
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

1-1-2018

Botnet Detection Using Graph Based Feature Clustering Botnet Detection Using Graph Based Feature Clustering

Ravi Kiran Akula

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Akula, Ravi Kiran, "Botnet Detection Using Graph Based Feature Clustering" (2018). Theses and
Dissertations. 922.
https://scholarsjunction.msstate.edu/td/922

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F922&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/922?utm_source=scholarsjunction.msstate.edu%2Ftd%2F922&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Template C v3.0 (beta): Created by J. Nail 06/2015

Botnet detection using graph based feature clustering

By

TITLE PAGE

Ravi Kiran Akula

A Thesis

Submitted to the Faculty of

Mississippi State University

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in Industrial and Systems Engineering

in the Department of Industrial and Systems Engineering

Mississippi State, Mississippi

May 2018

Copyright by

COPYRIGHT PAGE

Ravi Kiran Akula

2018

Botnet detection using graph based feature clustering

By

APPROVAL PAGE

Ravi Kiran Akula

Approved:

Linkan Bian

(Major Professor)

Mohammad Marufuzzaman

(Committee Member)

Hugh R. Medal

(Committee Member)

Stanley F. Bullington

(Graduate Coordinator)

Jason M. Keith

 Dean

James Worth Bagley College of Engineering

Name: Ravi Kiran Akula

ABSTRACT

Date of Degree: May 4, 2018

Institution: Mississippi State University

Major Field: Industrial and Systems Engineering

Major Professor: Linkan Bian

Title of Study: Botnet detection using graph based feature clustering

Pages in Study 59

Candidate for Degree of Master of Science

Detecting botnets in a network is crucial because bot-activities impact numerous

areas such as security, finance, health care, and law enforcement. Most existing rule and

flow-based detection methods may not be capable of detecting bot-activities in an

efficient manner. Hence, designing a robust botnet-detection method is of high

significance. In this study, we propose a botnet-detection methodology based on graph-

based features. Self-Organizing Map is applied to establish the clusters of nodes in the

network based on these features. Our method is capable of isolating bots in small clusters

while containing most normal nodes in the big-clusters. A filtering procedure is also

developed to further enhance the algorithm efficiency by removing inactive nodes from

bot detection. The methodology is verified using real-world CTU-13 and ISCX botnet

datasets and benchmarked against classification-based detection methods. The results

show that our proposed method can efficiently detect the bots despite their varying

behaviors.

ii

DEDICATION

I would like to dedicate this research to my Grandparents, Akula Sambaiah garu

and Sita Ravamma, and my parents, Mallikarjuna Rao and Dhana Lakshmi, for their

relentless support of my pursuance of academic excellence, and my sister and brother, for

their continuous encouragement.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Linkan Bian for giving me his valuable

guidance, feedback and an opportunity to work under him. I would like to express my

deepest gratitude to my committee members for supporting me. I would like to thank

Dr. Usher for helping me to find funding initially in the ISE Department. I would like to

thank my project team members Mojtaba Khanzadeh (M.K) and Sudipta Chowdhury,

who has always helped me throughout this project. I also thank my friends Pavan

Yeddanapudi, Sushil Raj Poudel, and all the Indian Student Association (ISA) committee

members (2015-2016), who have guided me in settling down in Starkville and giving me

moral support in handling any kind of issues when I entered The United States of

America. I would like to thank Dr. Ravi Sadasivuni and Dr. Lalitha Dabbiru for being my

local guardians and mentoring me throughout these years. I would like to mention a special

person, my dear friend, Yuwei Sun (RA), who was always there with me.

Finally, I would like to thank The United States of America and Mississippi State

University for giving this wonderful opportunity to me and many International students like

me. HailState!

iv

TABLE OF CONTENTS

DEDICATION .. ii

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER

I. INTRODUCTION ...1

1.1 Introduction ...1

1.2 Anomaly detection techniques ..3
1.3 Flow-Based Methods ...4

1.4 Graph-Based Methods ...7
1.5 Significance of Our Approach ...10

II. DATA DESCRIPTION ...12

2.1 Data Description ..12
2.2 ISCX Botnet Dataset ...16

III. METHODOLOGY ..19

3.1 Graph-Based Features Selection ..19
3.1.2 In Degree: ..21

3.1.3 Out Degree: ...21
3.1.4 In Degree Weight: ...22
3.1.5 Out Degree Weight: ...22
3.1.6 Node Betweenness Centrality: ..23
3.1.7 Local Clustering Coefficient ...24

3.1.8 Eigen Vector Centrality ...25
3.2 Self Organizing Map ...27

IV. CASE STUDY-DETECTING BOTS IN CTU-13 ..31

4.1 Graph Features Extraction ...31
4.1.2 Graph-Based Botnet Detection Using Clustering32

v

4.2 Feature Evaluations and SOM Based Botnet Detection on

Filtered Dataset ..38

4.3 Extension of SOM Implementation on ISCX botnet test dataset41
4.4 Benchmark Against Classification Techniques44

4.4.1 Support Vector Machine Classifier ...44
4.4.2 K-Nearest Neighbor (K-NN) Classifier ...46
4.4.3 Decision Tree classifier (DT) ..47

4.5 Classification Results ..48

V. Conclusion ...50

REFERENCES ... 52

vi

LIST OF TABLES

 2.1 Characteristics of Botnet Scenarios [37] ..15

 2.2 Amount of Data on each Botnet Scenario of CTU-13 dataset.16

 2.3 Distribution of botnet types in the ISCX botnet test dataset17

 2.4 List of all malicious in the ISCX botnet test dataset18

 3.1 Combination of different graph-based features vs % of nodes to

eliminated ...20

 3.2 Algorithm 1: SOM Algorithm ..28

 3.3 Algorithm 2: Bot search algorithm ...29

 4.1 Graph-Based Features Used for Clustering. ...32

 4.2 Number of nodes in the biggest cluster (Normal Nodes).33

 4.3 Number of Nodes to Search for Bot Identification (𝑁𝑠)35

 4.4 Feature values of bot cluster ...37

 4.5 Efficiency of bot detection ...39

 4.6 Improvement of 𝑁𝑠 using Filtering ..41

 4.7 Number of nodes in each cluster of ISCX Botnet test dataset after

implementing proposed methodology ..43

 4.8 Create a short, concise table title and place all detailed caption, notes,

reference, legend information, etc in the notes section below44

 4.9 Classification result. ...49

vii

LIST OF FIGURES

 1.1 Botnet life cycle ..2

 3.1 A directed graph with three nodes ..23

 3.2 Node betweenness centrality ..24

 3.3 Clustering coefficient of node ‘a’ in a directed graph25

 3.4 Structure of Self Organizing Map ..27

 4.1 SOM hits on CTU-13 dataset 6 ..32

 4.2 Variation of average feature values in Bot clusters ..38

 4.3 Bot cluster size before and after filtering ...40

 4.4 SOM on ISCX botnet test dataset ...42

 4.5 Shows the linear separating hyperplane for the separable case, and the

solid circle and squares on the margin are called support vectors.45

 4.6 K-NN classification approach ..47

 4.7 Example of Decision Tree Classification ...48

1

CHAPTER I

INTRODUCTION

1.1 Introduction

During the last 15 years, botnets have caused some of the most devastating and

costly internet security incidents in the world [1]. The term "bot" comes from robot

which is also sometimes called Zombie. A bot may also be known as a Web robot or

WWW robot. It is a type of malware [2] that an attacker can exploit to control an infected

computer. It is installed into a compromised computer which can be controlled remotely

by an attacker or a group of attackers for fulfilling their own gain. One of the most

common methods for a bot program to infect a compromised computer is by a malicious

website the user is visiting that silently searches and exploits vulnerability in the user's

system in order to install the bot on it. Some other ways to infect include sending the bot

as an attached file with spam emails, or as a program dropped from the payload of

another malware. After successful installation of bot code into the compromised

computer, it becomes part of large network of compromised computers and hence the

term “botnet” is used. Attacker can issue commands to a single bot, or to all the bots in

botnet. The attacker controlling the botnet is sometimes referred to as the

“botherder””botmaster” or “controller” [3]. Figure 1 shows a typical botnet cycle.

Contrary to existing malware such as viruses and worms, which focus on attacking the

2

infecting host, bots can receive commands from botmaster and can also be used in a

distributed attack platform [4].

Figure 1.1 Botnet life cycle

Botnets can significantly damage the security of individuals and businesses. They

pose a serious and growing threat against cyber-security as they provide a distributed

platform for many cyber-crimes such as Distributed Denial of Service (DDoS) attacks

against critical targets, malware dissemination, phishing, and click fraud [5, 6]. Even in

some cases, botmasters sell access to the botnet to other criminals – either on a rental

basis or as an outright sale [7]. As a result, botnet detection has been a major research

topic in recent years. Researchers have proposed several detection approaches for botnet

detection to combat botnet threat against cyber-security [8]. A majority of the existing

Botnet detection approaches concentrate primarily on particular Botnet command and

control (C&C) protocols (e.g., HTTP, IRC) and structures (e.g., centralized or P2P). They

follow rule based approaches to detect botnets in network. However, these approaches

3

can become ineffective and obsolete if botnets change their structure and C&C

techniques to evade detection [4]. Thus, a robust botnet detection approach that can

detect any type of botnet with varying characteristics is of utmost importance. Before

exploring existing botnet detection schemes in literature, we first survey some of the

studies done in anomaly detection. Later, existing efforts dedicated to bot detection are

identified that can be divided into two broad categories: botnet detection using NetFlow

based features and graph-based features.

1.2 Anomaly detection techniques

Researchers have conducted extensive research on anomaly detection techniques

over the years. For example: Fadlullah et al. [9] develop a novel detection technique

called DTRAB to infer DDoS attacks. The authors investigated the detection of attacks

against application-level protocols that are encapsulated via encryption. In essence, this

detection scheme is a distributed detection mechanism capable of detecting the

anomalous events as early as possible. Moreover, DTRAB is able to simultaneously

construct a defensive mechanism to discover attacks as well as find out the root of the

threat by tracing back the attacker’s original network. The effectiveness of this scheme is

validated via simulation. Flow correlation information is utilized by Zhang et al. [10, 11,

12] to further improve the classification accuracy considering only a small number of

training instances based on K-NN and Naive Bayes classifier that are used to detect

anomalies in the network. Yan et al. [13] propose a framework of security and trust for

5G based on the perspective that the next generation network functions will be highly

virtualized and software defined networking is applied for traffic control. The proposed

approach by the researchers utilizes adaptive trust evaluation and management

4

technologies as well as sustainable trusted computing technologies to achieve computing

platform trust and software defined networking security. A qualitative comparison

between the advantages and disadvantages of software defined networking and traditional

networking regarding security issues concerning overall architecture and a detailed

analysis of the threats of software defined networking from the perspective of functional

layers and attack types is provided by Shu et al. [14].

1.3 Flow-Based Methods

The botnet detection literature using NetFlow based features is a rich one and

many researchers have significantly contributed in this area (e.g. [15-17]). Most of the

existing detection schemes falls into either of the two types of methods: clustering and

classification ([24, 27, 29]), and others.

