

City, University of London Institutional Repository

Citation: Meng, X. (2018). An integrated networkbased mobile botnet detection system.
(Unpublished Doctoral thesis, City, Universtiy of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: http://openaccess.city.ac.uk/19840/

Link to published version:

Copyright and reuse: City Research Online aims to make research
outputs of City, University of London available to a wider audience.
Copyright and Moral Rights remain with the author(s) and/or copyright
holders. URLs from City Research Online may be freely distributed and
linked to.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

AN INTEGRATED NETWORK-

BASED MOBILE BOTNET

DETECTION SYSTEM

Xin Meng

Department of Computer Science

City, University of London

This dissertation is submitted for the degree of

Doctor of Philosophy

City University London June 2017

Xin Meng

Xin Meng
April 2018

Xin Meng

Xin Meng
City, University of London

Xin Meng

Xin Meng

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part for

consideration for any other degree or qualification in this, or any other University. This

dissertation is the result of my own work and includes nothing which is the outcome of work

done in collaboration, except where specifically indicated in the text. This dissertation contains

less than 65,000 words including appendices, bibliography, footnotes, tables and equations and

has less than 150 figures.

Xin Meng

June 2017

Acknowledgements

I would like to express my greatest appreciation to my supervisor Prof. George Spanoudakis.

I am always motivated by his full support and his knowledge of the field during the whole

period of my doctoral studies. There were times of the research for this thesis when I wondered

if I would ever finish it, but his professional support and his personality gave me the strength

to keep going further with the research. He is always patient, and his encouragement and advice

are valued greatly. My thesis work would not have been accomplished without his help,

aspiring advice and expert guidance.

I would like to acknowledge my deep appreciation to all the colleagues from School of

Mathematics, Computer Science & Engineering, Department of Computer Science.

Special thanks go to my parents and my wife for their endless love.

Abstract

The increase in the use of mobile devices has made them target for attackers, through the

use of sophisticated malware. One of the most significant types of such malware is mobile

botnets. Due to their continually evolving nature, botnets are difficult to tackle through

signature and traditional anomaly based detection methods. Machine learning techniques have

also been used for this purpose. However, the study of their effectiveness has shown

methodological weaknesses that have prevented the emergence of conclusive and thorough

evidence about their merit.

To address this problem, in this thesis we propose a mobile botnet detection system, called

MBotCS and report the outcomes of a comprehensive experimental study of mobile botnet

detection using supervised machine learning techniques to analyse network traffic and system

calls on Android mobile devices.

The research covers a range of botnet detection scenarios that is wider from what explored

so far, explores atomic and box learning algorithms, and investigates thoroughly the sensitivity

of the algorithm performance on different factors (algorithms, features of network traffic,

system call data aggregation periods, and botnets vs normal applications and so on). These

experiments have been evaluated using real mobile device traffic, and system call captured

from Android mobile devices, running normal apps and mobile botnets.

The experiments study has several superiorities comparing with existing research. Firstly,

experiments use not only atomic but also box ML classifiers. Secondly, a comprehensive set

of Android mobile botnets, which had not been considered previously, without relying on any

form of synthetic training data. Thirdly, experiments contain a wider set of detection scenarios

including unknown botnets and normal applications. Finally, experiments include the statistical

significance of differences in detection performance measures with respect to different factors.

The study resulted in positive evidence about the effectiveness of the supervised learning

approach, as a solution to the mobile botnet detection problem.

Contents

Contents .. ix

List of Figures ... xiii

List of Tables ... xv

List of Abbreviations ... xvii

List of Equations .. xix

Chapter 1 Introduction .. 1

1.1 Research background ... 1

1.2 Motivation ... 6

1.3 Overview of approach ... 7

1.4 Research hypothesis and objectives .. 8

1.5 Contribution ... 9

1.6 Thesis outline ... 10

Chapter 2 Literature Review ... 13

2.1 Background of botnet .. 13

2.1.1 Definition ... 13

2.1.2 Taxonomy ... 15

2.1.3 Lifecycle of botnet ... 19

2.1.4 Comparison different type of malware ... 22

2.2 Conventional botnet detection techniques ... 23

2.2.1 Incidents ... 23

2.2.2 Botnet creation techniques ... 25

2.2.3 Taxonomy of detection techniques .. 27

2.2.4 Comparison .. 37

2.3 Network traffic anomaly detection technique ... 43

2.3.1 Introduction of anomaly detection and intrusion detection 43

2.3.2 Classification of anomaly-based detection technique 46

2.3.3 The future trend of anomaly detection technique ... 52

2.4 Machine Learning .. 53

2.4.1 Introduction of machine learning algorithm ... 53

2.4.2 Machine learning algorithms .. 55

2.4.3 Evaluation criteria for machine learning .. 73

2.5 Mobile botnet ... 78

2.5.1 Mobile botnet accidents ... 79

2.5.2 Mobile botnet creation ... 82

2.5.3 Detection techniques .. 85

2.5.4 ML based botnet detection techniques comparison 88

2.5.5 Mobile botnet detection specificity .. 92

2.5.6 Open issues ... 95

Chapter 3 The MBotCS Detection System ... 97

3.1 Overall framework ... 97

3.2 Introduction of components ... 100

3.2.1 Mobile Verification Component .. 100

3.2.2 Data Broker .. 100

3.2.3 Notification Broker .. 101

3.2.4 Feedback Broker and Processor ... 101

3.2.5 Data Analyser ... 102

3.3 System Security ... 103

3.3.1 Communication Security .. 103

3.3.2 MVC Application Security ... 105

Chapter 4 Experimental Evaluation of Mobile Botnet Detection 107

4.1 Overview ... 107

4.2 MVC of MBotCS System on mobile device ... 110

4.3 Implementation of MVC Component .. 112

4.3.1 Network traffic capture .. 112

4.3.2 Pcap parse and pre-processor ... 113

4.3.3 WEKA based machine learning analyser ... 114

4.3.4 User interface ... 114

4.4 Analysed normal and botnet applications .. 115

4.5 Experiments for network traffic analysis... 118

4.5.1 Workflow of experiments ... 118

4.5.2 Experiment I ... 125

4.5.3 Experiment II .. 139

4.5.4 Experiment III .. 146

4.6 Experiments for system call analysis... 150

4.6.1 Overview .. 150

4.6.2 Methodological setup of the experiments .. 151

4.6.3 Basic statistical analysis ... 155

4.6.4 First experiment: KBKN scenario .. 157

4.6.5 Second experiment: UBKN scenario ... 165

4.6.6 Third experiment: UBUN scenario .. 174

4.6.7 Overall discussion & threats to validity ... 180

4.7 Conclusion of experiments .. 183

Chapter 5 Conclusion .. 184

5.1 Discussion .. 184

5.2 Summary of contributions ... 186

5.3 Further research ... 188

5.3.1 Future research directions .. 188

5.3.2 Planned and related work within MBotCS ... 189

References ... 191

Appendix A Key Implementation Code of Android Application 217

A.1 PCAP file parse ... 217

A.2 Machine learning analyser ... 221

A.3 Android intent service ... 228

A.4 User interface ... 229

Appendix B System Call Monitor Bash Script ... 232

Appendix C Key Implementation Code of Broker ... 235

Appendix D Key Implementation Code of Analyser .. 242

Appendix E Normal Application Actions ... 244

Appendix F Tables of Experiments Result ... 246

Appendix G Training Dataset Feature Selection ... 251

List of Figures

Figure 2-1 - Four types of communication structure of botnet [69] 16

Figure 2-2 - Adapted version of botnet lifecycle .. 21

Figure 2-3 - The hierarchical classification of botnet detection techniques 28

Figure 2-4 - The feature of Rxbot data packet .. 32

Figure 2-5 - The example of point anomalies ... 44

Figure 2-6 - The example of contextual anomaly ... 45

Figure 2-7 - The unit of neural network .. 66

Figure 2-8 - Simple neural network model ... 66

Figure 3-1 - The overall architecture of MBotCS ... 99

Figure 4-1 - Architecture of MVC on mobile devices .. 111

Figure 4-2 - The GUI of MBotCS ... 112

Figure 4-3 - Workflow of experimental training ... 118

Figure 4-4 - Tshark command for extracting features .. 120

Figure 4-5 - Normal stream result visualisation .. 128

Figure 4-6 - Infect stream result visualisation ... 129

Figure 4-7 - Comparison between packet and stream dataset ... 130

Figure 4-8 - Comparison of ML algorithms .. 134

Figure 4-9 - ROC curve of infect stream based on six classifier algorithms 135

Figure 4-10 - ROC curves of evaluation of selected botnet detection systems 136

Figure 4-11 - Infect recall across infect malware family .. 141

Figure 4-12 - Infect FPR across infect malware family .. 141

Figure 4-13 - Infect Prec across infect malware family .. 141

Figure 4-14 - Comparison of ML algorithms .. 143

Figure 4-15 - Battery consumption ... 148

Figure 4-16 - The ML-analyser execution time .. 149

Figure 4-17 - Experimental set up ... 151

Figure 4-18 - Performance of normal across different time interval dataset 160

Figure 4-19 - Performance of botnet across different time interval dataset 161

Figure 4-20 - Average performance of time interval dataset .. 162

Figure 4-21 - Performance of normal across different malware family dataset 168

Figure 4-22 - Performance of botnet across different malware family dataset 169

Figure 4-23 - Average performance of malware family dataset 170

Figure 4-24 - Performance of normal across different malware family dataset 176

Figure 4-25 - Performance of botnet across different malware family dataset 177

Figure 4-26 - Average performance of malware family dataset 178

Figure 4-27 - Average TPR, FPR, PRC and AUC measures for botnet applications in all
three experiments. .. 180

List of Tables

Table 2-1 - The accidents of conventional botnet ... 24

Table 2-2 - Taxonomy of botnet detection techniques .. 29

Table 2-3 - The summary of the criteria for botnet detection ... 39

Table 2-4 - Confusion matrix .. 74

Table 2-5 - List of potentially harmful behaviours of mobile botnet 80

Table 2-6 - The accidents of mobile botnet .. 81

Table 2-7 - ML based botnet detection approaches .. 91

Table 4-1 - Botnet malware families .. 116

Table 4-2 - Normal applications ... 117

Table 4-3 - Pattern-matching library ... 121

Table 4-4 - AVONA analysis results .. 123

Table 4-5 - Ranking of algorithms for infected stream traffic in experiment I 132

Table 4-6 - The AUC of six classifiers based on stream dataset 135

Table 4-7 - Outcome of analysis of variance for experiment I ... 137

Table 4-8 - Ranking of algorithms for infected stream traffic in experiment II 142

Table 4-9 - Outcome of analysis of variance for experiment II .. 144

Table 4-10 - The specs of GT-I9228 ... 147

Table 4-11 - Structure of primitive system call data set ... 153

Table 4-12 - Structure of derived dataset .. 154

Table 4-13 - Statistical significance of system call frequency differences 156

Table 4-14 - Outcomes of analysis of variance for experiment 1 163

Table 4-15 - Outcomes of analysis of variance for experiment 2 171

Table 4-16 - Outcomes of analysis of variance for experiment 3 179

Table F-1 - Results of experiment I of network traffic ... 246

Table F-2 - Results of experiment II of network traffic .. 247

Table F-3 - Performance measures in experiment 1 of system call 248

Table F-4 - Performance measures in experiment 2 of system call 249

Table F-5 - Performance measures in experiment 3 of system call 250

Table G-1 - Network Traffic Feature Selection .. 251

Table G-2 - System Calls Dataset Feature Selection .. 251

List of Abbreviations

Abbreviation Meaning Page

ACC Accuracy 75

ADB Android Debug Bridge 152

ANOVA Analysis of variance 77

API Application Programming Interface 34

APNS Apple Push Notification Service 19

AUC Aera Under the Curve 75

BPS Bits per second (bps), a data rate unit 19

C2DM Cloud to Device Messaging 19

C4.5 C4.5 is an extension of Quinlan's earlier ID3 algorithm 62

C&C Command-and-Control 55

CBLOF Cluster-Based Local. Outlier Factor 50

CER Crossover Error Rate 40

COF Connectivity-based Outlier Factor 49

COER Crossover Error Rate 38

CPU Central Processing Unit 147

CSV Comma-Separated Values 121

DDOS Distributed Denial of Service 1

DNS Domain Name System 27

FAR False Acceptance Rate 39

FN False Negative 40

FP False Positive 40

FPR False Positive Rate 40

GCM Google Cloud Messaging 19

GPRS General Packet Radio Service 95

GUI Graphical User Interface 107

HPCC Hybrid Peer to Peer Command and Control 26

HTTP Hypertext Transfer Protocol 5

ID3 Iterative Dichotomiser 3 60

IDS Intrusion Detection System 5

I/O Input/Output 156

IP Internet Protocol 17

IRC Internet Relay Chat 1

KBKN Know Botnet and Known Normal 10

KBTA Knowledge-based Temporal Abstractions 88

KNN K-Nearest Neighbour 48

KTT Karush–Kuhn–Tucker 72

LOF Local Outlier Factor 48

ML Machine Learning 7

MPNS Microsoft’s Push Notification Service 19

MTU Maximum Transmission Unit 131

MVC Mobile Verification Components 97

NFC Near-Field Communication 85

NIDS Network Intrusion Detection System 37

NIPS Network Intrusion Prevention System 37

NNA Nokia’s Notifications API 19

NN Neural Network 65

NPV Negative Predictive Value 75

P2P Peer to Peer 5

PCAP Packet CAPture (Data file created by Wireshark) 107

RAM Random-Access Memory 147

RD Relative Density 48

RMSE Root-Mean-Squared Error 76

ROC Receiver Operating Characteristics 38

SCM System Call Monitor 153

SMC Simple Matching Coefficient 48

SMO Sequential Minimal Optimisation 70

SMS Short Message Service 2

SMTP Simple Mail Transfer Protocol 28

SVM Support Vector Machine 55

Tbps Terabytes Per Second 2

TN True Negative 40

TP True Positive 40

TPR True Positive Rate 40

TTTS Training-To-Test Data Set Size 145

UBKN Unkonw Botnet and Known Normal 10

UDP User Datagram Protocol 120

UFCC URL Flux-based Command-and-Control 26

UGA Username Generation Algorithm 26

UNUB Unknown Normal and Unknown Botnet 10

URL Uniform Resource Locator 83

VPN Virtual Private Network 190

VRC Value Range Criteria 109

List of Equations

Equation 2-1 TCP work weight equation .. 35

Equation 2-2 Similarity between DNS traffic ... 35

Equation 2-3 Equation True Positive Rate .. 40

Equation 2-4 False Positive Rate .. 40

Equation 2-5 Precision .. 40

Equation 2-6 Euclidean distance between two points ... 48

Equation 2-7 Simple matching coefficient equation ... 48

Equation 2-8 Bayes’s theorem .. 56

Equation 2-9 Bayes’s theorem: conditional probability of features I 57

Equation 2-10 Bayes’s theorem: conditional probability of features II 57

Equation 2-11 Bayes’s theorem: conditional probability of features III 58

Equation 2-12 ID3 algorithm: entropy equation ... 61

Equation 2-13 ID3 algorithm: information after attributes split ... 61

Equation 2-14 ID3 algorithm: information gain equation ... 61

Equation 2-15 C4.5 algorithm: split information .. 62

Equation 2-16 C4.5 algorithm: information gain ratio .. 62

Equation 2-17 KNN algorithm: distance compute equation ... 64

Equation 2-18 KNN algorithm: vote equation .. 64

Equation 2-19 Three layers NN algorithm: output of layer 2 ... 67

Equation 2-20 Three layers NN algorithm: output of layer 3 ... 67

Equation 2-21 Three layers NN algorithm: overall cost function 67

Equation 2-22 gradient descent ... 68

Equation 2-23 Neural network algorithm: cost function ... 68

Equation 2-24 Support vector machine: objective function .. 70

Equation 2-25 Support vector machine: decision function ... 70

Equation 2-26 decision boundary of SVM .. 71

Equation 2-27 to Karush–Kuhn–Tucker conditions ... 71

Equation 2-28 Cohen’s Kappa formula ... 75

Equation 2-29 Root-mean-squared error formula ... 77

Equation 4-1 K-fold classification error of a classifier ... 124

Chapter 1 Introduction

1.1 Research background

Botnets malware has become one of the most serious threats to networks which can be

defined as “A network of remotely controlled systems used to coordinate attacks and distribute

malware, spam, and phishing scams” [1]. Unlike traditional malware, botnets spread easily and

have a wider range impact. Although there is significant research on detecting and defending

botnets, most of the defence systems still stay at a primary stage. In 2007, experts give an

estimation that approximately 100 to 150 million computers which comprise about 16–25% of

all current 600 million computers which connected to the Internet were already controlled by

botnets [2, 3]. Since the appearance of botnets, there has been a continuous stream of news

regarding damages caused by different botnets. An IRC-based botnet which infected 10,000

machines to perform a DDOS attack and spread junk email was discovered in 2004 [4]. In June

2008, the Shadow Server Foundation gave an estimation that the number of botnets had

exceeded 450,000 machines [5]. In 2009, the Carbon Footprint of e-mail Spam report estimated

that 62 trillion spam emails are sent globally every year, and the majority of these spam emails

are sent via botnets [6]. Troj.MDK botnet malware on Android platform which was discovered

in 2012 is estimated to have been hidden in more than 11,000 malicious apps and infected more

than 1 million mobile devices in China [7]. In June 2013, Microsoft and the FBI launched a

joint strike for breaking up the Citadel botnet which has stolen more than $500 million (£323

million) from bank accounts and infected more than 5 million computers [8]. In 2016, DDoS

attacks make their mark on all the digital internet threats around the world. ATLAS tracked

nearly 124,000 DDoS attack events each week in 6 months from January 2015 to June 2016.

Apart from the increment of frequency, the peak attack size also growth 73% compared with

2015 from 354Gbps to 579Gbps [9]. The most five significant DDoS attacks make use of

2 Introduction

Internet of Things(IoT) botnet and leverage insecure devices to conduct the attack [10]. Unlike

other types of Botnet depend on computing devices such as computer and smartphone, IoT

botnet can be largely made up of IoT devices such as digital cameras and digital video recorder

(DVR) player [11]. Mirai Botnet is one of most famous IoT botnet with significate growth pace

because the source code is published on Github [12]. According to the report of Level 3 Threat

Research Labs, the Mirai bots has been reached to 493,000[13]. In October 2016, the Dyn

suffered a DDoS attack regarding as the most severe one in 2016 which performed by Mirai

Botnet including approximately 100,000 bots. Packet flow reached to nearly 50 times higher

than its normal volume during the attack and the attack peak size reach almost 1.2 Terabytes

Per Second (Tbps). The attack leads to several high-profile websites suffered service

interruptions and went offline [14, 15]. In November 2016, A botnet which consisted of at least

24,000 bots located in more than 30 countries made a DDoS attack for at least 5 Russian major

banks [16]. It is no doubt that botnets have become one of the most serious security problems

to the Internet.

With the popularisation of mobile phone and development of the wireless mobile internet,

the mobile devices are becoming the target of the botnets. According to Cisco, 497 million new

mobile devices and connections were sold in 2014 [17]. Another recent report has published

that the global mobile devices and connections have grown to 8.0 billion in 2016, up from 7.6

billion in 2015. It also forecasts that mobile-cellular subscriptions will grow to 11.6 billion by

2021 [18]. Market reports also show that since 2012 Google’s Android operating system has

overtaken other smartphone operating systems and is currently the market leading mobile OS

and is expected to get more than 80% market share until 2019 [19]. Along with the growth in

the use of mobile devices, there has also been a growing number of mobile malware systems,

often in the form of mobile botnets. According to KASPERSKY [20], a mobile botnet is

defined as a collection of applications, which are connected through a network and

communicate with each other and a remote server (known as the “botmaster”) in order to

perform orchestrated attacks (e.g., remotely executed commands, information stealing, SMS

dispatching). Nowadays, the performance of the smartphone and tablet is similar to the PC.

Along with the enormous potential benefits of the mobile network, many mobile botnets have

appeared in the real network. The simplification of the mobile devices and the lack of the

1.1 Research background 3

network safety consciousness of most of the common users of such devices make botnet a

serious problem. According to [20], 148,778 mobile malware applications had been detected

at the end of 2013, and nearly 62% of them were part of mobile botnets. In 2016, the number

of malicious installation packages grew considerably, amounting to more than 8.5 million

which is three times more than 2015 [21]. The first mobile botnet was an iPhone botnet, known

as iKee.B [22], which was traced back in 2009. iKee.B was not a particularly dangerous botnet

because iOS is a closed system. Unlike it, Android, which is an open system, has become a

major target for mobile botnet creators. Geinimi was the first Android botnet that was

discovered in 2010 [23]. Other Android botnets include Android.Troj.Mdk, i.e., a Trojan found

in more than 7,000 apps that have infected more than 1m mobile users in China, and

NotCompatible.C, i.e., a Trojan targeting protected enterprise networks [24]. Research on

mobile botnets (see [25] for detailed surveys) has looked at device specific botnet detection

[26] as well as mobile botnet implementation principles and architectures for creating mobile

botnets [27, 28].

The current situation of botnets research is still staying the initial stage. Although a lot of

the solution has proposed by some researchers, there is hardly any mature botnets detection

and defence system which is used in the real environment. Most of the methods for confronting

with botnets malware still rely on the signature-based antimalware software. There is a

bottleneck for the conventional platform botnets detection which is the evaluation measurement

according to analyses most of the detection techniques. Because of the bottleneck, it is hard to

evaluate the various kinds of detection technologies. In our research, we will give an as far as

possible objective evaluation for several conventional detection approaches based on several

criteria.

Research on the detection of mobile botnets has intensified over the last few years. The

techniques developed for this purpose range from static analysis of application code [26, 29,

30], analysis of application fingerprints [31], signature-based detection [32-34], anomaly

based detection [35-38] and detection based on machine learning techniques [39-41]. In

addition to the detection techniques, some research focuses on mobile botnet implementation

principles [25, 42, 43] and new mobile botnets architectures [22, 27, 28, 44-59]. The purpose

of these research is to make a prediction of new types of mobile botnets that may occur in

4 Introduction

future. Currently, mobile users can only use software that detects the malware based on

signatures of known mobile botnets. However, as in botnets, the botmaster can update the

malicious code of the bots continuously. So more dynamic detection approaches that are

capable of detecting unknown future mobile botnets are required.

Through a literature review, we find several surveys and reports are giving an overview of

botnets in different aspects. However, most of them just concentrate on the conventional

platforms such as traditional computers, routers, switches and so on. Because of large scale

compromise of the mobile botnet and the increase of mobile botnet research, we will give a

more detailed state of the art of mobile botnets.

McCarty [60] provide a brief description of botnet including the structure and principal

illegitimate purposes based on Honeynet Project which can be regarded as the earlier research.

Puri [61] presented a comprehensive overview of the botnet based on IRC including the

mechanism, attack, target and the possible defending methods of an IRC-based botnet. The

survey even gives a list of some known bots (The link in the list is invalid now). Rajab et al.

[62] deploy multifaceted distributed data collection infrastructure which can capture the

activities of botnets to demonstrate the botnets phenomenon. Through their measurement

methodology, they perform a comprehensive measurement analysis that reflects the

prevalence, spreading and growth patterns, structure, lifetime and efficient size of the botnets.

The survey in [63] offers a brief overview of botnet based on the existing research on every

aspect. It not only makes an anatomy of Bot but also discusses the techniques of botnet

detection and defence. It divides the detection into two main approaches, one is Honeynet based

method, and the other relies on passive traffic monitoring. This survey also found the rare

research on the defence technologies against botnet which only concentrate on the spam

detection and enterprise solutions. Liu et al. [64] make a summary for the most of the direction

of botnet research. They discuss primary concepts of botnet including structure, exploitation,

lifecycle and topology and introduce several relevant attacks, detection, tracing, and

countermeasures. The short survey [65] plain introduction of the related research directions,

addressing infection mechanisms, malicious behaviour, command and control models,

communication protocols, botnets detection and defence against botnets. They also present a

1.1 Research background 5

simple case study of early IRC-based botnet worm – SpyBot [66]. Shin and Im [67] present a

description of botnet basic knowledge and botnet defence method. The emphasis of this survey

is topologies and consequences of botnets. Zhang et al. [68] introduce the principle and

mechanism of fluxing in botnet which includes fast fluxing and domain fluxing. Moreover,

they also make an investigation of research on fluxing botnet detection. Silva et al. [69] present

a comprehensive review that broadly discusses the botnet problem. The survey gives a

presentation of a comprehensive tutorial-like study addressing the botnet problem in general

firstly and lists the timeline of some important bots from 1993 to 2011 and their main features.

It also makes a summary of detection and defence techniques which contain nearly all the

existing research.

Further research on the subject includes works which provide taxonomy according to a

particular aspect of botnets. Dagon et al. [70] present a taxonomy of botnets based on a

topological structure which divides into three categories(centralised, peer-to-peer, and

random). They even measure their utilisation by using four metrics: effectiveness, efficiency,

robustness and average available bandwidth. Zeidanloo et al. [71] provides a classification of

botnets C&C channels which are divided into three models (centralised, decentralised and

hybrid) and evaluate well-known protocols (e.g. IRC, HTTP, and P2P) which are being used

in each of them. They also give a taxonomy of botnet detection techniques which classify into

two approaches [72]: Honeynet and IDS(Intrusion Detection System). Czosseck et al. [73]

propose a comparatively overall botnet taxonomy based on usage which consists of four

features: users of botnets, motivations of botnet usage, functionality applied and way of

infection. The literature even examines some instances according to their taxonomy. Hachem

et al. [74][51] present a classification that reflects the life cycle and current resilience

techniques of botnets, distinguishing the propagation, the injection, the control and the attack

phases.

Although the challenges of botnet detection are discussed as the last part of majority surveys,

there is also some literature which pays attention to the challenges separately. Rajab et al. [52]

draw a conclusion that it remains some challenges to estimate the size of botnet through

presenting different metrics for counting botnet membership and show different size estimates

for a large number of botnets they traced. Aviv and Haeberlen [53] outline several current

6 Introduction

challenges when evaluating botnet detection systems. The survey analyses the evaluation

methods for existing botnet detection system and finds that it is hard to find appropriate test

traces for botnet detection system because of some issue such as realism, sensitive information

and so on. Brezo et al. [54] sets out the main lines of current research in botnet detection and

presents the limitation of the existing botnet detection. The recent literature [55] shed light on

some of the challenges for establishing botnet Emulation systems. Moreover, they discuss

various techniques used to address or alleviate these problems.

Through a large number of literature reviews, we divided these researches of botnet into

four main categories based on the research direction.

 Botnet survey and mechanism research

 Botnet detection on conventional platform

 Design and detection of mobile botnet and malware

In our research, we will make an in-depth discussion about state of the art for the botnet

according to these research directions.

1.2 Motivation

In this research, the main target is to design a high-efficiency detection system to detect the

attack of known and unknown mobile botnet. Some reasons are listed as follows:

 Mobile botnets have posed a severe threat to the property and individual privacy. With

the increasing of the number and the performance of mobile devices, more and more

important transactions are allocated to the mobile devices. Such as almost all bank

transactions can be finished by the mobile application and most of the personal

information can be stored on the mobile device even for the business and government

confidential information. In contract, the measure of protection and the safety

awareness for mobile devices are still weak at present. Especially in the developing

country and regions, mobile device users prefer to install applications obtained from

non-trustworthy sources to save money, which is likely to carry malicious codes that

can infect the device. Therefore, hackers try to infect a large number of mobile devices

1.3 Overview of approach 7

and establish botnet that will be capable of performing attacks, causing severe damage

and loss [7, 75].

 Limited measurement to detect unknown mobile botnets. Currently, the only

protective measures for mobile devices is anti-malware software. Most of the anti-

malware software is signature-based detection technique which can only detect the

known botnet malware. However, the botnet malware is frequently upgraded, and new

botnet malware appears continuously. Therefore, the detection of unknown botnet

malware is an important issue that needs to be solved.

 The use of ML techniques for botnet detection has been applied before. However,

existing research has not: (a) provided a comprehensive coverage of mobile botnets

and range of system calls, (b) considered systematically different detection scenarios

arising from combination of known and unknown normal applications and botnets,

and (c) conducted any systematic analysis of the sensitivity of the performance of ML

classifiers against some key dimensions for the practical applications of detection as

for example the statistical significance of performance differences observed across

different ML classifiers and types of botnets. Also, existing research has been

restricted by arbitrary and not experimentally tested assumptions about the range of

system calls that should be taken into account in botnet detection.

1.3 Overview of approach

In this thesis, we propose a proactive approach for detecting unknown mobile botnets that

we have implemented for Android devices. Our approach is based on the analysis of traffic

data and system call of Android mobile devices using machine learning (ML) techniques and

can be realised through an architecture involving traffic monitors and controllers installed on

them.

In the first stage, we perform the classification experiments on the server side. First of all, a

large amount of data including network traffic and system call captured from mobile botnet

malware applications and normal applications. Then some features are generated for machine

learning classification according to the analysis of the captured network traffic data. After

8 Introduction

labelling data, we choose some atomic machine learning algorithms and develop some

aggregate machine learning algorithms to classify the data based on the selected features.

In the second stage, we focus on the implementation of the mobile botnet detection system

on the client side which is the Android platform. Firstly, we implement the network traffic and

system call capture component which can monitor all the traffic pass through the mobile device

and system call invoked by specified applications. The component can also pre-process these

data to a standard format for the machine learning classifiers. Then a machine learning analyser

is deployed to classify the traffic data by using the training dataset that generated at the first

stage. At last the detection system shows the warning for the suspicious traffic.

The experimental study that we report in this thesis has been aimed to overcome the above

limitations and investigate a number of additional factors, notably: (a) the merit of aggregate

ML classifiers, (b) the sensitivity of the detection capability of ML detectors on different types

of botnet families, and (c) the actual cost of using ML detectors on mobile devices in terms of

execution efficiency and battery consumption. Furthermore, our study has been based on a

mobile botnet detection system that we implemented and deployed on a mobile device.

1.4 Research hypothesis and objectives

The research objectives of this thesis have been as follows:

 Objective 1: To undertake and produce a comprehensive survey of the botnet and

mobile botnet research.

 Objective 2: To design a botnet detection system that can operate on mobile devices,

to detect unknown mobile botnet with network traffic and system call based on the

use of machine learning techniques.

 Objective 3: To implement the new mobile botnet detection system on Android

devices, addressing the open issues identified in Section 1.2

 Objective 4: To provide an experimental evaluation of the approach.

To achieve our research target, some of the research hypotheses are presented as follows:

1.5 Contribution 9

 Research Hypotheses I: It will be possible to detect mobile botnets using machine

learning with the feature generated by the captured network traffic of the botnet and

normal applications on Android devices. Because there are existing several

researches about using machine learning with network traffic to detect malware on

the desktop.

 Research Hypotheses II: It will be possible to detect mobile botnets using machine

learning with the feature generated by the invoked system call of the botnet and

normal applications on Android devices. Because there are existing several

researches about using machine learning with Linux system call to detect malware

on the desktop.

 Research Hypotheses III: It will be possible to detect mobile botnets using machine

learning method with the feature of the frequency of system calls in the different

time interval. Because there are existing several researches about using pattern of

Linux system call to detect malware on the desktop.

 Research Hypotheses IV: Using aggregated machine learning algorithm to detect

mobile botnets will improve detection accuracy over competing for the atomic

algorithm. Because there are existing several scenarios for using aggregated machine

learning algorithms to improve the performance.

 Research Hypotheses V: The mobile botnet detector utilising the ML approach can

be built for and deployed on a mobile phone to detect botnets without depleting the

energy of it and without affecting the performance of other mobile applications

(benign) on the phone. Because the performance of the mobile device is increased

rapidly in recent several years and is close to the desktop.

1.5 Contribution

For our research, we can summarise our contributions on mobile botnet detection as follows:

 We present the results of an experimental study on the use of ML algorithms for the

detection of mobile botnets operating on Android devices, based on the network

traffic data captured on the mobile devices. Our experiments have shown that

10 Introduction

algorithm J48 and Box-Half+ have the best performance distinguish the botnet and

normal by using the network traffic data.

 We present the results of an experimental study on the use of ML algorithms for the

detection of mobile botnets operating on Android devices, based on the analysis of

system (i.e., Android OS) calls, whose aim has been to address the above limitations.

This experimental study not only atomic but also box ML classifiers using

supervised learning. The performance of ML classifiers a wider set of detection

scenarios than existing work, namely detection of known botnets and known normal

applications (KBKN scenario), unknown botnets and known normal applications

(UBKN scenario), and unknown botnets and normal applications (UNUB scenario).

A comprehensive set of Android mobile botnets, which had not been considered

previously, without relying on any form of synthetic training data. The statistical

significance of differences in detection performance measures with respect to ML

algorithms, system call aggregation periods, normal and botnet applications, and

different types of botnet families. We have also implemented botnet detection

system running on the mobile device by using the classifier trained in previous

experiments and evaluated the effect of our approach with respect to its effect on the

overall performance and battery consumption of mobile devices. The system has a

low energy effect on the battery consumption of the device with only 0.5% of the

total battery during the period of the experiment. Moreover, the J48 algorithm has

fast average execution time with only 1.216 seconds.

 We proposed and developed a network-based mobile botnet detection system named

MBotCS. The design and implementation of every component in the system were

described in detail. Meanwhile, we also provided several solutions for solving the

security issue of the intercomponent communication and the privacy of the

application which is deployed on the end client.

1.6 Thesis outline

The rest of this thesis is organised as follows.

1.6 Thesis outline 11

Chapter 2 reviews recent studies about the botnet detection including the background

knowledge, conventional botnet, the anomaly detection techniques and machine learning.

Mobile botnet researches are also reviewed at last

Chapter 3 present the architecture of MBotCS and solutions for security issues.

Chapter 4 presents the design of our experiments and the analysis of the results obtained

from them. Moreover, the chapter reports on the results of the experiments that we conducted

to evaluate the merit of different ML algorithms for the botnet detection by mining system calls

captured on Android OS.

Finally, Chapter 5 reviews the objectives and outlines conclusions and plans for future work.

2.1 Background of botnet 13

Chapter 2 Literature Review

2.1 Background of botnet

2.1.1 Definition

According to [76], botnets is defined as “A collection of Internet-connected programs

communicating with other similar programs to perform tasks”. It divides botnets into

legal botnets and illegal botnets. The botnets were derived from IRC in 1993, and the

early bots can perform much beneficial and even vital functions for managing the IRC

automatically. Unfortunately, more and more botnets have been developed for malicious

purposes. Our research focuses on the illegal botnets.

Except the [76], there are many papers or articles give a definition for illegal botnets.

The report [1] describe botnets as “A network of remotely controlled systems used to

coordinate attacks and distribute malware, spam, and phishing scams”. The report [77]

define botnets as “A networks of Internet-connected end-user computing devices infected

with bot malware, which is remotely controlled by third parties for nefarious purposes”.

The paper [78] regards botnets as “A collections of computers infected with malicious

code that can be controlled remotely through a command and control infrastructure”. The

paper [79] define botnets as “A network of compromised computers that are remotely

controlled by malicious agents”. The report [80] define botnets as “A group of malware

14 Literature Review

infected computers also called “zombies” or bots that can be used remotely to carry out

attacks against other computer systems”.

According to these definitions of botnets, the similarity of different description is that

botnets consist of three key components including the compromised computers in the

network, the attacker who control these computers and the remote control channel.

Although the current botnet is more complex than the first known IRC botnet-Eggdrop,

the basic components of botnets never change. In our context of work, the Botnet can be

defined as collections of computers infected with malicious code (Bots) that can be

controlled remotely by the attacker (Botmaster) through a command and control

infrastructure (C&C). The following terms to describe the three basic components of a

botnet.

• Bots: The definition of a bot varies within the literature. Some researchers regard

the devices where malicious programs run as bots (the term “bot” is derived from “robot”)

[61, 62, 68, 81]. Others regard the malicious programs themselves as bots [63, 69, 76,

82]. Regardless of such differences, however, bots can be defined as the computational

entities of the botnet that have malicious behaviour causing some harm and which exhibit

this behaviour under control by the owner of the botnet.

• Botmaster: Botmaster is usually defined as the human operator of botnets which

can control the bots to execute commands [28, 62]. The extra responsibilities include

keeping the bot online, maintaining the errors in bots and updating the malicious code for

new features [69].

• Command and Control (C&C): C&C signifies the commands that the botmaster

sends to bots to instruct them to perform malicious tasks. C&C may be transmitted using

different network communication protocols such as IRC [83], HTTP [84] and SMS [85]

and so on.

2.1 Background of botnet 15

2.1.2 Taxonomy

Botnets can be classified according to different criteria. Much literature tries to

summarise their taxonomy. The literature [61, 86] use the set of commands, the topology

of C&C, the propagation mechanism, and the exploitation strategy utilised by the attacker

to classify the botnet. The literature [87] made a contribution to botnet taxonomy by

listing three topologies of Command and Control Models(centralised, peer-to-peer, and

random). The survey [69] further generalise C&C architecture into four types including

Centralized C&C, Decentralized C&C, Hybrid model C&C and Random model C&C

which is considered relatively integrated taxonomy for C&C. The literature [74] give a

fine-grained taxonomy based on the different phases of the botnet lifecycle. It divided the

C&C into four dimensions including Model &Topology, Application &Protocol,

Communication initiation and Communication direction and gave a taxonomy based on

every dimension.

Even though the current literature has contained nearly all possible taxonomy of botnet,

there is few papers try to combine these and give a comprehensive taxonomy. We just list

the criteria and the taxonomy in existing literature and provide a description and

explanation in detail.

2.1.2.1 Communication structure of botnet

This criterion is concerned with the topology of the command & communications

within a botnet. According to it, botnets can be distinguished into a Centralised Model

botnet, Decentralised Model botnet, Hybrid Model botnet [88] and Random Model botnet

[69] based on the topology of botnet [72, 89]. We also present the four type of

communication structure in Figure 2-1.

16 Literature Review

Figure 2-1 - Four types of communication structure of botnet [69]

2.1 Background of botnet 17

 Centralised Model botnet: The centralised model is the older type of topology

which has one central point being responsible for exchanging commands and data

between the botmaster and bots.

 Decentralised Model botnet: In the decentralised model botnet, there is no

centralised point for communication, and each Bot makes some connections with

the other bots so that the botmaster has multiple accesses for bots.

 Hybrid Model botnet: The hybrid model divides the bots into servant bots and

client bots which construct local centralised and global decentralised structure [88].

The servant bots group contains bots that have static, non-private IP addresses and

are accessible from the global Internet. Moreover, the client bots group contains

the bots with dynamically allocated IP addresses, private IP addresses and behind

firewalls disconnected from the global Internet. The client bots cannot accept

incoming connections.

 Random Model botnet: This model is first introduced by Cooke et al. [87] as the

“botnet model of tomorrow”. The connection between botmaster and bots in this

communication structure is not fixed. So if the controller of the botnet wants to

perform an attack, the botmaster operates by scanning the Internet randomly and

sending a command to every host in the network. Once botmaster receives the

specify reply, it means that a bot is found. The design of such a system would be

relatively simple, and the detection of a single bot would never compromise the

full botnet.

2.1.2.2 Communication protocol

This criterion is concerned with the communication protocol which is used in the

command&control between botmaster and bots [63, 65]. In most of the literature, botnets

are assumed to communicate through just three protocols, namely IRC, HTTP and P2P.

18 Literature Review

However, additional communication protocols have also been used in transmitting

command&control in botnets. So botnets can be distinguished into IRC Protocol, HTTP

Protocol, P2P Protocol, SMS Protocol and Push notification services.

 IRC protocol: This is the most common and oldest protocol used by botmaster to

communicate with their bots. The IRC protocol is mainly used to support simple

text–based chatting environments and has been designed to support not only one-

to-many conversations but also one-to-one conversations. This feature of IRC

allows botmaster to deploy command&control simply. However, with the

enhancement of network security awareness, more and more businesses or

individuals start to greater use of network firewall and anti-malware software.

Default TCP service port for IRC is 6667, and it can be easily blocked and filtered

by security software or device. So IRC botnets are dying off [90].

 HTTP protocol: The use of HTTP as a botnet C&C communication protocol has

increased in recent years. HTTP has the advantage of being the primary protocol

for web browsing, which means that botnet traffic may be harder to detect and

block. Hence, with the use of the HTTP protocol, which is the most popular

Internet traffic, botnet usually bypass security devices. Such as Andbot [28] can

bypass the warning of traffic monitoring software to access background Internet.

 P2P protocol: the P2P network is a distributed and decentralised network

architecture.The individual nodes in the network act as both suppliers and

consumers of resources. Recently, more advanced botnets have used P2P protocols

for their communications. The main advantage of P2P protocols is that they can

avoid single-failure of centralised botnets [91].

 SMS protocol: The SMS protocols is one of the ideal C&C protocol for

communication in mobile botnets. It is because SMS is supported nearly by all the

mobile phones and is quite simple and reliable [49].

2.1 Background of botnet 19

 Push notification services: This protocol establishes a style of Internet-based

communication where the request for a given transaction is initiated by a publisher

or a central server [92]. Moreover, the clients are designed to receive the message

passively. It is contrasted with pull notification service and the clients initiate the

request for transmission of information from the server. This technology has been

used in different smartphones platform widely, such as Apple’s Push Notification

Service (APNS) [93] for iOS, Blackberry’s Push Service (BPS) [94], Google

Cloud Messaging (GCM) [95] service for Android, Microsoft’s Push Notification

Service (MPNS) [96] for Windows Mobile Phone, and Nokia’s Notifications API

(NNA) [97] for Symbian devices. Shuang et al. [49] proposed the use of this

protocol for mobile botnets using C2DM [98] which is an Android push

notification service.

2.1.2.3 Infected target platform

Mobile botnets have already received much attention as a branch of botnets because

of the widespread use of smartphones in social, business, and military [69]. So we can

divide the botnet into conventional platform botnet and mobile botnet. Moreover, we will

discuss mobile botnet in Section 2.5 in detail.

2.1.3 Lifecycle of botnet

Most of the surveys of botnets have given a description of a life cycle of botnets [69,

74, 81, 99]. Most phases in these life cycle models are common but there also some

differences. However, within the ten years of botnet development history, the mechanism

of current botnets has become more complex. So we want to divide the phases in the life

cycle of botnet into two parts: basic phrases and enhance phrases. Moreover, we present

20 Literature Review

an adapted version of botnet life cycle in Figure 2-2 based on the literature [69, 74, 81,

99].

Basic phrases are the phrases that must be set up by botnets for performing an attack

to bots or other targets. Different names have identified such phases. For this survey, the

basic phrases of the botnet lifecycle are the Infection phase, Connection phase, Control

phase and Attack phase. These phases are shown as in Figure 2-2 with a solid block.

Additional phases, which we call “enhance” phases, are phases which can be included

optionally for increasing the performance of a botnet. These phases are the Second

Injection, Propagation, Maintenance and Updating phase and are shown in Figure 2-2

with dotted blocks.

Firstly, botmaster should develop specific botnets malware programs to infect the hosts

so that these hosts become bots (1: Infection phase). There are many approaches to infect

the vulnerable hosts. Some botmasters inject the malware code into attractive software

and publish them to wait for downloading and running. This method usually used in

mobile botnet malware [58]. However, the majority of botnet infect vulnerable hosts

actively through what we call “Second Infection phase” (2: Second infection phase). More

specifically, during the initial infection phase, the botmaster just searches for some target

hosts for known vulnerability and, if it identifies any, it infects them with a script, which,

in the secondary infection phase, is executed by the infected hosts to fetch the actual

botnet malware programs from the malware server [69, 81]. Because of the diversity of

protocol in secondary infection, this type of infection is more difficult to detect.

In addition to direct infection, botmasters may also take advantage of propagation

mechanisms to expand the number of bots in botnets (3: Propagation phase). At this

phase, once hosts are infected by botnet malware, they continue to try to spread the

2.1 Background of botnet 21

malware thus saving the time and reducing the workload of botmaster in enlarging the

botnet [46, 64].

Although there are different types of implementations for botnets, they all must realise

the connection between bots and botmaster. It is designated as the Connection Phase in

[81], or Rallying Phase in [100] (4: Connection phase). Once the connection is established

between them, bots can get commands and updates from botmaster. Also, the botmaster

can receive reports from bots through the connection channel (5: Control phase). When

the botmaster wants to attack the infected bots, it sends commands to these bots

performing the Attack phase (6: Attack phase). The last phase of the enhanced life cycle

is the maintenance and updating phase. This phase is necessary if the botmaster wants to

keep control of the infected bots with continuous system update for a long time. For

example, they may need to upgrade the binary of botnets malware to evade constantly

updated detection techniques and to change new, different C&C server for concealing

themselves [81]. The connection and control phases in Botnet life cycle are unique to

other malware, so our detection system focuses on these two phases.

BotMaster

Bots

Zombie

TargetsOther Bots

3.Propagation phase

2.Second Infection phase

1.Infection phase 6.Attack phase

4.Connection phase

5.Control phase

7.Maintenance
and updating phase

Figure 2-2 - Adapted version of botnet lifecycle

22 Literature Review

2.1.4 Comparison different type of malware

There are various types of malware that have different ways of propagating and

infecting. Several of the more commonly known types of malware are worms, Trojans,

bots and so on. We will compare these types of malware in this section.

Worms: Worm has the ability to replicate functional copies of themselves to perform

the similar type of damage. Meanwhile, worms are standalone software and do not require

a host program or human help to propagate. The propagating methods include exploiting

a vulnerability on the target system and using social engineering to trick users to execute

them [101]. PrettyPark is one of typical worm which spread by email and tries to send

itself to the email addresses in registered address book periodically [102].

Trojans: A trojan is one type of malware that looks legitimate. The main difference

between Trojans and worm is that Trojan does not have replication ability generally. They

usually spread through user interaction such as opening an email attachment or running

an infected file. The major task of a Trojan is to provide backdoors for other malicious

programs to enter host system then destroy or steal valuable data without permission

[103]. JS.Debeski is one of typical trojan which can delete several important system files

[104].

Bots: Bots or robots are automated processes that interact with other network services

without the need for human interaction. The general usage of bots includes gathering

information, stealing passwords, relaying spam and launching DDoS attacks. Bots can be

used for either good or malicious intent. A malicious bot is designed with the self-

propagating feature to infect a host and can communicate with the control server.

Depending on the remote control, their infection rate and the tactic is more effective than

that of worms [105]. Zeus is one of the typical bots which is used to harvest banking

credentials and financial information from users of infected devices [106].

1.1 23

2.2 Conventional botnet detection techniques

In this section, we focus on traditional botnets, discussing firstly known

incidents/attacks of conventional botnet malware in the last ten years, and then presenting

botnet creation and detection approaches. We also present a taxonomy of conventional

botnet detection techniques and give a comparison of such techniques based on different

criteria.

2.2.1 Incidents

A conventional botnet is originated from the IRC-based botnet, and the first recorded

botnet is Eggdrop which was published in 1993 and last updated at 2011 with

Eggdrop1.6.21 [107]. The early botnet is designed based on IRC channel on account of

the featured protocol as well as the unencrypted and span long time periods connection

between client and server. Agobot [108] and SDBot [109] are two typical IRC botnet

which has drawn much attention. Agobot, also known as Gaobot, is a family of computer

worms whose first version was written by Axel Ago Gembe in 2002. After that, the

number of versions rapidly increased to around 1200 in two-year which leads to makes

Agobot a challenge to examine [110]. SDBot botnet appeared around as early as 2004,

but it continues to make waves still now [111]. Kharouni et al. [109] carried out some

researches special for the variant of SDBot - BKDR_SDBOT.COD and gave a detail of

the botnet mechanism.

2.2 Conventional botnet detection technique

24 Literature Review

Table 2-1 - The accidents of conventional botnet

Year Name
Estimated

Size
Brief Introduction Reference

2004 Bagle 230,000
Bagle is a mass-mailing computer worm affecting all versions
of Microsoft Windows.

[112, 113]

2006
Rustoc
k

150,000
Rustock is a multi-component family of rootkit-enabled
backdoor Trojans, which were historically developed to aid in
the distribution of 'spam' e-mail.

[114, 115]

2007 Srizbi 450,000
Srizbi was the world's largest or second-largest botnet
depending on expert reports before November 2008.

[116, 117]

2007 Akbot 1,300,000
Akbot is an IRC controlled backdoor, which provides an
attacker with unauthorised remote access to the compromised
computer.

[118, 119]

2007
Cutwa
il

1,500,000
The Cutwail botnet is a botnet mostly involved in sending
spam e-mails which founded around 2007.

[120-122]

2007 Zeus 13 million
The primary target of Zeus is stealing banking information. It
spreads mainly through drive-by downloads and phishing
schemes.

[123-127]

2007 Storm 160,000

The name comes from the subject line about a recent weather
disaster in an e-mail with this spam. At its height in September
2007, it could be as large as 50 million computers. However,
it began to decline in late 2007.

[128-131]

2008
Waled
ac

80,000

The Waledac is a P2P-based botnet and was detected in
December 2008. It takes advantage of real-world events and
occasions and uses them to trick users into performing specific
actions as social engineering.

[132-134]

2008 Sality 1,000,000
Sality is a P2P-based file infector that spreads by infecting
executable files and by replicating itself across network shares.
Sality was first discovered in 2003.

[135, 136]

2008
Confic
ker

10.5 million
Conficker was first detected in November 2008.It is robust and
secure distribution utility for disseminating malicious software
and has significant evolution from versions A to E.

[137-142]

2008
Aspro
x

15,000
The Asprox botnet was discovered around 2008; It was
initially used exclusively for sending phishing emails and
performing SQL Injections into websites to spread Malware.

[143-146]

2009 Festi 250,000
The Festi botnet is involved in email spam and denial of
service attacks which first discovered around Autumn 2009.

[147-150]

2009 Grum 560,000

Grum is traced back to as early as 2008 and shut down in July
2012. It was reportedly responsible for 18% of worldwide
spam traffic and capable of blasting 18 billion spam emails per
day.

[121, 151,
152]

2010 TDL4 4,500,000

TDL-4 is the fourth generation of P2P-based TDL botnet. The
new features of TDL-4 ensure the assessment to infected
computers even in cases the botnet control centres are shut
down.

[153-155]

2010
Keliho
s

300,000+
The Kelihos botnet is a P2P-based botnet mainly involved in
the theft of Bitcoins and spamming which is discovered around
December 2010.

[154, 156,
157]

2013
Chame
leon

120,000

The Chameleon botnet is notable for the size of its financial
impact: at a cost to advertisers of over 6 million dollars per
month. It is also the first botnet found to be impacting display
advertisers at scale.

[158-160]

2.2 Conventional botnet detection techniques 25

Except for the IRC-based botnet, new generation botnet later emerged with different

communication protocols such as HTTP and P2P protocol. The Zeus and Conficker are

recognised as the largest scale of botnets in last ten years. Zeus [127] is an HTTP-based

botnet which is estimated to infect millions of compromised computers (estimated 13

million publish by Microsoft at 2012 [126] and approximately 3.6 million only in the

United States [125]). Conficker, also known as Downup, is a P2P-base botnet [142].

Because of the advanced malware techniques, it is difficult to estimate the size of the

botnet. However, it is regarded as one of the largest known botnets which infected around

10.5 million until July 2009 [141] and could potentially infect 300 million [140]. Table

2-1 shows the majority of the most threatening conventional botnet in recent ten years.

2.2.2 Botnet creation techniques

One of the main reasons that make network security more vulnerable is the continuous

update of the malware software and the appearance of new invasion technologies.

