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Detecting botnets in a network is crucial because bot-activities impact numerous 

areas such as security, finance, health care, and law enforcement. Most existing rule and 

flow-based detection methods may not be capable of detecting bot-activities in an 

efficient manner. Hence, designing a robust botnet-detection method is of high 

significance. In this study, we propose a botnet-detection methodology based on graph-

based features. Self-Organizing Map is applied to establish the clusters of nodes in the 

network based on these features. Our method is capable of isolating bots in small clusters 

while containing most normal nodes in the big-clusters. A filtering procedure is also 

developed to further enhance the algorithm efficiency by removing inactive nodes from 

bot detection. The methodology is verified using real-world CTU-13 and ISCX botnet 

datasets and benchmarked against classification-based detection methods. The results 

show that our proposed method can efficiently detect the bots despite their varying 

behaviors.
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CHAPTER I 

INTRODUCTION 

1.1 Introduction 

During the last 15 years, botnets have caused some of the most devastating and 

costly internet security incidents in the world [1]. The term "bot" comes from robot 

which is also sometimes called Zombie. A bot may also be known as a Web robot or 

WWW robot. It is a type of malware [2] that an attacker can exploit to control an infected 

computer. It is installed into a compromised computer which can be controlled remotely 

by an attacker or a group of attackers for fulfilling their own gain. One of the most 

common methods for a bot program to infect a compromised computer is by a malicious 

website the user is visiting that silently searches and exploits vulnerability in the user's 

system in order to install the bot on it. Some other ways to infect include sending the bot 

as an attached file with spam emails, or as a program dropped from the payload of 

another malware. After successful installation of bot code into the compromised 

computer, it becomes part of large network of compromised computers and hence the 

term “botnet” is used. Attacker can issue commands to a single bot, or to all the bots in 

botnet. The attacker controlling the botnet is sometimes referred to as the 

“botherder””botmaster” or “controller” [3]. Figure 1 shows a typical botnet cycle. 

Contrary to existing malware such as viruses and worms, which focus on attacking the 
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infecting host, bots can receive commands from botmaster and can also be used in a 

distributed attack platform [4]. 

 

Figure 1.1 Botnet life cycle 

 

Botnets can significantly damage the security of individuals and businesses. They 

pose a serious and growing threat against cyber-security as they provide a distributed 

platform for many cyber-crimes such as Distributed Denial of Service (DDoS) attacks 

against critical targets, malware dissemination, phishing, and click fraud [5, 6]. Even in 

some cases, botmasters sell access to the botnet to other criminals – either on a rental 

basis or as an outright sale [7]. As a result, botnet detection has been a major research 

topic in recent years. Researchers have proposed several detection approaches for botnet 

detection to combat botnet threat against cyber-security [8]. A majority of the existing 

Botnet detection approaches concentrate primarily on particular Botnet command and 

control (C&C) protocols (e.g., HTTP, IRC) and structures (e.g., centralized or P2P). They 

follow rule based approaches to detect botnets in network. However, these approaches 
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can become ineffective and obsolete if botnets change their structure and C&C 

techniques to evade detection [4]. Thus, a robust botnet detection approach that can 

detect any type of botnet with varying characteristics is of utmost importance. Before 

exploring existing botnet detection schemes in literature, we first survey some of the 

studies done in anomaly detection. Later, existing efforts dedicated to bot detection are 

identified that can be divided into two broad categories: botnet detection using NetFlow 

based features and graph-based features. 

1.2 Anomaly detection techniques 

Researchers have conducted extensive research on anomaly detection techniques 

over the years. For example: Fadlullah et al. [9] develop a novel detection technique 

called DTRAB to infer DDoS attacks. The authors investigated the detection of attacks 

against application-level protocols that are encapsulated via encryption. In essence, this 

detection scheme is a distributed detection mechanism capable of detecting the 

anomalous events as early as possible. Moreover, DTRAB is able to simultaneously 

construct a defensive mechanism to discover attacks as well as find out the root of the 

threat by tracing back the attacker’s original network. The effectiveness of this scheme is 

validated via simulation. Flow correlation information is utilized by Zhang et al. [10, 11, 

12] to further improve the classification accuracy considering only a small number of 

training instances based on K-NN and Naive Bayes classifier that are used to detect 

anomalies in the network. Yan et al. [13] propose a framework of security and trust for 

5G based on the perspective that the next generation network functions will be highly 

virtualized and software defined networking is applied for traffic control. The proposed 

approach by the researchers utilizes adaptive trust evaluation and management 
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technologies as well as sustainable trusted computing technologies to achieve computing 

platform trust and software defined networking security. A qualitative comparison 

between the advantages and disadvantages of software defined networking and traditional 

networking regarding security issues concerning overall architecture and a detailed 

analysis of the threats of software defined networking from the perspective of functional 

layers and attack types is provided by Shu et al. [14]. 

1.3 Flow-Based Methods 

The botnet detection literature using NetFlow based features is a rich one and 

many researchers have significantly contributed in this area (e.g. [15-17]). Most of the 

existing detection schemes falls into either of the two types of methods: clustering and 

classification ([24, 27, 29]), and others. 

Clustering is a popular approach taken by researchers to detect botnets using flow 

based features. Zeidanloo et al. have proposed a botnet detection framework that can 

detect botnets without prior knowledge of them [19]. This detection framework is based 

on finding similar communication patterns and behaviors among the group of hosts that 

are performing at least one malicious activity using X-means clustering. Using Audit 

Record Generation and Utilization System (ARGUS) [20], the authors have collected 

flow based information such as source IP address, destination IP address, source Port, 

destination Port, duration, protocol, number of packets, and number of bytes transferred 

in both directions, which are later used to detect the group of hosts that exhibit similar 

behavior and communication pattern. Karasaridis et al. have developed a K-mean based 

method that employs scalable non-intrusive algorithms that analyze vast amounts of 

summary traffic data [22]. Gu et al. have proposed a novel anomaly-based botnet 
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detection system that is independent of the protocol and structure used by botnets [26]. 

This detection system has exploited the essential definition and properties of botnets, i.e., 

bots within the same botnet exhibit similar C&C communication patterns and similar 

malicious activities patterns. It utilizes a number of flow based information such as time, 

source IP, destination IP, source port, destination port, duration, and the number of 

packets and bytes transferred in both directions. C-plane clustering method is used to read 

the communication logs generated by C plane monitor and find clusters that share similar 

communication pattern. Arshad et al. have developed an anomaly-based method that 

require not a priori knowledge of bot signatures, botnet C&C protocols, and the C&C 

server addresses [28]. Flow characteristics such as IP, port, packet event times, and bytes 

per packet are examined by Amini et al. to detect botnets where these NetFlow data is 

collected, filtered, and is finally clustered using hierarchical clustering [25]. Rule based 

methods are then applied to refine the clusters to reduce the percentage of false positives. 

Among the authors’ who use classification techniques, Strayer et al. have 

developed detection approaches by examining flow characteristics such as bandwidth, 

packet timing, and burst duration, where they first eliminate traffic that is unlikely to be a 

part of a botnet, classify the remaining traffic into a group that is likely to be part of a 

botnet by using J48 decision trees, naïve Bayes, and Bayesian classifier, and finally 

correlate the likely traffic to find common communications patterns that would suggest 

the activity of a botnet [24,29]. Fairly recently, a decision tree classifier has been used by 

Zhao et al. to detect botnets by investigating 12 flow based features [27]. Their proposed 

method can detect botnets during the C&C and attack phases based on the observation of 

network flow characteristics for specific time intervals. It does not require significant 



 

6 

malicious activity to occur before detection as it can recognize command and control 

signals. Simultaneously, it does not require the group behavior of several bots before it 

can be confident about making a decision.  

Lu et al. have incorporated both classification and clustering techniques in 

detection of botnets, developing an unsupervised botnet detection framework where they 

first identify network traffic from existing known applications, then focus on each 

application community that might include botnet communication flows [30]. This 

network traffic is then clustered to find the anomalous behaviors on that specific 

application community based on the n-gram features extracted from the content of 

network flows. The proposed detection framework has been evaluated on an IRC 

community and results show that this approach obtains a high detection rate with a very 

low false alarm rate when detecting IRC botnet traffic.  

