770 research outputs found

    NOViSE: a virtual natural orifice transluminal endoscopic surgery simulator

    Get PDF
    Purpose: Natural Orifice Transluminal Endoscopic Surgery (NOTES) is a novel technique in minimally invasive surgery whereby a flexible endoscope is inserted via a natural orifice to gain access to the abdominal cavity, leaving no external scars. This innovative use of flexible endoscopy creates many new challenges and is associated with a steep learning curve for clinicians. Methods: We developed NOViSE - the first force-feedback enabled virtual reality simulator for NOTES training supporting a flexible endoscope. The haptic device is custom built and the behaviour of the virtual flexible endoscope is based on an established theoretical framework – the Cosserat Theory of Elastic Rods. Results: We present the application of NOViSE to the simulation of a hybrid trans-gastric cholecystectomy procedure. Preliminary results of face, content and construct validation have previously shown that NOViSE delivers the required level of realism for training of endoscopic manipulation skills specific to NOTES Conclusions: VR simulation of NOTES procedures can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. In the context of an experimental technique, NOViSE could potentially facilitate NOTES development and contribute to its wider use by keeping practitioners up to date with this novel surgical technique. NOViSE is a first prototype and the initial results indicate that it provides promising foundations for further development

    Developing a virtual reality environment for petrous bone surgery: a state-of-the-art review

    Get PDF
    The increasing power of computers has led to the development of sophisticated systems that aim to immerse the user in a virtual environment. The benefits of this type of approach to the training of physicians and surgeons are immediately apparent. Unfortunately the implementation of “virtual reality” (VR) surgical simulators has been restricted by both cost and technical limitations. The few successful systems use standardized scenarios, often derived from typical clinical data, to allow the rehearsal of procedures. In reality we would choose a system that allows us not only to practice typical cases but also to enter our own patient data and use it to define the virtual environment. In effect we want to re-write the scenario every time we use the environment and to ensure that its behavior exactly duplicates the behavior of the real tissue. If this can be achieved then VR systems can be used not only to train surgeons but also to rehearse individual procedures where variations in anatomy or pathology present specific surgical problems. The European Union has recently funded a multinational 3-year project (IERAPSI, Integrated Environment for Rehearsal and Planning of Surgical Interventions) to produce a virtual reality system for surgical training and for rehearsing individual procedures. Building the IERAPSI system will bring together a wide range of experts and combine the latest technologies to produce a true, patient specific virtual reality surgical simulator for petrous/temporal bone procedures. This article presents a review of the “state of the art” technologies currently available to construct a system of this type and an overview of the functionality and specifications such a system requires

    Virtual reality training and assessment in laparoscopic rectum surgery

    Get PDF
    Background: Virtual-reality (VR) based simulation techniques offer an efficient and low cost alternative to conventional surgery training. This article describes a VR training and assessment system in laparoscopic rectum surgery. Methods: To give a realistic visual performance of interaction between membrane tissue and surgery tools, a generalized cylinder based collision detection and a multi-layer mass-spring model are presented. A dynamic assessment model is also designed for hierarchy training evaluation. Results: With this simulator, trainees can operate on the virtual rectum with both visual and haptic sensation feedback simultaneously. The system also offers surgeons instructions in real time when improper manipulation happens. The simulator has been tested and evaluated by ten subjects. Conclusions: This prototype system has been verified by colorectal surgeons through a pilot study. They believe the visual performance and the tactile feedback are realistic. It exhibits the potential to effectively improve the surgical skills of trainee surgeons and significantly shorten their learning curve. © 2014 John Wiley & Sons, Ltd

    An Endoscope Interface for Immersive Virtual Reality

    Get PDF
    This is the accepted version of the following article: John, N.W., Day, T.W., & Wardle, T. (2020). An Endoscope Interface for Immersive Virtual Reality. Eurographics Workshop on Visualization for Biology and Medicine, Eurographics Association, which has been published in final form at http://onlinelibrary.wiley.com. This article may be used for non-commercial purposes in accordance with the Wiley Self-Archiving PolicyThis is a work in progress paper that describes a novel endoscope interface designed for use in an immersive virtual reality surgical simulator. We use an affordable off the shelf head mounted display to recreate the operating theatre environment. A hand held controller has been adapted so that it feels like the trainee is holding an endoscope controller with the same functionality. The simulator allows the endoscope shaft to be inserted into a virtual patient and pushed forward to a target position. The paper describes how we have built this surgical simulator with the intention of carrying out a full clinical study in the near future