Consequently, prediction of new means of attack is one of the keys and open research

direction in network security.

In the research of botnet, there is also some literature which concentrates on the

creation of designation of the new type of botnet or botnet architecture. To be well

prepared for future attacks, it is not enough to study how to detect and defend against the

botnets that have appeared in the past [88]. The research of botnet creation is very

meaningful, and it can not only make some predictions of the possible botnet in future

but also increase our understanding of the mechanism of botnets. From an operator’s

perspective, understanding the deployment strategy of a botnet is critical for defending

against malicious attacks on an operational network. Certainly, it is also possible that this

research may be used by some hackers to deploy a more stealthy and robust botnet and

enhance their control of botnet [58].

26 Literature Review

Wang et al. [88] present a design of an advanced hybrid P2P botnet which was aimed

to construct a botnet which is harder to be shut down, monitored, and hijacked and

perform more harmful attacks. Considering some problems faced by current botmaster

and many network related issues, they provide a summary the six features should be

realised in the next generation botnet. The hybrid P2P botnet contains two groups of bots:

the server bots which can be accessed from the global Internet and the client bots which

do not accept incoming connections. Based on this structure, they design a complete set

of botnet components including Command & Control Architecture, initial construction

and advanced construction. The robustness and the possible defending strategies are

discussed at the end of the paper.

Starnberger et al. [161] have designed and implemented a P2P based botnet named

Overbot to address the weakness of current botnet designs. The stealth control and

command channel and the encryption of this channel are the main focus of their work.

Botmaster does not reveal any information when capturing about other nodes of the botnet.

The message sent by each bot should be encrypted by a public-private key pair owned by

the botmaster so the botmaster can only identify them. Even though they present a more

stealth botnet protocol, they also discuss possible countermeasures with this type of

botnet. One of the methods is a statistical analysis of the requests and the nodes in botnet

will issue more requests than normal nodes. The other one is probing the connected nodes

by the captured nodes.

Liu et al. [162] introduce a recoverable hybrid C&C botnet named CoolBot. CoolBot

combines the decentralised hybrid P2P C&C (HPCC) and the centralised URL Flux-

based C&C (UFCC) to enhance and coordinate C&C mechanisms dynamically. The URL

Flux-based C&C is established on Web 2.0 services, such as microblogs and social

network sites and depends on the Username Generation Algorithm (UGA) to get the

actual command published by the botmaster. They have also analysed the recoverability

of the two C&C architectures. Through the simulation evaluation for the botnet, they draw

2.2 Conventional botnet detection techniques 27

a conclusion that CoolBot is not only defending against some popular attacks but also

could recover the C&C channel even if the majority of critical resources are destroyed

within a tolerable delay.

2.2.3 Taxonomy of detection techniques

With the expansion of botnets and new types of then, botnet detection has become a

major research thread in the last ten years. Botnet detection is regarded as the first and

primary action to combat with this network security threat. Numerous botnet detection

architectures and methods have been proposed by researchers in around the world.

Several botnet detection taxonomies have proposed in the literature [63, 64, 69, 71, 81,

163]. The survey in [63] divided botnet detection and tracking methods into two main

approaches. The first approach is based on Honeynet. The second is based on passive

traffic monitoring by observing data traffic in the network to look for suspicious

communications that may be provided by bots or C&C servers. Tyagi et al. [163] describe

a similar taxonomy, but they refine the second approach with three more specific

categories which are Behaviours-based detection, DNS-based detection and Data-mining

based detection. They even divided the behaviour-based detection into signature-based

and anomaly-based. The work in [64] proposed a taxonomy including Honeynet,

IRC(Internet Relay Chat)-based Detection, DNS Tracking Detection which contains

traffic analysis and anomaly activities analysis.

Feily et al. [81] consider although Honeynet is mostly used to understand the

mechanism and technology characteristics of botnets, it is not enough to detect bot

infection. Therefore, they just focus on passive network traffic monitoring and analysis

and classify these techniques into signature-based detection, anomaly-based detection,

DNS-based detection and mining-based detection.

28 Literature Review

Zeidanloo et al. [71] proposed a relatively improved taxonomy of botnet detection

techniques which give a hierarchical classification structure. Then the survey [69] present

a refinement for the taxonomy of [71]. Both of [69] and [71] propose the whole botnet

detection technique can be classified into Honeynet-Based and Intrusion Detection

System (IDS). The second one can be further divided into two categories: signature-based

detection and anomaly-based detection which consists Host-based and network-based

detection techniques. The survey in [69] has made a further distinction between active

and passive monitoring in network-based detection techniques. The active monitoring

relies on the dynamically injecting test packets into the network or sends data packets to

servers for analysis. On the contrary, the passive monitoring just uses monitor devices to

watch and analyse the traffic as it passes by [164]. For passive monitoring, there are

numerous protocols for analysis which contain P2P, SMTP, IRC, and DNS. The

hierarchical classification should be present as Figure 2-3 [69].

Figure 2-3 - The hierarchical classification of botnet detection techniques

According to existing study about the taxonomy of botnet detection techniques, we

can present a taxonomy which contains Honeynet and Instruction Detection System (IDS).

Then we introduce two primary dimensions for categorising IDS: the content of detection,

2.2 Conventional botnet detection techniques 29

the range of detection. The content of detection is the data source which is used in

detection techniques for analysis such as the traffic on the router, the log file and so on.

The content of detection can be further divided into signature-based detection and

anomaly-based detection. Moreover, the range of detection is used to distinguish the

location of deployment of detection techniques which can be classified into host-based

detection and network-based detection.

Table 2-2 presents a taxonomy of botnet detection techniques based on our additional

dimensions. We will give an explanation for each class or dimensionalities in the allowing

content of this section. Moreover, the specific detection techniques will be introduced at

next section conforming to this taxonomy.

Table 2-2 - Taxonomy of botnet detection techniques

Honeynet
[60, 62, 86, 87, 165]

Instruction Detection System(IDS)
 Range

Content
Host-based Network-based

Signature-base [166] [167-169]
Anomaly-base [1, 170-172] [173-179]

2.2.3.1 Honeynet

The honeynet is a very old technique which appeared in [180][157] initially. It is a

technique for collecting information for botnets. A Honeynet is a network which contains

several honey pots with intentional vulnerabilities; whose purpose is to invite attacks and

analyse them. The ultimate goal of Honeynet is to understand the mechanism of attacker's

activities and methods thus providing information to help increase network security. The

administrator of Honeynet can open some ports or install botnet malware software on

devices in Honeynet with specific monitor tools to trigger botmasters to attack the

Honeynet. After a period and enough information is collected, the owners of Honeynets

may be able to learn and understand the mechanism of the attack of different botnets. The

30 Literature Review

honeynet is the only type of tool for collecting information of botnet. Thus, they need to

collaborate with some other techniques enabling botnet detection. McCarty [60] first

proposed the method to detect botnet with Honeypot in 2003. They aimed at designing a

firewall for honeypot to prevent inbound attacks without raising suspicions of the

attacker. They also give an analysis for the IRC botnets monitored by the honeypot

detection system. Then there is some literature discussed how to use Honeynet to realise

botnet tracking and detecting [62, 86, 87, 165]. Rajab et al. [62] present infrastructure of

honeypot to analyse botnets, and give a description of the inherent diversity of botnet

activities. Barford et al. [86] analyse four widely-used Internet Relay Chat (IRC) botnet

codebases by using honeypot. Their study reveals the complexity of botnet software

which is the base for the defence strategies. Cooke et al. [87] set up an experiment to

measure botnets on a real network and show the serious of botnet problem today.Vrable

et al. [165] presented Potemkin, a scalable virtual honeynet system for botnet detection,

which is inappropriate for long-term botnet tracking.Although Honeynet is useful in

understanding botnets, it has some limitations for botnet detection [69].

 The Honeynet can only track limited scale of exploited activities. After the bot

infected by malicious code, the botmaster can change their attack strategy at

any time with new command control and even to update the malicious code

injected to the bot to change the behaviours.

 The Honeynet cannot detect bots without using propagation methods other than

those based on scanning, spam and web-driven downloads. More and more

Botnet use the more diversified method to affect and communicate with bots.

 The Honeynet can only report information about the infected machines. The

major function of Honeynet is monitoring and collecting information for

analysis.

Therefore, we will not discuss the detail of the method in next section.

2.2 Conventional botnet detection techniques 31

2.2.3.2 Signature-based

Signature-based botnet detection is the most widely used and mature detection

technique at present. Nearly all the anti-malware software takes advantage of signature-

based techniques to detect botnet malware. Just as its name implies, this technique detects

botnets malware by the signature of the code or the data which is used in the botnet

components. There are several kinds of literature have found some signature of specific

botnet [167-169]. Goebel et al. [167] present a botnet detection technique mainly based

on the signature of suspicious IRC nicknames, IRC servers, and uncommon server ports.

Kugisaki et al. [168] confirmed that signature of connection between bots and IRC server

when the server refused the connection from the Bot. Wurzinger et al. [169] make use of

the signature of the response of bots after receiving commands from botmaster according

to the same family of botnets.

Snort is a free and open source network intrusion prevention system (NIPS) and

network intrusion detection system (NIDS) [166]. Through customization by

configuration, the program can be widely used to detect a variety of probes or attacks. As

a consequence, it also can be configured for recognising some special flow characteristic

to achieve botnet detection.

The thesis [181] give a typical signature-based detection case for IRC botnet whose

name is Rxbot [182]. Firstly, the features of data packet should be known before detection

procedure. To obtain the feature of the Rxbot, we can run Rxbot.exe in the virtual machine

as the bots and execute the instruction “.pencmd” to communicate with the server.

Meanwhile, the traffic of IRC should be monitored at the host, and the feature of the Rxbot

data packet is shown in

The features can be summarised in the following items:

1. The first 6 bytes is fixed: channel name to connect

3a 72 42 6f 74 7c (:r Bot)

32 Literature Review

2. The first 6 bytes is fixed: channel name to connect

3a 72 42 6f 74 7c (:r Bot)

3. The last 29 bytes is fixed: the response of the command

3a5b434d445d3a2052656d6f7465207368656e6e2072656164792e0d0a

(:[CMD]: Remote shell ready)

So after mastering the feature of the data packet, the detection system just need to

apply some regular expression to filter the traffic of the host. Once matching successfully,

the system can determine Rxbot has infected the host.

Figure 2-4 - The feature of Rxbot data packet

Goebel et al. [167] propose detection method named Rishi which is regarded as

representative of signature-based techniques citing by many surveys of botnet detection.

Rishi identifies whether the hosts are contaminated or not by the evaluation of IRC

nickname. The IRC-based botnet is the earliest of botnets, and the mechanism was first

revealed by [61]. This method can be divided into three steps. Firstly, the detection system

collects traffic from the router and statistic the IRC channel. Secondly, connection objects

should be created for each IRC channel to store relative information. This information

includes the time of suspicious connection, IP address and port of suspected source host,

IP address and port of destination IRC server, channels joined and utilised nickname. At

2.2 Conventional botnet detection techniques 33

last, the nickname gathered by the system is passed to an analysis function that realises a

scoring function to estimate whether malware infects suspicious input host or not. The

higher the score a nickname evaluates, the more likely it is an infected bot malware trying

to contact its C&C server.

Kugisaki et al. [168] aimed to observe new features of IRC-based bots. After

monitoring the port which used by IRC channel, they discovered some different

communication flow between the clients with specific IP address and other clients.

Further, they conclude that the bots usually repeat transmitting "NICK" and "USER" until

the IRC connection succeeds. Based on this characteristic, the detection system records

the ratio of communication interval to IRC server to evaluate the risk of infection for the

devices.

The literature [169] present a detection system that relies on the signature of detection

models. The fact of botnets establishes the detection model that after bots receive

commands from the botmaster, which will respond some message in a specific way. They

divided the automatic model generation into three parts which contain command model

generation, response model generation and mapping models into Bro signatures (Bro is a

network intrusion detection system for monitoring suspicious or irregular events of

network activity [183]). Through the analysis of 446 network traces, a total of 70

detection models are produced by the detection system which controlled by 18 different

bot families (IRC1-IRC16, HTTP and P2P).

2.2.3.3 Anomaly-based

Anomaly-based detection is regarded as the most extensively studied research

direction of botnet detection techniques and most efficient for detecting unknown botnet.

The core idea of this approach is to compare the current status of devices or network with

the normal situation, and if there is some difference between these situations, the

anomaly-based detection system needs to judge whether there is a botnet infection or not

34 Literature Review

based on some procedure. For example, the paper [184] regard the log file of Windows

Application Programming Interface (API) functions calls which are made by

communication applications as the criterion to detect the botnet. They monitor the

activities of bots by analysing the size of the log file generated by every bot. The normal

situation is that different hosts have diverse changing curve. However, a high correlation

between the hosts represents an abnormal situation.

The distinction between normal and abnormal situations is an actual thread of research

efforts in this detection category. There are several techniques that advocate anomaly-

based detection ([173-179]), and most of them consider network traffic anomalies. This

is plausible, since the necessary communication between the botmaster and bots in a

botnet creates some inevitable anomalies in the network traffic, such as abnormally high

traffic volume and/or network latency in a period, network traffic channelled through

special ports, network packages generated by some unusual system behaviour [61] and

so on.

Other approaches are based on a different abnormal situation related to the correlation

of bots (e.g.[184-189]). More specifically, there are possibly some similarities amongst

the bots which belong to the same botnet. For example, bots perform similar

communication pattern with same botmaster [189]. To analyse the correlation of each bot,

they insert some statistical information into the traffic for monitoring. Once the similarity

statistical information is detected in the traffic from different bots, the detection system

will give some warning for the suspicious malware behaviours.

Owing to the acceleration of botnet update frequency and more and more new type of

botnet, finding some methods to detect the unknown botnet is urgent. Therefore,

abnormal-based detection techniques have become a promising research field in botnet

detection.

2.2 Conventional botnet detection techniques 35

Binkley et al. [190] present anomaly-based detection algorithm for IRC-based botnet

mesh relatively early. The algorithm is based on the fact that botmaster needs scan the

IRC-based botnet frequently to keep the contract with the bots. Therefore, the frequency

of TCP connection establishment can reflect the probability of infected botnet. The paper

proposes an index named TCP work weight which means the ratio of the auxiliary

information in TCP connection. The Equation 2-1can compute it. The larger the TCP

work weight, the higher the probability of infection by botnets.

Equation 2-1 TCP work weight equation

 𝜔 𝑆 𝐹 𝑅 /𝑇 (2-1)

The TCP synchronised data packet tuple contains (IP source address, SYNS,

SYNACKS, FINSSENT, FINSBACK, RESETS, PKTSSENT, PKTSBACK). The ω donate

the TCP work weight, the Ss denote the count of SYNC and SYNACKS, Fs denote the

count of FINSSENT, Rr denotes the count of RESETS and Tsr denote the total count of

TCP data packet.

Choi et al. [191] take advantage of the difference of group activities of DNS traffic

between botnet network DNS and legitimate DNS. The group activity is the average

proportion of same IP address in two IP lists which are requested at two different times

with same domain name query. The similarity can be quantified through the Equation 2-2.

Moreover, the more similar it is the more probability of infected by botnet malware.

Equation 2-2 Similarity between DNS traffic

 𝑠 1/2 𝐶/𝐴 𝐶/𝐵 𝐴 0, 𝐵 0 (2-2)

In another anomaly-base detection method in [184, 185], the log file is regarded as the

main monitor objective. The log file comes from the API socket function calls that are

used by communication programs, and the detection system records the size of the log

file. Through the comparison between the normal user behaviour and the botnet

behaviour, there is a remarkable difference of the fluctuation curve of log file size. The

paper also gives two cases to evaluate their method. First one is to compare the behaviour

36 Literature Review

of Internet Explorer and SDBot and the second one is monitoring the mIRC clients and

the SDBot.

Gu et al. [175, 179, 192, 193] proposed a series of the abnormal-based detection system.

The paper [192] proposes the BotHunter which detects the botnet by IDS-Driven

Dialogue Correlation. Through tracking the two-way communication flow between

internal assets and external entities by Snort, the detection system realises an evidence

trail approach for recognising successful bot infections. The basic principle of the system

is based on understanding Bot infection sequences and concluding the sequences into

several independent dialogues. Then BotHunter can construct the model of infection

dialogues process and assert a minimum of required conditions for bots infection. They

even evaluate capabilities of the detection system in a virtual network and a live Honeynet

and validate low false positive rates in two operational production networks. Based on

the BotHunter, Gu et al. proposed two detection systems whose name are BotSniffer and

BotMiner respectively [175, 179]. BotSniffer focuses on the analysis the correlation of

activities and message in bots belonging to the same network. There are two core

algorithms to evaluate the correlation: Response-Crowd-Density-Check Algorithm for

message response and Response-Crowd-Homogeneity-Check for activity response. If the

similarity of the different bots exceeds the threshold, the network will be regarded as

infection with botnet by the system. They evaluate the BotSniffer on multiple network

traces captured from campus network with only a total of 11 false positives (FPs) on four

of the IRC traces and no FPs resulted from group analysis.

BotMiner [179] is a detection system which contains clustering analysis of network

traffic for the protocol. There are two clustering processes in the system which can

accurately and efficiently group similar C&C traffic patterns. A-plane clustering is

designed for activity traffic, and C-plane clustering is designed for C&C communication

traffic. Once the clustering results are obtained, the cross-plane correlation will be

2.2 Conventional botnet detection techniques 37

performed to cross-check clusters in the two planes to find out intersections that reinforce

evidence of a host being part of a botnet.

2.2.3.4 Host-based

Host-based detection techniques are techniques where the detection system collects

information only from the host device without any communication with other devices in

the same network. Early detection systems and anti-malware software are based on this

technique (e.g., [1, 170-172]). Although there are some limitations, it is more convention

and flexible to deploy the host-based detection system in real projects and more efficient

against some specific types of attack such as download attack and onset infection [194].

Along with the enhancement of connection and diversity of the behaviour in the

modern botnet malware, the host-based detection technique is no longer appropriate for

comprehensive botnet detection system.

2.2.3.5 Network-based

Network-based detection techniques are the main trend of botnet detection system

[173]. This technique concentrates on the traffic and communication on the network.

Silva et al. [69] have classified the network-based techniques according to the

communication protocol that they are based on IRC, DNS, SMTP, P2P and multiple

protocol techniques. Several works focus on how to analyse the information of every

protocol or data package in the network for botnet detection.

2.2.4 Comparison

2.2.4.1 Criteria of comparison

To compare the botnet detection approaches, we use some criteria for comparison.

Because of some challenges for botnet evaluating, there is hardly any literature discussing

38 Literature Review

the comparison of the current botnet detection systems. The literature [170] enumerates

some challenges for experiment with botnet detection systems. The different of data set

and experiment environment is the biggest obstacle for comparing and evaluating current

botnet detection system. Also, considering of the privacy of institutions, the experiment

data cannot be shared with other organisations or persons.

However, we can make a summary of the evaluation criteria from the literature which

propose the detection system with evaluation data. Because if the literature wants to prove

their detection system is more effective or more efficient than others, they must present

some result of the comparison in theory or experiment.

From the current botnet detection methods, there are three criteria which are widely

used in detection techniques literature for comparison. The first one is crossover error

rate (COER), the second one is Detection Rate and False Positive (FP), and the last one

is Receiver operating characteristics (ROC) curve.

After explaining every criterion of comparison in botnet detection, we give a summary

of these criteria in Table 2-3 with the detail of the criteria in every detection approaches.

2.2 Conventional botnet detection techniques 39

Table 2-3 - The summary of the criteria for botnet detection

 Criteria

Detection approaches

ROC curve1
Crossover
Error Rate

False
Positives

(Rate)

Detectio
n Rate FPR TPR

Youden
Index

Log Correlation Based [184] 0.000% 79.000% 0.79

BotTrack
[174]

BotTrack-Kademlia 0.300% 97.000% 0.97
BotTrack-Chord 6.000% 100.000% 0.94
BotTrack-Koorde 6.000% 75.000% 0.69

Disclosure
[195]

(N1, MinFlows=20) 6.000% 86.027% 0.80
(N1, MinFlows=50) 9.000% 94.521% 0.86
(N2, MinFlows=20) 8.000% 82.740% 0.75
(N2, MinFlows=50) 8.000% 84.000% 0.76

BotHunter
[192]

BotHunter-SLADE 1.999% 99.200% 0.97
BotHunter-PAYL 0.927% 72.200% 0.71

BotMosaic
[176]

SdBot-500ms 2.8 ∗ 10−3
SdBot-2000ms 3.52 ∗ 10−13
SpyBot-500ms 2.32 ∗ 10−8
SpyBot-2000ms 7.55 ∗ 10−11

BotMiner
[179]

IRC-rbot 0.003(Rate) 100%
IRC-sdbot 0.003(Rate) 100%
IRC-spybot 0.003(Rate) 75%
IRC-N 0(Rate) 99.6%
HTTP-1 0.003(Rate) 100%
HTTP-2 0.003(Rate) 100%
P2P-Storm 0(Rate) 100%
P2P-Nugache 0(Rate) 100%

Rishi[167] 5 78.43%
Automatically Generating

Models[169]
 11 88%

BotSniffer[175] 0.0016 (Rate) 100%

 Crossover Error Rate

Crossover error rate (COER) [176] is a comparison criterion for different biometric

devices and technologies. The COER is based on two rates which are the false acceptance

rate (FAR) and the false rejection rate (FRR). The FAR of the system typically means the

1 We use the Youden Index [238] to select the best performance point on the ROC curve.

40 Literature Review

ratio of the number of false acceptances which should be rejected. Moreover, the FRR is

contradictory metric with FAR which measures the ratio of the number of false rejections

which should be accepted. When the two ratios are equal and cross over, the point is

COER (It is also called as CER [196]).

In botnet detection, the FAR express the ratio of detection system makes a faulty

judgment to recognise normal hosts as bots. On the contrary, the FRR express the ratio to

make a mistaken identity for bots as normal hosts. So, the botnet detection techniques

should lower the two metrics as much as possible and the lower COER of the detection

system, the better detection effect.

 True Positive Rate, False Positive Rate and Precision

The True Positive Rate (TPR), the False Positive Rate (FPR) and Precision. These

measures are used typically for the evaluation of ML based classification [39, 174, 178,

179, 186, 192, 197-199]. If we regard normal as positive and infect as negative

respectively: True positive (TP) is the number of normal data that were correctly

classified by an algorithm. True negative (TN) is the number of infect data that were

correctly classified. False positive (FP) is the number of normal data that were incorrectly

classified by an algorithm. False negative (FN), is the number of infect data classified as

normal.

Based on these measures TPR, FPR and Precision are calculated as follows:

Equation 2-3 Equation True Positive Rate

 𝑇𝑃𝑅 𝑇𝑃/ 𝑇𝑃 𝐹𝑁 𝑎𝑘𝑎 𝑅𝑒𝑐𝑎𝑙𝑙 (2-3)

Equation 2-4 False Positive Rate

 𝐹𝑃𝑅 𝐹𝑃/ 𝑇𝑁 𝐹𝑃 (2-4)

Equation 2-5 Precision

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇𝑃/ 𝑇𝑃 𝐹𝑃 (2-5)

The total number of bots within the wild network is hard to estimate. Therefore, the

ratio of detected bots within the complete network is difficult measured. Some literature

2.2 Conventional botnet detection techniques 41

gives some other evaluations methods to verify their system. The paper [113] gives a

comparison result with the detection method Blast-o-Mat [147] and gives the better

performance to it.

 Receiver Operating Characteristics

Receiver Operating Characteristics (ROC) is a more comprehensive evaluation

criterion for botnet detection system. The ROC was first used for signal system and then

widely used in medicine, radiology and social sciences. It is also proved useful for the

evaluation in computer science. The ROC is based on two important concepts: true

positive rate (TPR) and false positive rate (FPR). The true positive rate reveals the number

or the ratio of successful detection samples which is also called hit rate or sensitivity

[200].

 The ROC curve is the graph whose horizontal axis is false positive rate and vertical

axis if true positive rate (TPR). With the variation of the threshold setting, the detection

system will get a different pair of TPR and FPR. Ideally, FPR is lowest, and the TPR is

highest. However, the threshold at the point of tangency on the ROC curve is the best

configuration. The area under the ROC curve is also regarded as a criterion for detection

effect.

2.2.4.2 The result of comparison

Because this is not a uniform criterion in botnet detection techniques and these is no

organisation or institution proposing some standard for evaluation and comparison of the

botnet detection techniques, we just summary the comparison based on the evaluation of

the various botnet detection literature as far as possible.

The papers [174, 184, 192, 195, 201] evaluated their detection system based on ROC

curve or give enough experimental data for ROC analysis. Al-Hammadi et al. [184] set

42 Literature Review

different percentage of log file size as a threshold from 0 to 100(%) to get ROC curve for

their Log Correlation based Detection system.

Bilge et al. [195] evaluate their detection system Disclosure at two networks: Inter-

University Network (N1) and Tier 1 ISP (N2). There are two types of the threshold for

ROC curve. The one is ClassThresh which is the boundary separating benign scores from

malicious scores and the other on is the MinFlows which is the minimum number of

observed flows to a particular server to provide accurate results. Their set the MinFlows

at two values: 20 and 50 to get 4 ROC curve graphics.

François et al. [174] evaluate BotTrack, a P2P botnet detection system, on three types

of P2P network (Kademlia, Chord, Koorde). Moreover, the number of the bots known is

also a factor to affect the ROC curve. They just only summary the situation of 0% bots

known.

Despite Gu et al. [192] did not give a ROC curve to evaluate their detection system

BotHunter, they present the performance of the system with PAYL (a payload-based

anomaly detector [202]) and SLADE (Statistical Payload Anomaly Detection Engine)

based on the difference of desired false positive rate. So we transfer these two

performances into ROC curves to make a comparison with other detection systems.

1.1 43

2.3 Network traffic anomaly detection technique

According to Section 2.2.3, there are two types of detection techniques for botnet

detection based on the network traffic, i.e., signature and anomaly based detection

techniques. Because of the rapid update of the malicious code on the mobile device and

the unstable of the mobile network, the anomaly-based detection technique is better than

signature-based detection techniques in research and application. This section will

introduce the network traffic anomaly detection techniques that can be used for mobile

devices and network.

2.3.1 Introduction of anomaly detection and intrusion detection

The first uniform architecture of intrusion and intrusion detection was proposed in

1980 by a report on Computer Security Threat Monitoring and Surveillance [203]. The

intrusion detection system can detect the malicious behaviour by the unauthorised access

through monitoring the configuration of the host. If the host is under attack, the system

can raise the alarm for the users of the host to take corresponding measures to protect the

host.

The intrusion detection system can be classified into Signature-based detection and

Anomaly-based detection. The signature-based detection technique can only detect the

harmful behaviours comparing with predefined black or white behaviour feature library.

However, the anomaly-based detection technology is focusing on identifying the anomaly

behaviours which are not consistent with the normal behaviours of the host. Apparently,

the signature-based detection techniques rely on the completeness of the feature library,

which can only detect the known attack. The anomaly-based detection can identify the

unknown abnormal behaviours independently of the specific information for the malware.

2.3 Network traffic anomaly detection technique

44 Literature Review

For mobile botnet detection, the malicious code can be updated by the controller

frequently. Moreover, the malware feature library on the mobile devices cannot be

updated in time with the unstable cellular network. So, signature base detection will lose

effectiveness when the remote update changes the feature of the detection target.

Furthermore, most of the malware tend to change their feature to evade the detection of

anti-virus software. Therefore, the anomaly base detection is suitable for the mobile

botnet detection system. Even the malware is upgraded, the well-designed anomaly based

detection system can distinguish them with normal behaviours.

Anomalies are patterns in collected data that are consistent with a well-defined

database of normal behaviour that can be divided into the following categories [204]:

Figure 2-5 - The example of point anomalies

1. Point Anomalies

This type of anomaly cares about the individual data instance. If a single data instance

can be regarded as different on the rest of data, then this instance can be termed as a point

anomaly. The example can be seen from the Figure 2-5 and P1 to P4 are point anomalies

hence they lie outside of the boundary of N1 and N2 which are considered as the normal

2.3 Network traffic anomaly detection technique 45

range. Point Anomalies is the simplest type of anomaly and is the focus of the majority

of research on anomaly detection.

2. Contextual Anomalies

If a data instance represents unusually in a particular context (but not other contexts),

then it is termed as a contextual anomaly or conditional anomaly. The notion of a context

is based on the structure of the data set in specified scenario. The Figure 2-6 provides an

example of contextual anomaly which illustrates the variation of traffic flow over time.

The quantity of traffic between 10:00 AM to 2:00 PM reach 160 which is higher than

normal level in the other period. This abnormal situation can be regarded as a contextual

anomaly.

Figure 2-6 - The example of contextual anomaly

3. Collective Anomalies

If a collection of related data instances is abnormal with respect to the entire data set,

it is termed as a collective anomaly. The individual data instances in a collective anomaly

may not be anomalies by themselves, but their occurrence together as a collection is

anomalous [204]. For example, if the situation of high traffic in the period from10:00 AM

46 Literature Review

to 2:00 PM occurs every day in one month (Figure 2-6), then it could be regarded as a

collective anomaly.

The general procedure of anomaly detection techniques contains three steps: (1)

Establish normal behaviours library. (2) Capture the data. (3) Comparing the captured

data with the normal behaviours library to find the anomaly instances. Although this

general procedure for realising anomaly based detection of misbehaviour seems to be

simple, it is complicated by the following key factors:

1. It is difficult for defining a normal pattern or region with all possible normal

behaviour. Hence, the boundary between normal and anomalous behaviour is often

not very clear.

2. Updates of malicious code may change what constitutes abnormal behaviour and

make normal patterns no longer apply for the updated malware.

3. The very concept of an anomaly is different in different application domains. Thus,

applying a technique developed for one domain to another is not straightforward.

4. There is a major issue that whether the labelled data is available for validation or

training of models used by anomaly detection techniques.

5. There may be noise contained in the training data for building the behaviour pattern

which is similar to the actual anomalies.

2.3.2 Classification of anomaly-based detection technique

2.3.2.1 Classification based

There are two sets of data training and testing datasets for classification based anomaly

detection method. According to analyse the training data by some algorithms, the

classification can generate a model which also known as classifiers. Then the classifier is

used to classify the testing datasets into different classes [205, 206]. Therefore, the

2.3 Network traffic anomaly detection technique 47

classification based anomaly detection can be processed by two phases: training phase

and testing phase. The theoretical basis of classification based anomaly detection

techniques is assuming that the classifier can distinguish the benign and malicious classes

with the features extracted from the dataset [204].

The classification based anomaly detection techniques can be classified as one-class

and multi-class. The difference between the two categories is the number of the class in

the training dataset. For one-class anomaly detection, there is only one normal class for

all training data. So any instance in testing dataset fall out of the outlier of classification

of the training dataset is an anomaly. As for multi-class anomaly detection, the training

dataset can be labelled as more than one normal class. So the testing instance needs to be

compared with by any of the normal class patterns to determine whether the instance is

abnormal or normal.

The key issue for the classification-base anomaly detection technique is how to build

a suitable classifier from training dataset to classify the testing dataset into different class

accurately. In general, the machine learning technique is usually used for classification to

increase the accuracy of the classifier that will be introduced in next section.

2.3.2.2 Nearest neighbour based

The theoretical basis of nearest neighbour based anomaly detection techniques is

assuming that the when we map some features of observation data to the coordinate

system, the normal instances will occur neighbouring location. Meanwhile, the anomalies

instances will occur in the other neighbouring location far from the normal instance set.

The key issue for the nearest neighbour based anomaly detection technique is how to

compute the distance between the different instance in the dataset. In general, there are

several methods to calculate this distance as follows:

48 Literature Review

1. If the features are continuous, Euclidean distance [207] is usually used than others

[206]. The Equation 2-6 can compute the Euclidean distance of point p and q.

Equation 2-6 Euclidean distance between two points

 𝐷𝑖𝑠 𝑝, 𝑞 ∑ 𝑞 𝑝 (2-6)

2. If the features are categories, the simple matching coefficient (SMC) is often used.

SMC is a statistic for comparing the similarity and diversity of datasets which is

computed by the following Equation 2-7 [208]. Sometimes, the more complex

distance measures can be used [209].

Equation 2-7 Simple matching coefficient equation

 𝑆𝑀𝐶

 (2-7)

where:

𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 0 𝑎𝑛𝑑 𝑦 𝑖𝑠 0

𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 0 𝑎𝑛𝑑 𝑦 𝑖𝑠 1

𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 1 𝑎𝑛𝑑 𝑦 𝑖𝑠 0

𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 1 𝑎𝑛𝑑 𝑦 𝑖𝑠 1

3. If there is more than one feature for the dataset, we usually compute the distance

of single feature and then compute the combined distance.

Broadly speaking, the nearest neighbour based anomaly detection techniques can be

divided into two groups: K-nearest neighbour (KNN) and Relative Density (RD). The

KNN algorithms are one of instance-based machine learning which will be introduced in

next section. Moreover, the RD is the ratio of the density of a substance to the density of

a given reference material [210]. So the RD based anomaly detection technique estimate

the density of the neighbourhood of each data instance. An instance that locates in a

neighbourhood with low density is declared to be anomalous while an instance that lies

in a dense neighbourhood is declared to be normal. The Literature [211] proposed the

Local Outlier Factor (LOF) which is a method to detect the anomaly using the relative

2.3 Network traffic anomaly detection technique 49

density. For a normal instance, its local density will be similar to the local density of its

neighbours. While for an abnormal instance, its local density will be lower than that of

its nearest neighbours. Tang et al. [212] proposed an improvement LOF method that is

called Connectivity-based Outlier Factor (COF), whose the selection of K neighbours is

different with LOF. The selection process is as follows: we first add one instance to the

neighbourhood set. Then we add the instance whose distance to the existing

neighbourhood set is minimum among all the other instances of the neighbourhood set.

The rest can be done in the same manner, and the number of the neighbourhood will reach

size k. The research of [213] enhances the LOF to detect the spatial anomalies in climate

data. Moreover, Ye et al. [214] improve the LOF to support the anomaly detection with

category attribute.

The advantages of nearest neighbour based techniques are as follows: (1) The most of

the advantage of nearest neighbour based techniques is that they do not make any

assumptions regarding the generative distribution for the data. Instead, they are purely

data driven. (2) When the training dataset is very small, using semi-supervised techniques,

perform better than unsupervised techniques. (3) The method can be used for adapting to

the other different data type, and it is the only required definition of an appropriate

distance measure for the given data.

The disadvantages of nearest neighbour based techniques are as follows: (1) If some

of the normal instances do not have enough close neighbours, the technique cannot label

them correctly based on the unsupervised learning algorithm. (2) If some of the normal

instances do not have enough similar close neighbours, the false positive rate is very high

based on the semi-supervised learning algorithm. (3) The calculations of the distances

between each instance and other instances have a high time complexity. (4) Definition of

distance measures between instances is a challenge when the training data is complex.

However, the performance of the technique greatly depends on the distance measure.

50 Literature Review

2.3.2.3 Clustering based

Clustering based technique is used to converge similar instances into same clusters.

Two different approaches can be used for clustering-based anomaly detection. They are

unsupervised clustering and semi-supervised clustering. Clustering based anomaly

detection techniques can be divided into three categories.

1. The first category is based on the assumption: Normal data instances can form a

cluster in the data, on the contrary, abnormal instances do not belong to any cluster.

This technique trains dataset by the clustering algorithms and determines the

instances that do not belong to any cluster as an abnormal instance. The literature

of [215-217] use the clustering algorithms that do not force all instances to be part

of one cluster.

2. The second category is based on the assumption: Normal data instances are near

the centre of the cluster, on the contrary, abnormal instances are far from the centre

of the cluster. This technique first uses the clustering algorithms to achieve

clustering and then compute the distance to the centre of the closest cluster for

every instance as discrimination index. The literature [218] use Self-Organizing

Maps, K-means Clustering and Expectation Maximization to cluster the training

dataset and detect the anomaly by computing the distance to the centre point of the

cluster.

3. The third category is based on the assumption: Normal data instances can form

dense and large clusters, on the contrary, abnormal instances can only form

sparsely small clusters. The anomaly instances probably constitute some small

clusters. Therefore, the anomaly cluster can be detected through defining the

threefold of size and dense of the cluster. The literature [219] proposed the cluster-

based local outlier factor (CBLOF) to detect the anomaly by comparing the size of

the cluster and the distance to the centre point of the cluster.

2.3 Network traffic anomaly detection technique 51

The advantages of clustering based techniques are as follows: (1) Clustering-based

techniques can operate in an unsupervised mode. (2) Clustering-based techniques can be

adapted to other complex data types through replacing the clustering algorithm to process

the particular data types easily. (3) The time complexity of the testing phase is very low

because the test instances only need to compare a small number of cluster.

The disadvantages of clustering based techniques are as follows: (1) Performance of

clustering based techniques depends on the effectiveness of clustering algorithm heavily

in recognising the cluster structure of normal instances. (2) Some clustering algorithms

force every instance to be assigned to one of the clusters that might result in anomalies

setting assigned to a large cluster. (3) Some clustering based techniques are practical only

when the anomalies do not form significant clusters among themselves. (5) The

computational complexity is high which is usually O(N2) because of the clustering

algorithms.

2.3.2.4 Statistical based

The theory of statistical-based anomaly detection technique is based on the assumption:

normal data instances occur with relatively high probability by the stochastic model, on

the contrary, abnormal instances occur with relatively low probability. In general, the

technique constructs the statistical model of the normal instance and then apply the model

to the testing instances to find whether the instance has low probability occurring in the

model that is regarded as abnormal. There are two types of statistical techniques:

parametric techniques and non-parametric techniques.

 Parametric statistics are statistics which assumes that the normal dataset has come

from a type of probability distribution with parameters Θ and probability density function

f(x, Θ) (x is an observation). The parameters Θ are estimated from the training dataset.

Then we assign an anomaly score for every test instance using the function above. There

52 Literature Review

are three models for the distribution of the training dataset: Gaussian Model-Based,

Regression Model Based and Mixture of Parametric Distributions Based.

Non-parametric statistics are statistics not based on parameterized probability

distributions. Unlike parametric statistics, non-parametric statistics make no assumptions

about the probability distributions do not have fixed number of parameters. There two

specific statistical techniques can be used to detect the anomaly: Histogram Based and

Kernel Function Based.

The advantages of statistical techniques are: (1) Performance of statistical techniques

is high when the training dataset follow a certain distribution. (2) The anomaly score

calculated by statistical technique can be used as additional information to make decision.

(3) Statistical techniques can use unsupervised setting without any label information of

data set if the distribution is robust for the training and testing dataset.

The disadvantages of statistical techniques are: (1) One of the most disadvantages of

statistical techniques is that they depend on the assumption that the dataset follows a

particular distribution. (2) How to choose the best statistic is hard work [220], after

confirming that the dataset is followed a certain distribution. (3) The different feature may

follow a different distribution. Therefore individual feature of the anomaly instance

maybe is very frequent, but the combination these feature is very infrequent.

2.3.3 The future trend of anomaly detection technique

There are several promising trends for anomaly detection technique:

1. The number of research of contextual and collective anomaly detection technique

will increase.

2. More distributed anomaly detection technique will occur because of the across

localisation data.

2.4 Machine Learning 53

3. The real-time requirement of the detection will increase because the detection

techniques will be used for the wireless network and mobile devices.

4. The anomaly detection techniques will be a requirement to think about the data

privacy.

2.4 Machine Learning

Machine Learning is widely used in the anomaly detection. This technique is also the

theoretical basis of our mobile botnet detection system. So we will introduce the machine

learning technique in detail in this section.

2.4.1 Introduction of machine learning algorithm

The earliest definition of Machine Learning (ML) can be tracked back to 1959, Arthur

Samuel defined it as a “Field of study that gives computers the ability to learn without

being explicitly programmed” [221]. A widely more formal definition is provided in [222]

as “A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E”.

Machine Learning is a multidisciplinary cross-discipline, involves the theory of

probability, statistics, approximation theory, convex analysis, algorithm complexity

theory and so on different subjects. It studies how to use computer simulation or human

learning behaviour, to gain new knowledge or skills, reorganise the existing knowledge

structure to improve its performance.

54 Literature Review

Machine learning has been more widely adopted in many areas such as medicine,

chemistry, bioinformatics, business and computing. It is the core of artificial intelligence

and the basic way to achieve the computing intelligence. In the present information age,

the application of machine learning has penetrated into every field of computer science.

It can make the search engine more accurate and intelligent. The computer can recognise

the speech and handwriting precisely by using the machine learning. It also can be used

for control the robot locomotion. The anomaly detection is one of the most machine

learning application. Moreover, compared with traditional detection algorithms, the novel

ML algorithms can significantly increase the accuracy of detection without reducing the

processing speed.

In general, the machine learning can be classified into four broad categories depending

on whether the learning signal is available for the algorithm: Supervised learning,

unsupervised learning, semi-supervised learning and reinforcement learning [223].

1. Supervised learning: In supervised learning, the input data in each group which

are referred to as “training data” has a clear identity or label, such as “spam” and

“not spam” in the anti-spam system and digital value of picture in the number

handwriting recognition system. The supervised learning is to establish a learning

process that comparing the predicted value with the actual identity of training data

continually to adjust the prediction model constantly until the model prediction

results reach the desired accuracy. The most common application scenarios of

supervised learning are classification problems and regression problems. The

representative algorithms of supervised learning have Logistic Regression [224]

and Back Propagation Neural Network [225].

2. Unsupervised learning: In unsupervised learning, the input data is not specially

labelled by clear identity. The learning model is to deduce the internal structure

and hidden patterns in the data. The most common application scenarios of

2.4 Machine Learning 55

unsupervised learning include the study of association rules and clustering. The

representative algorithms of unsupervised learning have Apriori algorithm [226]

and k-mean algorithm [227].

3. Semi-supervised learning: Under this learning method, the input data is partly

labelled. The learning model can be used to predict, but, first of all, learning the

inner structure of data model is necessary to organise data reasonably for the

forecast. The most common application scenarios of semi-supervised learning

include classification and regression that extend the supervised learning. These

algorithms usually try to perform modelling on the unlabelled data and then

prediction on the labelled data. The representative algorithms of unsupervised

learning have Graph Inference [228] or Laplacian SVM [229].)

4. Reinforcement learning: In reinforcement learning, the labelled input data is not

only for checking whether the modelling is right or not (supervised learning), but

also feedback to the modelling to adjust the model at once such as regulating

threshold for decision. The most common application scenarios of reinforcement

learning include dynamic statistic and robot locomotion. The representative

algorithms have Q-Learning [230] and Temporal difference Learning [231].

5. Deep learning: The Deep learning is a form of machine learning that enables

computers to learn from experience and understand the world in terms of a

hierarchy of concepts [232]. There are two key features, one is the composition of

models which includes multiple stages or layers of non-linear information

processing. The other one is the representation of learning method which focuses

on successively higher and more abstract layer [233].

2.4.2 Machine learning algorithms

This section we will introduce the common algorithms that have been used for mobile

botnet detection and discuss the advantages and disadvantages of each of them.

56 Literature Review

2.4.2.1 Naïve Bayes Classification

The general Bayesian classification is one kind of classification algorithms that are

based on the Bayes’ theorem. This classification algorithm will assign the label expressed

by the value of a feature to the testing instances, and the labels belong to the finite set.

All the Bayesian classification algorithms are based on one assumption that the value of

a particular feature used in the classifier is independent with any other feature. Naïve

Bayes classifier is the simplest one of the Bayes classification algorithms. The Bayes’

theorem will be introduced firstly, and then we will discuss the procedure of Naïve Bayes

classification algorithm.

Bayes' theorem defines the probability of an event, based on the conditions probability

that might be related to the event in probability theory and statistics. Bayes' theorem can

be stated mathematically as the following Equation 2-8:

Equation 2-8 Bayes’s theorem

 𝑃 𝐴|𝐵
|

 (2-8)

Where A and B are events.

P (A) and P (B) denote the probabilities of A and B without regarding to each other.

P (A | B) denotes conditional probability, is the probability of A given that B is true.

P (B | A), is the probability of B given that A is true.

The key idea of Naïve Bayes classification algorithm is very simple: For the testing

instances and existing classes, we compute the conditional probability of every class

given the value of the instance and then compare them. The class with the max of the

conditional probability will be the class that the instance belongs to. The procedure of this

classification is shown as follows:

2.4 Machine Learning 57

1. Set 1 2 3{ , , ... }mx a a a a , x is an instance to be classified and a is one of the features

used for the classifier.

2. Set 1 2{ , ,..., }nC y y y is category set that contains n categories.

3. Compute the conditional probability of every category given the value of the

instance x . 1 2 3(|), (|), (|),..., (|)nP y x P y x P y x P y x

4. If 1 2 3(|) max{ (|), (|), (|),..., (|)}k nP y x P y x P y x P y x P y x then we classify the instance

x to the category k

So now the key is how to calculate the conditional probability of step 3. It is based

on Bayes’ theorem as follows:

1. First to prepare a training dataset including instances with known category.

2. The statistic the conditional probability of every feature given the category based

on the training dataset:

Equation 2-9 Bayes’s theorem: conditional probability of features I

1 1 2 1 1

1 2 2 2 2

1 2

(|), (|), ..., (|);

(|), (|), ..., (|);

...

(|), (|), ..., (|);

m

m

n n m n

P a y P a y P a y

P a y P a y P a y

P a y P a y P a y

 (2-9)

3. According to the Bayes’ theorem, we can get:

Equation 2-10 Bayes’s theorem: conditional probability of features II

(|) ()
(|)

()
i i

i

P x y P y
P y x

P x

 (2-10)

Because the denominators for all classes are constant, we can maximise numerator.

Meanwhile, as the feature attributes are conditional independence, so there are:

58 Literature Review

Equation 2-11 Bayes’s theorem: conditional probability of features III

1 2

1

(|) () (|) (|)... (|) () () (|)
m

i i i i m i i i j i
j

P x y P y P a y P a y P a y P y P y P a y

 (2-11)

According to the analysis mentioned above, the Naïve Bayes classification is divided

into three phases:

1. Preparation Phase: In this stage, a training dataset that has labelled different

category need be prepared. Moreover, then the appropriate attributes should be

extracted from the training data.

2. Classifier Training Phase: In this stage, the classifier is trained by statistical

analysing the frequency of every category in the training dataset and the

conditional probability of every feature.

3. Application Phase: The task of this stage is using a classifier to classify the testing

instances.

There are some advantages and disadvantages for Naïve Bayes classification algorithm

[234].

Advantages:

1. Fast to train (single scan). Fast to classify.

2. Not sensitive to irrelevant features.

3. The algorithm can handle real and discrete data.

Disadvantages:

1. Assumes independence of features.

2. Practically, dependencies existing among variables cannot be modelled.

2.4 Machine Learning 59

2.4.2.2 Decision Trees

A decision tree is a flowchart-like structure (binary tree or non-binary tree). Each

branch represents the outcome of the test, and each leaf node represents a category label

(a decision made after analysing all the attributes). The procedure of making a decision

using decision tree is to test the attributes of test instance from the root node. According

to the value of attributes belonging to test instance and the constraint of the tree, the right

branch will be chosen. Traversing the entire feature from top to bottom of the tree and

reaching the leaf node that is last decision to make. There are three types of nodes in the

decision tree: (1) Decision nodes (2) Chance nodes (3) End nodes. The process of the

decision tree is intuitive and easy to be understood. The primary problem to use decision

tree for learning is the construction of decision tree based on the training dataset [235].

Different from the Bayes’ classification algorithms, the construction of decision tree

does not depend on domain knowledge. The process of constructing decision tree is to

build a topology structure of the relationship among all the attributes of attribute selection

measure on the training dataset. The primary step of building decision tree is the split of

the attribute. The attribute split is constructing different branches according to the

difference of feature attributes at one of the node. The goal is ensuring the instances under

the branch belong to the same category as far as possible. There are three situations for

splitting attributes:

1. If the attribute is discrete and no requirement for a binary tree: Every attribute

is regarded as one branch.

2. If the attribute is discrete and the request for a binary tree: Defining a subset

of attributes and dividing two branches as “belong to the subset” and “not

belong to the subset”.

60 Literature Review

3. If the attribute is continuous: Defining a value as split point (split_point) and

dividing two branches as “greater than split_point” and “less and equal than

split_point”.

A fundamental issue in decision tree learning is the attribute selection measure that is

an attribute splitting rule to divide the training dataset into different branches. The

algorithms ID3 and C4.5 are the common algorithms for attribute selection measure.

ID3 Algorithm

The main ideas behind the ID3 algorithm is a feature is chosen as the next level of the

tree if its splitting produces the most information gain [236].

In the decision tree, each non-leaf node represents an input attribute, and each arc

between two nodes represents a possible value of that attribute. A leaf node represents

the expected value of the output attribute when the path from the root node to that leaf

node describes the input attributes. In an idealised decision tree, the input attribute to each

non-leaf node has a requirement: amongst all the input attributes, the input attribute is the

most informative about the corresponding output attribute. It is because the output

attribute can be predicted by using the fewest possible questions on average. Moreover,

the degree of how informative a particular input attribute can be represented by entropy

which is utilised in communication systems to describe the measure of uncertainty [237].

It is fundamental in modern information theory. The detail of the procedure of ID3

algorithms is shown as follows [235]:

Algorithm goal: Select the attribute with the highest information gain for splitting.

1. Let ip denote the probability that an arbitrary tuple in D belongs to the category

iC, estimated by:

2.4 Machine Learning 61

,| |

| |
i DC

D

2. The entropy (expected information) needed to classify a tuple in D which can

be denoted by:

 Equation 2-12 ID3 algorithm: entropy equation

()

m

i 2 i
i=1

Info D = - p log (p)
 (2-12)

3. Information required to classify D by using A to split D into v partitions, and the

expected information can be denoted by:

 Equation 2-13 ID3 algorithm: information after attributes split

 1

| |
() ()

| |

v
j

A j
j

D
Info D info D

D

 (2-13)

4. At last the information gained by branching on attribute A can be denoted by:

 Equation 2-14 ID3 algorithm: information gain equation

 Again(A)=info(D)-info (D)
 (2-14)

5. After computing the information gain of all the attributes, we select attribute

with the max information gain for splitting different branches after the current

node. Then applying the procedure above for the child notes recursively until all

the attributes are used.

Even though ID3 algorithm can search complete hypothesis space and the resulting

search is much less sensitive to the error in individual training instances. There are still

some disadvantages for the algorithm. ID3 algorithms maintain only a single current

hypothesis as it searches through the space of decision trees, so it loses the capabilities

that follow explicitly representing all consistent hypothesis. Meanwhile, ID3 perform

without backtracking in its search. Therefore there is some probability of converging to

locally optimal solutions that are not globally optimal. Moreover, if there is only one label

62 Literature Review

for the attribute, the ID3 will choose it as spitting attribute that is helpless for

classification. The C4.5 algorithm is one of improved decision tree algorithm from the

ID3 algorithm.

C4.5 Algorithm

The C4.5 algorithm is regarded as an extension of an earlier ID3 algorithm developed

by Quinlan (known in Weka as J48 for Java). C4.5 is often regarded as a statistical

classifier because the decision trees generated by C4.5 can be used for classification

[238].

For C4.5 algorithm use the gain ratio to select the attribute for splitting. Based on the

ID3 algorithm, it defines the split information as follows:

Equation 2-15 C4.5 algorithm: split information

v
j j

A 2
j=1

| D | | D |
split_info (D)= - log ()

| D| | D|
 (2-15)

Moreover, then the gain ratio is defined as:

Equation 2-16 C4.5 algorithm: information gain ratio

gain(A)
gain_ratio(A)=

split_info(A) (2-16)

The last step that is same with the ID3 algorithm is to select an attribute with the max

information gain ratio for splitting different branches after the current node. Then

applying the procedure above for the child notes recursively until all the attributes are

used.

