameters VTA1,

VCS1, and VCS23, Chained hash CHX, one-time password OTP, and one-time token

(OTT). We use SHA-1 and SHA-2 as two examples of hash function, and the output of

SHA-1 is 128 or 160 bits and SHA-2 is 256 bits. By applying these settings, we obtain

|VIDA | = 128, |VOCSIDA| = |TAIDA| = | VIDR | = 8 bits, and |OTP| = |OTT| = | VTA1 | = VCS1

| = | VCS2 | CHX = 256 bits. Meanwhile, TA is required to store the tuple VIDA, VIDR,

Node Storage cost (in bits)

V 128 + 8 * 3 +256 * 6= 1688 b

TA 128 * 2 + 3 * 8 +2 * 256 = 792 b

VOCS 128 * 3 + 8 * 5 + 160 + 256 * 2 = 1096 b

461

TAIDA, TAIDR, OTP, and CHX. By applying these settings, we obtain |VIDA | = 128 bits,

|TAIDA| = | VIDR | = | TAIDR | = 8 bits, |OTP| = |CHX| = 256 bits, and CTA=128 bit. Finally,

VOCS is required to store the tuple VIDA, VIDR, VOCSIDA, VOCSIDR, EID, TID, Ui, OTT,

ZU2 and,BPUi. By applying these settings, we obtain |VIDA |= |Ui| = 128 bits, |VOCSIDA| =

|VOCSIDR| =| VIDR |= |EID| = |TID | = 8 bits, |BPUi| = 160 bits, Ccs = 128 bits, and |OTT| = |

ZU2| = 256 bits.

6.7.2.2 Computational complexity analysis

We compare the computation cost of the proposed scheme with other related

schemes [150], [154], [155], [156], and [157]. we do not consider XOR operations for

computational cost analysis because the time for executing a bitwise XOR operation is

negligible. To analyze the performance of the proposed scheme with respect to other

presented protocols in the literature, we conduct simulations of the cryptographic

operations using dedicated hardware device including laptop computer and Raspberry Pi.

Dell Inspiron Laptop with Intel Core i7, dual-core 2.7 GHz CPU, and 8 GB RAM to act

as the server. We used a Raspberry Pi 4 Model B with 64-bit quad-core cortex A-72

processor and 1 GB RAM to simulate the vehicle. We used PyCrytodome cryptographic

and Fastecdsa libraries in Python 3.6. For these results, we considered the 128-bit arbiter

PUF for PUF operation. The fuzzy extraction's execution time is almost the same as the

ECC point multiplication and the execution time for modular exponentiation is double the

time of the execution of the ECC point multiplication [58]. Table 32 presents the used

notation and the execution time of each operation.

462

Table 32: Execution Time of the cryptographic operations

Operation Computation Time on IoT Computation Time

on server

H: time for executing a one-way

hash function SHA (256)

0.002 ms .001ms

F: time for executing a fuzzy

extractor

5 ms 4 ms

EM: time for executing an ECC

point multiplication

5 ms 4 ms

EA: time for executing an ECC

point addition

5.5 ms 5 ms

EXP: time for a modular

exponentiation

10 ms 8 ms

HMAC: time for executing the

HMAC

2.7 ms 1.5 ms

ENC: Time for Executing (AES-

CBC Encryption)

0.18 ms .14 ms

DEC: Time for executing (AES-

CBC Decryption)

0.18 ms .14 ms

463

PUF: Time for executing PUF (128-

bit Arbiter)

.12 ms .12 ms

Table 33: Comparison of computation costs for the authentication phase of the proposed

scheme and other related schemes

Entity [150] [154] [155] [156] [157] Proposed

[V-TA]

Proposed

[V-D-

VOCS]

Vehicle 2TPUF +

13Th +

2TF +

1TENC +

1TDEC +

1TEM

2Th +

1TENC

4Th +

1TENC

1TPUF +

12Th

+1TEM

1TEM+

1TEA

+2Th

12Th +

1TPUF

14Th + 2TPUF

Cost 2*.06 +

13*.002

+2*5+1*.

18+1*

.18 +

1*10 =

20.51 ms

2*.002 +

1*.18 =

.182 ms

4*.002

+1*.18 =

.188 ms

1*.06+12

.002+1

5 =

 5.08 ms

1* 5 +

1*5.5

+2*.002=

10.50 ms

12*.002

+.06 = .086

ms

14 * .002

+.06 *2 =

.148 ms

Server 9Th + 2TF

+ 1TENC +

1TDEC +

2TEM

4Th + +

2TENC +

1TDEC

5TEM +

1TEA+

1TENC +

1TDEC +

12Th

19Th

+1TEM

1TEM+

1TEA

+2Th

13Th +

1TPUF

20Th + 2TPUF

+ 1TSE + 1TSD

Cost 9 *.001

+2*4+1*

.14+1*.14

+2*8 =

24.89 ms

4 *.001 +

2 *.14 +

1*.14=

.424 ms

5*4 + 1*5

+ 1*.14+

1*.14

+12*.001

= 25.29

ms

19 *.001

+1*4=

4.019 ms

1 * 4 + 1*

5 +

2*.001 =

9.002 ms

13*.001

+.06= .073

ms

20*.001 +

.06 *2

+.14+.14 =

.42 ms

User --------- --------- 5TEM +

1TEA+

1TENC +

9Th

1TPUF +

13Th

+2TEM

+1TENC

------- --------- 3Th +1TENC +

1TDEC

Cost --------- -------- 5*5 +

1*5.5 +

1*.18+

1*.06 +

13*.002

+2*5+1*

------- -------- .002*3 + .18

+ .18= .37

ms

464

Table 33 summarizes the computational complexity cost comparison between the

proposed scheme and the other related vehicular networks schemes presented in the

literature. The total run time of the V-TA scheme is .159 ms and the run time of V-D-

VOCS is .94 ms. The results of the proposed scheme with other related protocols indicate

that the V-TA protocol is more efficient than the other protocols. The run time of the V-

D-VOCS is higher than [154] because it involves the authentication of the driver. The

protocol in [155] performs the worst because it makes use of multiple ECC point

multiplication and point addition which are computationally heavy. The proposed

scheme is more efficient than [150] that used scalar multiplication and asymmetric

encryption. Also, protocols [155],[156], and [157] used ECC, which increased the run

time. The main strengths of my proposed scheme are the avoidance of using long-term

secret keys and securing the communicating devices from physical attacks and

counterfeiting by employing the PUF and the chained hash PUF.

9*.002 =

30.70 ms

.18=

10.27 ms

Total

Cost

44.80

 ms

.606 ms 56.18 ms 19.37 MS 19.50 ms .159ms .94 ms

465

Figure 115: Comparison of the number of V crypto operations Across the schemes

Figure 116: Comparison of the number of the server crypto operations across the schemes

0

2

4

6

8

10

12

14

[150] [154] [155] [156] [157] Proposed
[V-TA]

Proposed
[V-D-VOCS]

13

2

4

12

2

12

14

1 1 11 11 1 1
2

1 1
22

V
 N

U
M

B
ER

 O
F

O
P

ER
A

TI
O

N
S

AUTHENTICATION PROTOCOLS

Hash ENC DEC EA EM PUF F

0

2

4

6

8

10

12

14

16

18

20

[150] [154] [155] [156] [157] Proposed
[V-TA]

Proposed
[V-D-VOCS]

9

4

12

19

2

13

20

1
2

1 11 1 1 11 1
2

5

1 1 1
22

SE
R

V
ER

 N
U

M
B

ER
 O

F
O

P
ER

A
TI

O
N

S

AUTHENTICATION PROTOCOLS

Hash ENC DEC EA EM PUF F

466

Figure 117 : Comparison of the number of the user crypto operations across the schemes

Figure 118: Comparison of the total number of crypto operations across the schemes

Figure 115 displays the number of authentication operations of each type that are

completed on the V side. Figure 116 depicts the number of authentication operations of

each type that are completed on the server-side. Figure 117 depicts the number of

authentication operations of each type that are completed on the user side. Figure 118

demonstrates the total number of authentication operations of each type that are complete

0

2

4

6

8

10

12

14

[155] [156] Proposed [V-D-VOCS]

9

13

3

1 1 1 11

5

2
1

U
SE

R
 N

U
M

B
ER

 O
F

O
P

ER
A

TI
O

N
S

AUTHENTICATION PROTOCOLS

Hash ENC DEC EA EM PUF

0

5

10

15

20

25

30

35

40

45

[150] [154] [155] [156] [157] Proposed
[V-TA]

Proposed
[V-D-VOCS]

22

6

25

44

4

25

37

2 3 3
1 21 1 22 23

10

4
22 2 2

44

TO
TA

L
N

U
M

B
ER

 O
F

O
P

ER
A

TI
O

N
S

AUTHENTICATION PROTOCOLS

Hash ENC DEC EA EM PUF F

467

for each scheme. As depicted from the table and the figures, our proposed scheme used

more hash functions than most of the other schemes to avoid computationally expensive

cryptographic operations such as ECC and HMAC and, at the same time, achieve the

same security goals. The proposed scheme is the only protocol that used PUF as a

hardware fingerprint on the server-side to secure the devices from counterfeiting and use

the PUF response as an encryption key to avoiding storing long-term security keys on the

communicating devices. Furthermore, using PUF on the server-side can protect the

scheme from server impersonation and secure the server database to be stolen if the

device got compromised.

Figure 119: V computational time across the different schemes

0

5

10

15

20

25

V

20.51

0.182 0.188

5.08

10.5

0.086 0.148

V
 C

O
M

P
U

TA
TI

O
N

A
L

C
O

M
P

LE
X

IT
Y

 IN
 M

S

[150] [154] [155] [156] [157] Proposed [V-TA] Proposed [V-D-VOCS]

468

Figure 120: Server computational time across the different schemes

Figure 121 : U computational time across the different schemes

24.89

0.424

25.29

4.019

9.002

0.073 0.42

0

5

10

15

20

25

30

Server

Se
rv

e
r

C
o

m
p

u
ta

ti
o

n
al

 c
o

m
p

le
xi

ty
 in

 m
s

[150] [154] [155] [156] [157] Proposed [V-TA] Proposed [V-D-VOCS]

30.7

10.27

0.37

U
 C

o
m

p
u

ta
ti

o
n

al
 c

o
m

p
le

xi
ty

 in
 m

s

[155] [156] Proposed [V-D-VOCS]

469

Figure 122: Total computational time across the different schemes

Figures 119, 120, 121, and 122 demonstrate the cost comparison of my

authentication scheme with other similar schemes. Figure 122 presents the total

computational cost of each scheme. Figure 119 displays the computation cost of each

scheme for the V side, figure 120 depicts the computational cost of each scheme for the

server-side, and figure 121 depicts the computational cost of each scheme for the user

side. The results indicate that the V-TA and V-D-VOCS protocols have a lower

computational cost for the V side compared to the rest of the protocols. On the server-

side, although the V-D-VOCS protocol has almost the same computational cost as [154],

our proposed protocol includes user authentication. Also, it preserves both the driver and

the vehicle privacy by using different alias IDs for every authentication session. The V-

D-VOCS protocol has the lowest computational cost on the user side because it depends

on the hash function and the PUF instead of expensive cryptographic approaches such as

ECC and modular exponentiation. The above results prove that the proposed scheme is

suitable for IoV domain.

0

10

20

30

40

50

60

45.4

0.606

56.178

19.369 19.502

0.159 0.938

TO
TA

L
C

O
M

P
U

TA
TI

O
N

A
L

C
O

M
P

LE
X

IT
Y

 IN
 M

S

[150] [154] [155] [156] [157] Proposed [V-TA] Proposed [V-D-VOCS]

470

We can conclude that the proposed scheme has a higher security level than the

rest of the protocols. The proposed scheme achieves the main security goals of

confidentiality, integrity, and authenticity besides accommodating IoV devices that are

diverse in their capabilities.

6.7.2.3 Communicational Cost

The following section analyzes the communication cost of the proposed scheme.

To reduce network congestion and to provide fast message transmission, the

communication cost of the scheme should be as low as possible. For the communication

cost analysis, we evaluate the communication cost in terms of the size of the message in

bits. Then, we compared our proposed scheme to the other related schemes. Table 34

presents a summary of the sizes of the message parameters. Table 35 lists the message

parameters that are communicated among the communicating parties, along with their

sizes.

Table 34: Main parameters of the messages and their sizes in bits

Message Parameters Size in Bits

ID of N [[57], [62], [63] 128

ID of server [63] 8

SID [57], [62] 8

Nonce [61], [63] 128

CRP (C, R) [61], [62] 128

471

HMAC [63] 256

Hash Function [57], [62] 256

Timestamp (TS) [63] 48

ECC [60], [59] 256

MAC [62] 256

V-TA protocol

• Message 1: In the transmission (V → TA), V sends the tuple, VIDA, TSvi1, X1, X2

Therefore, the size of this tuple is 128 + 48 + 128+256 = 560. bits.

• Message 2: In the transmission (TA → V), TA sends the tuple, TAIDA, SID, TS TA1,

Y2, C’, Y3. Therefore, the size of this tuple is 8 +8 + 48 + 128+128+256 = 576

bits.

• Message 3: In the transmission (V → TA), V sends the tuple, VIDA, SID. TSVI2, X3,

X4. Therefore, the size of this tuple is 128 + 8 + 48+128 +256 = 568 bits.

• Message 4: In the transmission (TA → V), TA sends the tuple, TAIDA, SiD TSTA2,

Y5, Y6. Therefore, the size of this tuple is 128 + 8 + 48+128 +256 = 568. bits.

V-D-VOCS protocol

• Message 1: In the transmission (V → VOCS), V sends the tuple, VIDA, TSvi1, VX2,

VX3. Therefore, the size of this tuple is 128 + 48 + 128+256 = 560. bits.

• Message 2: In the transmission (VOCS → V), TA sends the tuple, VOCSIDA, SID,

TSCS1, CSY2, CV, CSY3 Therefore, the size of this tuple is 8 +8 + 48 +

128+128+256 = 576 bits.

472

• Message 3: In the transmission (V → VOCS), V sends the tuple, VIDA, TSVi2,

VX5, VX6, VX7, VX8. Therefore, the size of this tuple is 128+48+ 128+

128+128+256 = 816. bits.

Table 35: Communication cost comparison (bits)

Message

Number

[150] [154] [155] [156] [157] V-TA

Proposed

scheme

V-D-

VOCS

Proposed

scheme

M1: 384 bits 256 bits 512 bits 1072 bits 816 bits 560 bits 560 bits

M2: 384 bits 512 bits 384 bits 1072 bits 816 bits 576 bits 576 bits

M3: 384 bits 392 bits 384 bits 816 bits 768 bits 568 bits 824 bits

M4: 512 bits 384 bits 768 bits 816 bits ---- 448 bits 256 bits

M5: ------- 392 bits ---- --- 136 bits

M6: ------- 512 bits

M7: ------- 256 bits

Total 1664

bits

2704

bits

2048

 bits

3776

 bits

1792

 bits

2152

 bits

2352

 bits

The total communication costs of [150], [154], [155],[156], and [157] are

1664,2704,2048,3776, and 1792 bits, respectively. The total communication cost of the

proposed V-TA protocol is 2152 and 2352 for V-D-VOCS scheme. My two proposed

protocols are less than [154 and 156]. My proposed protocols have lower communication

473

cost and, at the same time, achieved all the required security goals. Also, the proposed

schemes have proper communication cost compared to [150], [155], and [157]. The V-

TA protocol requires sending only four messages to achieve mutual authentication. The

messages contain timestamps, XOR functions, ciphered random numbers, and hash

functions that prevent attacks such as data modification, replay, and impersonation. The

V-D-VOCS protocol requires three messages to achieve mutual authentication between

the vehicle and the VOCS and two messages to achieve mutual authentication between

the driver and the VOCS. Even if the protocols of my proposed scheme are not the

protocols with the lowest communication cost, they have a reasonable cost for IoV, and at

the same time, they achieve more security properties than the protocols with less cost.