Apart from classification and clustering techniques, there are a number of other 

studies that employ other approaches in botnet detection using NetFlow based features. 

Interested readers can refer to [18, 21, 23, 31, and 32] for such related works.  

Limitation: Existing methods of botnet Detection based on NetFlow traffic 

features rely on computing statistical features of flow traffic or on deep packet inspection. 

As a result, these methods only capture the characteristics of bots effects on individual 

links, rather than on the topological structure of a neighborhood/subgraph as a whole. In 

particular, flow-based detection methods require the comparison of each traffic flow to 

all the others in order to determine malicious traffic, instead of monitoring the network 

behaviors in a holistic manner. Such techniques are also deficient in that attackers can 

evade detection by the use of encrypting commands or changes in data volume or change 
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in some other behavioral characteristics such as by the use of variable length encryption 

or changes in packet structure that leads to new behavioral characteristics. To overcome 

this deficiency, another stream of research has focused on detecting botnets based on 

graph-based features. This approach is fundamentally more efficient than flow based 

approaches since it avoids the need to cross compare flows across the dataset [33]. 

1.4 Graph-Based Methods 

There are a number of studies that use different graph-based features to detect 

anomalies. Literature in this domain can be broadly categorized into two groups: one 

group detects anomalies in static graphs using graph-based features whereas another 

group does the same, but with dynamic graphs. The static graphs can be further 

categorized into plain graphs and attributed graphs. Among the studies that use plain 

graphs for anomaly detection, Ding et al. [34], Henderson et al. [35], Henderson et al. 

[36], Kang et al. [37], Aggarwal [38], Zimek et al. [39], Chen and Giles [40] and many 

more utilize structure-based patterns to detect anomalies. On the other hand, studies done 

by Sun et al. [41], Tong and Lin [42], Ambai et al. [43], Nikulin and Huang [44] focus on 

the utilization of community based patterns to detect anomalies. Similarly, for attributed 

graphs Davis et al. [45], Eberle and Holder [46], and Kontkanen and Myllymki [47] use 

structure based patterns whereas Gao et al. [48], Muller et al. [49], Perozzi et al. [50] use 

community based patterns to detect anomalies. With dynamic graphs, authors have used 

the notion of graph similarity based on certain properties such degree distribution, 

diameter [51-53], by resorting to matrix or tensor decomposition of the time-varying 

graphs [54-57], or by monitoring graph communities over time and reporting events 

when there is structural or contextual change in any of them [58,59]. 
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Botnet detection studies using graph-based features mainly exploits the spatial 

relationships in communication traffic [31,60,61]. Collins and Reiter have proposed a 

method to identify bots by noting that scanning behavior initiated by bot infected hosts 

would tend to connect different disconnected components of protocol-specific traffic 

graphs [70]. Wang and Paschalidis [62] use behavioral characteristics of bots to detect 

botnets. Primarily, the authors have focused on analyzing the social relationships that are 

modeled as graph of nodes. The authors have considered both social interaction graphs 

and social correlation graphs and have applied the proposed method to a real-world case 

study. However, for this detection scheme to be successful bots need to show systematic 

pattern in behavior that may not be very robust for stealthy botnet. ‘Graption’ is a graph-

based method proposed by Iliofotou et al. that identifies peer-to-peer flows by calculating 

the in-degree to out degree ratio of hosts in protocol traffic graphs [63]. However, this 

method can be defeated by protocol randomization. A graph-based detection approach to 

detect web-account abuse attack has been proposed by Zhao et al. where the correlations 

among botnet activities are uncovered by constructing large user-user graphs [64]. This 

approach, termed as ‘BotGraph’ has two components: aggressive sign-up detection and 

stealthy bot user connection. The first component ensures that the total number of 

possible bots are limited whereas second component detects stealthy bot users based on 

constructing a user-user random undirected graph. Only the edge weight feature has been 

used to detect bots in the graph. Although, the detection rate is very high, this method’s 

accuracy can be disputed if other types of botnets besides the spamming one need to be 

detected. Jaikumar and Kak have presented a graph-based framework for isolating 

botnets in a network [65]. This framework uses temporal co-occurrences in the activity 
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space to detect botnets. This makes the framework independent of the software 

architecture of the malware infecting the hosts. The proposed framework has been 

validated by applying it to a simulated environment. However, this approach falls short if 

bots don’t exhibit temporally co-occurring malicious activities. Nagaraja et al. have 

proposed a botnet detection technique based on structured graph analysis that localizes 

botnet members by identifying unique communication patterns arising from the overlay 

topologies prevalent in command and control structure [66]. However, this approach 

must be paired with some other malware detection scheme to clearly distinguish botnets 

from regular flows. Francois et al. have proposed an approach called ‘BotTrack’ where 

NetFlow related data is correlated and a host dependency model is leveraged for 

advanced data mining purposes [67]. They have used the popular linkage analysis 

algorithm ‘PageRank’ with an additional clustering process to efficiently detect botnets. 

However, to validate the proposed method, the researchers have only used 13.7 GB of 

real world data; also, they have generated the botnet randomly as the dataset was not 

labeled. Moreover, the authors’ have assumed that a certain percentage of bots and their 

characteristic were known beforehand. So, if an unknown botnet exists in the network, 

their approach may not give good results. Francois et al. have further extended their work 

on ‘BotTrack’ by developing a scalable method called ‘BotCloud’ for detecting botnets 

regarding the relationships between hosts [68]. The evaluation of this method has showed 

a good detection accuracy and a good efficiency based on a Hadoop cluster. But, in this 

case also, the authors have initially used a botnet free dataset and later randomly have 

generated botnets in them. Hang et al. have used community detection based clustering to 

identify long-lived low intensity flows using graph-based features [69].  
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Limitation: Similar to botnet detection methods using statistical features of 

flow/packet traffic or in some cases even deep packet inspection, existing graph-based 

botnet detection methods available in the literature have some major limitations. Many of 

them apply the botnet detection scheme that operates in a simulated environment (e.g. 

[65]). Moreover, the detection approach proposed in the literature is mostly rule based, 

meaning that a predetermined rule needs to be established beforehand to detect botnets 

from a graph (e.g., [60]). This approach may lead to unwarranted result if bots behave 

differently from a common norm. Although many of the graph-based detection schemes 

use filtering to remove bot free data (e.g., [64, 66]) and then apply a detection method, 

the amount of data that needs to be investigated to detect botnets is relatively large. 

Simultaneously, if dataset is large, the computational expense is often high for the 

detection approach; which is a huge disadvantage if faster detection is required [64]. 

1.5 Significance of Our Approach 

An important step towards developing a new graph-based detection approach 

would be to develop a method that is fast and does not follow any particular rule to detect 

botnets. Simultaneously, the approach must be validated on a real world dataset with 

different types of botnets. This detection scheme should also be robust enough so that it 

can be able to reduce the amount of data that is further investigated to detect any kind of 

botnet present in the dataset. In this study, we have proposed an approach based on 

graph-based features that can fulfil these requirements. Our main contribution can be 

summarized as: 

• We present a novel graph-based method for the detection of botnets in a 

computer network. 
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• Our approach does not depend on any rules to detect botnets and is 

capable of capturing the changing behavior of bots. 

• Seven graph-based features are used in this study to detect botnets. 

• The proposed method can detect different types of botnets with different 

types of behavioral characteristics. 

• A real world dataset is used to validate the results. 

However, handling real world big data consisting of botnets is challenging.   

The rest of the paper is organized as follows. Chapter 2 provides a brief 

description of the real world dataset used in this study. Chapter 3 discusses in detail the 

seven features used to detect botnets and the clustering methodology implemented to 

cluster these features. Chapter 4 provides numerical results obtained after applying 

clustering methodology to the real world dataset as well as giving a comparative 

overview of applying classification techniques.  Chapter 5 concludes our work and 

reviews our main contribution to the existing literature.  



