121 research outputs found

    Network Traffic Based Botnet Detection Using Machine Learning

    Get PDF
    The field of information and computer security is rapidly developing in today’s world as the number of security risks is continuously being explored every day. The moment a new software or a product is launched in the market, a new exploit or vulnerability is exposed and exploited by the attackers or malicious users for different motives. Many attacks are distributed in nature and carried out by botnets that cause widespread disruption of network activity by carrying out DDoS (Distributed Denial of Service) attacks, email spamming, click fraud, information and identity theft, virtual deceit and distributed resource usage for cryptocurrency mining. Botnet detection is still an active area of research as no single technique is available that can detect the entire ecosystem of a botnet like Neris, Rbot, and Virut. They tend to have different configurations and heavily armored by malware writers to evade detection systems by employing sophisticated evasion techniques. This report provides a detailed overview of a botnet and its characteristics and the existing work that is done in the domain of botnet detection. The study aims to evaluate the preprocessing techniques like variance thresholding and one-hot encoding to clean the botnet dataset and feature selection technique like filter, wrapper and embedded method to boost the machine learning model performance. This study addresses the dataset imbalance issues through techniques like undersampling, oversampling, ensemble learning and gradient boosting by using random forest, decision tree, AdaBoost and XGBoost. Lastly, the optimal model is then trained and tested on the dataset of different attacks to study its performance

    Botnet Detection Using Graph Based Feature Clustering

    Get PDF
    Detecting botnets in a network is crucial because bot-activities impact numerous areas such as security, finance, health care, and law enforcement. Most existing rule and flow-based detection methods may not be capable of detecting bot-activities in an efficient manner. Hence, designing a robust botnet-detection method is of high significance. In this study, we propose a botnet-detection methodology based on graph-based features. Self-Organizing Map is applied to establish the clusters of nodes in the network based on these features. Our method is capable of isolating bots in small clusters while containing most normal nodes in the big-clusters. A filtering procedure is also developed to further enhance the algorithm efficiency by removing inactive nodes from bot detection. The methodology is verified using real-world CTU-13 and ISCX botnet datasets and benchmarked against classification-based detection methods. The results show that our proposed method can efficiently detect the bots despite their varying behaviors

    Performance evaluation of botnet detection using machine learning techniques

    Get PDF
    Cybersecurity is seriously threatened by Botnets, which are controlled networks of compromised computers. The evolving techniques used by botnet operators make it difficult for traditional methods of botnet identification to stay up. Machine learning has become increasingly effective in recent years as a means of identifying and reducing these hazards. The CTU-13 dataset, a frequently used dataset in the field of cybersecurity, is used in this study to offer a machine learning-based method for botnet detection. The suggested methodology makes use of the CTU-13, which is made up of actual network traffic data that was recorded in a network environment that had been attacked by a botnet. The dataset is used to train a variety of machine learning algorithms to categorize network traffic as botnet-related/benign, including decision tree, regression model, naïve Bayes, and neural network model. We employ a number of criteria, such as accuracy, precision, and sensitivity, to measure how well each model performs in categorizing both known and unidentified botnet traffic patterns. Results from experiments show how well the machine learning based approach detects botnet with accuracy. It is potential for use in actual world is demonstrated by the suggested system’s high detection rates and low false positive rates

    On the Use of Machine Learning for Identifying Botnet Network Traffic

    Get PDF

    Advances in Data Mining Knowledge Discovery and Applications

    Get PDF
    Advances in Data Mining Knowledge Discovery and Applications aims to help data miners, researchers, scholars, and PhD students who wish to apply data mining techniques. The primary contribution of this book is highlighting frontier fields and implementations of the knowledge discovery and data mining. It seems to be same things are repeated again. But in general, same approach and techniques may help us in different fields and expertise areas. This book presents knowledge discovery and data mining applications in two different sections. As known that, data mining covers areas of statistics, machine learning, data management and databases, pattern recognition, artificial intelligence, and other areas. In this book, most of the areas are covered with different data mining applications. The eighteen chapters have been classified in two parts: Knowledge Discovery and Data Mining Applications
    • …
    corecore