6.8 Summary

In this chapter, we designed a “Multi-Factor Authentication, and Privacy

Preservation Protocol Using Biometrics and Chained Hash PUF for IoV’’ to solve

security threats of the existing authentication schemes. The protocol enables a lightweight

mutual authentication and an establishment of secret keys, which can be used to secure

the exchanged messages between the communicating parties. The lightweight and the

privacy-preserving properties are ensured as they are the essential characteristics of

dynamic entities. Those properties are achieved through the use of PUF, chained hash

PUF, hash functions, and XOR operations. The proposed protocol is lightweight with a

lower computation cost and execution time compared with the competitive schemes. We

completed an in-depth security analysis against different strong adversarial attacks and

found that the proposed protocol is resistant to these types of attacks. The lightweight

474

nature allows easy implementation of the protocol in different entities of the IoV domain

such as the vehicle’s OBU, RSUs, infrastructure and sensors.

475

CHAPTER VII

 CONCLUSION AND FUTURE WORK

7.1 Conclusion

The Internet of Things (IoT) plays an essential role in all aspects of our daily

lives. It benefits different fields, including smart homes, healthcare, smart cities,

agriculture and others. The IoT consists of billions of connected devices over the internet

that are able to gather and exchange data using IoT nodes and controllers.

Adversaries are shifting their attention from traditional computers to IoT devices

for malignant activities like exposing smart homeowner private information and/or to

launch botnet attacks. Therefore, it is very critical to move fast to address the rising

security and privacy concerns in IoT systems before severe disasters happen. Similar to

traditional networks, the security of IoT networks depends mainly on how properly the

authentication process is done and on how user’s privacy is preserved. However, the IoT

infrastructure faces challenges in implementing and operating strong authentication

schemes because of the resource constrained nature of the IoT devices that have limited

computational and storage capabilities.

The first contribution of this work is the introduction of PUF Hierarchal

Distributed Architecture (PHDA). The main goals of PHDA are to support system

scalability and to protect the system’s devices from being counterfeited. The PHDA acts

as a device name resolution to store and retrieve the Challenge-Response Pairs (CRPs) of

476

the IoT devices. PHDA stores the PUF data using a 3-tier architecture employing a

simple naming scheme.

The second contribution of this work is the introduction of lightweight mutual

authentication and privacy preservation protocol using PUF for smart home network

model. The proposed protocol is based on using PUF as a hardware fingerprint to

authenticate the communicating devices. Also, another aspect of the securing the system

depends on employing network segregation based on the IoT device type to mitigate the

threats. Moreover, the security and privacy preservation of the proposed protocol is

implemented using dynamic identities and temporary secret session keys that change in

every session and are exchanged in an unlinkable and untraceable manner.

The third contribution is the introduction of multi-layer distributed lightweight

mutual authentication using chained hash PUF scheme for IIoT. A smart poultry farm is

introduced as a network model. The design of the proposed scheme fits the dynamic and

distributed cyber-physical nature of the poultry farms to ensure the system's security. The

proposed scheme enables a M2M communication, which provides the chance for devices

inside the IIoT network to do data offloading and allows the IoT devices that are away

from their gateways to get authenticated and communicate with their gateways through

other IoT devices. Access control solution is integrated to support smart poultry farms'

dynamic nature. Therefore, an automated access control model based on virtual domain

segregation of IoT network and device type is introduced. Also, the chained hash PUF

value is used to create a type of tracking system between the IoT node and its gateway.

The proposed scheme proves that it provides confidentiality, integrity, anonymity,

477

unlinkability, and untraceability properties while achieving mutual authentication

between the communicating devices.

The fourth contribution of this work is the presentation of three factor mutual

authentication and Privacy Preservation Scheme using user and device biometrics scheme

for IoV System. The proposed scheme employed user’s biometric to achieve static and

continuous driver’s authentication process to ensure that the received data belongs to

correct driver and identifies the fabricated data. The proposed scheme introduces

employing central RSUs (CRSUs) between the RSUs and the TA to reduce the number of

times a vehicle needs to authenticate with the RSUs. Furthermore, the proposed scheme

uses PUFs and chained hash PUF to perform authentication via a challenge-response

mechanism. The proposed scheme can perform authentication and establish a shared

secret session key without the need to store any long-term keys on the vehicle’s OBU.

The results prove that the proposed scheme is not only secure against different types of

attacks but is also efficient enough for IoV.

The PUF as a hardware security mechanism is used for key authentication and for

encrypting the data on the server side where the key can be generated on the fly and does

not need be stored. The two main advantages of this approach are: (1) the elimination of

the need to store long term secret keys; and (2) the hardness of predicting the keys due of

the unclonable and unpredictable nature derived from the PUFs. Also, the three proposed

schemes eliminate the need for key exchanges between device and the server over the

network because the devices generate the key locally using the securely shared random

values and the PUF challenges and responses.

478

Additionally, through an intensive formal and informal security analysis of our

protocols using the BAN logic and AVISPA tool, the results indicate that the proposed

schemes are resilient against well- known attacks. The proposed schemes achieved the

key security properties such anonymity, unlinkability, untracability and system scalability

with a limited performance overhead. Also, we conduct performance analysis to evaluate

the computational complexity and the computational cost and compare them with other

proposed protocols in the literature. The results prove that the proposed schemes are in

general more efficient than recently proposed protocols.

7.2 Future Work

We plan to extend the proposed scheme titled “Lightweight Privacy Preservation

and Mutual Authentication Scheme for Smart Homes Using Physical Unclonable

Functions”, to authenticate mobile devices and users. Also, We plan to extend the

proposed scheme to account for node-to-node connectivity that can take place within the

same virtual domain (intradomain) or across different domains(interdomains).

Furthermore, our extended study will explore vulnerabilities resulted from the new form

of connectivity that involves node-to-node communication.

For the second scheme titled “M2M Distributed Multi-Layer Lightweight Mutual

Authentication and Key Agreement Scheme Using Chained Hash PUF in Industrial IoT

System”, we plan to enable an IoT device in one home network to communicate with an

IoT device in another home network regardless of the underlying communication

protocols. Also, we plan to extend the proposed scheme to facilitate in farm and cross

farm authentication and communication between the IoT sensors on one side and the

farmer/operators on the other side by examining the kind of operations the

479

farmer/operator need to complete that may require single level or multiple level access

control based on the risk factor associated with the operation. Furthermore, in many

farms the animals have sensors embedded, which require appropriate authorized access.

These wearable and health monitoring devices are attached to livestock and collect

sensitive data, which can be used by adversaries to control the animal or to send false

data about the animal. we plan to investigate how to conduct continuous authentication

between the animal and the control unit in order to implement an ongoing verification of

the animals and to identify the fabricated data.

For the third scheme titled “Three-Factor Authentication and Privacy Preservation

Scheme Using User and Device Biometrics for IoV System”, we plan to extend the work

to implement machine learning based IDS to detect fake messages that are sent by

authenticated malicious vehicles to alert authorities to revoke the shared secret keys and

alert other vehicles. Also, we plan to explore more vehicular networking attacks and

analyze them with the proposed scheme.

480

REFERENCES

[1] NIST, "NISTIR 8259," [Online]. Available:

https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8259-draft.pdf.

[2] K.Ashton., "That‘internet ofthings' thing.," RFID Journal, pp. ,22(7): 97–114,,

2009.

[3] Norton, "The future of IoT: 10 predictions about the Internet of Things," 2011.

[Online]. Available: https://us.norton.com/internetsecurity-iot-5-predictions-for-

the-future-of-iot.html. [Accessed 10 Jan 2020].

[4] G. E. Moor, "Cramming More Components onto Integrated Circuits," Electronics,

vol. 86, no. 1, pp. 114-117, 1998.

[5] S. B. M. S. a. H. W. ”. 2. J. G. Koomey, "Assesing Trends In The Elecritcal

Efficiency Computation Over Time," IEEE Annals of the History of Computing,

2009.

[6] K. Ashtons, Interviewee, The Internet of Thing. [Interview]. 19 June 2014.

[7] A Definition of the Internet of Things (IoT), http://iot.ieee.org/definition.html.

[8] I. T. S. Sector, "Internet of Things Global Standards Initiative," 2012. [Online].

Available: http://handle.itu.int/11.1002/1000/11559-en?locatt=format:pdf&auth.

[Accessed 5 Jan 2020].

[9] Cisco. [Online]. Available: http://www.cisco.com/c/dam/en_us/about/ac79/docs/

innov/IoE_Economy.pdf.

[10] M. &. Company. [Online]. Available:

https://www.mckinsey.com/industries/semiconductors/our-insights/whats-new-

with-the-internet-of-things.

[11] H. J. S. [2] Van Tilborg, "Encyclopedia of Cryptography and Security," in Science

& Business Media, Springer, 2014.

[12] A. Majeed, "Internet of Things (IoT): A verification framework," in IEEE 7th

Annu. Comput. Commun. Work. Conf, 2017.

[13] C. M. T. Lead, IoT Spending Projected To Pass $1 Trillion In 2022.

[14] R. Anderson, Security engineering, Wiley, 2008.

481

[15] G. J. C.Kolias, "Ddos in the iot: Mirai and other botnets," Computer, vol. 50, no.

7, pp. 80-84, 2017.

[16] M. A. N. T. T. B. a. S. A. N. Abbas, "A mechanism for securing iot-enabled

applications at the fog layer," Journal of Sensor and Actuator Networks, vol. 8, pp.

1-16, 2019.

[17] M.Abomharaetal, "Cyber security and the interne tof things:

vulnerabilities,threats, intruders and attacks," Journal of Cyber Security and

Mobility, vol. 4, no. 1, p. 65–88, 2015.

[18] W. a. B. L. Stallings, Computer Security: Principles and Practice, Pearson, 2015.

[19] D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic Curve

Cryptography, New York,: Springer, 2003.

[20] C. Paar and J. Pelzl, Understanding Cryptography: A Textbook for Students and

Practitioners, Springer Publishing Company, Incorporated, 2009.

[21] "Symmetric Key Cipher," [Online]. Available:

https://www.sciencedirect.com/topics/computer-science/symmetric-key-cipher.

[Accessed 5 12 2020].

[22] P. v. O. a. S. V. A. Menezes, "Key Establishment Protocols," in The Handbook of

Applied Cryptography, CRC Press, 1996.

[23] N. Koblitz, "Elliptic curve cryptosystems," Mathematics of Computation, vol. 48,

no. 177, pp. 203-209, 1987.

[24] V. S. Miller, "Use of Elliptic Curves in Cryptography," Springer Heidelberg:

Springer, pp. 417-426, 1986.

[25] J. M.Turner, "National Institute of Standard and Technology.The Keyed-Hash

Message Authentication Code(HMAC)," 2008.

[26] R. M. H.Krawczyk, "Hmac: Keyed-hashing for message authentication," Network

Working Group,RFC2104,Category: Informational, 1997.

[27] "Internet Security Threat Report," Symantec, 2019.

[28] I. V. J. Delvaux, "Side channel modeling attacks on 65nm arbiter PUFs exploiting

CMOS device noise," HOST, 2013.

[29] S. Devadas, Interviewee, Physical unclonable functions and secure processors.

[Interview]. 2009.

482

[30] K. L. a. W. Daasch., "IC identification circuit using device mismatch,"

International Solid State Circuits Conference, 2000.

[31] R. Pappu, Physical One-Way Functions, Phd thesis, MIT, 2001.

[32] B. L. P. Gassend, Physical random functions, MSc thesis, MIT, 2003.

[33] U. H. D. Rührmair, "Pufs at a glance," in Proceedings of the conference on

Design, Automation & Test in Europe, 2014.

[34] V. v. d. L. a. P. Tuyls, "Anti-counterfeiting with hardware intrinsic security," in

Design, Automation Test in Europe Conference Exhibition, 2013.

[35] V. v. d. L. a. A. Schaller, Physically unclonable functions found in standard

components of commercial devices, http://www.intrinsic-id.com/ wp-

content/uploads/2014/09/Unclonable-functions.pdf, 2013.

[36] R. Maes, Physically Unclonable Functions - Constructions, Properties and

Applications, Springer, 2013.

[37] Y. Gao, H. Ma, S. Al-Sarawi, D. Abbott and D. Ranasinghe, "PUF-FSM: A

Controlled Strong PUF," in IEEETrans. Comput.-Aided Des. Integr. Circuits Syst,

2017.

[38] G. E. S. a. S. Devadas, "Physical unclonable functions for device authentication

and secret key generation," in 44th ACM/IEEE Design Automation Conference,

2007.

[39] G. E. S. a. S. Devadas, " Physical unclonable functions for device authentication

and secret key generation.," in In Proceedings of the 44th annual Design

Automation Conference,ACM, 2007.

[40] J. S. F. S. U. Ruhrmair, On the Foundations of Physical Unclonable Funtions,

Cryptology ePrint Archive, 2009.

[41] S. D. F. K. U. Ruhrmair, "Security based on Physical Unclonability and Disorder,"

in In M. Tehranipoor and C. Wang (Editors): Introduction to Hardware Security

and Trust, Springer, 2011.

[42] S. Yi, Z. Hao, Z. Qin and Q. Li, "Fog computing: Platform and applications," in

Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb),

Washington, DC, USA, 2015.

[43] R. Mahmud, R. Kotagiri and R. Buyya, " Fog computing: A taxonomy, survey and

future directions. In Internet of Everything," Springer, pp. 103-130, 2018.

483

[44] Z. Maamar, T. Baker, M. Sellami, M. Asim, E. Ugljanin and N. Faci, "Cloud vs

edge: Who serves the Internet-of-Things better?," Internet Technol. Lett, vol. 1,

no. e66, 2018.

[45] R. Naha, S. Garg, D. Georgakopoulos, P. Jayaraman, L. Gao, Y. Xiang and R.

Ranjan, " Fog Computing: Survey of trends, architectures, requirements, and

research directions," IEEE Access, vol. 6, p. 47980–48009, 2018.

[46] J. Ni, K. Zhang, X. Lin and X. Shen, "Securing fog computing for internet of

things applications: Challenges and solutions," IEEE Commun. Surv. Tutor, vol.

20, p. 601–628, 2017.

[47] A. Alrawais, A. Alhothaily, C. Hu and X. Cheng, "Fog computing for the internet

of things: Security and privacy issues," IEEE Internet Comput., vol. 21, pp. 34-42,

2017.

[48] M. Alshahrani, Secure and Lightweight Authentication Schemes for Internet of

Things (IoT), PhD Dissertation.

[49] R. Sen and S. Borle, "Estimating the contextual risk of data breach: an empirical

approach," Journal of Management InformationSystems, vol. 32, no. 2, pp. 314-

341, 2015.

[50] N. B. M.S. Obaidat, Security of e-Systems and Computer Networks, Cambridge

University Press, 2007.

[51] I. Y.Nakkabi, "Improving mouse dynamics biometric performance using variance

reduction via extractors with separate features," IEEETransactionsonSystems,

Man, and Cybernetics: Systems, vol. 40, no. 6, pp. 1345-1353, 2010.

[52] S. P. R. T. M. D. G. a. S. D. M. S. Obaidat, "Biometric security and Internet of

Things (IoT)," in in BiometricBased Physical and Cybersecurity Systems,

Springer, 2019, p. 477–509.

[53] E. Alsolami, An examination of keystroke dynamic for continuous authentication,

PhD thesis, Queensland University of Technology, 2012.

[54] F. R. Y. C. L. a. H. T. J. Liu, "Optimal combined intrusion detection and biometric

based continuous authentication in high security mobile ad hoc networks," IEEE

Transactions , vol. 8, no. 2, pp. 806-815.

[55] T. S. G. X. Y. K. a. R. R. R. H. C. Yap, "Physical access protection using

continuous authentication," in In technologies for homeland security, IEEE

conference, 2008.