 

12 

CHAPTER II 

DATA DESCRIPTION 

2.1 Data Description  

Big data has been an area of interest among researchers in recent years. For 

instance: Tsai et al. [71] have provided a comprehensive review on studies that attempt to 

develop new schemes capable of handling big data during the input, analysis, and output 

stages of knowledge discovery. They have found that majority of the existing literature is 

focused on innovative methods for data mining and analysis. However, little to no 

attention have been given to the pre- and post-analysis processing methods. Evolution 

based algorithms such as accelerated particle swam optimization is used to reduce the 

dimensionality of big data by Fong et al. [72]. Authors have investigated the applicability 

their method on exceptionally large volume of data with high degree dimensions and 

have found that the proposed method results in enhanced analytical accuracy within 

reasonable processing time. In this study, big data consisting botnet is used for validating 

the proposed detection methodology. In this study we use the CTU-13 dataset which is 

one of the biggest labelled datasets available that consists of botnet traffic as well as 

normal and background labeled data. It was captured at Czech Technological University 

in 2011. The developers of the dataset have originally developed it to compare three 

detection methods, namely Cooperative Adaptive Mechanism for Network Protection 

(CAMNEP) method, BCIus detetection method, and BotHunter method [73]. Researchers 
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have found that BCIus and CAMNEP detection methods cannot be generalized for all 

types of botnet behavior. Each of them seems fit for different types of behavior. Analysis 

of BotHunter detection method shows that in real environments it can still be useful to 

have blacklists of known malicious IP addresses known beforehand.  

After the development of CTU-13 dataset, it has been used by Grill et al. [74] to 

evaluate the effects of Local Adaptive Multivariate Smoothing (LAMS) model on the 

NetFlow anomaly detection engine. The proposed method is able to reduce false alarm 

rate of anomaly detection based intrusion detection systems. Fairly recently, 

Chanthakoummane et al. [75] have utilized five scenarios of the CTU-13 dataset to 

evaluate the Snort-IDS rules detection botnets and analyze the function of the botnets in 

three rules packet such as botnet-cnc.rules, blacklist.rules, and spyware-put.rules. 

Experimental results show that botnet-cnc.rules can detect botnets for 29798 alerts. 

Blacklist.rules can detect botnets for up to 44 alerts. Spyware-put.rules cannot detect any 

botnet. The researchers eventually surmise that botnet-cnc.rules are most proficient in 

detecting botnets. 

Although, researchers are excited about the potential of using CTU-13 datasets in 

detecting botnets, (e.g., see Malowidzki et al. [76], Chanthakoumman et al. [75]) 

according to best of this author’s knowledge, no significant work has been done using 

CTU-13 data in the detection of botnets. CTU 13 dataset consists of 13 captures (called 

scenarios) of different botnet samples [61]. This dataset was designed with goals such as  

• Dataset must have real botnet attacks, not simulated attacks 

• Must have real world traffic 
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• Must have ground truth labels for training and evaluating methods 

discussed in [73] 

• Must include multiple types of botnets. 

• Must have several bots infected simultaneously to capture synchronization 

patterns. 

• Must have NetFlow files to protect the privacy of the users. 

A scenario in CTU-13 can be defined as a particular infection of the virtual 

machines using a specific malware. Data collection period for each scenario is 

significantly different from one another. The duration of recorded NetFlow data vary 

from 0.26 hours to 66.85 hours and subsequently the amount of NetFlow data also varies 

accordingly. Multiple types of bots are found in the scenarios. Majority of the scenarios 

have only one bots (scenario 1-8 and 13), whereas few (scenario 9-12) have multiple bots 

in them. Percentage of botnet flow is also very negligible (<2%) compared to total 

NetFlow for majority of the scenarios. However, botnet flow percentage increases (6-8%) 

when there are multiple bots present in the dataset (except scenario 12). Another 

distinctive feature of CTU-13 dataset is that, each scenario has been manually analyzed 

and labeled. The labeling process was performed inside the NetFlow files. Table 2.1 

provides a summary of the amount of data on each botnet scenario and percentage of 

botnet on each scenario. 
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Table 2.1 Characteristics of Botnet Scenarios [37] 

Dataset IRC Spam CF PS DDoS FF P2P US HTTP Note 

1 ✓  ✓  ✓         

2 ✓  ✓  ✓         

3 ✓    ✓     ✓    

4 ✓     ✓    ✓   UDP and ICMP 

DDoS 

5  ✓   ✓      ✓  Scan web 

proxies  

6    ✓       Proprietary 

C&C.RDP 

7         ✓  Chinese hosts 

8    ✓       Proprietary 

C&C.Net 

BIOS,STUN 

9 ✓  ✓  ✓  ✓        

10 ✓     ✓    ✓   UDP DDoS 

11 ✓     ✓    ✓   ICMP DDoS 

12       ✓    Synchronization 

13  ✓   ✓      ✓  Captcha, Web 

mail 

IRC: Internet relay chat 

CF: Click fraud 

PS: Port scanned 

DDOS: Distributed Denial of service 

ICMP: Internet Control Message 

Protocol 

STUN: Simple traversal of UDP through 

NATs 

   FF; Fast flux 

P2P: Peer to peer 

HTTP: Hypertext Transfer 

Protocol 

UDP: User Datagram Protocol 

NetBIOS: Network basic 

input/output System 

 

 Another distinctive feature of CTU-13 dataset is that, each scenario has been 

manually analyzed and labeled. The labeling process was performed inside the NetFlow 

files. Table 2.2 provides a summary of the amount of data on each botnet scenario and 

percentage of botnet on each scenario. 
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Table 2.2 Amount of Data on each Botnet Scenario of CTU-13 dataset. 

Dataset 

 

Duration 

(hrs) 

NetFlows Size(GB) Bot 

name 

Number 

of Bots 

Botnet flow 

1 6.15 2824637 52 Neris 1 39933(1.41%) 

2 4.21 1808123 60 Neris 1 18839(1.04%) 

3 66.85 4710639 121 Rbot 1 26759(0.56%) 

4 4.21 1121077 53 Rbot 1 1719(0.15%) 

5 11.63 129833 37.6 Virut 1 695(0.53%) 

6 2.18 558920 30 Menti 1 4431(0.79%) 

7 0.38 114078 5.8 Sogou 1 37(0.03%) 

8 19.5 2954231 123 Murlo 1 5052(0.17%) 

9 5.18 2753885 94 Neris 10 179880(6.5%) 

10 4.75 1309792 73 Rbot 10 106315(8.11%) 

11 0.26 107252 5.2 Rbot 3 8161(7.6%) 

12 1.21 325472 8.3 NSIS.ay 3 2143(0.65%) 

13 16.36 1925150 34 Virut 1 38791(2.01%) 

 

2.2 ISCX Botnet Dataset 

ISCX botnet dataset was developed by Information Security Center of Excellence 

(ISCX) at the University of New Brunswick (UNB). Researchers at UNB have developed 

this dataset with the purpose to determine the performance of any intrusion detection 

approaches or making comparisons which requires experimentation with data that 

includes real time traffic [92]. ISCX botnet dataset is an evaluation dataset combining 

non overlapping subsets of three different available datasets:  ISOT dataset [21], ISCX 

2012 IDS dataset [93], and CTU-13 dataset [37]. In order to produce this synthetic 

dataset, the researchers have employed an overlay methodology [94] to combine all the 

three different datasets into one unified dataset which has wide range of bots. Final ISCX 

botnet dataset was divided into two training and test datasets, where we have selected as a 

test dataset to implement our methodology. Table 2.3 and 2.4 provide a clear insight to 
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different Botnet types and portion of flows in the ISCX botnet testing dataset. Access to 

this dataset is available upon request from the researchers of ISCX UNB. 

