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Abstract 

Myringotomy refers to a surgical incision in the eardrum, and it is often followed by 

ventilation tube placement to treat middle-ear infections. The procedure is difficult to 

learn; hence, the objectives of this work were to develop a virtual-reality training 

simulator, assess its face and content validity, and implement quantitative performance 

metrics and assess construct validity.  

A commercial digital gaming engine (Unity3D) was used to implement the simulator 

with support for 3D visualization of digital ear models and support for major surgical 

tasks. A haptic arm co-located with the stereo scene was used to manipulate virtual 

surgical tools and to provide force feedback.  

A questionnaire was developed with 14 face validity questions focusing on realism and 6 

content validity questions focusing on training potential. Twelve participants from the 

Department of Otolaryngology were recruited for the study. Responses to 12 of the 14 

face validity questions were positive. One concern was with contact modeling related to 

tube insertion into the eardrum, and the second was with movement of the blade and 

forceps. The former could be resolved by using a higher resolution digital model for the 

eardrum to improve contact localization. The latter could be resolved by using a higher 

fidelity haptic device. With regard to content validity, 64% of the responses were positive, 

21% were neutral, and 15% were negative. 

In the final phase of this work, automated performance metrics were programmed and a 

construct validity study was conducted with 11 participants: 4 senior Otolaryngology 

consultants and 7 junior Otolaryngology residents. Each participant performed 10 
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procedures on the simulator and metrics were automatically collected. Senior 

Otolaryngologists took significantly less time to completion compared to junior residents. 

Junior residents had 2.8 times more errors as compared to experienced surgeons. The 

senior surgeons also had significantly longer incision lengths, more accurate incision 

angles, and lower magnification keeping both the umbo and annulus in view. All metrics 

were able to discriminate senior Otolaryngologists from junior residents with a 

significance of p < 0.002.  

The simulator has sufficient realism, training potential and performance discrimination 

ability to warrant a more resource intensive skills transference study. 

Keywords: myringotomy with tube placement, virtual reality, surgical simulation, face 

validity, content validity, performance metrics, construct validity 
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Chapter 1. 

Introduction 

1.1 Motivation 

In 2013, hearing loss was made a priority disease by the World Health Organization 

(WHO) [1].  They estimate that over 360 million people (>5% of the global population) 

have a disabling hearing loss, and that this number is expected to rise substantially in the 

future.  The WHO states that “hearing loss is an important health concern with substantial 

economic costs and social consequences,” and that a number of key measures are needed 

to help reduce the burden of the disease [1]. 

In children, infections of the middle ear, the portion of the ear medial to the eardrum, are 

common and can result in pain and a buildup of fluid within the middle ear chamber, 

obstructing the transmission of sound. Hearing loss can manifest without appropriate 

treatment of the infection.  A surgical procedure (myringotomy) is usually recommended 

to treat middle ear infections by draining the fluid out of the middle ear and ventilating it.   

The frequency of myringotomy in patients is high due to the substantial morbidity of 

middle ear infections in children, especially in children aged two to three years. During 

this age, more than 50% of Canadian children have at least one middle ear infection since 

birth, and the percentage with frequent middle ear infections is over 12.6% [2].  One 

study in Canada indicated that 5.54% of children under 4 years old and 9.69% of children 

less than 11 years underwent myringotomy to treat middle ear infections [3]. According 

to statistics, it is the second most common surgical procedure next to circumcision for 

children under 15 years of age [4].   
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Myringotomy is the one of the earliest microscopic surgical procedures that residents in 

Otolaryngology (ear-nose-throat surgery) learn. This procedure requires high levels of 

manual dexterity and experience to operate surgical instruments within the human ear 

under a microscope. Many surgical residents have difficulties in mastering the 

myringotomy procedure. The clinical training of residents uses a traditional 

apprenticeship approach of “See one, Do one, Teach one” where patients are treated as 

training subjects; during this training period, there is a significant risk of damaging the 

delicate structures within the ear, resulting in hearing loss [5]. To help residents build 

their skills in myringotomy and avoid unnecessary risks to patients, a virtual reality 

simulator is being developed for training purposes and is described in this thesis. 

Following a brief review of ear anatomy and physiology, subsequent sections in this 

chapter review work related to simulation in order to justify the objectives of this work. 

1.2 Ear anatomy and physiology 

A brief introduction to the structure and function of the ear is provided here to aid in 

understanding of myringotomy. The human ear is schematically illustrated in Figure 1.1. 