484

[56] S. Wang, R. Shumba and W. and Kelly, "Security by Design: Defense-in-Depth

IoT," Journal of The Colloquium for Information System Security Education

(CISSE), vol. 4, no. 2, pp. 1-15, 2017.

[57] M. Aman, K. Chua and B. Sikdar, "Light-Weight Mutual Authentication Protocol

for IoT Systems," in IEEE Global Communications Conference, 2017.

[58] S. a. K. T. Shin, "A lightweight Three-Factor Authentication and Key Agreement

Scheme in Wireless Sensor Networks for Smart Homes," Sensors, 2019.

[59] U. Chatterjee, R. Chakraborty and Mukhopadhyay, "A PUF-Based Secure

Communication Protocol for IoT.," in ACM Trans. Embed. Comput. Syst., 2017.

[60] A. Braeken, "PUF Based Authentication Protocol for IoT," Symmetry , vol. 10,

2018.

[61] P. a. S. B. .. Gope, "Lightweight and Privacy-Preserving Two-Factor

Authentication Scheme for IoT Device," IEEE Internet of Things Journal, 2018.

[62] M. Aman, K. Chua and B. Sikdar, "Mutual Authentication in IoT Systems Using

Physical Unclonable Functions," IEEE Internet Things Journal, vol. 4, p. 1327–

1340, 2017.

[63] A. Mostafa, S. Lee and Y. and Peker, "Physical Unclonable Function and Hashing

Are All You Need to Mutually Authenticate IoT Devices.," Sensors, vol. 20, no.

16, 2020.

[64] D. a. A.Yao, "On the security of public keyprotocols," IEEETransactionson

InformationTheory, vol. 29, no. 2, p. 198–208, 1983.

[65] H. L. V. a. A. R. Cavalli, "Security attacks and solutions in vehicular ad hoc

networks: a survey," International journal on AdHoc networking systems (IJANS),

vol. 4, no. 2, pp. 1-20, 2014.

[66] M. V. P. a. J. Anuradha, "Network security and types of attacks in network,"

Procedia Computer Science, vol. 48, no. 503 – 506, 2015.

[67] R. D. S. a. Y. P. S. Shunmuganathan, "Secure and efficient smart-card-based

remote user authentication scheme for multiserver environment," Canadian

Journal of Electrical and Computer Engineering, vol. 38, p. 20–30, 2015.

[68] D. B. a. D. Boneh, "Remote timing attacks are practical," Computer Networks, vol.

48, no. 5, p. 701 – 716, 2005.

[69] M. Burrows, M. Abadi and R. Needham, "A Logic of Authentication," in ACM

Trans. Comput, 1990.

485

[70] "AVISPA (Automated Validation of Internet Security Protocols and

Applications)," [Online]. Available: http: //www.avispa-project.org/.

[71] L. Viganò, "Automated security protocol analysis with the avispa tool," Electronic

Notes in Theoretical Computer Science, vol. 155, p. 61–86, 2006.

[72] Y. S. S. Y. a. F. S. H. Ren, "Secure smart home: A voiceprint and internet based

authentication system for remote accessing," in 2016 11th International

Conference on Computer Science & Education, 2016.

[73] D. L. J. K. a. I. a. J. s. S. Jang, "An Efficient Device Authentication Protocol

Without Certification Authority for Internet of Things," Wireless Personal

Communication, vol. 9, no. 4, 2016.

[74] J. Wallrabenstein, "Practical and Secure IoT Device Authentication Using

Physical Unclonable Functions," in IEEE 4th International Conference on Future

Internet of Things and Cloud (FiCloud), Vienna, Austria, 2016.

[75] J. Han and J. A. Kim, "Lightweight authentication mechanism between IoT," in n

Proceedings of the 2017 International Conference on (ICTC), Jeju, Korea, 2017.

[76] M. Mughal, X. Luo, Z. Mahmood and A. Ullah, "Physical Unclonable Function

Based Authentication Scheme for Smart Devices in Internet of Things.," in

Proceedings of the IEEE International Conference on (SmartIoT), Xi’an, China,

2018.

[77] X. S. J. W. X. L. a. T. H. G. Zhao, "A novel mutual authentication scheme for

Internet of Things," in Proceedings of 2011 International Conference on

Modelling, Identification and Control, 2011.

[78] F. a. N.C.Vun., "Securing iot for smart home system," in International

SymposiumonConsumerElectronics(ISCE), 2015.

[79] N. T. a. I. J. Z. Alizai, "Improved IoT Device Authentication Scheme Using

Device Capability and Digital Signatures," in International Conference on Applied

and Engineering Mathematics (ICAEM), Taxila, Pakistan, 2018.

[80] F. K. S. a. N. C. Vun, "Securing IotYfor smart home system," in IEEE

International Symposium on. IEEE Consumer Electronics (ISCE), 2015.

[81] G. P. a. B. K. a. M.-s. Jun, A Design of Secure Authentication Method Using Zero

Knowledge Proof in Smart-Home Environment, 2016.

486

[82] M. V.Shivraj, "One time password authentication scheme based on elliptic curves

for internet of things(IoT)," in 5 2015 th National Symposium on Information

Technology: Towards New Smart World (NSITNSW),.

[83] T. N. G. A.-M. R. E. N. S. V. J. I. H. T. Sanaz Rahimi Moosavi, "SEA: A Secure

and Efficient Authentication and Authorization Architecture for IoT-Based

Healthcare Using Smart Gateways," Procedia Computer Science, vol. 52, pp. 452-

459, 2015.

[84] A. G. J. I. M. Y. a. M. S. P. Kumar, "Lightweight and Secure Session-Key

Establishment Scheme in Smart Home Environments," IEEE Sensors Journal, vol.

16, no. 1, pp. 254-264, 2016.

[85] g. P.Wilson, Inter-device authentication protocol for the internet of things,

Master’s thesis,The University of Victoria, Department of Electrical and

Computer Engineerin, 2017.

[86] J. Z. P. D. a. T. G. C. Huth, "Securing systems on the Internet of Things via

physical properties of devices and communications," in Annual IEEE Systems

Conference (SysCon) Proceedings, Vancouver, BC, Canada, , 2015.

[87] F. K. M. A. a. M. U. M. Jan, "A payload-based mutual authentication scheme for

Internet of Things," Future Gen. Comput. Syst, vol. 92, p. 1028–1039, 2019.

[88] M. Turuani, "The CL-Atse Protocol Analyser," in 17th International Conference

on Term Rewriting and Applications, Seattle, WA, 2006.

[89] "Invasive Attacks," [Online]. Available:

https://www.sec.ei.tum.de/en/research/invasive-attacks/. [Accessed 30 July 2020].

[90] W. B. a. D. E. H. X. Xu, "Using statistical models to improve the reliability of

delay-based PUFs," in in Proc. Symp. VLSI. IEEE, 2016.

[91] A. B. P. K. A. G. a. M. Y. P. Porambage, "Proxy-based end-to-end key

establishment protocol for the Internet of Things," in IEEE International

Conference on Communication Workshop (ICCW),, 2015.

[92] M. M. a. Z. L. S. Chen, "An authentication scheme with identitybased

cryptography for M2M security in cyber-physical systems," Secur. Commun.

Netw, vol. 9, no. 10, p. 1146–1157, 2016.

[93] W. Tai, Y. Chang and W. Li, "An IoT notion–based authentication and key

agreement scheme ensuring user anonymity for heterogeneous ad hoc wireless

sensor networks," Journal of Information Security and Applications, p. 133–141,

2017.

487

[94] M. M. a. H. L. J. Cao, "Gbaam: group-based access authentication for mtc in lte

networks," Security and Communication Networks, vol. 8, no. 17, p. 3282–329,

2015.

[95] E. Lara, L. Aguilar, M. A. s. b. o. Sanchez and J. A. García, "Lightweight

Authentication Protocol for M2M Communications of Resource-Constrained

Devices in Industrial Internet of Things," Sensors, vol. 20, no. 2, 2020.

[96] B. a. S. Zeadally, "Intelligent Device-to-Device Communication in the Internet of

Things," IEEE Systems Journal, vol. 10, no. 3, pp. 1172-1182, 2016.

[97] A. Esfahani et al., " "A Lightweight Authentication Mechanism for M2M

Communications in Industrial IoT Environment," IEEE Internet of Things

Journal, vol. 6, no. 1, pp. 288-296, 2019.

[98] S. Aghili and H. Mala, "Breaking a Lightweight M2M Authentication Protocol for

Communications in IIoT Environment," Cryptology ePrint Archive, 2018.

[99] C. S. a. J. B. M. Tauber, "A lightweight authentication mechanism for m2m

communications in industrial iot environment," IEEE Internet of Things Journal,

2017.

[100] C. Chang and H. Le, "A Provably Secure, Efficient, and Flexible Authentication

Scheme for Ad hoc Wireless Sensor Networks," in IEEE Trans. Wirel. Commun,

2016.

[101] C. Chang and H. Le, " A Provably Secure, Efficient, and Flexible Authentication

Scheme for Ad hoc Wireless Sensor Networks," in IEEE Trans. Wirel. Commun,

2016.

[102] K. Kolluru, C. Paniagua, J. van Deventer, J. Eliasson, J. Delsing and R. DeLong, "

An AAA solution for securing industrial IoT devices using next generation access

control.," in In Proceedings IEEE Industrial Cyber-Physical Systems (ICPS), ,

2018.

[103] Y. Zhang, R. Deng, D. Zheng, J. Li, P. Wu and J. Cao, "Efficient and Robust

Certificateless Signature for Data Crowdsensing in Cloud-Assisted Industrial IoT,"

in IEEE Trans. Ind. Inform, 2019.

[104] A. E. H. A. S. Amine Erroutbi, "Secure and Lightweight HMAC Mutual

Authentication Protocol for Communication between IoT Devices and Fog

Nodes," in IEEE International Smart Cities Conference (ISC2), 2019.

488

[105] S. K. D. Z. A. L. L. KM RENUKA, "Design of a Secure Password-Based

Authentication Scheme for M2M Networks in IoT Enabled Cyber-Physical

Systems," IEEE Access, 2019.

[106] F. C. A. B. M. B. O. C. E. S. D. Merabet, "New efficient M2C and M2M mutual

authentication protocols for IoT-based healthcare applications," Peer-to-Peer

Networking and Applications, vol. 13, no. 11, 2019.

[107] M. M. L. Shuo Chen, "An authentication scheme with identity-based cryptography

for M2M security in cyber-physical systems," Security and Communication

Networks, vol. 9, no. 10, pp. 1146-1157, 2016.

[108] O. R. M. B. M. A. M. S. M. S. a. C. G. 16. M. Dammak, "Token-Based

Lightweight Authentication to Secure IoT Networks," in 16th IEEE Annual

Consumer Communications & Networking, 2019.

[109] M. 1. Turkanovi'c, B. Brumen and M. Hölbl, "A novel user authentication and key

agreement scheme for heterogeneous ad hoc wireless sensor networks, based on

the Internet of Things notion," Ad Hoc Network, p. 96–112, 2014.

[110] R. Amin and G. Biswas, "A secure light weight scheme for user authentication and

key agreement in multi-gateway based wireless sensor networks," Ad Hoc Netw, p.

58–80, 2016.

[111] M. S. WESAM ALMOBAIDEEN, "LIGHTWEIGHT AUTHENTICATION FOR

MOBILE USERS IN THE CONTEXT OF FOG COMPUTING," International

Journal of Advanced Computational Engineering and Networking, vol. 6, no. 12,

2018.

[112] O. R. M. B. M. A. M. S. M. S. a. C. G. M. Dammak, "Token-Based Lightweight

Authentication to Secure IoT Networks," in 6th IEEE Annual Consumer

Communications & Networking Conference (CCNC), 2019.

[113] F. P. a. R. S. M. Gupta, "Object-tagged RBAC model for the Hadoop ecosystem,"

Springer, p. 63–81, 2017.

[114] M. A. M. G. T. F. P. a. J. C. C. F. M. Awaysheh, "Next-generation big data

federation access control: A reference Model," Future Generation Computer

Systems, vol. 108, pp. 726-741, 2019.

[115] K. Wang, Y. Wang, Y. Sun, S. Guo and J. G. Wu, "Industrial Internet of Things

Architecture: An Energy-Efficient Perspective," IEEE Commun. Mag, p. 48–54,

2016.

489

[116] "Transportation cost and benefits analysis II—Vehicle costs, " Dept. Transp.,

Amer. Automobile Assoc., Heathrow, FL, USA, and Victoria Transp. Policy Inst.,

Victoria, BC, Canada, Tech. Rep.," 2015.

[117] A. Mai, "The Internet of Cars, Spawning New Business Models. CISCO," Oct

2012. [Online]. Available: http://www.gsma.com/ connectedliving/wp-

content/uploads/2012/07/12-10-24-SCV-GSMACisco-Perspective-F.pdf.

[Accessed 10 July 2020].

[118] 0. u. Organisation Internationale des Constructeurs d’Automobiles” (OICA).

Number of passenger cars and commercial vehicles in use worldwide from 2006

to 2014 in (1, "Statista," 2014. [Online]. Available: http://www.statista.

com/statistics/281134/number.

[119] Voelcker, "It's official: we now have one billion vehicles on the planet," 2011.

[Online]. Available: http://www.greencarreports.com/news/1065070_itsofficial-

we-nowhave-one-billion-vehicles-on-the-planet.

[120] S. Z. a. J. A. G.-I. J. Contreras-Castillo, "Internet of Vehicles: Architecture,

Protocols, and Security," IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3701-

3709, 2018.

[121] S. Z. a. J. C.-C. J. A. Guerrero-Ibanez, "Integration challenges of intelligent

transportation systems with connected vehicle, cloud computing, and Internet of

Things technologies," IEEE Wireless Commun, vol. 22, no. 6, p. 122–128.

[122] I. W. R. S. Database, World Bank Global Road Safety Facility, 2010, Cisco IBSG,

San Jose,, 2011.

[123] S. S. F. Sakiz, " A survey of attacks and detection mechanisms on intelligent

transportation systems," VANETs and IoV, Ad Hoc Netw, vol. 61, p. 33–50, 2017.

[124] M. K. e. al., "System on chip and method for cryptography using a physically

unclonable function". US Patent 8 750 502 B2, 22 March 2012.

[125] T. Zhang, "Securing Connected Vehicles: Challenges and Opportunities," in

CISCO Syst, San Jose, CA, 2015.

[126] D. Yadron, "Hackers demonstrate how to take control of cars," in Proc. Black Hat

Security Conf, Las Vegas, NV, 2015.

[127] J. Hickey, Interviewee, Vice President, Vínsula. [Interview]. Oct 2012.

[128] M. A. B. Mokhtar, "Survey on security issues in vehicular ad hoc networks," Alex.

Eng. J., vol. 54, no. 4, p. 1115–1126, 2015.

490

[129] R. A. R. M. K. M.H.M. Zaharuddin, " Technical comparison analysis of

encryption algorithm on site-to-site IPSec VPN," in International Conference on

Computer Applications and Industrial Electronics, ICCAIE, IEEE, 2010.

[130] M. A. B. C. C. Bernardini, " Security and privacy in vehicular communications:

challenges and opportunities," Veh. Commun, vol. 10, p. 13–28, 2017.

[131] A. R. A. Daeinabi, "Detection of malicious vehicles (DMV) through monitoring in

Vehicular Ad-Hoc Networks," Multimed. Tools Appl, vol. 66, no. 2, p. 325–338,

2013.

[132] J. B. S. W. J. Guo, " A group signature based secure and privacy preserving

vehicular communication framework," in Mobile Networking for Vehicular

Environments, IEEE, 2007.

[133] I. A. H. H. I.A. Sumra, "Behavior of attacker and some new possible attacks in

Vehicular Ad hoc Network (VANET)," in 3rd International Congress on Ultra

Modern Telecommunications and Control Systems and Workshops (ICUMT),

IEEE, 2012.