Clustering is a popular approach taken by researchers to detect botnets using flow

based features. Zeidanloo et al. have proposed a botnet detection framework that can

detect botnets without prior knowledge of them [19]. This detection framework is based

on finding similar communication patterns and behaviors among the group of hosts that

are performing at least one malicious activity using X-means clustering. Using Audit

Record Generation and Utilization System (ARGUS) [20], the authors have collected

flow based information such as source IP address, destination IP address, source Port,

destination Port, duration, protocol, number of packets, and number of bytes transferred

in both directions, which are later used to detect the group of hosts that exhibit similar

behavior and communication pattern. Karasaridis et al. have developed a K-mean based

method that employs scalable non-intrusive algorithms that analyze vast amounts of

summary traffic data [22]. Gu et al. have proposed a novel anomaly-based botnet

5

detection system that is independent of the protocol and structure used by botnets [26].

This detection system has exploited the essential definition and properties of botnets, i.e.,

bots within the same botnet exhibit similar C&C communication patterns and similar

malicious activities patterns. It utilizes a number of flow based information such as time,

source IP, destination IP, source port, destination port, duration, and the number of

packets and bytes transferred in both directions. C-plane clustering method is used to read

the communication logs generated by C plane monitor and find clusters that share similar

communication pattern. Arshad et al. have developed an anomaly-based method that

require not a priori knowledge of bot signatures, botnet C&C protocols, and the C&C

server addresses [28]. Flow characteristics such as IP, port, packet event times, and bytes

per packet are examined by Amini et al. to detect botnets where these NetFlow data is

collected, filtered, and is finally clustered using hierarchical clustering [25]. Rule based

methods are then applied to refine the clusters to reduce the percentage of false positives.

Among the authors’ who use classification techniques, Strayer et al. have

developed detection approaches by examining flow characteristics such as bandwidth,

packet timing, and burst duration, where they first eliminate traffic that is unlikely to be a

part of a botnet, classify the remaining traffic into a group that is likely to be part of a

botnet by using J48 decision trees, naïve Bayes, and Bayesian classifier, and finally

correlate the likely traffic to find common communications patterns that would suggest

the activity of a botnet [24,29]. Fairly recently, a decision tree classifier has been used by

Zhao et al. to detect botnets by investigating 12 flow based features [27]. Their proposed

method can detect botnets during the C&C and attack phases based on the observation of

network flow characteristics for specific time intervals. It does not require significant

6

malicious activity to occur before detection as it can recognize command and control

signals. Simultaneously, it does not require the group behavior of several bots before it

can be confident about making a decision.

Lu et al. have incorporated both classification and clustering techniques in

detection of botnets, developing an unsupervised botnet detection framework where they

first identify network traffic from existing known applications, then focus on each

application community that might include botnet communication flows [30]. This

network traffic is then clustered to find the anomalous behaviors on that specific

application community based on the n-gram features extracted from the content of

network flows. The proposed detection framework has been evaluated on an IRC

community and results show that this approach obtains a high detection rate with a very

low false alarm rate when detecting IRC botnet traffic.

Apart from classification and clustering techniques, there are a number of other

studies that employ other approaches in botnet detection using NetFlow based features.

Interested readers can refer to [18, 21, 23, 31, and 32] for such related works.

Limitation: Existing methods of botnet Detection based on NetFlow traffic

features rely on computing statistical features of flow traffic or on deep packet inspection.

As a result, these methods only capture the characteristics of bots effects on individual

links, rather than on the topological structure of a neighborhood/subgraph as a whole. In

particular, flow-based detection methods require the comparison of each traffic flow to

all the others in order to determine malicious traffic, instead of monitoring the network

behaviors in a holistic manner. Such techniques are also deficient in that attackers can

evade detection by the use of encrypting commands or changes in data volume or change

7

in some other behavioral characteristics such as by the use of variable length encryption

or changes in packet structure that leads to new behavioral characteristics. To overcome

this deficiency, another stream of research has focused on detecting botnets based on

graph-based features. This approach is fundamentally more efficient than flow based

approaches since it avoids the need to cross compare flows across the dataset [33].

1.4 Graph-Based Methods

There are a number of studies that use different graph-based features to detect

anomalies. Literature in this domain can be broadly categorized into two groups: one

group detects anomalies in static graphs using graph-based features whereas another

group does the same, but with dynamic graphs. The static graphs can be further

categorized into plain graphs and attributed graphs. Among the studies that use plain

graphs for anomaly detection, Ding et al. [34], Henderson et al. [35], Henderson et al.

[36], Kang et al. [37], Aggarwal [38], Zimek et al. [39], Chen and Giles [40] and many

more utilize structure-based patterns to detect anomalies. On the other hand, studies done

by Sun et al. [41], Tong and Lin [42], Ambai et al. [43], Nikulin and Huang [44] focus on

the utilization of community based patterns to detect anomalies. Similarly, for attributed

graphs Davis et al. [45], Eberle and Holder [46], and Kontkanen and Myllymki [47] use

structure based patterns whereas Gao et al. [48], Muller et al. [49], Perozzi et al. [50] use

community based patterns to detect anomalies. With dynamic graphs, authors have used

the notion of graph similarity based on certain properties such degree distribution,

diameter [51-53], by resorting to matrix or tensor decomposition of the time-varying

graphs [54-57], or by monitoring graph communities over time and reporting events

when there is structural or contextual change in any of them [58,59].

8

Botnet detection studies using graph-based features mainly exploits the spatial

relationships in communication traffic [31,60,61]. Collins and Reiter have proposed a

method to identify bots by noting that scanning behavior initiated by bot infected hosts

would tend to connect different disconnected components of protocol-specific traffic

graphs [70]. Wang and Paschalidis [62] use behavioral characteristics of bots to detect

botnets. Primarily, the authors have focused on analyzing the social relationships that are

modeled as graph of nodes. The authors have considered both social interaction graphs

and social correlation graphs and have applied the proposed method to a real-world case

study. However, for this detection scheme to be successful bots need to show systematic

pattern in behavior that may not be very robust for stealthy botnet. ‘Graption’ is a graph-

based method proposed by Iliofotou et al. that identifies peer-to-peer flows by calculating

the in-degree to out degree ratio of hosts in protocol traffic graphs [63]. However, this

method can be defeated by protocol randomization. A graph-based detection approach to

detect web-account abuse attack has been proposed by Zhao et al. where the correlations

among botnet activities are uncovered by constructing large user-user graphs [64]. This

approach, termed as ‘BotGraph’ has two components: aggressive sign-up detection and

stealthy bot user connection. The first component ensures that the total number of

possible bots are limited whereas second component detects stealthy bot users based on

constructing a user-user random undirected graph. Only the edge weight feature has been

used to detect bots in the graph. Although, the detection rate is very high, this method’s

accuracy can be disputed if other types of botnets besides the spamming one need to be

detected. Jaikumar and Kak have presented a graph-based framework for isolating

botnets in a network [65]. This framework uses temporal co-occurrences in the activity

9

space to detect botnets. This makes the framework independent of the software

architecture of the malware infecting the hosts. The proposed framework has been

validated by applying it to a simulated environment. However, this approach falls short if

bots don’t exhibit temporally co-occurring malicious activities. Nagaraja et al. have

proposed a botnet detection technique based on structured graph analysis that localizes

botnet members by identifying unique communication patterns arising from the overlay

topologies prevalent in command and control structure [66]. However, this approach

must be paired with some other malware detection scheme to clearly distinguish botnets

from regular flows. Francois et al. have proposed an approach called ‘BotTrack’ where

NetFlow related data is correlated and a host dependency model is leveraged for

advanced data mining purposes [67]. They have used the popular linkage analysis

algorithm ‘PageRank’ with an additional clustering process to efficiently detect botnets.

However, to validate the proposed method, the researchers have only used 13.7 GB of

real world data; also, they have generated the botnet randomly as the dataset was not

labeled. Moreover, the authors’ have assumed that a certain percentage of bots and their

characteristic were known beforehand. So, if an unknown botnet exists in the network,

their approach may not give good results. Francois et al. have further extended their work

on ‘BotTrack’ by developing a scalable method called ‘BotCloud’ for detecting botnets

regarding the relationships between hosts [68]. The evaluation of this method has showed

a good detection accuracy and a good efficiency based on a Hadoop cluster. But, in this

case also, the authors have initially used a botnet free dataset and later randomly have

generated botnets in them. Hang et al. have used community detection based clustering to

identify long-lived low intensity flows using graph-based features [69].

10

Limitation: Similar to botnet detection methods using statistical features of

flow/packet traffic or in some cases even deep packet inspection, existing graph-based

botnet detection methods available in the literature have some major limitations. Many of

them apply the botnet detection scheme that operates in a simulated environment (e.g.

[65]). Moreover, the detection approach proposed in the literature is mostly rule based,

meaning that a predetermined rule needs to be established beforehand to detect botnets

from a graph (e.g., [60]). This approach may lead to unwarranted result if bots behave

differently from a common norm. Although many of the graph-based detection schemes

use filtering to remove bot free data (e.g., [64, 66]) and then apply a detection method,

the amount of data that needs to be investigated to detect botnets is relatively large.

Simultaneously, if dataset is large, the computational expense is often high for the

detection approach; which is a huge disadvantage if faster detection is required [64].

1.5 Significance of Our Approach

An important step towards developing a new graph-based detection approach

would be to develop a method that is fast and does not follow any particular rule to detect

botnets. Simultaneously, the approach must be validated on a real world dataset with

different types of botnets. This detection scheme should also be robust enough so that it

can be able to reduce the amount of data that is further investigated to detect any kind of

botnet present in the dataset. In this study, we have proposed an approach based on

graph-based features that can fulfil these requirements. Our main contribution can be

summarized as:

• We present a novel graph-based method for the detection of botnets in a

computer network.

11

• Our approach does not depend on any rules to detect botnets and is

capable of capturing the changing behavior of bots.

• Seven graph-based features are used in this study to detect botnets.

• The proposed method can detect different types of botnets with different

types of behavioral characteristics.

• A real world dataset is used to validate the results.

However, handling real world big data consisting of botnets is challenging.

The rest of the paper is organized as follows. Chapter 2 provides a brief

description of the real world dataset used in this study. Chapter 3 discusses in detail the

seven features used to detect botnets and the clustering methodology implemented to

cluster these features. Chapter 4 provides numerical results obtained after applying

clustering methodology to the real world dataset as well as giving a comparative

overview of applying classification techniques. Chapter 5 concludes our work and

reviews our main contribution to the existing literature.