The ear is conceptually partitioned into three anatomical regions: the outer ear, the 

middle ear, and the inner ear.  
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Figure 1.1 A longitudinal section of the human ear. This image was released into the 

public domain by its author, Dan Pickard [6].  

 

1.2.1 Outer ear 

The outer ear includes the pinna (auricle) and the ear canal. The pinna is the visible, 

projecting portion of the ear, which is composed of cartilage and skin. It is connected to 

the head by ligaments and muscles. Since the pinna is shaped by a cartilage frame, it can 

be easily deformed by surgical instruments. The form of the pinna is like a funnel with 

many folds that have evolved to collect sound waves, directing them into the ear canal. It 

preferentially amplifies sounds in the frequency range of human speech [7].   

The ear canal (external auditory canal) is a curved, tube-like tunnel that runs from the end 

of the pinna to the eardrum. For an adult, the ear canal is about 25 mm in length and 7 

mm in diameter on average [8-10].  It is made of bone and cartilage covered by skin. For 

an infant, the length of the ear canal is approximately 14 mm, and its curvature is much 
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smaller when compared to an adult [10].  The function of the ear canal is to amplify and 

transmit sounds to the eardrum [11].  

In a myringotomy, a surgical speculum is placed into the ear canal and supported by the 

pinna. The pinna and part of the ear canal covered by the speculum can be deformed 

when a surgeon adjusts the speculum to check the eardrum. A surgical blade is navigated 

through the speculum and the remaining part of the ear canal to the eardrum. 

1.2.2 Middle ear 

The middle ear contains the eardrum (tympanic membrane) and the bones that link the 

eardrum to the inner ear.  The eardrum is a thin, conical membrane bounding the medial 

end of the ear canal at an angle of approximately 43 degrees to the central canal axis [12]. 

It is about 0.1 mm thick and 90 mm in diameter [12, 13]. The whole shape of the eardrum 

is similar to a shallow bowl that is concave slightly inwards from the head. Part of the 

membrane is tightly coupled with the manubrium of the malleus bone (see Figure 1.2). 

The eardrum vibrates in response to sound in the ear canal and sets the bones inside the 

middle ear in vibration. It also protects the delicate middle ear from the outside.   

The eardrum can be divided into two sections: the pars flaccida and the pars tensa. The 

pars flaccida, as shown in Figure 1.2, is a triangular area lying above the malleolar folds. 

It is a relatively loose region of the membrane that is pearly white or grey color. The 

remaining part of the membrane is called the pars tensa. It is taut with a pinkish color. 

For clinical inspection, the human eardrum is usually divided into 4 quadrants: postero-

superior, postero-inferior, antero-inferior and antero-superior by drawing an imaginary 

http://www.emedicinehealth.com/script/main/art.asp?articlekey=7210
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line straight down the manubrium, then drawing a second line perpendicular to the first 

that runs right through the umbo — the inferior end of the manubrium. 

              

Figure 1.2 The human eardrum. This figure was reproduced from an image of Gray’s 

Anatomy and released into the public domain [14]. 

 

The bones (ossicles) behind the eardrum include the malleus, the incus, and the stapes 

(see Figure 1.1). They are connected in series and cross the middle ear cavity (tympanum 

cavity). As previously noted, the manubrium of the malleus is attached to the eardrum. 

The stapes is connected to the cochlea (part of the inner ear) through the oval window. 

The incus is the middle bone which connects the malleus and stapes.  This chain provides 

a leverage effect to transmit and amplify the mechanical vibrations of the eardrum on 

route to the cochlea. 

Ant. malleolar fold 
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The middle ear bones are suspended in the middle ear cavity by ligaments and are acted 

upon by two muscles. This cavity is a narrow, air filled space. It is roughly 15 mm in 

width and height and 5 mm deep [15]. A small canal called the Eustachian tube connects 

the middle ear cavity to the back of the nose and upper throat. It is about 36 mm long [15] 

and allows the air into the middle ear through the upper airway from time to time by 

opening the mouth widely or yawning. This keeps the air pressures equal on either side of 

the eardrum. 

Nerves (such as the chorda tympani) and arteries pass near the superior portion of the 

eardrum and the ossicles are also located behind this part of the eardrum; thus, surgeons 

prefer to make an incision in the inferior half (antero-inferior quadrant and adjacent 

postero-inferior quadrant) of the eardrum to avoid the vasculature, nerves, and bones 

associated with the eardrum during a myringotomy.  When examining the eardrum with 

an otoscope, a landmark known as the “cone of light,” will appear within the antero-

inferior quadrant of the eardrum. This can help a surgeon to confirm a suitable incision 

site. The landmark is a reflection of otoscope light presenting at the five o'clock position 

in the right ear and at the seven o'clock position in the left ear. 