[134] S. M. S.S. Tangade, "A survey on attacks, security and trust management solutions

in VANETs," in Fourth International Conference on Computing, Communications

and Networking Technologies (ICCCNT), IEEE, 2013.

[135] N. M. Y. Qian, "Design of secure and application-oriented VANETs," in

Vehicular Technology Conference IEEE, 2008.

[136] e. a. Y. Sun, "Attacks and countermeasures in the Internet of vehicles," Ann.

Telecommun, vol. 72, no. 5-6, p. 283–295, 2017.

[137] B. D. G. Guette, "On the Sybil attack detection in VANET," in EEE MoVeNet

2007, Pisa, 2007.

[138] H. H. J.-l. b. A. M. I.A. Sumra, "Classes of Attacks in VANET," in Saudi

International Electronics, Communications and Photonics Conference (SIECPC),

IEEE, Riyadh, Saudi Arabia, 2011.

[139] e. a. M. Ghosh, "Distributed misbehavior detectio," in Wireless Communications

and Networking Conference, WCNC 2009. IEEE, 2009.

[140] S. A. a. P. G. T. Bécsi, "Security issues and vulnerabilities in connected car

systems," in International Conference on Models and Technologies for Intelligent

Transportation Systems, 2015.

491

[141] X. Z. K. J. R. A. S. L. Y. Z. Y. X. ,. Y. Mahdi Dibaei, "Attacks and defences on

intelligent connected vehicles: a survey," Digital Communications and Networks,

vol. 6, no. 4, pp. 399-421, 2020.

[142] J. D. ,. a. R. K. Florian Sommer, "Survey and Classification of Automotive,"

Information, vol. 10, 2019.

[143] V. D. D. D. a. S. K. D. H. Vasudev, "A Lightweight Mutual Authentication

Protocol for V2V Communication in Internet of Vehicles," IEEE Transactions on

Vehicular Technology, vol. 69, no. 6, pp. 6709-6717, 2020.

[144] W. H. H. C. Z. S. P. A. a. A. L. ". ,. v. 4. n. 4. p. ,. D. 2. S. Bao, "A lightweight

authentication and privacy-preserving scheme for VANETs using TESLA and

bloom filters," ICT Express, vol. 4, no. 4, p. 221–227, 2018.

[145] A. P. a. J. D. Tygar, " TESLA Broadcast Authentication. Boston," Springer, p. 29–

53, 2003.

[146] S. L. M. X. S. D. a. X. W. Y. Zhou, "An efficient V2I authentication scheme for

VANETs," Mobile Inf. Syst, vol. 2018, 2018.

[147] N. K. A. K. D. a. W. S. A. Dua, "Secure Message Communication Protocol

Among Vehicles in Smart City," IEEE Transactions on Vehicular Technology,

vol. 67, no. 5, pp. 4359-4373, 2018.

[148] D. D. a. A. V. V. H. Vasudev, "Secure message propagation protocols for IoVs

communication components," Comput. Electr. Eng, vol. 82, pp. 1-15, 2020.

[149] J. L. K. P. A. K. D. A. Y. P. SUNGJIN YU, "IoV-SMAP: Secure and Efficient

Message Authentication Protocol for IoV in Smart City Environment," IEEE

Access, vol. 8, pp. 167875-167886, 2020.

[150] X. Z. N. Z. Y. T. X. M. a. J. M. ". Q. Jiang, "Two-Factor Authentication Protocol

Using Physical Unclonable Function for Io," in IEEE/CIC International

Conference on Communications in China (ICCC), China, 2019.

[151] ". X. Zhang and X. Chen, "Data security sharing and storage based on a

consortium blockchain in a vehicular ad-hoc network," IEEE Access, vol. 7, p.

58241–58254, 2019.

[152] K. Y. L. L. K. Z. a. V. C. M. L. Z. Yang, "Blockchain-based decentralized trust

management in vehicular networks," IEEE Internet Things J, vol. 6, no. 2, p.

1495–1505, 2019.

492

[153] H. C. Y. C. P. A. C. P. A. O. a. Z. S.] A. Lei, "Blockchain-based dynamic key

management for heterogeneous intelligent transportation systems," IEEE Internet

Things J., vol. 4, no. 6, p. 1832–1843, 2017.

[154] U. J. a. B. S. M. N. Aman, "A Privacy-Preserving and Scalable Authentication

Protocol for the Internet of Vehicles," IEEE Internet of Things Journal, vol. 8, no.

2, pp. 1123-1139, 2021.

[155] N. Z. J. N. J. M. X. M. a. K. -K. R. C. Q. Jiang, "Unified Biometric Privacy

Preserving Three-Factor Authentication and Key Agreement for Cloud-Assisted

Autonomous Vehicles," IEEE Transactions on Vehicular Technology, vol. 69, no.

9, p. 9390, 2020.

[156] X. Z. N. Z. Y. T. X. M. J. M. Qi Jiang, "Three-factor authentication protocol using

physical unclonable function for IoV," Computer Communications, vol. 173, pp.

45-55, 2021.

[157] S. C. V. C. M. G. Tejasvi Alladi, "A Lightweight Authentication and Attestation

Scheme for In-Transit Vehicles in IoV Scenario," in IEEE Transactions on

Vehicular Technology, 2020.

[158] M. W. e. al, "Design of lightweight authentication and key agreement protocol for

vehicular ad hoc networks," IEEE Access, vol. 5, p. 14966–14980, 2017.

[159] N. K. A. K. D. a. W. S. A. Dua, "Secure message communication protocol among

vehicles in smart city," IEEE Trans. Veh. Technol, vol. 67, no. 5, p. 4359–4373,

2018.

[160] C. J. Z. H. Y. R. a. L. H. J. Wang, "Internet of Vehicles: Sensing-aided

transportation information collection and diffusion," IEEE Trans. Veh. Technol,

vol. 67, no. 5, p. 3813–3825, 2018.

[161] J. B. Kenney, "Dedicated short-range communications (DSRC) standards in the

United States," Proc. IEEE, vol. 99, no. 7, p. 1162–1182, 2011.

[162] B. S. K. C. C. a. A. A. M. N. Aman, "Low power data integrity in IoT systems,"

IEEE Internet Things J, vol. 5, no. 4, p. 3102–3113, 2018.

[163] M. K. e. al., "System on chip and method for cryptography using a physically

unclonable function". USA Patent 8 750 502 B2, 22 March 2012.

[164] N. C. a. S. F. H. Saevanee, pp. 465-474, 2012.

[165] E. Alsolami, An examination of keystroke dynamic for continuous authentication,

PhD thesis, Queensland University of Technology, 2012.

493

[166] F. R. Y. C. L. a. H. T. J. Liu, "Optimal combined intrusion detection and biometric

based continuous authentication," IEEE Transactions, vol. 8, no. 2, pp. 806-815,

2009.

[167] T. S. G. X. Y. K. a. R. R. R. H. C. Yap, "Physical access protection using

continuous authentication," in In technologies for homeland security, IEEE

conference, 2008.

[168] Samsara, "Everything You Need to Know About Fleet Management," 2021.

[Online]. Available: https://www.samsara.com/guides/what-is-fleet-management.

[Accessed 5 Jan 2021].

[169] "pHash," [Online]. Available: https://www.phash.org/. [Accessed 5 11 2019].

[170] S. W. X. Z. a. W. W. Z. Tang, "Structural feature-based image hashing and

similarity metric for tampering detection," Fundam Inf, vol. 106, no. 1, p. 75–91,

2011.

[171] D. O, "On the security of public key protocols," IEEE Transactionson Information

Theory, vol. 29, no. 2, p. 198–208, 1983.

[172] M.Abomharaetal, "Cyber security and the interne tof things:

vulnerabilities,threats, intruders and attacks," Journal of Cyber Security and

Mobility,vol. 4, no. 1, p. 65–88, 2015.

[173] M.Abomharaetal, "Cyber security and the interne tof things:

vulnerabilities,threats, intruders and attacks," Journal of Cyber Security and

Mobility, vol. 4, no. 1, p. 65–88, 2015.

[174] W. S. a. L. Brown, Computer Security: Principles and Practice, Pearson, 2015.

494

APPENDIX A

role role_N

(N:agent,G:agent,T:text,X:text,Y:text,NIDA:text,NIDR:text,IGIDR:text,IGIDA:text,GX:text,O

TP:text, H:hash_func,SND,RCV:channel

 (dy))

 played_by N

 def=

local

State:nat,

TSoneN:text,TStwoN:text,

None:hash(text.text),

TSoneIG:text,TStwoIG:text,

SIDNIG:text,Pn:text,Pg:text,

Rone:text,Rtwo:text,

Cone:text,Ctwo:text,

Gtwo:hash(message.text.text.text.text),

Nthree:hash(text.text.text.message.message),

SN:hash(message.text.text.text),

SSK:hash(text.text.text.text.text),

NOTP:hash(text.text.text),

NnewIDA:hash(text.text.text),

Gone:hash(text.text.message),

Na:text,Nb:text,NBB:text,Naa:text,

 Gthree:hash(text.text.message.text),Ntwo:text,

IG_pub:public_key

init

State:= 2

transition

1. State= 2 /\ RCV(start)

=|> State' :=4

 /\ TSoneN' :=new()

 /\ Na' := new()

/\ None':= H(Y.OTP)

 /\ Ntwo' := xor(Na',None')

 /\ SN' :=H(None'.NIDR.TSoneN'.Na')

 /\ SND(NIDA.TSoneN'.xor(Na',None').H(None'.NIDR.TSoneN'.Na'))

 /\ secret(NIDR,secNIDR,{N,G})

495

Figure A_1: HLPSL code for role IoT Node played by N

role role_G

(G:agent,N:agent,IGIDA:text,NIDA:text,NIDR:text,IGIDR:text,GX:text,OTP:text,CG:text,I

G_pub:public_key,H:hash_func,SND,RCV:channel(dy))

played_by G

def=

local

State:nat,

T:text,X:text,Y:text,

TSoneN:text,TStwoN:text,

TSoneIG:text,TStwoIG:text,

SIDNIG:text,Pn:text,Pg:text,

Rone:text,Rtwo:text,

Cone:text,Ctwo:text,

Gtwo:hash(message.text.text.text.text),

Nthree:hash(text.text.text.message.message),

SNG:hash(message.text.text.text),

Ssk:hash(text.text.text.text.text),

NOTP:hash(text.text.text),

NnewIDA:hash(text.text.text),

Gone:hash(text.text.message),

Na:text,Nb:text,NAA:text,NB:text,Naa:text,CX:text,

Gthree:hash(text.text.message.text),

TG:hash(text.text.text),

 /\ secret(OTP,secOTP,{N,G})

 /\ secret(Na,secNa,{N,G})

2. State= 4 /\

RCV(IGIDA.SIDNIG'.TSoneIG'.xor(Gone',Cone').{Nb'.Gtwo'}_Rone')

=|> State' :=6

 /\ TStwoN' :=new()

 /\ Naa' :=new()

 /\ Pn' :=new()

/\ NnewIDA' := H(NIDA.Rone.Cone)

/\ NOTP' := H(OTP.Cone'.TStwoN')

 /\ Nthree' := H(Naa'.TStwoN'.Nb'.NOTP'.NnewIDA')

 /\ SND(NIDA.SIDNIG.TStwoN'.{Naa'.exp(GX,Pn').Nthree'}_Rone')

 /\ secret(Naa,secNaa,{N,G})

 /\ request(N,G,na,Na)

 /\ secret(NOTP,secNOTP,{G,N})

 /\ witness(N,G,nb,Nb')

end role

496

RG:text,Ntwo:text,None:hash(text.text)

Init

State:= 1

transition

1. State=1

/\RCV(NIDA.TSoneN'.xor(Na',None').SNG')

=|> State' :=3

 /\ Nb':= new()

 /\ TSoneIG' :=new()

/\ SIDNIG' := new()

 /\ RG' := new()

 /\ Rone' :=new()

 /\ TG' := H(RG'.NIDR.IGIDR)

/\ Gone' := H(OTP.Na'.TG')

 /\ Cone' :=new()

 /\ CX' := xor(Gone',Cone')

 /\ Gtwo' :=H(Gone'.Cone'.TSoneIG'.Nb'.IGIDR)

 /\ SND(IGIDA.SIDNIG'.TSoneIG'.xor(Gone',Cone').

{Nb'.H(Gone'.Cone'.TSoneIG'.Nb'.IGIDR)}_Rone')

 /\ secret(IGIDR,secIGIDR,{G,N})

 /\ secret(OTP,secOTP,{G,N})

 /\ secret(Nb,secNb,{G,N})

 /\ secret(Rone,secRone,{G,N})

 /\ secret(Cone,secCone,{G,N})

 /\ secret(RG,secRG,{G,N})

 /\ witness(G,N,na,Na')

2. State=3 /\

RCV(NIDA.SIDNIG.TStwoN'.{Naa'.exp(GX,Pn').Nthree'}_Rone)

=|> State' :=5

 /\request(G,N,nb,Nb)

end role

 Figure A_2: HLPSL code for role Intelligent Gateway played by IG

497

role session(N:agent,G:agent,T:text,X:text,Y:text,NIDA:text,IGIDA:text,NIDR:text,

IGIDR:text,GX:text,OTP:text,CG:text,IG_pub:public_key,

H:hash_func)

def=

local

SND2,RCV2,SND1,RCV1:channel(dy)

composition

role_G(G,N,IGIDA,NIDA,NIDR,IGIDR,GX,OTP,CG,IG_pub,H,SND2,RCV2)

role_N(N,G,T,X,Y,NIDA,NIDR,IGIDR,IGIDA,GX,OTP,H,SND1,RCV1)/\

end role

 Figure A_3: HLPSL code for role session

role environment()

def=

const

n:agent,g:agent,t:text,x:text,y:text,nida:text,igida:text,nidr:text,igidr:text,gx:text,otp:tex

t,cg:text,ig_pub:public_key,h:hash_func,secNIDR, secOTP, secNa, secIGIDR, secNb,

secRone, secCone,secNaa,secNOTP,secRG,na,nb:protocol_id

intruder_knowledge = {n,g,gx,h,ig_pub}

composition

session(n,g,t,x,y,nida,igida,nidr,igidr,gx,otp,cg,ig_pub,h)

end role

Figure A_4: HLPSL code for role environment

 FigureA_5: HLPSL code for goal

Goal

secrecy_of secNIDR

secrecy_of secOTP

secrecy_of secNa

secrecy_of secNb

secrecy_of secIGIDR

secrecy_of secRone

secrecy_of secCone

secrecy_of secNaa

secrecy_of secNOTP

secrecy_of secRG

authentication_on na

authentication_on nb

end goal

498

APPENDIX B

role

role_C(C:agent,P:agent,PIDA:text,CIDA:text,PIDR:text,CIDR:text,OTP:text,MSK:tex

t,CPC:text,PAU:text,H:hash_func,SND,RCV:channel(dy))

played_by C

def=

local

State:nat,

TSoneC:text,TStwoC:text,

TSoneP:text,TStwoP:text,

RVCone:text,RVCtwo:text,RVPone:text,

YxP:hash(text.text.text),

Xone:text,

Xtwo: hash(text.text.text.message),

Xthree:text,

Xfour: hash(text.text.text.message),

Yonex:text,

Ytwox: hash(text.text.text.message),

Ythree:text,

Yfour:text,

YPx:hash(text.text.text.text.message.message),

TKone:text,TKtwo:text,

OTPnew:hash(text.text),

CIDAnew:hash(text.text),

Xc:hash(text.text),

Yx:hash(text.text),

Xcc:hash(text.text),CAU:text

init

State:= 2

transition

1. State= 2 /\ RCV(start)

=|> State' :=4 /\ TSoneC' :=new()

 /\ RVCone' := new()

 /\ Xc' := H(OTP.PAU)

 /\ Xone' := xor(RVCone',H(OTP.PAU))

/\ Xtwo' := H(CIDR.TSoneC'.RVCone'.Xc')

/\SND(CIDA.TSoneC'.xor(RVCone',H(OTP.PAU)).