Table 2.3 Distribution of botnet types in the ISCX botnet test dataset 

Botnet name Type Flow portions in dataset 

Neris IRC 25967(5.67%) 

Rbot IRC 83(0.018%) 

Menti IRC 2878(0.62%) 

Sogou HTTP 89(0.019%) 

Murlo IRC 4881(1.06%) 

Virut HTTP 58576(12.80%) 

NSIS P2P 757(0.165%) 

Zeus P2P 502(0.109%) 

SMTP Spam P2P 21633(4.2%) 

UDP Storm P2P 44062(9.63%) 

Tbot IRC 1296(0.283%) 

Zero Access P2P 1011(0.221%) 

Weasel P2P 42313(9.25%) 

Smoke Bot P2P 78(0.017%) 

Zeus Control (C&C) P2P 31(0.006%) 

ISCX IRC bot P2P 1816(0.387%) 
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Table 2.4 List of all malicious in the ISCX botnet test dataset 

192.168.2.112 131.202.243.84 192.168.5.122 

198.164.30.2 192.168.2.110 192.168.4.118 

192.168.2.113 192.168.1.103 192.168.4.120 

192.168.2.112 192.168.2.109 192.168.2.105 

147.32.84.180 147.32.84.170 147.32.84.150 

147.32.84.140 147.32.84.130 147.32.84.160 

10.0.2.15 192.168.106.141 192.168.106.131 

172.16.253.130 172.16.253.131 172.16.253.129 

172.16.253.240 74.78.117.238 

158.65.110.24 

192.168.3.35 192.168.3.25 192.168.3.65 
172.29.0.116 172.29.0.109 172.16.253.132 
192.168.248.165 10.37.130.4  

 

 The proposed approach in this study is first of its kind to convert the NetFlow 

features available from CTU-13 and ISCX dataset into graph-based features and use these 

graph features to detect botnets. As CTU-13 dataset is the most complete real world 

dataset [41], we choose this dataset primarily to prove the concept of our novel approach 

and as an extension we also use ISCX Botnet test dataset to compare the efficiency of 

proposed bot detection approach, the details of which are discussed in Chapter 3. 

tel:74.78.117.238
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CHAPTER III 

METHODOLOGY 

This section discusses in detail the seven features used to detect botnets and the 

clustering methodology implemented to cluster these features. First of all, a directed 

graph is generated for each of 13 datasets of CTU-13. A directed graph (digraph) can be 

defined as a set of nodes connected by directed edges where each edge points from first 

node of a graph pair to the second node of the pair.  Mathematically, a directed graph can 

be expressed as an ordered pair   where V is a set of nodes and E is an ordered pair of 

edges. Note that, in this study each node denotes a unique IP address and each edge 

denotes the connection between one IP address to another. Subsequently, the feature 

values are calculated of these directed graphs and afterwards clustering methodology is 

applied to find out the nodes with similar features. 

3.1 Graph-Based Features Selection 

We have initially tried different combinations of 11 extracted graph features to 

check the percentage of nodes to be eliminated when SOM technique is implemented on 

13 CTU datasets (see Table 3.1). Among them, finally 7 features are selected. These 7 

features include the indegree, outdegree, sum of ingoing edges weight, sum of outgoing 

edges weight, clustering coefficient, node betweenness centrality, and eigen vector 

centrality. A set of 9 features include indegree duration and outdegree duration along 

with the 7 features. Finally, 11 features include ingoing protocol mode and outgoing 
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protocol mode in addition to the 9 features. Results from the Table 3.1 clearly indicate 

that percentage of nodes to be eliminated (number of nodes in the largest cluster) in 

further investigation of remaining nodes for bot detection in each dataset is very high 

(almost greater than 98%) when 7 features are used. 

Table 3.1 Combination of different graph-based features vs % of nodes to eliminated  

CTU 

Dataset 

No. of 

Nodes 

% of nodes to be eliminated for bot detection 

7 Features 9 Features 11 Features 

1 311420 99.4608 59.8099 7.721405176 

2 442471 99.5556 67.1314 8.295006904 

3 434988 99.7388 91.6264 17.78968615 

4 186245 99.3540 75.8372 8.27887997 

5 41658 98.1180 83.7774 9.902059628 

6 107343 98.4433 67.7836 11.46604809 

7 38205 97.5265 80.356 10.04580552 

8 383788 99.7086 78.2263 13.34252243 

9 367264 99.7296 76.4496 11.14702231 

10 197824 99.5814 13.3265 11.59515529 

11 41933 96.8282 87.7877 9.155080724 

12 94436 98.5895 77.9152 9.551442247 

13 315769 99.2263 76.7827 9.36939978 

 

These observations clearly prove that the computational costs and the time that is 

required to search for the malicious activity will be much lower if the right combination 

of features are selected. The percentage of nodes for further investigation in identification 
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of bots is very high for 9 and 11 feature combinations compared to 7 feature 

combinations. Hence, it can be stated that it is vital to be efficient while extracting graph-

based features and implementing bot detection methodology on large datasets. Improper 

selection of features may result in increased computational cost. This is the main 

rationale behind to proceed with the 7 features combination to implement further 

investigations of our study. A brief discussion of these seven features is provided below: 

3.1.2 In Degree: 

If many suspected bots contact a malicious domain for C&C reasons, this will 

result in a relatively high in degree for this domain. Keeping this in mind, in degree has 

been chosen as a feature to detect botnet in a network. For a particular node in a directed 

graph, in degree can be defined as the total number of head ends adjacent to that node. 

High value of in degree for a node indicates the neighboring nodes tendency to establish 

more connection where as low value indicates the opposite. For example: Fig. 3.1 shows 

that node ‘a’ has an indegree of two. 

3.1.3 Out Degree: 

For a particular node in a directed graph, the total number of tail ends adjacent to 

a node is called the out degree of the node. A high value of out degree for a node implies 

that this node tends to make more connections with other nodes and low value implies the 

opposite. Bots tend to make more connection with other potential victim computers to 

spread the reach of botnet or to C&C domain for transferring information. So, out degree 

can be a useful indicator of botnet activity in a graph. As evident from Fig. 3.1, we can 

see that, node ‘a’ has an outdegree of two. 
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3.1.4 In Degree Weight: 

In degree weight refers to the total number of data packets received by a particular 

node transferred from its neighboring connected nodes. The mechanics of transferring 

data packets consists of setting up the data connection to the appropriate ports and 

choosing the parameters for transfer. Besides the raw data every data packet contains, it 

also has headers that carry certain types of metadata, along with the routing information 

and trailers that help in refining data transmission [77]. Botnets tend to communicate with 

each other or to the C&C server to transfer information or update their commands. The 

same type of botnets usually communicate periodically and with a predefined set of 

commands. We assume that bots will receive the same type of command and receive 

approximately same volume of information that can be used to differentiate between bots 

and non-bots. 

3.1.5 Out Degree Weight: 

Out degree weight is the opposite of in degree weight which can be described as 

the total number of data packets sent by a particular node to its neighboring connected 

nodes. Same as in degree weight, we assume that bots will have similarity in the volume 

of data it sends out to other IP addresses in the network and can be a useful indicator of 

botnet activity in a network. 



 

23 

 

Figure 3.1 A directed graph with three nodes 

 

3.1.6 Node Betweenness Centrality: 

In graph theory, node betweenness centrality quantifies the number of times a node 

acts as a bridge along the shortest path between two other nodes. More specifically, node 

betweenness centrality indicates a particular node's centrality in graph, which refers to how 

many shortest paths from all nodes to all others pass through that particular node [78]. 

Node betweenness centrality can be mathematically expressed as [79]: 

 𝑁𝐵(𝑣) = ∑
𝜎𝑢𝑤(𝑣)

𝜎𝑢𝑤
𝑢≠𝑣≠𝑤  (3.1) 

Where 𝜎𝑢𝑤 is the total number of shortest paths from node ‘u’ to ‘w’ and 𝜎𝑒𝑏(𝑣) is 

total number of shortest paths that pass-through node ‘v’. Figure 3.2 illustrates the concept 

of node betweenness centrality [80] by calculating for node a.  
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Figure 3.2 Node betweenness centrality 

 

When calculating betweenness centrality for node a, total number of paths can be 

formed between these nodes i.e., (e,d), (e,b), (e,c). 