Decision tree algorithms have advantages and disadvantages, which can be

summarised as follows [239]:

Advantages:

2.4 Machine Learning 63

1. Decision tree algorithms are easy to understand and interpret.

2. Decision tree algorithms can get a relatively better result even with a little dataset.

3. Decision tree algorithms can be combined with other decision techniques.

4. Decision tree algorithms can search entire hypothesis space, and the resulting

search is much less sensitive to errors in individual training instances.

Disadvantages:

1. The information gain from constructing the decision tree is biased for those multi-

value attributes, because of data including categorical variables with a different

number of levels [240].

2. The algorithm has high space complexity with a large number of sample. Moreover,

the run-time complexity matches to the depth of decision tree, which is relative to

tree size and thereby to the amount of the sample [241].

2.4.2.3 K-Nearest Neighbours

K-Nearest Neighbours (K-NN for short) is one type of instance-based learning (also

called lazy learning). Instead of performing explicit generalisation, the K-NN algorithm

compares testing instances with training instances stored in memory to make a decision

which category the testing instance should be allocated to [242].

There are two phases for K-NN classification algorithm: (1) Determination of the K

nearest neighbours for the test instance. (2) Determination of the common category

among the K nearest neighbours. The general procedure of K-NN algorithms is described

as follows [243]:

1. Assuming that there is a training dataset D whose size is |D| and the instances in

the dataset are denoted as 𝑥 𝑥 ∈ 1, |𝐷| . These instances are described by the

feature set F whose values have been normalised to the range [0, 1]. The category

64 Literature Review

set is denoted as Y. Every instance is labelled with the corresponding category

()i iy y Y .

2. When a testing instance q is given as input to the algorithm, we first calculate the

distance between q and all ([1,| |])ix x D based on the features in set F. The

method to compute the distance has been introduced in Section 2.3.2.2. We use the

generic form as follows:

Equation 2-17 KNN algorithm: distance compute equation

(,) (,)i f f i f

f F

d q x w q x

 (2-17)

3. After the K nearest neighbours are selected, the most straightforward approach to

determining the class of q is to assign the majority category among the nearest

neighbours to the testing distance. A general technique to achieve this is to get to

vote on the class of the testing instance with votes weighted by the inverse of their

distances, which is as follows:

Equation 2-18 KNN algorithm: vote equation

 1

1
() (,)

(,)

k

i j cn
c c

Vote y l y y
d q x

 (2-18)

Thus, the vote assigned to a class jy by neighbour jx is 1 divided by the distance

to that neighbour. The function (,)j cl y y will return 1 if the categories of jy and

cy are matched and return 0 otherwise.

The K-NN algorithm has the following advantages and disadvantages:

Advantages:

2.4 Machine Learning 65

1. Because it is an instance-based algorithm, the cost of the learning process is zero.

Meanwhile, the algorithm can be understood and implemented easily.

2. The KNN algorithm has a probability of error that is less than twice of Bayes based

on certain reasonable assumptions [244].

3. The KNN algorithm is particularly suitable for the training data that has multiple

class labels. For example, for the assignment of functions to genes based on

expression profiles [245].

Disadvantage:

1. The number of K should be determined when using this algorithm. Changing K

can change the predicted results.

2. The algorithm must compute the distance and sort all the training dataset at each

prediction [246]. It is a time-consuming process if there are a large number of

training instances.

2.4.2.4 Neural Networks

Neural networks (NNs) are a group of statistical learning models derived from

biological neural networks of the animal brain and are used to approximate functions that

can depend on a large number input dataset [247].

Neural networks are mathematic model containing a large number of nodes (also called

“neurones” or “units”) which connected each other. There is a particular output function,

which is called activation function. Each connection between two nodes represents a

weighted value for the signal through the connection, which is corresponding to the

memory of artificial neural network. The output of the neural network is by the network

connection mode, the different weights and activation function.

66 Literature Review

Figure 2-7 - The unit of neural network

We first introduce the unit node of the neural network that can be shown in Figure 2-7.

The a1 to an are inputs for the unit and w1 to wn is the weight for each, f is the activation

function. To avoid this dilemma, a third input typically referred to as a bias input is

required for the unit. A bias input should have the value of one always and is also

weighted with value b. The unit can be denoted as: (' b)t f W A

.

Figure 2-8 - Simple neural network model

The key of the neural network is the construction of the model based on the training

dataset. For example, the Figure 2-8 is one of the simple neural networks. A common

form of multilayer feedforward network consists of three parts: Input layer (Layer L1),

2.4 Machine Learning 67

output layer (Layer L3) and hidden layer (Layer L2). The input of labelled “+1” in layer

L1 are bias units and correspond to the intercept term. This example neural network also

has three input units, three hidden units, and one output unit. We use
()l

i jW to denote the

weight associated with the connection between unit j in layer l, and unit i in layer l+1.
()l
ib is the bias associated with unit i in layer l+1. We use ()l

ia to denote the output value

of unit i in layer l. Given a fixed parameter weight (W) and bias (b), the hypothesis

, ()W bh x can be defined to output a real number for the neural network. We first introduce

the forward propagation [248] process as follows:

1. Compute the output Layer L2:

Equation 2-19 Three layers NN algorithm: output of layer 2

(2) (1) (1) (1) (1)
1 11 1 12 2 13 3 1

(2) (1) (1) (1) (1)
2 21 1 22 2 23 3 2

(2) (1) (1) (1) (1)
3 31 1 32 2 33 3 3

()

()

()

a f W x W x W x b

a f W x W x W x b

a f W x W x W x b

 (2-19)

2. Compute the output Layer L3:

Equation 2-20 Three layers NN algorithm: output of layer 3

(3) (2) (2) (2) (2) (2) (2) (2)

, 1 11 1 12 2 13 3 1() ()W bh x a f W a W a W a b
 (2-20)

Then we can use backpropagation algorithm [225] to learn with training dataset. We

suppose that the training data set denoted as (1) (1) () (){(,), ,(,)}m mx y x y , x is the input data,

and the y is the output as the category. The overall cost function can be defined as follows:

Equation 2-21 Three layers NN algorithm: overall cost function

1

1

1
2() () ()

1 1 1 1

1
22() () ()

,
1 1 1 1

1
(,) (, ; ,)

2

1 1
()

2 2

l l l

l l l

n s sm
i i l

ji
i l i j

n s sm
i i l

W b ji
i l i j

J W b J W b x y W
m

h x y W
m

 (2-21)

68 Literature Review

The first term in the definition is an average sum-of-squares error term. The second

term is a regularisation term that tends to decrease the magnitude of the weights and helps

prevent overfitting.

This cost function can be used both for classification and regression problems. For

classification, let y=0 or 1 represent the two class labels. For regression problems, scale

the outputs to ensure that they lie in the [0, 1] range. The goal of the artificial neural

network is to minimise (,)J W b as a function of W and b. To achieve this objective, the

algorithm first initializes these two parameters with small random value and then apply

optimisation algorithms. The gradient descent is one type of optimisation algorithms

which can be described as follows:

Equation 2-22 Gradient descent

() ()
()

() ()
()

(,)

(,)

l l
ij ij l

ij

l l
i i l

i

W W J W b
W

b b J W b
b

 (2-22)

Where α is the learning rate

Finally, we use the function below to compute the partial derivatives of the cost

function:

Equation 2-23 Neural network algorithm: cost function

() () ()
() ()

1

1
(,) (, ; ,)

m
i i l

ijl l
iij ij

J W b J W b x y W
W m W

 (2-23)

The Neural Network (NN) algorithm has several advantages and disadvantages that

can be summarised as follows [249]:

Advantages:

2.4 Machine Learning 69

1. The neural network algorithm can be used for general application and can generate

a variety of patterns with high accuracy.

2. The neural network algorithm uses a static and non-linear function to fit the

parameters of a particular function based on the training dataset. Meanwhile, there

are some multiple functions to choose.

3. It is possible to detect nearly all complex nonlinear relationships between input

data and outputs data based on the training dataset.

Disadvantages:

1. The neural networks algorithm cannot determine the optimal number of nodes,

hidden layers, functions and so on. Because the process of neural networks is a

black box, it is difficult to find the errors in the process of learning. Therefore this

algorithm is a lack of ability to reason about their output in a way that can be

effectively communicated [250].

2. Training time for the neural network is usually much longer than other machine

learning algorithm such as decision trees [251].

2.4.2.5 Support Vector Machines

Support vector machines (SVMs) are one of supervised learning models that can be

used for classification and regression. The SVM algorithm depends on the concept of

decision boundary of the different categories in the training dataset. The decision

boundary is a hypersurface that partitions the underlying vector space into two sets and

one for each class. There are several types of SVM algorithms. In the following, we

present the basic two-class support vector machine [252].

We suppose the training dataset 1 1 2 2{(,), (,), , (,)}n nx y x y x y , and the instances

𝑥 ∈ 𝑅 and 𝑦 ∈ 1,1 in a space where ix and iy is the ith
 input and output. The

70 Literature Review

hyperplane of function ϕ is assumed which can create a non-linear decision boundary

between two categories. The function can be denoted as 0Tw x b , with w F and

b R . There is only one category of training instances in any one side of the hyperplane.

The distance between the closest points from each category and the hyperplane is equal.

The variables i are introduced to keep some instances lying within the margin as

penalizes. Moreover, the constant variable C is also introduced to determine the trade-off

between a large margin and a small error penalty. Therefore, the objective function of the

SVM algorithms can be described as follows:

Equation 2-24 Support vector machine: objective function

2

, ,
1

2

subject to:

(()) 1 for all 1, ,

0 for all 1, ,

i

n

w b i
i

T
i i i

i

w
min C

y w x b i n

i n

 ‖ ‖

 (2-24)

Now we can use Lagrange multipliers to solve this minimization problem and the

decision function for one instance can be denoted as follows (i are the Lagrange

multipliers):

Equation 2-25 Support vector machine: decision function

 1

() sgn((,))
n

i i i
i

f x y K x x b

 (2-25)

Next, let us introduce the Sequential minimal optimisation (SMO) which is one of the

simple versions of SVM and it is widely used in many machine learning toolkits such as

WEKA [253]. The target of the SMO is to find a function to divide the training instances

into different categories. To maximise the decision boundary in SMV, we need to

minimise the value of:

2.4 Machine Learning 71

Equation 2-26 decision boundary of SVM

 1

1

2

l
T

i
i

w w C

 (2-26)

w is the parameter and the greater the value, the more obvious for a boundary. C is

behalf of the penalty factor. If one instance has a deviation to the category that it is should

belong to, the greater of the value of factor C, the more degree to rectify this situation. i

is the slack variable. According to Karush–Kuhn–Tucker conditions, we can convert the

problem of minimising the value the function above to find the optimal solution that

conforms to these conditions [254]:

Equation 2-27 to Karush–Kuhn–Tucker conditions

0 1 ()

0 1 ()

0 1 ()

i i i

i i i

i i i

y u a

C y u b

y u c

 (2-27)

 i are the Lagrange multipliers

1. For condition (a), the i is normal classification.

2. For condition (b), the i is support vector which is on the boundary.

3. For condition (c), the i is between two boundaries.

Therefore, the following conditions will be not satisfied:

1. 1i iy u but i C . It should be i C

2. 1i iy u but i C . It should be 0i

3. 1i iy u but i C or 0i . It should be 0 i C

72 Literature Review

The next step is to search all the unsatisfied situation and update i . Because of another

constraint condition
1

0
l

i i
i

y

 , the i and i will be updated simultaneously by the

function:

new new old old
i i j j i i j jy y y y constant

According to the convex quadratic programming, we can get

()

(,) (,) 2 (,)

j i jnew
j j

i i i

i i j j i j

y E E

E u y

k x x k x x k x x

Base on the constraint of 0 j C , we can get the analytical solution of j :

,
j i j i i j

j i j i i j

L = max(0,a a),H = max(C,C +a - a) if y y

L = max(0,a a C),H = max(C a - a) if y = y

,()new new clipped
i i i j j jy y a

i can be found according to the KTT, and j can be found according to the

condition of i jmax E E , then we define:

1

2

() (,) () (,)

() (,) () (,)

old old
i i i i i i j j j i j

old old
j i i i i i j j j i j

b b E y a k x x y k x x

b b E y a k x x y k x x

Then we update b according to

2.4 Machine Learning 73

1

2

1 2

0

: 0

() / 2

i

j

b if C

b b if C

b b otherwise

Finally, we update all the i , y and b to finish the SMO model to learning on the

training dataset.

2.4.3 Evaluation criteria for machine learning

In Section 2.2.4, we have given a short introduction for how to compare the different

botnet detection techniques. We will make a detailed analysis of the methodology of the

evaluation of machine learning. For evaluating the machine learning algorithm, we first

to discuss the measurement for performance and the statistical test. Moreover, then the

sampling techniques and the choice of the appropriate dataset will be introduced at the

end.

2.4.3.1 Performance Measurement

1. Confusion Matrix

The confusion matrix is a particular table layout allowing visualisation of the

performance of machine learning algorithms. In general, the columns of the matrix

represent the predicted class value, and the rows of the matrix represent the actual class

value for the instances. The confusion matrix can be described in Table 2-4. According

to the figure, there are four types of the classification [255]:

True positive (TP): The instances are predicted as positive. Meanwhile, the actual class

value of these instances is positive. It is also called hit.

74 Literature Review

False positive (FP): The instances are predicted as negative. Meanwhile, the actual

class value of these instances is positive. It is also called false alarm or Type I error.

False negative (FN): The instances are predicted as positive. Meanwhile, the actual

class value of these instances is negative. It is also called miss and Type II error.

True negative (TN): The instances are predicted as negative. Meanwhile, the actual

class value of these instances is negative. It is also called correct rejection.

Table 2-4 - Confusion matrix

For the machine learning algorithm, we want to high TP and TN and low FP and FN

intuitively. There are also important performance measures that are generated from the

confusion matrix [255].

True positive rate (TPR): TPR = TP/ (TP+FN), It is also called Recall and Sensitivity.

False positive rate (FPR): FPR = FP/ (FP+TN), It is also called Fallout.

False negative rate (FNR): FNR = FN/ TP+FN), It is also called Miss Rate.

True negative rate (TNR): TNR = TN/ (FP+TN), It is also called Specificity (SPC).

Positive predictive value (PPV): PPV = TP/ (TP+FP), It is also called Precision.

False omission rate (FOR): FOR = FN/ (FN+TN).

False discovery rate (FDR): FDR = FP/ (TP+FP).

Confusion Matrix
Predicted class value

Positive Negative

Actual
class value

Positive True positive(TP) False positive(FP)

Negative False negative(FN) True negative(TN)

2.4 Machine Learning 75

Negative predictive value (NPV): NPV = TN/ (FN+TN).

Accuracy (ACC): ACC = (TP + TN)/ (TP + TN + FP + FN).

Positive likelihood ratio (LR+): LR+ = TPR/FPR.

Negative likelihood ratio (LR−): LR− = FNR/TNR.

Diagnostic odds ratio (DOR): DOR = LR+/LR−.

Receiver Operating Characteristics (ROC): ROC is a more comprehensive evaluation

criterion for machine learning. It is based on two important concepts: TPR and FPR. The

ROC curve is the graph whose horizontal axis is FPR, and the vertical axis is TPR. With

the variation of the threshold setting, the detection system will get a different pair of TPR

and FPR. Ideally, FPR is lowest, and the TPR is highest. However, the threshold at the

point of tangency on the ROC curve is the best configuration.

The area under ROC curve (AUC): The area under the ROC curve is also regarded as

a criterion for detection effect that is called AUC.

2. Cohen’s Kappa Measure

Cohen's kappa coefficient measurement is a statistic that measures the degree of

agreement among raters for categorical items. It can solve the problem of classification

could be a result of coincidental concordance between the classifier’s output and the label

generation process is not taken into account. The formula of Cohen’s Kappa is as follows

[256]:

Equation 2-28 Cohen’s Kappa formula

 o – 1/C C

e eP P P
 (2-28)

76 Literature Review

oP denotes the probability of overall agreement across the label assignments between

the classifier and the actual process, and
C

eP denotes the chance agreement across the

labels and is defined as the sum of the proportion of examples assigned to a class times

the percentage of true labels of this category in the data set.

3. Cost Curves

Cost curves are more practical than ROC curves because it can show what class

probabilities one classifier is preferable over the other. The cost curve is a graph of the

costs of production as a function of total quantity produced which is derived from

economy [257].

It is based on two concepts: Error rate and Probability of an example being from the

positive class that can be denoted as P . The Cost-curves is the graph whose horizontal

axis is P , and the vertical axis is an Error rate. To know the meaning of P , we

need to introduce three sets of instances that have a different proportion of positive

instances. trainP is the percentage of positive instances in the training dataset used to

learn the algorithm. testP is the proportion of positive instances in the dataset used to

build the classifier’s confusion matrix. deployP + is the percentage of positive instances

when the classifier is deployed for the testing dataset. For the cost curves, the P

should use deployP + .

4. The Root-Mean-Squared Error (RMSE)

The Root-Mean-Squared Error (RMSE) is usually used for regression, but can also be

used with probabilistic classifiers. The formula for the RMSE is as formula [258]:

2.4 Machine Learning 77

Equation 2-29 Root-mean-squared error formula

m
2

i
1

 1 / (f(x))i
i

RMSE f sqrt m y

 (2-29)

Where m is the number of test examples, f is the classifier’s probabilistic output on xi

and yi the actual label.

2.4.3.2 Statistical Testing

According to the number of the algorithms and domain included in the test, we can

divide the statistical test into three types: The comparison of 2 algorithms on a single

domain, the comparison of 2 algorithms on multiple domains and the comparison of

multiple algorithms on multiple domains.

Analysis of variance (ANOVA): The analysis of variance (ANOVA) is a collection

of statistical models that used to analyse the differences between group means and their

associated procedures [259]. In the ANOVA setting, the observed variance in a specified

variable is divided into components attributable to different sources of variation. For the

simple form, ANOVA provides a statistical test of whether or not the means of several

groups are equal, and therefore generalises the t-test to more than two groups. As doing

multiple two-sample t-tests would result in an increased chance of committing statistical

type I errors, ANOVAs are beneficial for comparing (testing) more than three means

(groups or variables) for statistical significance. The F value in ANOVA which is

generated by F-test can be used to analyse whether the means between two groups of data

are significantly different. If the calculated F value is larger than the F critical value (F

statistic which can be found in F table), the null hypothesis can be rejected which means

the two set of data are significantly different.

78 Literature Review

2.5 Mobile botnet

The overflow of mobile malware follows the development of the smart mobile devices.

However, because of the isolation and immature of the traditional mobile malware, their

harm is limited, and they are easy to be detected by general anti-virus mobile software

with the signature of the existing malware sample.

The mobile devices in using such as smartphones and tablets have increased

impressively recently. According to the Cisco’s report, more than 0.5bn (526 million)

mobile devices were activated and connected to networks in 2013 [260]. The global

mobile devices and connections have grown to 8.0 billion in 2016, up from 7.6 billion in

2015. It also forecasts this number will grow to 11.6 billion by 2021 [18]. Recent figures

also show that Google’s Android operating system has overtaken other platforms

platform since 2012 and is currently the market leading mobile OS and is expected to get

more than 80% market share until 2019 [19].

Along with the growth in the use of the high speed of mobile network (2.3 billion

active mobile-broadband subscriptions worldwide in 2013 according to [261]), there has

also been a growing number of mobile malware, often in the form of mobile botnets. The

mobile botnets can be defined as a collection of network connected applications on mobile

devices communicating with other similar applications and a remote server to perform

tasks. The controllable features of botnet enable more effective and sophisticated attacks

on mobile devices (e.g., dynamically execute a remote command, long-term information

stealing) making mobile botnet a prominent form of new generation of mobile malware.

According to KASPERSKY [20], 148,778 mobile malware apps had been detected at the

end of 2013, and nearly 62% of them are elements of mobile botnets. In 2016, the number

of malicious installation packages grew considerably, amounting to more than 8.5 million

which is three times more than 2015 [21]. The first mobile botnet, i.e., the iKee.B iPhone

2.5 Mobile botnet 79

botnet [22], was traced back in 2009. However, due to iOS being a closed system, it did

not prove to be a particularly harmful mobile malware. In the case of Android, however,

its open source nature gave an ample opportunity for developing mobile botnets. Geinimi,

a piggybacks game app, became the first discovered Android botnet in 2010 [23], and

since then more and more hackers have started producing mobile botnets for Android

devices. The Android.Troj.Mdk Trojan, for instance, has been found in more than 7,000

apps and infected more than a million mobile users in China in 2013 [7].

NotCompatible.C is another example of new Trojan threatening protected enterprise

networks [24].

The current state of mobile botnet incidents in real networks is reviewed in the next

section. It is followed by a summary of the existing research on mobile botnets in Section

2.5.2 and 2.5.3 which contain two aspects: mobile botnet creation and mobile botnet

detection. A comparison of current machine learning based mobile botnet detection

techniques are discussed in Section 2.5.4. We also discuss the specificities of mobile

botnets with other mobile malware and traditional botnets in Section 2.5.5. Lastly, we

analyse trend in mobile botnet techniques and the open issues in correspondent detection

techniques in Section 2.5.6.

2.5.1 Mobile botnet accidents

One of the important aspects of the analysis of mobile botnet malware is the harm and

the general mode of attack. The analysis of harmful behaviours and the general attack

means of mobile botnet malware are meaningful to detect and defence the corresponding

malware. Through summarising the accidents of the mobile botnet, we list the potential

attacks which can be performed by these types of mobile botnet malware in Table 2-5.

80 Literature Review

Table 2-5 - List of potentially harmful behaviours of mobile botnet

Index The potential harmful behaviours

A Capable of rooting the vulnerable Android phones.

B Evade the detection from mobile anti-virus software.

C
Collect information and phoning home. (IMEI number, phone model, Android OS

version)

D Elevate its privilege to root.

E Capability to install or remove any packages without users' awareness.

F Send SMS to the premium-rate telephone number to get profit.

G Remove messages related to the premium-rated telephone number.

H Thoroughly remove evidence of their activities.

I Steal user's accounts and other credential information.

J Built-in promotion mechanism to install other instances of malware.

K
Automatically confirm the subscription of premium-rate SMS services without users'

awareness.

L Capability to dynamically load and execute remotely downloaded code from Blog.

M
Detect the existence of anti-virus software and attempt to shut down the security

software.

N Encrypt information bypass detection.

O Install itself as a device administration app.

P Abusive use of notification bar.

Basing on this harmful behaviour of mobile botnets, we make a summary of the major

mobile botnet accidents in recent years. Every accident includes the year first detected,

the infected platform, the way of spread and the harmful effect. We also give some

impacts of some more serious mobile botnet malware according to reference. The

complete accidents of mobile botnets are shown in Table 2-6.

2.5 Mobile botnet 81

Table 2-6 - The accidents of mobile botnet
Ref. Incidents name Y Device The way of spread Effect Impact

[262] iKee.B 2009 iOS Scan the iOS devices by SSH C T-Mobile’s Dutch IP infected.

[23, 263] Geinimi 2010 Android Piggybacks on apps C E
Infect significant number of
Android devices

[264, 265] DroidDream 2011 Android Piggybacks on apps C E O
There over 50 applications
were infected with it.

[266-268] DroidKungFu1,2,3 2011 Android Piggybacks on apps
A B C
D E

[269] YZHCSMS Trojan 2011 Android Piggybacks on apps F G H
[270, 271] Plankton 2011 Android Piggybacks on apps C I
[272, 273] GoldDream 2011 Android Piggybacks on apps C E F
[274, 275] HippoSMS 2011 Android Piggybacks on apps F S G
[276, 277] SndApps 2011 Android Piggybacks on apps C J B
[278] NickiBot 2011 Android Piggybacks on apps C
[279, 280] RogueSPPush 2011 Android Piggybacks on apps K G

[281, 282] GingerMaster 2011 Android Piggybacks on apps A C E
the first one that utilises a root
exploit against Android 2.3

[263, 283] DroidDeluxe 2011 Android Rogue App or Fake malware2 A C I

[284, 285] AnserverBot 2011 Android Piggybacks on apps L M
Being injected into some (20+)
legitimate apps

[286] DroidCoupon 2011 Android Standalone or Fake malware A C E
[287, 288] BeanBot 2011 Android Piggybacks on apps C F

[289, 290]
SMS Android
Trojan DroidLive

2011 Android Piggybacks on apps C F O
It infects more than ten distinct
Android apps.

[291, 292] Android. Master 2012 Android Piggybacks on apps C I E
11,000/$547,500 to
$3,285,000 per year

[293, 294] RootSmart 2012 Android Piggybacks on apps A E
affect between 10,000 and
30,000 devices per day.

[295] PushBot 2012 Android Piggybacks on apps E P

[296] DKFBootKit 2012 Android Piggybacks on apps E
Infect 1,657 devices in the past
two weeks. 100 malicious apps

[297, 298] TigerBot 2012 Android Piggybacks on apps C F

[299, 300] UpdtKiller 2012 Android Piggybacks on apps
B C F
G

[301] ZitMo 2012
Android
Blackberry

Standalone or Fake malware C

[7] Android.Troj.mdk 2012 Android Piggybacks on apps C E N
Infects 100,000 Chinese
smartphones and 11,000
malicious apps samples

[302]
Eurograbber
(variant of ZitMo)

2012
Android
BlackBerry

Fake software security
upgrade3.

C
infected more than 30,000
users Stolen an estimated 36
million Euros

2 Rogue App or Fake malware: It’s mean that some malware disguise themselves as some legitimate
applications with some attractive function, such as password recovery and so on.

3 Phishing message leading downloads the Trojan onto their PC. Trojan hijacks security upgrade to send
SMS with fake upgrade URL to install software on mobile device.

82 Literature Review

2.5.2 Mobile botnet creation

Because the mobile botnet is relatively new threaten for the current mobile network

environment, there are not so many typical mobile botnet samples detected in the wild.

So many literature do research for proposing new mobile botnet as preventive measures

for the future detection system. Some creations of mobile botnet concentrate on the

feature of the mobile network to strengthen one or more procedures in the botnet.

Mulliner et al. [53] propose a cellular botnet relatively early that describe what it takes

to build a mobile botnet in detail. The paper first discusses the critical procedures that

contain infection pathway, Command and Control (C&C) protocol and communication

strategies. C&C channel is the most important part of a botnet as well as for mobile botnet.

There are two major modes of transmission of C&C command. The first one is a P2P-

based approach and the second one is an SMS-based approach that is much harder to

observe, analyse and disrupt by security software. To transfer a large meaningful volume

data, the paper first proposes the SMS-HTTP hybrid C&C channel. The basic idea for the

hybrid structure is dividing the communication into SMS and HTTP. The encrypted files

are stored on some websites as a command, and their URLs are encoded into the SMS

which should be sent to the random bots. This method can decrease the size of controlled

SMS and conceal the real commands. They even give an implement of necessary parts of

the botnet and evaluate it in Wi-Fi connection and mobile data connection.

Xiang et al. [28] design another mobile botnet named Andbot. They first analyse the

challenges of the constructing mobile botnet and propose the corresponding solutions for

these challenges including stealthy and resilient of C&C channel, low-cost in charges,

traffic, and battery. The paper describes a control mechanism called URL Flux. The basic

principle is that the bots try to connect the Web 2.0 servers (such as blog and microblog)

with a sequence of generated usernames until the connection is established successfully

and get the information from the new feed on the servers. A particular C&C architecture

2.5 Mobile botnet 83

and process of Andbot are presented. The botmaster in Andbot binds the encrypted and

signed commands into a JPG picture and divides the URL of the picture and the picture

into different Web2.0 servers which improve the concealment of the C&C channel.

The SMS is usually applied to the C&C channel in mobile botnet as one of the

important unique features in mobile devices. The literature [46, 47] propose an improved

SMS based heterogeneous mobile botnet. They design a heterogeneous structure SMS

communication for the botnet which contains botmaster, collection node, Bot server,

region Bot server and bots. Collection nodes are the response for receiving the valuable

information from all the nodes of the botnet. The Bot servers, as well as the region Bot

servers, are key nodes in the structure which undertake the tasks of searching and

forwarding the nodes in next layer. They also make an evaluation of nodes capacity and

connectivity for the structure in mathematic. Hamandi et al. [44] demonstrate a type of

botnet application with two levels of topology structure that targets Android devices

specifically. They give more detail of how to build an SMS-based botnet in Android OS,

focusing on the components: main activity, listening service and permissions in the

application. The SMS payload is designed to contain verifier to verify the message

originated from the Botmaster and all the information of the command.

Hua et al. [49] proposed an SMS-based mobile botnet using Flooding Algorithm. The

structure of the botnet is P2P, and after the botmaster first sends out the command to any

other node, the process will not stop. Whenever any node receives the command, they

will continually transmit the command to their other neighbour nodes until the forwarding

count reaches preconfigure threshold. The key problem of the simple flooding algorithm

is how to choose neighbourhood nodes to propagate the command. A helper server is

introduced in the paper to support the selection of neighbour with a certain probability.

The social network applications such as Facebook, Twitter and MySpace have had

become one of the general applications installed in the smart mobile phone. So there is

84 Literature Review

some literature taking advantage of the feature of the social network to establish the

mobile botnet. Faghani et al. [45] present a new cellular botnet named SoCellBot that

makes use of social networks to infect the mobile devices as bots and uses social networks

messaging systems as communication channels between bots. The paper discusses three

parts of the botnet which contain the propagation mechanism, C&C channel and topology.

There are two main methods to recruit the mobile devices into the botnet: one is to exploit

vulnerabilities of the operating systems, and the other is using social engineering

techniques to trick users to install the application. The topology is based on the knit

groups and friendship on the social network that stabilise the connection between

botmaster and bots. They simulate their model in two set experiments with four scenarios

to evaluate the propagation efficiency and the communication efficiency. Yue et al. [52]

put forward a mobile botnet based on the Twitter and SMS control. They also propose

two common algorithms for constructing the network communication topology which

synthesises the Twitter message and SMS.

As the functions of mobile devices are continuously enhanced, the services on the

mobile devices are gradually diversifying. Meanwhile, some specific services can be

exploited for designing mobile botnet. The literature [58] present a new mobile botnet

called cloud-based push-styled mobile botnets based on one of the important services

provided by Google on Android OS devices named Cloud to Device Message Service

(C2DM)4. C2DM is a service that helps developers send data from servers to their

applications on Android devices [98]. So the paper proposes an architecture for pushing

the command for application server as the botmaster to the mobile devices. Considering

the single C2DM mechanism is easy to be detected by the system, they design an

enhanced architecture using two sets of C2DM registrations to move the botmaster for

4 C2DM has been officially deprecated as of June 26, 2012.And it has been replaced by the new version of C2DM,

called Google Cloud Messaging for Android (GCM)

2.5 Mobile botnet 85

application server into another mobile device. They even give a discussion of large-scale

botnet building solution dividing the bots into several groups by using the same username

in the same group. At last, they evaluate the botnet at three aspects containing stealthiness

in control and data plane, efficiency in resource consumption and controllability.

The advancements of the mobile device hardware are not only the performance

improvement but also the hardware with new features continuously is added into the

mobile devices. For example, more abundant sensors are placed into the mobile devices

such as light sensor, gravity sensor, near-field communication (NFC) and so on. These

new features of hardware can also be used as the communication channel in the botnet.

Hasan et al. [48] propose a new idea for the mobile botnet that is based on the sensors on

the mobile. Thinking of the popularity of sensor in the mobile device, the paper supposes

that the sensors can also be used for communication between the mobile devices as botnet

command and control channel. The out-of-band C&C can be divided into steganographic

channels and non-steganographic channel. The difference between the two type channels

is whether the trigger signal is hidden inside another signal or not. Then they give a detail

description of how to use the audio, light, magnetic and vibrational sensor channel to

transmit the command to bots. The communication through the sensor is hard detected by

monitoring the cellular or wireless communication networks. However, the stability is

one of the most difficult problems to be solved.

2.5.3 Detection techniques

The traditional mobile malware detection systems have been deeply studying in the

past few years, and some of these systems can partially be used for mobile detection. So,

we will also discuss two types of detection techniques in the following part. One is the

detection method designing specially for the mobile botnet. The other one is general

86 Literature Review

mobile malware detection system designing for all mobile malware. At last, we also do a

review for the detection techniques by using machine learning algorithms.

2.5.3.1 Special mobile botnet detection techniques

Mobile botnet detection has been studied by Vural et al. [35, 303]. In [303], the authors

propose a detection technique based on network forensics and give a list of the metrics

for building an SMS behaviour profiles to use in detection. Based on these profiles the

compare information gathered from some network forensics tool to establish if it is

normal. Autocorrelation is used to calculate the value of every metric in the list, and a

fuzzy function is used for comparison with normal behaviour. In [35], they improved the

accuracy of their approach by introducing an artificial immune system based detection.

Although it is an anomaly-based detection technique, their approach still relies on

network forensics.

Seo et al. [26] propose a static analysis tool, called DroidAnalyser, to identify potential

vulnerabilities of Android apps and root exploits. Their tool is signature-based. More

specifically, they define some suspicion signatures as Dalvik Executable file (i.e., a .dex

file in Android install package .apk). Their analysis tool processes mobile behaviour in

two stages: (a) a signature matching state and (b) a search of app code using pre-fixed

keywords. Using the outcomes (a) and (b), DroidAnalyser generates a measurement of

the suspicious level of the detected application. DroidAnalyser gives suggestions before

installing an application on a mobile device but cannot detect infection by malware at

runtime.

Another system, called Copper-Droid that can perform dynamic behavioural analysis

of Android malware automatically is presented in [304]. There is also some online file

analysis system which can detect suspicious application install files such as Andrototal

[305], SandDroid [306], App360Scan [307], MobileSandbox [308] and so on.

2.5 Mobile botnet 87

2.5.3.2 General mobile malware detection techniques

Some of the methods generated for the detection of general mobile malware can detect

some mobile botnets.

In [37], the authors show a monitor of Symbian OS and Windows Mobile smartphone

that extracts features for anomaly detection. Based on ML they analyse the monitoring

log to detect features of normal/infected situations. Due to mobile hardware limitations,

their ML based complex intrusion detection system runs on a remote server.

The approach in [29] makes two contributions: (1) it includes a static analysis system

for analysing Android Market applications and providing detailed and readable reports to

the user, and (2) it uses automated reverse-engineering and refactoring of binary

application packages to mitigate security and privacy threats driven by users’ security

preferences. Their approach is based on a novel probabilistic diffusion scheme for

detecting anomalies that may indicate malware using device usage patterns. The Android

Application Sandbox (AASandbox) [309] has also been used to perform both static and

dynamic analysis on Android programs to automatically detect suspicious applications,

based on the idea that the detection result of neighbours is important in evaluating

indicators of malware.

Zhou et al. [31] propose a fast and scalable approach to detect “piggybacked” Android

applications, i.e., apps that attach some destructive payloads or malware code. Two

techniques are used for this purpose: (a) a module decoupling technique that partitions

source code of an application into primary and non-primary modules and (b) a feature

fingerprint technique that extracts various semantic features (from primary modules) and

converts them into feature vectors. Using this approach, the authors have collected more

than 1,200 malware samples cover the majority of Android malware families from August

2010 to October 2011, and have systematically characterised them from various aspects.

88 Literature Review

Shabtai et al. [34] proposed a knowledge-based approach for detecting known classes

of Android mobile malware based on temporal behaviour patterns. The basic idea is to

train a classifier to detect different types of applications based on application features.

This approach has been implemented in Andromaly [310] and was subsequently

improved with Knowledge-based Temporal Abstractions (KBTA) [311]. KBTAs were

used to derive context-specific interpretations of applications from timed behaviour data.

2.5.4 ML based botnet detection techniques comparison

In the following, we review techniques developed to detect mobile botnets on Android

mobile platforms. Our review focuses on techniques, which use machine-learning

algorithms for this purpose, as this approach has been the driver of the experimental

investigation discussed in the paper. Table 2-7 provides an overview of such techniques,

which are known to us.

Each of these techniques in the table is described by:

 The normal applications (Normal Apps (N)) that it has been applied to. N apps are

distinguished into the apps used to train, and the apps used to test the ML algorithms.

 The botnet (or other malware) applications that it has been applied to Botnets (B). B

apps are also distinguished into the apps used to train, and the apps used to test the

ML algorithms.

 The features used to classify an app as N or B and whether some pre-filtering of

them was applied by the technique prior to the ML training phase.

 The ML algorithms applied and tested by it.

 The method/source of classification of the feature sets as N or B features, which was

used to train the algorithms (not applicable in techniques using unsupervised

learning).

2.5 Mobile botnet 89

 The set up of the experimental evaluation of the technique including the use of user

interactions in forming the training data set and the evaluation scenarios used in the

testing phase. The latter are distinguished by whether known or unknown N and B

apps were used in testing. This distinction results in four scenarios: known Bs &

known Ns (KBKN), unknown Bs & known Ns (UBKN), known Bs & unknown Ns

(KBUN), and unknown Bs & unknown Ns (UBUN).

 The performance measures reported for the technique, i.e., the true (botnet) positive

rate (TPR), false (botnet) positive rate (FPR) and precision (PRC) (see Section

2.4.3.1 for definitions of these measures).

 Whether any sensitivity analysis has been carried out by a technique to explore

whether its performance varies across different ML algorithms (Alg), the feature data

aggregation period (Agp), normal apps (N ap), botnets (B ap), features (Fet), and if

the statistical significance of any observed differences have been validated (Val).

As it can be seen from Table 2-7, the features that have been used for mobile botnet

detection are related to OS system calls [312-315], the permissions that different apps

declare for Android devices ([316, 317]) and which are used to grant them access to

certain device actions, device usage by the apps (e.g., SMS dispatches, use of device’s

camera through calls to the API of the device) [315, 316], device usage by the user (e.g.,

SMS dispatches, use of device’s camera) [315, 316, 318], and external communication

activities [39, 40, 179, 315].

Of the techniques focusing on system calls (as we do in the study of this paper), only

two, i.e., Crowdroid [313] and MADAM [315], specify their experimental set up the

insufficient level of detail for forming an assessment of the merit of the approach.

Crowdroid uses unsupervised learning (k-means), and MADAM uses supervised learning

but only one algorithm (KNN). However, none of them considers the full spectrum of

scenarios, i.e., KBKN, UBKN and UNUB, and has carried out a validated sensitivity

90 Literature Review

analysis of performance as that we do in this study. More specifically, MADAM has only

tested known botnet scenarios (KB**), and Crowdroid has considered only UBUN

scenarios. Furthermore, both these techniques considered a more limited set of botnets

than we did. Two botnets in these sets were also considered in our study (i.e.,

PJApps/Crowdroid and DroidDream/MADAM). It should also be noted that neither

Crowdroid nor MADAM used real botnet data in their training phase: Crowdroid used

data from a botnet developed by its producers for this purpose and MADAM used system

call vectors from Trojanised malware and synthetic “botnet” call vectors with high

numbers of system calls, as this appeared to distinguish botnets from normal apps in their

preliminary experiments. The latter was created from the Trojanised malware vectors by

interpolation.

For the remaining two techniques, which analysed OS system calls but not with a

clearly specified experimental set up (e.g., unclear scenarios, not clear which botnets they

used for testing), it should be noted that both of them used supervised learning, i.e., [312]

and [314] and carry out pre-filtering of OS calls before training the ML classifiers. Also,

none of them carried out any thorough and validated sensitive analysis, which is important

in the light of the variance of the reported performance measures.

2.5 Mobile botnet 91

 Table 2-7 - ML based botnet detection approaches
Technique	/	
Platform	

Normal	Apps	
(N)	

Botnets	(B)	 Features1/		
Pre‐filtering	

ML	
Algorithms	

Classification	 Set	Up	
	

Performance	
	

Sensitivity	
analysis	

Amda[312]
(Android
emulator)

Training: 126
(Src: Google Play
+ other)
Test: as above

Training: 250, not
clear
Test: not clear

Features: OS
calls2
Pre-filtering: Yes

NB, J48, RF,
MLR

Virus Total

User Inter:
simulated;
Scenarios: not
clear

TPR: 0.74; FPR: n/a
PRC: n/a;

No

Aung & Zaw
[317]
(Offline)

Training: 500
Test: not clear

Training/Test: not
clear

Features:
permissions3
Pre-filtering: Yes,
info gain

K-means
clustering,
J48, RF,
CART

Not clear

User Inter:
simulated;
Scenarios: Not
clear, KBKN
likely (WEKA)

TRP: 0.85 – 0.98
FPR: 0.08 – 0.16
PRC: 0.85 – 0.92

No

Crowdroid
[313]
(Android)

Training:
SteamyWindow,
Monkey Jump 2
Test: as above

Training: self-
written malware
(Trojan);
Test: PJApps
HongTouTou

Features: OS
calls (all)
Pre-filtering: Yes,
info gain

k-means
clustering
(k=2)

Known N and
B/M apps

User Inter: real,
per N and 10
per B;
Scenarios:
UBUN

TRR: n/a; FPR: n/a
PRC: 0.85

No

STREAM [316]
(Android)

Training: 408
Test: 244

Training: 1330
Test: 235

Features:
Permissions and
device usage (37
features)
Pre-filtering: Yes,
not clear

RF, NB,
NN(MLP,
Bayes, MLR

Known N and
B/M apps

User Inter:
simulated
(10000 for
each N)
Scenarios:
KBKN, UBUN

KBKN: TPR: 0.87 – 0.97;
FPR: 0.14 – 0.44; PRC:
n/a;
UBUN: TPR: 0.48 – 0.95;
FPR: 0.16 – 0.33; PRC: n/a

Alg: Yes;
Agp: No;
N ap: PRC;
B ap: PRC;
Fet: No;
Val: No

Masud et al.
[314]
(Android
tablet)

Training/Test:
Not specified

Training/Test: Not
specified

Features: 5
different sets;
not clear (one set
with OS calls
Pre-filtering: info
gain, x2

NB,
KNN, J48,
MLP, RF

Not clear User Inter:
real, 2 hrs
Scenarios:
Not clear,
KBKN likely

TPR: 0.17 – 0.90;
FPR: 0.03 – 0.67;
PRC: n/a;

Alg: No;
Agp: No;
N ap: No;
B ap: No;
Fet: Yes;
Val: No

SCREDENT
[318]
(Android,
logging)

Training:
Not specified
Test: Not
specified

Training/Test: Not
specified

Features: User
triggered device
activities7
Pre-filtering: No

SVM Users and
SVM (not
clear)

User Inter: not
clear;
Scenarios:
Not clear

No data No

Feizollah et
al.[39](Android,
offline)

Training: 6 see11
Test: as above

Training:
see Table 1
Test: see Table 1

Features: Ext.
comms
Pre-filtering: No

J48, KNN,
SVM, NB,
MLP

Known N and
B/M apps

User Inter: not
clear;
Scenarios:
KBKN

TPR (B): 0.93 – 0.99;
FPR(B): 0.006 – 0.07; PRC
(B): n/a

Alg:Yes;
Agp: No;
N ap: No;
B ap: No;
Fet: No;
Val:No

MBotCS [40]
(Android)

Training: 12, See
Appendix
Test: 12, See
Appendix

Training: see
Table 1
Test: see Table 1

Features: Ext.
comms
Pre-filtering: No

J48, KNN,
SVM, NB,
MLP, Box
algs

Known N and
B/M apps

User Inter:
simulated;
Scenarios:
KBKN, UBKN

KBKN: TPR (B): 0.06–
0.99; FPR(B): 0.002 –
0.96; PRC (B): 0.62– 0.91;
UBKN: TPR (B): 0.08 –
0.98; FPR(B):0.03 –0.95;
PRC (B):0.52–0.66

Alg: Yes;
Agp: No;
N ap: Yes;
B ap: Yes;
Fet : No;
Val:No

MADAM [319]
(Android
4.0.1)

Training: 56
apps
not specified
Test: None

Training:
Troanised
malware9
(Src: Contagio):
Test: As in training

Features: OS
calls10; SMS
number; device
idleness
Pre-filtering: No

KNN User Inter:
Synthetic B
data in
training;
Scenarios:KB

TPR (B): 0.66 – 1.0
FPR (B): n/a
PRC (B): n/a

No

Zhao et al.
[315]
(non mobile)

Training: real
traffic data,
Warcraft
Gamingpackets,
Azureus
Test: as above

Training: Storm,
Waledac
Test: Storm,
Waledac Weasel
(self-written),
BlackEnergy

Features: Ext.
comms8
Pre-filtering: No

J48;

Known
malware and
normal apps

User Inter:
Replayed N
traffic mixed
with B traffic;
Scenarios:
KBKN, UBKN

KBKN: TPR (B): 0.983 –
0.99; FPR(B): 0.01 –
0.017; PRC (B): n/a
UBKN: TPR (B): 0975 –
0.9975; FPR(B):0.0025–
0.0225; PRC (B): n/a

Alg:No;
Agp : Yes
N ap: No;
B ap: Yes
Fet:Yes;
Val: No

BotMiner
[179]
(non mobile)

Training:
Multiple
(network traffic
capture)
Test: as above

Training:
rbot, sdbot,
spybot, IRC-N,
HTTP-1, HTTP-2,
Storm, Nugache
Test: as above

Features:
External comms
stats, device
activities6
Pre-filtering: int.
comms, 1-way
traffic

X-means
clustering;
Cross-plane
correlation

Traffic of
separate
execution of
Bs

User Inter:
real (10-days
logs;
Scenarios:
Not clear,
KBKN likely

TPR (B): 0.75 – 1.0
FPR (B): 0.0 – 0.03
PRC: n/a

Alg: No;
Agp: No;
N ap: No;
B ap: No;
Fet No;
Val:No

1. Feature types: OS calls, permissions on device, ext. comms/network flows (network APIs), intent features, use of device hardware components (e.g., device camera),
device activities (scanning, downloading, exploit attempts) – see for a categorization of possible botnet features [320]

2. Read, write, Brk, getpid, Sigprocmask, Recv, lseek, Open, Msgget, Close, Semget, Semop, Clone, System_224, Dup, Fork, Ioctl, mprotect
3. Internet, change cnf, write_sms, send_sms, call_phone
4. quiz.companies.game, battery.free, android.reader, papajohns, androidPlayer, pregnancytracker, stylem.wallpapers, templerun, airpushdetector, unveil, mahjong,

songkick, bbc.mobile.news.ww, mycalendarmobile, imdb, pinterest, craigslistfree, hydra, bfs.ninjump, tumblr, OMatic, box, gtask
5. Beauty.Girl, XrayScanner, mymovies, CallOfDuty, DWBeta, android.installer, txthej, bowlingtime, barcode, luckjesusblessings, topGear, Ipad2App, ad.notify1,

gone60, skyscanner, antimosquitos, sipphone, rommanager, paintpro, zanti, youLoveLiveWallpaper, fingerprint
6. scanning, downloading, exploit attempts
7. Accept call, Change battery status, Uninstall App, Set time zone, Receive SMS, Activate 3G, Change wallpaper, Turn on GP; Install APKs Sensor: Accelerometer, Turn

off GPS; Change clock; Turn on Airplane mode; Set ringer; Sensor: Gyroscope; Turn off Airplane mode Cancel Call / Hang up; Turn on screen, Set volume; Sensor:
Rotation/Pitch; Turn of Terminal Connect AC; Send SMS; Get location, Go Home, Lock Terminal, Turn off 3G; Bright auto, Set bright auto, View SMS

8. TCP & UDP flow data and aggregated metadata: SrcIp, SrcPort, DstIp, DstPort, Protocol, AvePayloadPacketLength (AvePL), VarPL, NumPackets (NP), NP/sec,
FirstPacketSize, TimeBetweenPackets(TBP), Number of reconnects, Address flow ratio

9. Lena.B, Moghava, TGLoader, OpFakeA, NickySpyB, Gone in 60 sec, KMin, Lotoor, DroidDream, Droid Kung Fu
10. open, ioctl, brk, read, write, exit, close, sendto, sendmsg, recvfrom, recvmsg
11. Facebook, Twitter, Chrome, Google R, Flipboard, YouTube

92 Literature Review

2.5.5 Mobile botnet detection specificity

Even though several mobile botnets break out in recent years and the mechanism has

been unveiled through tracking and analysing, how to detect the mobile botnet malware

before they perform the attack to cause a loss is still a severe problem. So, different

between the mobile malware detection techniques and the conventional botnet detection

techniques are the important reference material for designing mobile botnet detection

system. We will compare these techniques with the requirement of mobile botnet

detection and make the perspective of future mobile botnet detection techniques.

2.5.5.1 Mobile botnet and conventional mobile malware

Although the mobile botnet malware is one of the mobile malware, the several new

features of mobile botnet make it more threatening than the other malware. We just list

the three features and give a detail discussion of the insufficient of current mobile

malware detection techniques and systems.

 Communication

The main characteristic of mobile botnet malware is the ability of communication with

botmaster and other bots. The communication channel between the bots and botmaster is

called C&C channel. From current mobile botnet incidents and the researches about the

creation mobile botnet, we can find that there are a diversity of communication channels

including SMS-based, HTTP-based, Hybrid-based (SMS and HTTP), Push Service-based,

Social Network Message based and even Sensor-based.

Though the extra communication with the botmaster and other bots increase the risk

of was detected, there are some techniques designing to hide these communication

messages as far as possible such as URL flux techniques [33]. However, the

communication which is based on the C&C channel enhances the mobile malware with

2.5 Mobile botnet 93

several features. For example, the mobile malware on the bots can change the type and

target of attack according to the different command from the botmaster. The botmaster

can adjust their attack strategy based on the current situation through the communication.

Consequently, if we want to build a mobile botnet malware detection system, how to

unveil the communication of the mobile botnet is the highest priority issue to solve.

 Upgrade

As the mobile malware problem is serious, there are more and more organisations, and

companies give some concentration on the mobile anti-malware software. According to

the analysis of the suspicious application in the real network, the malware databases

constantly update.

So for the controller of the malware or the attacker, they need to continuously upgrade

their mobile malware to evade the new means of detection. The general mobile malware

without the communication with the attacker cannot actively upgrade. They can only

spread the new version of the malware to the network and wait for the mobile devices to

be infected again. However, the botnet mobile malware can actively get the update

package according to the command that sent by the botmaster. This mechanism is the

enhance phrase in the botnet lifecycle which has discussed in Section 2.1.3.

 Latency of malware

Once infected by the most of the conventional mobile malware, the harmful behaviour

will be performed at regular intervals. However, the activities of botnet malware are

controlled by the remote server. So, without the attack command from the botmaster, the

botnet malware can hide in the mobile device without any harmful features. It can make

the botnet malware escape the active scanning by some anti-malware software.

94 Literature Review

2.5.5.2 Mobile botnet and conventional botnet

Because of the accumulation of the conventional platform botnet detection research,

the ideal solution for mobile botnet detection approach is making a transplant of the

current conventional platform botnet detection method. However, there are some gaps

between the mobile botnet and conventional platform botnet detection. We give several

important factors which should be separated discussed in the mobile botnet detection.

 The C&C Channel.

C&C channel is the most important part of the botnet malware. Through the discussion

of the taxonomy of the convention platform botnet and mobile botnet, we can find that

there is a more diverse C&C channel for the mobile botnet. The special channels for C&C

give some trouble for detection system, but they can also be regarded as new detected

objective in mobile botnet detection approach.