 H(CIDR.TSoneC'.RVCone'.H (OTP.PAU)))

 /\secret(CIDR,secCIDR,{C,P})

 /\secret(OTP,secOTP,{C,P})

 /\secret(RVCone,secRVCone,{C,P})

499

2. State= 4 /\

RCV(PIDA.TSoneP'.xor(H(OTP.CAU'),RVPone').Ytwox')=|>

 State' :=6

 /\ TStwoC' :=new()

/\ RVCtwo' :=new()

 /\ Xcc' := H(RVPone'.OTP)

 /\ Xthree' := xor(RVCtwo',H(RVPone'.OTP))

 /\ Xfour' := H(CIDR.TStwoC'.RVCtwo'.Xcc')

 /\ SND(CIDA.TStwoC'.xor(RVCtwo',H(RVPone'.OTP)).

H(CIDR.TStwoC'.RVCtwo'.H(RVPone'.OTP)))

 /\ request(C,P,rvcone,RVCone)

 /\witness(C,P,rvpone,RVPone')

 /\ secret(RVCtwo,secRVCTwo,{C,P})

1. State= 6 /\

RCV(PIDA.TStwoP'.xor(TKone',OTP).xor(TKtwo',TKone').YPx')=|>

State' :=8

end role

 Figure B_1: HLPSL code for role Child Gateway Node played by C

role role_P

(P:agent,C:agent,PIDA:text,CIDA:text,PIDR:text,CIDR:text,OTP:text,MSK:text,CPP:t

ext,CAU:text,H:hash_func,SND,RCV:channel(dy))

played_by P

def=

local

State:nat,

TSoneC:text,TStwoC:text,

TSoneP:text,TStwoP:text,

RVCone:text,RVCtwo:text,RVPone:text,

YxP:hash(text.text.text),

Xone:text,

XtwoP: hash(text.text.text.message),

XthreeP:text,

XfourP:hash(text.text.text.message),

Yone:text,

Ytwo: hash(text.text.text.message),

Ythree:text,

Yfour:text,

YP:hash(text.text.text.text.message.message),

TKone:text,TKtwo:text,

OTPnew:hash(text.text),

CIDAnew:hash(text.text),

Xc:hash(text.text),

Yx:hash(text.text),PAU:text,

500

Sk:hash(text.text.text.message)

init

State:= 1

transition

1. State=1

/\RCV(CIDA.TSoneC'.xor(RVCone',H(OTP.PAU')).XtwoP')

 =|> State' :=3

 /\ TSoneP' :=new()

 /\ RVPone':= new()

 /\ Yx':= H(OTP.CAU)

 /\ Yone' := xor(H(OTP.CAU),RVPone')

/\ Ytwo' := H(PIDR.TSoneP'.RVPone'.Yx')

 /\

SND(PIDA.TSoneP'.xor(H(OTP.CAU),RVPone').H(PIDR.TSoneP'.RVPone'.

H(OTP.CAU)))

 /\ secret(PIDR,secPIDR,{P,C})

 /\ secret(OTP,secOTP,{P,C})

 /\ secret(RVPone,secRVPone,{P,C})

 /\ witness(P,C,rvcone,RVCone')

2. State= 3 /\

RCV(CIDA.TStwoC'.xor(RVCtwo',H(RVPone.OTP)).XfourP')

 =|> State' :=5

 /\ TStwoP' :=new()

 /\ TKone' := new()

 /\ TKtwo' := new()

 /\ Ythree' := xor(TKone',OTP)

 /\ Yfour' := xor(TKtwo',TKone')

 /\ OTPnew' := H(OTP.RVCtwo')

 /\ CIDAnew' := H(CIDA.OTP)

 /\ YP' :=

H(PIDR.TStwoP'.TKone'.TKtwo'.OTPnew'.CIDAnew')

/\

SND(PIDA.TStwoP'.xor(TKone',OTP).xor(TKtwo',TKone').

H(PIDR.TStwoP'.TKone'.TKtwo'.H(OTP.RVCtwo').H (CIDA.OTP)))

 /\request(P,C,rvpone,RVPone)

 /\secret(TKone,secTKone,{P,C})

 /\secret(TKtwo,secTKtwo,{P,C})

 /\secret(OTPnew,secOTPnew,{P,C})

 /\secret(CIDAnew,secCIDAnew,{P,C})

 /\secret(YxP,secYxP,{P,C})

501

 end role

Figure B_2: HLPSL code for role Parent Gateway played by P

role

session(C:agent,P:agent,CIDA:text,PIDA:text,CIDR:text,PIDR:text,OTP:text,MSK:tex

t,CPC:text,PAU:text,CPP:text,CAU:text,H:hash_func)

def=

local

SND2,RCV2,SND1,RCV1:channel(dy)

composition

role_C(C,P,PIDA,CIDA,PIDR,CIDR,OTP,MSK,CPC,PAU,H,SND1,RCV1)/\

role_P(P,C,PIDA,CIDA,PIDR,CIDR,OTP,MSK,CPP,CAU,H,SND2,RCV2)

end role

Figure B_3: HLPSL code for role session

role environment()

def=

const

c:agent,p:agent,cida:text,pida:text,cidr:text,pidr:text,otp:text,msk:text,cpp:text,cau:text,

cpc:text,pau:text,h:hash_func, secCIDR,

secOTP,secRVCone,secRVCTwo,secPIDR,secRVPone,secTKone,secTKtwo,secOTPn

ew,secCIDAnew,secYxP,rvcone,rvpone:protocol_id

intruder_knowledge = {c,p,h}

composition

session(c,p,cida,pida,cidr,pidr,otp,msk,cpp,cau,cpc,pau,h)

end role

Figure B_4 HLPSL code for role environment

502

Goal

secrecy_of secCIDR

secrecy_of secOTP

secrecy_of secRVCone

secrecy_of secRVPone

secrecy_of secPIDR

secrecy_of secRVCTwo

secrecy_of secTKone

secrecy_of secTKtwo

secrecy_of secOTPnew

secrecy_of secCIDAnew

authentication_on rvcone

authentication_on rvpone

end goal

Figure B_5: HLPSL code for goal

role

role_Cone(Cone:agent,Ctwo:agent,ConeIDA:text,CtwoIDA:text,ConeIDR:text,CtwoI

DR:text,TK:text,MSK:text,H:hash_func,SND,RCV:channel(dy))

played_by Cone

def=

local

 State:nat,

TSoCone:text,TStCone:text,

TSoCtwo:text,TStCtwo:text,

RCone:text,RCtwo:text,RCCone:text,RCCTwo:text,

Tone:text,Tfour:text,

Ttwo: hash(text.text.text.message),

Tthree: hash(text.text.text),

Tfive: hash(text.text.text.message),

Dtwo:text,

Dthreex: hash(text.text.text.message),

Done: hash(text.text.text),

Rj:hash(text.text),

Sk:hash(text.text.text.text)

init

State:= 2

transition

1. State= 2 /\ RCV(start)

=|> State' :=4 /\ TSoCone' :=new()

503

 /\ Rj' := H(TK.CtwoIDR)

 /\ RCone' := new()

 /\ Tone' := xor(RCone',Rj')

/\ Ttwo' := H(ConeIDR.TSoCone'.RCone'.Rj')

/\SND(CtwoIDA.xor(RCone',Rj').H(ConeIDR.TSoCone'.RCone'.

H(ConeIDR.TSoCone'.RCone'.H(TK.CtwoIDR))))

 /\secret(ConeIDR,secConeIDR,{Cone,Ctwo})

 /\secret(MSK,secMSK,{Cone,Ctwo})

 /\secret(TK,secTK,{Cone,Ctwo})

 /\secret(RCone,secRCone,{Cone,Ctwo})

2. State= 4 /\

RCV(CtwoIDA.xor(H(RCone'.MSK.ConeIDR),RCCone').Dthreex')=|>

State' :=6

 /\ TStCone' :=new()

/\ RCtwo' :=new()

 /\ Tthree' := H(TK.MSK.RCCone')

 /\ Tfour' := xor(RCtwo',H(TK.MSK.RCCone'))

 /\ Tfive' :=

H(ConeIDR.TStCone'.RCtwo'.H(TK.MSK.RCCone'))

 /\ request(Cone,Ctwo,rcone,RCone)

 /\ SND(ConeIDA.xor(RCtwo',H(TK.MSK.RCCone')).

H(ConeIDR.TStCone'.RCtwo'.H(TK.MSK.RCCone')))

 /\ secret(RCtwo,secRCtwo,{Ctwo,Cone})

 /\witness(Cone,Ctwo,rccone,RCCone')

end role

 Figure B_6: HLPSL code for role first child gateway played by Cone

role role_Ctwo

(Cone:agent,Ctwo:agent,ConeIDA:text,CtwoIDA:text,ConeIDR:text,CtwoIDR:text,TK

:text,MSK:text,H:hash_func,SND,RCV:channel(dy))

played_by Ctwo

def=

local

State:nat,

TSoCone:text,TStCone:text,

TSoCtwo:text,TStCtwo:text,

RCone:text,RCtwo:text,RCCone:text,RCCTwo:text,

504

Tone:text,Tfour:text,

Tthree: hash(text.text.text),

Ttwox: hash(text.text.text.message),

Tfive: hash(text.text.text.message),

Dtwo:text,

Dthree: hash(text.text.text.message),

Done:hash(text.text.text),

Rj:hash(text.text),

Sk:hash(text.text.text.text)

init

State:= 1

transition

1. State=1

/\RCV(CtwoIDA.xor(RCone',Rj').Ttwox')

 =|> State' :=3

 /\ TSoCtwo' :=new()

 /\ Done' := H(RCone'.MSK.ConeIDR)

 /\ RCCone':= new()

 /\ Dtwo' := xor(Done',RCCone')

/\ Dthree' := H(CtwoIDR.TSoCtwo'.RCCone'.

H(RCone'.MSK.ConeIDR))

/\ SND(CtwoIDA.xor(H(RCone'.MSK.ConeIDR),RCCone')

.H(CtwoIDR.TSoCtwo'.RCCone'.H(RCone'.MSK.ConeIDR)))

 /\secret(CtwoIDR,secCtwoIDR,{Ctwo,Cone})

 /\secret(MSK,secMSK,{Ctwo,Cone})

 /\secret(RCCone,secRCCone,{Ctwo,Cone})

 /\witness(Ctwo,Cone,rcone,RCone')

2. State=3 /\ RCV(ConeIDA.xor(RCtwo',H(TK.MSK.RCCone')).Tfive')

 =|> State' :=5

 /\ request(Ctwo,Cone,rccone,RCCone)

end role

 Figure B_7: HLPSL code for role second child gateway played by Ctwo

role

session(Cone:agent,Ctwo:agent,ConeIDA:text,CtwoIDA:text,ConeIDR:text,CtwoIDR:

text,TK:text,MSK:text,H:hash_func)

def=

local

SND2, RCV2, SND1, RCV1: channel(dy)

composition

505

role_Cone(Cone,Ctwo,ConeIDA,CtwoIDA,ConeIDR,CtwoIDR,TK,MSK,H,S

ND1,RCV1)/\

role_Ctwo(Cone,Ctwo,ConeIDA,CtwoIDA,ConeIDR,CtwoIDR,TK,MSK,H,S

ND2,RCV2)

end role

Figure B_8: HLPSL code for role session

role environment()

def=

const

cone:agent,ctwo:agent,coneida:text,ctwoida:text,coneidr:text,ctwoidr:text,tk:text,msk:t

ext,h:hash_func,

secConeIDR,secMSK,secTK,secRCone,secRCCone,secCtwoIDR,secRCtwo,rc

cone,rcone:protocol_id

intruder_knowledge = {cone,ctwo,h}

composition

session(cone,ctwo,coneida,ctwoida,coneidr,ctwoidr,tk,msk,h)

end role

Figure B_9: HLPSL code for role environment

Goal

secrecy_of secConeIDR

secrecy_of secMSK

secrecy_of secRCone

secrecy_of secRCtwo

secrecy_of secTK

secrecy_of secRCCone

secrecy_of secCtwoIDR

authentication_on rcone

authentication_on rccone

end goal

Figure B_10: HLPSL code for security goals

506

role role_N

(N:agent,MG:agent,T:text,X:text,Y:text,NIDA:text,NIDR:text,MGIDR:text,MGIDA:te

xt,CHX:text,OTT:text,H:hash_func,SND,RCV:channel

 (dy))

 played_by N

 def=

local

State:nat,

TSoneN:text,TStwoN:text,

Xone:hash(text.text),

TSoneMG:text,TStwoMG:text,RX:text,

SIDNIG:text,

Rone:text,Rtwo:text,

Cone:text,Ctwo:text,CMG:text,

CHXnew:hash(text.text),

SN:hash(message.text.text.text),

Yone:hash(text.text),

Ythreex:hash(message.text.text.text.text),

NOTT:hash(text.text.text),

NnewIDA:hash(text.text.text),

Xfour:hash(text.text.text.message.message.message.message.text.text),

Na:text,Nb:text,Xtwo:text,Naa:text,Xthree:text,

Ytwo:text

init

State:= 2

transition

1. State= 2 /\ RCV(start)

=|> State' :=4 /\ TSoneN' :=new()

 /\ Na' := new()

/\ Xone':= H(X.Y)

 /\ Xtwo' := xor(Na',OTT)

 /\ SN' :=H(H(X.Y).NIDR.TSoneN'.Na')

 /\

SND(NIDA.TSoneN'.xor(Na',H(X.Y)).H(H(X.Y).NIDR.TSoneN'.Na'))

 /\ secret(NIDR,secNIDR,{N,MG})

 /\ secret(OTT,secOTT,{N,MG})

 /\ secret(Na,secNa,{N,MG})

 /\ secret(X,secX,{N,MG})

 /\ secret(Y,secY,{N,MG})

2. State= 4 /\ RCV(MGIDA.SIDNIG'.TSoneMG'.xor(Nb',OTT)

507

.xor(Cone',Nb').TSoneMG'.Ythreex')

=|> State' :=6

 /\ TStwoN' :=new()

/\ Rone' := new()

 /\ CHXnew' := H(CHX.Rone')

 /\ Ctwo' := H(Na.Nb')

 /\ Rtwo':=new()

 /\ Naa':=new()

 /\ Xthree':=xor(Naa',CHXnew')

 /\ RX' :=xor(Rtwo',H(Nb'.CHXnew'))

 /\ NOTT' := H(OTT.Cone'.Rone')

 /\ NnewIDA' := H(NIDA.Nb')

 /\Xfour' := H(NIDR.TStwoN'.Rone'.H(CHX.Rone')

.H(OTT.Cone'.Rone').H(NIDA.Nb').H(Na.Nb').Rtwo'.Naa')

/\SND(NIDA.SIDNIG'.TStwoN'.xor(Naa',H(CHX.Rone'))

.xor(Rtwo',H(Nb'.H(CHX.Rone'))).Xfour')

 /\secret(Rone,secRone,{N,MG})

 /\secret(CHXnew,secCHXnew,{N,MG})

 /\secret(Naa,secNaa,{N,MG})

 /\secret(Rtwo,secRtwo,{N,MG})

 /\secret(NOTT,secNOTT,{N,MG})

 /\secret(NnewIDA,secNnewIDA,{N,MG})

 /\request(N,MG,na,Na)