1.2.3 Inner ear 

The inner ear mainly includes two organs — the cochlea and the semicircular canals. The 

semicircular canals are part of our balance system that control one’s sense of steadiness. 

The cochlea is directly connected to the stapes in the oval window and receives vibration 

signals. It is a bony structure shaped like a snail and filled with fluids.  The incoming 

vibrations are transmitted to the membrane of the oval window and force the fluid to 
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move within the cochlea. Sensory receptors in the cochlea convert the movement of the 

fluid to electrical impulses that are sent by the auditory nerve to the brain for processing. 

In a myringotomy, the inner ear is not directly involved in the procedure. The possibility 

of trauma to the inner ear is low since the surgical operations focus on the eardrum and 

extend to the middle ear cavity. 

1.3 Myringotomy  

When a cold or middle ear infection is treated, it is common for children to have fluid 

remaining in the middle ear cavity since the Eustachian tube is prone to blockage by 

mucus during infection. Middle ear fluid often clears up without any treatment in three 

months. However, if the fluid remains trapped behind the eardrum for longer than three 

months, it may become thickened like glue and impossible to drain out naturally, even if 

the Eustachian tube does open up. This fluid could impede the movements of the ossicles 

and result in decreased transmission of sound waves from the ear canal to the cochlea. 

The direct consequences could be hearing loss, delay in speech development and further 

ear infections. In this situation, myringotomy with tube placement is recommended to 

prevent these negative effects.  

Myringotomy with tube insertion is a surgical procedure in which a tiny incision is made 

in the eardrum (see Figure 1.3-a). The fluid accumulated in the middle ear cavity is 

suctioned out via the incision, followed by insertion of a ventilation tube into the incision, 

opening an airway from the outside to the middle ear similar to the Eustachian tube; this 

allows the newly-generated fluid to drain out continuously through the tube during the 

infection (see Figure 1.3-b). 
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Figure 1.3 An illustration of myringotomy with tube insertion. The picture is an updated 

image from [16].  a) An incision is made in the eardrum. b) A tube is inserted into the 

incision. 

 

1.3.1 Surgical instruments 

The surgical instruments used in myringotomy mainly include an ear speculum, an 

operating microscope, a curette, a myringotomy blade, a suction tube, crocodile forceps, 

and a ventilation tube.  The following is a brief introduction describing them.  

Incision 

a) b) 

Ventilation Tube 
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 Figure 1.4 Surgical instruments used in Myringotomy. 1 suction tips, 2 specula, 3 

myringotomy blade in handle, 4 crocodile forceps, 5 ventilation tube, 6 curettes. 

 

The tools used in a myringotomy for visually targeting the cutting area on the eardrum 

are the speculum and a surgical microscope. The ear speculum (See Figure 1.4, item 2) is 

typically a short, funnel-shaped tube that is wider on one end and tapers towards the 

opposite end. It is made of rigid material such as stainless steel, chrome or plastic, and 

comes in variety of sizes from around 3 mm to 7 mm.  Most of them have a blackened 

surface to reduce light reflection.  The rim of the narrow end is either round or oval. The 
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oval-shaped design increases the visual axis depending on orientation. Ear speculums are 

used to widen the ear canal and provide exposure to the eardrum. 

The operating microscope used in the myringotomy, as shown in Figure 1.6. It provides 

two enlarged objective images for right and left eyes for stereoscopic vision. Stereo 

vision gives the surgeon depth perception that helps in determining the distance between 

objects in a three dimensional space. The pre-determined magnification powers of a 

surgical microscope used in myringotomy are minimally 10x or 12.5x, and further 

manual fine focusing is also available. The working distance from the microscope 

objective lens to the point of focus is about 200 mm. The microscope’s illuminator emits 

a coaxial light that penetrates even the narrowest cavities, illuminating the field of view 

brightly and uniformly. During the procedure, the surgeon can adjust the position, focus, 

zoom and illumination of the microscope. 

Before cutting the eardrum, the surgeon often uses a curette to clean the ear canal. The 

ear curette is a long, straight or curved tool designed for removing wax and debris from 

the ear canal. The tip of the curette is a small scoop or a circular ring as shown in Figure 

1.4 (item 6).  