12

CHAPTER II

DATA DESCRIPTION

2.1 Data Description

Big data has been an area of interest among researchers in recent years. For

instance: Tsai et al. [71] have provided a comprehensive review on studies that attempt to

develop new schemes capable of handling big data during the input, analysis, and output

stages of knowledge discovery. They have found that majority of the existing literature is

focused on innovative methods for data mining and analysis. However, little to no

attention have been given to the pre- and post-analysis processing methods. Evolution

based algorithms such as accelerated particle swam optimization is used to reduce the

dimensionality of big data by Fong et al. [72]. Authors have investigated the applicability

their method on exceptionally large volume of data with high degree dimensions and

have found that the proposed method results in enhanced analytical accuracy within

reasonable processing time. In this study, big data consisting botnet is used for validating

the proposed detection methodology. In this study we use the CTU-13 dataset which is

one of the biggest labelled datasets available that consists of botnet traffic as well as

normal and background labeled data. It was captured at Czech Technological University

in 2011. The developers of the dataset have originally developed it to compare three

detection methods, namely Cooperative Adaptive Mechanism for Network Protection

(CAMNEP) method, BCIus detetection method, and BotHunter method [73]. Researchers

13

have found that BCIus and CAMNEP detection methods cannot be generalized for all

types of botnet behavior. Each of them seems fit for different types of behavior. Analysis

of BotHunter detection method shows that in real environments it can still be useful to

have blacklists of known malicious IP addresses known beforehand.

After the development of CTU-13 dataset, it has been used by Grill et al. [74] to

evaluate the effects of Local Adaptive Multivariate Smoothing (LAMS) model on the

NetFlow anomaly detection engine. The proposed method is able to reduce false alarm

rate of anomaly detection based intrusion detection systems. Fairly recently,

Chanthakoummane et al. [75] have utilized five scenarios of the CTU-13 dataset to

evaluate the Snort-IDS rules detection botnets and analyze the function of the botnets in

three rules packet such as botnet-cnc.rules, blacklist.rules, and spyware-put.rules.

Experimental results show that botnet-cnc.rules can detect botnets for 29798 alerts.

Blacklist.rules can detect botnets for up to 44 alerts. Spyware-put.rules cannot detect any

botnet. The researchers eventually surmise that botnet-cnc.rules are most proficient in

detecting botnets.

Although, researchers are excited about the potential of using CTU-13 datasets in

detecting botnets, (e.g., see Malowidzki et al. [76], Chanthakoumman et al. [75])

according to best of this author’s knowledge, no significant work has been done using

CTU-13 data in the detection of botnets. CTU 13 dataset consists of 13 captures (called

scenarios) of different botnet samples [61]. This dataset was designed with goals such as

• Dataset must have real botnet attacks, not simulated attacks

• Must have real world traffic

14

• Must have ground truth labels for training and evaluating methods

discussed in [73]

• Must include multiple types of botnets.

• Must have several bots infected simultaneously to capture synchronization

patterns.

• Must have NetFlow files to protect the privacy of the users.

A scenario in CTU-13 can be defined as a particular infection of the virtual

machines using a specific malware. Data collection period for each scenario is

significantly different from one another. The duration of recorded NetFlow data vary

from 0.26 hours to 66.85 hours and subsequently the amount of NetFlow data also varies

accordingly. Multiple types of bots are found in the scenarios. Majority of the scenarios

have only one bots (scenario 1-8 and 13), whereas few (scenario 9-12) have multiple bots

in them. Percentage of botnet flow is also very negligible (<2%) compared to total

NetFlow for majority of the scenarios. However, botnet flow percentage increases (6-8%)

when there are multiple bots present in the dataset (except scenario 12). Another

distinctive feature of CTU-13 dataset is that, each scenario has been manually analyzed

and labeled. The labeling process was performed inside the NetFlow files. Table 2.1

provides a summary of the amount of data on each botnet scenario and percentage of

botnet on each scenario.

15

Table 2.1 Characteristics of Botnet Scenarios [37]

Dataset IRC Spam CF PS DDoS FF P2P US HTTP Note

1 ✓ ✓ ✓

2 ✓ ✓ ✓

3 ✓ ✓ ✓

4 ✓ ✓ ✓ UDP and ICMP

DDoS

5 ✓ ✓ ✓ Scan web

proxies

6 ✓ Proprietary

C&C.RDP

7 ✓ Chinese hosts

8 ✓ Proprietary

C&C.Net

BIOS,STUN

9 ✓ ✓ ✓ ✓

10 ✓ ✓ ✓ UDP DDoS

11 ✓ ✓ ✓ ICMP DDoS

12 ✓ Synchronization

13 ✓ ✓ ✓ Captcha, Web

mail

IRC: Internet relay chat

CF: Click fraud

PS: Port scanned

DDOS: Distributed Denial of service

ICMP: Internet Control Message

Protocol

STUN: Simple traversal of UDP through

NATs

 FF; Fast flux

P2P: Peer to peer

HTTP: Hypertext Transfer

Protocol

UDP: User Datagram Protocol

NetBIOS: Network basic

input/output System

 Another distinctive feature of CTU-13 dataset is that, each scenario has been

manually analyzed and labeled. The labeling process was performed inside the NetFlow

files. Table 2.2 provides a summary of the amount of data on each botnet scenario and

percentage of botnet on each scenario.

16

Table 2.2 Amount of Data on each Botnet Scenario of CTU-13 dataset.

Dataset

Duration

(hrs)

NetFlows Size(GB) Bot

name

Number

of Bots

Botnet flow

1 6.15 2824637 52 Neris 1 39933(1.41%)

2 4.21 1808123 60 Neris 1 18839(1.04%)

3 66.85 4710639 121 Rbot 1 26759(0.56%)

4 4.21 1121077 53 Rbot 1 1719(0.15%)

5 11.63 129833 37.6 Virut 1 695(0.53%)

6 2.18 558920 30 Menti 1 4431(0.79%)

7 0.38 114078 5.8 Sogou 1 37(0.03%)

8 19.5 2954231 123 Murlo 1 5052(0.17%)

9 5.18 2753885 94 Neris 10 179880(6.5%)

10 4.75 1309792 73 Rbot 10 106315(8.11%)

11 0.26 107252 5.2 Rbot 3 8161(7.6%)

12 1.21 325472 8.3 NSIS.ay 3 2143(0.65%)

13 16.36 1925150 34 Virut 1 38791(2.01%)

2.2 ISCX Botnet Dataset

ISCX botnet dataset was developed by Information Security Center of Excellence

(ISCX) at the University of New Brunswick (UNB). Researchers at UNB have developed

this dataset with the purpose to determine the performance of any intrusion detection

approaches or making comparisons which requires experimentation with data that

includes real time traffic [92]. ISCX botnet dataset is an evaluation dataset combining

non overlapping subsets of three different available datasets: ISOT dataset [21], ISCX

2012 IDS dataset [93], and CTU-13 dataset [37]. In order to produce this synthetic

dataset, the researchers have employed an overlay methodology [94] to combine all the

three different datasets into one unified dataset which has wide range of bots. Final ISCX

botnet dataset was divided into two training and test datasets, where we have selected as a

test dataset to implement our methodology. Table 2.3 and 2.4 provide a clear insight to

17

different Botnet types and portion of flows in the ISCX botnet testing dataset. Access to

this dataset is available upon request from the researchers of ISCX UNB.

Table 2.3 Distribution of botnet types in the ISCX botnet test dataset

Botnet name Type Flow portions in dataset

Neris IRC 25967(5.67%)

Rbot IRC 83(0.018%)

Menti IRC 2878(0.62%)

Sogou HTTP 89(0.019%)

Murlo IRC 4881(1.06%)

Virut HTTP 58576(12.80%)

NSIS P2P 757(0.165%)

Zeus P2P 502(0.109%)

SMTP Spam P2P 21633(4.2%)

UDP Storm P2P 44062(9.63%)

Tbot IRC 1296(0.283%)

Zero Access P2P 1011(0.221%)

Weasel P2P 42313(9.25%)

Smoke Bot P2P 78(0.017%)

Zeus Control (C&C) P2P 31(0.006%)

ISCX IRC bot P2P 1816(0.387%)

18

Table 2.4 List of all malicious in the ISCX botnet test dataset

192.168.2.112 131.202.243.84 192.168.5.122

198.164.30.2 192.168.2.110 192.168.4.118

192.168.2.113 192.168.1.103 192.168.4.120

192.168.2.112 192.168.2.109 192.168.2.105

147.32.84.180 147.32.84.170 147.32.84.150

147.32.84.140 147.32.84.130 147.32.84.160

10.0.2.15 192.168.106.141 192.168.106.131

172.16.253.130 172.16.253.131 172.16.253.129

172.16.253.240 74.78.117.238

158.65.110.24

192.168.3.35 192.168.3.25 192.168.3.65
172.29.0.116 172.29.0.109 172.16.253.132
192.168.248.165 10.37.130.4

 The proposed approach in this study is first of its kind to convert the NetFlow

features available from CTU-13 and ISCX dataset into graph-based features and use these

graph features to detect botnets. As CTU-13 dataset is the most complete real world

dataset [41], we choose this dataset primarily to prove the concept of our novel approach

and as an extension we also use ISCX Botnet test dataset to compare the efficiency of

proposed bot detection approach, the details of which are discussed in Chapter 3.

tel:74.78.117.238

19

CHAPTER III

METHODOLOGY

This section discusses in detail the seven features used to detect botnets and the

clustering methodology implemented to cluster these features. First of all, a directed

graph is generated for each of 13 datasets of CTU-13. A directed graph (digraph) can be

defined as a set of nodes connected by directed edges where each edge points from first

node of a graph pair to the second node of the pair. Mathematically, a directed graph can

be expressed as an ordered pair where V is a set of nodes and E is an ordered pair of

edges. Note that, in this study each node denotes a unique IP address and each edge

denotes the connection between one IP address to another. Subsequently, the feature

values are calculated of these directed graphs and afterwards clustering methodology is

applied to find out the nodes with similar features.

3.1 Graph-Based Features Selection

We have initially tried different combinations of 11 extracted graph features to

check the percentage of nodes to be eliminated when SOM technique is implemented on

13 CTU datasets (see Table 3.1). Among them, finally 7 features are selected. These 7

features include the indegree, outdegree, sum of ingoing edges weight, sum of outgoing

edges weight, clustering coefficient, node betweenness centrality, and eigen vector

centrality. A set of 9 features include indegree duration and outdegree duration along

with the 7 features. Finally, 11 features include ingoing protocol mode and outgoing

20

protocol mode in addition to the 9 features. Results from the Table 3.1 clearly indicate

that percentage of nodes to be eliminated (number of nodes in the largest cluster) in

further investigation of remaining nodes for bot detection in each dataset is very high

(almost greater than 98%) when 7 features are used.

Table 3.1 Combination of different graph-based features vs % of nodes to eliminated

CTU

Dataset

No. of

Nodes

% of nodes to be eliminated for bot detection

7 Features 9 Features 11 Features

1 311420 99.4608 59.8099 7.721405176

2 442471 99.5556 67.1314 8.295006904

3 434988 99.7388 91.6264 17.78968615

4 186245 99.3540 75.8372 8.27887997

5 41658 98.1180 83.7774 9.902059628

6 107343 98.4433 67.7836 11.46604809

7 38205 97.5265 80.356 10.04580552

8 383788 99.7086 78.2263 13.34252243

9 367264 99.7296 76.4496 11.14702231

10 197824 99.5814 13.3265 11.59515529

11 41933 96.8282 87.7877 9.155080724

12 94436 98.5895 77.9152 9.551442247

13 315769 99.2263 76.7827 9.36939978

These observations clearly prove that the computational costs and the time that is

required to search for the malicious activity will be much lower if the right combination

of features are selected. The percentage of nodes for further investigation in identification

21

of bots is very high for 9 and 11 feature combinations compared to 7 feature

combinations. Hence, it can be stated that it is vital to be efficient while extracting graph-

based features and implementing bot detection methodology on large datasets. Improper

selection of features may result in increased computational cost. This is the main

rationale behind to proceed with the 7 features combination to implement further

investigations of our study. A brief discussion of these seven features is provided below:

3.1.2 In Degree:

If many suspected bots contact a malicious domain for C&C reasons, this will

result in a relatively high in degree for this domain. Keeping this in mind, in degree has

been chosen as a feature to detect botnet in a network. For a particular node in a directed

graph, in degree can be defined as the total number of head ends adjacent to that node.