 /\witness(N,MG,nb,Nb')

end role

Figure B_11: HLPSL code for role IoT Node played by N

role role_MG

MG:agent,N:agent,MGIDA:text,NIDA:text,NIDR:text,MGIDR:text,CHX:text,OTT:te

xt,H:hash_func,SND,RCV:channel(dy))

 played_by MG

 def=

local

State:nat,

T:text,X:text,Y:text,RX:text,

TSoneN:text,TStwoN:text,

TSoneMG:text,TStwoMG:text,

SIDNIG:text,

Rone:text,Rtwo:text,

Cone:text,Ctwo:text,CMG:text,

CHXnew:hash(text.text),

Ythree:hash(message.text.text.text.text),

SNG: hash(message.text.text.text),

Yone:hash(text.text),

508

NOTT:hash(text.text.text),

NnewIDA:hash(text.text.text),

Xfour:hash(text.text.text.message.message.message.message.text.text),

Na:text,Nb:text,Naa:text,Xthree:text,

Ytwo:text

init

State:= 1

transition

1. State=1

/\RCV(NIDA.TSoneN'.xor(Na',OTT).SNG')

 =|> State' :=3

 /\ Yone' :=H(T.X)

 /\ Nb':= new()

/\ Ytwo' :=xor(Nb',OTT)

 /\ TSoneMG' :=new()

 /\ Cone' := new()

 /\ CMG' :=xor(Cone',Nb')

/\ Ythree' := H(H(T.X).TSoneMG'.Nb'.Na'.Cone')

/\ SIDNIG' := new()

 /\

SND(MGIDA.SIDNIG'.TSoneMG'.xor(Nb',OTT).xor(Cone',Nb').TSoneMG'.H(H

(T.X).TSoneMG'.Nb'.Na'.Cone'))

 /\secret(MGIDR,secMGIDR,{MG,N})

 /\secret(OTT,secOTT,{MG,N})

 /\secret(Nb,secNb,{MG,N})

 /\secret(Cone,secCone,{MG,N})

 /\witness(MG,N,na,Na')

1. State=3

/\ RCV(NIDA.SIDNIG.TStwoN'.xor(Naa',H(CHX.Rone'))

.xor(Rtwo',H(Nb.H(CHX.Rone'))).H

(NIDR.TStwoN'.Rone'.H(CHX.Rone')

.H(OTT.Cone.Rone').H(NIDA.Nb).H(Na.Nb).Rtwo'.Naa'))

 =|> State' :=5

 /\request(MG,N,nb,Nb)

end role

 Figure B_12: HLPSL code for mini-gateway node played by MG

role

session(N:agent,MG:agent,T:text,X:text,Y:text,NIDA:text,MGIDA:text,NIDR:text,M

GIDR:text,CHX:text,OTT:text,H:hash_func)

 def=

local

SND2,RCV2,SND1,RCV1:channel(dy)

composition

509

role_N(N,MG,T,X,Y,NIDA,NIDR,MGIDR,MGIDA,CHX,OTT,H,SND1,RCV

1)/\

role_MG(MG,N,MGIDA,NIDA,NIDR,MGIDR,CHX,OTT,H,SND2,RCV2)

 end role

Figure B_13. HLPSL code for role session

Figure B_14: HLPSL code for role environment

Goal

secrecy_of secNIDR

secrecy_of secOTT

secrecy_of secNa

secrecy_of secX

secrecy_of secY

secrecy_of secNb

secrecy_of secMGIDR

secrecy_of secCone

secrecy_of secRone

secrecy_of secCHXnew

secrecy_of secNaa

secrecy_of secRtwo

secrecy_of secNOTT

secrecy_of secNnewIDA

authentication_on na

authentication_on nb

role environment()

 def=

const

n:agent,mg:agent,t:text,x:text,y:text,nida:text,mgida:text,nidr:text,mgidr:text,chx:text,o

tt:text,h:hash_func,

 secNIDR, secOTT, secNa,secX,

secY,secMGIDR,secNb,secCone,secRone,secCHXnew,secNaa,secRtwo,secNOTT,sec

NnewIDA,na,nb:protocol_id

 intruder_knowledge = {n,mg,h}

composition

session(n,mg,t,x,y,nida,mgida,nidr,mgidr,chx,ott,h)

end role

510

 end goal

Figure B_15: HLPSL code for goal

511

APPENDIX C

role

role_V(TA:agent,V:agent,TAIDA:text,VIDA:text,VIDR:text,VTA:text,CHX:text,OTP

:text,H:hash_func,SND,RCV:channel(dy))

played_by V

def=

local

State:nat,

TSoneV:text,TStwoV:text,

TSoneTA:text,TStwoTA:text,RX:text,

SIDNIG:text,

Rone:text,

Cone:text,Ctwo:text,CMG:text,

CHXnew:hash(text.text),

Xtwo:hash(text.text.text.text.text),

Yone:hash(text.text.text),

Ythreex:hash(message.text.text.text.text),

NOTP:hash(text.text.text),

NnewIDA:hash(text.text),

Xthree:text,

Xfour:hash(text.text.text.text.text.message),

Na:text,Nb:text,Xone:text,Naa:text,Nbb:text

init

State:= 2

transition

1. State= 2 /\ RCV(start)

=|> State' :=4 /\ TSoneV' :=new()

 /\ Na' :=new()

 /\ Xone' :=xor(Na',H(VTA))

 /\ Xtwo' :=H(VIDR.TSoneV'.Na'.OTP.VTA)

 /\ SND(VIDA.TSoneV'.xor(Na',H(VTA))

.H(VIDR.TSoneV'.Na'.OTP.VTA))

 /\ secret(VIDR,secVIDR,{V,TA})

 /\ secret(OTP,secOTP,{V,TA})

 /\ secret(Na,secNa,{V,TA})

 /\ secret(VTA,secVTA,{V,TA})

2. State= 4 /\ RCV(TAIDA.SIDNIG'.xor(Nb',H(VTA.OTP.Na')).

xor(Cone',H(Nb'.CHX)).TSoneTA'.Ythreex')=|>

State' :=6

512

 /\ TStwoV' :=new()

/\ Rone' := new()

 /\ CHXnew' := H(CHX.Rone')

 /\ Naa':=new()

 /\ Xthree':=xor(Naa',H(Nb'.CHXnew'))

 /\Xfour' := H(VIDR.TStwoV'.Rone'.Naa'.

xor(Naa',H(Nb'.CHXnew')).H(CHX.Rone'))

/\SND(VIDA.SIDNIG'.TStwoV'.xor(Naa',H(Nb'.CHXnew'))

.H(VIDR.TStwoV'.Rone'.Naa'.xor(Naa',H(Nb'.CHXnew'))

.H(CHX.Rone')))

 /\secret(Rone,secRone,{V,TA})

 /\secret(CHXnew,secCHXnew,{V,TA})

 /\secret(Naa,secNaa,{V,TA})

 /\request(V,TA,na,Na)

 /\witness(V,TA,nb,Nb')

3. State= 6 /\ RCV(TAIDA.SIDNIG.xor(Nbb',H(Naa'.Rone')).

H(TStwoTA'.xor(Nbb',H(Naa'.Rone'))

.H(OTP.Nbb'.Rone').H(Cone'.VIDA)))

 =|> State' :=8

end role

 Figure C_1: HLPSL code for role Vin T_VA authentication protocol

role role_TA

(TA:agent,V:agent,TAIDA:text,VIDA:text,VIDR:text,VTA:text,CHX:text,OTP:text,H:

hash_func,SND,RCV:channel(dy))

played_by TA

def=

local

State:nat,

TSoneV:text,TStwoV:text,

TSoneTA:text,TStwoTA:text,

SIDNIG:text,

Rone:text,

Cone:text,CMG:text,

CHXnew:hash(text.text),

Yfour:hash(text.text),

Ysix:hash(text.text.message.message),

Yone:hash(text.text.text),

NOTP:hash(text.text.text),

NnewIDA:hash(text.text),

Na:text,Nb:text,Naa:text,Nbb:text,

Ytwo:text,

513

Ythree:hash(message.text.text.text.text),

Yfive:text,

State:= 1

transition

1. State=1

/\RCV(VIDA.TSoneV'.xor(Na',H(VTA)).

H(VIDR.TSoneV'.Na'.OTP.VTA))

 =|> State' :=3

 /\ TSoneTA' :=new()

 /\ Nb':= new()

 /\ Yone' := H(VTA.OTP.Na')

/\ Ytwo' := xor(Nb',H(VTA.OTP.Na'))

 /\ Cone' := new()

 /\ CMG' := xor(H(Nb'.CHX),Cone')

/\ Ythree' := H(H(VTA.OTP.Na').TSoneTA'.Nb'.Cone'.Na')

/\ SIDNIG' := new()

 /\ SND(TAIDA.SIDNIG'.xor(Nb',H(VTA.OTP.Na'))

.xor(Cone',H(Nb'.CHX)).TSoneTA'.H(H(VTA.OTP.Na').

TSoneTA'.Nb'.Cone'.Na'))

 /\secret(OTP,secOTP,{TA,V})

 /\secret(Nb,secNb,{TA,V})

 /\secret(Cone,secCone,{TA,V})

 /\witness(TA,V,na,Na')

2. State=3 /\ RCV(VIDA.SIDNIG.TStwoV'

.xor(Naa',H(Nb'.CHXnew')).H(VIDR.TStwoV'.Rone'.Naa'

.xor(Naa',H(Nb'.CHXnew')).H(CHX.Rone')))

 =|> State' :=5

 /\ TStwoTA' :=new()

 /\ Nbb' := new()

/\Yfour' := H(Naa'.Rone')

 /\Yfive' := xor(Nbb',H(Naa'.Rone'))

/\NOTP' := H(OTP.Nbb'.Rone')

 /\NnewIDA' := H(Cone.VIDA)

 /\Ysix' := H(TStwoTA'.xor(Nbb',H(Naa'.Rone'))

.H(OTP.Nbb'.Rone').H(Cone.VIDA)

.H(H(CHX.Rone').Na.Nb.Naa'.Nbb'))

 /\SND(TAIDA.SIDNIG.xor(Nbb',H(Naa'.Rone'))

.H(TStwoTA'.xor(Nbb',H(Naa'.Rone'))

.H(OTP.Nbb'.Rone').H(Cone.VIDA)))

/\request(TA,V,nb,Nb)

514

 /\secret(NOTP,secNOTP,{V,TA})

 /\secret(NnewIDA,secNnewIDA,{V,TA})

end role

Figure C-2: HLPSL code for role TA

role

session(V:agent,TA:agent,VIDA:text,TAIDA:text,VIDR:text,VTA:text,CHX:text,OTP

:text,H:hash_func)

def=

local

SND2,RCV2,SND1,RCV1:channel(dy)

composition

role_V(TA,V,TAIDA,VIDA,VIDR,VTA,CHX,OTP,H,SND1,RCV1)/\

role_TA(TA,V,TAIDA,VIDA,VIDR,VTA,CHX,OTP,H,SND2,RCV2)

end role

Figure C_3. HLPSL code for role session

role environment()

def=

const

v:agent,ta:agent,vida:text,taida:text,vidr:text,vta:text,chx:text,otp:text,h:hash_func,

secVIDR,secOTP,secNa,secX,secNb,secCone,secRone,secCHXnew,secNaa,se

cNOTP,secVTA,secNnewIDA,na,nb:protocol_id

intruder_knowledge = {v,ta,h}

composition

session(v,ta,vida,taida,vidr,vta,chx,otp,h)

end role

Figure C_4. HLPSL code for role environment

.Goal

secrecy_of secVIDR

secrecy_of secOTP

secrecy_of secNa

secrecy_of secVTA

secrecy_of secNb

secrecy_of secCone

secrecy_of secRone

secrecy_of secCHXnew

secrecy_of secNaa

secrecy_of secNOTP

515

secrecy_of secNnewIDA

authentication_on na

authentication_on nb

end goal

Figure C_5: HLPSL code for goal

role role_V(CS:

agent,V:agent,CSIDA:text,VIDA:text,VIDR:text,VCS1:text,VCS2:text,OTT:text,H:ha

sh_func,SND,RCV:channel(dy))

played_by V

def=

local

State:nat,

TSoneV:text,TStwoV:text,

VXtwo:hash(text.text.text.text.text),

TSoneCS:text,TStwoCS:text,RX:text,

SIDNIG:text,

Rone:text,Rtwo:text,

Cone:text,Ctwo:text,

VXthree:hash(text.text),

Yone:hash(text.text.text),

Ythreex:hash(message.text.text.text.text),

NOTT:hash(text.text.text),

VnewIDA:hash(text.text.text),

VXfour:text,

VXfive:text,VXsix:text,

VXseven:hash(message.text.text.text.text.message.message.message),

XCSYfive:hash(text.message.message.message),

Na:text,Nb:text,Xone:text,Naa:text,

VXone:text,

Sk:hash(text.text.text.text.text)

init

State:= 2

transition

1. State= 2 /\ RCV(start)

 =|> State' :=4 /\ TSoneV' :=new()

 /\ Na' :=new()

 /\ VXone' :=xor(Na',H(VCS2.OTT))

 /\ VXtwo' :=H(VIDR.TSoneV'.Na'.OTT.VCS1)

 /\ SND(VIDA.TSoneV'.xor(Na',H(VCS2.OTT)).

H(VIDR.TSoneV'.Na'.OTT.VCS1))

516

 /\ secret(VIDR,secVIDR,{V,CS})

 /\ secret(OTT,secOTT,{V,CS})

 /\ secret(Na,secNa,{V,CS})

 /\ secret(VCS1,secVCS1,{V,CS})

 /\ secret(VCS2,secVCS2,{V,CS})

2. State= 4 /\ RCV(CSIDA.SIDNIG'.xor(Nb',H(VCS1.OTT))

.xor(Cone',H(Nb'.H(VCS1.OTT))).TSoneCS'.H(VIDR.H

(VCS1.OTT).TSoneCS'.Nb'.Cone'.Na'))

 =|> State' :=6

 /\ TStwoV' :=new()

/\ Rone' := new()

 /\ Ctwo' := H(Na'.Nb')

 /\ Rtwo':=new()

 /\ Naa':=new()

 /\ VXthree' := H(OTT.Nb')

 /\ VXfour':=xor(Naa',H(H(OTT.Nb').VIDR))

 /\VXfive' :=xor(Rone',H(H(OTT.Nb').Naa'))

 /\VXsix' := xor(Rtwo',H(Rone'.Cone'))

 /\NOTT' := H(OTT.Naa'.Nb')

/\VnewIDA' := H(Cone'.VIDA.OTT)

 /\VXseven' := H(H(OTT.Nb').

TStwoV'.Rone'.Naa'.Rtwo'.

H(Na'.Nb').H(OTT.Naa'.Nb').

H(Cone'.VIDA.OTT))

 /\ SND(VIDA.SIDNIG.TStwoV'

.xor(Naa',H(H(OTT.Nb').VIDR))

.xor(Rone',H(H(OTT.Nb').Naa')).xor(Rtwo',H

(Rone'.Cone')).H(H(OTT.Nb').