SMS as the special characteristic on the mobile phone has been used in most of the

mobile botnet creation [44, 47, 49, 50, 52, 53]. The SMS is text-based and system-

independent which supported nearly by all the existing phones. The other feature of SMS

is the simple and reliable. Literature [35] defines a measurement based on the feature of

the SMS to reveal the abnormal behaviour on the mobile devices.

There is also some mobile botnet combining multiple communication channels to

realise the C&C channel, such as the paper [49] combine the SMS and HTTP to transfer

the commands. The Andbot [28] combines the SMS with the microblog feed as the C&C

channel to transfer information between botmaster and bots.

 Data Source for Detection

According to the review of the conventional platform botnet detection system, we can

know that considerable part of the approaches monitors the traffic on the router of the

traditional network to detect the botnet of the network. However, it is difficult to get the

2.5 Mobile botnet 95

data source like that on the mobile network. Except for the Wi-Fi network, most of the

mobile devices are connected to the mobile network such as GPRS, 3G and 4G.

Consequently, the detection data source for mobile botnet detection may be limited to

the mobile device itself in the current situation. Moreover, digging more information on

the mobile device to detect is the work of the future mobile detection approaches.

 The Damage

Though the function between the mobile device and the conventional platform is more

and more similar, the mobile handset as a part of the daily life has more important

additional responsibility than the conventional platform. So, we can find that there is more

damage in the mobile botnet and the attacker can also get more profit from the mobile

botnet.

The potential harmful behaviours of a mobile botnet which lists in the Table 2-5 show

the attack method of the current mobile botnet. Except the attackers can get the interest

directly through the premium-rate telephone number, they can also control the botnet to

spread spam email, SMS and junk mobile application to earn a profit. The other

characteristic of the mobile botnet is that the period of the damage is shorter than

conventional platform botnet. Once some mobile devices infected the malware, the

botmaster can control the Bot to perform a harmful attack to get money as soon as

possible.

2.5.6 Open issues

Though some mobile botnet detection systems have been proposed in recent years,

most of them are signature-based, and host-based detection approaches. There are some

limitations for these detection methods:

96 Literature Review

1. Only apply to the known mobile botnet; Most of existing mobile botnet

detection techniques do not discuss how to detect the unknown botnet.

Meanwhile, the update of the botnet is very frequency. So, the current detection

method is hard to keep up with the pace of change of botnet.

2. Not fully consider the limitation of mobile device performance; Though the

mobile had grown more capable, compare with the desktop the resource of

mobile is still limited. So, the detection on the mobile device should concern

about the performance such as CPU usage and battery consumption.

3. The individual mobile device is hard to collect enough information for

analysing; The mechanism of botnet decides that whether the infected script is

active or not is controlled remotely. Meanwhile, anti-detection techniques are

widely used in new generation botnet. It is hard to unveil the whole pattern of a

botnet in single mobile.

By contrast, most of the conventional platform botnet detection systems are network-

based and anomaly-base detection methods that can take full advantage of the

collaboration of different hosts in the network and the clustering phenomenon of the

botnet malware.

So how to design a network-based and anomaly-based botnet detection system for

mobile platform is an open issue.

3.1 Overall framework 97

Chapter 3 The MBotCS Detection System

3.1 Overall framework

Our mobile botnet detection approach, called MBotCS, has been implemented as a

system that has the architecture shown in Figure 3-1. This system has six main types of

components. These are the mobile verification components (MVC), the data broker, the

notification broker, the feedback broker, the data analysers and the feedback processor.

MVCs are components which are deployed on the individual mobile devices. Each

mobile device has its own MVC. After it is deployed, an MVC captures the traffic and

system call of specified applications on the device at run-time, pre-process the packets

and calls in it and prepare them for transfer to the data analyser for the detection of

suspicious behaviour. This transfer takes place through the data broker. MVC also

receives control signals indicating suspicious behaviour from the data analyser and acts

according to them and a local user policy. Control signals block all packets and calls that

have the characteristics that made the data analyser to detect them as “infected”.

The two components of data broker and a notification broker are responsible for

transmitting the traffic and system calls collected by the MVCs of different mobiles to a

data analyser and transmitting notifications (control signals) produced by the data

analyser in the opposite direction. The two brokers transmit information based on a

publish-subscribe event reporting infrastructure. It enables keeping the analysis and

98 The MBotCS Detection System

detection capabilities separate from the actual mobile devices, which is important for

ensuring the scalability of the implementation in the presence of large numbers of mobile

devices and traffic analysers. The publish-subscribe architecture is appropriate for real

mobile device networks in which mobile devices may come and go quickly and

unpredictably. It is because it does not overload the mobile communication infrastructure

with message transmissions required for monitoring [321]. The brokers maintain

subscriptions to the “channels” between publishers of messages and their respective

subscribers.

When the system enrols a new mobile device, the mobile device will send an

advertisement message to the data broker to notify that they will publish captured data to

the analyser. Following this, the data broker will subscribe the mobile device to receive

the captured data and forward to the data analyser. In parallel, the mobile device will

subscribe the notification broker to receive the notifications message generated by the

analyser.

The data analyser is the core component of the detection system. It analyses the mobile

traffic and system calls that it receives from the MVCs installed on the mobile devices

through the data brokers, at runtime based on training that has been carried out using the

machine learning algorithms discussed in Chapter 2, and the data sets held in the training

database of MBotCS. MBotCS might deploy more than one data analysers depending on

the number of the mobile devices and the volume of their captured data. All data

analysers, however, are trained using the same training dataset, i.e., the Training

Database in Figure 3-1.

The feedback processor in MBotCS is a component that has been introduced to expand

and optimise the training data. More specifically, when the data analyser finds some

malicious traffic or system calls, it sends a warning notification signal to the mobile

device. The mobile users are given the opportunity to provide feedback for the warning

3.1 Overall framework 99

manually. This feedback is passed on the feedback processor component, which may

decide to add the traffic or system calls sample into the training database.

Figure 3-1 - The overall architecture of MBotCS

100 The MBotCS Detection System

3.2 Introduction of components

3.2.1 Mobile Verification Component

The Mobile Verification Component (MVC) is deployed on the end client mobile

device in MBotCS system. Firstly, the MVC has the ability to collect the traffic and

system call on the mobile device. The Android VpnService API [322] provides the

possibility to monitor the traffic easily on the mobile and tPacketCapture [323]

application is used to capture and save the traffic data as a file with PCAP format. The

mobile system call data is captured by Strace [324]. And we develop a bash shell script

to make use of Strace to intercept the required system call with proper format for analysis.

The detail of how to use the tPacketCapture and strace bash shell script to collect the

traffic and system call can be found in Section 4.3.

Apart from the data collectors, there is a data pre-processor module in the MVC.

Before passing data to machine learning classifier, we need to convert the data to the

acceptable format for the classifier. The pre-processing includes data clean, feature

selection, data statistical analysis etc. The specific data process workflows for traffic and

system call are described with the corresponding experiments in Section 4.1.

Finally, the MVC has a user interface to notify the user the malicious behaviours with

useful information and help the user to block suspicious processes.

3.2.2 Data Broker

The data broker is the component that is responsible for receiving the data from the

MVC. We use the Cloud Firestore [325] which is a real-time database to receive the data

in real-time. A real-time database is a database system which uses real-time processing

to handle workloads whose state is constantly changing [326]. Every MVC has a unique

3.2 Introduction of components 101

real-time database entry path on the Data Broker, and the MVC uses server-sent events

HTTP request [327] to subscribe the corresponding database entry. When there is new

data collected and pre-processed on MVC, the data will be pushed to the database entry

immediately. Meanwhile, the MVC can receive the status receipt to confirm the data is

received by Data Broker successfully.

3.2.3 Notification Broker

The Notification Broker also uses the real-time database technique as a data publisher

whose role is different with the Data Broker (which is data subscriber). When data

analyser detects the malicious behaviour for the submitted data, it will push an alert

notification to the corresponding MVC database entry in Notification Broker. Then the

Notification Broker publishes the information automatically without waiting for the

connection with the MVCs. The MVCs that observe the specific database entry will

receive the alert notification in real-time.

Benefited from the publish/subscribe pattern architecture, the notification broker can

be subscribed by multiple MVC and other services such as warning centre which can

make a better strategy to block or prevent the specific malicious activity based on the

entire system.

3.2.4 Feedback Broker and Processor

The feedbacks include positive feedback and negative feedback. When the MVC

receive the notification about the malicious warning for the specific application installed

on the mobile device. The MVC will suggest the user block or uninstall the application

based on the warning information. However, there's still some probability that some

normal applications produce several behaviour patterns which are similar to malicious.

So, if the warning is false positive, the user still has the opportunity to ignore it and send

102 The MBotCS Detection System

feedback to the analyser to improve the classifier. In Feedback Processor, the customised

policy can be configured to the analyser for separate MVC. Taking advantage of user-

specific feedback, the warning notification could be more personalize and intelligent.

Certainly, the positive feedback can be used to update the training dataset to improve the

performance of analyser.

Feedback Broke and Processor are also based on the real-time database. MVC push

user feedback to the specific Feedback Broker. Then the Feedback Processor monitors

the change of Feedback Broker database entry to get the content of feedback and

generates a policy registry for the specific MVC in the data analyser.

3.2.5 Data Analyser

The Data Analyser is responsible for processing collected data and generate the

classification result. It has two modes: cloud mode and offline mode. If the MVC is

available to access the network, the cloud mode will be enabled. However, if the mobile

device cannot access the network or the MVC has no permission to access the network

on mobile, the offline mode will be activated alternatively. Cloud mode has higher

priority because of the relatively higher system resource consumption for machine

learning analysis.

The core of the data analyser is a Java machine learning engine which is based on open

source machine learning analyser. Apart from making use of the atomic algorithms

providing by WEKA [253] directly, we also make several aggregated algorithms that

extend the Vote [328] class. Meanwhile, an enhanced version of Evaluation [329] class

is developed to support more analyser result output for research analysis. The detail of

data analyser information can be found in Section 4.1 experiments introduction.

3.3 System Security 103

3.3 System Security

Because the overall architecture of the system is cloud-based, meanwhile the mobile

device is based on Android which is open source system. So there are several security

issues need to be considered.

3.3.1 Communication Security

All the network connections between the components use the transport layer security

(TLS) [330]. Transport Layer Security whose predecessor is Secure Sockets Layer (SSL)

is a family of cryptographic protocols that utilize X.509 certificates [331] and asymmetric

encryption to secure the HTTP connection. The TLS can verify the identity and prevent

the man-in-the-middle attacks.

In order to prevent the data leaking and data tampering, A custom private/public key

encryption and signature process to protect the communication thoroughly. For every

component, a pair of private/public keys is generated during the deployment. Meanwhile,

every component maintains a public key list of existing components in the system and

keep the list up to date. Assume we transfer a set of data D from component A to

component B (the component could be MVC, broker, etc). The private and public keys of

A and B are denoted as 𝑃𝑟 , 𝑃𝑢 ; 𝑃𝑟 , 𝑃𝑢 . Then we will give a solution to use these

resources to make the transferred data secure and tamper-resistant. The sending and

receiving processes are described separately and both have two phases:

 Sending process (on component A):

 Phase1 (encrypt data): During this phase, the plaintext data will be encrypted

by using the asymmetric encryption algorithm such as RSA [332] with the

public key 𝑃𝑢 of component B (receiver party). Then the data will be change

to 𝐷 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝐷, 𝑃𝑢 .

104 The MBotCS Detection System

 Phase2 (sign data): The encrypted data will be signed with the private key of

component A. Then the final data is ready to send over the network. The final

data could be denoted as

𝐷 𝐷 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒

𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝐷𝑖𝑔𝑒𝑠𝑡 𝐷 , 𝑃𝑟

The digest algorithm such as MD5 [333] is used to improve the performance

of the asymmetric signature algorithm.

 Receiving process (on component B):

 Phase1(verify signature data): The component B will receive the final data

which is generated by Phase2 of Sending process. Firstly, the component B

need to verify the signature of in the final data with the public key of

component A: 𝐷𝑖𝑔𝑒𝑠𝑡 𝑉𝑒𝑟𝑖𝑓𝑦 Signature, 𝑃𝑢 . If the digest is matched

with received data, the component B will trust that the received data is not

tampered by mid man.

 Phase2(decrypt data): After making sure the data is the original data sent from

the component A, the component B start to decrypt the data to plaintext by

using the same asymmetric encryption algorithm in Sending process with the

private key of component B: D 𝐷𝑒𝑐𝑟𝑦𝑝𝑡 𝐷 , 𝑃𝑟 . Finally, the

component B get the plaintext data send from component A.

Now let us analyse why this solution can make sure the data cannot be stolen or be

tampered. Firstly, because the transferred data is encrypted by the receiver public key, so

the only parties who hold the corresponding private key can decrypt the data in theory.

So even the hackers get the data by some methods such as sniffing, they cannot get the

plaintext data without the private key. Secondly, because we add the signature of the

sender to the data and the signature can be verified by the sender public key. This

signature can only be generated by the parties who hold the corresponding private key.

So even the hackers tamper the data, they cannot make a new signature which can be

3.3 System Security 105

verified successfully with sender public key. Certainly, the validity of this solution is

based two points: one is the private key should be kept in the component safely. The other

one is the public keys list should be protected by a certificate authority to make sure all

the public keys should be matched with the corresponding private key of components.

3.3.2 MVC Application Security

The other security issue is the protection of MVC. Because the MVC is deployed on

the Android mobile device and the MVC is Java-based Android application, so there are

a lot of methods to decompile the android installer file (APK). If the application is

decompiled by the attackers, they will understand the mechanism of detection and

analysis which help them to prevent the detection. So, the anti-decompile techniques

should be applied to the MVC development.

There are several techniques can be used to prevent malicious decompile behaviour.

The most general one is the Proguard [334] which is a tool to obfuscate Android

application source code. After shrinking the source code of the application by Proguard,

the stack trace will be difficult to read because the method names are obfuscated. So even

the hackers decompile the installer file, they will get obfuscated code that is hard to

analyse.

The other one is programming the part of the application with Android Native Develop

Kit (NDK) which is more advanced technique. The Android NDK is a toolset that lets

you implement parts of your app in native code by using languages such as C and C++

[335]. The original intention is helping reuse code libraries written in other languages for

certain types of apps. However, this method can also help to protect the source code from

decompiling. During the development of MVC, the sensitive and important parts of code

such as feature selection process are programmed by C++ language and build a library.

106 The MBotCS Detection System

Then the Java-based code use the NDK to load the library and execute the corresponding

functions that are exposed in the library.

Through these protection methods, the MVC which is deployed on the end client will

be hard to be decompiled and statically analysed.

1.1 107

Chapter 4 Experimental Evaluation of Mobile

Botnet Detection

4.1 Overview

The prototype implementation of MBotCS that was described in Chapter 3 has been

used in a set of experiments that were carried out to evaluate our approach. The purpose

of these experiments was to evaluate:

(1) The accuracy of the classifications of mobile applications (as "normal" or

"infected" applications participating in botnets) produced by it.

(2) The performance in terms of energy consumption and execution time on Android

devices. These two criteria were selected as they constitute key performance

indicators for our approach.

The ML algorithms that we used in the experiments were the five supervised machine

learning algorithms and the group of machine learning box algorithms, which we

discussed in Section 2.4. More specifically, we used the following atomic ML algorithms

 Naïve Bayes [336].

 Decision Tree (J48) [241].

 K-nearest neighbour (KNN) [242].

4.1 Overview

108 Experimental Evaluation of Mobile Botnet Detection

 Neural Network (NN) Perceptron [247].

 Support Vector Machine (SVM) [337].

These atomic ML algorithms we chose are used widely in current research based on

the information in Table 2-7 (Naïve Bayes [used in 5 approaches], Decision Tree J48

[used in 5 approaches], K-nearest neighbour [used in 4 approaches], Neural Network

[used in 4 approaches]; Support Vector Machine [used in 3 approaches]).

In addition to atomic algorithms, we used ML boxing, a technique where classifications

of the individual ML algorithms are aggregated in order to improve the accuracy of

results. For this purpose, we used three different aggregation methods:

 ML-BOX (AND): In this aggregate classifier, an instance of the dataset was classified

as infected if ALL the individual classifiers indicated it as infected. Otherwise, the

instance was classified as normal.

 ML-BOX (OR): In this aggregate classifier, an instance of the dataset was classified

as infected if AT LEAST ONE the individual classifiers indicated it as infected.

Otherwise, the instance was classified as normal.

ML-BOX (HALF): In this aggregate classifier, an instance of the dataset was classified

as infected if MORE THAN HALF of the individual classifiers indicated it as infected.

Otherwise, the instance was classified as normal.

ML boxing was used to aggregate: (a) the results of all individual classifiers and (b)

the results of only J48 and KNN as these algorithms outperformed the rest in the single

algorithm based classifications (see Section 4.5.2). In the following, we will refer to the

outcomes of (a) as “ML-BOX (.)” and the results of (b) as “ML-BOX+ (.)”. In the case

of ML-BOX+(HALF), if the J48 and KNN algorithms classified the instance of the

dataset in the same class, ML-BOX+(HALF) generated the same common classification.

4.1 Overview 109

When J48 and KNN were in disagreement, ML-BOX+ (HALF) generated a classification

based on the outcome of the three remaining classifiers only.

The experiments were based on capturing and analysing network traffic and system

calls from both malware botnet and normal applications. The analysis of network traffic

was the focus of the first set of experiments. The analysis of system calls was the focus

of the second set of experiments. Before demonstrating the results of these sets of

experiments, we introduce the experimental methodology that was used to set up and

carry out the experiments. This includes the selection of the mobile botnet and normal

applications that we used in the experiments; the overall workflow for carrying them out;

the ways of capturing the data sets used for analysis; and the ways of measuring the

performance of different algorithms.

To evaluate and compare the results arising in the different experiments, we used the

following performance measures which have been introduced in Section 2.4.3.1:

 True Positive Ratio (TPR) also called Recall

 False Positive Ratio (FPR)

 Precision (Prec)

 Area Under Curve (AUC)

Beyond the point measures provided above, we also used value range (VR) criteria to

characterise the performance of an algorithm as “very good” or “weak” with respect to

the individual measures based on value ranges. The VRCs used for this purpose were:

 TPR: VERY GOOD if TPR ≥ .9, WEAK if TPR < .8

 FPR: VERY GOOD if FPR ≤ .05, WEAK if FPR > .1

 PRC: VERY GOOD if PRC ≥ .9, WEAK if PRC < .8

110 Experimental Evaluation of Mobile Botnet Detection

4.2 MVC of MBotCS System on mobile device

The architecture of the MVC components in MBotCS system, which are deployed on

mobile devices, is shown in Figure 4-1. There are four main components of this type: the

data pre-processor, machine learning analyser (ML analyser), user interface and the

training dataset. The architecture also uses tPacketCapture [323] and strace to capture

mobile traffic and system call, respectively. Gsam Battery Monitor application is used for

monitoring the mobile battery consumption. The mobile device with deploying these

components is called monitoring-enabled mobile (MEM).

All the traffic passing through the mobile device is captured by tPacketCapture and

stored in the pcap file. Moreover, the system call that invoked by specified applications

is captured by strace and stored in log file. Both of two files will be persisted on the SD

card of the mobile device. The data pre-processor reads the pcap file periodically and

converts any incremental (new) data that it finds in it into the standard structure file for

the ML analyser. Meanwhile, read the system call log file and generate the required

formatted data entry for ML analyser. The ML analyser trains the classifiers by the

training dataset and classifies the captured traffic and system call in real-time as infected

or normal. Traffic and system call classifications are shown on the user interface, warning

the users to block suspicious applications (i.e., applications that generated traffic

classified as infected).

During the stage of infection detection, the captured traffic and system calls will be

analyzed continuously. When the infection is detected, users get warnings through a GUI

is shown in Figure 4-2. The malicious data analysis result will be highlighted with red

colour relative to the grey colour. Meanwhile, the corresponding log will be recorded with

the detail information for the detected infection which can help the user to locate the

malicious application or process on the device.

4.2 MVC of MBotCS System on mobile device 111

Figure 4-1 - Architecture of MVC on mobile devices

112 Experimental Evaluation of Mobile Botnet Detection

Figure 4-2 - The GUI of MBotCS

4.3 Implementation of MVC Component

4.3.1 Network traffic capture

We use tPacketCapture for capturing the network traffic and pre-configure training

dataset with the application. For the advanced user, we also designed a button for

4.3 Implementation of MVC Component 113

selecting the specific training dataset file which is shown in Figure 4-2. In the scenario,

we select the monitor target PCAP file as:

/storage/sdcard0/Android/data/jp.co.taosoftware.android.packetcapture/files/2015_0

6_02_160103.pcap

When we launch the application of tPacketCapture, it will create one pcap file named

with the current date and time (2015_06_02_160103.pcap) for collecting network traffic.

4.3.2 Pcap parse and pre-processor

One of the most important for MBotCS is the PCAP file parser component. Our

implementation is based on the JNetPcap [338], an open source Java library for network

analysis. This library contains a Java wrapper for nearly all libpcap library native calls

and provides a large library of network protocols.

We also use JFlowMap to parse the PCAP file which is one of data structure in the

JNetPcap. This structure can filter the flow information, called stream, in the PCAP file.

The code for converting PCAP to the stream data using the JFlowMap is as follows:

 JFlowMap superFlowMap = new JFlowMap();
 pcap.loop(Pcap.LOOP_INFINITE, superFlowMap, null);
 Iterator iterator = superFlowMap.entrySet().iterator();

To improve the effectiveness of parsing the PCAP file, we also studied the structure

of the file and tried to read it incrementally. The PCAP file is read at regular intervals and

incrementally. For this, we need to remember the last visit point and next time to read

from the last visit point. Meanwhile, according to the PCAP file structure, we need to

construct the new temporary PCAP from the monitored file. The code that supports this

is shown in APPENDIX A.1. In the code, TimerTask is used for reading the PCAP file

114 Experimental Evaluation of Mobile Botnet Detection

repeatedly. For every time read the file, the context information such as the current line

will be stored and used for next reading action.

4.3.3 WEKA based machine learning analyser

To realise the Machine Learning Analyser, we used Weka-for-Android, i.e., a Java

library modified from the WEKA for adapting Android platform. The used library

implements the atomic machine learning algorithms that we discussed in Section 2.4:

import weka.classifiers.bayes.NaiveBayes;
import weka.classifiers.functions.MultilayerPerceptron;
import weka.classifiers.functions.SMO;
import weka.classifiers.lazy.IBk;
import weka.classifiers.trees.J48;

In addition, we implement six aggregate algorithms, which combine the results of the

atomic machine learning algorithms. These algorithms are BOX-AND, BOX-AND+,

BOX-OR, BOX OR+, BOX HALF and BOX HALF+, which will be discussed in Section

4.1. The code of this component is shown in APPENDIX A.2.

4.3.4 User interface

The user interface of the MVC is not very complex; the user needs to choose the storage

location for capturing traffic and system call in real-time and advance user can custom

the training dataset. The two buttons: Monitor and Stop can be applied to launch and

terminate real-time detection. The detection result will be displayed at the bottom of

the screen. The UI design XML document (for Android) is shown in APPENDIX A.4.

4.4 Analysed normal and botnet applications 115

4.4 Analysed normal and botnet applications

To collect data for our experiments (both the first and second set), we deployed 12

normal applications and 163 mobile botnet malware applications.

The botnet malware applications that we used in the experiments were grouped in 12

families, which are shown in Table 4-1. These applications were selected from the

MalGenome project [339], according to their level of pandemic risk (according to the

number of captured infected samples when these malware families were discovered).

MalGenome has collected more than 1200 Android malware applications, the vast

majority of which (i.e., more than 90%) are botnets.

The normal applications that we used were: Chrome, Gmail, Maps, Facebook, Twitter,

Feedly, YouTube, Messenger, Skype, PlayNewsstand, Flipboard, and MailDroid. These

applications were selected due to their popularity. Also, to be certain about their

genuineness, all of them were downloaded from the Android Official APP Store (Google

Play). The normal applications that we used are shown in Table 4-2.

Based on the dataset we used for training and testing in ML algorithm, we define three

types of scenarios:

 Known botnets and known normal applications (KBKN scenario): The training

dataset includes data in testing dataset both of botnets and normal application.

 Unknown botnets and known normal applications (UBKN scenario): The training

dataset only includes data in a testing dataset of a normal application. The data of

botnet in the testing dataset is totally different with the data in training dataset.

 Unknown botnets and normal applications (UNUB scenario): Both of botnets and

normal application data are totally different between training and testing dataset.

116 Experimental Evaluation of Mobile Botnet Detection

Table 4-1 - Botnet malware families
Malware
Family

No Description
pandemic
risk

1.
AnserverBot

20

This a Trojan botnet that aims to remote control users' cell phones.
The infected host app has two hidden apps with names anservera.db
and anserverb.db. Moreover, when host app runs, it will pop up fake
upgrade window to mislead user install anservera.db. At runtime,
anservera.db and host app can dynamically execute the command
in anserverb.db.[285]

187
samples
captured

2.
BaseBridge

20

This a Trojan botnet that attempts to send premium-rate SMS

messages. When the infected app is installed, the malware will run
some malicious (BridgeProvider, AdSmsService, PhoneService,
ZlPhoneService) in silence [340].

122
samples
captured

3.
DroidDream

12

This botnet hijacks applications, steal the phone information such
as IMEI, IMSI number and forwards them to botmaster. Meanwhile,
it can also download and install other apps then tracked them in the
background [264, 265, 341].

62
samples
captured

4.
DroidKung
Fu3

20

This botnet forwards information to the remote server and
downloads additional payload. This malware makes use of
encryption for the remote server URL and exploited code to evaded
static code analyser. [342].

309
samples
captured

5.
DroidKung
Fu4

20

This botnet is a more sophisticated version of DroidKungFu which
equipped with a new mechanism to protect from anti-virus software
detection by obfuscating remote control URLs and masquerading
an embedded app as the official Google Update [343] [344].

96
samples
captured

6. Geinimi 20
It is a Trojan botnet that opens a backdoor to perform several
functions such as sending SMS message and stealing sensitive
information to the remote server [345].

69
samples
captured

7.
GoldDream

20

It is a Trojan botnet that monitors incoming and outgoing SMS
message, phone calls and sends the detail to log back to the remote
server. Meanwhile, it also collects other sensitive data such as
subscriber ID and SIM card’s serial number [346].

48
samples
captured

8. KMin 2
It is a Trojan botnet that attempts to send user sensitive information
such as device ID, subscriber ID and the current time to a remote
server [347].

53
samples
captured

9. Pjapps 20

It is a Trojan botnet that opens a backdoor and retrieves commands
from servers such as push(<smscontent>,<smsurl>,<tel>),
blacklisting, response blocking and so on. By using these
commands, the botmaster can control infected device to send a
premium-rate message and steal sensitive information [348].

59
samples
captured

10. Plankton 9
It is a botnet that forwards user sensitive information to a server such
as a device ID and IMEI number and collects the browser history
and modifies the browser’s bookmarks [349].

20
samples
captured

4.4 Analysed normal and botnet applications 117

Table 4-2 - Normal applications

Name Description

Chrome Chrome is a popular free web browser developed by Google.

Gmail Gmail is a free advertising-supported email service provided by Google

Maps Maps is a mobile web mapping service application provided by Google

YouTube YouTube is a video-sharing website owned by Google since late 2006.

Play Newsstand Play Newsstand is a digital newsstand and news aggregator application.

Facebook Facebook is a famous online social networking service.

Twitter Twitter is an online micro social networking service

Messenger Messenger is an application providing instant messaging service.

Flipboard Flipboard is a social-network aggregation mobile app.

Feedly Feedly is a mobile application that can subscribe news.

Skype
Skype is a telecommunications application providing video chat and

voice calls.

MailDroid
MailDroid is a WebDAV/POP3/IMAP Idle Push mail client on Android

device

118 Experimental Evaluation of Mobile Botnet Detection

4.5 Experiments for network traffic analysis

4.5.1 Workflow of experiments

Figure 4-3 - Workflow of experimental training

4.5 Experiments for network traffic analysis 119

Figure 4-3 shows the workflow that was used to set up the experiments. This workflow

consisted of 3 main steps: (1) the capture of mobile device traffic for further analysis

(traffic capture), (2) the generation of the data set for the experiments (dataset generation),

and (3) the experimental use of different ML classifier algorithms as the basis for training

the traffic analyser (classifier analysis). These steps are discussed in detail in the

following.

The mobile device that we used in the experiments was a Samsung Note 1st generation

(GT-I9228) running Android version 4.1.2 (i.e., Jelly Bean). Jelly Bean was the most

frequently used version of Android with more 50% of installations in November 2014

[350], when the execution of these experiments started. To avoid interference with other

applications, the mobile device used for the experiment was reset to the default Android

OS settings before the experiments started.

4.5.1.1 Network traffic dataset generation (first set of experiments)

To generate the experimental traffic data, we created two different set ups of the mobile

device. The first set up (set up A) contained only normal applications. The second set up

(set up B) contained both normal applications and malware. A device with each of these

two set-ups was used to generate traffic, over a 24-hour trial period. Over the 24-hour

period, in the case of set up A, we carried out 120 transactions using only the normal

applications of the set up. The same transactions were also executed at exactly the same

time in the trial period of set up B, which also lasted 24 hours. Our assumption behind

this experimental design was that, whilst using the normal applications of set up B to carry

out the 120 transactions, the mobile botnet malware families that were part of the set up

would also be activated by themselves or by their botmaster and would generate infected

traffic. This assumption was correct as we discuss below.

120 Experimental Evaluation of Mobile Botnet Detection

To capture raw traffic data from the mobile device, we used tPacketCapture and stored

it in the pcap file. The captured pcap file was processed to generate a structured dataset

for further analysis. In particular, the traffic data in the pcap file were processed to extract

features that we considered important for the classifier analysis phase, namely the Source

IP Address, Destination IP Address, Protocol, Frame Duration, UDP Packet Size, TCP

Packet Size, Stream Index5 [351] and the HTTP Request URL. To extract these features

from the raw packet lines within the pcap traffic file, we used Tshark [352], i.e., a

command line pcap file analysis application integrated into Wireshark. The command

Tshark batch file used to extract the above features is shown in Figure 4-4.

Figure 4-4 - Tshark command for extracting features

The packet traffic data that were obtained from this step were further processed in

order to label them as “normal” or “infected”. This step was performed by a script that

we developed to compare the mixed traffic file generated by set up B with normal traffic

file generated by set up A. More specifically, to label the different packets in the traffic

of set up A and set up B, we considered three features of the packets: the Source IP

Address, the Destination IP Address and the used Protocol. The set of legitimate (i.e.,

5 Stream index is a number applied to each TCP conversation seen in the traffic file.

setlocal enabledelayedexpansion

set outputFormat=.txt

for %%f in (*.pcap) do (

tshark –r %%f ‐o tcp.calculate_timestamps:true ‐n ‐T fields ‐e

ip.src ‐e ip.dst ‐e ip.proto ‐e frame.time_delta ‐e udp.length ‐e

udp.stream ‐e tcp.len ‐e tcp.stream ‐e http.request.uri

>%%f%outputFormat%

4.5 Experiments for network traffic analysis 121

non-infected) combinations of values of these features was established by analysing the

normal traffic data generated from set up A first. These combinations were subsequently

expanded further through combinations with legitimate public IP addresses taken from

Google Public IP address [353]. Based on this, we generated a three feature pattern-

matching library, an extract of which is shown in Table 4-3. Subsequently, every packet

in the mixed traffic generated by set up B was compared with the patterns in the library.

If the packet had a combination of values for Source IP Address, Destination IP Address,

and Protocol matching a pattern in the library, it was labelled as “normal”. Otherwise, it

was labelled as “infected”.

Table 4-3 - Pattern-matching library

Normal Pattern Public IP Address Pattern

Source IP Destination IP Protocol Source IP Destination IP Protocol

10.8.0.1 74.125.71.100 6 216.239.32.0

74.125.71.100 10.8.0.1 6 216.239.32.1

10.8.0.1 74.125.71.95 6 2.14.192.0

….. ….. ….. …..

Subsequently, we combined the packets with the labels and exported them in CSV

format (a universal dataset format). Furthermore, as TCP traffic is a stream-oriented

protocol (i.e., TCP packets are part of instances of integrated communication between a

client and a server, known as streams), we also grouped the individual packets into

streams, following TCP. This process yielded two separate data sets: (a) the packet

dataset and (b) the stream dataset. The grouping of packets into streams was based on a

flag in TCP packets called Stream Index, which indicates the communication stream that

each packet belongs to. Thus, an element in the stream dataset was formed by assembling

all the packets, which had the same stream index. Streams were labelled as “infected” if

they had at least one packet within them that had been labelled as “infected”, and

“normal” otherwise.

122 Experimental Evaluation of Mobile Botnet Detection

A preliminary analysis of the datasets generated by the two set ups indicated that all

domain name system (DNS) packets, which used the user datagram protocol (UDP) had

been labelled as normal. Hence, UDP traffic was excluded from further analysis and the

training phase focused on TCP traffic only. This was plausible as botnets involve a series

of communications between the botmaster and the mobile botnets that are based on TCP

traffic [354]. Following the packets and stream labelling, the features used for training

were: Packets/Stream Frame Duration, Packets/Stream Packet Size, and Arguments

Number in HTTP Request URL (Table G-1). Overall, the traffic capture and labelling

process produced two datasets for the 3rd phase of our experiments (i.e., the classifier

analysis phase): (1) the TCP packets dataset, which included 13652 infected packets and

20715 normal packets; and (2) TCP stream dataset, which included 1043 infected streams

and 563 normal streams.

Before carrying out the classifier analysis phase, we also performed a single factor

Analysis of Variance (ANOVA) statistical analysis on the datasets. This was in order to

obtain an initial (and crude view) of possible indicators of packets and streams that could

have an effect on their classification. This analysis showed that the frame duration, the

TCP packet size and the arguments number of HTTP requests were three potentially

important differentiators to take into account in the traffic analysis training phase.

Table 4-4 shows the results of this analysis for these three features. According to it,

frame duration was found to have different average values in infect and normal datasets

(i.e., data from the mobile botnet and normal applications, respectively). However only

in the case of the packet data set this difference was statistically significant. This is shown

by the F-test: the F-value from the data set (172.9) was larger than the F-critical value (F-

value: 172.9 > F-crit: 3.842). The average values of frame duration were different

between infect and normal traffic in the case of the stream dataset, but the relevant

difference was not statistically significant (F-value: 1.44 < F-crit: 3.842).

4.5 Experiments for network traffic analysis 123

Table 4-4 - AVONA analysis results

SUMMARY
Groups Count Sum Average Variance

Normal 7997 77812.4 9.7302 2602.083
 Infect 11750 28858.6 2.45605 676.1407
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 251785 1 251785 172.9199 2.49361E-39 3.841929825
Within Groups 2.9E+07 19745 1456.08
Total 2.9E+07 19746

SUMMARY
Groups Count Sum Average Variance

Normal 7997 1135272 141.962 126885.7
 Infect 11750 2518838 214.369 172342
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 2.5E+07 1 2.5E+07 162.0654 5.59522E-37 3.841929825
Within Groups 3E+09 19745 153934
Total 3.1E+09 19746

SUMMARY
Groups Count Sum Average Variance

Normal 7997 358 0.04477 1.258626
 Infect 13846 2757 0.19912 2.606575
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 120.771 1 120.771 57.15394 4.1887E-14 3.841884621
Within Groups 46152 21841 2.11309
Total 46272.8 21842

SUMMARY
Groups Count Sum Average Variance

normal 644 6192.87 9.61626 2216.41
infect 1043 79562.3 76.2822 1972424
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 1769550 1 1769550 1.449752 0.228736818 3.846983477
Within Groups 2.1E+09 1685 1220588
Total 2.1E+09 1686

SUMMARY
Groups Count Sum Average Variance

normal 644 6539185 10154 6.51E+08
infect 1043 2870130 2751.8 47240458
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 2.2E+10 1 2.2E+10 78.52476 1.96272E-18 3.846983477
Within Groups 4.7E+11 1685 2.8E+08
Total 4.9E+11 1686

SUMMARY
Groups Count Sum Average Variance

normal 644 1566 2.43168 90.97666
infect 1043 2761 2.64717 36.63931
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 18.4896 1 18.4896 0.322262 0.570327351 3.846983477
Within Groups 96676.2 1685 57.3746
Total 96694.6 1686

TCP size

Argument number in HTTP request

Packet Dataset
Frame Duration

TCP size

Argument number in HTTP request

Stream Dataset
Frame Duration

124 Experimental Evaluation of Mobile Botnet Detection

On the basis of the F-test, the TCP packet size was found to be a statistically significant

differentiator for both the packet and the stream data sets.

The arguments number of in HTTP requests was found to have a different variance

between infect and normal for stream dataset. For package dataset, the F-value was larger

than F-crit (F-value: 57.1 > F-crit: 3.842) which show the statistically significant

difference.

On the basis of this analysis, we considered these features to be suitable for machine

learning analysis.

4.5.1.2 Validation of training

To validate the experimental training results, we used three validation schemes. These

were based on K-fold cross-validation, and 10% split validation.

K-fold cross validation is a common technique for estimating the performance of an

ML classifier [355]. According to it, in a learning training involving m training examples,

the examples are initially arranged in random orders, and then they are divided into k

folds. A classifier is then trained with examples in all folds but folds i (i = 1 . . . k), and

its outcomes are tested using the examples in fold i. Following this training-testing

process, the classification error of a classifier is computed by:

Equation 4-1 K-fold classification error of a classifier

 E ∑ 𝑛.. 𝑚⁄ (4-1)

where 𝑛 is the number of the wrongly classified examples in fold 𝑖 and 𝑚 is the

number of training examples.

Based on this scheme, we used 90-10% 10-fold and 50-50% 2-fold cross-validation,

which are two typical validation approaches in ML. Split validation is simpler as it divides

the training dataset into two parts, one part containing data used only for training and

4.5 Experiments for network traffic analysis 125

another part containing data used only for testing. In 90-10% split validation, 90% of the

data are selected as training dataset and 10% as the test dataset.

The analysis of the performance of classifiers was also based on two different

formulations of the training and test data sets. In the first formulation (experiment I), both

the training and the test datasets could include data from the same malware family,

although the two data sets were disjoint. Hence, in this experiment, classifiers could have

been trained with instances of traffic from a malware family that they needed to detect.

In the second formulation (experiment II), the training and test data sets were restricted

to include only data from different malware families. Hence, in this experiment, the

classifiers were tested on totally unknown malware families (i.e., malware families whose

infected data traffic had not been considered at all in the training phase).

4.5.2 Experiment I

4.5.2.1 Purpose

As discussed in Section 4.5.1.1, all the UDP protocol traffic in the dataset was labelled

normal and was filtered out in the subsequent analysis. Thus, the attributes that we used

in the experiment were frame duration, TCP packet size and the number of arguments in

the URL of HTTP requests. Also, classifications were performed separately for the stream

and packet data sets using all basic classifier algorithms. Hence, we carried out 30 groups

of basic algorithm experiments (5 classifier algorithms × 3 validation schemes × 2 data

sets) and 18 groups of ML-BOX experiments (6 box algorithms × 3 validation schemes

× 1 dataset).

126 Experimental Evaluation of Mobile Botnet Detection

4.5.2.2 Set up

According to the workflow of the experiments, two sets of the dataset are prepared for

machine learning analyser: packet dataset and stream dataset. Then we input two sets of

the dataset into the WEKA toolkit and configure different algorithms to perform the

machine learning analysis.

4.5.2.3 Results

The results of the experiments for the atomic and aggregate classifiers from experiment

1 are shown in Table F-1 (In Appendix F). The table shows the recall, precision and FPR

measures for stream and packet data separately and for different validation set ups (90-

10% 10-fold validation, 50-50% 2-fold validation, and 10-90% split validation). The main

overall observation from Table F-1 was that the results in the case of packet level traffic

were not encouraging and that the results for stream traffic were considerably better. Base

on the Table F-1, we generated a group of visualisation charts to demonstrate the result.

The Figure 4-5 and Figure 4-6 visualise the measures of Recall, FPR and Precision for

Normal applications and Infect applications separately with stream dataset. For each

measure, we put the result of different dataset schemes together for comparison.

According to the charts of Normal Recall and Normal FPR, both of Recall and FPR of

normal application are relatively low for SVM, MNN and ML-BOX(OR) algorithms. On

the contrary, the Naïve Bayes and ML-BOX(AND) algorithms have high value for these

two measures, especially for 2-fold cross-validation dataset scheme. The 10-fold cross-

validation dataset scheme has the best Recall for all ML algorithms except ML-BOX

(AND which is slightly lower than 2-fold cross-validation dataset scheme. However, FPR

of 10-fold cross-validation dataset scheme is higher than others except for J48, KNN and

4.5 Experiments for network traffic analysis 127

ML-BOX(AND). The performance of precision measure is better across the normal and

infect application.

128 Experimental Evaluation of Mobile Botnet Detection

Figure 4-5 - Normal stream result visualisation

0.0
0.2
0.4
0.6
0.8
1.0

R
at

e

ML Algorithm

Normal Recall

10-fold corss 2-fold corss 10-fold split

0.0
0.2
0.4
0.6
0.8
1.0

R
at

e

ML Algorithm

Normal FPR

10-fold corss 2-fold corss 10-fold split

0.0
0.2
0.4
0.6
0.8
1.0

R
at

e

ML Algorithm

Normal Prec

10-fold corss 2-fold corss 10-fold split

4.5 Experiments for network traffic analysis 129

Figure 4-6 - Infect stream result visualisation

(Keys) cross: cross-validation, split: split-validation

0.0
0.2
0.4
0.6
0.8
1.0

R
at

e

ML Algorithm

Infect Recall

10-fold corss 2-fold corss 10-fold split

0.0
0.2
0.4
0.6
0.8
1.0

R
at

e

ML Algorithm

Infect FPR

10-fold corss 2-fold corss 10-fold split

0.0
0.2
0.4
0.6
0.8
1.0

R
at

e

ML Algorithm

Infect Prec

10-fold corss 2-fold corss 10-fold split

130 Experimental Evaluation of Mobile Botnet Detection

Figure 4-7 - Comparison between packet and stream dataset

4.5 Experiments for network traffic analysis 131

Figure 4-7 illustrates the comparison between Packet dataset and Stream dataset

performance of atomic algorithms. The x-axis is the algorithms, and the y-axis is the

dataset schema with the flag of packet or stream (10-C P means 10-fold cross validation

packet and 10-C S means 10-fold cross validation stream). In order to observe the result

of packet and stream obviously, we colour the packet result with green and stream result

with blue. The figure demonstrates that the performance of packet result in normal

applications is slightly better than a stream for J48, KNN and NB algorithms. However,

in the infect application, the performance of packet is significantly lower than stream

result. The similar observations can be found in normal and infect FPR. The precision of

stream dataset is better than packet both in normal and infect applications nearly for all

the algorithms. Therefore, the streams dataset should be chosen as a training dataset for

learning.

4.5.2.4 Analysis

The result could be explained as follows. In TCP communication, the server and client

should make a connection by a 3-way handshake, then send transfer data (payload

packets) in fragments to stay below a maximum transmission unit (MTU). Also for each

data transfer, the receiver sends an acknowledgement signal packet (ACK signal). Finally,

the initiator sends a FIN signal packet to end the communication. In our experiments, data

of normal and infected applications were labelled by the source and destination IP address

of each traffic instance. In the case of the packet dataset, there was a large number of FIN

and ACK packets labelled as “infected” due to the used IP addresses. The remaining

features of these packets, however, were similar to FIN and ACK packets labelled as

“normal”. Thus, the classifiers could not distinguish between them. In the case of the

stream dataset, however, FIN and ACK packets were grouped into single streams, and

hence their own characteristics did not feature prominently in the training and testing data

sets. Hence, the classifiers were not misled by these signal packets in cases where they

132 Experimental Evaluation of Mobile Botnet Detection

had the same features as payload packets and, consequently, the performance of the

stream dataset was better than that of the packet dataset.

Table 4-5 - Ranking of algorithms for infected stream traffic in experiment I
 Precision (ave) FPR (ave) Recall (ave)

Classifier
Split 90-10 50-50 90-10 50-50 90-10 50-50

Naïve Bayesian .788 /3 .781/ 3 .028 /1 .043 /1 .064 /5 .096 /5
J48 Tree .842 /2 .821/ 2 .276 /3 .307 /3 .908 /2 .870 /3

MNN .654 /5 .650/ 5 .752 /4 .826 /4 .877 /4 .946 /2
KNN .870 /1 .853 /1 .216 /2 .248 /2 .893 /3 .887 /4
SVM .626 /4 .625/ 4 .966 /5 .969 /5 .998 /1 .997 /1

ML-BOX(AND) .887 /2 .884 /3 .011 /1 .008/ 1 .053 /6 .036 /6

ML-BOX(OR) .625 /6 .627 /6 .969 /6 .958 /6 .996 /1 .996 /1

ML-BOX(HALF) .813 /4 .817 /4 .349 /3 .340 /4 .941 /3 .936/ 3

ML-BOX+(AND) .914 /1 .902 /1 .129 /2 .148 /2 .845 /5 .835/ 5

ML-BOX+(OR) .801 /5 .789 /5 .382 /5 .410 /5 .947/ 2 .945 /2

ML-BOX+ (HALF) .814 /3 .900 /2 .359 /4 .205 /3 .939 /4 .847 /4

Focusing on stream traffic only, Table 4-5 shows the average recall, TPR and precision

across for the two validation schemes with the best outcome (i.e., the 90-10 and 50-50 k-

fold validation) in the case of infected traffic, and the relative ranking of each algorithm

given the each of the evaluation measures. In the case of KNN, for example, the table

shows “.870 /1” under precision for the 90-10 validation scheme. This means that the

precision of KNN was .870 for the 90-10 scheme and that this algorithm was ranked 1st

amongst the atomic algorithms. The results show a mixed picture. In particular, KNN and

J48 were the best two atomic algorithms in terms of precision; KNN and J48 were the

best two atomic algorithms in terms of recall, and Naïve Bayesian and KNN were the best

two atomic algorithms in terms of FPR. The outcome was the same in the case of precision

and FPR for the 50-50% scheme, but in this case, the ranking of atomic algorithms

changed for recall (SVM still turned out as best but was followed by MNN).

The results of aggregated algorithms were, in general, better than those of atomic

algorithms in this experiment. In particular, the ML-BOX(OR) and ML-BOX+(OR)

algorithms produced the best recall for infected traffic (i.e., about 99% and 95%,

4.5 Experiments for network traffic analysis 133

respectively) for both validation schemes. In terms of precision and FPR, the best two

algorithms were ML-BOX+(AND) and ML-BOX(AND), albeit the different order of

their ranking under each of these measures. ML-BOX(OR) and ML-BOX+(OR) yielded

a higher recall than the individual algorithms because they classified as infected the union

of the streams classified as such by any of these algorithms (i.e., a superset of all the sets

of infected streams returned by the individual algorithms). ML-BOX(AND) and ML-

BOX+(AND) yielded a higher precision than individual algorithms as they classified as

infected the intersection of the streams that were classified as such by these algorithms

(i.e., a subset of all the sets of infected streams returned by the individual algorithms).

Comparing the results of different validation schemes, the results in terms of precision

and FPR in the case of 90-10% 10-fold validation were better than those of the 50-50%

2-fold validation for most algorithms, although no notable differences amongst these two

schemes were observed for recall.

With the purpose to compare the performance of different algorithms intuitively, we

produce the Figure 4-8 which demonstrate the infect application average measure across

all ML algorithms. Thought the SVM, MNN and ML-BOX(OR) algorithms have a high

recall; the corresponding FPR is also very high. Both of NB and ML-BOX(AND) have

the low merit of recall and FPR. Considering other 6 ML algorithms (J48, KNN, ML-

BOX(HALF), ML-BOX+(AND), ML-BOX+(OR), ML-BOX+(HALF)) that have

relatively acceptable performance, the ML-BOX+(AND) represent the lowest FPR and

highest Precision.

134 Experimental Evaluation of Mobile Botnet Detection

Figure 4-8 - Comparison of ML algorithms

0
0.2
0.4
0.6
0.8

1

R
at

e

ML Algorithm

Infect Average Precison

90-10 50-50

0
0.2
0.4
0.6
0.8

1

R
at

e

ML Algorithm

Infect Average FPR

90-10 50-50

0
0.2
0.4
0.6
0.8

1

R
at

e

ML Algorithm

Infect Average Recall

90-10 50-50

4.5 Experiments for network traffic analysis 135

Figure 4-9 - ROC curve of infect stream based on six classifier algorithms

Another comparison of the performance of different classifier algorithms can be made

using the receiver operating characteristic (ROC) curve. The ROC curve is generated by

plotting the true positive rate (TPR) on the vertical axis (x-axis) against the false positive

rate (FPR) on the horizontal axis (y-axis) at various threshold settings. Getting higher

TPR and lower FPR is the objective of classification. So the closer the curve gets to the

left upper corner, the better the performance is it. Figure 4-9 illustrates the ROC curve

for six different classifiers for infected traffic in the stream dataset and the 10-fold cross

validation. As shown in the figure, the performance of the J48 and KNN algorithms was

better than the performance of the other three basic algorithms, and the aggregated

algorithm ML- BOX+(HALF) yielded the best result of all algorithms.

Table 4-6 - The AUC of six classifiers based on stream dataset

Classifier AUC
Naïve Bayesian 0.601

J48 Decision Tree 0.882
Multi-layer NN 0.573

K-Nearest Neighbours 0.836
SVM 0.516

ML-BOX+(HALF) 0.919

136 Experimental Evaluation of Mobile Botnet Detection

The measure of the area under the ROC curve, known as area under the curve (AUC),

is also widely used for comparison of the performance of different classifications. Table

4-6 presents the AUC for the 6 ROC curves of Figure 4-9. Based on AUC, the J48

algorithm has the largest AUC measure across all basic algorithms competitors (0.882)

and can, therefore, be assumed to be the best basic algorithm for the classification.

However, the KNN algorithm is close to it with an AUC of 0.836. All the other basic

algorithms have had low AUC measures. Overall the ML-BOX+(HALF) have had the

best AUC (i.e., 0.919) across all algorithms.

Figure 4-10 - ROC curves of evaluation of selected botnet detection systems

The shows the summary of the selected literatures in Section 2.2.4 which includes the

evaluation based on the ROC curve. Although the data sets in the experiment are different,

they have the similar trend for the ROC curve. Moreover, we can find the area under the

ROC curves of BotHunter and BotTrack on Chord P2P network is larger than others, so

97
93

89

85

81

77

75
73

71
0

0.000%

20.000%

40.000%

60.000%

80.000%

100.000%

0.000% 10.000% 20.000% 30.000% 40.000% 50.000% 60.000% 70.000% 80.000% 90.000% 100.000%

ROC CURVES OF EVALUATION OF BOTNET
DETECTION SYSTEMS

Log Correlation Based BotTrack‐Kademlia

BotTrack‐Chord BotTrack‐Koorde

Disclosure(N1,MinFlows=20) Disclosure(N1,MinFlows=50)

Disclosure(N2,MinFlows=20) Disclosure(N2,MinFlows=50)

BotHunter‐PAYL BotHunter‐SLADE

4.5 Experiments for network traffic analysis 137

they have better performance. Meanwhile, the performance of J48, KNN and ML-

BOX+(HALF) have similar performance with these exiting researches.