High value of in degree for a node indicates the neighboring nodes tendency to establish

more connection where as low value indicates the opposite. For example: Fig. 3.1 shows

that node ‘a’ has an indegree of two.

3.1.3 Out Degree:

For a particular node in a directed graph, the total number of tail ends adjacent to

a node is called the out degree of the node. A high value of out degree for a node implies

that this node tends to make more connections with other nodes and low value implies the

opposite. Bots tend to make more connection with other potential victim computers to

spread the reach of botnet or to C&C domain for transferring information. So, out degree

can be a useful indicator of botnet activity in a graph. As evident from Fig. 3.1, we can

see that, node ‘a’ has an outdegree of two.

22

3.1.4 In Degree Weight:

In degree weight refers to the total number of data packets received by a particular

node transferred from its neighboring connected nodes. The mechanics of transferring

data packets consists of setting up the data connection to the appropriate ports and

choosing the parameters for transfer. Besides the raw data every data packet contains, it

also has headers that carry certain types of metadata, along with the routing information

and trailers that help in refining data transmission [77]. Botnets tend to communicate with

each other or to the C&C server to transfer information or update their commands. The

same type of botnets usually communicate periodically and with a predefined set of

commands. We assume that bots will receive the same type of command and receive

approximately same volume of information that can be used to differentiate between bots

and non-bots.

3.1.5 Out Degree Weight:

Out degree weight is the opposite of in degree weight which can be described as

the total number of data packets sent by a particular node to its neighboring connected

nodes. Same as in degree weight, we assume that bots will have similarity in the volume

of data it sends out to other IP addresses in the network and can be a useful indicator of

botnet activity in a network.

23

Figure 3.1 A directed graph with three nodes

3.1.6 Node Betweenness Centrality:

In graph theory, node betweenness centrality quantifies the number of times a node

acts as a bridge along the shortest path between two other nodes. More specifically, node

betweenness centrality indicates a particular node's centrality in graph, which refers to how

many shortest paths from all nodes to all others pass through that particular node [78].

Node betweenness centrality can be mathematically expressed as [79]:

 𝑁𝐵(𝑣) = ∑
𝜎𝑢𝑤(𝑣)

𝜎𝑢𝑤
𝑢≠𝑣≠𝑤 (3.1)

Where 𝜎𝑢𝑤 is the total number of shortest paths from node ‘u’ to ‘w’ and 𝜎𝑒𝑏(𝑣) is

total number of shortest paths that pass-through node ‘v’. Figure 3.2 illustrates the concept

of node betweenness centrality [80] by calculating for node a.

24

Figure 3.2 Node betweenness centrality

When calculating betweenness centrality for node a, total number of paths can be

formed between these nodes i.e., (e,d), (e,b), (e,c).

 𝑛𝐵(𝑎) =
𝜎𝑒𝑑(𝑎)

𝜎𝑒𝑑
+

𝜎𝑒𝑏(𝑎)

𝜎𝑒𝑏
+

𝜎𝑒𝑐(𝑎)

𝜎𝑒𝑐
= 1 + 1 + 1 = 3 (3.2)

Node betweenness centrality can be a useful feature to detect botnets especially in

detecting P2P botnets where bots are more interconnected without a central C2C structure.

So, we assume that for a P2P bot in a botnet should have a higher node betweenness

centrality in a graph.

3.1.7 Local Clustering Coefficient

Local clustering coefficient of a node indicates how concentrated the

neighborhood of that node is. More specifically, local clustering coefficient is a metric to

evaluate how close a node’s neighbors are to each other. If K_a denotes the number of

neighbors of node ‘a’ and e_a denotes the number of connected pairs between all

neighbors of node ‘a’, then local clustering coefficient for node ‘a’ can be given by [81]:

 𝐶𝑎 =
𝑒𝑎

𝐾𝑎(𝐾𝑎−1)
 (3.3)

25

Figure 3.3 shows the clustering coefficient of node ‘a’ which is 0.083. Local

clustering coefficient can also be a very significant indicator of a P2P botnet. As

explained before, bots in P2P botnet have a decentralized structure where bots connect

and communicate with each other to remove the need of a centralized server. As a result,

interconnectedness can be a very significant feature to detect P2P botnets which is

essentially the basis of local clustering coefficient.

Figure 3.3 Clustering coefficient of node ‘a’ in a directed graph

Clustering coefficient of node ‘a’ in directed graph, 𝑪𝒂 =
𝟏

(𝟒∗𝟑)
= 𝟎. 𝟎𝟖𝟑

Local clustering coefficient can also be a very significant indicator of a P2P

botnet. As explained before, bots in P2P botnet have a decentralized structure where bots

connect and communicate with each other to remove the need of a centralized server. As

a result, interconnectedness can be a very significant feature to detect P2P botnets which

is essentially the basis of local clustering coefficient.

3.1.8 Eigen Vector Centrality

Eigen vector centrality, also known as Eigen centrality is a measurement criterion

of influence of a node in a graph. It is essentially the weight of a node in a graph [82].

26

Each node is assigned a relative value based on the concept that connections to high-

scoring nodes contribute more to the score of the node than equal connections to low-

scoring nodes. Let G(V,E) be a graph where V is total number of nodes and E is the total

number of edges. Let, A= (a_(v,w)) be the adjacency matrix where

 𝑎𝑣,𝑤 = {
1 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑣 𝑖𝑠 𝑙𝑖𝑛𝑘𝑒𝑑 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑤

 0 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑣 𝑖𝑠 𝑛𝑜𝑡 𝑙𝑖𝑛𝑘𝑒𝑑 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑤
 (3.4)

Then the centrality score can be given as

 𝑥𝑣 =
1

𝜆
∑ 𝑎𝑣,𝑤𝑥𝑤𝑤∈𝑀(𝑣) (3.5)

where 𝑀(𝑣) is the set of neighbors of node ‘v’ and 𝜆 is a constant. Now equation (1) can

be rewritten as

 𝐴𝑥 = 𝜆𝑥 (3.6)

There exists a positive solution λ with final eigenvector after using power method

based on the Perron–Frobenius theorem [83]. λ is also the largest eigenvalue associated

with the eigenvector of the adjacency matrix [84]. Eigenvector centrality is a natural

extension of degree centrality. In-degree centrality awards one centrality points for every

link a node receives. But not all nodes are equivalent: some are more important than

others based on their edge weight, and, reasonably, connections from important nodes

count more. We expect that a bots eigenvector centrality measure should be significantly

different than non-malicious nodes and hence is used as a feature to detect botnets in this

study.

27

3.2 Self Organizing Map

Self Organizing Map (SOM) belongs to an interesting class of unsupervised

system that is based on competitive learning in which the output neurons compete

amongst themselves to be activated. The primary goal of an SOM is to convert an

incoming dataset of arbitrary dimension into a one or two-dimensional discrete map, and

to perform this transformation adaptively in a topologically ordered fashion [85]. In this

study, we have considered on a particular kind of SOM known as Kohonen network that

was developed by Tuevo Kohonen in 1982 [95-96].

 The basic structure of SOM is shown in Figure 3.4 is a 3×3 SOM network. For

this small SOM network, there are 63 connections. Notice that the map nodes(𝐶1 − 𝐶9)

are not connected to one another. In this 2-D representation of SOM, each map node has

a unique (i,j) coordinate. Simultaneously, as map nodes are only connected to input

vector (𝐹1 − 𝐹7), map nodes are never aware of what other map nodes values are. A map

node’s weight (W) will only be updated if and only if the input vector tells it. Algorithm

1 illustrates the basic methodology behind SOM.

Figure 3.4 Structure of Self Organizing Map

28

Table 3.2 Algorithm 1: SOM Algorithm

1. Each map nodes(𝑪𝟏 − 𝑪𝟗) weights (W) are initialized with small random
values.

2. An input vector (𝑭𝟏 − 𝑭𝟕) is chosen from the training dataset and is
presented to the network.

3. Each node is inspected to determine which node’s weight best matches the
input vector’s weight. The winning node is termed as ‘Winning Neuron’ or
‘Winner Takes All Neuron’ or ‘Best Matching Unit (BMU)’. BMU can be
calculated as

 𝑩𝑴𝑼 = 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒇𝒓𝒐𝒎 𝒊𝒏𝒑𝒖𝒕 𝒗𝒆𝒄𝒕𝒐𝒓 = ∑ (𝑭𝒊 − 𝑾𝒊)𝟐𝑫
𝒊=𝟏 (3.7)

4. The radius of the BMU is calculated which is typically set to be the radius of
the network that diminishes at each time-step. This can be calculated as

 𝝈(𝒕) = 𝝈𝟎𝒆
−𝒕

𝝀 (3.8)

 where t is the current iteration, 𝝀 is the time constant and is the

 radius of the map. can be calculated as

 𝛌 = 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬
𝐦𝐚𝐩𝐑𝐚𝐝𝐢𝐮𝐬⁄ (3.9)

 Any node found within the radius of BMU is adjusted to make more
 like the input vector. This adjustment can be done by

 𝑾(𝒕 + 𝟏) = 𝑾(𝒕) + 𝚽(𝒕)𝑳(𝒕)(𝑿(𝒕) − 𝑾(𝒕)) (3.10)

Where,

 𝑳(𝒕) = 𝑳𝟎𝒆
−𝒕

𝝀 (3.11)

 𝚽(𝒕) = 𝒆
−𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝑭𝒓𝒐𝒎 𝑩𝑴𝑼𝟐

𝟐𝝈𝟐(𝒕) (3.12)

W(t+1) is the new educated weight value of a given node and is a measure that
is used to force the nodes closer to BMU to learn more than others who are further away.

5. Repeat 2 for desired number of iterations

In this study, an investigated has been conducted for the accuracy of the detection

algorithm with three different SOM models, i.e., 4*4, 5*5, and 6*6. Among these three

SOM models, 5*5 provides the best solution. With 4*4 SOM model, bots were being

identified in a comparatively larger cluster than 5*5 SOM model whereas with 6*6 SOM

model, many clusters were empty. Hence, 5*5 SOM model was used for the

29

demonstration of the effectiveness of this proposed detection method. However, the

difference among the results was not significant and using any of them will result in good

accuracy. Each map nodes weights in the network are initially assigned with seven

random values. After that input vectors, each containing these seven features are

presented to the network. Thenceforth, step 3 to 6 is followed to get the desired number

of clusters.