TStwoV'.Rone'.Naa'.Rtwo'.H(Na'.Nb').H(OTT.Naa'.Nb').H

(Cone'.VIDA.OTT)))

 /\secret(Rone,secRone,{V,CS})

 /\secret(Rtwo,secRtwo,{V,CS})

 /\secret(Naa,secNaa,{V,CS})

 /\secret(NOTT,secNOTT,{V,CS})

 /\secret(VnewIDA,secVnewIDA,{V,CS})

 /\request(V,CS,na,Na)

 /\witness(V,CS,nb,Nb')

end role

Figure C_6: HLPSL code for V in V-VOCS authentication protocol

517

role role_CS

(CS:agent,V:agent,CSIDA:text,VIDA:text,VIDR:text,OTT:text,TID:text,H:hash_func,

SND,RCV:channel(dy))

played_by CS

def=

local

State:nat,

VCS1:text,VCS2:text,

TSoneV:text,TStwoV:text,

TSoneCS:text,

SIDNIG:text,

Rone:text,Rtwo:text,

Cone:text,CV:text,

CSYone:hash(text.text),

CSYtwo:text,

CSYthree:hash(text.message.text.text.text.text),

NOTT:hash(text.text.text),

VnewIDA:hash(text.text.text),

Na:text,Nb:text,Naa:text

init

State:= 1

transition

1. State=1

/\RCV(VIDA.TSoneV'

.xor(Na',H(VCS2'.OTT)).H(VIDR.TSoneV'.Na'.OTT.VCS1'))

 =|> State' :=3

 /\ TSoneCS' := new()

 /\ Nb':= new()

 /\ CSYone' :=H(VCS1'.OTT)

/\ CSYtwo' :=xor(Nb',H(VCS1'.OTT))

 /\ Cone' :=new()

 /\ CV' :=xor(Cone',H(Nb'.H(VCS1'.OTT)))

/\ CSYthree' :=

H(VIDR.H(VCS1'.OTT).TSoneCS'.Nb'.Cone'.Na')

/\ SIDNIG' := new()

 /\ SND(CSIDA.SIDNIG'.xor(Nb',H(VCS1'.OTT))

.xor(Cone',H(Nb'.H(VCS1'.OTT))).TSoneCS'

.H(VIDR.H(VCS1'.OTT).TSoneCS'.Nb'.Cone'.Na'))

 /\secret(OTT,secOTT,{CS,V})

518

 /\secret(Nb,secNb,{CS,V})

 /\secret(Cone,secCone,{CS,V})

 /\witness(CS,V,na,Na')

2. State=3 /\ RCV(VIDA.SIDNIG.TStwoV'

.xor(Naa',H(H(OTT.Nb').VIDR))

.xor(Rone',H(H(OTT.Nb).Naa'))

.xor(Rtwo',H(Rone'.Cone')).H(H(OTT.Nb').TStwoV'

 .Rone'.Naa'.Rtwo'.H(Na'.Nb').H(OTT.Naa'.Nb')

.H(Cone'.VIDA.OTT)))

 =|> State' :=5

end role

Figure C_7: HLPSL code for V

role

session(V:agent,CS:agent,CSIDA:text,VIDA:text,VIDR:text,VCS1:text,VCS2:text,OT

T:text,TID:text,H:hash_func)

def=

local

SND2,RCV2,SND1,RCV1:channel(dy)

composition

role_V(CS,V,CSIDA,VIDA,VIDR,VCS1,VCS2,OTT,H,SND1,RCV1)/\

role_CS(CS,V,CSIDA,VIDA,VIDR,OTT,TID,H,SND2,RCV2)

end role

Figure C_8: HLPSL code for session

role environment()

def=

const

v:agent,cs:agent,csida:text,vida:text,vidr:text,vcs1:text,vcs2:text,ott:text,tid:text,h:hash

_func,

secVIDR,secOTT,secNa,secNb,secCone,secRone,secRtwo,secNaa,secNOTT,se

cVCS1,secVCS2,secVnewIDA,na,nb:protocol_id

intruder_knowledge = {v,cs,h}

composition

session(v,cs,csida,vida,vidr,vcs1,vcs2,ott,tid,h)

end role

Figure C_9: HLPSL code for environment

519

Goal

secrecy_of secVIDR

secrecy_of secOTT

secrecy_of secNa

secrecy_of secVCS1

secrecy_of secVCS2

secrecy_of secNb

secrecy_of secCone

secrecy_of secRone

secrecy_of secRtwo

secrecy_of secNaa

secrecy_of secNOTT

secrecy_of secVnewIDA

authentication_on na

authentication_on nb

end goal

Figure C_10: HLPSL code for goals

role

role_U(CS:agent,V:agent,CSIDA:text,VIDA:text,VIDR:text,VCS1:text,VCS2:text,OT

T:text,UI:text,Rone:text,SIDNIG:text,Sk:symmetric_key,H:hash_func,SND,RCV:chan

nel(dy))

played_by V

def=

local

State:nat,

TSoneV:text,

Uone:hash(text.text.text),

Utwo:text,

Uthree:hash(text.message.message.text),

TSoneCS:text,

PUI:text,FP:text,

ZUone:hash(text.text),

Uv:hash(text.text.text.message)

init

State:= 2

transition

1. State= 2 /\ RCV(start)

=|> State' :=4 /\ TSoneV' :=new()

520

 /\ Uone' :=H(VIDR.Rone.OTT)

 /\ FP' :=new()

 /\ PUI' :=new()

 /\ ZUone' :=H(FP'.PUI')

 /\ Utwo' := xor(Uone',ZUone)

 /\ Uthree' := H(VIDR.Uone'.ZUone'.TSoneV')

 /\ SND(VIDA.TSoneV'.UI.

{xor(Uone',ZUone').

H(VIDR.Uone'.ZUone'.TSoneV')}_Sk)

 /\ secret(VIDR,secVIDR,{V,CS})

 /\ secret(OTT,secOTT,{V,CS})

 /\ secret (PUI,secPUI,{V,CS})

 /\ witness(V,CS,uone,Uone')

2. State= 4 /\ RCV(CSIDA.SIDNIG.TSoneCS'.{Uv'}_Sk)

 =|> State' :=6

end role

Figure C_11: HLPSL code for V

role role_CS

(CS:agent,V:agent,CSIDA:text,VIDA:text,VIDR:text,VCS1:text,VCS2:text,OTT:text,

UI:text,Rone:text,SIDNIG:text,Sk:symmetric_key,H:hash_func,SND,RCV:channel(dy

))

played_by CS

def=

local

State:nat,

TSoneV:text,

TSoneCS:text,

Uone:hash(text.text.text),

ZUone:hash(text.text),ZUthree:text,

Uv:hash(text.text.text.message),

PUI:text

init

State:= 1

transition

1. State=1

/\RCV(VIDA.TSoneV'.UI. {xor(Uone',ZUone').

H(VIDR.Uone'.ZUone'.TSoneV')}_Sk)

 =|> State' :=3

521

 /\ TSoneCS' := new()

 /\ Uv' := H(TSoneCS'.Rone.OTT.ZUone')

 /\ SND(CSIDA.SIDNIG.TSoneCS'.

{H(TSoneCS'.Rone.OTT.ZUone')}_Sk)

 /\request(CS,V,uone,Uone')

end role

Figure C_12: HLPSL code for CS

role

session(V:agent,CS:agent,CSIDA:text,VIDA:text,VIDR:text,VCS1:text,VCS2:text,OT

T:text,UI:text,Rone:text,SIDNIG:text, Sk:symmetric_key ,H:hash_func)

def=

local

SND2, RCV2, SND1, RCV1: channel (dy)

composition

role_V(CS,V,CSIDA,VIDA,VIDR,VCS1,VCS2,OTT,UI,Rone,SIDNIG,Sk,

H,SND1,RCV1)/\

role_CS (CS, V, CSIDA, VIDA, VIDR, VCS1, VCS2, OTT, UI, Rone,

SIDNIG, Sk, H, SND2, RCV2)

end role

Figure C_13: HLPSL code for session

role environment()

def=

const

v:agent,cs:agent,csida:text,vida:text,vidr:text,vcs1:text,vcs2:text,ott:text,ui:text,rone:te

xt,sidnig:text,sk:symmetric_key,h:hash_func,secVIDR,secOTT,secRone,secSk,secPUI,

uone:protocol_id

intruder_knowledge = {v,cs,h}

composition

session(v, cs,csida,vida,vidr,vcs1,vcs2,ott,ui,rone,sidnig,sk,h)

end role

Figure C-14: HLPSL code for environment

522

Goal

secrecy_of secVIDR

secrecy_of secOTT

secrecy_of secRone

secrecy_of secSk

secrecy_of secPUI

authentication_on uone

end goal

Figure C_15: HLPSL code for goals

523

CURRICULUM VITA

School of Computing and Information Systems

College of Engineering and Computing

Grand Valley State University

D-2-228 Mackinac Hall

1 Campus Drive

Allendale, MI 49418

Tel: (616) 331-3051

Fax: (616) 331-2106

Email: mansours@gvsu.edu

EDUCATION

2017-Aug 2020 Ph.D. in Computer Science and Engineering

University of Louisville, Louisville, Kentucky, USA

Academic Advisor: Adrian Lauf, PhD.

2013-2017 M.S. in Computer Information Systems

Grand Valley State University, College of Engineering and Computing,

Allendale, Michigan, USA

 Thesis Title: A Comparative Study Among Mobile Forensics Tools for

Android Based Smartphones

Academic Advisor: Andrew Kalafut, PhD.

2002-2006 Ph.D. in Instructional Technology and Development

University of Louisville, Louisville, Kentucky, USA

Dissertation title: Collaborative Virtual Environment: The Fourth
Generation of Communication Media to Increase Social
Interaction and Social Presence in E-Learning.

Samah S. Mansour, PhD

mailto:mansours@gvsu.edu

524

Academic Advisor: Carolyn Rude-Parkins, PhD.

2001-2002 M.A. in Leadership and Administration of Higher Education

University of Louisville, Louisville, Kentucky, USA

1996-2000 Bachelor of Art

Ain Shams University, Cairo, Egypt

Major: English.

Minor: German and Arabic.

ACADEMIC AWARDS

• 2008, Nominated to Marquis Who’s Who Award

• 2006, Who’s Who Among Students in American Universities and

Colleges Award.

• 2006, Graduate Dean’s Citation Award.

• 2006, Nominated to Hauchens prize for the best dissertation in the

university, University of Louisville, KY.

• 2002, Graduated master degree with distinction, University of Louisville,

KY.

• 1995-1999, Undergraduate scholarship, Ain Shams University, Cairo,

Egypt.

APPOINTMENTS

• Aug 2020-Current, Assistant Professor, School of Computing

• Aug 2008-May 2020, Affiliate Faculty, School of Computing and

Information Systems, Grand Valley State University.

• June 2010 - June 2011, Assistant Professor, School of Business,

Canadian International College (CIC)

• Sep 2006- May 2007, Part-Time Faculty, Foundations &

Technology Department and Department of Statistics, Grand

Valley State University.

• Jan 2007-April 2007, Online Part-Time Faculty, Department of

Leadership, Foundations & Human Resource Education,

University of Louisville.

• Aug 2004-May 2006, Research Assistant, Department of

Leadership, Foundations & Human Resource Education,

University of Louisville.

• Aug 2003-Aug 2004, Instructor, Business Administration

Department and Mathematics Department, Pennsylvania State

University, New Kensington Campus.

• Aug 2003-Aug 2004, Technology Coach, Pennsylvania State

University, New Kensington Campus.

• Jan 2002-Jul 2002, Part-Time Instructional Technology Specialist,

Delphi Center for Teaching and Learning, University of

Louisville.

525

• Nov 2001-July 2003, Program Assistant, Housing and Residence

Life, University of Louisville.

• Sep 1999-Nov 2001, Substitute Teacher, Jefferson County Public

School, Louisville, KY.

EMPLOYMENT

Aug 2020-Current Assistant Professor

Grand Valley State University, School of Computing, Allendale, MI

• Teaching undergraduate and graduate courses.

• Conducting research in digital forensics, cyber security and data

science.

• Involved in numerous professional, university, and school services.

Aug 2008-May

2020

Affiliate Faculty

Grand Valley State University, School of Computing and Information

Systems, Allendale, MI

• Teaching undergraduate courses

• Conducting research in digital forensics, cyber security and data

science

• Involved in numerous professional, university, and school services

April 2010-June

2011

Assistant Professor

 Canadian International College, School of Business Technology, Cairo,

 Egypt

• Taught Undergraduate courses

Sep 2006 - May

2007

Part-Time Faculty

Grand Valley State University, Foundations & Technology Department,

Grand Rapids, MIGrand Valley State University, Department of

Statisitics, Allendale, MI

• Taught undergraduate and graduate courses.

Jan 2007-April

2007

Online Part-Time Faculty

526

University of Louisville, Department of Leadership, Foundations &

Human Resource Education, Louisville, KY

• Taught online graduate courses.

Aug 2003– Aug

2004

Instructor

Pennsylvania State University, Business Administration Department,

New Kensington, PA

Pennsylvania State University, Mathematics Department, New

Kensington, PA

• Taught undergraduate courses.

Aug 2003-Aug 2004 Technology Coach

The Pennsylvania State University, New Kensington, PA

• Collaborated with the Nursing School professors to design and

develop on-line quantitative statistics courses.

• Collaborated, coached and advised the NK professors on creating

instruction that integrated technology into their pedagogy.

• Supported NK professors’ development by tutoring and coaching

professors in Microsoft Office, Adobe Acrobat, Angel, Macromedia

Flash, Adobe Photoshop, and operating computer peripherals.

2004- 2006 Research Assistant

University of Louisville, Department of Leadership, Foundations &

Human Resource Education, Louisville, KY

Worked with my advisor on the following research projects:

• Design and implementation of a virtual environment called The

Survival.

• Design and implementation of a virtual environment called

Internet Teaching Lab.

• Interactive and Independent Effect of Visual Fidelity and

Behavioral Fidelity of Avatar on the Perception of Social

Interaction and Social Presence (Experimental Studies.)

• Impact of Collaborative Virtual Environment as a Communication

Medium (Experimental Studies).

Jan 2002-Jul 2002 Part-Time Instructional Technology Specialist

University of Louisville, Delphi Center for Teaching and Learning,

Louisville, KY

• Collaborated with other instructional specialists, technicians, and

computer programmers to design and develop online non-credit

courses.

527

• Designed and developed PowerPoint presentations, Multimedia

presentations using Macromedia Flash, web-based course materials,

and instructional graphics.

Nov 2001-July 2003 Program Assistant

University of Louisville, Louisville, KY, Housing and Residence Life

Department

• Developed and taught online training modules for full-time office

staff, student assistants, resident directors, and resident assistants.

• Designed self-paced training modules for desk-staff students.

• Conducted face-to-face training seminars for the resident directors,

resident assistants and desk-staff students.

• Helped the Unit Business Manager in creating and keeping updated

electronic budgetary reports.

TEACHING

• Grand Valley State Univ., School of Computing

o CIS 150: Introduction to Computing

o CIS 231: Problem Solving using Spreadsheet

o CIS 221: Excel concepts and Applications I

o CIS 309: Teaching Computer Science

o CIS 331: Data Analysis Tools and Techniques

o CIS 335: Data Mining

o CIS 321: Excel concepts and Applications II

o CIS 615: Info. Security Principles

• Grand Valley State Univ., Statistics Department

o STA 215: Introductory Applied Statistics

• Grand Valley State Univ., Foundations & Technology

Department

o ED 205: Computers in Education

o EDG 619 - Curricular Integration of Educational Technology

• The Pennsylvania State Univ., Business Administration

Department.

o MIS 103: Microcomputer Applications in Business.

• The Pennsylvania State Univ., Mathematics Department.

528

o STAT 200: Elementary Statistics.

• Canadian International College, School of Business

Technology, Cairo, Egypt

o BTEC 107: Internet Fundamentals

o BTEC 319: Business Strategies in IT

o BTEC 105: PC Hardware Fundamentals

o BTEC 311: Visual Basic

• University of Louisville, Department of Leadership, Foundations

& Human Resource Education

o ELFH 600 (Co-teaching): Introduction to Research Methods

and Statistics (online course).

o ELFH 664: Facilitating Change in Organizations (online

course).

CURRICULUM DEVELOPMENT

• Cybersecurity B.S. New Program. (May 2018 – Winter 2019)

o Contributed to the development of the prospectus and the

proposal for the new Cybersecurity undergraduate major.

• Cybersecurity M.S. New Program. (May 2018 – Winter 2019).

o Led the task force effort in developing prospectus and the

proposal for the new Cybersecurity graduate program.

• New B.S./M.S. Combined Degree in Cybersecurity

o Authored four new program B.S./M.S. proposals and study

plans for cybersecurity, Computer Science and Cybersecurity,

Information Systems and Cybersecurity, and Information

Technology and Cybersecurity

B.S. Information Technology B.S. New Program (W-17)

o Contributed to the development of the prospectus and the

proposal for the new Information Technology major

• Cyber Range Proposal Task Force

o This task force was charged with writing a proposal for GVSU

to host a Michigan Cyber Range hub. We wrote the proposal,

but the decision was made not to submit it.