    Hysteroscopic simulator for training and educational purposes

    Get PDF

    Research Avenues on use of Augmented Reality in Education

    Get PDF
    The use of Innovative technology in education enhances the grasping ability of the student to gain knowledge proactively and provides a platform for a constructive process of learning and understanding. Augmented Reality (AR) plays an essential role in active learning and critical thinking in the current information age because technology enables students to interact with the virtual world with an immersive experience. Moreover, the integration of AR in education has attracted researcher’s attention towards AR due to its immersive, naturalistic experience. Augmented reality plays a vital role in Medical Science, the Aviation industry, the Advertising industry, the Printing Industry, Maintenance, Tourism, Education, the Automobile industry and many more upcoming industries. The use of AR is going to be spread in the coming days. This paper comprises an overview and the study of augmented reality in different sectors. On emphasising the uses of AR in the education field, to give a real-life interactive experience to the user on his mobile. The review narrates the ability of AR, and applications of AR in the field of education such as science education, Industrial training, and biomedical education. The review summarises the potential of technology integration

    Virtual Reality Simulator for Training in Myringotomy with Tube Placement

    Get PDF
    Myringotomy refers to a surgical incision in the eardrum, and it is often followed by ventilation tube placement to treat middle-ear infections. The procedure is difficult to learn; hence, the objectives of this work were to develop a virtual-reality training simulator, assess its face and content validity, and implement quantitative performance metrics and assess construct validity. A commercial digital gaming engine (Unity3D) was used to implement the simulator with support for 3D visualization of digital ear models and support for major surgical tasks. A haptic arm co-located with the stereo scene was used to manipulate virtual surgical tools and to provide force feedback. A questionnaire was developed with 14 face validity questions focusing on realism and 6 content validity questions focusing on training potential. Twelve participants from the Department of Otolaryngology were recruited for the study. Responses to 12 of the 14 face validity questions were positive. One concern was with contact modeling related to tube insertion into the eardrum, and the second was with movement of the blade and forceps. The former could be resolved by using a higher resolution digital model for the eardrum to improve contact localization. The latter could be resolved by using a higher fidelity haptic device. With regard to content validity, 64% of the responses were positive, 21% were neutral, and 15% were negative. In the final phase of this work, automated performance metrics were programmed and a construct validity study was conducted with 11 participants: 4 senior Otolaryngology consultants and 7 junior Otolaryngology residents. Each participant performed 10 procedures on the simulator and metrics were automatically collected. Senior Otolaryngologists took significantly less time to completion compared to junior residents. Junior residents had 2.8 times more errors as compared to experienced surgeons. The senior surgeons also had significantly longer incision lengths, more accurate incision angles, and lower magnification keeping both the umbo and annulus in view. All metrics were able to discriminate senior Otolaryngologists from junior residents with a significance of p \u3c 0.002. The simulator has sufficient realism, training potential and performance discrimination ability to warrant a more resource intensive skills transference study

    Modelling and simulation of flexible instruments for minimally invasive surgical training in virtual reality

    No full text
    Improvements in quality and safety standards in surgical training, reduction in training hours and constant technological advances have challenged the traditional apprenticeship model to create a competent surgeon in a patient-safe way. As a result, pressure on training outside the operating room has increased. Interactive, computer based Virtual Reality (VR) simulators offer a safe, cost-effective, controllable and configurable training environment free from ethical and patient safety issues. Two prototype, yet fully-functional VR simulator systems for minimally invasive procedures relying on flexible instruments were developed and validated. NOViSE is the first force-feedback enabled VR simulator for Natural Orifice Transluminal Endoscopic Surgery (NOTES) training supporting a flexible endoscope. VCSim3 is a VR simulator for cardiovascular interventions using catheters and guidewires. The underlying mathematical model of flexible instruments in both simulator prototypes is based on an established theoretical framework – the Cosserat Theory of Elastic Rods. The efficient implementation of the Cosserat Rod model allows for an accurate, real-time simulation of instruments at haptic-interactive rates on an off-the-shelf computer. The behaviour of the virtual tools and its computational performance was evaluated using quantitative and qualitative measures. The instruments exhibited near sub-millimetre accuracy compared to their real counterparts. The proposed GPU implementation further accelerated their simulation performance by approximately an order of magnitude. The realism of the simulators was assessed by face, content and, in the case of NOViSE, construct validity studies. The results indicate good overall face and content validity of both simulators and of virtual instruments. NOViSE also demonstrated early signs of construct validity. VR simulation of flexible instruments in NOViSE and VCSim3 can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. Moreover, in the context of an innovative and experimental technique such as NOTES, NOViSE could potentially facilitate its development and contribute to its popularization by keeping practitioners up to date with this new minimally invasive technique.Open Acces
    corecore