In its essence, algorithm 1 is essentially screening the dataset and assigning the

nodes to different clusters. This algorithm does not distinguish bots from non-bots. Hence

another algorithm is developed to detect bots in the clusters. This bot detection algorithm

is illustrated below:

Table 3.3 Algorithm 2: Bot search algorithm

1. Arrange the clusters in ascending order of size.

2. Remove the cluster with the highest number of nodes.

3. Starting with the smallest cluster, investigate all the nodes in the rest of
the clusters.

4. Stop the algorithm when bots are detected. The number of nodes needed
to identify the bots is denoted by 𝑁𝑠, which characterizes the efficiency
of the proposed bot detection algorithm.

It is consequential that algorithm 2 is performed with caution as the efficiency of

SOM method can be significantly hampered if bots are not identified properly in this

step. After initiating step 1, step 2 is performed based on considering our finding that

botnet flows are typically a small proportion of the overall dataset. As the percentage of

botnet flow is very small, we delete the cluster that have the highest number of nodes by

30

assuming bots are not large in number and don't possess the usual similarities to share the

same cluster with normal nodes. The criteria for differentiating bots from non-bots must

be clearly defined and implemented for the success of this method. Eventually, this is

also true that we cannot guarantee the largest cluster will not contain a bot if the bot acts

like normal node and is not triggered to be like a bot until step 2 is initiated.

31

CHAPTER IV

CASE STUDY-DETECTING BOTS IN CTU-13

We apply SOM to the CTU-13 dataset to investigate the effectiveness and

efficiency of our proposed method. An enhanced filtering algorithm, based on the degree

of bots, is proposed to further improve the botnet detection efficiency. The results are

benchmarked against a Support Vector Machine based classification algorithm to

demonstrate the strength of our proposed procedure.

4.1 Graph Features Extraction

We first extract graph-based features of CTU-13 data sets as discussed in Chapter

3. Recall that the CTU-13 data sets contain more than 20 million NetFlow records. High

performance computing is needed to streamline to the extraction of graph-based features.

The computation tasks of feature extraction are performed using the Shadow system,

super computer available at The High Performance Computing Collaboratory (HPC²) of

Mississippi State University. The Shadow system is equipped with a Cray CS300-LC

cluster with 4800 Intel Ivy Bridge processor cores and 28,800 Intel Xeon Phi cores. With

the aid of high performance computing capacity, we are able to extract the graph-based

features from all CTU-13 data sets within 20 hours. The resultant graph-based features

are numbered and labeled by Feature 1 – Feature 7 for the notational convenience, as

shown in Table 4.1.

32

Table 4.1 Graph-Based Features Used for Clustering.

1 2 3 4 5 6 7

In

Degree

Out

Degree

Sum of

Ingoing

Edges

Weight

Sum of

Outgoing

Edges

Weight

Clustering

Coefficient

Node

Betweenness

Eigen

Vector

4.1.2 Graph-Based Botnet Detection Using Clustering

We apply the SOM-based botnet detection algorithm (Algorithm 1) to the

extracted seven graph-based features. Fig. 4.1 demonstrates the results of SOM clustering

based on CTU dataset 6. There is a total number of 25 cells, each representing a possible

cluster of graph-based features. We choose the total number of cells to be 25 so that the

SOM algorithm can captures various types of node behaviors while not significantly

increasing computation costs.

Figure 4.1 SOM hits on CTU-13 dataset 6

33

Table 4.2 Number of nodes in the biggest cluster (Normal Nodes).

Dataset No. of Nodes No. of Nodes in the biggest

cluster

% of nodes to be

eliminated for bot

detection

1 311420 309741 99.4608

2 442471 440505 99.5556

3 434988 433852 99.7388

4 186245 185042 99.3540

5 41658 40874 98.1180

6 107343 105672 98.4433

7 38205 37260 97.5265

8 383788 382670 99.7086

9 367264 366271 99.7296

10 197824 196996 99.5814

11 41933 40603 96.8282

12 94436 93104 98.5895

13 315769 313326 99.2263

From Figure 4.1, the numbers in each cell represent the total number of nodes that

belong to the corresponding cluster. These nodes share similar behaviors in terms of the

identified graph-based features. For example, there exist 105,672 nodes in the biggest

cluster (in blue), which accounts for over 99% of nodes in Dataset 6. Note that malicious

behaviors i.e., the botnet flows are typically a small proportion of the entire dataset and

when compared to normal flows, botnet flows possess high range of feature values

because they are very active in the network. So, we delete the clusters that have the

highest number of nodes that don't possess the usual characteristics that a bot might have.

This helps to narrow down the identification of bots to the remaining few nodes, which

account for less than 1% of the total nodes. Similar observations are made for the other

34

CTU datasets that the majority of the nodes belongs to the biggest cluster and can be

eliminated from the consideration of bot detection (see Table 4.2). For most of the CTU

scenarios, the biggest cluster consists of over 99% of nodes. This allows us to eliminate

the majority of the dataset for further bot identification, significantly reducing the cost of

computation.

We apply the proposed bot search algorithm (Algorithm 2) to the clusters

obtained via SOM. Table 4.3 shows the number of nodes to search to identify all bots in

each data set. The sizes of clusters that include the bots are also reported. Bots can be

isolated in small clusters for most data sets. As a result, bots can be identified by

examining limited number of nodes.

35

Table 4.3 Number of Nodes to Search for Bot Identification (𝑁𝑠)

Dataset Number

of bots

Number of

identified

bots

Size of the

bot cluster
𝑁𝑠 % of nodes to search

1 1 1 27 120 0.038

2 1 1 12 41 0.009

3 1 1 26 125 0.028

4 1 1 40 238 0.127

5 1 1 6 26 0.062

6 1 1 38 163 0.151

7 1 1 11 44 0.115

8 1 1 184 563 0.146

9 10 3 21 73 0.019

7 40 63 0.017

10 10 10 20 90 0.045

11 3 2 9 24 0.057

1 770 1306 3.114

12

3

2 11 53 0.056

1 19 60 0.063

13 1 1 16 64 0.020

It shows that the proposed method can detect botnet size in a cluster which is very

small compared to the size of the total dataset. Hence, after applying SOM on the dataset,

further investigating the nodes of the small clusters gives the bots present in the dataset.

Bots have been mostly found in small sized clusters. More specifically, in more than 80%

of the cases, bots have been found within the smaller clusters containing only 20% of the

remaining nodes. Although, it still may take some computational effort to further

investigate clusters after initial screening, it is considerably less than the computational

time and complexity resulting from the framework where the entire dataset needs to be

examined.

36

From Table 4.4, it is apparent that although SOM methodology provides good

results in alienating bots from the rest of the nodes, there are no unique values of features

across all bot clusters. From Figure 4.2 it is clear that feature values are far apart for

different nodes. The highest and lowest values of features have been made bold to better

clarify the finding. For example: feature 1 values range from 1 to 6842 and feature 2

values range from 3 to 11571 across all bot clusters. So, there is no fixed range for the

feature values of bots across all the scenarios. A notable conclusion that can be made

from this experiment is that rule based detection methods will not work well in detecting

botnets as different bots behave differently in different scenarios. Thus, detecting botnets

become very challenging. This limitation can be by passed by the proposed approach as it

does not rely on any particular rule. With different types of bot behaviors, the proposed

method can still detect bot with reasonable accuracy. What this approach ensures is that,

bots will always be found in small sized clusters. A majority of the data (>97%) is

removed from consideration, and thus the sample space becomes very negligible. This

relatively smaller sample space need be further investigated to detect botnets. Hence, this

proves the robustness of our proposed approach as it can detect botnets with varying

behavior in different datasets.

37

Table 4.4 Feature values of bot cluster

Dataset

Size of

the bot

cluster

Features

1 2 3 4 5 6 7

1 27 176 2703 2595 48690 0.0113 0.0007 0.00022

2 12 110 4161 3140 134500 0.0109 0.0003 0.00017

3 26 1727 2391 176967 8806 0.0171 0.0019 0.00122

4 40 153 859 1970 43356 0.0847 0.0003 0.00056

5 6 7 483 310 28527 0 0.0004 1.14E-05

6 38 26 428 1443 12128 0.0449 0.0003 4.72E-05

7 11 25 385 231 21990 0.0283 0.0005 0.00033

8 184 34 289 470 17650 0.1344 3.08E-5 3.84E-06

9
40 150 6534 3214 121087 0.0512 0.0007 0.000990

21 86 5240 2662 219182 0.0006 0.0006 0.00055

10 20 6842 7462 6581 355098 0.0145 0.0023 0.16417

11
9 1219 2883 1223 27505 0 0.0006 0.19237

770 1 3 3 100 0.0110 6.22E-5 5.51E-06

12

11 509 328 57287 6897 0 0.0019 0.00017

19 169 85 31608 2771 0.0217 0.0005 0.000283

13 16 161 11571 974 267041 0.0408 0.0003
4.69E-05

38

Figure 4.2 Variation of average feature values in Bot clusters

4.2 Feature Evaluations and SOM Based Botnet Detection on Filtered Dataset

In this section, SOM has been applied to filtered CTU-13 dataset to determine

whether filtering the raw data provides better result than shown in section 4.1. What

filtering is essentially doing is that it is removing nodes that cannot be a bot. The basic

assumption made here is that 1-degree nodes can’t be a bot as they are not very active in

the network. As a result, total number of nodes where SOM needs to be applied get

significantly reduced. The steps of filtering are provided below:

1. First convert the flow-based data into graph-based data.

2. Each IP is considered as a node and each connection is considered as an

edge.

3. If there are multiple communications between two nodes, we still

represent them with a single edge, and add other data as weight (attributes)

of that edge.

39

4. Calculate the feature values of each node.

5. Compute the degree of each node, and then filter out (remove) the 1-

degree nodes and their corresponding edges from the graph

Subsequently, SOM has been applied to this filtered dataset. Note that, we have

only used ten filtered datasets for experimental purpose. Results obtained from applying

SOM on filtered dataset is shown in Table 4.5.

Table 4.5 Efficiency of bot detection

Dataset Total

number

of nodes

Number

of bots

Number of

identified

bots

Size of the bot

cluster
𝑵𝒔 % of

nodes to

search

1 117119 1 1 27 115 0.098

3 20284 1 1 18 96 0.473

4 81544 1 1 33 181 0.002

5 1939 1 1 7 65 3.352

6 8240 1 1 45 252 3.058

7 2486 1 1 8 40 1.609

8 20666 1 1 61 307 1.485

10 91785 10 10 17 77 0.083

11 2498 3 2 8 21 0.840

1 146 384 15.372

12 4743 3 3 5 36 0.759

Results in Table 4.5 show that, after filtering, total number of nodes to examine to

apply SOM gets reduced. Moreover, after applying SOM, in majority of the cases the size

of the cluster where bot is found is smaller than before. Figure 4.3 illustrates this

phenomenon. It is clearly evident from the figure that, for the 10th scenario the bot

cluster size is smaller after filtering. Here, the red star is the bot and black dots are the

other non-malicious nodes in the cluster.