• Program Change Request for the Healthcare Information

Systems Minor

o I wrote the proposal for a program change request

529

o The goal of the change was to include CIS 331 as an option for

students who are seeking the HIS minor

• CIS 280/ 221: Excel Concepts and Applications I (August

2019-Current)

o I wrote the proposal for a new Excel Concepts and

Applications I course.

• CIS 380/ 322: Excel Concepts and Applications I

o Currently, I am working on the development of this course

• CIS 455/555-Applied Cryptography

o Dr. Andrew Kalafut and I wrote the proposal for a new Applied

Cryptography course.

• CIS 619-Data Analytics for Cybersecurity

o I wrote the proposal for a new Data Analytics for

Cybersecurity course.

• CIS 331: Data Analysis Tools and Techniques

o Dr. Jonathan Leidig, Dr. Greg Schymik, and I wrote a course

change proposal in order to change the course title, description

and content.

o I developed the course material and started to teach this course

from Fall 2018

• CIS 231: Problem Solving Using Spreadsheet

o Changed the course structure and developed new material

PUBLICATIONS

• 2019, Mansour, S and Lauf, A. “Hardware Root of Trust for IoT

Security In Smart Home Systems” (submitted). IEEE Consumer

Communications & Networking Conference. 10-13 January 2020,

Las Vegas, USA.

• 2018, Mansour, S “Social Media Analysis of Users' Responses to

Terrorism Using Sentiment Analysis and Text Mining”. Cyber

Physical Systems and Deep Learning Conference, November 5-7

2018, Chicago, IL

• 2018, El-Said, M. M., Mansour, S., Bhuse, V, “DSRC Based Sensor-

Pooling Protocol for Connected Vehicles in Future Smart Cities” The

Cyber Physical Systems and Deep Learning Conference, November 5

- 7 2018, Chicago, Illinois, USA

• 2017, A Comparative Study Among Mobile Forensics Tools for

Android Based Smartphones. M.Sc. Thesis, College of Engineering

and Computing, Grand Valley State University

530

• 2017, El-Said, M. M., Arendsen, A., & Mansour, S. S. “DSRC

Performance Analysis in Foggy Environment for Intelligent Vehicles

System.” The International Journal on Recent and Innovation Trends

in Computing and Communication, Volume: 5 Issue: 5, ISSN: 2321-

8169, 2017, pp 807-812. (Work is done in 2016 and published after

review in 2017)

• 2017, Mansour, S. “Terrorist Watcher: An Interactive Web-based

Visual Analytical Tool of Terrorist’s Personal Characteristics”.

International Journal of Data Mining & Knowledge Management

Process (IJDKP), Volume 6, ISSN: 2230 - 9608[Online]; 2231 -

007X

• 2017, El-Said, M. M., Arendsen, A., & Mansour, S. M. A

“Lightweight Message Authentication Framework in the Intelligent

Vehicles System” The International Journal of Engineering And

Science (IJES), Volume 06 - Issue 06, ISSN (e):2319 –1813 ISSN

(p):2319 –1805, pp 33-39

• 2016, Mansour, S. “Cloud Computing and Digital Forensics

Challenges”. 7th Annual International Conference on ICT: Big Data,

Cloud and Security (ICT-BDCS 2016)., Singapore.

• 2016, El-Said, M. M., Arendsen, A., & Mansour, S. S. “DSRC

Performance Analysis in Foggy Environment for Intelligent Vehicles

System.” The International Journal on Recent and Innovation

Trends in Computing and Communication, Volume: 4 Issue: 12,

ISSN: 2321-8169, 2016

• 2016, El-Said, M. M., Arendsen, A., & Mansour, S. M. A

“Lightweight Message Authentication Framework in the Intelligent

Vehicles System.” The International Journal of Engineering And

Science (IJES), Volume 06 - Issue 12 ISSN: 2319 – 1813 ISBN: 2319

– 1805, 2016

• 2015, El-Said M, Arendsen A and Mansour S “Detect and Defend

System on a Stick (D2S2) Against GPS Spoofing Attack”, The 14th

Annual Security Conference is scheduled for May 19-21, 2015 Las

Vegas, Nevada, USA

• 2012, Mansour S and El-Said M “Building a Bi-Directional Bridge

Between Social Presence and Interaction in Online Games” 17th

International Conference on Computer Games, (CGAMES 2012)

• 2011, Mansour S and El-Said M “Building a Bi-Directional Bridge

Between Social Presence and Interaction in Online Games” 17th

International Conference on Computer Games, (CGAMES 2012)

531

• 2010, Mansours, S. El-Said, M. and Bennett, L. “Does the Use of

Second Life Affect Students' Feeling of Social Presence in E-

Learning?” The 8th International Conference on Education and

Information Systems, Technologies and Applications: EISTA 2010,

June 29th - July 2nd, 2010 – Orlando, Florida, USA

• 2009, Mansour, S & Reynolds, J. Development of a Baccalaureate

Major in Information Technology: Adding a Third Dimension to a

Comprehensive Computing Program. Proceedings of the 10th ACM

conference on SIG-Information Technology Education, Fairfax,

Virginia, USA

• 2009, El-Said, M. & Mansour, S “Game Based Learning Creating

a Triangle of Success: Play, Interact and Learn”. International

Journal of Intelligent Games & Simulation. (Invited Paper).

• 2009, Mansour, S., Rude-Parkins, C., & Bennett, L. An Empirical

Study: Assessment of Students’ Learning performance Using 3D

Leaning Environments in Online Courses. Journal of Systemics,

Cybernetics and Informatics

• 2008, Mansour, S., & El-Said, M. Multi-Player Role Playing

Games: A Link between Fun and Learning. The International

Journal of Learning, 15 (11) 229-240

• 2008, Mansour, S & El-Said, M. The Relationship between

Educational Serious Games, Gender, and Students’ Social

Interaction. WSEAS Transactions on Computers, 7(6)640-649.

• 2008, Mansour, S., El-Said, M., & Nandigam, J. (2008). An

Empirical Study to Measure Students Learning Performance Using

Serious Games. The 12th International Conference on Computer

Games: AI, Animation, Mobile, Interactive Multimedia & Serious

Games

• 2008, Mansour, S., Rude-Parkins, C., & Bennett, L. (2008). How the

Use of Second Life Affects E-Learners’ Perceptions of Social

Interaction in Online Courses. Proceedings of the 6th International

Conference on Education and Information Systems, Technologies

and Applications (EISTA). Orlando, Florida

• 2008, Mansour, S., & El-Said, M. (2008). The Impact of Multi-

Players Serious Games on the Social Interaction among Online

Students versus Face-to-Face Students. Proceedings of the 7th

532

International conference on Advances on Applied Computer and

Applied Computational Science (WSEAS), Hangzhou, China

• 2007, S. Mansour, M. El-Said, C. Rude-Parkins, & J. Nandigam. The

Interactive Effect of Avatar Visual Fidelity and Behavioral Fidelity

in the Collaborative Virtual Reality Environment on the Perception

of Social Interaction, WSEAS Transactions on Communications, 8

(5) 1501-1509.

• 2006, Mansour, S., El-Said, M., Rude-Parkins, C., & Nandigam, J.

(2006). The Interactive Effect of Avatar Visual Fidelity and

Behavioral Fidelity in the Collaborative Virtual Reality Environment

on the Perception of Social Interaction. Proceedings of the 10th

International conference of World Scientific and Engineering

Academy and Society (WSEAS). Athens, Greece.

• 2006, Mansour, S., Rude-Parkins, C., & El-Said, M. The Effect of the

Type of Communication Medium on Learners’ Perceptions of Social

Interaction in E-Learning. In E. Pearson & P. Bohman (Eds.),

Proceedings of the 17th World Conference on Educational

Multimedia, Hypermedia & Telecommunications (ED-MEDIA)

2006 ((pp. 1274-1281), Orlando, Florida.

• 2005, Mansour, S., Rude-Parkins, C., & El-Said M. The Relationship

between the Avatar’s Behavioral Fidelity and Social Interaction in

3d Collaborative Learning-Based Games. Proceedings of the 7th

International Conference on Computer Games: AI and Mobile

Systems (CGAIM 2005), Angoulem, France.

• 2005, El-Said, M. & Mansour, S. A Hybrid Anthropomorphism

Model To Enhance The Social Presence In 3D Virtual Multi-Players

Games. Proceedings of the 6th International Conference on

Computer Games: AI and Mobile Systems (CGAIM 2005),

Louisville, KY.

GRANTS

• 2019, CyberGen (will be submitted on Oct 25, 2019) (Joint

collaboration with Bhuse, V, El-Said, M., Kalafut, A., Wang, X

• 2018, Grand Valley State University Cyber Range Hub Site

Initiative", Michigan Economic Development Corporation (MEDC),

$259,800.00, (Joint collaboration with Leidig, P., El-Said, M.,

Kalafut, A., Bhuse, V. Wang, X (we did not submit it)

• 2016, XRY Complete Digital Forensic Kit” Sponsored by the

MSAB Incorporated, (Mobile Forensic Trial Kit - worth $7,990.00

provided by MSAB Corporate). (Joint collaboration with El-Said,

M.)

533

• 2016, Digital Forensics for Mobile Devices. Sponsored by CSCE,

Grand Valley State University, $400.00.

• 2013, A Novel Approach in the Delivery of Occupational Safety and

Health Training for the Beverage Industry”. MIOSHA (Michigan

Occupational Safety and Health Administration. Funded $45,000.00.

(Joint collaboration with Huizen, D.)

• 2010, Using Second Life for Developing Interactive Games to Teach

Computer Science Programming Skills. $1,980.00 ((funded by the

FTLC Grand Valley State Univ).

• 2009, Web Based Mobile Learning environment (M-WEB-

Learning). 5,274.00 (funded by the FTLC Grand Valley State Univ)

• 2008, Immersive Education: using Second life to teach computing

and information systems, 4,274.00 (funded by the FTLC Grand

Valley State Univ) (Joint collaboration with Nandigam, J)

• 2008, Proactive Intrusion Detection System (IDS) using Baseline

Recording, Analysis and Real time Monitoring $4,912.50 (funded by

the FTLC Grand Valley State Univ) (Joint collaboration with El-

Said, M)

• 2006, Learning by Doing: An Adapted Teaching Philosophy in the

Wireless Courses, $1750 (funded by the FTLC, Grand Valley State

Univ) (Joint collaboration with El- Said, M).

• 2006, Building an Interactive Collaborative Virtual Reality Teaching

Environment, $2970 (funded by FTLC-Grand Valley State Univ)

(Joint collaboration with El- Said, M.).

• 2005, Building an Interactive Constructivist Approach in Teaching

the Next Generation of Autonomic Mobile Computing Networks,

$1560 (funded by FTLC-Grand Valley State Univ) (Joint

collaboration with Prof. El- Said,M.).

PROFESSIONAL ACTIVITIES

Reviewer for Conferences and Journals

534

• 10th International Conference on Society and Information

Technologies: ICSIT 2019

• Complex Adaptive Systems conference 2018

• 8th International Conference on Society and Information

Technologies: ICSIT 2017

• SIGITE/RIIT, 2016

• 7th International Conference on Society and Information

Technologies: ICSIT 2016

• International Conference on Society and Information Technologies:

ICSIT 2015

• The 19th International Computer Games Conference, AI, Animation,

Interactive Multimedia, Virtual Worlds and Serious Games,

(CGAMES 2014), Louisville, Kentucky. - International Conference

on Society and Information Technologies: ICSIT 2014

• member of the ISTE SIG 1-to-1 Computing,2013

• International Conference on Society and Information Technologies:

ICSIT 2013

• International Conference on Society and Information Technologies:

ICSIT 2012

• International Conference on Society and Information Technologies:

ICSIT 2011 o International Conference on Engineering and Meta-

Engineering: ICEME 2011

• The 17th International Computer Games Conference: AI, Interactive

Multimedia, Virtual Worlds and Serious Games (CGAMES'12)

• International Conference on Engineering and Meta-Engineering:

ICIME 2010

• The 3rd International Multi-Conference on Engineering and

Technological Innovation (IMETI 2010)

• International Conference on Society and Information Technologies:

ICSIT 2010

• Journal of Computer Assisted Learning

• The International Journal of Learning

Professional Society Memberships

• Internet of Things, West Michigan (IoTWM), Member, Grand

Rapids, MI, USA, (2017 - Present)

• West Michigan Cyber Security Consortium, Board Member, Grand

Rapids, MI, USA, (2017 - Present).

ADVISING and MENTORING STUDENTS’ PROJECTS

• Honors Senior Project: Investigating the Sense of Belonging Among Various Super

Smash Bros. Gaming Communities

o The goal of this research project was to analyze the perception of individuals

within the Melee, Project M, and Smash 4 communities to see if there is any

variation in the sense of belonging in each community and if so, why?

• Data Parsing

535

o This project was developed for the Little Sprouts pre-kindergarten schools as a

collaboration with Take Flight Enterprises, LLC. The specific procedure was part of

an overhaul of the schools’ current records. The project work involves the following

tasks: opening an Excel data file, importing the output file from the WebGUI, and

running a parsing procedure.

• Production Capacity

o This project focused on developing a simulation a tool that can be used in a real-

world industry setting. The simulation tool calculates how much capacity is needed

in the upcoming periods of the machine’s running time window as well as it shows

how much that machine’s capacity will cost. One of the main features of this project

was how to figure out the product’s unit price, which depends on several factors such

as: industry average price, industry average quantity sold, production capacity,

beginning inventory, and ending inventory.

• Improving Mental Math: The Method Behind the Program –

o The main objective of the game was to test the basic mental math skills of students.

The program is allowing the teacher to set the range of numbers to be included in the

test, the amount of questions, and a time limit. Then they would be able to administer

the test to the class and monitor the results. Based on those results, the teacher could

cater any review needed changed. The program allows the students to log in, save and

send their scores to their teachers. This would allow the teacher to establish trends in

the individual students score. With this, the teacher could then work on a specific range

for each student and instead of using one quiz, each student could work on their own

personalized quiz.A pilot study was conducted at Central Grand Rapids High School

(CHS). Based on the students’ input, the student changed some aspects of the project.

The teacher in CHS decided to adopt and use the game in their classes.

• Fractions Are Our Friends

o This game was designed to teach fractions to elementary school students. In

order to validate the impact of the game on helping students to get a better

understanding of the fraction concepts.

o A crossover experimental design was used to conduct the experiment

o The experiment was designed to answer the following questions:

▪ Does the use of a game as a teaching tool impact the students’ learning?

▪ What is the impact of providing students with instant feedback on

motivating students to answer the questions correctly?

▪ Is there a relationship between the format of delivering the quiz (

paper/game) and the students’ inspiration to take the quiz?

▪ What is the impact of using educational serious games on motivating

students from low socioeconomically status and low performance level

in math to learn mathematical complex concepts?

SERVICE

o Grand Valley State University

• Women in Computing

536

• GVSU Engineering Engineer Day

• Revise the required courses for the IS and IT minor programs.

o The Pennsylvania State University

• Spring 2004, Committee for internationalizing the curriculum.

• Fall 2003-Spring 2004, Committee on Diversity.

• Fall 2003-Spring 2004, Consultant for the design and development

of online statistics courses for the School of Nursing.

o The Housing and Residence Life Department, University of Louisville

• Spring 2003, Resident Director Search Committee.

• Spring 2003, Student Life Awards Committee.

• Fall 2002, Assistant Director For Administrative Services Search

Committee.

• Fall 2002, Associate Director for Facilities Search Committee.

• Spring 2002, Director Search Committee.

• Spring 2001-Spring 2003, Annual Resident Assistants Retreat

Planning Committee.

	Lightweight mutual authentication and privacy preservation schemes for IOT systems.
	Recommended Citation

	tmp.1628535853.pdf.AfPlo