 𝑛𝐵(𝑎) =  
𝜎𝑒𝑑(𝑎)

𝜎𝑒𝑑
+  

𝜎𝑒𝑏(𝑎)

𝜎𝑒𝑏
+  

𝜎𝑒𝑐(𝑎)

𝜎𝑒𝑐
= 1 + 1 + 1 = 3 (3.2) 

Node betweenness centrality can be a useful feature to detect botnets especially in 

detecting P2P botnets where bots are more interconnected without a central C2C structure. 

So, we assume that for a P2P bot in a botnet should have a higher node betweenness 

centrality in a graph. 

3.1.7 Local Clustering Coefficient 

Local clustering coefficient of a node indicates how concentrated the 

neighborhood of that node is. More specifically, local clustering coefficient is a metric to 

evaluate how close a node’s neighbors are to each other. If K_a denotes the number of 

neighbors of node ‘a’ and  e_a denotes the number of connected pairs between all 

neighbors of node ‘a’, then local clustering coefficient for node ‘a’ can be given by [81]: 

 𝐶𝑎 =
𝑒𝑎

𝐾𝑎(𝐾𝑎−1)
 (3.3) 
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Figure 3.3 shows the clustering coefficient of node ‘a’ which is 0.083. Local 

clustering coefficient can also be a very significant indicator of a P2P botnet. As 

explained before, bots in P2P botnet have a decentralized structure where bots connect 

and communicate with each other to remove the need of a centralized server. As a result, 

interconnectedness can be a very significant feature to detect P2P botnets which is 

essentially the basis of local clustering coefficient. 

 

Figure 3.3 Clustering coefficient of node ‘a’ in a directed graph 

Clustering coefficient of node ‘a’ in directed graph, 𝑪𝒂 =
𝟏

(𝟒∗𝟑)
= 𝟎. 𝟎𝟖𝟑 

Local clustering coefficient can also be a very significant indicator of a P2P 

botnet. As explained before, bots in P2P botnet have a decentralized structure where bots 

connect and communicate with each other to remove the need of a centralized server. As 

a result, interconnectedness can be a very significant feature to detect P2P botnets which 

is essentially the basis of local clustering coefficient. 

3.1.8 Eigen Vector Centrality 

Eigen vector centrality, also known as Eigen centrality is a measurement criterion 

of influence of a node in a graph. It is essentially the weight of a node in a graph [82]. 
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Each node is assigned a relative value based on the concept that connections to high-

scoring nodes contribute more to the score of the node than equal connections to low-

scoring nodes. Let G(V,E) be a graph where V is total number of nodes and E is the total 

number of edges. Let, A= (a_(v,w))  be the adjacency matrix where 

 𝑎𝑣,𝑤 = {
1 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑣 𝑖𝑠 𝑙𝑖𝑛𝑘𝑒𝑑 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑤

         0  𝑖𝑓 𝑛𝑜𝑑𝑒 𝑣 𝑖𝑠 𝑛𝑜𝑡 𝑙𝑖𝑛𝑘𝑒𝑑 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑤
 (3.4) 

Then the centrality score can be given as  

 𝑥𝑣 =
1

𝜆
∑ 𝑎𝑣,𝑤𝑥𝑤𝑤∈𝑀(𝑣)  (3.5) 

where 𝑀(𝑣) is the set of neighbors of node ‘v’ and  𝜆 is a constant. Now equation (1) can 

be rewritten as  

 𝐴𝑥 =  𝜆𝑥 (3.6) 

There exists a positive solution λ with final eigenvector after using power method 

based on the Perron–Frobenius theorem [83]. λ is also the largest eigenvalue associated 

with the eigenvector of the adjacency matrix [84]. Eigenvector centrality is a natural 

extension of degree centrality. In-degree centrality awards one centrality points for every 

link a node receives. But not all nodes are equivalent: some are more important than 

others based on their edge weight, and, reasonably, connections from important nodes 

count more. We expect that a bots eigenvector centrality measure should be significantly 

different than non-malicious nodes and hence is used as a feature to detect botnets in this 

study.  
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3.2 Self Organizing Map 

Self Organizing Map (SOM) belongs to an interesting class of unsupervised 

system that is based on competitive learning in which the output neurons compete 

amongst themselves to be activated. The primary goal of an SOM is to convert an 

incoming dataset of arbitrary dimension into a one or two-dimensional discrete map, and 

to perform this transformation adaptively in a topologically ordered fashion [85]. In this 

study, we have considered on a particular kind of SOM known as Kohonen network that 

was developed by Tuevo Kohonen in 1982 [95-96].  

 The basic structure of SOM is shown in Figure 3.4 is a 3×3 SOM network. For 

this small SOM network, there are 63 connections. Notice that the map nodes(𝐶1 − 𝐶9) 

are not connected to one another. In this 2-D representation of SOM, each map node has 

a unique (i,j) coordinate. Simultaneously, as map nodes are only connected to input 

vector (𝐹1 − 𝐹7), map nodes are never aware of what other map nodes values are. A map 

node’s weight (W) will only be updated if and only if the input vector tells it. Algorithm 

1 illustrates the basic methodology behind SOM. 

 

Figure 3.4 Structure of Self Organizing Map 
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Table 3.2  Algorithm 1: SOM Algorithm 

1. Each map nodes(𝑪𝟏 − 𝑪𝟗) weights (W) are initialized with small random 
values. 

2. An input vector (𝑭𝟏 − 𝑭𝟕) is chosen from the training dataset and is 
presented to the network. 

3. Each node is inspected to determine which node’s weight best matches the 
input vector’s weight. The winning node is termed as ‘Winning Neuron’ or 
‘Winner Takes All Neuron’ or ‘Best Matching Unit (BMU)’. BMU can be 
calculated as 

 𝑩𝑴𝑼 = 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒇𝒓𝒐𝒎 𝒊𝒏𝒑𝒖𝒕 𝒗𝒆𝒄𝒕𝒐𝒓 = ∑ (𝑭𝒊 − 𝑾𝒊)𝟐𝑫
𝒊=𝟏  (3.7) 

4. The radius of the BMU is calculated which is typically set to be the radius of 
the network that diminishes at each time-step. This can be calculated as 

 𝝈(𝒕) = 𝝈𝟎𝒆
−𝒕

𝝀  (3.8) 

            where t is the current iteration, 𝝀 is the time constant and  is the 

            radius of the map.  can be calculated as 

 𝛌 = 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬
𝐦𝐚𝐩𝐑𝐚𝐝𝐢𝐮𝐬⁄  (3.9) 

             Any node found within the radius of BMU is adjusted to make more 
             like the input vector.  This adjustment can be done by 

 𝑾(𝒕 + 𝟏) = 𝑾(𝒕) + 𝚽(𝒕)𝑳(𝒕)(𝑿(𝒕) − 𝑾(𝒕)) (3.10) 

Where, 

 𝑳(𝒕) = 𝑳𝟎𝒆
−𝒕

𝝀  (3.11) 

 𝚽(𝒕) = 𝒆
−𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝑭𝒓𝒐𝒎 𝑩𝑴𝑼𝟐

𝟐𝝈𝟐(𝒕)  (3.12) 
 

W(t+1) is the new educated weight value of a given node and  is a measure that 
is used to force the nodes closer to BMU to learn more than others who are further away. 

5. Repeat 2 for desired number of iterations 

 

In this study, an investigated has been conducted for the accuracy of the detection 

algorithm with three different SOM models, i.e., 4*4, 5*5, and 6*6. Among these three 

SOM models, 5*5 provides the best solution. With 4*4 SOM model, bots were being 

identified in a comparatively larger cluster than 5*5 SOM model whereas with 6*6 SOM 

model, many clusters were empty. Hence, 5*5 SOM model was used for the 
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demonstration of the effectiveness of this proposed detection method. However, the 

difference among the results was not significant and using any of them will result in good 

accuracy.  Each map nodes weights in the network are initially assigned with seven 

random values. After that input vectors, each containing these seven features are 

presented to the network.  Thenceforth, step 3 to 6 is followed to get the desired number 

of clusters. 