Table 4-7 - Outcome of analysis of variance for experiment I

(A) ATOMIC ML CLASSIFIERS
Measure Source of Variation SS df MS F P‐value F crit

TPR Dataset scheme 0.093 2.000 0.046 0.903 0.443 4.459

 Algorithm 0.769 4.000 0.192 3.749 0.053 3.838

FPR Dataset scheme 0.145 2.000 0.072 1.973 0.201 4.459

 Algorithm 1.408 4.000 0.352 9.579 0.004 3.838

Prec Dataset scheme 0.007 2.000 0.004 3.480 0.082 4.459

 Algorithm 0.125 4.000 0.031 30.132 0.000 3.838

(B) BOX ML CLASSIFIERS
Measure Source of Variation SS df MS F P‐value F crit

TPR Dataset scheme 0.026 2.000 0.013 0.509 0.616 4.103

 Algorithm 1.131 5.000 0.226 8.894 0.002 3.326

FPR Dataset scheme 0.056 2.000 0.028 4.814 0.034 4.103

 Algorithm 1.508 5.000 0.302 52.046 0.000 3.326

Prec Dataset scheme 0.007 2.000 0.003 3.063 0.092 4.103

 Algorithm 0.143 5.000 0.029 26.848 0.000 3.326

(C) KEY: SS: sum of squares; df: degrees of freedom, MS: mean square; F: F-value of experimental data; P-val:

probability of samples of from same population despite difference in variance; F crit: minimum F value for accepting

null hypothesis at α=0.05; Dataset scheme: the dataset scheme for the experiments; Algorithm: sample groups based

on ML classifier algorithm.

To investigate whether the use of different train-test dataset scheme and different ML

classifiers resulted in a statistically significant difference in the TPR, FPR and PRC

measures for botnet applications, we carried out a two-way analysis of variance

(ANOVA). The results of this analysis are summarised in Part (A) of Table 4-7 and

demonstrate that the statistically significant differences were only the FPR and Prec

differences across the different atomic ML algorithms (F(1,5)=9.579, p=.0004 for FPR

and F(1,7)= 30.132, p=.000 for Prec). The two-way analysis of variance (ANOVA) for

box ML algorithms as shown in Part (B) of Table 4-7: (a) only statistically significant

differences were the FPR differences across the different dataset scheme (F(1,4)=4.814,

p=.0034); (b) the algorithms has a significant effect on all measures.

138 Experimental Evaluation of Mobile Botnet Detection

4.5.2.5 Summary of main results of the first set of experiments

The main observations are drawn from an experiment I are:

1. The algorithms KNN and Naïve Bayesian have had the best performance in terms

of precision and FPR amongst the atomic algorithms in the 90-10 and 50-50

scheme. However, recall performance of Naïve Bayesian was bad (0.064 and 0.096

for two cross-validation dataset scheme). In terms of recall, the best performers

amongst single algorithms were SVM and MNN. However, both these algorithms

had low precision and high FRP rates.

2. ML-BOX (AND) and ML-BOX+(AND) have had the best performance in terms

of precision and FPR amongst the aggregate (box) algorithms in the 90-10 and 50-

50 schemes. However, performance in terms of recall for ML-BOX+(AND) was

so poor (0.053and 0.036 in the 90-10 and 50-50 schemes). In terms of recall, the

best performers amongst box algorithms were ML-BOX(OR) and ML-BOX+(OR).

However, only ML-BOX+(OR) appeared to have acceptable precision and FPR

rate.

3. ML-BOX+(HALF) has the best AUC with 0.919, and the J48 and KNN have

relatively acceptable AUC. The worst one is SVM which is only 0.516.

4.5.2.6 Threats to validity

The main threats to the validity of Experiment I are as follows:

1. Even though the number of packets is large, the number of the stream is less than

2000. Therefore the size of the dataset may not be enough to prove the feasibility

of the system.

2. The slightly difference normal application operation during the experiment maybe

infect the analyser result.

4.5 Experiments for network traffic analysis 139

4.5.3 Experiment II

4.5.3.1 Purpose

The second experiment focused on assessing the capability of classifiers to detect

totally unknown mobile botnet malware.

4.5.3.2 Set up

To reach the purpose, we partitioned the infected stream dataset into different subsets

containing only data from the individual mobile botnet malware families. This produced

nine sets of infected data coming from all families in Table 4-1 except from family eight

which did not produce any infected data. The nine sets of infected data were mixed with

a random selection of 10% of normal stream data to formulate an infected family data set.

Subsequently, we used ~90-10% 10-fold validation by selecting data streams from 8

families and testing it on the remaining one family and ~50-50% 2-fold validation by

selecting data streams from 5 families and testing it on the remaining four families.

4.5.3.3 Results

The results of experiment 2 in terms of recall, TPR and precision are shown in Table

F-2 which shows the results for each of the individual malware families as produced in

the 90-10 scheme. The corresponding bar charts are presented in Figure 4-11, Figure 4-12

and Figure 4-13. The different performance among ML algorithms is similar with the

result of Experiment I which describe in Section 4.5.2. Regarding the performance across

the different malware family, the recall of malware family 3 is obviously superior to

others by using NB and ML-BOX(AND) algorithms in Figure 4-11. Meanwhile the

Precision measure of malware family 3 is higher in these two algorithms than all other

algorithms that can be found in Figure 4-13. As can be seen from the J48, ML-

140 Experimental Evaluation of Mobile Botnet Detection

BOX+(AND), ML-BOX+(OR) and ML-BOX+(HALF) algorithms in Figure 4-11, the

recall of malware family 5 is significantly lower than other families over 50%. In terms

of FPR, there is no remarkable difference between different malware family especially

for NB SVM and ML-BOX(OR) algorithms.

4.5 Experiments for network traffic analysis 141

Figure 4-11 - Infect recall across infect malware family

Figure 4-12 - Infect FPR across infect malware family

Figure 4-13 - Infect Prec across infect malware family

0
0.2
0.4
0.6
0.8

1

R
at

e

ML Algrithm

Infect Recall Accross Infect Family

Family 1 Family 2 Family 3 Family 4 Family 5 Family 6 Family 7 Family 9 Family 10

0
0.2
0.4
0.6
0.8

1

R
at

e

ML Algrithm

Infect FPR Accross Infect Family

Family 1 Family 2 Family 3 Family 4 Family 5 Family 6 Family 7 Family 9 Family 10

0
0.2
0.4
0.6
0.8

1

R
at

e

ML Algrithm

Infect Prec Accross Infect Family

Family 1 Family 2 Family 3 Family 4 Family 5 Family 6 Family 7 Family 9 Family 10

142 Experimental Evaluation of Mobile Botnet Detection

4.5.3.4 Analysis

Table 4-8 shows the average recall, TPR and precision across all families for the two

splits and the relative ranking of each algorithm given the relevant measure (in the case

of J48 for example the table shows “.665 /1” under precision for the 90-10 scheme

meaning that the precision of J48 was .665 and that this algorithm was ranked 1st amongst

the atomic algorithms).

Table 4-8 - Ranking of algorithms for infected stream traffic in experiment II

 Precision (ave) FPR (ave) Recall (ave)
Classifier 90-10 50-50 90-10 50-50 90-10 50-50

Naïve Bayesian .606 /3 .693 /2 .030 /1 .158 /1 .116 /5 .190 /5
J48 Tree .665 /1 .756 /1 .204 /2 .222 /2 .567 /4 .530 /3

MNN .544 /4 .544 /5 .783 /4 .680 /4 .886 /2 .727 /2
KNN .617 /2 .656 /3 .276 /3 .336 /3 .583 /3 .511 /4
SVM .529 /5 .555 /4 .957 /5 .900 /5 .988 /1 .927 /1

ML-BOX(AND) .735 /1 .741 /1 .008 /1 .031 /1 .088 /6 .089 /6
ML-BOX(OR) .529 /6 .582 /6 .957 /6 .935 /5 .988 /1 .976 /1

ML-BOX(HALF) .637 /5 .674 /5 .345 /4 .398 /4 .718 /3 .613 /3
ML-BOX+(AND) .662 /2 .735 /2 .119 /2 .148 /2 .396 /5 .388 /5
ML-BOX+(OR) .640 /3 .691 /4 .360 /5 .410 /6 .753 /2 .704 /2

ML-BOX+ (HALF) .638 /4 .694 /3 .342 /3 .344 /3 .716 /4 .602 /4

From the Figure 4-14, the column chart of Table 4-8, we can see clearly that both of

recall and FPR are higher than others for the SVM, MNN and ML-BOX(OR) algorithms.

In contrast, recall and FPR of NB and ML-BOX(AND) are lowest among all the

algorithms. Comparing with Experiment I, the recall of other six algorithms is slightly

inferior to the corresponding performance data in Figure 4-8. The reason for decrement

is the unknown malware family data in the testing dataset.

4.5 Experiments for network traffic analysis 143

Figure 4-14 - Comparison of ML algorithms

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
at

e

ML Algorithm

Infect Average Recall

90-10 50-50

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
at

e

ML Algorithm

Infect Average FPR

90-10 50-50

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

R
at

e

ML Algorithm

Infect Average Precison

90-10 50-50

144 Experimental Evaluation of Mobile Botnet Detection

To explore whether the observed differences were statistically significant, we carried

a two-way analysis of variance (ANOVA) for atomic and box algorithm separately. Table

4-9 Part (A) shows that the all measures are statistically significant across different atomic

ML algorithm (F(1,3)=45.633, p=.000 TPR, F(1,5)=507.734, p=.000 for FPR,

F(1,3)=45.633, p=.000 for Prec). However, the none of them are statistically significant

across the data scheme. The box algorithms results are shown in Table 4-9 Part (B) which

demonstrates statistically significant differences in all measures (i.e., in TPR, FPR, PRC)

across the different atomic and box ML classifiers, and across the different data scheme

at α=0.05.

Table 4-9 - Outcome of analysis of variance for experiment II

(A) ATOMIC ML CLASSIFIERS
Measure Source of Variation SS df MS F P‐value F crit

TPR Dataset scheme 0.394 8.000 0.049 2.148 0.060 2.244
 Algorithm 4.183 4.000 1.046 45.633 0.000 2.668

FPR Dataset scheme 0.030 8.000 0.004 1.356 0.253 2.244
 Algorithm 5.712 4.000 1.428 507.734 0.000 2.668

Prec Dataset scheme 0.394 8.000 0.049 2.148 0.060 2.244
 Algorithm 4.183 4.000 1.046 45.633 0.000 2.668

(B) BOX ML CLASSIFIERS
Measure Source of Variation SS df MS F P‐value F crit

TPR Dataset scheme 0.663 8.000 0.083 6.294 0.000 2.180
 Algorithm 4.540 5.000 0.908 69.011 0.000 2.449

FPR Dataset scheme 0.044 8.000 0.005 4.510 0.001 2.180
 Algorithm 4.842 5.000 0.968 802.994 0.000 2.449

Prec Dataset scheme 0.663 8.000 0.083 6.294 0.000 2.180
 Algorithm 4.540 5.000 0.908 69.011 0.000 2.449

(C) KEY: as in Table 4-7

4.5.3.5 Summary of key results of second experiment set

The main observations drawn from experiment II are:

1. The precision, recall and FPR of all classifiers (both the atomic and the

aggregated ones) dropped w.r.t experiment 1, as it can be seen by contrasting

the recall and precision figures for the 90-10 and 50-50 cross validation column

for stream data in Table F-1 with the corresponding figures in Table F-2.

4.5 Experiments for network traffic analysis 145

2. The drop was more significant in the case of a recall.

3. The cross validation with the 50-50 slit generated better outcomes than the 90-

10 split in terms of precision, recall and FPR for all algorithms. This was

probably due to overfitting, as in the 90-10 scheme we found recall to correlate

positively with the training-to-test data set size (TTTS) ratio and precision to

correlate with TTTS negatively: the correlation coefficients were 0.41 for

TTTS/Recall, and – 0.90 for TTTS/Precision.

4. Results were poor for all families with a low number (<50) of infected streams

(i.e., families 3, 5, 6, 7).

5. The algorithms J48 and Naïve Bayesian have had the best performance in terms

of precision and FPR amongst the atomic algorithms in the 90-10 and 50-50

scheme. However, their performance in terms of recall was not so good (0.567

and 0.116, respectively). In terms of recall, the best performers amongst single

algorithms were SVM and MNN. However, both these algorithms had low

precision and high FRP rates.

6. ML-BOX (AND) and ML-BOX+(AND) have had the best performance in

terms of precision and FPR amongst the aggregate (box) algorithms in the 90-

10 and 50-50 schemes. However, their performance in terms of recall was not

poor (0.088 and 0.396, respectively). In terms of recall, the best performers

amongst box algorithms were ML-BOX(OR) and ML-BOX+(OR). However,

only ML-BOX+(OR) appeared to have acceptable precision and FPR rate.

7. Recall and FPR were found to correlate positively with the size of the infected

data set of a family and precision was found to correlate negatively with it.

4.5.3.6 Threats to validity

1. We divided the network traffic into different malware families based on the feature

of IP addresses. There is a small set of network traffic that classified wrongly

146 Experimental Evaluation of Mobile Botnet Detection

possibly. This error can cause deviations for performance and result of machine

learning classification.

2. The number of malware families used in the experiment is not enough to prove the

system can be used for detection for unknown mobile botnet malware. The 10

botnet malware families we selected in the experiment could not predict the

behaviour of other unknown mobile botnet malware behaviour.

4.5.4 Experiment III

4.5.4.1 Purpose

Although the performance of mobile devices has improved significantly in recent

years, their computing and energy capabilities are still limited. Therefore, a system

deployed on a mobile device should be designed to minimise the demand for such

resources. Hence, in our experiments, we should also evaluate the execution time and

battery consumption of MBotCS.

4.5.4.2 Set up

The mobile device used in this evaluation was a GT-I9228 with 1440 MHz CPU clock,

1 GB of RAM and battery of 2500 mAh. The specification of the mobile device used in

this evaluation is shown in Table 4-10. MBotCS, tPacketCapture, and Gsam Battery

Monitor had been installed on it. Then we made a random selection of 10 botnet

applications and ten normal applications of those indicated in Section 4.5.1.1 and ran the

evaluation experiment for 12 hours. The set up of the experiment involved the following

sequence of steps:

(1) Charged the battery of the mobile device fully and installed all the applications.

(2) Launched the Gsam Battery Monitor, tPacketCapture and MBotCS applications.

4.5 Experiments for network traffic analysis 147

(3) Launched the normal and infected applications mentioned above and run 5

minutes for each application to simulate user behaviours, and the remaining experiment

time keep the mobile device on standby.

(4) Gathered and analysed results.

(5) A comparison experiment was performed for a time period of the same length on

the following day. The set up was identical to the initial experiment (i.e., we went through

steps (1) - (4) except that we did not deploy MBotCS.

Table 4-10 - The specs of GT-I9228

Parameters Value

CPU Clock 1400 MHz

RAM 1 GB

Battery 2500 mAh

148 Experimental Evaluation of Mobile Botnet Detection

4.5.4.3 Results

Figure 4-15 - Battery consumption

Results - Battery Consumption: The graphs of battery consumption in percentage terms

and battery temperature during the experiment is shown in Figure 4-15. According to the

figure, the battery consumption was not affected significantly by the use of MBotCS. In

particular, the use of MBotCS consumed 0.5% of the total battery usage of the device

during the period of its deployment. Of this, 0.2% was the battery usage caused by

tPacketCapture.

Execution Time: When activated, MBotCS checks the pcap file every 3 seconds, and

if new traffic is captured, it scans and analyses it. In these scans, the scan sequence

number (𝑠𝑞) is recorded. Using the J48, KNN and ML-BOX+(HALF) classifiers in the

ML-Analyser, we recorded the number of streams (𝑁) in the new traffic and the total

execution time (𝑇) for analysing the new traffic. Figure 4-16 shows the average

4.5 Experiments for network traffic analysis 149

execution times for the three classifiers, computed by the formula 𝑇 ∑ 𝑇 /

∑ 𝑁 (the average for sequence number 100, for instance, is the average of execution

time of a classifier over all stream instances from 1 to 100). The figure also shows the

fitted curves for the average execution times of these algorithms.

Figure 4-16 - The ML-analyser execution time

4.5.4.4 Analysis

These Figure 4-15 show that MBotCS has had a very low energy effect on the battery

consumption of the device.

The results show that the average execution time of J48 across all executions was 1.216

seconds with a standard deviation of 0.228 and the average of KNN across all executions

was 11.562 seconds with a standard deviation of 1.779. The average of ML-BOX+

(HALF) across all executions was 11.387 seconds with a standard deviation of 1.087. A

t-test check showed the statistical significance of the observed differences between the

150 Experimental Evaluation of Mobile Botnet Detection

average execution times of J48 and KNN at α = 0.05 (p−value = 2.701E−91 << 0.05),

confirming that J48 have had better performance than KNN.

Also, the average execution time of different classifiers remained almost constant with

respect to the processed number of streams performance, as shown by the curves fitted

on execution times in Figure 4-16. This indicates the capability of MBotCS to produce a

reasonably fast detection/response once the ML-Analyser has been trained.

4.5.4.5 Threats to validity

There are other factors that cannot be controlled for affecting the battery consumption.

1. The signal of WIFI on the mobile device will affect the battery consumption. A

weak signal will lead to high battery consumption.

2. The temperature of the environment will affect the battery consumption. The high

temperature will lead to high battery consumption.

4.6 Experiments for system call analysis

4.6.1 Overview

Apart from analysing the network traffic to detect botnets on Android device, we also

performed an experimental study on the use of ML algorithms for the detection of mobile

botnets, based on the analysis of system (i.e., Android OS) calls. In particular, the main

contributions of our experimental study with respect to previous work are that it has

investigated:

(a) The use of not only atomic but also box ML classifiers using supervised learning.

4.6 Experiments for system call analysis 151

(b) The performance of ML classifiers a wider set of detection scenarios than existing

work including KBKN scenario, UBKN scenario and UNUB scenario which

introduced in Section 4.4.

(c) A comprehensive set of Android mobile botnets, which had not been considered

previously, without relying on any form of synthetic training data.

(d) The statistical significance of differences in detection performance measures with

respect to ML algorithms, system call aggregation periods, normal and botnet

applications, and different types of botnet families.

The following paragraph will introduce our approach and the methodological setup of

the experiments and gives an analysis of the results obtained from them.

4.6.2 Methodological setup of the experiments

In the following, we describe the methodological set up for the experimental analysis

of system logs. Figure 4-17 shows an overview of this set up, which involved three main

steps: (1) the capture of mobile device system calls to txt file which contains full system

call sequence in-formation for further analysis (system call capture); (2) the selection of

feature and generation of the dataset for training and testing the system call analyser

(dataset generation); and (3) the experimental use of different ML classifier algorithms

as the basis for training the system call analyser (classifier analysis).

Figure 4-17 - Experimental set up

152 Experimental Evaluation of Mobile Botnet Detection

4.6.2.1 System call capture

The mobile device used in the experiments was the OnePlus One generation (A0001)

running Android v. 5.2 (Lollipop). To avoid interference with other applications, the

mobile device used for the experiment was reset to the default Android OS settings before

the start of the experiments.

To capture system calls, we deployed 12 normal applications and 10 mobile botnet

applications. The normal applications that we selected due to their popularity were:

Chrome, Gmail, Maps, Facebook, YouTube, Messenger, Twitter, PlayNewsstand,

Flipboard, Feedly, Skype, and Mail-Droid. Also, to be certain about their genuineness,

all of them were downloaded from Google Play. The botnet applications were selected

from the MalGenome project [339]. MalGenome has collected more than 1200 Android

malware applications. The vast majority of these applications (i.e., more than 90%) are

botnets. From the whole set of MalGenome applications, we selected botnet applications

from 10 different families, shown in Table 4-1. These families were selected to ensure

coverage of different types of attacks, namely device control, hidden SMS dispatching,

stealing and forwarding device information to remote servers (e.g., Botmasters), UI

control and execution of commands, and hidden unauthorised downloads, contact of

premium services.

As the kernel of Android OS is Linux, there are more than 250 Linux system calls that

could be made by an Android application. To capture system calls, we used strace, i.e., a

debugging and monitoring Linux utility. strace was used on the Android device (i.e.,

A0001) through the Android Debug Bridge (ADB), i.e., a command line tool providing a

Unix shell that can be used to run commands on Android connected devices or Android

device emulators. Although strace can get all the system call for a process with a specific

id PID, due to the limited resources of mobile devices, when applications are paused or

put into the background, Android stops the corresponding process. This process is forked

again with a new PID when the application is resumed. To address this issue, we

4.6 Experiments for system call analysis 153

implemented a Linux Shell Script, called System Call Monitor (SCM) see Appendix B.

Within it; we used the process name, which doesn’t change in the Android operating

system to get the corresponding PID dynamically. SCM monitored the output of ps utility

command continually, and checked whether the PID changed for same process name. If

the PID had been changed, SCM used strace to capture the system calls of a new process

for the corresponding application.

4.6.2.2 Datasets Generation

In the experiments, we used two data sets: (a) primitive system call data captured

during the trial operation and (b) derived data aggregating system call profiles of different

applications into different time periods. These data sets were generated as described

below.

Primitive data set: In the first stage, we installed the 12 normal applications and ten

malware applications and deployed the SCM on the device. Then we launched these

applications and the capture script over a 24-hour trial period. To simulate the activities

of the mobile device, a table of frequently used actions of the normal applications, listed

in Appendix E, was generated and executed. These actions were executed every one hour

over the trial period. During this period, we collected 12 distinct data sets for the normal

applications (one data set per application) and ten distinct data sets for the mobile botnet

applications (one data set per botnet).

Table 4-11 - Structure of primitive system call data set

Timestamp Call Name Call Return Time Spent Label

1.43E+12 clock_gettime 0 0 B

1.44E+12 epoll_pwait 1 0.01 B

1.46E+12 recvfrom 104 0 B

From these raw datasets, we extracted four features that we considered potentially

useful as indicators of variability between normal and botnet applications (see Table G-2).

These were: (1) the timestamp of the system call, (2) the system call name, (3) return

154 Experimental Evaluation of Mobile Botnet Detection

value of the call, and (4) the time spent on the call (i.e., the call’s total execution time).

System call instances were also labelled as “normal” and “infect” based on the application

they were generated from. This process generated a data set of system call records of the

form shown in Table 4-11. Altogether, we recorded 2,666,619 calls of 61 different system

operations.

To establish the potential utility of the descriptive features (1) - (4) in the different

records we conducted a preliminary statistical analysis. The purpose of this analysis was

to establish whether botnet and normal applications had any statistically significant

variability with regards to the features. The outcomes of this analysis are discussed in

detail in next Section. In summary, however, this analysis indicated that the only

statistically significant difference between botnets and normal applications was related to

the frequency of calls of different system functions. Due to this, we decided to aggregate

the data in the primitive datasets into aggregate call profiles and use them, instead of the

primitive data, to train the classifier algorithms. The dataset derived from this process is

described next.

Table 4-12 - Structure of derived dataset

App Package
Name

Recv
from

Futex
epoll_
pwait

clock_
gettime

write
Get
uid32

… label

com_android_chro
me

.0879 .0887 .0980 .4460 .0756 .0766 … N

flipboard_app .0690 .0169 0.1119 0.4462 .0644 .0945 … N

com_km_installer .0121 .0032 .0720 .3349 .0263 .0528 … B

greenrobt .0954 .0031 .0827 .3226 .0277 .0612 … B

Derived data set: To derive aggregated system call profiles for different normal and

botnet applications, we sliced the total 24-hour period over time intervals () of 10, 30,

60, 300, 600 seconds and for each of these intervals, we produced a vector for each of the

22 applications showing the relative frequency of calls to different system functions (i.e.,

the number of calls made to the specific system function divided by the total number of

calls made to any system function by the relevant application within the period). This

4.6 Experiments for system call analysis 155

process resulted in the generation of relative system call frequency tuples of the form

shown in Table 4-12. In total for the intervals of 10, 30, 60, 300 and 600 seconds we

obtained 19008 (B: 8640), 6336 (B: 2880), 3168 (B: 1440), 630 (B: 288), 315 (B: 144)

system call vectors, respectively (B call vectors number in parenthesis).

4.6.2.3 Analysed ML Algorithms

In the second set of experiments, we used the same atomic ML algorithms and ML-

box algorithms that we used in the first set (see Section 4.1). The use of ML box

algorithms based on the results of the best two atomic classifiers in each experiment

according to the AUC measure (see below). In the following, we will refer to the

outcomes of these box classifiers as “ML-BOX+ (.)” where “ML-BOX (.)” is the

underpinning basic box algorithm. In the case of ML-BOX+(HALF), if the best two

algorithms classified an instance of dataset in the same class, ML-BOX+(HALF)

generated the same common classification but if the best two algorithms were in

disagreement, ML-BOX+(HALF) generated a classification based on the outcome of the

3 remaining classifiers by taking a vote over them.

4.6.3 Basic statistical analysis

The initial analysis that we performed on the primitive system call log data was

statistical and was carried out with the aim to identify whether: (a) the frequency of calls

to different system functions, (b) the size of the return value of calls, or (c) the time spent

on the call system calls varied significantly, in a statistical sense, across normal and botnet

applications. The purpose of this analysis was to identify descriptors with a potentially

high classification effect for the detailed classifier-training phase.

This analysis showed that only (a) varied in a statistically significant manner across

botnet and normal applications. More specifically, for each of the sixty-one (61), different

system calls that were recorded, we measured the relative frequency of the call for normal

156 Experimental Evaluation of Mobile Botnet Detection

(FN) and botnet applications (FB). The statistical significance of the observed differences

between FN and FB ratios was tested using the z-score test [356]. The test showed that in

42 out of 61 different system calls the FN and FB ratios varied in a statistically significant

manner at p=.01. Table 4-13 shows the 10 system calls with the highest z-score. This

analysis also indicated that botnet applications made significantly fewer calls to all system

operations but two, i.e., epoll_pwait and recvfrom. The FB of recvfrom was 37.32

percentage points higher than its FN, and the FB of epoll_pwait was 14.79 percentage

points higher than its FN.

Table 4-13 - Statistical significance of system call frequency differences

Call Name
 Calls by

Botnets
B-RF

 Calls by

N apps
N-RF Z-score

recvfrom 462576 .445 117073 .072 72.54

futex 2797 .003 192404 .118 353.24

epoll_pwait 236368 .227 129500 .080 342.27

clock_gettime 268049 .258 680662 .418 266.67

write 3149 .003 81215 .050 213.27

getuid32 9750 .009 96814 .059 203.72

gettid 0 .000 44263 .027 169.53

ioctl 24655 .024 111877 .069 162.66

mprotect 1151 .001 29329 .018 126.71

read 4838 .005 35666 .022 112.38

The functions implemented by these two calls are relevant to network connectivity,

and hence they can be the reason for the observed differences in their relative call

frequencies. More specifically, recvfrom is used to receive data (messages) from a socket

(whether or not it is connection-oriented), and epoll_pwait waits for events of monitoring

multiple file descriptors to see if I/O operations occurred on them. Thus, both recvfrom

and epoll_pwait relate to an application’s connection to networks outside the mobile

device, an activity that is necessary for botnet applications, as such applications need to

communicate with their botmaster regularly in order to retrieve the commands to execute

4.6 Experiments for system call analysis 157

on the local device and report information obtained from this device back to the

botmaster.

4.6.4 First experiment: KBKN scenario

In the first experiment (Exp 1), we used training sets including both normal and botnet

application call vectors (of the form shown in Table 4-12) to train the different atomic

classifiers. We also 90–10 percent cross-validation scheme of WEKA to evaluate the

dataset. More specifically, we executed a total of 10 training evaluation dataset pairs. In

each of these pairs, 90% of the full set of call vectors summarised in Table 4-12,

consisting of both normal (N) and botnet (B) application vectors, was selected as the

training set and the remaining 10% was used as the evaluation set. The training and test

sets were selected randomly, but each pair of them used in the experiment was, by virtue

of its selection, guaranteed to include both normal and botnet application vectors, albeit

in different proportions. Due to this set up, it was possible for classifiers to have been

trained with call vectors of a botnet application before being asked to detect whether a

previously unseen vector of the same application belongs to it. Thus, this experiment

realised a KBKN scenario. The experiment was repeated using call vectors aggregated

over five different time periods, i.e., 10, 30, 60, 300 and 600 seconds. Hence, in total the

set included 500 executions (100 per each aggregation period).

The results of Exp 1 for different atomic ML classifiers are shown in part (a) of Table

F-3. The table shows the TPR, FPR, PRC and AUC measures for normal and botnet

applications separately grouped also by the aggregation period of the underlying data set

(i.e., the 10, 30, 60, 300 and 600 second periods). The measures in the table were

generated as an average measure computed across all the ten 90–10% splits of the call

vector set generated by WEKA. The results in the table have also been coloured according

to the VR criteria introduced in Section 4.1, using green colour to indicate the cases “very

good” and red colour to indicate the cases of “weak” performance.

158 Experimental Evaluation of Mobile Botnet Detection

As shown in Table F-3, the classifier, which had the best average performance in terms

of AUC for botnet applications across all the call vector aggregation periods, was the

multi-layer perceptron (NN) (AUC=.995). SVM, however, have had the best performance

in terms of average TPR (.975), FPR (.013) and PRC (.966) in botnets. Overall, SVM and

NN demonstrated “very good” performance in terms of all metrics for botnets based on

the VR criteria. KNN and J48 also showed “very good” performance in terms of FPR and

PRC in all cases but missed the top performance range in terms of TPR (J48 in the 30s

and 300s datasets, and KNN in the case of the 30s dataset). Note, however, that in none

of these cases the TPR of J48 and KNN fell below .8 (i.e., in the “weak” performance

range). The NB classifier has had the weakest performance of all the five classifiers with

regards to FPR and PRC (.037 and .914, respectively), without however its performance

being “weak” according to the VR criteria.

The bar charts are corresponding to the Table F-3 is shown in Figure 4-18 and Figure

4-19 that group the different time interval dataset into ML algorithm series. There are 8

charts that divided by 2 types of application (normal and botnet) and 4 types of

performance measurements (TPR, FPR, Prec and AUC). Overall, the performance is good

with relatively high TPR, Prec, AUC and low FPR in both normal and botnet measures.

Regarding the comparison between the different time interval dataset, in Figure 4-18 we

can find that the normal TPR of 300s time interval dataset in the BOX-AND+ algorithm

has the lowest performance with less than 0.85. The FPR of 300s and 600s time interval

datasets are higher than others in J48 and NB algorithms respectively with values that are

greater than 0.15. The difference of Prec and AUC is unapparent among various datasets

across ML algorithms and all with values more than 0.9. In respect of Botnet measure in

Figure 4-19, the 300s and 600s time interval dataset have relatively poor TPR (less than

0.8) in J48 and NB algorithm respectively. The 300s time interval dataset also has high

FPR (more than 0.15) in the BOX-AND+ algorithm. The FPR of 10s time interval dataset

is relatively higher than others in NB and BOX-OR algorithms. Meanwhile, in NB and

BOX-OR algorithms, the Prec of 10s time interval dataset is only around 0.8 that lower

4.6 Experiments for system call analysis 159

than others. Similar to the normal result, the AUC of the botnets still has the balanced

performance for all type datasets across various ML algorithms.

The Figure 4-20 reveals the average performance of various type dataset between ML

algorithms. As can be seen from the first two charts, all the average TPRs are more than

0.9, and average FPRs are less than 0.1 for both of normal and botnet. Especially, the FPR

in normal application of BOX-OR is less than 0.005 and the FPR of all algorithms except

NB, BOX-OR and BOX-AND+ are around 0.01 in botnet application. The performance

of average Prec and AUC across the ML algorithms are similar to the TPR that higher

than 90 percent.

160 Experimental Evaluation of Mobile Botnet Detection

Figure 4-18 - Performance of normal across different time interval dataset

4.6 Experiments for system call analysis 161

Figure 4-19 - Performance of botnet across different time interval dataset

162 Experimental Evaluation of Mobile Botnet Detection

Figure 4-20 - Average performance of time interval dataset

4.6 Experiments for system call analysis 163

Table 4-14 - Outcomes of analysis of variance for experiment 1

(A) ATOMIC ML CLASSIFIERS

 VarSr SS df MS F P-val F crit
TPR A.Per 0.004 4 0.001 0.555 0.697 3.006
 Alg 0.016 4 0.004 1.844 0.169 3.006
FPR A.Per 0.003 4 0.000 3.070 0.047 3.006
 Alg 0.002 4 0.000 2.575 0.077 3.006
PRC A.Per 0.012 4 0.003 2.998 0.050 3.006
 Alg 0.012 4 0.003 2.954 0.052 3.006
AUC A.Per 0.000 4 0.000 0.329 0.854 3.006
 Alg 0.005 4 0.001 2.892 0.056 3.006

(B) BOX ML CLASSIFIERS

 VarSr SS df MS F P-val F crit
TPR A.Per 0.011 4 0.002 5.134 0.005 2.866
 Alg 0.009 5 0.001 3.453 0.020 2.710
FPR A.Per 0.001 4 0.000 0.288 0.881 2.866
 Alg 0.012 5 0.002 2.186 0.096 2.710
PRC A.Per 0.008 4 0.002 2.282 0.096 2.866
 Alg 0.021 5 0.004 4.851 0.004 2.710
AUC A.Per 0.001 4 0.000 2.813 0.053 2.866
 Alg 0.006 5 0.001 7.689 0.000 2.710

(C) KEY: VarSr: source of variance; SS: sum of squares; df: degrees of freedom, MS: mean square; F: F-value of

experimental data; P-val: probability of samples of from same population despite difference in variance; F crit:

minimum F value for accepting null hypothesis at α=0.05; A.Per: sample groups based on call vectors aggregation

period; Alg: sample groups based on ML classifier algorithm.

To explore whether the use of different aggregation periods and different ML

classifiers resulted in a statistically significant difference in the TPR, FPR and PRC

measures for botnet applications, we carried out a two-way analysis of variance

(ANOVA). The results of this analysis are summarised in Part (A) of Table 4-14 and

demonstrate that the only statistically significant differences were the FPR differences

across the different aggregation periods (F(1,4)=3.0702, p=.047). It should be noted,

however, that even this difference was statistically significant at α=.05 but not for lower

α levels (e.g., for α=.025).

In Exp 1, we also evaluated the effect of using box ML algorithms. The performance

of these algorithms with respect to the used evaluation metrics is summarised in Part (B)

164 Experimental Evaluation of Mobile Botnet Detection

of Table F-3. As shown in it, BOX-AND has had the best performance for botnet

applications with regards to the average AUC for botnet applications across all data

aggregation periods (.995). It was, however, outperformed by BOX-OR with respect to

the average TPR for botnet applications across all data aggregation periods (.997 vs.

.965); by BOX-HALF and BOX-HALF+ in terms of average FPR for botnet applications

across all data aggregation periods; and by BOX-HALF, BOX-AND+ and BOX-HALF+

in terms of average PRC for botnet applications across all data aggregation periods.

However, none of these differences were statistically significant as the two-way ANOVA

indicated. In particular, as shown in Part (B) of Table 4-14: (a) the aggregation period

and the box algorithm had a significant effect on TPR (F(1,4)=5.1340, p=.0052 for

aggregation period; F(1,5)=3.4536, p=.0207 for algorithms); (b) the algorithms had a

significant effect on PRC (F(1,5)=4.8513, p=.0046); and (c) the algorithms had a

significant effect on AUC (F(1,5)=7.6892, p=.0004).

Overall, the use of box ML classifiers did not improve the average AUC measure with

respect to the best atomic ML classifier (i.e., NN). Considering TPR, BOX-OR performed

marginally better than the best atomic ML classifier (i.e., SVM) with respect to TPR (TPR

of .997 vs. .975) but at the expense of a lower accuracy, i.e. a higher FPR (.045 vs. .013)

and a lower PRC (.899 vs. .981).

In summary, the first set of experiments indicated that:

 It is possible to detect botnet applications by collecting aggregate system call

vectors of the mobile botnet and normal applications and analysing them

through atomic and/or box ML classifiers that have been previously trained on

such applications.

 The use of box ML classifiers led to better results than atomic classifiers (the

use of the BOX-AND classifier led to recall and precision as high as 96% and

an FPR of about 1.5%). However, atomic ML classifier also demonstrated

4.6 Experiments for system call analysis 165

strong performance (recall and precision rates in excess of 90%, FPR of less

than 3%).

 The aggregating period did not cause any significant statistical differences in

the detection TPR and PRC for botnet applications in either atomic or box ML

classifiers. It did, however, affected FPR in the case of atomic classifiers: the

600s aggregation period gave the lowest average FPR (.009) and the 10s-

aggregation period gave the highest average FPR (.037) in this case.

4.6.5 Second experiment: UBKN scenario

In the second set of experiments (Exp 2) our objective was to investigate the capability

of ML classifiers to detect new botnet applications, i.e., applications whose system call

profiles have not been used to train classifiers prior to detection in the presence of known

normal applications (UBKN scenario). These experiments were based on the call profiles

that we collected through the process discussed in Section 4.6.2.2, except that the

classifier training and test sets were formed differently than in the first experiment set.

More specifically, each pair of test/training datasets was formed as follows:

Test set: A test set included the full set of system call vectors of one botnet application

plus a subset of the system call vectors of normal applications, including 10% of them.

The selected subset of normal application call vectors was one of the 10 subsets of equal

size of all the N call vectors that were formed through the random partition.

Training set: The training set paired with a test set included the full set of system call

vectors of the remaining botnet applications plus the remaining nine subsets of the N

system call vectors (i.e., 90% of the N call vectors).

For each botnet application, we formed 10 different test/training set pairs as described

above and run 10 different experiments. Hence, we used 90 different test/training data set

166 Experimental Evaluation of Mobile Botnet Detection

pairs in total, i.e., 10 test/training data sets for each of the 9 botnet applications B1–B9

(magicshop was excluded from this experiment as it produced only 13 calls during the

entire data collection period). This design enabled us to test the ML classifiers for each

of the botnet applications separately.

Table F-4 summarises the results of this experiment, showing the average TPR, FPR,

PRC and AUC measures computed for different ML classifiers and botnet applications

(Part (A) shows the results for atomic ML classifiers and Part (B) shows the results for

box ML classifiers). Each of the measures in the table is an average measure computed

from 10 different test/training sets formed for each of the different botnet applications

(B1 – B9). Also, the performance measures are also shown separately for normal and

botnet datasets for each of the different botnet applications (B1–B9) and coloured as in

Exp 1. Based on the AUC for botnet applications, the best atomic ML classifier was J48

with average AUC for botnet applications of .936.

The Figure 4-21, Figure 4-22 and Figure 4-23 are visualisation for the Table F-4. The

performance of NN BOX-AND and BOX-OR algorithms exhibits the obvious difference

between botnet families, especially for TPR and FPR. The botnet family 1, 4 and 7 has

higher TPR than other families in normal applications in NN BOX-AND and BOX-OR

algorithms. Meanwhile, they have lower FPR in botnet applications. In term of the

comprehensive measure AUC, the botnet family 4 has a very low value that less than 0.6

in SVM algorithm.

J48 had an average TPR of .848, a very low FPR of .046 and PRC of.833. J48 was

outperformed by Naïve Bayes (NB) in terms of TPR (NB: .908), but the latter algorithm

performed worse than it in terms of FPR (.123 vs. .046) and PRC (.733 vs. .833). Hence,

although J48 was able to detect a lower percentage of botnet activity, its results were more

accurate. In terms of accuracy (FPR and PRC) for botnet applications, the best algorithm

4.6 Experiments for system call analysis 167

was KNN with an average FPR of .032 and an average PRC of .836. However, KNN

showed a lower TPR rate for botnet applications (.694).

According to the VR criteria introduced in Section 4.1, J48 had a very good TPR in

four botnets (B4, B5, B8 and B9) and a weak one in three botnets (B2, B6 and B7). Its

FPR was very good in 6 out of the 9 botnets and weak in no botnets. Finally, its precision

was very good in two botnets (B4 and B5) and average PRC of .836. However, KNN

showed a considerably lower recall (TPR) rate for botnet applications (.694).

NB had a very good TPR in five botnets (B2B5 and B8) and a weak one in two

botnets (B1 and B9). Its FPR, however, was weak in all but one botnets (B7). Similarly,

its precision was weak in 6 botnets (B1, B3, B5 and B7B9) and very good in two (B2

and B4). KNN (i.e., the third best performing algorithm in terms of AUC) had a very good

TPR in 3 botnets (B4, B5 and B9) and a weak one in 5 botnets (B1, B2 and B6–B8); very

good FPR in all botnets and very good precision in two botnets (B4 and B6); and weak

precision in three (B2, B5 and B8). The worst of all the algorithms were NN as it had a

weak TPR in 6 botnets (B1 and B3–B7), a weak FPR in all botnets except B7 and weak

precision in 6 botnets (B1, B3, B5, B6, B8 and B9).

168 Experimental Evaluation of Mobile Botnet Detection

Figure 4-21 - Performance of normal across different malware family dataset

4.6 Experiments for system call analysis 169

Figure 4-22 - Performance of botnet across different malware family dataset

170 Experimental Evaluation of Mobile Botnet Detection

Figure 4-23 - Average performance of malware family dataset

4.6 Experiments for system call analysis 171

Table 4-15 - Outcomes of analysis of variance for experiment 2

(A) ATOMIC ML CLASSIFIERS
 VarSr SS df MS F P-val F crit
TPR Bot 0.442 8 0.055 1.483 0.161 1.961
 Alg 3.832 4 0.958 25.710 0.000 2.394
 Int 1.403 32 0.043 1.176 0.237 1.472
FRP Bot 0.442 8 0.055 1.483 0.161 1.961
 Alg 3.832 4 0.958 25.710 0.000 2.394
 Int 1.403 32 0.043 1.176 0.237 1.472
PRC Bot 8.767 8 1.096 33.353 0.000 1.961
 Alg 1.037 4 0.259 7.893 0.000 2.394
 Int 2.516 32 0.078 2.393 0.000 1.472
AUC Bot 0.516 8 0.064 12.718 0.000 1.961
 Alg 0.425 4 0.106 20.970 0.000 2.394
 Int 2.453 32 0.076 15.105 0.000 1.472

 (B) BOX ML CLASSIFIERS

VarSr SS df MS F P-val F crit
TPR Bot 4.093 8 0.511 33.242 0.000 1.957

Alg 4.504 5 0.900 58.528 0.000 2.232
Int 5.671 40 0.141 9.211 0.000 1.419

FRP Bot 1.230 8 0.153 2.899 0.003 1.957
Alg 7.142 5 1.428 26.926 0.000 2.232
Int 2.096 40 0.052 0.9881 0.494 1.419

PRC Bot 14.036 8 1.754 51.539 0.000 1.957
Alg 3.310 5 0.662 19.449 0.000 2.232
Int 1.551 40 0.038 1.139 0.262 1.419

AUC Bot 0.791 8 0.099 10.851 0.000 1.957
 Alg 0.717 5 0.143 15.727 0.000 2.232
 Int 0.700 40 0.017 1.920 0.000 1.419

(C) KEY: VarSr: source of variance; SS: sum of squares; df: degrees of freedom, MS: mean
square; F: F-value of experimental data; P-val: probability of samples of from same population
despite difference in variance; F crit: minimum F value for accepting null hypothesis at α=0.05;
Bot: sample groups based on botnet application; Alg: sample groups based on ML classifier
algorithm; Int: interaction between Alg and Bot groups.

As indicated by the performance measures of Table F-4 none of the algorithms

demonstrated fully consistent performance across all different botnet applications. To

investigate, further, whether the observed differences were statistically significant, we

carried a two-way analysis of variance (ANOVA). More specifically, this analysis

explored whether the differences in the average TPR, FPR, PRC and AUC measures

computed for the different algorithms and for the different botnet applications (B1-B9)

were statistically significant. Table 4-15 (Part (A)) summarises the outcomes of this

172 Experimental Evaluation of Mobile Botnet Detection

analysis and highlighting (in green) the observed differences that were statistically

significant. More specifically, as shown in the table, the differences observed in the

average PRC were statistically significant both across the different botnet applications

(F(1,8)=33.353, p=.000) and across the different ML algorithms (F(1,4)=7.8935, p=.000).

Also, the differences observed in the average AUC were statistically significant both

across the different botnet applications (F(1,8)=12.7187, p=.0000) and across the

different ML algorithms (F(1,4)=2.9705, p=.0000). The interaction between the ML

algorithm and the botnet application also led to statistically significant differences in the

case of PRC (F(1,32)=2.3933, p=.0001) and AUC (F(1,32)=15.1059, p=.0000). For TPR

and FPR, whilst the differences observed across the different algorithms for both

measures were statistically significant (F(1,4)=25.71 and p=.0000 in both cases), their

differences observed across different botnet families were not (F(1,8)=1.4835 and

p=.1611 in both cases). The latter finding is of particular importance as it indicates that

the performance of our approach in terms of TPR and FPR is not affected by specific

botnet applications in a statistically significant manner.

In Exp 2, we also evaluated the effect of using box ML algorithms. The performance

of these algorithms with respect to the used evaluation metrics is summarised in Part (B)

of Table F-4. As shown in the table, BOX-HALF+ had the best performance for botnet

applications with regards to AUC (.915). With respect to TPR, however, BOX-HALF+

was outperformed by BOX-OR and BOX-OR+ (.902 vs. .972 and .955, respectively). It

was also outperformed by BOX-AND+ in terms of FPR (.084 vs. .04) and precision (.828

vs. .872).

The use of box ML algorithms did not improve AUC over atomic algorithms: the AUC

of BOX-HALF+ was less than the AUC of the J48 algorithm (.915 vs. .936). In terms of

TPR, box algorithms showed improved performance over the atomic ones since BOX-

OR and BOX-OR+ have had better average TPR than NB, and very good performance in

4.6 Experiments for system call analysis 173

7 out of the 9 botnet applications according to the VC criterion. However, this came at

the expense of substantially reduced FPR (BOX-OR’s FPR was .342, and BOX-OR+’s

FPR was .181). As in the case of atomic algorithms, we also checked whether the

differences in the TPR, FPR and PRC measure across the different box algorithms and

botnet applications were statistically significant, using two-way ANOVA. The outcomes

of this analysis are shown in Part (B) of Table 4-15. As shown in the table, the differences

observed in the average TPR were statistically significant both across the different botnet

applications (F(1,8)=33.2426, p=.000), across the different ML algorithms

(F(1,5)=58.5256, p=.000), and when considering the interaction of these two factors

(F(1,40)=9.2114, p=.000).

The differences observed in the average FPR were also statistically significant across

the different botnet applications (F(1,8)=2.8996, p=.0036) and across the different ML

algorithms (F(1,5)=26.9284, p=.000), but not when considering the interaction of these

two factors (F(1,40)=.9881, p=.4943). Similarly, the differences observed in the average

PRC were statistically significant across the different botnet applications (F(1,8)=51.539,

p=.0000) and across the different ML algorithms (F(1,5)=19.4495, p=.000), but not when

considering the interaction of these two factors (F(1,40)=1.1395, p=.2622). Finally, the

differences observed in the average AUC were statistically significant across the different

botnet applications (F(1,8)=1.851, p=.0000), across the different ML algorithms

(F(1,4)=15.7279, p=.0000), and when considering the interaction between the ML

algorithm and the botnet application (F(1,40)=1.9201, p=.0008).

In conclusion, the second set of experiments indicated that,

 Overall, the average TPR, FPR, PRC and AUC for botnet applications of all

the atomic and box algorithms in this experiment dropped with respect to the

corresponding measures for the same algorithm in Exp 1. This was expected

since, in Exp 1, the classifiers had been trained in the botnet applications that

174 Experimental Evaluation of Mobile Botnet Detection

were tested on in the test phase, whereas in Exp 2 the classifiers were not

trained in the botnet applications that they were tested in the test phase.

 Despite the performance drop, however, we believe that the performance

shown by both individual and box ML algorithms in Exp 2 indicates the merit

of our approach in detecting mobile botnets based on device system calls.

4.6.6 Third experiment: UBUN scenario

In the third experiment (Exp 3), our objective was to test classifiers using totally

unknown system call profiles of not only botnet applications but also normal applications

(UBUN scenario). To test this, we formed the classifier training and test datasets as

follows.

 Test set: A test set included the full set of system call vectors of one botnet

application plus the full set of system call vectors of one normal application.

 Training set: The training set paired with a test set was formed by including

the full set of system call vectors of the remaining eight botnet applications

plus the full set of the system call vectors of the remaining nine normal

applications.

According to this scheme, we generated 108 (9 × 12) pairs of test and training sets.

The results of this experiment for the atomic and box ML algorithms are shown in Part

(A) and Part (B) of Table F-5, respectively. These results are grouped by the unknown

botnet application used to form the test set and include the average results computed

across all the 12 test data sets in which call vectors of the particular botnet were combined

with each of the 12 normal applications.

4.6 Experiments for system call analysis 175

The corresponding graphs for Table F-5 shown in Figure 4-24, Figure 4-25 and Figure

4-26. Figure 4-24 and Figure 4-25 present the performance that is grouped by the botnet

families for normal and botnet application respectively. Moreover, the Figure 4-26

illustrates the average performance of different ML algorithms.

Based on the AUC for botnet applications, the best atomic ML classifier in this

experiment was J48 with an average AUC for botnet applications of 0.89. J48 had an

average TPR of 0.75 and a low average FPR of 0.08. Its average PRC for botnets was

0.78. As in Exp 2, in terms of TPR, J48 was outperformed by Naïve Bayes (NB), which

had a TPR of 0.92. NB, however, performed substantially worse than J48 in terms of

average FPR (0.36 vs. 0.08) and precision (0.61 vs. 0.78) for botnet applications. Given

the VR criteria set in Section 4.1, none of the atomic classifiers showed very good

performance across all the three performance measures of TPR, FPR and PRC, for either

botnet or normal applications.

The use of box ML algorithms in Exp 3 improved the outcomes of atomic algorithms.

In particular, BOX-HALF and BOX-HALF+ achieved higher average TPR and PRC rates

for botnet applications than the best atomic classifier (i.e., 0.82 in both cases) and the

same average best FPR rate as atomic classifiers (i.e., 0.08). The performance of BOX-

HALF and BOX-HALF+ was also better than the performance of all atomic classifiers in

terms of TPR and PRC for normal applications.

176 Experimental Evaluation of Mobile Botnet Detection

Figure 4-24 - Performance of normal across different malware family dataset

4.6 Experiments for system call analysis 177

Figure 4-25 - Performance of botnet across different malware family dataset

178 Experimental Evaluation of Mobile Botnet Detection

Figure 4-26 - Average performance of malware family dataset

4.6 Experiments for system call analysis 179

The analysis of the variance of the performance measures in Exp 3 indicated

significant statistical differences in all measures (i.e., in TPR, FPR, PRC and AUC) across

the different atomic and box ML classifiers, and across the different botnet applications

at α=0.05 (see Table 4-16). Also, the interaction between the algorithm used and the

botnet family caused statistically significant differences in TPR and AUC but not in FPR

and PRC in the case of BOX classifiers.