40

Figure 4.3 Bot cluster size before and after filtering

As a result, the numbers of nodes to search for bot identification (𝑁𝑠) are shown

in Table 4.6 Significant reduction in 𝑁𝑠 can be observed. For example, 1306 nodes need

to be searched for identifying the third bot in Dataset 11. After filtering, 384 nodes need

to be searched only, a reduction of over 70% of the total number of nodes. For dataset 12,

the two clusters containing bots are combined into one after filtering, requiring searching

36 nodes only compared to 113 nodes before clustering. However, we also observed the

𝑁𝑠 values slightly increase for datasets 5 and 6, which may result from randomness of the

clustering algorithm.

41

Table 4.6 Improvement of 𝑁𝑠 using Filtering

Dataset Botnet detection without

filtering

Botnet detection after filtering

𝑁𝑠 % nodes to

search
𝑁𝑠 % nodes to

search

1 120 0.038 115 0.036

3 125 0.028 96 0.022

4 238 0.127 181 0.097

5 26 0.062 65 0.156

6 163 0.151 252 0.234

7 44 0.115 40 0.104

8 563 0.146 307 0.079

10 90 0.045 77 0.038

11 24 0.057 21 0.050

1306 3.114 384 0.915

12 53 0.056 36 0.038

60 0.063

4.3 Extension of SOM Implementation on ISCX botnet test dataset

In order to check the efficiency of the proposed methodology to compare with

CTU-13, we have extracted the same 7 graph-based features for the new ISCX botnet test

dataset. We have implemented the proposed SOM Algorithm 1, same as before. From

Figure 4.4 the numbers in each cell represent the total number of nodes that belong to the

corresponding cluster. These nodes share similar behaviors in terms of the identified

graph-based features. For example, there exist 26,652 nodes in the biggest cluster (in

blue), which accounts for over 93% of nodes (Table 4.7) in ISCX botnet test dataset.

42

Figure 4.4 SOM on ISCX botnet test dataset

From Table 4.7 number of bots identified in each cluster shows the malicious

nodes of ISCX dataset have been scattered into the smallest clusters. As we discussed

before abnormal/malicious behaviors are rare in most of real-world networks and the

biggest cluster (with maximum number of nodes) are unlikely to be bots. In further

inspection, the nodes in the biggest cluster can be eliminated to reduce the computational

costs in further investigation of bots. From Table 4.8 the percentage of nodes to be

eliminated is more than 93%. Comparing with the results of CTU-13 dataset, it is true

that similar observations are drawn when the proposed methodology has been

implemented on ISCX Botnet test dataset. It again proves the robustness of the proposed

methodology and also we expect the method of detecting bot in the rest of the small

43

clusters by eliminating the biggest cluster will hold true for any other new datasets but we

cannot guarantee it.

Table 4.7 Number of nodes in each cluster of ISCX Botnet test dataset after

implementing proposed methodology

Cluster number Number of nodes in

each cluster

Number of bots

identified in each

cluster

1 1 0

2 3 0

3 4 2

4 4 0

5 5 2

6 5 1

7 8 0

8 9 0

9 12 0

10 14 2

11 15 1

12 19 2

13 27 1

14 35 1

15 42 5

16 43 1

17 50 0

18 61 3

19 96 4

20 112 3

21 167 1

22 266 2

23 312 0

24 594 3

25 26652 0

44

Table 4.8 Create a short, concise table title and place all detailed caption, notes,

reference, legend information, etc in the notes section below

Dataset
Number of

Bots

Total number of

nodes

Number of nodes in

the biggest cluster

% of nodes to

eliminated

ISCX Botnet

Test
35 28556 26652 93.3324

4.4 Benchmark Against Classification Techniques

We compare our proposed clustering approach with some of the available

classification techniques to detect bots.

4.4.1 Support Vector Machine Classifier

Support vector machine (SVM) is a powerful supervised machine learning

technique [54], which is used for classification and regression analysis. It is introduced by

Cortes and Vapnik [53]. Basically, SVM classifies the data into two classes by generating

an optimal hyper-plane, which has the largest distance to the nearest training samples. To

predict the class of new observations, the SVM learning algorithm, splits data to training

and validation set. The decision boundary (i.e., a hyper-plane) is determined using training

set. Subsequently, SVM classifier predicts class of the observations for validation set based

on the distance of each observation from decision boundary. Optimal hyperplane dividing

the data in to two classes can be written as set of point �⃗� satisfying 𝑤 ⃗⃗⃗⃗⃗. �⃗� + b = 0 , where

�⃗⃗⃗� is the normal vector of the hyperplane [55]. The parameter b gives the offset distance

from the origin. The parallel marginal hyperplanes can be given by the equations,

�⃗⃗⃗�. �⃗� + b = 1 (4.1)

�⃗⃗⃗�. �⃗� + b = -1 (4.2)

45

Two parallel marginal hyperplanes are generated on both the sides of the optimal

hyperplane that separates the data. The sample points which are used to generate the

optimal hyper-plane are called the support vectors (SVs). The distance between the two

marginal hyperplanes with the largest margin is given by 𝑀 =
2

⃓⃓ 𝑤⃓⃓

Figure 4.5 Shows the linear separating hyperplane for the separable case, and the solid

circle and squares on the margin are called support vectors.

If the dataset is not linearly separable, one can use more general kernel functions

that provides non-linear decision boundaries by generating a hyperplane in a multi-

dimensional feature space. The kernel function(ϕ) plays a critical role in the SVM

training and classification. Some commonly implemented kernel functions [9056] are the

Gaussian radial basis function (RBF) kernel, Polynomial kernel and the Sigmoid kernel.

The advantage of SVM is that it works well with small training datasets.

46

4.4.2 K-Nearest Neighbor (K-NN) Classifier

K-NN is one of the widely-used machine learning algorithms, which is an

extension of the nearest neighbor (NN) classifier [9157]. K-NN classifies an object by

choosing the majority vote of its nearest neighbors. Here, the object will be designated to

a class based on the most frequent class of its K nearest neighbors, where K is a user

defined constant. In a multidimensional feature space, all the training sample are vectors

assigned with a class label. During the training phase, the classifier remembers the class

labels and feature values of the training samples. For instance, assume that x_0 is a test

point (an unlabeled vector) which is needed to be classified in a testing phase. When a K-

nearest neighbor query starts, it grows like a spherical region until the query is enclosed

by K training samples. When the classifier finds the set of desired K nearest neighbors in

the training set to x_0, it classifies the test point as the most frequent class among the K

neighbors closer to it.

Considering the outcome of K-NN on 1 nearest neighbor as shown in the example

Figure 4.6 the prediction of K-NN of the test sample (orange circle) will be ‘+’ as it is

closer to it. If K = 2, K-NN will be not able to classify the test sample outcome since the

second closest sample is ‘-‘, both the minus and plus signs receive the same score. If K is

3 then the outcome is ‘-‘, and if K is 5 then it is ‘+’ as the respective signs dominate the

nearest neighbors in each case. In our case the k value is 5 and Euclidian distance method

is used to compute the nearest distance between the test sample and training sample.

47

Figure 4.6 K-NN classification approach

4.4.3 Decision Tree classifier (DT)

Decision Tree is a well-known supervised machine learning technique that is used

for classification and regression analysis. The basic idea of DT is to predict the class of a

variable based on the training model by learning decision rules. The algorithm of DT is

very simple and it can be represented by a tree structure. Initially while training, the

algorithm tries to split the root node into subsets based on the decision value and it goes

till the leaf node is found. Hence, whenever there is a new set of data point to predict, DT

simply compares the new data point with the trained model and determines which class it

belongs to. For instance, form the Figure 4.7, if there is a new data Z and needs to be

defined weather Bot or None-Bot, then first the algorithm tries to use the attributes value

of the test data and compare with the training set. Assume if the value of the attribute x_2

is < -0.55 then it picks the left branch and goes to next subset and again if the value of

attribute x_1<1.5 then it predicts the class of Z as a Bot else Non- Bot.

48

Figure 4.7 Example of Decision Tree Classification

4.5 Classification Results

The programs of all the three classifiers is available in MATLAB packages. We

train the SVM, K-NN and DT classifiers using ISCX botnet test dataset and use CTU-13

datasets for testing the classifiers. Training the classifiers in one of the important step

while implementing classification techniques. As ISCX dataset is a combination of three

different subset datasets which includes CTU data we choose this as a training dataset.

During the training phase the classifier learn and frame guidelines in differentiating bot

and non-bot based on the feature values provided.

The classification techniques cannot provide efficient result in accurately

classifying the CTU-13 datasets to Bot and Non-Bot classes, since there is high variation

in feature values. Specifically, due to the complex behaviors of bots, classification

becomes challenging as characteristics of training and testing data can significantly vary.

The percentage of misclassification by using three classifiers are presented in Table 4.9.

The three classifiers are only capable of determining just 10% of accurate classification

49

for the 10th and 11th datasets only. However, for the rest of the scenarios,

misclassification rates are 100%.

Table 4.9 Classification result.

Implemented on

CTU 13 Dataset

% of Misclassification and comparison between classifiers

trained with ISCX Botnet dataset

SVM DT KNN

1 100 100 100

2 100 100 100

3 100 100 100

4 100 100 100

5 100 100 100

6 100 100 100

7 100 100 100

8 100 100 100

9 100 100 100

10 90 90 90

11 90 90 90

12 100 100 100

13 100 100 100

50

CHAPTER V

Conclusion

In this work, we propose a graph-based botnet detection approach that can detect

changing behaviors of bots. This is novel because the existing approaches mainly rely on

flow-based features and thus do not capture the changes in the topological structure of

networks caused by bot activities. We investigate seven graphed-based features that are

may be connected to bot activities: in degree, out degree, in degree weight, out degree

weight, clustering coefficient, node betweenness, and eigenvector centrality. SOM is

applied to establish the clusters of nodes based on these graphed features. Our approach

is capable of isolating bots in clusters with very small sizes (less than 100 nodes), which

enables fast detection of bot nodes. The proposed algorithm is further enhanced by

filtering out inactive nodes, which are unlikely to be bots. We verify the proposed

methods using CTU-13 and ISCX Botnet dataset. Numerical results show that our

proposed procedure is capable of detecting the bots by searching limited number of

nodes.

We compare our approach with three different classification algorithms using the

same graph-based features. All the methods are not capable of detecting most of the bots

because of the varying values of bot features across different datasets (Bot features vary

from one dataset to another). The advantage of our approach is that we focusing on

capturing the abnormal behaviors of bots in terms of their graph-based behaviors. In other

51

words, our method is more robust against the changing behaviors of bots because the

proposed approach does not rely on any particular value/range of features. With different

types of bot behavior, the proposed method can still detect bot with reasonable accuracy.

What this approach ensures is that, bots will always be found in small sized clusters with

the majority of nodes (>99%) removed from further consideration. Our study shows that,

as long as the bots behave differently from normal nodes, such different behaviors can be

captured by our clustering-based detection algorithm and further testing is needed in

determining the bots from the smallest clusters. Future work is needed to incorporate

additional graph-based features and reduce the computational costs of graph feature

extraction and testing on other datasets. Note that, as feature extraction cost contributes to

the overall computational cost, future work is needed to investigate how feature

extraction cost can be minimized. Effect of incorporating more relevant graph-based

features into the detection methodology is also a future research direction.