In its essence, algorithm 1 is essentially screening the dataset and assigning the 

nodes to different clusters. This algorithm does not distinguish bots from non-bots. Hence 

another algorithm is developed to detect bots in the clusters. This bot detection algorithm 

is illustrated below: 

Table 3.3 Algorithm 2: Bot search algorithm 

1. Arrange the clusters in ascending order of size. 

2. Remove the cluster with the highest number of nodes.  

3. Starting with the smallest cluster, investigate all the nodes in the rest of 
the clusters. 

4. Stop the algorithm when bots are detected. The number of nodes needed 
to identify the bots is denoted by 𝑁𝑠, which characterizes the efficiency 
of the proposed bot detection algorithm. 

 

It is consequential that algorithm 2 is performed with caution as the efficiency of 

SOM method can be significantly hampered if bots are not identified properly in this 

step. After initiating step 1, step 2 is performed based on considering our finding that 

botnet flows are typically a small proportion of the overall dataset. As the percentage of 

botnet flow is very small, we delete the cluster that have the highest number of nodes by 
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assuming bots are not large in number and don't possess the usual similarities to share the 

same cluster with normal nodes. The criteria for differentiating bots from non-bots must 

be clearly defined and implemented for the success of this method. Eventually, this is 

also true that we cannot guarantee the largest cluster will not contain a bot if the bot acts 

like normal node and is not triggered to be like a bot until step 2 is initiated. 
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CHAPTER IV 

CASE STUDY-DETECTING BOTS IN CTU-13 

We apply SOM to the CTU-13 dataset to investigate the effectiveness and 

efficiency of our proposed method. An enhanced filtering algorithm, based on the degree 

of bots, is proposed to further improve the botnet detection efficiency. The results are 

benchmarked against a Support Vector Machine based classification algorithm to 

demonstrate the strength of our proposed procedure. 

4.1 Graph Features Extraction 

We first extract graph-based features of CTU-13 data sets as discussed in Chapter 

3. Recall that the CTU-13 data sets contain more than 20 million NetFlow records. High 

performance computing is needed to streamline to the extraction of graph-based features. 

The computation tasks of feature extraction are performed using the Shadow system, 

super computer available at The High Performance Computing Collaboratory (HPC²) of 

Mississippi State University. The Shadow system is equipped with a Cray CS300-LC 

cluster with 4800 Intel Ivy Bridge processor cores and 28,800 Intel Xeon Phi cores. With 

the aid of high performance computing capacity, we are able to extract the graph-based 

features from all CTU-13 data sets within 20 hours. The resultant graph-based features 

are numbered and labeled by Feature 1 – Feature 7 for the notational convenience, as 

shown in Table 4.1. 
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Table 4.1 Graph-Based Features Used for Clustering. 

1 2 3 4 5 6 7 

In 

Degree 

Out 

Degree 

Sum of 

Ingoing 

Edges 

Weight 

Sum of 

Outgoing 

Edges 

Weight 

Clustering 

Coefficient 

Node 

Betweenness 

Eigen 

Vector 

 

4.1.2 Graph-Based Botnet Detection Using Clustering 

We apply the SOM-based botnet detection algorithm (Algorithm 1) to the 

extracted seven graph-based features. Fig. 4.1 demonstrates the results of SOM clustering 

based on CTU dataset 6. There is a total number of 25 cells, each representing a possible 

cluster of graph-based features. We choose the total number of cells to be 25 so that the 

SOM algorithm can captures various types of node behaviors while not significantly 

increasing computation costs. 

 

Figure 4.1 SOM hits on CTU-13 dataset 6  
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Table 4.2 Number of nodes in the biggest cluster (Normal Nodes). 

Dataset No. of Nodes No. of Nodes in the biggest 

cluster 

% of nodes to be 

eliminated for bot 

detection 

1 311420 309741 99.4608 

2 442471 440505 99.5556 

3 434988 433852 99.7388 

4 186245 185042 99.3540 

5 41658 40874 98.1180 

6 107343 105672 98.4433 

7 38205 37260 97.5265 

8 383788 382670 99.7086 

9 367264 366271 99.7296 

10 197824 196996 99.5814 

11 41933 40603 96.8282 

12 94436 93104 98.5895 

13 315769 313326 99.2263 

 

From Figure 4.1, the numbers in each cell represent the total number of nodes that 

belong to the corresponding cluster. These nodes share similar behaviors in terms of the 

identified graph-based features. For example, there exist 105,672 nodes in the biggest 

cluster (in blue), which accounts for over 99% of nodes in Dataset 6. Note that malicious 

behaviors i.e., the botnet flows are typically a small proportion of the entire dataset and 

when compared to normal flows, botnet flows possess high range of feature values 

because they are very active in the network. So, we delete the clusters that have the 

highest number of nodes that don't possess the usual characteristics that a bot might have. 

This helps to narrow down the identification of bots to the remaining few nodes, which 

account for less than 1% of the total nodes. Similar observations are made for the other 
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CTU datasets that the majority of the nodes belongs to the biggest cluster and can be 

eliminated from the consideration of bot detection (see Table 4.2). For most of the CTU 

scenarios, the biggest cluster consists of over 99% of nodes. This allows us to eliminate 

the majority of the dataset for further bot identification, significantly reducing the cost of 

computation. 

We apply the proposed bot search algorithm (Algorithm 2) to the clusters 

obtained via SOM. Table 4.3 shows the number of nodes to search to identify all bots in 

each data set. The sizes of clusters that include the bots are also reported. Bots can be 

isolated in small clusters for most data sets. As a result, bots can be identified by 

examining limited number of nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

35 

Table 4.3 Number of Nodes to Search for Bot Identification (𝑁𝑠) 

Dataset Number 

of bots 

Number of 

identified 

bots 

Size of the 

bot cluster 
𝑁𝑠 % of nodes to search 

1 1 1 27 120 0.038 

2 1 1 12 41 0.009 

3 1 1 26 125 0.028 

4 1 1 40 238 0.127 

5 1 1 6 26 0.062 

6 1 1 38 163 0.151 

7 1 1 11 44 0.115 

8 1 1 184 563 0.146 

9 10 3 21 73 0.019 

7 40 63 0.017 

10 10 10 20 90 0.045 

11 3 2 9 24 0.057 

1 770 1306 3.114 

12 

 

3 

 

2 11 53 0.056 

1 19 60 0.063 

13 1 1 16 64 0.020 

 

It shows that the proposed method can detect botnet size in a cluster which is very 

small compared to the size of the total dataset. Hence, after applying SOM on the dataset, 

further investigating the nodes of the small clusters gives the bots present in the dataset. 