Table 4-16 - Outcomes of analysis of variance for experiment 3

(A) ATOMIC ML CLASSIFIERS
 VarSr SS df MS F P-val F crit
TPR Bot 5.357 8 0.670 8934.9 0.000 1.957
 Alg 14.045 4 3.511 46849.3 0.000 2.390
 Int 37.654 32 1.177 15699.8 0.000 1.467
FRP Bot 4.107 8 0.513 22.8 0.000 1.957
 Alg 7.586 4 1.896 84.4 0.000 2.390
 Int 14.106 32 0.441 19.6 0.000 1.467
PRC Bot 15.396 8 1.924 59.2 0.000 1.957
 Alg 2.280 4 0.570 17.5 0.000 2.390
 Int 9.629 32 0.301 9.2 0.000 1.467
AUC Bot 1.856 8 0.232 27.9 0.000 1.957
 Alg 2.628 4 0.657 79.0 0.000 2.390
 Int 8.693 32 0.272 32.7 0.000 1.467

 (B) BOX ML CLASSIFIERS

VarSr SS df MS F P-val F crit

TPR Bot 7.291 8 0.911 14424.2 0.000 1.954
 Alg 20.622 5 4.124 65272.0 0.000 2.229
 Int 32.269 40 0.807 12767.2 0.000 1.415
FRP Bot 8.985 8 1.123 62.3 0.000 1.954
 Alg 16.970 5 3.394 188.4 0.000 2.229
 Int 14.009 40 0.350 19.4 0.000 1.415
PRC Bot 21.860 8 2.732 94.9 0.000 1.954
 Alg 4.340 5 0.868 30.2 0.000 2.229
 Int 8.790 40 0.220 7.6 0.000 1.415
AUC Bot 2.244 8 0.280 42.5 0.000 1.954
 Alg 3.135 5 0.627 95.1 0.000 2.229
 Int 10.578 40 0.264 40.1 0.000 1.415

(C) KEY: VarSr: source of variance; SS: sum of squares; df: degrees of freedom, MS: mean
square; F: F-value of experimental data; P-val: probability of samples of from same population
despite difference in variance; F crit: minimum F value for accepting null hypothesis at α=0.05;
Bot: sample groups based on botnet application; Alg: sample groups based on ML classifier
algorithm; Int: interaction between Alg and Bot groups.

180 Experimental Evaluation of Mobile Botnet Detection

4.6.7 Overall discussion & threats to validity

TPR

FPR

PRC

AUC

Figure 4-27 - Average TPR, FPR, PRC and AUC measures for botnet applications in all three
experiments.

4.6 Experiments for system call analysis 181

(Note: The measures for the first experiment (Exp 1) are those obtained for the 10-second

period, as this was the aggregation period used in the other two experiments (Exp 2 and Exp 3).

Only BOX-AND and BOX-OR are shown for box classifiers the algorithms used for BOX-HALF,

BOX-AND+, BOX-OR+ and BOX-HALF+ were not the same across the different experiments.)

The performance of atomic and box ML classifiers varied across the different

experiments for all performance measures. Figure 4-27 shows these differences

graphically, plotting the average TPR, FPR, PRC and AUC measures for each the atomic

ML classifiers in the three experiments. As shown in the figure, the performance of all

classifiers (atomic and box) deteriorated from Exp 1 to Exp 2 and from Exp 2 to Exp 3.

This was in line with expectations, as the three experiments increased the amount of

unknown information: KBKN to UBKN and UBUN.

Considering AUC, the atomic classifier that was more robust to the increasing extent

of “unknowns” in the experiments was J48: its AUC dropped by less than 1 percentage

point across the different experiments. In terms of TPR, NB showed the less deterioration

(i.e., 7 percentage points from Exp 1 to 2). NN resulted in the worst drop of TPR (51

percentage points when contrasting Exp 1 and Exp 3). In terms of FPR, SVM showed the

minimum deterioration between Exp 1 and Exp 3 (only 3 percentage points) and NB

showed the maximum deterioration (27 percentage points). In terms of PRC, SVM

showed the minimum deterioration between Exp 1 and Exp 3 (14 percentage points), and

NB and NN the maximum (21 percentage points each). Of the BOX classifiers, whilst

BOX-OR’s performance was robust in terms of TPR (drop of 2 percentage points between

Exp 1 and Exp 3) the performance of both BOX-AND and BOX-OR dropped

significantly in terms of FPR (increase of 21 percentage points between Exp 1 and Exp

3) and PRC (drop of 19 percentage points between Exp 1 and Exp 3).

Overall, we believe that the most appropriate indicator regarding the merit of the ML-

based analysis of system calls is the outcome of Exp 2. This is because system call profiles

on new normal applications may be required prior to making such applications available

182 Experimental Evaluation of Mobile Botnet Detection

on legitimate marketplaces to enable fast offline re-training of ML classifiers in them.

With regards to botnets, the set up of Exp 2 was also more realistic than that of Exp 1 as

new botnets can appear at any time and there will always be some period before they are

detected and training ML classifiers in their traffic. Based on the outcomes of Exp 2, we

think that it is fair to say that OS calls based detection has merit since, even with one

atomic ML classifier (J48), we were able to reach a TPR of .85, and FPR of 0.05 and PRC

of 0.83. Also, TPR and FPR did not appear to vary across different botnet families in a

statistically significant way.

Nevertheless, there are some potential threats to the validity of the outcomes of our

experiments:

 In general, there is an active period for every botnet. Some botnets may change

the botmaster server or go through updates of the malicious code in the infected

applications. None of these was reflected in the system call dataset that we

considered.

 The availability of a botmaster for every botnet malware could not be

guaranteed in our experiments. Therefore, the considered botnets may have

further system activity that was not captured.

 The size of the system call dataset for different applications used in the

experiments was not same. Some of them were relatively small which was the

main reason for having low performance in some botnets.

4.7 Conclusion of experiments 183

4.7 Conclusion of experiments

1. Experiment I indicated that our system could be used for distinction of normal and

infected network traffic. The performance of J48 and KNN machine learning

algorithms is better than other machine learning algorithms which are relatively

feasible to classify the network traffic.

2. Experiment II indicated that our system could be used for detecting unknown

mobile botnets. Though the performance in the case of unknown botnets is worse

than in the case of known ones (see Experiment I), it still can disclose the

difference between the malware and benign network traffic.

3. Experiment III indicated the capability of MBotCS to produce a reasonably fast

detection/response once the ML-Analyser has been trained.

184 Conclusion

Chapter 5 Conclusion

In this final chapter, an overview of the main insights will be presented. Meanwhile,

we will also show advances gained and state how these have addressed the research

challenges and objectives. It is clear that mobile botnet detection is new research field,

many unresolved issues are however still apparent, for which we will provide pointers to

future research.

5.1 Discussion

In this section, we revisit the objectives set at the start of this research and discuss the

extent to which they were achieved.

1. Objective 1 (To undertake and produce a comprehensive survey of the botnet and

mobile botnet research) -- Finish: A comprehensive survey of the botnet and the

mobile botnet is presented in Chapter 2. There are five parts of the survey including

the basic knowledge, conventional botnet, network traffic based anomaly

detection, machine learning and mobile botnet. Because mobile botnet is the

primary target for our research, we introduced the mobile botnet separately. Both

for the conventional botnet and mobile botnet, four aspects are presented which

cover the accidents, creation techniques, detection technique and the comparison.

The detection techniques are the most important part of the survey. According to

5.1 Discussion 185

the Chapter 2, we can get an overall understanding of the current state of the botnet

and mobile botnet.

2. Objective 2 (To design a botnet detection system that can operate on mobile

devices, to detect unknown mobile botnet with network traffic and system call

based on the use of machine learning techniques.) – Finish: The design of mobile

botnet detection system MBotCS is presented in Chapter 3. We introduced the

architecture of MBotCS and explained the meaning and mechanism of every part

of the system. In order to evaluate the feasibility of the MBotCS system, we

perform a set of experiments in Section 4.1 to verify the machine learning can be

used for mobile detection botnet based on the network traffic and system call.

According to the result of the experiment, we can find that the system not only can

be used for classification of the normal and abnormal traffic and sequence of the

system call but also used for the unknown mobile botnet.

3. Objective 3 (To implement the new mobile botnet detection system on Android

devices, addressing the open issues identified in Section 1.2) – Finish: The

implementation of mobile botnet detection system MBotCS is also presented in

Chapter 3. The implementation of MBotCS system includes the user interface and

some key programme code for the specific importance functions. The experiment

in Section 4.5.4 also proves that the usability of the system on the mobile device.

We also deployed the source code of the MBotCS system the GitHub which is a

web-based Git repository hosting service.

4. Objective 4 (To provide an experimental evaluation of the approach.) – Finish:

There are six experiments described in Section 4.1 that include a very detailed

evaluation of the result. We use both tables and graphs to illustrate the performance

of every approach.

The hypotheses in Chapter 1 should also be reviewed:

186 Conclusion

1. Research hypotheses I – Validity: According to the result of experiments in

Section 4.5.2 and 4.5.3, the features packets/stream frame duration, packets/stream

packet size, and arguments number in HTTP request of network traffic can be used

for distinguishing normal and botnet Android application by using machine

learning.

2. Research hypotheses II – Invalidity: According to the basic statistical analysis

of system call dataset in Section 4.6.3, the feature of system call cannot distinguish

the botnet and normal Android application directly.

3. Research hypotheses III – Validity: The analysis in Section 4.6.2.2 indicated that

the only statistically significant difference between the botnets and normal

applications was related to the frequency of calls of different system functions.

Moreover, the result of experiments in Section 4.6.4 to 4.6.6 all prove that

frequency of system calls in different time interval can be used for distinguishing

normal and botnet Android application by using machine learning.

4. Research hypotheses IV – Validity: Based on the result of experiments in 4.1

which contains a detailed comparison of atomic algorithms and Box algorithms

present the advantage of aggregated machine learning algorithm. Especially for

UBUN scenario, BOX-HALF and BOX-HALF+ have better performance.

5. Research hypotheses V – Validity: According to the result of an experiment in

Section 4.5.4, the machine learning-based detection system has low energy effect

on the battery consumption of the device. Meanwhile it has acceptable execute

time.

5.2 Summary of contributions

Base on the comprehensive insight into botnet and survey for the mobile botnet, the

contributions of this research can be summarised as follows:

5.2 Summary of contributions 187

Contribution 1: A central contribution of this thesis is the design and implementation

of the mobile botnet detection system MBotCS. This system analyses the traffic data

passing through the mobile botnet and system call invoked by applications which are

based on machine learning. We described the architecture of MBotCS in Chapter 3 which

contains four parts (traffic data pre-processor, machine learning analyser, user interface

and training dataset). Based on the architecture, we also implement the system on Android

mobile device. According to the experiment, the system has a very low energy effect on

the battery consumption of the device with only 0.5% of the total battery during the period

of the experiment. Moreover,the J48 algorithm has fast average execution time with only

1.216 seconds.

Contribution 2: We performs a series of experiments that are superior to existing

research as follows: (a) The use of not only atomic but also box ML classifiers using

supervised learning. (b) The investigation of the performance of ML classifiers a wider

set of detection scenarios than existing work, namely detection of known botnets and

known normal applications (KBKN scenario), unknown botnets and known normal

applications (UBKN scenario), and unknown botnets and normal applications (UNUB

scenario). (c) The use of a comprehensive set of Android mobile botnets, which had not

been considered previously, without relying on any form of synthetic training data. (d)

The conduct of a thorough sensitivity analysis in which the statistical significance of

differences in detection performance measures on ML algorithms, system call

aggregation periods, normal and botnet applications, and different types of botnet families

have been explored.

Our publication also represents the outcomes and contribution to our research. We can

also collect feedback from other researchers by attending the conference and publish

papers:

188 Conclusion

MBotCS: A mobile Botnet detection system based on machine learning (Xin Meng and

George Spanoudakis)

5.3 Further research

Currently, we are investigating the possibility of analysing traffic across networks of

mobile devices (as opposed to single devices) and traffic between botnets and the system

software of the device to see if we get any performance gains. We are also planning more

extensive experimental evaluations with larger data sets. Finally, we want to explore the

use of unsupervised classification and contrast its outcomes with supervised classification

and investigate the reasons underpinning the differences in the performance of the basic

ML algorithms.

5.3.1 Future research directions

1. Improvement the performance of machine learning: We have used five atomic

machine learning algorithms and six aggregation algorithms in our experiments.

The evaluations have performed for these algorithms to find that the performance

is different from these algorithms. So we can know that it is still possible to

improve the performance of the detection through improving or changing

machining learning algorithms. Therefore, one of the future research directions to

try other machine learning algorithms for the classification and improved current

machine learning algorithms. More specifically, the unsupervised and deep

learning machine learning algorithms should be considered in the future research.

2. Improvement of the training dataset: We have used ten existing mobile botnet

malware families (nearly 170 applications) as a sample for training dataset. There

is a part of the MalGenome project of a mobile botnet. So to make sure that the

method can be used for a general mobile botnet, we need to choose more type of

5.3 Further research 189

mobile botnet malware application to perform the experiments in the future. The

other reason to add more types of malware family is to increase the robustness of

machine learning analysis. As we know that the malicious code on bots could be

updated by the botmaster periodically. However more types of botnet malware can

cover more patterns of malicious behaviours. Then the experiments result could be

more stable even thinking about the scalability of the application.

3. Improvement of the attributes selection of network traffic for the machine learning:

According to the Section 4.5.1.1, we select some features for training which

include Packets/Stream Frame Duration, Packets/Stream Packet Size, and

Arguments Number in HTTP Request URL. These features are part of attributes

of the network traffic. In order to improve the performance of the machine learning

algorithms, we can study the distinction between normal and abnormal traffic to

dig more features for machine learning.

4. Further study to investigate detection based on both system calls (internal activity)

and network traffic (external communications) and explore potential performances

gains. Meanwhile perform extensive experimental evaluations Android devices in

order to evaluate the implications of the integrated approach to the CPU, memory

and battery of the device.

5.3.2 Planned and related work within MBotCS

1. Improvement of the system on the Android mobile device.

The rudimentary implementation of the MBotCS is presented in this thesis. We use

the tPacketCapture to realise the network traffic monitor and WEKA to realise the

machine learning algorithms. There are also some improving points for the

implementation of MBotCS.

190 Conclusion

 Through studying the network traffic capture techniques, implementation for the

function for the real-time network traffic on a mobile device. Under the current

knowledge, we can create a connection of VPN on the mobile device and let all

the traffic pass through this connection to record.

 Reimplementation the machine learning algorithm by using native programme

language to accelerate the computational speed which can take full advantage of

most out the limited resources on the mobile device.

 Adding the programme configuration system and the warning system, which can

improve the user experience.

2. The open standards for mobile botnet detection

According to analysis about the previous botnet detection, we can find that comparison

of the different techniques is one challenge. The most important reason is that there is not

open standards dataset for testing these techniques. Therefore, the extension of the

MBotCS can make contributions for the open standards for mobile botnet detection.

These are several points should be paid attention in the future.

 Development the API to visit the training dataset and create access standard

for a different programming language.

 Establishment of a mechanism for collection training dataset to expand the size

of training dataset and update the training dataset.

 Thinking about the privacy and confidentiality in the datasets captured from

the mobile devices.

References 191

References

1. Brian, J.L. DEFENSE DEPARTMENT CYBER EFFORTS: DOD Faces
Challenges In Its Cyber Activities. 2011 [cited 2015 24 August]; Available from:
http://www.gao.gov/products/GAO-11-75.

2. Weber, T. Criminals ‘may overwhelm the web. 2007 [cited 2015 24 August];
Available from: http://news.bbc.co.uk/1/hi/business/6298641.stm.

3. AsSadhan, B., et al. Detecting botnets using command and control traffic. in
Network Computing and Applications, 2009. NCA 2009. Eighth IEEE
International Symposium on. 2009. IEEE.

4. Miller, R. Botnet with 10,000 Machines Shut Down. 2004 [cited 2015 24 August];
Available from:
http://news.netcraft.com/archives/2004/09/08/botnet_with_10000_machines_shu
t_down.html.

5. BBC. Zombie plague sweeps the internet. 2008 [cited 2015 24 August]; Available
from: http://news.bbc.co.uk/1/hi/technology/7596676.stm.

6. BBC. Spam 'produces 17m tons of CO2'. 2009 [cited 2015 24 August]; Available
from: http://news.bbc.co.uk/1/hi/technology/8001749.stm.

7. Liu, F. MDK: The Largest Mobile Botnet in China. 2013 [cited 2015 24 August];
Available from: http://www.symantec.com/connect/ko/blogs/mdk-largest-
mobile-botnet-china.

8. Muncaster, P. Citadel botnet resurges to storm Japanese PCs. 2013 [cited 2015
24 August]; Available from:
http://www.theregister.co.uk/2013/09/04/citadel_wreaks_havoc_in_japan/.

9. Bisson, D. Attackers Launched 124,000 DDoS Events Per Week Over Past 18
Months, Finds Report. 2016 [cited 2017 June 18]; Available from:
https://www.tripwire.com/state-of-security/incident-detection/attackers-
launched-124000-ddos-events-per-week-over-past-18-months-finds-report/.

192 References

10. Bisson, D. The 5 Most Significant DDoS Attacks of 2016. 2016 [cited 2017 June
18]; Available from: https://www.tripwire.com/state-of-security/security-data-
protection/cyber-security/5-significant-ddos-attacks-2016/.

11. Woolf, N. DDoS attack that disrupted internet was largest of its kind in history,
experts say. 2016 [cited 2017 June 18]; Available from:
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-
botnet.

12. Mimoso, M. MIRAI BOTS MORE THAN DOUBLE SINCE SOURCE CODE
RELEASE. 2016 [cited 2017 June 18]; Available from:
https://threatpost.com/mirai-bots-more-than-double-since-source-code-
release/121368/.

13. Labs, L.T.R. How the Grinch Stole IoT. 2016 [cited 2017 June 18]; Available
from: http://www.netformation.com/level-3-pov/how-the-grinch-stole-iot.

14. Christiaan Beek, D.F., Paula Greve,Yashashree Gund, Francisca Moreno, Eric
Peterson, Craig Schmugar, Rick Simon, Dan Sommer, Bing Sun, Ravikant Tiwari,
Vincent Weafer, McAfee Labs Threats Report. 2017, McAfee Labs.

15. Bisson, D. 100,000 Bots Infected with Mirai Malware Behind Dyn DDoS Attack.
2016 [cited 2017 June 18]; Available from: https://www.tripwire.com/state-of-
security/latest-security-news/100000-bots-infected-mirai-malware-caused-dyn-
ddos-attack/.

16. Paganini, P. For the first time massive DDoS attacks hit Russian banks in 2016.
2016 [cited 2017 June 18]; Available from:
http://securityaffairs.co/wordpress/53312/cyber-crime/ddos-attacks-russia-
banks.html.

17. Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2014-2019. 2015.

18. Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2016–2021 White Paper. 2017.

19. FRAMINGHAM, M., Worldwide Smartphone Market Will See the First Single-
Digit Growth Year on Record, According to IDC. 2015.

20. Christian Funk, M.G., KASPERSKY SECURITY BULLETIN 2013. 2013,
Kaspersky Lab Global Research and analysis team.

21. Unuchek, R., Mobile malware evolution 2016. 2017, securelist.

22. Porras, P., H. Saidi, and V. Yegneswaran, An analysis of the ikee. b iphone botnet,
in Security and Privacy in Mobile Information and Communication Systems.
2010, Springer. p. 141-152.

References 193

23. Zorz, Z., Android Trojan with botnet capabilities found in the wild. 2014.

24. Strazzere, T., The new NotCompatible: Sophisticated and evasive threat harbors
the potential to compromise enterprise networks. 2014.

25. Kalige, E., D. Burkey, and I. Director, A case study of Eurograbber: How 36
million euros was stolen via malware. Versafe (White paper), 2012.

26. Seo, S.-H., et al., Detecting mobile malware threats to homeland security through
static analysis. Journal of Network and Computer Applications, 2014. 38: p. 43-
53.

27. Eslahi, M., R. Salleh, and N.B. Anuar. MoBots: A new generation of botnets on
mobile devices and networks. in Computer Applications and Industrial
Electronics (ISCAIE), 2012 IEEE Symposium on. 2012. IEEE.

28. Xiang, C., et al. Andbot: towards advanced mobile botnets. in Proceedings of the
4th USENIX conference on Large-scale exploits and emergent threats. 2011.
USENIX Association.

29. Batyuk, L., et al. Using static analysis for automatic assessment and mitigation of
unwanted and malicious activities within Android applications. in Malicious and
Unwanted Software (MALWARE), 2011 6th International Conference on. 2011.
IEEE.

30. Anwar, S., et al. A static approach towards mobile botnet detection. in Electronic
Design (ICED), 2016 3rd International Conference on. 2016. IEEE.

31. Zhou, W., et al. Fast, scalable detection of piggybacked mobile applications. in
Proceedings of the third ACM conference on Data and application security and
privacy. 2013. ACM.

32. Ham, Y.J., et al. Activation pattern analysis on malicious android mobile
applications. in Proc. 2013 Firnst International Conference on Artificial
Intelligence, Modelling \& Simulation. 2013.

33. Ham, Y.J., et al., Android mobile application system call event pattern analysis
for determination of malicious attack. International Journal of Security and Its
Applications, 2014. 8(1): p. 231-246.

34. Shabtai, A., U. Kanonov, and Y. Elovici. Detection, Alert and Response to
Malicious Behavior in Mobile Devices: Knowledge-Based Approach. in Recent
Advances in Intrusion Detection. 2009. Springer.

35. Vural, I. and H. Venter, Mobile botnet detection using network forensics, in
Future Internet-FIS 2010. 2010, Springer. p. 57-67.

194 References

36. Johnson, E. and I. Traore. SMS Botnet Detection for Android Devices through
Intent Capture and Modeling. in Reliable Distributed Systems Workshop
(SRDSW), 2015 IEEE 34th Symposium on. 2015. IEEE.

37. Schmidt, A.-D., et al., Monitoring smartphones for anomaly detection. Mobile
Networks and Applications, 2009. 14(1): p. 92-106.

38. Alzahrani, A.J. and A.A. Ghorbani. SMS-Based Mobile Botnet Detection Module.
in IT Convergence and Security (ICITCS), 2016 6th International Conference on.
2016. IEEE.

39. Feizollah, A., et al., A study of machine learning classifiers for anomaly-based
mobile botnet detection. Malaysian Journal of Computer Science, 2014. 26(4).

40. Meng Xin, S.G., MBotCS: A Mobile Botnet Detection System Based on Machine
Learning, in 10th International Conference on Risks and Security of Internet and
Systems (CRiSIS 2015). July 2015: Greece.

41. Karim, A., R. Salleh, and M.K. Khan, SMARTbot: A Behavioral Analysis
Framework Augmented with Machine Learning to Identify Mobile Botnet
Applications. PLoS ONE, 2016. 11(3): p. e0150077.

42. Singh, K., et al., Evaluating bluetooth as a medium for botnet command and
control, in Detection of Intrusions and Malware, and Vulnerability Assessment.
2010, Springer. p. 61-80.

43. Zhou, Y. and X. Jiang, An analysis of the anserverbot trojan. 2011.

44. Hamandi, K., et al. Android SMS botnet: a new perspective. in Proceedings of the
10th ACM international symposium on Mobility management and wireless access.
2012. ACM.

45. Faghani, M.R. and U.T. Nguyen. Socellbot: A new botnet design to infect
smartphones via online social networking. in Electrical & Computer Engineering
(CCECE), 2012 25th IEEE Canadian Conference on. 2012. IEEE.

46. Geng, G., et al., The design of sms based heterogeneous mobile botnet. Journal of
Computers, 2012. 7(1): p. 235-243.

47. Geng, G., et al. An improved sms based heterogeneous mobile botnet model. in
Information and Automation (ICIA), 2011 IEEE International Conference on.
2011. IEEE.

48. Hasan, R., et al. Sensing-enabled channels for hard-to-detect command and
control of mobile devices. in Proceedings of the 8th ACM SIGSAC symposium on
Information, computer and communications security. 2013. ACM.

References 195

49. Hua, J. and K. Sakurai, A sms-based mobile botnet using flooding algorithm, in
Information Security Theory and Practice. Security and Privacy of Mobile
Devices in Wireless Communication. 2011, Springer. p. 264-279.

50. Hua, J. and K. Sakurai, Botnet command and control based on Short Message
Service and human mobility. Computer Networks, 2013. 57(2): p. 579-597.

51. Jiang, R.M., et al. JokerBot–An Android-Based Botnet. in Applied Mechanics and
Materials. 2013. Trans Tech Publ.

52. Li, Y., et al., Control Method of Twitter-and SMS-Based Mobile Botnet, in
Trustworthy Computing and Services. 2013, Springer. p. 644-650.

53. Mulliner, C. and J.-P. Seifert. Rise of the iBots: Owning a telco network. in
Malicious and Unwanted Software (MALWARE), 2010 5th International
Conference on. 2010. IEEE.

54. Pieterse, H. and M. Olivier. Design of a hybrid command and control mobile
botnet. in Proceedings of the 8th International Conference on Information
Warfare and Security: ICIW 2013. 2013. Academic Conferences Limited.

55. Shuai, W., et al., S-URL Flux: A Novel C&C Protocol for Mobile Botnets, in
Trustworthy Computing and Services. 2013, Springer. p. 412-419.

56. Zeng, Y., On detection of current and next-generation botnets. 2012, The
University of Michigan.

57. Zeng, Y., K.G. Shin, and X. Hu. Design of SMS commanded-and-controlled and
P2P-structured mobile botnets. in Proceedings of the fifth ACM conference on
Security and Privacy in Wireless and Mobile Networks. 2012. ACM.

58. Zhao, S., et al. Cloud-based push-styled mobile botnets: a case study of exploiting
the cloud to device messaging service. in Proceedings of the 28th Annual
Computer Security Applications Conference. 2012. ACM.

59. Weidman, G., Transparent botnet command and control for smartphones over
sms. Shmoocon 2011, 2011.

60. McCarty, B., Botnets: Big and bigger. Security & Privacy, IEEE, 2003. 1(4): p.
87-90.

61. Puri, R., Bots & botnet: An overview. SANS Institute, 2003. 3: p. 58.

62. Abu Rajab, M., et al. A multifaceted approach to understanding the botnet
phenomenon. in Proceedings of the 6th ACM SIGCOMM conference on Internet
measurement. 2006. ACM.

63. Zhu, Z., et al. Botnet research survey. in Computer Software and Applications,
2008. COMPSAC'08. 32nd Annual IEEE International. 2008. IEEE.

196 References

64. Liu, J., et al. Botnet: classification, attacks, detection, tracing, and preventive
measures. in EURASIP journal on wireless communications and networking.
2009. IEEE Computer Society.

65. Li, C., W. Jiang, and X. Zou. Botnet: Survey and case study. in Innovative
Computing, Information and Control (ICICIC), 2009 Fourth International
Conference on. 2009. IEEE.

66. Symantec, Spybot worm. Symantec, 2003.

67. Shin, Y.-H. and E.-G. Im. A survey of botnet: consequences, defenses and
challenges. in Joint Workshop on Internet Security. 2009.

68. Zhang, L., et al. A survey on latest botnet attack and defense. in Trust, Security
and Privacy in Computing and Communications (TrustCom), 2011 IEEE 10th
International Conference on. 2011. IEEE.

69. Silva, S.S., et al., Botnets: A survey. Computer Networks, 2013. 57(2): p. 378-
403.

70. Dagon, D., et al. A taxonomy of botnet structures. in Computer Security
Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual. 2007. IEEE.

71. Zeidanloo, H.R., et al. A taxonomy of botnet detection techniques. in Computer
Science and Information Technology (ICCSIT), 2010 3rd IEEE International
Conference on. 2010. IEEE.

72. Zeidanloo, H.R. and A.A. Manaf. Botnet command and control mechanisms. in
Computer and Electrical Engineering, 2009. ICCEE'09. Second International
Conference on. 2009. IEEE.

73. Czosseck, C. and K. Podins. A Usage-Centric Botnet Taxonomy. in Proceedings
of the 10th European Conference on Information Warfare and Security. 2011.

74. Hachem, N., et al. Botnets: lifecycle and taxonomy. in Network and Information
Systems Security (SAR-SSI), 2011 Conference on. 2011. IEEE.

75. Pagliery, J. Nearly one million Android phones infected by hackers. 2016 [cited
2017; Available from: http://money.cnn.com/2016/11/30/technology/android-
phones-infected/index.html.

76. wikipedia. Botnet. 2015 [cited 2015 24 August]; Available from:
https://en.wikipedia.org/wiki/Botnet.

77. Genachowski, F.C.J., Final Report US Anti-Bot Code of Conduct (ABCs) for
Internet Service Providers (ISPs). 2012.

78. Ianelli, N. and A. Hackworth, Botnets as a vehicle for online crime. FORENSIC
COMPUTER SCIENCE IJoFCS, 2005: p. 19.

References 197

79. OECD, Proactive Policy Measures by Internet Service Providers against Botnets.
2012: OECD Publishing.

80. OECD, Malicious software(Malware):A Security Threat to the Internet Economy.
2008.

81. Feily, M., A. Shahrestani, and S. Ramadass. A survey of botnet and botnet
detection. in Emerging Security Information, Systems and Technologies, 2009.
SECURWARE'09. Third International Conference on. 2009. IEEE.

82. Bailey, M., et al. A survey of botnet technology and defenses. in Conference For
Homeland Security, 2009. CATCH'09. Cybersecurity Applications & Technology.
2009. IEEE.

83. Oikarinen, J. and D. Reed, Internet relay chat protocol. 1993.

84. Berners-Lee, T., R. Fielding, and H. Frystyk, Hypertext transfer protocol--
HTTP/1.0. 1996.

85. Wilde, E. and A. Vaha-Sipila, Uri scheme for global system for mobile
communications (gsm) short message service (sms). 2010.

86. Barford, P. and V. Yegneswaran, An inside look at botnets, in Malware Detection.
2007, Springer. p. 171-191.

87. Cooke, E., F. Jahanian, and D. McPherson. The zombie roundup: Understanding,
detecting, and disrupting botnets. in Proceedings of the USENIX SRUTI
Workshop. 2005.

88. Wang, P., S. Sparks, and C.C. Zou, An advanced hybrid peer-to-peer botnet.
Dependable and Secure Computing, IEEE Transactions on, 2010. 7(2): p. 113-
127.

89. Ollmann, G., Botnet communication topologies. Retrieved September, 2009. 30:
p. 2009.

90. Leyden, J. IRC botnets dying off. 2010 [cited 2015 Symantec]; Available from:
http://www.theregister.co.uk/2010/11/16/irc_botnets_dying_off/.

91. Dittrich, D. and S. Dietrich. P2P as botnet command and control: a deeper
insight. in Malicious and Unwanted Software, 2008. MALWARE 2008. 3rd
International Conference on. 2008. IEEE.

92. Wikipedia. Push technology. 2015 [cited 2015 24 August]; Available from:
https://en.wikipedia.org/wiki/Push_technology.

93. Apple. Apple’s Push Notification Service. 2015 [cited 2015 24 August];
Available from:
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conc
eptual/RemoteNotificationsPG/Chapters/ApplePushService.html.

198 References

94. BlackBerry. Blackberry’s Push Service. 2013 2013-04-14T19:12:54Z [cited 2015
24 August]; Available from: http://developer.blackberry.com/services/push/.

95. Google. Google Cloud Messaging. 2014 [cited 2014 24 August]; Available from:
https://developers.google.com/cloud-messaging/.

96. Microsoft. Push Notifications (Windows Phone). 2015 [cited 2015 24 August];
Available from: https://msdn.microsoft.com/en-us/library/hh221549.aspx.

97. Nokia. Nokia’s Notifications API (NNA). 2013 [cited 2014 August]; Available
from: https://projects.developer.nokia.com/notificationsapi/wiki.

98. Google. Android Cloud to Device Messaging Framework. 2012 [cited 2013 10
September]; Available from: Android Cloud to Device Messaging Framework.

99. Sharma, R.K. and G.S. Chandel, Botnet detection and resolution challenges: A
survey paper. Int. J. Comput. Inf. Technol. Bioinforma, 2009. 1: p. 10-15.

100. Schiller, C. and J.R. Binkley, Botnets: The killer web applications. 2011:
Syngress.

101. Cisco. What Is the Difference: Viruses, Worms, Trojans, and Bots? 2015 [cited
2018 14 April]; Available from: https://www.cisco.com/c/en/us/about/security-
center/virus-differences.html.

102. Symantec. PrettyPark.Worm. 2007 [cited 2018 14 April]; Available from:
https://www.symantec.com/security_response/writeup.jsp?docid=2000-121508-
3334-99.

103. Symantec. What is the difference between viruses, worms, and Trojans? 2016
[cited 2018 14 April]; Available from:
https://support.symantec.com/en_US/article.TECH98539.html.

104. Symantec. JS.Debeski.Trojan. 2007 [cited 2018 14 April]; Available from:
https://www.symantec.com/security_response/writeup.jsp?docid=2003-100216-
0712-99.

105. Tiwari, A. What Is The Difference: Viruses, Worms, Ransomware, Trojans, Bots,
Malware, Spyware, Etc? 2015 [cited 2018 14 April]; Available from:
https://fossbytes.com/difference-viruses-worms-ransomware-trojans-bots-
malware-spyware-etc/.

106. Rouse, M. Zeus Trojan (Zbot). 2012 [cited 2018 14 April]; Available from:
https://searchsecurity.techtarget.com/definition/Zeus-Trojan-Zbot.

107. Rumen, S., R. Jonathan, and S. Thomas. Eggheads. 2010 [cited 2015 24 August];
Available from: http://www.eggheads.org/.

108. Wikipedia. Agobot. 2015 [cited 2015 24 August]; Available from:
https://en.wikipedia.org/wiki/Agobot.

References 199

109. Kharouni, L., SDBOT IRC botnet continues to make waves. A Trend Micro White
Paper, 2009: p. 1-20.

110. infectionvectors.com. Agobot and the Kitchen Sink. 2014 [cited 2015 24 August];
Available from:
http://www.itk.ilstu.edu/faculty/ytang/botnet/Agobot_&_the_Kit-chen_Sink.pdf.

111. McAfee. W32/Sdbot.worm. 2013 [cited 2015 24 August]; Available from:
http://home.mcafee.com/VirusInfo/VirusProfile.aspx?key=3948010.

112. Yen, T.-F. and M.K. Reiter, Traffic aggregation for malware detection, in
Detection of Intrusions and Malware, and Vulnerability Assessment. 2008,
Springer. p. 207-227.

113. Yury, M. The Bagle botnet. 2005 [cited 2015 24 August]; Available from:
https://securelist.com/analysis/36046/the-bagle-botnet/.

114. Miller, C., The Rustock botnet spams again. SC Magazine, July, 2008. 25.

115. Microsoft. Win32/Rustock. 2007 [cited 2015 24 August]; Available from:
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name
=Win32/Rustock.

116. John, E.D. Srizbi Becomes World's Largest Botnet. 2008 [cited 2015 24 August];
Available from: http://www.pcworld.com/article/146017/article.html.

117. Brian, P. IT Security & Network Security News & Reviews: The Rise and Fall of
the Srizbi Botnet. 2009 [cited 2015 24 August]; Available from:
http://www.eweek.com/c/a/Security/The-Rise-and-Fall-of-the-Srizbi-Botnet.

118. McAfee. W32/Akbot. 2006 [cited 2015 24 August]; Available from:
http://www.mcafee.com/threat-intelligence/malware/default.aspx?id=138050.

119. McAfee. Virus Profile: W32/Akbot!d. 2010 [cited 2015 24 August]; Available
from: http://home.mcafee.com/virusinfo/virusprofile.aspx?key=260585.

120. TrendMirco. CUTWAIL. 2009 [cited 2015 24 August]; Available from:
http://about-
threats.trendmicro.com/malware.aspx?language=au&name=CUTWAIL.

121. Sousa, R., et al. Analyzing the behavior of top spam botnets. in Communications
(ICC), 2012 IEEE International Conference on. 2012. IEEE.

122. Stone-Gross, B., et al. The underground economy of spam: A botmaster’s
perspective of coordinating large-scale spam campaigns. in USENIX workshop
on large-scale exploits and emergent threats (LEET). 2011.

123. Stevens, K. and D. Jackson, Zeus banking trojan report. Atlanta, DELL
Secureworks. http://www. secureworks. com/research/threats/zeus, 2010.

200 References

124. Falliere, N. and E. Chien, Zeus: King of the bots. Symantec Security Respons e
(http://bit. ly/3VyFV1), 2009.

125. Gary, W. UAB Computer Forensics Links Fake Online Postcards to Most
Prevalent U.S. Computer Virus. 2009 [cited 2015 24 August]; Available from:
https://www.uab.edu/newsarchive/66204-uab-computer-forensics-links-fake-
online-postcards-to-most-prevalent-u-s-computer-virus.

126. Steven, M. Microsoft identifies two Zeus botnet crime ring suspects. 2012 [cited
2015 24 August]; Available from: http://www.cnet.com/news/microsoft-
identifies-two-zeus-botnet-crime-ring-suspects/.

127. Wikipedia. Zeus (trojan horse). 2015 [cited 2015 24 August]; Available from:
https://en.wikipedia.org/wiki/Zeus_(trojan_horse.

128. Larkin, E. Storm Worm’s virulence may change tactics. Network World (August
2, 2007) 2007 [cited 2015 24 August].

129. Stewart, J., Inside the storm: Protocols and encryption of the storm botnet. Black
Hat USA, 2008.

130. Stover, S., et al., Analysis of the Storm and Nugache Trojans: P2P is here.
USENIX; login, 2007. 32(6): p. 18-27.

131. Holz, T., et al., Measurements and Mitigation of Peer-to-Peer-based Botnets: A
Case Study on Storm Worm. LEET, 2008. 8(1): p. 1-9.

132. Sinclair, G., C. Nunnery, and B.B. Kang. The waledac protocol: The how and
why. in Malicious and Unwanted Software (MALWARE), 2009 4th International
Conference on. 2009. IEEE.

133. Baltazar, J., J. Costoya, and R. Flores, Infiltrating WALEDAC Botnet's Covert
Operations. TREND MICRO, 2009.

134. Stock, B., et al. Walowdac-analysis of a peer-to-peer botnet. in Computer
Network Defense (EC2ND), 2009 European Conference on. 2009. IEEE.

135. Nicolas, F. The Sality Botnet. 2010 [cited 2015 24 August]; Available from:
http://www.symantec.com/connect/blogs/sality-botnet.

136. Falliere, N., Sality: Story of a peer-to-peer viral network. Rapport technique,
Symantec Corporation, 2011.

137. wikipedia. Conficker. 2015 [cited 2015 24 August]; Available from:
https://en.wikipedia.org/wiki/Conficker.

138. Robert, M. Conficker worm gets an evil twin. 2009 [cited 2015 24 August];
Available from: http://www.computerworld.com/article/2531360/network-
security/conficker-worm-gets-an-evil-twin.html.

References 201

139. McMillan, R., Experts bicker over conficker numbers. Techworld, April, 2009.
15.

140. AmCham, V., Computing Tips: "Amazing" Downadup worm (Conficker) has
infected 10 million PCs. 2012. 2015.

141. Porras, P., Inside risks reflections on Conficker. Communications of the ACM,
2009. 52(10): p. 23-24.

142. Nahorney, B., The Downadup Codex a comprehensive guide to the threat’s
mechanics. Symantec| Security Response, 2009.

143. Villeneuve, N., J. dela Torre, and D. Sancho, Asprox Reborn. 2013.

144. Shin, Y., S. Myers, and M. Gupta, A case study on asprox infection dynamics, in
Detection of Intrusions and Malware, and Vulnerability Assessment. 2009,
Springer. p. 1-20.

145. Borgaonkar, R. An analysis of the asprox botnet. in Emerging Security
Information Systems and Technologies (SECURWARE), 2010 Fourth
International Conference on. 2010. IEEE.

146. Symantec. Trojan.Asprox. 2007 [cited 2015 24 August]; Available from:
http://www.symantec.com/security_response/writeup.jsp?docid=2007-060812-
4603-99.

147. Brian, K. Who Is the 'Festi' Botmaster? 2012 [cited 2015 24 August]; Available
from: http://krebsonsecurity.com/2012/06/who-is-the-festi-botmaster/.

148. Eugene, R. and M. Aleksandr. King of Spam: Festi Botnet Analysis. 2012 [cited
2015 24 August]; Available from: http://www.welivesecurity.com/wp-
content/media_files/king-of-spam-festi-botnet-analysis.pdf.

149. Jeremy, K. Spamhaus Declares Grum Botnet Dead, but Festi Surges. 2012 [cited
2015 24 August]; Available from:
http://www.pcworld.com/article/260984/spamhaus_declares_grum_botnet_dead
_but_festi_surges.html.

150. Matrosov, A. and E. Rodionov, Festi Botnet Analysis & Investigation. 2011.

151. Brian, K. Inside the Grum Botnet. 2012 [cited 2015 24 August]; Available from:
http://krebsonsecurity.com/2012/08/inside-the-grum-botnet/.

152. Mushtaq, A. Grum, World¡¯s Third-Largest Botnet, Knocked Down. 2012 [cited
2015 24 August]; Available from: https://www.fireeye.com/blog/threat-
research/2012/07/grum-botnet-no-longer-safe-havens.html.

153. Golovanov, S. and I. Soumenkov, TDL4 top bot. Kaspersky Lab Analysis, 2011.

202 References

154. Greengard, S., The war against botnets. Communications of the ACM, 2012.
55(2): p. 16-18.

155. Luo, Y., Efficiency Study of Sybil Attack on P2P Botnets. 2012, Concordia
University Montreal, Quebec, Canada.

156. Elinor, M. Microsoft halts another botnet: Kelihos. 2011 [cited 2015 24 August];
Available from: http://news.cnet.com/8301-1009_3-20112289-83/microsoft-
halts-another-botnet-kelihos/.

157. Werner, T., Botnet Shutdown Success Story: How Kaspersky Lab Disabled the
Hlux/Kelihos Botnet, 2011. Technical Repo rt: http://www. securelist.
com/en/blog/208193137, 2011.

158. Don, R. 'Chameleon Botnet' takes $6-million-a-month in ad money. 2013 [cited
2015 24 August]; Available from: http://www.cnet.com/news/chameleon-botnet-
takes-6-million-a-month-in-ad-money/.

159. Smith, M.L., Prosecuting the Undead: Federal Criminal Law in a World of
Zombies. 2013.

160. Spider.io. Discovered: Botnet Costing Display Advertisers over Six Million
Dollars per Month. 2013 [cited 2015 24 August]; Available from:
http://www.spider.io/blog/2013/03/chameleon-botnet/.

161. Starnberger, G., C. Kruegel, and E. Kirda. Overbot: a botnet protocol based on
Kademlia. in Proceedings of the 4th international conference on Security and
privacy in communication netowrks. 2008. ACM.

162. Liu, C., et al. A recoverable hybrid C&C botnet. in Malicious and Unwanted
Software (MALWARE), 2011 6th International Conference on. 2011. IEEE.

163. Tyagi, A.K. and G. Aghila, A wide scale survey on botnet. International Journal
of Computer Applications, 2011. 34(9): p. 9-22.

164. Les, C. Passive vs. Active Monitoring. 2001 [cited 2015 24 August]; Available
from: http://www.slac.stanford.edu/comp/net/wan-mon/passive-vs-active.html.

165. Vrable, M., et al., Scalability, fidelity, and containment in the potemkin virtual
honeyfarm. ACM SIGOPS Operating Systems Review, 2005. 39(5): p. 148-162.

166. Roesch, M. Snort: Lightweight Intrusion Detection for Networks. in LISA. 1999.

167. Goebel, J. and T. Holz. Rishi: Identify bot contaminated hosts by irc nickname
evaluation. in Proceedings of the first conference on First Workshop on Hot
Topics in Understanding Botnets. 2007. Cambridge, MA.

168. Kugisaki, Y., et al. Bot detection based on traffic analysis. in Intelligent Pervasive
Computing, 2007. IPC. The 2007 International Conference on. 2007. IEEE.

References 203

169. Wurzinger, P., et al., Automatically generating models for botnet detection, in
Computer Security–ESORICS 2009. 2009, Springer. p. 232-249.

170. Aviv, A.J. and A. Haeberlen. Challenges in Experimenting with Botnet Detection
Systems. in CSET. 2011.

171. Brezo, F., et al. Challenges and limitations in current botnet detection. in
Database and Expert Systems Applications (DEXA), 2011 22nd International
Workshop on. 2011. IEEE.

172. Lin, B., et al., Botnet Emulation: Challenges and Techniques, in Emerging
Technologies for Information Systems, Computing, and Management. 2013,
Springer. p. 897-908.

173. Barsamian, A.V., Network characterization for botnet detection using statistical-
behavioral methods. 2009, Dartmouth College.

174. François, J., S. Wang, and T. Engel, BotTrack: tracking botnets using NetFlow
and PageRank, in NETWORKING 2011. 2011, Springer. p. 1-14.

175. Gu, G., J. Zhang, and W. Lee, BotSniffer: Detecting botnet command and control
channels in network traffic. 2008.

176. Houmansadr, A. and N. Borisov, Botmosaic: Collaborative network watermark
for botnet detection. arXiv preprint arXiv:1203.1568, 2012.

177. Liu, D., et al. A P2P-botnet detection model and algorithms based on network
streams analysis. in Future Information Technology and Management
Engineering (FITME), 2010 International Conference on. 2010. IEEE.

178. Strayer, W.T., et al., Botnet detection based on network behavior, in Botnet
Detection. 2008, Springer. p. 1-24.

179. Gu, G., et al. BotMiner: Clustering Analysis of Network Traffic for Protocol-and
Structure-Independent Botnet Detection. in USENIX Security Symposium. 2008.

180. Stoll, C., The cuckoo's egg: tracking a spy through the maze of computer
espionage. 2005: Simon and Schuster.

181. Hongyan, Z., Research and design of Botnet detection system. 2011, Beijing
University of Posts and Telecommunications.

182. Patil, E., Analysis of rxbot. 2009.

183. Paxson, V., Bro: a system for detecting network intruders in real-time. Computer
networks, 1999. 31(23): p. 2435-2463.

184. Al-Hammadi, Y. and U. Aickelin, Detecting botnets through log correlation.
arXiv preprint arXiv:1001.2665, 2010.

204 References

185. Al-Hammadi, Y.A.A., Behavioural correlation for malicious bot detection. 2010,
University of Nottingham.

186. Davis, N., Botnet detection using correlated anomalies. Technical University of
Denmark Informatics and Mathematical Modelling, 2012.

187. Felix, J., C. Joseph, and A.A. Ghorbani, Group behavior metrics for p2p botnet
detection, in Information and Communications Security. 2012, Springer. p. 93-
104.

188. Thakur, M.R., A Distributed and Cooperative Approach to Botnet Detection
Using Gossip Protocol. arXiv preprint arXiv:1207.0122, 2012.

189. Zeidanloo, H.R. and A.B.A. Manaf, Botnet detection by monitoring similar
communication patterns. arXiv preprint arXiv:1004.1232, 2010.

190. Binkley, J.R. and S. Singh. An algorithm for anomaly-based botnet detection. in
Proceedings of USENIX Steps to Reducing Unwanted Traffic on the Internet
Workshop (SRUTI). 2006.

191. Choi, H., et al. Botnet detection by monitoring group activities in DNS traffic. in
Computer and Information Technology, 2007. CIT 2007. 7th IEEE International
Conference on. 2007. IEEE.

192. Gu, G., et al. BotHunter: Detecting Malware Infection Through IDS-Driven
Dialog Correlation. in Usenix Security. 2007.

193. Gu, G., et al. Active botnet probing to identify obscure command and control
channels. in Computer Security Applications Conference, 2009. ACSAC'09.
Annual. 2009. IEEE.

194. Xu, K., et al. Detecting infection onset with behavior-based policies. in Network
and System Security (NSS), 2011 5th International Conference on. 2011. IEEE.

195. Bilge, L., et al. Disclosure: detecting botnet command and control servers
through large-scale netflow analysis. in Proceedings of the 28th Annual
Computer Security Applications Conference. 2012. ACM.

196. javvin. Information, Computer and Network Security Terms Glossary and
Dictionary. 2013 [cited 2014 24 August]; Available from:
http://www.javvin.com/networksecurity/CER.html.

197. Elovici, Y., et al., Applying machine learning techniques for detection of
malicious code in network traffic, in KI 2007: Advances in Artificial Intelligence.
2007, Springer. p. 44-50.

198. Liu, L., et al., Bottracer: Execution-based bot-like malware detection, in
Information Security. 2008, Springer. p. 97-113.

References 205

199. Livadas, C., et al. Usilng machine learning technliques to identify botnet traffic.
in Local Computer Networks, Proceedings 2006 31st IEEE Conference on. 2006.
IEEE.

200. Fawcett, T., An introduction to ROC analysis. Pattern recognition letters, 2006.
27(8): p. 861-874.

201. Francois, J., et al. BotCloud: detecting botnets using MapReduce. in Information
Forensics and Security (WIFS), 2011 IEEE International Workshop on. 2011.
IEEE.

202. Wang, K. and S.J. Stolfo. Anomalous payload-based network intrusion detection.
in Recent Advances in Intrusion Detection. 2004. Springer.

203. Anderson, J.P., Computer security threat monitoring and surveillance. 1980,
Technical report, James P. Anderson Company, Fort Washington, Pennsylvania.

204. Chandola, V., A. Banerjee, and V. Kumar, Anomaly detection: A survey. ACM
computing surveys (CSUR), 2009. 41(3): p. 15.

205. Duda, R.O., P.E. Hart, and D.G. Stork, Pattern classification. 2012: John Wiley
& Sons.

206. Pang-Ning, T., M. Steinbach, and V. Kumar. Introduction to data mining. in
Library of Congress. 2006.

207. Danielsson, P.-E., Euclidean distance mapping. Computer Graphics and image
processing, 1980. 14(3): p. 227-248.

208. Segaran, T., Programming collective intelligence: building smart web 2.0
applications. 2007: " O'Reilly Media, Inc.".

209. Chandola, V., S. Boriah, and V. Kumar, Understanding categorical similarity
measures for outlier detection. Technology Report, University of Minnesota,
2008.

210. Munson, B.R., D.F. Young, and T.H. Okiishi, Fundamentals of fluid mechanics.
1990: New York.

211. Breunig, M.M., et al. LOF: identifying density-based local outliers. in ACM
sigmod record. 2000. ACM.

212. Tang, J., et al., Enhancing effectiveness of outlier detections for low density
patterns, in Advances in Knowledge Discovery and Data Mining. 2002, Springer.
p. 535-548.

213. Sun, P. and S. Chawla. On local spatial outliers. in Data Mining, 2004. ICDM'04.
Fourth IEEE International Conference on. 2004. IEEE.

206 References

214. Yu, J.X., et al., Finding centric local outliers in categorical/numerical spaces.
Knowledge and Information Systems, 2006. 9(3): p. 309-338.

215. Ertöz, L., M. Steinbach, and V. Kumar, Finding topics in collections of
documents: A shared nearest neighbor approach. 2004: Springer.

216. Guha, S., R. Rastogi, and K. Shim. ROCK: A robust clustering algorithm for
categorical attributes. in Data Engineering, 1999. Proceedings., 15th
International Conference on. 1999. IEEE.

217. Ester, M., et al. A density-based algorithm for discovering clusters in large spatial
databases with noise. in Kdd. 1996.

218. Smith, R., et al., Clustering approaches for anomaly based intrusion detection.
Proceedings of intelligent engineering systems through artificial neural networks,
2002: p. 579-584.

219. He, Z., X. Xu, and S. Deng, Discovering cluster-based local outliers. Pattern
Recognition Letters, 2003. 24(9): p. 1641-1650.

220. Motulsky, H., Intuitive biostatistics: a nonmathematical guide to statistical
thinking. 2013: Oxford University Press, USA.

221. Simon, P., Too Big to Ignore: The Business Case for Big Data. 2013: John Wiley
& Sons.

222. Mitchell, T.M., The discipline of machine learning. Vol. 17. 2006: Carnegie
Mellon University, School of Computer Science, Machine Learning Department.