52

REFERENCES

[1] Welivesecurity. Botnet malware: What It Is and How to Fight It. Available from:

<http://www.welivesecurity.com/2014/10/22/botnet-malware-fight/>; 2014 [accessed

21.12.15]

[2] Barford, P., & Yegneswaran. V. (2006). An Inside Look at Botnets. Special Workshop

on Malware Detection: Advances in Information Security 2006.

[3] F-scure. Articles: Botnets. Available from

<https://www.fsecure.com/en/web/labs_global/botnets>; 2016 [accessed 21.02.16]

[4] Zeidanloo, H. R., Shooshtari, M. J. Z., Amoli, P. V., Safari, M., & Zamani, M. (2010,

July). A taxonomy of botnet detection techniques. In Computer Science and Information

Technology (ICCSIT), 2010 3rd IEEE International Conference on (Vol. 2, pp. 158-162).

IEEE.

[5] Ianelli, N & Hackworth, A. (2005). Botnets as a Vehicle for Online Crime. Available

from <https://resources.sei.cmu.edu/asset_files/WhitePaper/2005_019_001_51249.pdf>;

2005 [accessed 24.04.2016]

[6] Bacher, P., Holz, T., Kotter, M., & Wicherski, G. (2005). Know Your Enemy:

Tracking Botnets. Available from< https://www.honeynet.org/papers/bots/>; 2005

[accessed 24.04.2016]

[7] Kaspersky. What is Botnet attack? Available from:

<https://usa.kaspersky.com/internet-security-

center/threats/botnetattacks#.V1du3TUrIdV>; 2016 [accessed 21.02.16]

[8] Sonawane, S.R. (2016). A Review on Botnet and Botnet Detection Methods.

International Journal of Computer Science and Innovation 2016; volume 1: pp.107-116.

[9] Fadlullah, Z. M., Taleb, T., Vasilakos, A. V., Guizani, M., & Kato, N. (2010).

DTRAB: Combating against attacks on encrypted protocols through traffic-feature

analysis. IEEE/ACM Transactions on Networking (TON), 18(4), 1234-1247.

[10] Zhang, J., Chen, C., Xiang, Y., Zhou, W., & Xiang, Y. (2013). Internet traffic

classification by aggregating correlated naive bayes predictions. IEEE Transactions on

Information Forensics and Security, 8(1), 5-15.

[11] Zhang, J., Xiang, Y., Wang, Y., Zhou, W., Xiang, Y., & Guan, Y. (2013). Network

traffic classification using correlation information. IEEE Transactions on Parallel and

Distributed Systems, 24(1), 104-117.

http://www.welivesecurity.com/2014/10/22/botnet-malware-fight/
https://www.fsecure.com/en/web/labs_global/botnets
https://resources.sei.cmu.edu/asset_files/WhitePaper/2005_019_001_51249.pdf
https://www.honeynet.org/papers/bots/
https://usa.kaspersky.com/internet-security-center/threats/botnetattacks#.V1du3TUrIdV
https://usa.kaspersky.com/internet-security-center/threats/botnetattacks#.V1du3TUrIdV

53

[12] Zhang, J., Chen, C., Xiang, Y., Zhou, W., & Vasilakos, A. V. (2013). An effective

network traffic classification method with unknown flow detection. IEEE Transactions

on Network and Service Management, 10(2), 133-147.

[13] Yan, Z., Zhang, P., & Vasilakos, A. V. (2015). A security and trust framework for

virtualized networks and software‐ defined networking. Security and communication

networks.

[14] Shu, Z., Wan, J., Li, D., Lin, J., Vasilakos, A. V., & Imran, M. (2016). Security in

software-defined networking: Threats and countermeasures. Mobile Networks and

Applications, 21(5), 764-776.

[15] Zhang, J., Perdisci, R., Lee, W., Sarfraz, U., & Luo, X. (2011, June). Detecting

stealthy P2P botnets using statistical traffic fingerprints. In Dependable Systems &

Networks (DSN), 2011 IEEE/IFIP 41st International Conference on (pp. 121-132). IEEE.

[16] Choi, H., & Lee, H. (2012). Identifying botnets by capturing group activities in DNS

traffic. Computer Networks, 56(1), 20-33.

[17] Livadas, C., Walsh, R., Lapsley, D., & Strayer, W. T. (2006, November). Usilng

machine learning technliques to identify botnet traffic. In Local Computer Networks,

Proceedings 2006 31st IEEE Conference on (pp. 967-974). IEEE.

[18] Goebel, J., & Holz, T. (2007). Rishi: Identify Bot Contaminated Hosts by IRC

Nickname Evaluation. In USENIX Workshop on Hot Topics in Understanding Botnets

(HotBots'07), 2007.

[19] Zeidanloo, H. R., Manaf, A. B., Vahdani, P., Tabatabaei, F., & Zamani, M. (2010,

June). Botnet detection based on traffic monitoring. In Networking and Information

Technology (ICNIT), 2010 International Conference on (pp. 97-101). IEEE.

[20] Argus (Audit Record Generation and Utilization System. Available from<

http://www.qosient.com/argus>; 2016 [accessed 21.02.2016]

[21] Binkley, J. R., & Singh, S. (2006). An Algorithm for Anomaly-based Botnet

Detection. SRUTI, 6, 7-7.

[22] Karasaridis, A., Rexroad, B., & Hoeflin, D. (2007). In USENIX Workshop on Hot

Topics in Understanding Botnet, 2007.

[23] Gu, G., Zhang, J., & Lee, W. (2008). BotSniffer: Detecting botnet command and

control channels in network traffic.

[24] Strayer, W. T., Lapsely, D., Walsh, R., & Livadas, C. (2008). Botnet detection based

on network behavior. In Botnet Detection (pp. 1-24). Springer US.

http://www.qosient.com/argus

54

[25] Amini, P., Azmi, R., & Araghizadeh, M. (2014). Botnet Detection using NetFlow

and Clustering. Advances in Computer Science: an International Journal, 3(2), 139-149.

[26] Gu, G., Perdisci, R., Zhang, J., & Lee, W. (2008, July). BotMiner: Clustering

Analysis of Network Traffic for Protocol-and Structure-Independent Botnet Detection.

In USENIX Security Symposium (Vol. 5, No. 2, pp. 139-154).

[27] Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A., & Garant, D. (2013).

Botnet detection based on traffic behavior analysis and flow intervals. Computers &

Security, 39, 2-16.

[28] Arshad, S., Abbaspour, M., Kharrazi, M., & Sanatkar, H. (2011, December). An

anomaly-based botnet detection approach for identifying stealthy botnets. In Computer

Applications and Industrial Electronics (ICCAIE), 2011 IEEE International Conference

on (pp. 564-569). IEEE.

[29] Strayer, W. T., Walsh, R., Livadas, C., & Lapsley, D. (2006, November). Detecting

botnets with tight command and control. In Local Computer Networks, Proceedings 2006

31st IEEE Conference on (pp. 195-202). IEEE.

[30] Lu, W., Rammidi, G., & Ghorbani, A. A. (2011). Clustering botnet communication

traffic based on n-gram feature selection. Computer Communications, 34(3), 502-514.

[31] Al-Duwairi, B., & Al-Ebbini, L. (2010, May). BotDigger: A fuzzy inference system

for botnet detection. In Internet Monitoring and Protection (ICIMP), 2010 Fifth

International Conference on (pp. 16-21). IEEE.

[32] AsSadhan, B., Moura, J. M., Lapsley, D., Jones, C., & Strayer, W. T. (2009, July).

Detecting botnets using command and control traffic. In Network Computing and

Applications, 2009. NCA 2009. Eighth IEEE International Symposium on (pp. 156-162).

IEEE.

[33] Venkatesh, B., Choudhury, S. H., Nagaraja, S., & Balakrishnan, N. (2015). BotSpot:

fast graph based identification of structured P2P bots. Journal of Computer Virology and

Hacking Techniques, 11(4), 247-261.

[34] Ding, Q., Katenka, N., Barford, P., Kolaczyk, E., & Crovella, M. (2012, August).

Intrusion as (anti) social communication: characterization and detection. In Proceedings

of the 18th ACM SIGKDD international conference on Knowledge discovery and data

mining (pp. 886-894). ACM.

[35] Henderson, K., Gallagher, B., Eliassi-Rad, T., Tong, H., Basu, S., Akoglu, L., ... &

Li, L. (2012, August). Rolx: structural role extraction & mining in large graphs.

In Proceedings of the 18th ACM SIGKDD international conference on Knowledge

discovery and data mining (pp. 1231-1239). ACM.

55

[36] Henderson, K., Gallagher, B., Li, L., Akoglu, L., Eliassi-Rad, T., Tong, H., &

Faloutsos, C. (2011, August). It's who you know: graph mining using recursive structural

features. In Proceedings of the 17th ACM SIGKDD international conference on

Knowledge discovery and data mining (pp. 663-671). ACM.

[37] Kang, U., McGlohon, M., Akoglu, L., & Faloutsos, C. (2010, December). Patterns

on the connected components of terabyte-scale graphs. In Data Mining (ICDM), 2010

IEEE 10th International Conference on (pp. 875-880). IEEE.

[38] Aggarwal, C. C. (2013). Outlier ensembles: position paper. ACM SIGKDD

Explorations Newsletter, 14(2), 49-58.

[39] Zimek, A., Campello, R. J., & Sander, J. (2014). Ensembles for unsupervised outlier

detection: challenges and research questions a position paper. Acm Sigkdd Explorations

Newsletter, 15(1), 11-22.

[40] Chen, H. H., & Giles, C. L. (2013, August). ASCOS: an asymmetric network

structure context similarity measure. In Advances in Social Networks Analysis and

Mining (ASONAM), 2013 IEEE/ACM International Conference on (pp. 442-449). IEEE.

[41] Sun, H., Huang, J., Han, J., Deng, H., Zhao, P., & Feng, B. (2010, December).

gskeletonclu: Density-based network clustering via structure-connected tree division or

agglomeration. In Data Mining (ICDM), 2010 IEEE 10th International Conference

on (pp. 481-490). IEEE.

[42] Tong, H., & Lin, C. Y. (2011, April). Non-negative residual matrix factorization

with application to graph anomaly detection. In Proceedings of the 2011 SIAM

International Conference on Data Mining (pp. 143-153). Society for Industrial and

Applied Mathematics.

[43] Ambai, M., Utama, N. P., & Yoshida, Y. (2011). Dimensionality reduction for

histogram features based on supervised non-negative matrix factorization. IEICE

TRANSACTIONS on Information and Systems, 94(10), 1870-1879.

[44] Nikulin, V., & Huang, T. H. (2012). Unsupervised dimensionality reduction via

gradient-based matrix factorization with two adaptive learning rates. In ICML

Unsupervised and Transfer Learning (pp. 181-194).

[45] Davis, M., Liu, W., Miller, P., & Redpath, G. (2011, October). Detecting anomalies

in graphs with numeric labels. In Proceedings of the 20th ACM international conference

on Information and knowledge management (pp. 1197-1202). ACM.

[46] Eberle, W., & Holder, L. (2007, October). Discovering structural anomalies in

graph-based data. In Data Mining Workshops, 2007. ICDM Workshops 2007. Seventh

IEEE International Conference on (pp. 393-398). IEEE.