Bots have been mostly found in small sized clusters. More specifically, in more than 80% 

of the cases, bots have been found within the smaller clusters containing only 20% of the 

remaining nodes. Although, it still may take some computational effort to further 

investigate clusters after initial screening, it is considerably less than the computational 

time and complexity resulting from the framework where the entire dataset needs to be 

examined. 
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From Table 4.4, it is apparent that although SOM methodology provides good 

results in alienating bots from the rest of the nodes, there are no unique values of features 

across all bot clusters. From Figure 4.2 it is clear that feature values are far apart for 

different nodes. The highest and lowest values of features have been made bold to better 

clarify the finding. For example: feature 1 values range from 1 to 6842 and feature 2 

values range from 3 to 11571 across all bot clusters. So, there is no fixed range for the 

feature values of bots across all the scenarios. A notable conclusion that can be made 

from this experiment is that rule based detection methods will not work well in detecting 

botnets as different bots behave differently in different scenarios. Thus, detecting botnets 

become very challenging. This limitation can be by passed by the proposed approach as it 

does not rely on any particular rule. With different types of bot behaviors, the proposed 

method can still detect bot with reasonable accuracy. What this approach ensures is that, 

bots will always be found in small sized clusters. A majority of the data (>97%) is 

removed from consideration, and thus the sample space becomes very negligible. This 

relatively smaller sample space need be further investigated to detect botnets. Hence, this 

proves the robustness of our proposed approach as it can detect botnets with varying 

behavior in different datasets. 
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Table 4.4 Feature values of bot cluster 

Dataset 

Size of 

the bot 

cluster 

Features 

1 2 3 4 5 6 7 

1 27 176 2703 2595 48690 0.0113 0.0007 0.00022 

2 12 110 4161 3140 134500 0.0109 0.0003 0.00017 

3 26 1727 2391 176967 8806 0.0171 0.0019 0.00122 

4 40 153 859 1970 43356 0.0847 0.0003 0.00056 

5 6 7 483 310 28527 0 0.0004 1.14E-05 

6 38 26 428 1443 12128 0.0449 0.0003 4.72E-05 

7 11 25 385 231 21990 0.0283 0.0005 0.00033 

8 184 34 289 470 17650 0.1344 3.08E-5 3.84E-06 

9 
40 150 6534 3214 121087 0.0512 0.0007 0.000990 

21 86 5240 2662 219182 0.0006 0.0006 0.00055 

10 20 6842 7462 6581 355098 0.0145 0.0023 0.16417 

11 
9 1219 2883 1223 27505 0 0.0006 0.19237 

770 1 3 3 100 0.0110 6.22E-5 5.51E-06 

12 

 

11 509 328 57287 6897 0 0.0019 0.00017 

19 169 85 31608 2771 0.0217 0.0005 0.000283 

13 16 161 11571 974 267041 0.0408 0.0003 
4.69E-05 
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Figure 4.2 Variation of average feature values in Bot clusters 

 

4.2 Feature Evaluations and SOM Based Botnet Detection on Filtered Dataset 

In this section, SOM has been applied to filtered CTU-13 dataset to determine 

whether filtering the raw data provides better result than shown in section 4.1. What 

filtering is essentially doing is that it is removing nodes that cannot be a bot. The basic 

assumption made here is that 1-degree nodes can’t be a bot as they are not very active in 

the network. As a result, total number of nodes where SOM needs to be applied get 

significantly reduced. The steps of filtering are provided below: 

1. First convert the flow-based data into graph-based data. 

2. Each IP is considered as a node and each connection is considered as an 

edge. 

3. If there are multiple communications between two nodes, we still 

represent them with a single edge, and add other data as weight (attributes) 

of that edge. 
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4. Calculate the feature values of each node. 

5. Compute the degree of each node, and then filter out (remove) the 1-

degree nodes and their corresponding edges from the graph 

Subsequently, SOM has been applied to this filtered dataset. Note that, we have 

only used ten filtered datasets for experimental purpose. Results obtained from applying 

SOM on filtered dataset is shown in Table 4.5. 

Table 4.5 Efficiency of bot detection 

Dataset Total 

number 

of nodes 

Number 

of bots 

 

Number of 

identified 

bots 

Size of the bot 

cluster 
𝑵𝒔 % of 

nodes to 

search 

1 117119 1 1 27 115 0.098 

3 20284 1 1 18 96 0.473 

4 81544 1 1 33 181 0.002 

5 1939 1 1 7 65 3.352 

6 8240 1 1 45 252 3.058 

7 2486 1 1 8 40 1.609 

8 20666 1 1 61 307 1.485 

10 91785 10 10 17 77 0.083 

11 2498 3 2 8 21 0.840 

1 146 384 15.372 

12 4743 3 3 5 36 0.759 

 

Results in Table 4.5 show that, after filtering, total number of nodes to examine to 

apply SOM gets reduced. Moreover, after applying SOM, in majority of the cases the size 

of the cluster where bot is found is smaller than before. Figure 4.3 illustrates this 

phenomenon. It is clearly evident from the figure that, for the 10th scenario the bot 

cluster size is smaller after filtering. Here, the red star is the bot and black dots are the 

other non-malicious nodes in the cluster.  
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Figure 4.3 Bot cluster size before and after filtering 

 

As a result, the numbers of nodes to search for bot identification (𝑁𝑠) are shown 

in Table 4.6 Significant reduction in 𝑁𝑠 can be observed. For example, 1306 nodes need 

to be searched for identifying the third bot in Dataset 11. After filtering, 384 nodes need 

to be searched only, a reduction of over 70% of the total number of nodes. For dataset 12, 

the two clusters containing bots are combined into one after filtering, requiring searching 

36 nodes only compared to 113 nodes before clustering. However, we also observed the 

𝑁𝑠 values slightly increase for datasets 5 and 6, which may result from randomness of the 

clustering algorithm. 
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Table 4.6 Improvement of 𝑁𝑠 using Filtering 

Dataset Botnet detection without 

filtering 

Botnet detection after filtering 

𝑁𝑠 % nodes to 

search 
𝑁𝑠 % nodes to 

search 

1 120 0.038 115 0.036 

3 125 0.028 96 0.022 

4 238 0.127 181 0.097 

5 26 0.062 65 0.156 

6 163 0.151 252 0.234 

7 44 0.115 40 0.104 

8 563 0.146 307 0.079 

10 90 0.045 77 0.038 

11 24 0.057 21 0.050 

1306 3.114 384 0.915 

12 53 0.056 36 0.038 

60 0.063 

 

4.3 Extension of SOM Implementation on ISCX botnet test dataset 

In order to check the efficiency of the proposed methodology to compare with 

CTU-13, we have extracted the same 7 graph-based features for the new ISCX botnet test 

dataset. We have implemented the proposed SOM Algorithm 1, same as before. From 

Figure 4.4 the numbers in each cell represent the total number of nodes that belong to the 

corresponding cluster. These nodes share similar behaviors in terms of the identified 

graph-based features. For example, there exist 26,652 nodes in the biggest cluster (in 

blue), which accounts for over 93% of nodes (Table 4.7) in ISCX botnet test dataset. 
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Figure 4.4 SOM on ISCX botnet test dataset 

 

From Table 4.7 number of bots identified in each cluster shows the malicious 

nodes of ISCX dataset have been scattered into the smallest clusters. As we discussed 

before abnormal/malicious behaviors are rare in most of real-world networks and the 

biggest cluster (with maximum number of nodes) are unlikely to be bots. In further 

inspection, the nodes in the biggest cluster can be eliminated to reduce the computational 

costs in further investigation of bots. From Table 4.8 the percentage of nodes to be 

eliminated is more than 93%. Comparing with the results of CTU-13 dataset, it is true 

that similar observations are drawn when the proposed methodology has been 

implemented on ISCX Botnet test dataset. It again proves the robustness of the proposed 

methodology and also we expect the method of detecting bot in the rest of the small 
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clusters by eliminating the biggest cluster will hold true for any other new datasets but we 

cannot guarantee it. 

Table 4.7 Number of nodes in each cluster of ISCX Botnet test dataset after 

implementing proposed methodology 

Cluster number Number of nodes in 

each cluster 

Number of bots 

identified in each 

cluster 

1 1 0 

2 3 0 

3 4 2 

4 4 0 

5 5 2 

6 5 1 

7 8 0 

8 9 0 

9 12 0 

10 14 2 

11 15 1 

12 19 2 

13 27 1 

14 35 1 

15 42 5 

16 43 1 

17 50 0 

18 61 3 

19 96 4 

20 112 3 

21 167 1 

22 266 2 

23 312 0 

24 594 3 

25 26652 0 
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Table 4.8 Create a short, concise table title and place all detailed caption, notes, 

reference, legend information, etc in the notes section below 

Dataset 
Number of 

Bots 

Total number of 

nodes 

Number of nodes in 

the biggest cluster 

% of nodes to 

eliminated 

ISCX Botnet 

Test 
35 28556 26652 93.3324 

 

4.4 Benchmark Against Classification Techniques 

We compare our proposed clustering approach with some of the available 

classification techniques to detect bots. 