223. Bishop, C.M., Pattern recognition and machine learning. 2006: springer.

224. Kleinbaum, D.G. and M. Klein, Analysis of Matched Data Using Logistic
Regression. 2010: Springer.

225. Goh, A., Back-propagation neural networks for modeling complex systems.
Artificial Intelligence in Engineering, 1995. 9(3): p. 143-151.

226. Ye, Y. and C.-C. Chiang. A parallel apriori algorithm for frequent itemsets
mining. in Software Engineering Research, Management and Applications, 2006.
Fourth International Conference on. 2006. IEEE.

227. Ahmad, A. and L. Dey, A k-mean clustering algorithm for mixed numeric and
categorical data. Data & Knowledge Engineering, 2007. 63(2): p. 503-527.

228. Vert, J.-P. and Y. Yamanishi. Supervised graph inference. in Advances in Neural
Information Processing Systems. 2004.

229. Gómez-Chova, L., et al. Semi-supervised cloud screening with Laplacian SVM. in
Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE
International. 2007. IEEE.

References 207

230. Watkins, C.J. and P. Dayan, Q-learning. Machine learning, 1992. 8(3-4): p. 279-
292.

231. Tesauro, G., Temporal difference learning and TD-Gammon. Communications of
the ACM, 1995. 38(3): p. 58-68.

232. Goodfellow, I., et al., Deep learning. Vol. 1. 2016: MIT press Cambridge.

233. Deng, L. and D. Yu, Deep learning: methods and applications. Foundations and
Trends® in Signal Processing, 2014. 7(3–4): p. 197-387.

234. Murphy, K.P., Naive bayes classifiers. University of British Columbia, 2006.

235. Quinlan, J.R., Simplifying decision trees. International journal of man-machine
studies, 1987. 27(3): p. 221-234.

236. Mitsa, T., Temporal data mining. 2010.

237. Shannon, C., A mathematical theory of distribution. Bell Syst Techn, 1948. 27: p.
623.

238. Quinlan, J.R., C4. 5: programs for machine learning. 2014: Elsevier.

239. Rokach, L. and O. Maimon, Data mining with decision trees: theory and
applications. 2014: World scientific.

240. Deng, H., G. Runger, and E. Tuv, Bias of importance measures for multi-valued
attributes and solutions. Artificial neural networks and machine Learning–
ICANN 2011, 2011: p. 293-300.

241. Bhargava, N., et al., Decision tree analysis on j48 algorithm for data mining.
Proceedings of International Journal of Advanced Research in Computer Science
and Software Engineering, 2013. 3(6).

242. Cunningham, P. and S.J. Delany, k-Nearest neighbour classifiers. Multiple
Classifier Systems, 2007: p. 1-17.

243. Altman, N.S., An introduction to kernel and nearest-neighbor nonparametric
regression. The American Statistician, 1992. 46(3): p. 175-185.

244. Cover, T. and P. Hart, Nearest neighbor pattern classification. IEEE transactions
on information theory, 1967. 13(1): p. 21-27.

245. Kuramochi, M. and G. Karypis, Gene classification using expression profiles: a
feasibility study. International Journal on Artificial Intelligence Tools, 2005.
14(04): p. 641-660.

246. GRT. KNN. 2014 [cited 2017 June]; Available from:
http://www.nickgillian.com/wiki/pmwiki.php/GRT/KNN.

208 References

247. Boland, M.V. and R.F. Murphy, A neural network classifier capable of
recognizing the patterns of all major subcellular structures in fluorescence
microscope images of HeLa cells. Bioinformatics, 2001. 17(12): p. 1213-1223.

248. Auer, P., H. Burgsteiner, and W. Maass, A learning rule for very simple universal
approximators consisting of a single layer of perceptrons. Neural Networks,
2008. 21(5): p. 786-795.

249. Tu, J.V., Advantages and disadvantages of using artificial neural networks versus
logistic regression for predicting medical outcomes. Journal of clinical
epidemiology, 1996. 49(11): p. 1225-1231.

250. Kotsiantis, S.B., I.D. Zaharakis, and P.E. Pintelas, Machine learning: a review of
classification and combining techniques. Artificial Intelligence Review, 2006.
26(3): p. 159-190.

251. Kotsiantis, S.B., I. Zaharakis, and P. Pintelas, Supervised machine learning: A
review of classification techniques. 2007.

252. Hearst, M.A., et al., Support vector machines. Intelligent Systems and their
Applications, IEEE, 1998. 13(4): p. 18-28.

253. Hall, M., et al., The WEKA data mining software: an update. ACM SIGKDD
explorations newsletter, 2009. 11(1): p. 10-18.

254. Platt, J., Sequential minimal optimization: A fast algorithm for training support
vector machines. 1998.

255. Powers, D.M., Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation. 2011.

256. Hsu, L.M. and R. Field, Interrater agreement measures: Comments on Kappan,
Cohen's Kappa, Scott's π, and Aickin's α. Understanding Statistics, 2003. 2(3): p.
205-219.

257. Viner, J., Cost curves and supply curves. 1932: Springer.

258. Levinson, N., The Wiener RMS (root mean square) error criterion in filter design
and prediction. 1947.

259. Iversen, G.R. and H. Norpoth, Analysis of variance. 1987: Sage.

260. Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2013-2018. 2013.

261. Sanou, B., The world in 2014 ICT Facts and figures. 2014.

262. Mark, P. IPHONE VIRUSES: IKEE.B WORM. 2012 [cited 2015 24 August];
Available from: http://letsunlockiphone.guru/ios-viruses-iphone-ikee-b-worm/.

References 209

263. McNamee, K. Malware Analysis Report-Trojan: AndroidOS/DroidDeluxe. 2011
[cited 2015 24 August].

264. Bradley, T. DroidDream becomes Android market nightmare. PC World, Mar.
2011 [cited 2015 24 August]; Available from:
http://www.pcworld.com/businesscenter/article/221247/droiddream_becomes_a
ndroid_market_nightmare.html.

265. Perez, S., More DroidDream Details Emerge: It was Building a Mobile Botnet.
2011.

266. Xuxian, J. DroidKungFu3. 2011 [cited 2015 24 August]; Available from:
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu3/.

267. Xuxian, J. DroidKungFu2. 2011 [cited 2015 24 August]; Available from:
http://www.cs.ncsu.edu/faculty/jiang/DroidKungFu2/.

268. Xuxian, J. DroidKungFu: New Sophisticated Android Malware Found in
Alternative Android Markets. 2011 [cited 2015 24 August]; Available from:
http://www.cs.ncsu.edu/faculty/jiang/DroidKungFu.html.

269. Xuxian, J. YZHCSMS: New Android SMS Trojan Found in Official and
Alternative Android Markets. 2011 [cited 2015 24 August]; Available from:
http://www.csc.ncsu.edu/faculty/jiang/YZHCSMS/.

270. Micro, T. ANDROIDOS_PLANKTON.P. 2011 [cited 2015 24 August]; Available
from: http://about-
threats.trendmicro.com/uk/malware/ANDROIDOS_PLANKTON.P.

271. Xuxian, J. Plankton: New Stealthy Android Spyware Found in Official Android
Market. 2011 [cited 2015 24 August]; Available from:
http://www.csc.ncsu.edu/faculty/jiang/Plankton/.

272. Symantec. Android.Golddream. 2011 [cited 2015 24 August]; Available from:
http://www.symantec.com/security_response/writeup.jsp?docid=2011-070608-
4139-99.

273. Xuxian, J. GoldDream: New Android Malware Found in Alternative Android
Markets. 2011 [cited 2015 24 August]; Available from:
http://www.csc.ncsu.edu/faculty/jiang/GoldDream/.

274. McAfee. Virus Profile: Android/HippoSMS.A. 2011 [cited 2015 24 August];
Available from:
http://home.mcafee.com/virusinfo/virusprofile.aspx?key=544065#none.

275. Xuxian, J. HippoSMS: New Android Malware Found in Alternative Android
Markets. 2011 [cited 2015 24 August]; Available from:
http://www.csc.ncsu.edu/faculty/jiang/HippoSMS/.

210 References

276. F-secure. On Android threats Spyware:Android/SndApps.A and
Trojan:Android/SmsSpy.D. 2011 [cited 2015 24 August]; Available from:
http://www.f-secure.com/weblog/archives/00002202.html.

277. Xuxian, J. SndApps: New Questionable Android Apps Found and Removed from
the Official Android Market. 2011 [cited 2015 24 August]; Available from:
http://www.csc.ncsu.edu/faculty/jiang/SndApps/.

278. Xuxian, J. NickiBot: New Android Spyware Found in Alternative Android
Markets. 2011 [cited 2015 24 August]; Available from:
http://www.csc.ncsu.edu/faculty/jiang/NickiBot/.

279. FortiGuard. Android/RogueSPPush.A. 2011 [cited 2015 24 August]; Available
from:
http://www.fortiguard.com/search.php?action=detail_by_virus_name&data=And
roid/RogueSPPush.A!tr.

280. Xuxian, J. RogueSPPush: New Android SMS-related Malware Found in
Alternative Android Markets. 2011 [cited 2015 24 August]; Available from:
http://www.csc.ncsu.edu/faculty/jiang/RogueSPPush/.

281. Tim, W. GingerMaster Is First Malware To Utilize A Root Exploit On Android
2.3. 2011 [cited 2014 24 August]; Available from:
http://www.darkreading.com/mobile/gingermaster-is-first-malware-to-
utilize/231500422.

282. Xuxian, J. GingerMaster: First Android Malware Utilizing a Root Exploit on
Android 2.3 (Gingerbread). 2011 [cited 2015 24 August]; Available from:
http://www.csc.ncsu.edu/faculty/jiang/GingerMaster/.

283. Xuxian, J. DroidDeluxe: New Root-Capable Android Malware Found in
Alternative Android Markets. 2011 [cited 2015 24 August]; Available from:
http://www.csc.ncsu.edu/faculty/jiang/DroidDeluxe/.

284. Xuxian, J. AnserverBot: Highly Sophisticated Android Trojan Using Public,
Encrypted Blog Entries for Command and Control (C&C). 2011 [cited 2015 24
August]; Available from: http://www.csc.ncsu.edu/faculty/jiang/AnserverBot.

285. Zhou, Y. and X. Jiang, An analysis of the anserverbot trojan. 2011, Technical
report, NQ Mobile Security Research Center.

286. Xuxian, J. DroidCoupon: New Root-Capable Android Malware Masquerades as
Coupon App. 2011 [cited 2015 24 August]; Available from:
http://www.csc.ncsu.edu/faculty/jiang/DroidCoupon.

287. F-secure. Trojan:Android/BeanBot.A. 2011 [cited 2015 24 August]; Available
from: http://www.f-secure.com/v-descs/trojan_android_beanbot.shtml.

References 211

288. Xuxian, J. BeanBot: New Android SMS Trojan Found in Alternative Android
Markets. 2011 [cited 2015 24 August]; Available from:
http://www.csc.ncsu.edu/faculty/jiang/BeanBot/.

289. Mike, L. New Android Trojan Masquerades as Google Library, Taps Device
Administration API. 2011 [cited 2015 24 August]; Available from:
http://www.securityweek.com/new-android-trojan-masquerades-google-library-
taps-device-administration-api.

290. Xuxian, J. DroidLive:New Android SMS Trojan Disguised as a Google Library.
2011 [cited 2015 24 August]; Available from:
http://www.csc.ncsu.edu/faculty/jiang/DroidLive/.

291. Cathal, M. Android.Bmaster: A Million-Dollar Mobile Botnet. 2012 [cited 2015
24 August]; Available from:
http://www.symantec.com/connect/blogs/androidbmaster-million-dollar-mobile-
botnet.

292. Cathal, M. Symantec Security Response Android.Bmaster. 2012 [cited 2015 24
August]; Available from:
http://www.symantec.com/security_response/writeup.jsp?docid=2012-020609-
3003-99.

293. Awais, I. "RootSmart" Malware Infecting 10,000+ Android Smartphones On
Daily Basis, Turns Your Device Into A Zombie. 2012 [cited 2015 24 August];
Available from: http://www.redmondpie.com/rootsmart-malware-infecting-
10000-android-smartphones-on-daily-basis-turns-your-device-into-a-zombie/.

294. Xuxian, J. RootSmart New Android Malware Utilizes the GingerBreak Root
Exploit. 2012 [cited 2015 24 August]; Available from:
http://www.csc.ncsu.edu/faculty/jiang/RootSmart/.

295. Xuxian, J. PushBot A Push-Based App Delivery Model Identified in the Wild.
2012 [cited 2015 24 August]; Available from:
http://www.csc.ncsu.edu/faculty/jiang/PushBot/.

296. Xuxian, J. DKFBootKit New DroidKungFu Variant Moves Towards the First
Android BootKit. 2012 [cited 2015 24 August]; Available from:
http://www.csc.ncsu.edu/faculty/jiang/DKFBootKit/.

297. Bob, P. A Closer Look at ANDROIDOS_TIGERBOT.EVL. 2012 [cited 2015 24
August]; Available from: http://blog.trendmicro.com/trendlabs-security-
intelligence/a-closer-look-at-androidos_tigerbot-
evl/?utm_content=Google+Reader.

212 References

298. Xuxian, J. TigerBot New Android Malware Identified in Alternative Android
Markets. 2012 [cited 2015 24 August]; Available from:
http://www.csc.ncsu.edu/faculty/jiang/TigerBot/.

299. F-secure. Trojan:Android/UpdtKiller.A. 2012 [cited 2015 24 August]; Available
from: http://www.f-secure.com/v-descs/trojan_android_updtkiller.shtml.

300. Xuxian, J. UpdtKiller New Android Malware Removes Antivirus Software. 2012
[cited 2015 24 August]; Available from: http://research.nq.com/?p=454/.

301. Denis. New ZitMo for Android and Blackberry. 2012 [cited 2014 24 August];
Available from: http://www.securelist.com/en/blog/208193760.

302. Michael, M. Zitmo Trojan Variant Eurograbber Beats Two-Factor Authentication
to Steal Millions. 2012 [cited 2015 24 August]; Available from:
http://threatpost.com/zitmo-trojan-variant-eurograbber-beats-two-factor-
authentication-steal-millions-120612/.

303. Vural, I. and H.S. Venter, Combating Mobile Spam through Botnet Detection
using Artificial Immune Systems. J. UCS, 2012. 18(6): p. 750-774.

304. Reina, A., A. Fattori, and L. Cavallaro, A system call-centric analysis and
stimulation technique to automatically reconstruct android malware behaviors.
EuroSec, April, 2013.

305. Maggi, F., A. Valdi, and S. Zanero. AndroTotal: a flexible, scalable toolbox and
service for testing mobile malware detectors. in Proceedings of the Third ACM
workshop on Security and privacy in smartphones & mobile devices. 2013. ACM.

306. Team, B.R., SandDroid: An APK Analysis Sandbox. Xi’an Jiaotong University.
2014.

307. app360scan. App360scan. 2013 [cited 2015 24 August]; Available from:
http://www.app360scan.com/.

308. Spreitzenbarth, M., et al. MobileSandbox: looking deeper into android
applications. in Proc. the 28th ACM Symposium on Applied Computing (SAC).
2013.

309. Bläsing, T., et al. An android application sandbox system for suspicious software
detection. in Malicious and unwanted software (MALWARE), 2010 5th
international conference on. 2010. IEEE.

310. Shabtai, A., et al., “Andromaly”: a behavioral malware detection framework for
android devices. Journal of Intelligent Information Systems, 2012. 38(1): p. 161-
190.

References 213

311. Shabtai, A., et al., Using the KBTA method for inferring computer and network
security alerts from time-stamped, raw system metrics. Journal in computer
virology, 2010. 6(3): p. 239-259.

312. Abela, K.J., et al., An automated malware detection system for android using
behavior-based analysis AMDA. International Journal of Cyber-Security and
Digital Forensics (IJCSDF), 2013. 2(2): p. 1-11.

313. Burguera, I., U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: behavior-based
malware detection system for android. in Proceedings of the 1st ACM workshop
on Security and privacy in smartphones and mobile devices. 2011. ACM.

314. Mas' ud, M.Z., et al. Analysis of features selection and machine learning classifier
in android malware detection. in Information Science and Applications (ICISA),
2014 International Conference on. 2014. IEEE.

315. Zhao, D., et al., Botnet detection based on traffic behavior analysis and flow
intervals. Computers & Security, 2013. 39: p. 2-16.

316. Amos, B., H. Turner, and J. White. Applying machine learning classifiers to
dynamic android malware detection at scale. in Wireless communications and
mobile computing conference (iwcmc), 2013 9th international. 2013. IEEE.

317. Aung, Z. and W. Zaw, Permission-based android malware detection.
International Journal of Scientific and Technology Research, 2013. 2(3): p. 228-
234.

318. McNeil, P., et al., SCREDENT: Scalable Real-time Anomalies Detection and
Notification of Targeted Malware in Mobile Devices. Procedia Computer Science,
2016. 83: p. 1219-1225.

319. Dini, G., et al. MADAM: a multi-level anomaly detector for android malware. in
International Conference on Mathematical Methods, Models, and Architectures
for Computer Network Security. 2012. Springer.

320. Feizollah, A., et al., A review on feature selection in mobile malware detection.
Digital Investigation, 2015. 13: p. 22-37.

321. Spanoudakis, G., C. Kloukinas, and K. Androutsopoulos. Dynamic Verification
and Control of Mobile Peer-to-Peer Systems. in Internet Monitoring and
Protection, 2008. ICIMP'08. The Third International Conference on. 2008. IEEE.

322. Google. VpnService. 2017 [cited 2018 14 April]; Available from:
https://developer.android.com/reference/android/net/VpnService.html.

323. Taosoftware. tpacketcapture. 2015 [cited 2015 25 June]; Available from:
https://play.google.com/store/apps/details?id=jp.co.taosoftware.android.packetca
pture.

214 References

324. Linux. strace(1) - Linux man page. 2015 [cited 2018 14 April]; Available from:
https://linux.die.net/man/1/strace.

325. Firebase. Cloud Firestore. 2017 [cited 2018 14 April]; Available from:
https://firebase.google.com/docs/firestore/.

326. Alejandro, B., Real-Time Databases, in Encyclopedia of Database Technologies
and Applications, C.R. Laura, D. Jorge Horacio, and E.F. Viviana, Editors. 2005,
IGI Global: Hershey, PA, USA. p. 524-529.

327. Mozilla. Using server-sent events. 2018 [cited 2018 14 April]; Available from:
https://developer.mozilla.org/en-US/docs/Web/API/Server-
sent_events/Using_server-sent_events.

328. Weka. WEKA: Vote Class Java Doc. 2015 [cited 2018 14 April]; Available from:
http://weka.sourceforge.net/doc.dev/weka/classifiers/meta/Vote.html.

329. Weka. WEKA: EvaluationClass Java Doc. 2015 [cited 2018 14 April]; Available
from: http://weka.sourceforge.net/doc.dev/weka/classifiers/Evaluation.html.

330. Dierks, T., The transport layer security (TLS) protocol version 1.2. 2008.

331. Tuecke, S., et al., Internet X. 509 public key infrastructure (PKI) proxy certificate
profile. 2004.

332. Zhou, X. and X. Tang. Research and implementation of RSA algorithm for
encryption and decryption. in Strategic Technology (IFOST), 2011 6th
International Forum on. 2011. IEEE.

333. Rivest, R., The MD5 message-digest algorithm. 1992.

334. Google. Shrink Your Code and Resources. 2017 [cited 2018 14 April]; Available
from: https://developer.android.com/studio/build/shrink-code.html.

335. Google. Android NDK. 2017 [cited 2018 14 April]; Available from:
https://developer.android.com/ndk/index.html.

336. Rish, I. An empirical study of the naive Bayes classifier. in IJCAI 2001 workshop
on empirical methods in artificial intelligence. 2001. IBM New York.

337. Cortes, C. and V. Vapnik, Support-vector networks. Machine learning, 1995.
20(3): p. 273-297.

338. Mark, B. JNetPcap OpenSource User Guide. 2014 [cited 2015 9 September];
Available from: http://jnetpcap.com/?q=userguide.

339. Zhou, Y. and X. Jiang. Dissecting android malware: Characterization and
evolution. in Security and Privacy (SP), 2012 IEEE Symposium on. 2012. IEEE.

References 215

340. F-secure. Trojan:Android/BaseBridge.A Threat description. 2011 [cited 2017;
Available from: https://www.f-secure.com/v-
descs/trojan_android_basebridge.shtml.

341. F-secure. Trojan:Android/DroidDream.A Threat description. 2011 [cited 2017;
Available from: https://www.f-secure.com/v-
descs/trojan_android_droiddream_a.shtml.

342. maggarwal. More variants of DroidKungFu 3 found. 2011 [cited 2017; Available
from: http://forums.juniper.net/t5/Security-Now/More-variants-of-
DroidKungFu-3-found/ba-p/132757.

343. Lab, M. Virus Profile: Android/DroidKungFu.D. 2011 [cited 2017; Available
from: https://origin-
home.mcafee.com/virusinfo/VirusProfile.aspx?key=555498#none.

344. F-Secure, MOBILE THREAT REPORT Q4 2011 2012.

345. Katsuki, T. Android.Adrd Versus Android.Geinimi. 2011 [cited 2017; Available
from: https://www.symantec.com/connect/blogs/androidadrd-versus-
androidgeinimi.

346. Symantec. Android.Golddream. 2011 [cited 2017; Available from:
https://www.symantec.com/security_response/writeup.jsp?docid=2011-070608-
4139-99&tabid=2.

347. Microsoft. Trojan: AndroidOS/Kmin.A. 2011 [cited 2017; Available from:
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name
=Trojan%3AAndroidOS%2FKmin.A.

348. Symantec. Android.Pjapps. 2011 [cited 2017; Available from:
https://www.symantec.com/security_response/writeup.jsp?docid=2011-022303-
3344-99&tabid=2.

349. f-secure. Trojan:Android/Plankton Threat description. 2011 [cited 2017;
Available from: https://www.f-secure.com/v-
descs/trojan_android_plankton.shtml.

350. Google. Dashboards. 2014 [cited 2015 24 August]; Available from:
https://developer.android.com/about/dashboards/index.html.

351. Chappell, L.A. and G. Combs, Wireshark 101: Essential Skills for Network
Analysis. 2013: Protocol Analysis Institute, Chappell University.

352. Wireshark. The wireshark network analyzer 1.12.2. 2014 [cited 2015 9 June];
Available from: https://www.wireshark.org/docs/man-pages/tshark.html.

353. Google. Google IP address ranges. 2014 [cited 2015 24 August]; Available from:
https://support.google.com/a/answer/60764?hl=en.

216 References

354. Braun, L., G. Munz, and G. Carle. Packet sampling for worm and botnet detection
in TCP connections. in Network Operations and Management Symposium
(NOMS), 2010 IEEE. 2010. IEEE.

355. Refaeilzadeh, P., L. Tang, and H. Liu, Cross-validation, in Encyclopedia of
database systems. 2009, Springer. p. 532-538.

356. Shiffler, R.E., Maximum Z scores and outliers. The American Statistician, 1988.
42(1): p. 79-80.

 Key Implementation Code of

Android Application

We list all the important key implementation code of the MBotCS on the Android devices.

This code can be compiled by Gradle and run any devices with Android OS version > 4.0.

A.1 PCAP file parse

Use readPcapToTemp to read the PCAP file to the temporary file.

 private void readPcapToTemp() throws Exception {
 Log.d("readPcapToTemp", "Start to new alarm work");
 File testDatasetFile = new File(pcapPathParam);
 FileInputStream testPcapFile = null;
 try {
 testPcapFile = new FileInputStream(testDatasetFile);
 } catch (IOException e) {
 e.printStackTrace();
 }
 assert testPcapFile != null;
 long available = 0;
 Log.d("readPcapToTemp", "readCounter: "+readCounter);
 Log.d("readPcapToTemp", "locationByte: "+locationByte);
 if (locationByte == 0) {
 int m = testPcapFile.read(pcapHeaderTemp);
 if (m == 24) {
 locationByte += 24;
 }else{
 Log.d("ERROR:readPcapToTemp", "Not enough byte in PCAP
error, there are only: "+m);
 }
 available = testPcapFile.available();
 Log.d("readPcapToTemp", "available: "+available);
 } else {
 long actualSkip = testPcapFile.skip(locationByte);
 Log.d("readPcapToTemp", "actualSkip: "+actualSkip);
 available = testPcapFile.available();
 Log.d("readPcapToTemp", "available: "+available);
 }
 if (available !=0){

218 Key Implementation Code of Android Application

 Log.d("readPcapToTemp", "locationByte: "+locationByte);
 String tempPathFull;
 tempPathFull = pcapTempParam + "/pcap_temp_" +
String.valueOf(readCounter) + ".pcap";
 File tempPcap = new File(tempPathFull);
 FileOutputStream tempPcapFile = null;
 MyPcap pcap = null;
 try {
 pcap = PcapParser.unpackSimpleWithoutHeader(testPcapFile);
 } catch (IOException e) {
 e.printStackTrace();
 }
 tempPcapFile = new FileOutputStream(tempPcap);
 tempPcapFile.write(pcapHeaderTemp);
 assert pcap != null;
 List<PcapData> dataList = pcap.getData();
 byte[] bytesHeader;
 byte[] bytesContent;
 for (int i = 0; i < dataList.size(); i++) {
 bytesHeader = dataList.get(i).getInfoHeaderByte();
 bytesContent = dataList.get(i).getContent();
 locationByte += (bytesHeader.length + bytesContent.length);
 Log.d("readPcapToTemp", "locationByte: " + locationByte);
 tempPcapFile.write(bytesHeader);
 tempPcapFile.write(bytesContent);
 }
 tempPcapFile.close();
 pcapTcpToArff(tempPathFull);
 Log.d("readPcapToTemp", "Finish write File: "+locationByte);
 String arffPathFull;
 arffPathFull = pcapTempParam + "/arff_temp_" +
String.valueOf(readCounter) + ".arff";
 mlAnalyser(arffPathFull,ML_ALGORITH_BOX_HALF1);
 mlAnalyser(arffPathFull,ML_ALGORITH_J48);
 mlAnalyser(arffPathFull,ML_ALGORITH_KNN);
 readCounter++;
 }
 }

Read the PCAP file repeatedly:

 private void scanPcapRepeatedly() {
 scanPcap = new TimerTask() {
 @Override
 public void run() {

 Log.d("alarm", "The task start， location:" + locationByte
+ "count:" + readCounter);
 try {
 readPcapToTemp();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 };

 219

 timer.scheduleAtFixedRate(scanPcap,0,UPDATE_INTERVAL);
 }

Use pcapTcpToArff to realise the PCAP file parser to convert the format of PCAP to ARFF

format which can be recognised by the WEKA machine learning system.

private void pcapTcpToArff(String pcapOnePath) throws IOException {
 final StringBuilder errbuf = new StringBuilder();
 Log.d("pcapTcpToArff","Opening pcapOnePath for reading:
"+pcapOnePath);
 Pcap pcap = Pcap.openOffline(pcapOnePath, errbuf);
 if (pcap == null) {
 Log.d("pcapTcpToArff","Error while opening device for capture:
"+errbuf.toString());
 return;
 }
 JFlowMap superFlowMap = new JFlowMap();
 pcap.loop(Pcap.LOOP_INFINITE, superFlowMap, null);
 Iterator iterator = superFlowMap.entrySet().iterator();
 //Write the ARFF file to the disk
 String arffPathFull;
 arffPathFull = pcapTempParam + "/arff_temp_" +
String.valueOf(readCounter) + ".arff";
 File tempArff = new File(arffPathFull);
 FileOutputStream tempArffFile = null;
 tempArffFile = new FileOutputStream(tempArff);
 String arffRelation = "@relation monitor_traffic\n\n";
 String arffAttribute1 = "@attribute 'Frame duration' numeric\n";
 String arffAttribute2 = "@attribute 'TCP size' numeric\n";
 String arffAttribute3 = "@attribute 'Argument Count' numeric\n";
 String arffAttribute4 = "@attribute Lable {infect,normal}\n\n";
 String arffData = "@data\n";
 assert tempArffFile != null;
 tempArffFile.write(arffRelation.getBytes());
 tempArffFile.write(arffAttribute1.getBytes());
 tempArffFile.write(arffAttribute2.getBytes());
 tempArffFile.write(arffAttribute3.getBytes());
 tempArffFile.write(arffAttribute4.getBytes());
 tempArffFile.write(arffData.getBytes());
 double flowDeltaTime = 0.0;
 long flowLength = 0;
 long flowArgument = 0;
 long time_start_seconds;
 long time_start_nano;
 long time_end_seconds;
 long time_end_nano;
 double time_start = 0;
 double time_end;
 double time_delta = 0;
 String interval = ",";
 String classType = "normal";
 String lineBreak = "\n";
 Ip4 ip4 = new Ip4(); // Preallocat IP version 4 header
 Tcp tcp = new Tcp();
 Ethernet eth = new Ethernet();

220 Key Implementation Code of Android Application

 Http http = new Http();
 while (iterator.hasNext()) {
 Map.Entry entry = (Map.Entry) iterator.next();
 Object key = entry.getKey();
 JFlow oneFlow = (JFlow) entry.getValue();
 List<JPacket> allPacket = oneFlow.getAll();
 time_start_seconds =0;
 time_start_nano = 0;
 time_end_seconds = 0;
 time_end_nano = 0;
 time_start = 0.0;
 time_end =0.0;
 time_delta = 0.0;
 for(int i=0; i<allPacket.size() ;i++){
 PcapPacket packet = (PcapPacket) allPacket.get(i);
 flowLength += allPacket.get(i).getTotalSize();
 JCaptureHeader captureHeader =packet.getCaptureHeader();
 if (allPacket.get(i).hasHeader(tcp) &&
allPacket.get(i).hasHeader(http)) {
 allPacket.get(i).getHeader(eth);
 allPacket.get(i).getHeader(tcp);
 allPacket.get(i).getHeader(ip4);
 if(tcp.destination() == 80) {
 if(http.hasField(Http.Request.Accept) &&
http.fieldValue(Http.Request.Accept).contains("text/html")) {
 String host =
http.fieldValue(Http.Request.Host);
 String url = host +
http.fieldValue(Http.Request.RequestUrl);
 Log.d("packet","url"+url);
 int count = url.length() -
url.replaceAll("\\=","").length();
 flowArgument += (long)count;
 }
 }
 }
 if(i == 0){
 time_start_seconds = captureHeader.seconds();
 time_start_nano = captureHeader.nanos();
 String
timeStr=String.valueOf(time_start_seconds)+"."+String.valueOf(time_start_na
no);
 Log.d("packet","time_start\n"+timeStr);
 time_start =Double.parseDouble(timeStr);
 }
 if(i == allPacket.size()-1){
 time_end_seconds = captureHeader.seconds();
 time_end_nano = captureHeader.nanos();
 String
timeStr=String.valueOf(time_end_seconds)+"."+String.valueOf(time_end_nano);
 Log.d("packet","time_end\n"+timeStr);
 time_end =Double.parseDouble(timeStr);
 time_delta = time_end - time_start;
 }
 }
 flowDeltaTime = time_delta;

 221

 tempArffFile.write(String.valueOf(flowDeltaTime).getBytes());
 tempArffFile.write(interval.getBytes());
 tempArffFile.write(String.valueOf(flowLength).getBytes());
 tempArffFile.write(interval.getBytes());
 tempArffFile.write(String.valueOf(flowArgument).getBytes());
 tempArffFile.write(interval.getBytes());
 tempArffFile.write(classType.getBytes());
 tempArffFile.write(lineBreak.getBytes());
 flowDeltaTime = 0.0;
 flowLength = 0;
 flowArgument = 0;
 time_start_seconds = 0;
 time_start_nano = 0;
 time_end_seconds = 0;
 time_end_nano = 0;
 time_start = 0.0;
 time_end = 0.0;
 time_delta = 0.0;
 }
 tempArffFile.close();
 pcap.close();
 }

A.2 Machine learning analyser

Use the WEKA java library for Android platform. The component is realised by the class

ML Analyser:

public class MLAnalyser {
 NaiveBayes m_classifier_NB = new NaiveBayes();
 J48 m_classifier_j48 = new J48();
 MultilayerPerceptron m_classifier_MNN = new MultilayerPerceptron();
 IBk m_classifier_KNN = new IBk();
 SMO m_classifier_SVM = new SMO();
 int[] NB,J48,MNN,KNN,SVM;
 int[] AND,OR,HALF;
 int[] AND1,OR1,HALF1;
 private void counterSingleProcess(Double trainValue, Double testValue,
int[] counter){
 if(trainValue==0.0&&testValue==0.0){
 counter[0]++;
 }else if(trainValue==0.0&&testValue==1.0) {
 counter[1]++;
 }else if(trainValue==1.0&&testValue==0.0) {
 counter[2]++;
 }else {
 counter[3]++;
 }
 }
 private void counterAND(Double sumValue, Double testValue){
 if(sumValue==0.0&&testValue==0.0){
 AND[0]++;

222 Key Implementation Code of Android Application

 }else if(sumValue==0.0&&testValue==1.0) {
 AND[1]++;
 }else if(sumValue>0.0&&testValue==0.0) {
 AND[2]++;
 }else if(sumValue>0.0&&testValue==1.0) {
 AND[3]++;
 }
 }
 private void counterAND1(Double sumValueBetter, Double testValue){
 if(sumValueBetter==0.0&&testValue==0.0){
 AND1[0]++;
 HALF1[0]++;
 }else if(sumValueBetter==0.0&&testValue==1.0) {
 AND1[1]++;
 HALF1[1]++;
 }else if(sumValueBetter>0.0&&testValue==0.0) {
 AND1[2]++;
 }else if(sumValueBetter>0.0&&testValue==1.0){
 AND1[3]++;
 }
 }
 private void counterOR(Double sumValue, Double testValue){
 if(sumValue<5.0&&testValue==0.0){
 OR[0]++;
 }else if(sumValue<5.0&&testValue==1.0) {
 OR[1]++;
 }else if(sumValue==5.0&&testValue==0.0) {
 OR[2]++;
 }else if(sumValue==5.0&&testValue==1.0) {
 OR[3]++;
 }
 }
 private void counterOR1(Double sumValueBetter, Double testValue){
 if(sumValueBetter<2.0&&testValue==0.0){
 OR1[0]++;
 }else if(sumValueBetter<2.0&&testValue==1.0) {
 OR1[1]++;
 }else if(sumValueBetter==2.0&&testValue==0.0) {
 OR1[2]++;
 HALF1[2]++;
 }else if(sumValueBetter==2.0&&testValue==1.0){
 OR1[3]++;
 HALF1[3]++;
 }
 }
 private void counterHALF(Double sumValue, Double testValue){
 if(sumValue<3.0&&testValue==0.0){
 HALF[0]++;
 }else if(sumValue<3.0&&testValue==1.0) {
 HALF[1]++;
 }else if(sumValue>2.0&&testValue==0.0) {
 HALF[2]++;
 }else if(sumValue>2.0&&testValue==1.0) {
 HALF[3]++;
 }
 }

 223

 private void counterHALF1(Double sumValueWorse, Double
sumValueBetter,Double testValue){
 if(sumValueBetter==1.0&&sumValueWorse<2.0&&testValue==0.0){
 HALF1[0]++;
 }else if(sumValueBetter==1.0&&sumValueWorse<2.0&&testValue==1.0) {
 HALF1[1]++;
 }else if(sumValueBetter==1.0&&sumValueWorse>1.0&&testValue==0.0) {
 HALF1[2]++;
 }else if(sumValueBetter==1.0&&sumValueWorse>1.0&&testValue==0.0){
 HALF1[3]++;
 }
 }
 private double computeRecall(int TP, int FN) {
 return (double)TP/(TP+FN);
 }
 private double computeFPR(int FP, int TN) {
 return (double)FP/(FP+TN);
 }
 private double computePrecision(int TP, int FP) {
 return (double)TP/(TP+FP);
 }
 public MLAnalyser(){
 m_classifier_MNN.setLearningRate(0.9);
 m_classifier_MNN.setHiddenLayers("t");
 m_classifier_MNN.setSeed(5);
 m_classifier_MNN.setReset(false);
 m_classifier_MNN.setMomentum(0.2);
 NB = new int[4];
 J48 = new int[4];
 MNN = new int[4];
 KNN = new int[4];
 SVM = new int[4];
 AND = new int[4];
 OR = new int[4];
 HALF = new int[4];
 AND1 = new int[4];
 OR1 = new int[4];
 HALF1 = new int[4];
 for (int i=0; i<4; i++){
 NB[i] = 0;
 J48[i] = 0;
 MNN[i] = 0;
 KNN[i] = 0;
 SVM[i] = 0;
 AND[i] = 0; // all 0 -> 0 sum of the classify value =0
 OR[i] = 0; // any 0 -> 0 sum of the classify value <5
 HALF[i] = 0;// more than half 0-> sum of the classify value<3
 AND1[i] = 0; // all 0 -> 0 sum of the classify value =0
 OR1[i] = 0; // any 0 -> 0 sum of the classify value <5
 HALF1[i] = 0;// more than half 0-> sum of the classify value<3
 }
 }
 public void trainClassifier(String trainDataset) throws Exception {
 String datasetFilename = trainDataset;
 File trainDatasetFile = new File(datasetFilename);
 ArffLoader datasetArff = new ArffLoader();

224 Key Implementation Code of Android Application

 datasetArff.setFile(trainDatasetFile);
 Instances trainData = datasetArff.getDataSet();
 trainData.setClassIndex(3);
 m_classifier_NB.buildClassifier(trainData);
 m_classifier_j48.buildClassifier(trainData);
 m_classifier_KNN.buildClassifier(trainData);
 m_classifier_SVM.buildClassifier(trainData);
 }
 public ArrayList<String> datasetAnalyser(String testDataset, int
algorithm) throws Exception {
 File testDatasetFile = new File(testDataset);
 ArffLoader datasetArff = new ArffLoader();
 datasetArff.setFile(testDatasetFile);
 Instances testData = datasetArff.getDataSet();
 testData.setClassIndex(3);
 double sum = testData.numInstances();
 ArrayList<String> result=new ArrayList<String>();
 double NBClassValue = 0;
 double j48ClassValue = 0;
 double MNNClassValue = 0;
 double KNNClassValue = 0;
 double SVMClassValue = 0;
 double BoxClassValue = 0;
 for(int i=0; i<sum; i++){
 if(algorithm == 0){
 NBClassValue =
m_classifier_NB.classifyInstance(testData.instance(i));
result.add(testData.instance(i).toString(0)+","+testData.instance(i).toStri
ng(1)+","+testData.instance(i).toString(2)+","+String.valueOf(NBClassValue)
);
 Log.d("MLAnalyser","NBClassValue"+NBClassValue);
 }else if (algorithm == 1){
 j48ClassValue =
m_classifier_j48.classifyInstance(testData.instance(i));

result.add(testData.instance(i).toString(0)+","+testData.instance(i).toStri
ng(1)+","+testData.instance(i).toString(2)+","+String.valueOf(j48ClassValue
));
 Log.d("MLAnalyser","j48ClassValue"+j48ClassValue);
 }else if (algorithm == 2){
 MNNClassValue = 0;
result.add(testData.instance(i).toString(0)+","+testData.instance(i).toStri
ng(1)+","+testData.instance(i).toString(2)+","+String.valueOf(MNNClassValue
));
 Log.d("MLAnalyser","MNNClassValue"+MNNClassValue);
 }else if (algorithm == 3){
 KNNClassValue =
m_classifier_KNN.classifyInstance(testData.instance(i));
result.add(testData.instance(i).toString(0)+","+testData.instance(i).toStri
ng(1)+","+testData.instance(i).toString(2)+","+String.valueOf(KNNClassValue
));
 Log.d("MLAnalyser","KNNClassValue"+KNNClassValue);
 }else if (algorithm == 4){
 SVMClassValue =
m_classifier_SVM.classifyInstance(testData.instance(i));

 225

result.add(testData.instance(i).toString(0)+","+testData.instance(i).toStri
ng(1)+","+testData.instance(i).toString(2)+","+String.valueOf(SVMClassValue
));
 Log.d("MLAnalyser","SVMClassValue"+SVMClassValue);
 }else if (algorithm == 5){
 KNNClassValue =
m_classifier_KNN.classifyInstance(testData.instance(i));
 j48ClassValue =
m_classifier_j48.classifyInstance(testData.instance(i));
 if(KNNClassValue == j48ClassValue) {
 BoxClassValue = j48ClassValue;
 }else{
 MNNClassValue = 0;
 NBClassValue =
m_classifier_NB.classifyInstance(testData.instance(i));
 SVMClassValue =
m_classifier_SVM.classifyInstance(testData.instance(i));
 double sumWorst =
MNNClassValue+NBClassValue+SVMClassValue;
 if(sumWorst > 1.0){
 BoxClassValue = 1.0;
 }else{
 BoxClassValue = 0.0;
 }
 }
result.add(testData.instance(i).toString(0)+","+testData.instance(i).toStri
ng(1)+","+testData.instance(i).toString(2)+","+String.valueOf(BoxClassValue
));
 }
 }
 return result;
 }
 public String[] datasetAnalyser(String fullDataset,int validationType,
int[] args) throws Exception {
 String[] result = new String[15];
 File datasetFile = new File(fullDataset);
 try{
 File file = new File(fullDataset);
 FileInputStream fis = new FileInputStream(file);
 byte[] buffer = new byte[fis.available()];
 fis.read(buffer);
 fis.close();
 String res = EncodingUtils.getString(buffer, "UTF-8");

 Log.i("file"," file read ok：" + res);
 }catch(Exception ex){

 Log.i("file"," file read fail ：");
 }
 ArffLoader datasetArff = new ArffLoader();
 datasetArff.setFile(datasetFile);
 Instances fullData = datasetArff.getDataSet();
 if(validationType == 0){
 int seed = args[0];
 int folds = args[1];
 Random rand = new Random(seed);

226 Key Implementation Code of Android Application

 Instances randData = new Instances(fullData);
 randData.randomize(rand);
 for (int n = 0; n < folds; n++) {
 Instances train = randData.trainCV(folds, n);
 Instances test = randData.testCV(folds, n);
 train.setClassIndex(3);
 test.setClassIndex(3);
 double sum = test.numInstances(),
 right = 0.0f;
 m_classifier_NB.buildClassifier(train);
 m_classifier_j48.buildClassifier(train);
 m_classifier_KNN.buildClassifier(train);
 m_classifier_SVM.buildClassifier(train);
 for(int i=0; i<sum; i++){
 double testClassValue = test.instance(i).classValue();
 double NBClassValue =
m_classifier_NB.classifyInstance(test.instance(i));
 double j48ClassValue =
m_classifier_j48.classifyInstance(test.instance(i));
 double KNNClassValue =
m_classifier_KNN.classifyInstance(test.instance(i));
 double SVMClassValue =
m_classifier_SVM.classifyInstance(test.instance(i));
 double MNNClassValue = 0.0;
 double sumClassValue =
NBClassValue+j48ClassValue+MNNClassValue+KNNClassValue+SVMClassValue;
 double sumClassValueBetter =
j48ClassValue+KNNClassValue;
 double sumClassValueWorse =
NBClassValue+MNNClassValue+SVMClassValue;
 counterSingleProcess(NBClassValue,testClassValue,NB);
 counterSingleProcess(j48ClassValue,testClassValue,J48);
 counterSingleProcess(MNNClassValue,testClassValue,MNN);
 counterSingleProcess(KNNClassValue,testClassValue,KNN);
 counterSingleProcess(SVMClassValue,testClassValue,SVM);
 counterAND(sumClassValue,testClassValue);
 counterOR(sumClassValue, testClassValue);
 counterHALF(sumClassValue, testClassValue);
 counterAND1(sumClassValueBetter, testClassValue);
 counterOR1(sumClassValueBetter, testClassValue);
 counterHALF1(sumClassValueBetter, sumClassValueWorse,
testClassValue);
 }
 }
 }
 result[0] = "Naive Bayesian
Recall:"+String.valueOf(computeRecall(NB[0],NB[2]));
 result[1] = "Naive Bayesian FPR:"+String.valueOf(computeFPR(NB[1],
NB[3]));
 result[2] = "Naive Bayesian
Precision:"+String.valueOf(computePrecision(NB[0], NB[1]));
 result[3] = "J48
Recall:"+String.valueOf(computeRecall(J48[0],J48[2]));
 result[4] = "J48 FPR:"+String.valueOf(computeFPR(J48[1],J48[3]));
 result[5] = "J48
Precision:"+String.valueOf(computePrecision(J48[0],J48[1]));

 227

 result[6] = "MNN
Recall:"+String.valueOf(computeRecall(MNN[0],MNN[2]));
 result[7] = "MNN FPR:"+String.valueOf(computeFPR(MNN[1],MNN[3]));
 result[8] = "MNN
Precision:"+String.valueOf(computePrecision(MNN[0],MNN[1]));
 result[9] = "KNN
Recall:"+String.valueOf(computeRecall(KNN[0],KNN[2]));
 result[10] = "KNN FPR:"+String.valueOf(computeFPR(KNN[1],KNN[3]));
 result[11] = "KNN
Precision:"+String.valueOf(computePrecision(KNN[0],KNN[1]));
 result[12] = "SVM
Recall:"+String.valueOf(computeRecall(SVM[0],SVM[2]));
 result[13] = "SVM FPR:"+String.valueOf(computeFPR(SVM[1],SVM[3]));
 result[14] = "SVM
Precision:"+String.valueOf(computePrecision(SVM[0],SVM[1]));
 return result;
 }
 public ArrayList<String> datasetAnalyser(String trainDataset, String
testDataset) throws Exception {
 ArrayList<String> result=new ArrayList<String>();
 String trainDatasetFilename;
 trainDatasetFilename = trainDataset;
 File trainDatasetFile = new File(trainDatasetFilename);
 String testDatasetFilename;
 testDatasetFilename = testDataset;
 File testDatasetFile = new File(testDatasetFilename);
 ArffLoader trainDatasetArff = new ArffLoader();
 trainDatasetArff.setFile(trainDatasetFile);
 ArffLoader testDatasetArff = new ArffLoader();
 testDatasetArff.setFile(testDatasetFile);
 Instances trainData = trainDatasetArff.getDataSet();
 Instances testData = testDatasetArff.getDataSet();
 trainData.setClassIndex(3);
 testData.setClassIndex(3);
 m_classifier_NB.buildClassifier(trainData);
 m_classifier_j48.buildClassifier(trainData);
 m_classifier_KNN.buildClassifier(trainData);
 m_classifier_SVM.buildClassifier(trainData);
 double sum = testData.numInstances(),
 right = 0.0f;
 for(int i=0; i<sum; i++){
 double testClassValue = testData.instance(i).classValue();
 double NBClassValue =
m_classifier_NB.classifyInstance(testData.instance(i));
 double j48ClassValue =
m_classifier_j48.classifyInstance(testData.instance(i));
 double KNNClassValue =
m_classifier_KNN.classifyInstance(testData.instance(i));
 double SVMClassValue =
m_classifier_SVM.classifyInstance(testData.instance(i));
 double MNNClassValue = 0.0;
 String testClassStr;
 if(testClassValue==0.0){
 testClassStr = "infect";
 }else{
 testClassStr = "normal";

228 Key Implementation Code of Android Application

 }
 result.add(testData.instance(i).toString()+testClassStr);
 double sumClassValue =
NBClassValue+j48ClassValue+MNNClassValue+KNNClassValue+SVMClassValue;
 double sumClassValueBetter = j48ClassValue+KNNClassValue;
 double sumClassValueWorse =
NBClassValue+MNNClassValue+SVMClassValue;
 counterSingleProcess(NBClassValue,testClassValue,NB);
 counterSingleProcess(j48ClassValue,testClassValue,J48);
 counterSingleProcess(MNNClassValue,testClassValue,MNN);
 counterSingleProcess(KNNClassValue,testClassValue,KNN);
 counterSingleProcess(SVMClassValue,testClassValue,SVM);
 counterAND(sumClassValue,testClassValue);
 counterOR(sumClassValue, testClassValue);
 counterHALF(sumClassValue, testClassValue);
 counterAND1(sumClassValueBetter, testClassValue);
 counterOR1(sumClassValueBetter, testClassValue);
 counterHALF1(sumClassValueBetter, sumClassValueWorse,
testClassValue);
 }
 return result;
 }
}

A.3 Android intent service

In order to run the monitor service asynchronously, we make use of the intent service on

Android platform to keep the user interface separate with the monitor service.

 public static void startActionScanPcap(Context context, String
pcapPath, String tempPath, String trainPath) {
 Intent intent = new Intent(context,
PcapMonitorIntentService.class);
 intent.setAction(ACTION_SCAN_PCAP);
 intent.putExtra(EXTRA_PARAM_PCAP_PATH, pcapPath);
 intent.putExtra(EXTRA_PARAM_TEMP_PATH, tempPath);
 intent.putExtra(EXTRA_PARAM_TRAIN_PATH, trainPath);
 context.startService(intent);
 }
 public static void startActionScanStop(Context context) {
 Intent intent = new Intent(context,
PcapMonitorIntentService.class);
 intent.setAction(ACTION_SCAN_STOP);
 context.startService(intent);
 }

 @Override
 protected void onHandleIntent(Intent intent) {
 if (intent != null) {
 final String action = intent.getAction();
 if (ACTION_SCAN_PCAP.equals(action)) {

 229

 final String pcapPath =
intent.getStringExtra(EXTRA_PARAM_PCAP_PATH);
 final String tempPath =
intent.getStringExtra(EXTRA_PARAM_TEMP_PATH);
 final String trainPath =
intent.getStringExtra(EXTRA_PARAM_TRAIN_PATH);
 try {
 handleActionScanPcap(pcapPath, tempPath, trainPath);
 } catch (Exception e) {
 e.printStackTrace();
 }
 } else if (ACTION_BAZ.equals(action)) {
 final String param1 = intent.getStringExtra(EXTRA_PARAM1);
 final String param2 = intent.getStringExtra(EXTRA_PARAM2);
 handleActionBaz(param1, param2);
 } else if (ACTION_SCAN_STOP.equals(action)) {
 handleActionScanStop();
 }
 }
 }

 private void handleActionScanStop() {
 scanPcap.cancel();
 stopSelf();
 }
 private void handleActionScanPcap(String pcapPath, String tempPath,
String trainPath) throws Exception {
 pcapPathParam = pcapPath;
 pcapTempParam = tempPath;
 trainDatasetParam = trainPath;

 mlAnalyser.trainClassifier(trainPath);
 scanPcapRepeatedly();
 }

A.4 User interface

The layout of the user interface is show as follows:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:weightSum="1">
 <TextView
 android:layout_width="273dp"
 android:layout_height="wrap_content"
 android:text="@string/train_title"
 android:layout_gravity="left" />
 <Button
 android:id="@+id/train_dataset_select_btn"
 android:layout_width="match_parent"

230 Key Implementation Code of Android Application

 android:layout_height="wrap_content"
 android:text="@string/btn_select_file"
 android:onClick="selectFile"/>
 <EditText android:id="@+id/train_dataset"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:hint="@string/train_dataset_hint"
 android:focusable="false"/>

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/test_title"
 android:layout_gravity="left" />
 <Button
 android:id="@+id/test_dataset_select_btn"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/btn_select_file"
 android:onClick="selectFile"/>
 <EditText android:id="@+id/test_dataset"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/test_dataset_hint"
 android:focusable="false"/>

 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:weightSum="1">

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/btn_validation"
 android:id="@+id/btn_validation"
 android:layout_weight="0.25"
 android:enabled="false"/>

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/btn_simulation"
 android:id="@+id/btn_simulation"
 android:layout_weight="0.25"
 android:enabled="false"/>

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/btn_monitor"
 android:id="@+id/btn_monitor"
 android:layout_weight="0.25" />

 231

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/btn_monitor_stop"
 android:id="@+id/btn_monitor_stop"
 android:layout_weight="0.25" />
 </LinearLayout>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/output_title"
 android:id="@+id/textView"
 android:layout_gravity="left"
 android:background="#ff66ffd0" />

 <ScrollView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fillViewport="false"
 android:id="@+id/scrollView"
 android:layout_gravity="center_horizontal"
 android:background="#ffe8f2ff">
 <LinearLayout
 android:id="@+id/output_layout"
 android:layout_height="match_parent"
 android:layout_width="wrap_content"
 android:orientation="vertical"/>
 </ScrollView>

</LinearLayout>
</LinearLayout>

 System Call Monitor Bash Script

This script can run on the mobile device to capture system calls of specified applications.