56

[47] Kontkanen, P., & Myllymäki, P. (2007). MDL histogram density

estimation. Rn, 1000, 2.

[48] Gao, J., Liang, F., Fan, W., Wang, C., Sun, Y., & Han, J. (2010, July). On

community outliers and their efficient detection in information networks. In Proceedings

of the 16th ACM SIGKDD international conference on Knowledge discovery and data

mining (pp. 813-822). ACM.

[49] Muller, E., Sánchez, P. I., Mulle, Y., & Bohm, K. (2013, April). Ranking outlier

nodes in subspaces of attributed graphs. In Data Engineering Workshops (ICDEW), 2013

IEEE 29th International Conference on (pp. 216-222). IEEE.

[50] Perozzi, B., Akoglu, L., Iglesias Sánchez, P., & Müller, E. (2014, August). Focused

clustering and outlier detection in large attributed graphs. In Proceedings of the 20th

ACM SIGKDD international conference on Knowledge discovery and data mining (pp.

1346-1355). ACM.

[51] Kang U, Papadimitriou S, Sun J, Tong H (2011b) Centralities in large networks:

algorithms and observations. In: Proceedings of the 11th SIAM international conference

on data mining (SDM), Mesa, AZ, pp 119–130

[52] Gao, X., Xiao, B., Tao, D., & Li, X. (2010). A survey of graph edit distance. Pattern

Analysis and applications, 13(1), 113-129.

[53] Bunke, H., Dickinson, P. J., Kraetzl, M., & Wallis, W. D. (2007). A graph-theoretic

approach to enterprise network dynamics (Vol. 24). Springer Science & Business Media.

[54] Akoglu, L., & Faloutsos, C. (2010, December). Event detection in time series of

mobile communication graphs. In Army science conference (pp. 77-79).

[55] Rossi, R. A., Gallagher, B., Neville, J., & Henderson, K. (2013, February). Modeling

dynamic behavior in large evolving graphs. In Proceedings of the sixth ACM

international conference on Web search and data mining (pp. 667-676). ACM.

[56] Ishibashi, K., Kondoh, T., Harada, S., Mori, T., Kawahara, R., & Asano, S. (2010,

September). Detecting anomalous traffic using communication graphs.

In Telecommunications: The Infrastructure for the 21st Century (WTC), 2010 (pp. 1-6).

VDE.

[57] Papalexakis, E. E., Faloutsos, C., & Sidiropoulos, N. D. (2012, September). Parcube:

Sparse parallelizable tensor decompositions. In Joint European Conference on Machine

Learning and Knowledge Discovery in Databases (pp. 521-536). Springer Berlin

Heidelberg.

[58] Leskovec, J., Lang, K. J., & Mahoney, M. (2010, April). Empirical comparison of

algorithms for network community detection. In Proceedings of the 19th international

conference on World wide web (pp. 631-640). ACM.

57

[59] Peel, L., & Clauset, A. (2014). Detecting change points in the large-scale structure of

evolving networks. arXiv preprint arXiv:1403.0989.

[60] Li, L., Mathur, S., & Coskun, B. (2013, October). Gangs of the internet: towards

automatic discovery of peer-to-peer communities. In Communications and Network

Security (CNS), 2013 IEEE Conference on (pp. 64-72). IEEE.

[61] Malware Capture Facility Project. The CTU-13 Dataset: A Labeled Dataset with

Botnet, Normal and Background Traffic. Available from < http://mcfp.weebly.com/the-

ctu-13-dataset-a-labeled-dataset-with-botnet-normal-and-background-traffic.html >; 2016

[accessed 26.01.2016]

[62] Wang, J., & Paschalidis, I. C. (2014, September). Botnet detection using social

graph analysis. In Communication, Control, and Computing (Allerton), 2014 52nd

Annual Allerton Conference on (pp. 393-400). IEEE.

[63] Iliofotou, M., Kim, H. C., Faloutsos, M., Mitzenmacher, M., Pappu, P., & Varghese,

G. (2011). Graption: A graph-based P2P traffic classification framework for the internet

backbone. Computer Networks, 55(8), 1909-1920.

[64] Zhao, Y., Xie, Y., Yu, F., Ke, Q., Yu, Y., Chen, Y., & Gillum, E. (2009, April).

BotGraph: Large Scale Spamming Botnet Detection. In NSDI (Vol. 9, pp. 321-334).

[65] Jaikumar, P., & Kak, A. C. (2015). A graph theoretic framework for isolating

botnets in a network. Security and Communication Networks, 8(16), 2605-2623.

[66] Nagaraja, S., Mittal, P., Hong, C. Y., Caesar, M., & Borisov, N. (2010, August).

BotGrep: Finding P2P Bots with Structured Graph Analysis. In USENIX Security

Symposium (pp. 95-110).

[67] François, J., Wang, S., & Engel, T. (2011, May). BotTrack: tracking botnets using

NetFlow and PageRank. In International Conference on Research in Networking (pp. 1-

14). Springer Berlin Heidelberg.

[68] Francois, J., Wang, S., Bronzi, W., State, R., & Engel, T. (2011, November).

Botcloud: Detecting botnets using mapreduce. In Information Forensics and Security

(WIFS), 2011 IEEE International Workshop on (pp. 1-6). IEEE.

[69] Hang, H., Wei, X., Faloutsos, M., & Eliassi-Rad, T. (2013, May). Entelecheia:

Detecting p2p botnets in their waiting stage. In IFIP Networking Conference, 2013 (pp.

1-9). IEEE.

[70] Collins, M. P., & Reiter, M. K. (2007, September). Hit-list worm detection and bot

identification in large networks using protocol graphs. In International Workshop on

Recent Advances in Intrusion Detection (pp. 276-295). Springer Berlin Heidelberg.

58

[71] Tsai, C. W., Lai, C. F., Chao, H. C., & Vasilakos, A. V. (2015). Big data analytics: a

survey. Journal of Big Data, 2(1), 21.

[72] Fong, S., Wong, R., & Vasilakos, A. V. (2016). Accelerated PSO swarm search

feature selection for data stream mining big data. IEEE transactions on services

computing, 9(1), 33-45.

[73] Garcia, S., Grill, M., Stiborek, J., & Zunino, A. (2014). An empirical comparison of

botnet detection methods. computers & security, 45, 100-123.

[74] Grill, M., Pevný, T., & Rehak, M. (2017). Reducing false positives of network

anomaly detection by local adaptive multivariate smoothing. Journal of Computer and

System Sciences, 83(1), 43-57.

[75] Chanthakoummane, Y., Saiyod, S., Benjamas., N & Khamphakdee, N. (2016).

Evaluation Snort-IDS Rules for Botnets Detection. Available from<

http://www.it.kmitl.ac.th/~natapon/ncit2015/papers/p87-chanthakoummane.pdf>;

[accessed 11.04.2016]

[76] Małowidzki, M., Berezinski, P., & Mazur, M. (2015). Network Intrusion Detection:

Half a Kingdom for a Good Dataset. In Proceedings of NATO STO SAS-139 Workshop,

Portugal.

[77] Graph-tool. Available from < https://graph-tool.skewed.de/>

[77] Technopedia.Data Packet, Available from<

https://www.techopedia.com/definition/6751/data-packet>; 2016 [accessed 05.06.2016]

[78] Rafiei, D. (2005, October). Effectively visualizing large networks through sampling.

In Visualization, 2005. VIS 05. IEEE (pp. 375-382). IEEE.

[79] Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of

mathematical sociology, 25(2), 163-177.

[80] Rocchini, C. Hue Scale Representing Node Betweenness on a Graph, Available from

< https://commons.wikimedia.org/w/index.php?curid=1988980>; 2007 [accessed

05.04.2015]

[81] Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-

world’networks. nature, 393(6684), 440-442.

[82] Langville, A. N., & Meyer, C. D. (2005). A survey of eigenvector methods for web

information retrieval. SIAM review, 47(1), 135-161.

[83] Kifer, Y. (1996). Perron-Frobenius theorem, large deviations, and random

perturbations in random environments. Mathematische Zeitschrift, 222(4), 677-698.

http://www.it.kmitl.ac.th/~natapon/ncit2015/papers/p87-chanthakoummane.pdf
https://www.techopedia.com/definition/6751/data-packet
https://commons.wikimedia.org/w/index.php?curid=1988980%3e;%20%202007

59

[84] Newman, M.E.J. The Mathematics of Networks. In: The New Palgrave Dictionary

of Economics, 2nd ed. Imprint: Palgrave Macmillan, Basingstoke, 2008.

[85] Bullinaria, J.A. Self-Organizing Maps: Fundamentals. Available from<

http://www.cs.bham.ac.uk/~jxb/NN/l16.pdf>; 2004 [accessed 13.06.2016]

[86] Guthikonda, S.M. Kohonen Self-Organizing Maps. Availbale from<

http://www.shy.am/wp-content/uploads/2009/01/kohonen-self-organizing-maps-shyam-

guthikonda.pdf>; 2005 [accessed 20.01.1016]

[87] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3),

273-297.

[88] Malhotra, R., & Jain, A. (2012). Fault prediction using statistical and machine

learning methods for improving software quality. Journal of Information Processing

Systems, 8(2), 241-262.

[89] Durgesh, K. S., & Lekha, B. (2010). Data classification using support vector

machine. Journal of Theoretical and Applied Information Technology, 12(1), 1-7.

[90] Lin, K. C., Chen, S. Y., & Hung, J. C. (2014). Botnet detection using support vector

machines with artificial fish swarm algorithm. Journal of Applied Mathematics.

[91] Dabbiru, L., Aanstoos, J. V., & Younan, N. H. (2016). Earthen levee slide detection

via automated analysis of synthetic aperture radar imagery. Landslides, 13(4), 643-652.

[92] Beigi, E. B., Jazi, H. H., Stakhanova, N., & Ghorbani, A. A. (2014, October).

Towards effective feature selection in machine learning-based botnet detection

approaches. In Communications and Network Security (CNS), 2014 IEEE Conference

on (pp. 247-255). IEEE.

[93] Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani, A. A. (2012). Toward

developing a systematic approach to generate benchmark datasets for intrusion

detection. computers & security, 31(3), 357-374.

[94] Aviv, A. J., & Haeberlen, A. (2011). Challenges in experimenting with botnet

detection systems.

[95] Jafari-Marandi, R., Khanzadeh, M., Smith, B. K., & Bian, L. (2017). Self-

Organizing and Error Driven (SOED) Artificial Neural Network for Smarter

Classifications. Journal of Computational Design and Engineering.

[96] Khanzadeh, M., Marandi, R. J., Tootooni, M. S., Bian, L., Smith, B., & Rao, P.

Profiling and Optimizing the Geometric Accuracy of Additively Manufactured

Components via Self-Organizing Map

http://www.cs.bham.ac.uk/~jxb/NN/l16.pdf
http://www.shy.am/wp-content/uploads/2009/01/kohonen-self-organizing-maps-shyam-guthikonda.pdf
http://www.shy.am/wp-content/uploads/2009/01/kohonen-self-organizing-maps-shyam-guthikonda.pdf

	Botnet Detection Using Graph Based Feature Clustering
	Recommended Citation

	tmp.1625165283.pdf.nWeeX