4.4.1 Support Vector Machine Classifier 

Support vector machine (SVM) is a powerful supervised machine learning 

technique [54], which is used for classification and regression analysis. It is introduced by 

Cortes and Vapnik [53]. Basically, SVM classifies the data into two classes by generating 

an optimal hyper-plane, which has the largest distance to the nearest training samples. To 

predict the class of new observations, the SVM learning algorithm, splits data to training 

and validation set. The decision boundary (i.e., a hyper-plane) is determined using training 

set. Subsequently, SVM classifier predicts class of the observations for validation set based 

on the distance of each observation from decision boundary. Optimal hyperplane dividing 

the data in to two classes can be written as set of point �⃗� satisfying 𝑤 ⃗⃗⃗⃗⃗. �⃗� + b = 0  , where  

�⃗⃗⃗� is the normal vector of the hyperplane [55]. The parameter b gives the offset distance 

from the origin. The parallel marginal hyperplanes can be given by the equations, 

�⃗⃗⃗�. �⃗� + b = 1         (4.1) 

�⃗⃗⃗�. �⃗� + b = -1         (4.2) 
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Two parallel marginal hyperplanes are generated on both the sides of the optimal 

hyperplane that separates the data. The sample points which are used to generate the 

optimal hyper-plane are called the support vectors (SVs). The distance between the two 

marginal hyperplanes with the largest margin is given by 𝑀 =
2

⃓⃓ 𝑤⃓⃓
 

 

Figure 4.5 Shows the linear separating hyperplane for the separable case, and the solid 

circle and squares on the margin are called support vectors. 

 

If the dataset is not linearly separable, one can use more general kernel functions 

that provides non-linear decision boundaries by generating a hyperplane in a multi-

dimensional feature space. The kernel function(ϕ) plays a critical role in the SVM 

training and classification. Some commonly implemented kernel functions [9056] are the 

Gaussian radial basis function (RBF) kernel, Polynomial kernel and the Sigmoid kernel. 

The advantage of SVM is that it works well with small training datasets. 
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4.4.2 K-Nearest Neighbor (K-NN) Classifier 

K-NN is one of the widely-used machine learning algorithms, which is an 

extension of the nearest neighbor (NN) classifier [9157]. K-NN classifies an object by 

choosing the majority vote of its nearest neighbors. Here, the object will be designated to 

a class based on the most frequent class of its K nearest neighbors, where K is a user 

defined constant. In a multidimensional feature space, all the training sample are vectors 

assigned with a class label. During the training phase, the classifier remembers the class 

labels and feature values of the training samples. For instance, assume that x_0 is a test 

point (an unlabeled vector) which is needed to be classified in a testing phase. When a K-

nearest neighbor query starts, it grows like a spherical region until the query is enclosed 

by K training samples. When the classifier finds the set of desired K nearest neighbors in 

the training set to x_0, it classifies the test point as the most frequent class among the K 

neighbors closer to it.  

Considering the outcome of K-NN on 1 nearest neighbor as shown in the example 

Figure 4.6 the prediction of K-NN of the test sample (orange circle) will be ‘+’ as it is 

closer to it. If K = 2, K-NN will be not able to classify the test sample outcome since the 

second closest sample is ‘-‘, both the minus and plus signs receive the same score. If K is 

3 then the outcome is ‘-‘, and if K is 5 then it is ‘+’ as the respective signs dominate the 

nearest neighbors in each case. In our case the k value is 5 and Euclidian distance method 

is used to compute the nearest distance between the test sample and training sample. 
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Figure 4.6 K-NN classification approach 

 

4.4.3 Decision Tree classifier (DT) 

Decision Tree is a well-known supervised machine learning technique that is used 

for classification and regression analysis. The basic idea of DT is to predict the class of a 

variable based on the training model by learning decision rules. The algorithm of DT is 

very simple and it can be represented by a tree structure. Initially while training, the 

algorithm tries to split the root node into subsets based on the decision value and it goes 

till the leaf node is found. Hence, whenever there is a new set of data point to predict, DT 

simply compares the new data point with the trained model and determines which class it 

belongs to. For instance, form the Figure 4.7, if there is a new data Z and needs to be 

defined weather Bot or None-Bot, then first the algorithm tries to use the attributes value 

of the test data and compare with the training set. Assume if the value of the attribute x_2 

is < -0.55 then it picks the left branch and goes to next subset and again if the value of 

attribute x_1<1.5 then it predicts the class of Z as a Bot else Non- Bot. 
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Figure 4.7 Example of Decision Tree Classification 

 

4.5 Classification Results 

The programs of all the three classifiers is available in MATLAB packages. We 

train the SVM, K-NN and DT classifiers using ISCX botnet test dataset and use CTU-13 

datasets for testing the classifiers. Training the classifiers in one of the important step 

while implementing classification techniques. As ISCX dataset is a combination of three 

different subset datasets which includes CTU data we choose this as a training dataset. 

During the training phase the classifier learn and frame guidelines in differentiating bot 

and non-bot based on the feature values provided.  

The classification techniques cannot provide efficient result in accurately 

classifying the CTU-13 datasets to Bot and Non-Bot classes, since there is high variation 

in feature values. Specifically, due to the complex behaviors of bots, classification 

becomes challenging as characteristics of training and testing data can significantly vary. 

The percentage of misclassification by using three classifiers are presented in Table 4.9. 

The three classifiers are only capable of determining just 10% of accurate classification 
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for the 10th and 11th datasets only. However, for the rest of the scenarios, 

misclassification rates are 100%. 

Table 4.9 Classification result. 

Implemented on 

CTU 13 Dataset 

% of Misclassification and comparison between classifiers 

trained with ISCX Botnet dataset 

SVM DT KNN 

1 100 100 100 

2 100 100 100 

3 100 100 100 

4 100 100 100 

5 100 100 100 

6 100 100 100 

7 100 100 100 

8 100 100 100 

9 100 100 100 

10 90 90 90 

11 90 90 90 

12 100 100 100 

13 100 100 100 
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CHAPTER V 

Conclusion 

In this work, we propose a graph-based botnet detection approach that can detect 

changing behaviors of bots. This is novel because the existing approaches mainly rely on 

flow-based features and thus do not capture the changes in the topological structure of 

networks caused by bot activities. We investigate seven graphed-based features that are 

may be connected to bot activities: in degree, out degree, in degree weight, out degree 

weight, clustering coefficient, node betweenness, and eigenvector centrality. SOM is 

applied to establish the clusters of nodes based on these graphed features. Our approach 

is capable of isolating bots in clusters with very small sizes (less than 100 nodes), which 

enables fast detection of bot nodes. The proposed algorithm is further enhanced by 

filtering out inactive nodes, which are unlikely to be bots. We verify the proposed 

methods using CTU-13 and ISCX Botnet dataset. Numerical results show that our 

proposed procedure is capable of detecting the bots by searching limited number of 

nodes. 

We compare our approach with three different classification algorithms using the 

same graph-based features. All the methods are not capable of detecting most of the bots 

because of the varying values of bot features across different datasets (Bot features vary 

from one dataset to another). The advantage of our approach is that we focusing on 

capturing the abnormal behaviors of bots in terms of their graph-based behaviors. In other 
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words, our method is more robust against the changing behaviors of bots because the 

proposed approach does not rely on any particular value/range of features. With different 

types of bot behavior, the proposed method can still detect bot with reasonable accuracy. 

What this approach ensures is that, bots will always be found in small sized clusters with 

the majority of nodes (>99%) removed from further consideration. Our study shows that, 

as long as the bots behave differently from normal nodes, such different behaviors can be 

captured by our clustering-based detection algorithm and further testing is needed in 

determining the bots from the smallest clusters. Future work is needed to incorporate 

additional graph-based features and reduce the computational costs of graph feature 

extraction and testing on other datasets. Note that, as feature extraction cost contributes to 

the overall computational cost, future work is needed to investigate how feature 

extraction cost can be minimized. Effect of incorporating more relevant graph-based 

features into the detection methodology is also a future research direction. 
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