The script is based on the Bash which is supported on the Linux kernel on Android OS.

#!/bin/bash
#--
Read the packagesName.dat file to the variables
#--
TAG_READ="Read PackagesName:"
#We store the information from the sub index 1
index=1
while read line
do
 #use two 1-dimention array to present the 2-dimentions array
 arrPackagesName[$index]="$line"
 #Intial the pid of the every monitored packages as 0
 arrPackagesNamePid[$index]=0
 #LOGGER
 log="$TAG_READ: arrPackagesName[$index]=${arrPackagesName[$index]} and
arrPackagesNamePid[$index]=${arrPackagesNamePid[$index]}"
 echo "$log" >> sh_log.log
 #LOGGER_END
 index=`expr $index + 1`
done < packagesName.dat
#TODO_FINISH: We need to check whether we read all the lines from the
files.
#ANS: We find that this is the problem of the file packagesName.dat add one
line and delete it, it work well.
sumPackagesName=`expr $index - 1`
#LOGGER
log="$TAG_READ read finish there are $sumPackagesName line in
packagesName.dat"
echo "$log" >> sh_log.log
#LOGGER_END
#--
Start to process the current processes and run strace
#--
dirDATE=`date "+%Y-%m-%d_%H-%M-%S"`
mkdir $dirDATE
ps_index=1
TAG_PS="PS in While:"
index_ps_log=0
while true; do

 233

 ps_index=`expr $ps_index + 1`
 start_time=`date "+%Y-%m-%d %H-%M-%S"`
 #echo "$TAG_PS While $ps_index start: $start_time" >> sh_log.log

 #Get the output of the `ps` command
 #TODO: BUG we need to generate the current process situation with one
time ps. or the two files will be not consistent.
 ps | awk '{print $2, $9}' > currentProcessInfo.tmp
 awk '{print $1}' currentProcessInfo.tmp > pidList.dat
 awk '{print $2}' currentProcessInfo.tmp > nameList_pre.dat

 # ps | awk '{print $2}' > pidList.dat
 # ps | awk '{print $9}' > nameList_pre.dat
 sed 's/[./:]/_/g' nameList_pre.dat > nameList.dat

 #Put the files into the variables
 #read the pidList.dat -> arrPidList
 index=0
 while read line
 do
 if [$index -gt 0];then
 arrPidList[$index]="$line"
 fi
 index=`expr $index + 1`
 done < pidList.dat
 sumpid=`expr $index - 1`
 #read the nameList.dat -> arrNameList
 index=0
 while read line
 do
 if [$index -gt 0];then
 arrNameList[$index]="$line"
 fi
 index=`expr $index + 1`
 done < nameList.dat
 sumname=`expr $index - 1`
 #TODO We need to check 1: all the process information has been stored
in the variables. 2: whether the sumname is equal to sumpid
 echo "$TAG_PS sumpid=$sumpid sumname=$sumname" >> sh_log.log
 #We start to visit all the processes to compare with the process in the
packagesName.dat
 index=0
 null="null"
 TAG_KEY="KEY:"
index_ps_log=0
 #think about the current process list is record from index=0 and so we
need to compare with the sum+1. the index=0 is the header.
 sumname1=`expr $sumname + 1`
 while [$index -le $sumname1]
 do
 lineNo=$(sed -n -e /^${arrNameList[$index]}$/= packagesName.dat|sed
-n '1p')
 #TODO: we neen to make sure that we select right
echo "$TAG_KEY The lineNo is $lineNo" >> sh_log.log
 if [${lineNo:-"null"} = $null];then

234 System Call Monitor Bash Script

 echo "Cannot find this process in the packagesName.dat" >
useless.log
 else
 echo "$TAG_KEY Find the process in line $lineNo and name:
${arrNameList[$index]}" >> sh_log.log
 echo "$TAG_KEY previous pid: ${arrPackagesNamePid[$lineNo]} and
current pid: ${arrPidList[$index]}" >> sh_log.log
 if [${arrPidList[$index]} -ne
${arrPackagesNamePid[$lineNo]}];then

filename=$dirDATE"/"${arrNameList[$index]}"_"${arrPidList[$index]}".txt"
 arrPackagesNamePid[$lineNo]=${arrPidList[$index]}
 strace_time=`date "+%Y-%m-%d %H-%M-%S"`
 # echo "CP: cp nameList.dat
ps/${arrPidList[$index]}_${index_ps_log}_nameList.dat"
 # echo "CP: cp pidList.dat
ps/${arrPidList[$index]}_${index_ps_log}_pid_list.dat"
 cp nameList.dat
ps/${index_ps_log}_${arrPidList[$index]}_nameList.dat
 cp pidList.dat
ps/${index_ps_log}_${arrPidList[$index]}_pid_list.dat
 index_ps_log=`expr $index_ps_log + 1`
 echo "$TAG_KEY ${strace_time}:Start to execute strace:
${arrPidList[$index]}, ${arrNameList[$index]}">> sh_log.log
 echo "$TAG_KEY strace -tt -T -p ${arrPidList[$index]} -o
$filename" >> sh_log.log
 strace -tt -T -p ${arrPidList[$index]} -o $filename &
 fi
 fi
 ##
 index=`expr $index + 1`
 done
 end_time=`date "+%Y-%m-%d_%H-%M-%S"`
 echo "$TAG_PS $ps_index\\t$start_time\\t$end_time" >> sh_log.log
done

 Key Implementation Code of

Broker

The project is managed by Maven and use command: mvn build to download the

dependencies and compile.

The Publisher implementation:

final class PublisherImpl implements Publisher {
 PublisherImpl(Builder builder) throws IOException {
 topic = builder.topic;

 maxBatchMessages = builder.maxBatchMessages;
 maxBatchBytes = builder.maxBatchBytes;
 maxBatchDuration = builder.maxBatchDuration;
 hasBatchingBytes = maxBatchBytes > 0;

 maxOutstandingMessages = builder.maxOutstandingMessages;
 maxOutstandingBytes = builder.maxOutstandingBytes;
 failOnFlowControlLimits = builder.failOnFlowControlLimits;
 this.flowController =
 new FlowController(maxOutstandingMessages, maxOutstandingBytes,
failOnFlowControlLimits);

 sendBatchDeadline = builder.sendBatchDeadline;

 requestTimeout = builder.requestTimeout;

 messagesBatch = new LinkedList<>();
 messagesBatchLock = new ReentrantLock();
 activeAlarm = new AtomicBoolean(false);
 int numCores = Math.max(1, Runtime.getRuntime().availableProcessors());
 executor =
 builder.executor.isPresent()
 ? builder.executor.get()
 : Executors.newScheduledThreadPool(
 numCores * DEFAULT_MIN_THREAD_POOL_SIZE,
 new ThreadFactoryBuilder()
 .setDaemon(true)
 .setNameFormat("cloud-pubsub-publisher-thread-%d")
 .build());
 channels = new Channel[numCores];

236 Key Implementation Code of Broker

 channelIndex = new AtomicLong(0);
 for (int i = 0; i < numCores; i++) {
 channels[i] =
 builder.channelBuilder.isPresent()
 ? builder.channelBuilder.get().build()
 : NettyChannelBuilder.forAddress(PUBSUB_API_ADDRESS, 443)
 .negotiationType(NegotiationType.TLS)
 .sslContext(GrpcSslContexts.forClient().ciphers(null).bui
ld())
 .executor(executor)
 .build();
 }
 credentials =
 MoreCallCredentials.from(
 builder.userCredentials.isPresent()
 ? builder.userCredentials.get()
 : GoogleCredentials.getApplicationDefault()
 .createScoped(Collections.singletonList(PUBSUB_API_SCOP
E)));
 shutdown = new AtomicBoolean(false);
 messagesWaiter = new MessagesWaiter();
 }

 @Override
 public ListenableFuture<String> publish(PubsubMessage message) {
 if (shutdown.get()) {
 throw new IllegalStateException("Cannot publish on a shut-down
publisher.");
 }

 final int messageSize = message.getSerializedSize();
 try {
 flowController.reserve(1, messageSize);
 } catch (CloudPubsubFlowControlException e) {
 return Futures.immediateFailedFuture(e);
 }
 OutstandingBatch batchToSend = null;
 SettableFuture<String> publishResult = SettableFuture.create();
 final OutstandingPublish outstandingPublish = new
OutstandingPublish(publishResult, message);
 messagesBatchLock.lock();
 try {
 if (!messagesBatch.isEmpty()
 && hasBatchingBytes
 && batchedBytes + messageSize >= getMaxBatchBytes()) {
 batchToSend = new OutstandingBatch(messagesBatch, batchedBytes);
 messagesBatch = new LinkedList<>();
 batchedBytes = 0;
 }
 if (!hasBatchingBytes || messageSize < getMaxBatchBytes()) {
 batchedBytes += messageSize;
 messagesBatch.add(outstandingPublish);
 if (messagesBatch.size() == getMaxBatchMessages()) {
 batchToSend = new OutstandingBatch(messagesBatch, batchedBytes);
 messagesBatch = new LinkedList<>();
 batchedBytes = 0;

 237

 }
 }
 if (!messagesBatch.isEmpty()) {
 setupDurationBasedPublishAlarm();
 } else if (currentAlarmFuture != null) {
 logger.debug("Cancelling alarm");
 if (activeAlarm.getAndSet(false)) {
 currentAlarmFuture.cancel(false);
 }
 }
 } finally {
 messagesBatchLock.unlock();
 }

 messagesWaiter.incrementPendingMessages(1);

 if (batchToSend != null) {
 logger.debug("Scheduling a batch for immediate sending.");
 final OutstandingBatch finalBatchToSend = batchToSend;
 executor.execute(
 new Runnable() {
 @Override
 public void run() {
 publishOutstandingBatch(finalBatchToSend);
 }
 });
 }
 if (hasBatchingBytes && messageSize >= getMaxBatchBytes()) {
 logger.debug("Message exceeds the max batch bytes, scheduling it for
immediate send.");
 executor.execute(
 new Runnable() {
 @Override
 public void run() {
 publishOutstandingBatch(
 new
OutstandingBatch(ImmutableList.of(outstandingPublish), messageSize));
 }
 });
 }
 return publishResult;
 }
 @Override
 public void onFailure(Throwable t) {
 long nextBackoffDelay =
computeNextBackoffDelayMs(outstandingBatch);

 if (!isRetryable(t)
 || System.currentTimeMillis() + nextBackoffDelay
 > outstandingBatch.creationTime
 + PublisherImpl.this.sendBatchDeadline.getMillis())
{
 try {
 for (OutstandingPublish outstandingPublish :
 outstandingBatch.outstandingPublishes) {
 outstandingPublish.publishResult.setException(t);

238 Key Implementation Code of Broker

 }
 } finally {
 messagesWaiter.incrementPendingMessages(-
outstandingBatch.size());
 } return;
 }

 executor.schedule(
 new Runnable() {
 @Override
 public void run() {
 publishOutstandingBatch(outstandingBatch);
 }
 },
 nextBackoffDelay,
 TimeUnit.MILLISECONDS);
 }
 });
 }

The Subscriber implementation:

public class SubscriberImpl extends AbstractService implements Subscriber {
 public SubscriberImpl(SubscriberImpl.Builder builder) throws IOException
{
 receiver = builder.receiver;
 maxOutstandingBytes = builder.maxOutstandingBytes;
 maxOutstandingMessages = builder.maxOutstandingMessages;
 subscription = builder.subscription;
 ackExpirationPadding = builder.ackExpirationPadding;
 streamAckDeadlineSeconds =
 Math.max(
 INITIAL_ACK_DEADLINE_SECONDS,
 Ints.saturatedCast(ackExpirationPadding.getStandardSeconds()));

 flowController =
 new FlowController(builder.maxOutstandingBytes,
builder.maxOutstandingBytes, false);

 numChannels = Math.max(1, Runtime.getRuntime().availableProcessors()) *
CHANNELS_PER_CORE;
 executor =
 builder.executor.isPresent()
 ? builder.executor.get()
 : Executors.newScheduledThreadPool(
 numChannels * THREADS_PER_CHANNEL,
 new ThreadFactoryBuilder()
 .setDaemon(true)
 .setNameFormat("cloud-pubsub-subscriber-thread-%d")
 .build());

 channelBuilder =
 builder.channelBuilder.isPresent()
 ? builder.channelBuilder.get()
 : NettyChannelBuilder.forAddress(PUBSUB_API_ADDRESS, 443)
 .maxMessageSize(MAX_INBOUND_MESSAGE_SIZE)

 239

 .flowControlWindow(5000000) // 2.5 MB
 .negotiationType(NegotiationType.TLS)
 .sslContext(GrpcSslContexts.forClient().ciphers(null).build
())
 .executor(executor);

 credentials =
 builder.credentials.isPresent()
 ? builder.credentials.get()
 : GoogleCredentials.getApplicationDefault()
 .createScoped(Collections.singletonList(PUBSUB_API_SCOPE));

 streamingSubscriberConnections = new
ArrayList<StreamingSubscriberConnection>(numChannels);
 pollingSubscriberConnections = new
ArrayList<PollingSubscriberConnection>(numChannels);
 }

 @Override
 protected void doStart() {
 logger.debug("Starting subscriber group.");
 startStreamingConnections();
 notifyStarted();
 }

 @Override
 protected void doStop() {
 stopAllStreamingConnections();
 stopAllPollingConnections();
 notifyStopped();
 }

 private void startStreamingConnections() {
 synchronized (streamingSubscriberConnections) {
 for (int i = 0; i < numChannels; i++) {
 streamingSubscriberConnections.add(
 new StreamingSubscriberConnection(
 subscription,
 credentials,
 receiver,
 ackExpirationPadding,
 streamAckDeadlineSeconds,
 ackLatencyDistribution,
 channelBuilder.build(),
 flowController,
 executor));
 }
 startConnections(
 streamingSubscriberConnections,
 new Listener() {
 @Override
 public void failed(State from, Throwable failure) {
 stopAllStreamingConnections();
 if (failure instanceof StatusRuntimeException
 && ((StatusRuntimeException)
failure).getStatus().getCode()

240 Key Implementation Code of Broker

 == Status.Code.UNIMPLEMENTED) {
 logger.info("Unable to open streaming connections, falling
back to polling.");
 startPollingConnections();
 return;
 }
 notifyFailed(failure);
 }
 });
 }

 ackDeadlineUpdater =
 executor.scheduleAtFixedRate(
 new Runnable() {
 @Override
 public void run() {
 long ackLatency =

ackLatencyDistribution.getNthPercentile(PERCENTILE_FOR_ACK_DEADLINE_UPDATES
);
 if (ackLatency > 0) {
 int possibleStreamAckDeadlineSeconds =
 Math.max(
 MIN_ACK_DEADLINE_SECONDS,
 Ints.saturatedCast(
 Math.max(ackLatency,
ackExpirationPadding.getStandardSeconds())));
 if (streamAckDeadlineSeconds !=
possibleStreamAckDeadlineSeconds) {
 streamAckDeadlineSeconds =
possibleStreamAckDeadlineSeconds;
 logger.debug(
 "Updating stream deadline to {} seconds.",
streamAckDeadlineSeconds);
 for (StreamingSubscriberConnection
subscriberConnection :
 streamingSubscriberConnections) {

subscriberConnection.updateStreamAckDeadline(streamAckDeadlineSeconds);
 }
 }
 }
 }
 },
 ACK_DEADLINE_UPDATE_PERIOD.getMillis(),
 ACK_DEADLINE_UPDATE_PERIOD.getMillis(),
 TimeUnit.MILLISECONDS);
 }

 private void stopAllStreamingConnections() {
 stopConnections(streamingSubscriberConnections);
 ackDeadlineUpdater.cancel(true);
 }

 stopConnections(pollingSubscriberConnections);
 }

 241

 private void startConnections(
 List<? extends AbstractSubscriberConnection> connections,
 final Listener connectionsListener) {
 final CountDownLatch subscribersStarting = new
CountDownLatch(numChannels);
 for (final AbstractSubscriberConnection subscriber : connections) {
 executor.submit(
 new Runnable() {
 @Override
 public void run() {
 subscriber.startAsync().awaitRunning();
 subscribersStarting.countDown();
 subscriber.addListener(connectionsListener, executor);
 }
 });
 }
 try {
 subscribersStarting.await();
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 }

 private void stopConnections(List<? extends AbstractSubscriberConnection>
connections) {
 ArrayList<AbstractSubscriberConnection> liveConnections;
 synchronized (connections) {
 liveConnections = new
ArrayList<AbstractSubscriberConnection>(connections);
 connections.clear();
 }
 final CountDownLatch connectionsStopping = new
CountDownLatch(liveConnections.size());
 for (final AbstractSubscriberConnection subscriberConnection :
liveConnections) {
 executor.submit(
 new Runnable() {
 @Override
 public void run() {
 try {
 subscriberConnection.stopAsync().awaitTerminated();
 } catch (IllegalStateException ignored) {
 }
 connectionsStopping.countDown();
 }
 });
 }
 try {
 connectionsStopping.await();
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 }
}

 Key Implementation Code of Analyser

The project is managed by Maven and use command: mvn build to download the

dependencies and compile.

public class WekaProcess {
 static Logger logger = Logger.getLogger(WekaProcess.class);
 public static void main(String[] args) throws Exception{

 NaiveBayes classifierNB = new NaiveBayes();
 J48 classifierJ48 = new J48();
 MultilayerPerceptron classifierMNN = new MultilayerPerceptron();
 IBk classifierKNN = new IBk();
 SMO classifierSVM = new SMO();
 //Configure the classifier, others options is keeping default
 classifierMNN.setLearningRate(0.9);
 classifierMNN.setHiddenLayers("t");
 classifierMNN.setSeed(5);
 classifierMNN.setReset(false);
 classifierMNN.setMomentum(0.2);
 classifierKNN.setKNN(2);
 //mix
 //Load the mix csv file
 for (int aTimeIntervalInSecond : Config.timeIntervalInSecond) {
 // get the specific file by the time interval by using the rule
 CSVLoader mixLoad = new CSVLoader();
 try {
 mixLoad.setSource(
 new
File(FileHelper.FilePathGen("mix",aTimeIntervalInSecond,0)));
 } catch (IOException e) {
 e.printStackTrace();
 }

 Instances mixData = mixLoad.getDataSet();

 mixData.setClassIndex(mixData.numAttributes() - 1);
 EvaluationEnhance eval = new EvaluationEnhance(mixData);
 List exportData = new ArrayList<Map<String, String>>();
 eval.crossValidateModel(classifierJ48, mixData, 10, new
Random(1));
 exportData = eval.exportList("J48", exportData);
 EvaluationEnhance eval2 = new EvaluationEnhance(mixData);
 eval2.crossValidateModel(classifierKNN, mixData, 10, new
Random(1));

 243

 exportData = eval2.exportList("KNN", exportData);

 EvaluationEnhance eval3 = new EvaluationEnhance(mixData);
 eval3.crossValidateModel(classifierNB, mixData, 10, new
Random(1));
 exportData = eval3.exportList("NB", exportData);

 EvaluationEnhance eval4 = new EvaluationEnhance(mixData);
 eval4.crossValidateModel(classifierSVM, mixData, 10, new
Random(1));
 exportData = eval4.exportList("SVM", exportData);

 EvaluationEnhance eval5 = new EvaluationEnhance(mixData);
 eval5.crossValidateModel(classifierMNN, mixData, 10, new
Random(1));
 exportData = eval5.exportList("MNN", exportData);
 LinkedHashMap map = new LinkedHashMap();
 for (int i=1;i<16;i++) {
 map.put(String.valueOf(i), String.valueOf(i));
 }
 CsvUtil.createCSVFile(exportData, map,
FileDirectory.WORK_PATH_WIN,
 String.valueOf(aTimeIntervalInSecond) +
"analysis.csv");

 }
 }
}

 Normal Application Actions

Chrome: Open settings and login/logout with valid credentials; Open new normal tab

TAB1, type and go to URL; add it to favorites; Open a new normal tab TAB2 and search for

city by Google; Close TAB1 and TAB2; Open a new incognito tab INTAB1 and type and

access a URL; Add URL to the Favorites; Open a new incognito tab INTAB2 and search for

URL by Google; Close INTAB1 and INTAB2; Open favourites and select last added

favourite; Open history and select the initially visited URL

Gmail: Open the main interface and refresh; Send an email; Receive email; Open last

email and Mark it; Move an email to the Social Folder; Delete an email from Primary;

Receive email with attachment; Download the attachment

Maps: Get location in the main interface; Open explore around you; Search British

Museum and find the direction to it from current location; Close application; Open settings

and open map history; Open British Museum from the list; Switch the setting from

TrafficPublic TransitBicyclingsatelliteTerrain; Search British Library and open the

description (photos and reviews), then star it; Save a small offline map and delete it; magnify

the map and save it

Facebook: Login and logout with valid account; Search for someone and add her as a

friend; Open main interface and refresh; Post status; Post Photo; Check in

YouTube: Search for British Museum and get a list of videos; Open a video and add it to

watch later; View a full video and minimise it to the right bottom corner; Open history and

a video; Open best of YouTube, open music to view a video; Upload a video and delete it.

 245

Messenger: Search for a user and add her as friend; Send message to friend; Receive

message from friend; Open main interface and refresh; Open news and the first article in it;

Add it to the bookmarks and go back

Twitter: Open my library and add more to select featured; add Wall Street Journal and

then remove it

PlayNewStand: Search for a user and add him/her as a friend; Open main interface and

load a refresh; Post status; Post Photo; Send/Receive message

Flipboard: Open and refresh; Open a news item and mark it as Liked; Open classification;

Open news to select an item from it; Add comment to news.

Feedly: Open main interface and refresh; Add content to search Tech and add Engadget

to content; Refresh and open news items from Engadget and then mark is as Liked; Remove

Engadget from content; Open Explore and add news item.

Skype: Search for contacts; Send message to a contact; Receive message from contact;

Call a contact; Receive a call from a contact.

MailDroid: Open the main interface and refresh; Send/receive email; Open/flag/delete

email; Receive email with attachment; Download attachment.

 Tables of Experiments Result

Table F-1 - Results of experiment I of network traffic

90%-10% 10-fold cross-validation 50%-50% 2-fold cross-validation 10%-90% split dataset

Recall FPR Precision Recall FPR Precision Recall FPR Precision

Infect 0.031 0.006 0.760 Infect 0.030 0.006 0.750 Infect 0.609 0.006 0.994

Normal 0.994 0.969 0.609 Normal 0.994 0.970 0.608 Normal 0.994 0.391 0.609

Infect 0.064 0.028 0.788 Infect 0.096 0.043 0.781 Infect 0.938 0.827 0.645

Normal 0.972 0.936 0.391 Normal 0.957 0.904 0.395 Normal 0.173 0.062 0.635

Infect 0.335 0.066 0.769 Infect 0.344 0.077 0.746 Infect 0.198 0.041 0.763

Normal 0.934 0.665 0.680 Normal 0.923 0.656 0.681 Normal 0.959 0.802 0.644

Infect 0.908 0.276 0.842 Infect 0.870 0.307 0.821 Infect 0.881 0.398 0.780

Normal 0.724 0.092 0.829 Normal 0.693 0.130 0.766 Normal 0.602 0.119 0.760

Infect 0.183 0.161 0.428 Infect 0.455 0.404 0.426 Infect 0.909 0.807 0.427

Normal 0.839 0.817 0.609 Normal 0.596 0.545 0.624 Normal 0.193 0.091 0.761

Infect 0.877 0.752 0.654 Infect 0.946 0.826 0.650 Infect 0.982 0.913 0.633

Normal 0.248 0.123 0.556 Normal 0.174 0.054 0.667 Normal 0.087 0.018 0.750

Infect 0.455 0.154 0.660 Infect 0.461 0.177 0.632 Infect 0.479 0.210 0.602

Normal 0.846 0.545 0.702 Normal 0.823 0.539 0.698 Normal 0.790 0.521 0.696

Infect 0.893 0.216 0.870 Infect 0.887 0.248 0.853 Infect 0.800 0.230 0.848

Normal 0.784 0.107 0.818 Normal 0.752 0.113 0.804 Normal 0.770 0.200 0.706

Infect 0.012 0.003 0.726 Infect 0.012 0.003 0.726 Infect 0.013 0.003 0.733

Normal 0.997 0.988 0.605 Normal 0.997 0.988 0.605 Normal 0.997 0.987 0.604

Infect 0.998 0.966 0.626 Infect 0.997 0.969 0.625 Infect 0.999 0.983 0.620

Normal 0.034 0.002 0.917 Normal 0.031 0.003 0.870 Normal 0.017 0.001 0.909

Infect 0.053 0.011 0.887 Infect 0.036 0.008 0.884 Infect 0.679 0.150 0.884

Normal 0.946 0.487 0.751 Normal 0.992 0.964 0.389 Normal 0.850 0.321 0.612

Infect 0.996 0.969 0.625 Infect 0.996 0.958 0.627 Infect 0.998 0.954 0.637

Normal 0.053 0.011 0.887 Normal 0.042 0.004 0.871 Normal 0.046 0.002 0.929

Infect 0.941 0.349 0.813 Infect 0.936 0.340 0.817 Infect 0.945 0.670 0.703

Normal 0.941 0.349 0.813 Normal 0.660 0.064 0.864 Normal 0.330 0.055 0.782

Infect 0.845 0.129 0.914 Infect 0.835 0.148 0.902 Infect 0.759 0.173 0.880

Normal 0.947 0.382 0.801 Normal 0.852 0.165 0.761 Normal 0.827 0.241 0.672

Infect 0.947 0.382 0.801 Infect 0.945 0.410 0.789 Infect 0.891 0.460 0.764

Normal 0.845 0.129 0.914 Normal 0.590 0.055 0.870 Normal 0.540 0.109 0.746

Infect 0.939 0.359 0.814 Infect 0.847 0.205 0.900 Infect 0.856 0.426 0.782

Normal 0.939 0.165 0.922 Normal 0.795 0.153 0.704 Normal 0.574 0.144 0.691

 Validation
Algorithms

Naive Bayesian

Packet Packet Packet

Stream Stream Stream

J48 Tree

Packet Packet Packet

Stream Stream Stream

MNN

Packet Packet Packet

Stream Stream Stream

KNN

Packet Packet Packet

Stream Stream Stream

SVM

Packet Packet Packet

Stream Stream Stream

ML-BOX+(HALF)

Stream

Stream

Stream

Stream

Stream

Stream

ML-BOX(AND)

ML-BOX(OR)

ML-BOX(HALF)

ML-BOX+(AND)

ML-BOX+(OR)

Stream

Stream

Stream

Stream

Stream

Stream

Stream

Stream

Stream

Stream

Stream

Stream

 247

Table F-2 - Results of experiment II of network traffic

Malware Family

Measures Recall FPR Precision Recall FPR Precision Recall FPR Precision

Naive Bayesian 0.059 0.03 0.846 0.05 0.03 0.818 0.571 0.03 0.667

J48 Tree 0.636 0.152 0.922 0.403 0.182 0.859 0.714 0.242 0.238

MNN 0.695 0.53 0.788 0.994 0.864 0.759 1 0.864 0.109

KNN 0.642 0.288 0.863 0.768 0.242 0.897 0.857 0.303 0.231

SVM 1 0.955 0.748 1 0.955 0.742 1 0.97 0.099

ML-BOX(AND) 0.032 0 1 0.028 0.015 0.833 0.571 0.015 0.8

ML-BOX(OR) 1 0.955 0.748 1 0.955 0.742 1 0.97 0.099

ML-BOX(HALF) 0.658 0.227 0.891 0.796 0.318 0.873 0.857 0.424 0.176

ML-BOX+(AND) 0.556 0.136 0.92 0.376 0.121 0.895 0.714 0.136 0.357

ML-BOX+(OR) 0.722 0.303 0.871 0.796 0.303 0.878 0.857 0.409 0.182

ML-BOX+(HALF) 0.658 0.227 0.891 0.796 0.303 0.878 0.857 0.409 0.182

Malware Family

Measures Recall FPR Precision Recall FPR Precision Recall FPR Precision

Naive Bayesian 0.054 0.03 0.846 0.018 0.03 0.333 0.2 0.03 0.5

J48 Tree 0.639 0.182 0.916 0.145 0.227 0.348 0.6 0.258 0.261

MNN 0.917 0.788 0.783 0.745 0.848 0.423 0.9 0.848 0.138

KNN 0.561 0.227 0.885 0.418 0.212 0.622 0.8 0.303 0.286

SVM 0.995 0.955 0.764 1 0.955 0.466 0.9 0.955 0.125

ML-BOX(AND) 0.01 0 1 0 0.015 0 0.1 0.015 0.5

ML-BOX(OR) 0.995 0.955 0.764 1 0.955 0.466 0.9 0.955 0.125

ML-BOX(HALF) 0.795 0.288 0.896 0.364 0.348 0.465 0.8 0.409 0.229

ML-BOX+(AND) 0.4 0.121 0.911 0.145 0.091 0.571 0.6 0.152 0.375

ML-BOX+(OR) 0.8 0.288 0.896 0.418 0.348 0.5 0.8 0.409 0.229

ML-BOX+(HALF) 0.785 0.288 0.894 0.364 0.348 0.465 0.8 0.409 0.229

Malware Family

Measures Recall FPR Precision Recall FPR Precision Recall FPR Precision

Naive Bayesian 0.026 0.03 0.333 0.06 0.03 0.778 0.004 0.03 0.333

J48 Tree 0.763 0.242 0.644 0.607 0.152 0.877 0.593 0.197 0.917

MNN 0.974 0.727 0.435 0.752 0.727 0.647 1 0.848 0.813

KNN 0.447 0.303 0.459 0.667 0.303 0.796 0.086 0.303 0.512

SVM 1 0.955 0.376 1 0.955 0.65 1 0.955 0.794

ML-BOX(AND) 0.026 0 1 0.026 0.015 0.75 0 0 0

ML-BOX(OR) 1 0.955 0.376 1 0.955 0.65 1 0.955 0.794

ML-BOX(HALF) 0.842 0.394 0.552 0.692 0.333 0.786 0.654 0.364 0.869

ML-BOX+(AND) 0.342 0.136 0.591 0.41 0.045 0.941 0.025 0.136 0.4

ML-BOX+(OR) 0.868 0.409 0.55 0.863 0.409 0.789 0.654 0.364 0.869

ML-BOX+(HALF) 0.842 0.394 0.552 0.692 0.333 0.786 0.654 0.364 0.869

3 (7 infect streams)

6 (10 infect streams)

10 (243 infect streams)

1 (187 infect streams) 2 (181 infect streams)

4 (205 infect streams) 5 (55 infect streams)

7 (38 infect streams) 9 (117 infect streams)

248 Tables of Experiments Result

Table F-3 - Performance measures in experiment 1 of system call

(A) ATOMIC ML CLASSIFIERS

 J48 KNN NB SVM NN

I D TPR FPR PRC AUC TPR FPR PRC AUC TPR FPR PRC AUC TPR FPR PRC AUC TPR FPR PRC AUC

1
0
s N .98 .07 .97 .97 .99 .06 .97 .99 .90 .02 .99 .98 .96 .03 .98 .96 .98 .05 .98 .98

B .93 .02 .96 .97 .94 .01 .98 .99 .98 .10 .83 .97 .97 .04 .92 .96 .95 .02 .96 .98

3
0
s N 1.0 .10 .97 .97 .99 .11 .97 .98 .96 .03 .99 .98 .99 .08 .98 .95 .99 .07 .98 .99

B .90 .00 .98 .97 .89 .01 .96 .98 .97 .04 .87 .98 .92 .01 .96 .95 .93 .01 .96 .99

6
0
s N .99 .08 .98 .97 .99 .04 .99 .99 .98 .01 1.0 .99 .99 .01 1.0 .99 .98 .05 .99 1.0

B .92 .01 .94 .97 .96 .01 .95 .99 .99 .02 .94 .98 .99 .01 .95 .99 .95 .02 .93 1.0

3
0
0
s N .99 .16 .95 .92 1.0 .04 .99 .99 1.0 .12 .96 .94 1.0 .00 1.0 1.0 1.0 .00 1.0 1.0

B .84 .01 .95 .92 .96 .00 1.0 .99 .88 .00 1.0 .96 1.0 .00 1.0 1.0 1.0 .00 1.0 1.0

6
0
0
s N 1.0 .06 .98 .97 1.0 .06 .98 .98 .98 .18 .93 .89 1.0 .00 1.0 1.0 .98 .00 1.0 1.0

B .94 .00 1.0 .97 .94 .00 1.0 .98 .82 .02 .93 .91 1.0 .00 1.0 1.0 1.0 .02 .94 1.0

AV
N 0.99 0.09 0.97 0.96 0.99 0.06 0.98 0.98 0.96 0.07 0.97 0.96 0.99 0.02 0.99 0.98 0.99 0.03 0.99 0.99

B 0.91 0.01 0.97 0.96 0.94 0.01 0.98 0.98 0.93 0.04 0.91 0.96 0.98 0.01 0.97 0.98 0.97 0.01 0.96 0.99

(B) BOX ML CLASSIFIERS
 BOX‐AND BOX‐OR BOX‐HALF BOX‐AND+ BOX‐OR+ BOX‐HALF+

I D TPR FPR PRC AUC TPR FPR PRC AUC TPR FPR PRC AUC TPR FPR PRC AUC TPR FPR PRC AUC TPR FPR PRC AUC

1
0
s N .98 .05 .98 .98 .88 .01 .99 .94 .98 .05 .98 .97 .99 .08 .96 .95 .98 .05 .98 .96 .98 .05 .98 .97

B .95 .02 .96 .98 .99 .12 .81 .94 .95 .02 .97 .97 .92 .01 .99 .95 .95 .02 .95 .96 .95 .02 .97 .97

3
0
s N .99 .07 .98 .99 .95 .01 1.0 .97 .99 .08 .98 .95 1.0 .14 .96 .93 .99 .08 .98 .95 .99 .08 .98 .95

B .93 .01 .96 .99 .99 .05 .87 .97 .92 .01 .96 .95 .86 .00 .99 .93 .92 .01 .95 .95 .92 .01 .96 .95

6
0
s N .98 .05 .99 1.0 .97 .00 1.0 .99 .99 .04 .99 .97 .92 .01 .96 .95 .98 .04 .99 .97 .99 .04 .99 .97

B .95 .02 .93 1.0 1.0 .03 .91 .99 .96 .01 .95 .97 .99 .08 .98 .95 .96 .02 .93 .97 .96 .01 .95 .97

3
0
0
s N 1.0 .00 1.0 1.0 .99 .00 1.0 .99 1.0 .04 .99 .98 .84 .00 1.0 .92 .99 .04 .99 .97 1.0 .04 .99 .98

B 1.0 .00 1.0 1.0 1.0 .01 .96 .99 .96 .00 1.0 .98 1.0 .16 .95 .92 .96 .01 .96 .97 .96 .00 1.0 .98

6
0
0
s N .98 .00 1.0 1.0 .98 .00 1.0 .99 1.0 .06 .98 .97 .94 .00 .99 .97 1.0 .06 .98 .97 1.0 .06 .98 .97

B 1.0 .02 .94 1.0 1.0 .02 .94 .99 .94 .00 1.0 .97 1.0 .06 .98 .97 .94 .00 .99 .97 .94 .00 1.0 .97

AV
N .99 .03 .99 .99 .95 .00 1.0 .98 .99 .05 .98 .97 .94 .05 .97 .95 .99 .05 .98 .97 .99 .05 .98 .97

B .97 .01 .96 .99 1.0 .05 .90 .98 .95 .01 .97 .97 .95 .06 .98 .95 .95 .01 .96 .97 .95 .01 .97 .97

 249

Table F-4 - Performance measures in experiment 2 of system call

(A) ATOMIC ML CLASSIFIERS

 J48 KNN NB SVM NN

B D TPR FPR PRC AUC TPR FPR PRC AUC TPR FPR PRC AUC TPR FPR PRC AUC TPR FPR PRC AUC

B1
N .94 .18 .94 .90 .97 .27 .91 .87 .86 .29 .89 .85 .92 .35 .88 .78 .86 .45 .76 .84

B .82 .06 .84 .90 .73 .03 .90 .87 .71 .14 .69 .84 .65 .08 .80 .78 .55 .14 .80 .84

B2
N .95 .30 .76 .88 .97 .99 .24 .66 .89 .00 1.0 .95 .91 .00 1.0 .96 .55 .00 .69 .99

B .70 .05 .88 .88 .01 .03 .60 .66 1.0 .11 .97 .95 1.0 .09 .97 .96 1.0 .45 .89 .99

B3
N .95 .10 .97 .96 .96 .18 .95 .99 .88 .02 .99 .95 .92 .36 .91 .78 .56 .23 .64 .92

B .90 .05 .84 .96 .82 .04 .87 .99 .98 .12 .71 .95 .64 .08 .75 .78 .78 .44 .56 .92

B4
N .96 .02 .94 .97 .96 .04 .90 .99 .89 .02 .95 .97 .96 .79 .38 .59 .88 .79 .29 .91

B .98 .04 .99 .97 .96 .04 .99 .99 .98 .11 .97 .97 .21 .04 .90 .59 .21 .12 .92 .91

B5
N .94 .00 1.0 .99 .96 .00 1.0 1.0 .88 .00 1.0 .95 .91 .00 1.0 .96 .73 .30 .79 .91

B 1.0 .06 .42 .99 1.0 .04 .58 1.0 1.0 .12 .28 .95 1.0 .09 .46 .96 .70 .27 .42 .91

B6
N .98 .37 .78 .91 .99 .37 .78 .97 .87 .08 .94 .93 .91 .10 .93 .91 .59 .43 .39 .85

B .63 .02 .96 .91 .63 .01 .98 .97 .92 .13 .85 .94 .90 .09 .90 .91 .57 .41 .75 .85

B7
N .97 .36 .88 .85 .97 .32 .90 .87 .90 .15 .94 .91 .92 .21 .92 .85 .95 .30 .90 .86

B .64 .03 .88 .85 .68 .03 .90 .87 .85 .10 .79 .95 .79 .08 .81 .85 .70 .05 .88 .86

B8
N .94 .00 1.0 .99 .96 .53 .88 .91 .87 .00 1.0 .98 .91 .03 .99 .94 .66 .07 .77 .96

B 1.0 .06 .82 .99 .47 .04 .80 .91 1.0 .13 .70 .98 .97 .09 .78 .94 .93 .34 .67 .96

B9
N .95 .05 .98 .96 .96 .05 .98 .99 .84 .27 .90 .81 .91 .20 .93 .86 .62 .05 .68 .94

B .95 .05 .88 .96 .95 .04 .90 .99 .73 .16 .65 .74 .80 .09 .81 .86 .95 .38 .63 .94

AV
N .95 .15 .92 .94 .97 .30 .84 .92 .88 .09 .96 .92 .92 .23 .88 .85 .71 .29 .66 .91

B .85 .05 .83 .94 .70 .03 .84 .92 .91 .12 .73 .92 .77 .08 .80 .85 .71 .29 .72 .91

(B) BOX ML CLASSIFIERS

BOX‐AND BOX‐OR BOX‐HALF BOX‐AND+ BOX‐OR+ BOX‐HALF+

B D TPR FPR PRC AU TPR FPR PRC AU TPR FPR PRC AU TPR FPR PRC AU TPR FPR PRC AU TPR FPR PRC AU

B1
N .86 .45 .86 .84 .76 .06 .97 .85 .94 .25 .91 .84 .96 .30 .90 .83 .85 .16 .93 .84 .93 .22 .92 .85

B .55 .14 .80 .84 .94 .24 .66 .85 .75 .06 .84 .84 .70 .04 .87 .83 .84 .15 .68 .84 .78 .07 .83 .85

B2
N .56 .00 1.0 .99 .53 .00 1.0 .76 .92 .00 1.0 .96 .96 .30 .76 .83 .88 .00 1.0 .94 .92 .00 1.0 .96

B 1.0 .44 .89 .99 1.0 .47 .88 .76 1.0 .08 .97 .96 .70 .04 .89 .83 1.0 .12 .96 .94 1.0 .08 .97 .96

B3
N .57 .23 .95 .92 .52 .01 1.0 .76 .93 .12 .97 .90 .96 .11 .97 .92 .88 .01 1.0 .94 .92 .09 .97 .92

B .78 .43 .56 .92 .99 .48 .49 .76 .88 .07 .81 .90 .89 .04 .86 .92 .99 .12 .70 .94 .91 .08 .80 .92

B4
N .88 .79 .39 .91 .81 .01 .98 .90 .95 .03 .90 .96 .96 .03 .91 .97 .89 .01 .98 .94 .94 .03 .92 .96

B .21 .12 .92 .91 .99 .19 .95 .90 .97 .05 .98 .96 .97 .04 .99 .97 .99 .11 .96 .94 .97 .06 .98 .96

B5
N .74 .30 .99 .91 .69 .00 1.0 .84 .92 .00 1.0 .96 .95 .00 1.0 .98 .87 .00 1.0 .94 .91 .00 1.0 .96

B .70 .26 .43 .91 1.0 .31 .18 .84 1.0 .08 .46 .96 1.0 .05 .51 .98 1.0 .13 .25 .94 1.0 .09 .45 .96

B6
N .60 .43 .79 .85 .51 .00 1.0 .75 .96 .23 .86 .86 .99 .41 .76 .79 .86 .04 .97 .91 .96 .20 .87 .88

B .57 .40 .75 .85 1.0 .49 .67 .75 .77 .04 .95 .86 .59 .01 .97 .79 .96 .14 .85 .91 .80 .04 .95 .88

B7
N .95 .30 .90 .86 .90 .15 .94 .87 .94 .29 .90 .82 .97 .36 .88 .80 .90 .15 .94 .87 .94 .29 .90 .82

B .70 .05 .88 .86 .85 .10 .77 .87 .71 .06 .84 .82 .64 .03 .88 .80 .85 .10 .78 .87 .71 .06 .84 .82

B8
N .67 .07 .98 .96 .63 .00 1.0 .81 .92 .00 1.0 .96 .95 .00 1.0 .98 .87 .00 1.0 .93 .92 .00 1.0 .96

B .93 .33 .67 .96 1.0 .37 .56 .81 1.0 .08 .80 .96 1.0 .05 .85 .98 1.0 .13 .68 .93 1.0 .08 .79 .96

B9
N .63 .05 .98 .94 .58 .02 .99 .77 .92 .05 .98 .93 .96 .29 .91 .84 .83 .03 .98 .90 .92 .05 .98 .93

B .95 .37 .63 .94 .98 .42 .55 .77 .95 .08 .83 .93 .71 .04 .87 .84 .97 .17 .69 .90 .95 .08 .83 .93

AV
N .72 .29 .87 .91 .66 .03 .99 .81 .93 .11 .95 .91 .96 .20 .90 .88 .87 .04 .98 .91 .93 .10 .95 .92

B .71 .28 .72 .91 .97 .34 .63 .81 .89 .07 .83 .91 .80 .04 .85 .88 .96 .13 .73 .91 .90 .07 .83 .92

250 Tables of Experiments Result

Table F-5 - Performance measures in experiment 3 of system call

(A) ATOMIC ML CLASSIFIERS

B
 J48 KNN NB SVM NN

D TPR FPR PRC AUC TPR FPR PRC AUC TPR FPR PRC AUC TPR FPR PRC AUC TPR FPR PRC AUC

B1
N .91 .18 .88 .86 .94 .32 .83 .86 .63 .18 .81 .76 .94 .41 .80 .76 1.0 .95 .68 .55

B .82 .09 .83 .86 .68 .06 .85 .86 .82 .37 .57 .78 .59 .06 .82 .76 .05 .00 1.0 .55

B2
N .93 .98 .25 .85 .94 .99 .25 .53 .66 .00 1.0 .81 .93 .00 1.0 .96 .96 .00 1.0 .95

B .02 .07 .61 .85 .01 .06 .55 .53 1.0 .34 .91 .81 1.0 .07 .98 .96 1.0 .04 .99 .95

B3
N .91 .06 .96 .92 .94 .19 .91 .94 .63 .00 1.0 .85 .93 .44 .83 .74 1.0 .94 .73 .70

B .94 .09 .81 .92 .81 .06 .83 .94 1.0 .37 .55 .85 .56 .07 .76 .74 .06 .00 1.0 .70

B4
N .93 .04 .81 .97 .94 .04 .81 .98 .64 .01 .90 .90 .96 .97 .26 .49 .96 .97 .26 .91

B .96 .07 .98 .97 .96 .06 .98 .98 .99 .36 .91 .90 .03 .04 .76 .49 .03 .04 .76 .91

B5
N .86 .00 1.0 .89 .94 .50 .96 .94 .61 .00 1.0 .84 .94 .50 .96 .71 .00 .00 .00 .15

B 1.0 .14 .47 .89 .50 .06 .44 .94 1.0 .39 .18 .84 .50 .06 .38 .71 1.0 1.0 .06 .15

B6
N .92 .33 .72 .89 .94 .41 .68 .91 .64 .11 .79 .82 .94 .35 .71 .79 .95 .57 .63 .65

B .67 .08 .90 .89 .59 .06 .91 .91 .89 .36 .73 .83 .65 .06 .91 .79 .43 .05 .90 .65

B7
N .93 .41 .80 .81 .94 .36 .81 .84 .69 .18 .84 .78 .94 .41 .80 .76 .99 .68 .73 .59

B .59 .07 .82 .81 .64 .06 .85 .84 .82 .31 .63 .83 .59 .06 .82 .76 .32 .01 .94 .59

B8
N .88 .00 1.0 .98 .89 .52 .81 .84 .68 .00 1.0 .94 .93 .07 .96 .93 .00 .00 .15 .93

B 1.0 .12 .77 .98 .48 .11 .68 .84 1.0 .32 .59 .94 .93 .07 .83 .93 1.0 1.0 .27 .93

B9
N .93 .19 .88 .87 .91 .33 .82 .81 .53 .24 .74 .70 .90 .29 .84 .80 1.0 .90 .69 .78

B .81 .07 .84 .87 .67 .09 .82 .81 .76 .47 .45 .66 .71 .10 .80 .80 .10 .00 1.0 .78

AV
N .91 .24 .81 .89 .93 .40 .76 .85 .63 .08 .89 .82 .93 .38 .79 .77 .76 .55 .54 .69

B .75 .08 .78 .89 .59 .06 .76 .80 .92 .36 .61 .82 .61 .06 .78 .77 .44 .23 .76 .69

 (B) BOX ML CLASSIFIERS

 BOX‐AND BOX‐OR BOX‐HALF BOX‐AND+ BOX‐OR+ BOX‐HALF+

B D TPR FPR PRC AU TPR FPR PRC AU TPR FPR PRC AU TPR FPR PRC AU TPR FPR PRC AU TPR FPR PRC AU

B1
N 1.0 .95 .68 .55 .61 .05 .93 .78 .93 .32 .83 .81 .94 .32 .83 .74 .91 .18 .88 .88 .93 .32 .83 .81

B .05 .00 1.0 .55 .95 .39 .59 .78 .68 .07 .84 .81 .68 .06 .86 .74 .82 .09 .82 .85 .68 .07 .84 .81

B2
N .96 .00 1.0 .96 .65 .00 1.0 .83 .94 .00 1.0 .97 .94 .99 .25 .43 .93 .98 .25 .47 .94 .00 1.0 .97

B 1.0 .04 .99 .96 1.0 .35 .91 .83 1.0 .06 .99 .97 .01 .06 .58 .43 .02 .07 .59 .47 1.0 .06 .99 .97

B3
N 1.0 .94 .73 .70 .62 .00 1.0 .81 .94 .13 .93 .91 .94 .25 .88 .77 .91 .00 1.0 .95 .94 .13 .93 .91

B .06 .00 1.0 .70 1.0 .38 .54 .81 .88 .06 .84 .91 .75 .06 .84 .77 1.0 .09 .81 .95 .88 .06 .84 .91

B4
N .96 .97 .26 .92 .63 .01 .90 .81 .94 .04 .81 .95 .94 .05 .79 .87 .93 .04 .82 .94 .94 .04 .81 .95

B .03 .04 .76 .92 .99 .37 .91 .81 .96 .06 .98 .95 .95 .06 .98 .87 .96 .07 .98 .94 .96 .06 .98 .95

B5
N .04 .00 1.0 .15 .04 .00 1.0 .50 .90 .00 1.0 .95 .94 .50 .96 .66 .86 .00 1.0 .93 .90 .00 1.0 .95

B 1.0 .96 .07 .15 1.0 .96 .07 .50 1.0 .10 .41 .95 .50 .06 .48 .66 1.0 .14 .44 .93 1.0 .10 .41 .95

B6
N .95 .57 .63 .65 .62 .00 1.0 .81 .94 .37 .70 .78 .94 .45 .66 .68 .92 .28 .74 .82 .94 .37 .70 .78

B .43 .05 .90 .65 1.0 .38 .74 .81 .63 .06 .91 .78 .55 .06 .90 .68 .72 .08 .90 .82 .63 .06 .91 .78

B7
N .99 .68 .73 .60 .69 .18 .84 .75 .94 .41 .80 .77 .94 .41 .80 .70 .93 .36 .81 .78 .94 .41 .80 .77

B .32 .01 .94 .60 .82 .31 .63 .75 .59 .06 .84 .77 .59 .06 .84 .70 .64 .07 .83 .78 .59 .06 .84 .77

B8
N .04 .00 1.0 .94 .04 .00 1.0 .50 .86 .00 1.0 .93 .89 .52 .81 .62 .88 .00 1.0 .94 .86 .00 1.0 .93

B 1.0 .96 .27 .94 1.0 .96 .27 .50 1.0 .14 .75 .93 .48 .11 .69 .62 1.0 .12 .77 .94 1.0 .14 .75 .93

B9
N 1.0 .90 .69 .79 .53 .00 1.0 .77 .91 .33 .82 .79 .94 .33 .83 .74 .89 .19 .88 .85 .91 .33 .82 .79

B .10 .00 1.0 .78 1.0 .47 .50 .77 .67 .09 .82 .79 .67 .06 .85 .74 .81 .11 .81 .85 .67 .09 .82 .79

AV
N .77 .56 .75 .69 .49 .03 .96 .73 .92 .18 .88 .87 .94 .42 .76 .69 .91 .23 .82 .84 .92 .18 .88 .87

B .44 .23 .77 .69 .97 .51 .57 .73 .82 .08 .82 .87 .58 .06 .78 .69 .77 .09 .77 .84 .82 .08 .82 .87

 Training Dataset Feature Selection

Table G-1 - Network Traffic Feature Selection

Packets/Stream Frame Duration

Packets/Stream Packet Size

Arguments Number in HTTP Request URL

Table G-2 - System Calls Dataset Feature Selection

The timestamp of the system call

The system call name

Return value of the call

The time spent on the call

Frequency of calls over different time intervals (10,30,60,300,600)