A myringotomy blade is the tool used for cutting the eardrum. It is usually an angled 

blade made of stainless steel (see Figure 1.4, item 3). The narrow blade shaft is mounted 

at 45 degrees to the handle. This permits the surgeon to hold the blade’s handle without 

blocking the line of sight through the microscope.  The tip of the blade can be double 

edged to perform bidirectional cutting, but typically a single edged blade is used for 
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unidirectional cutting. The straight blade (see Figure 0.5) is another commonly used 

cutting tool for myringotomy. 

    

                          Figure 1.5 The straight myringotomy blade. 

 

A suction device is used to remove the fluid from behind the eardrum. It is composed of a 

slender suction tube (see Figure 1.4, item 1) and a vacuum aspirator. The suction tube is 

about 3 mm in diameter, 200 mm in length, and is bent at an angle. The handle is 

connected to the vacuum aspirator.  

When inserting a ventilation tube, a pair of crocodile forceps (see Figure 1.4, item 4) is 

used to pick up the tube and insert it into the incision. The forceps have small jaws at the 

tip, connected to handles by a long, sliding linkage that allows the jaws to be passed 

through a narrow canal and still operate without impediment. By squeezing the handles, 

the distal jaws close together to grasp a small object between them and reversing the 

action of the handles releases the jaws.  The handles have an offset angle to the linkage 

neck to avoid obscuring the visual field during the operation.  

The ventilation tube comes in a variety of designs. The most commonly used type is 

shaped like a grommet, made of plastics such as silicone and Teflon. There are two 

flanges at both ends of the tube. They are connected to a cylindrical shank at an angle of 

90° to the axis of the shank. The diameters of the flanges can range from 1.5 to 3.0 mm. 

The inner diameter of the cylindrical shank is usually 0.76 to 1.27 mm.  The length 

between two flanges of the tube is about 1 to 2 mm (see Figure 1.4, item 5). 

http://en.wikipedia.org/wiki/Grommet
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1.3.2 Tasks in the myringotomy procedure  

Before a myringotomy, general anesthesia is administered by a mask. The patient is 

placed in a supine position on an operating table. The patient’s head is supported on a 

doughnut headrest and turned slightly so that the affected ear is up and leans towards the 

surgeon who will perform the surgery. The surgeon sits while operating as shown in 

Figure 1.6. An operative microscope is adjusted by the surgeon to obtain a clear view of 

the infected ear. A speculum is placed into the ear canal and the surgeon uses one hand to 

hold the wider end of the speculum while keeping the narrower portion in the ear canal.  

A view of the eardrum is obtained and seen through the narrow end of the speculum and 

magnified by the microscope. The surgical view can be adjusted by rotating the speculum 

and tilting the microscope accordingly. If there is wax accumulation, the surgeon will 

remove it using a curette until the entire eardrum can be visualized. Then the blade is 

navigated through the speculum and ear canal, and a tiny incision is made in the eardrum. 

After suction of the middle ear fluid via the incision, a ventilation tube is directed 

towards the incision using crocodile forceps. One flange of the grommet tube is placed in 

the incision, and then the tube is pushed and rotated slightly into the incision.  If the 

incision length is not adequate, a second cut can be performed to enlarge the incision. 

Finally, a needle is used to adjust the tube to ensure it is sitting in the proper position in 

the eardrum. The whole procedure can be completed within three minutes.  
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Figure 1.6 Myringotomy surgery demonstration. A surgeon places a speculum into the 

left ear of the patient using the right hand while the left hand holds a myringotomy 

blade. A microscope is used to observe the inside of the ear exposed by the speculum.  

 

1.3.3 Technical requirements and errors 

The whole process of a myringotomy procedure is performed under a microscope. During 

the procedure, high levels of dexterity and experience are needed to complete all 

operations in a very short time period.  The critical skills include tilting the microscope 

and zooming to obtain an appropriate view, selection of an appropriately sized speculum 

adapted to the depth and diameter of the patient’s ear, navigating the blade down to the 

eardrum without cutting the ear canal, cutting at the recommended site — the inferior 

half of the eardrum to avoid the vasculature, nerves, and bones associated with the 
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eardrum, cutting in the recommended direction — radially from the start point moving 

outward along the radius centered at the umbo, and cutting to an appropriate length 

(approximately 2 to 3 mm [17]) adequate for the size of the ventilation tube allowing it to 

be inserted and seated in the incision. Finally, the cutting blade should not go too deep 

into the middle ear cavity to prevent damaging the ossicles behind the eardrum.   

Twelve potential error types made by surgical residents were tabulated by Montague et al. 

[18]. The four most frequent errors identified were (1) failure to perform a unidirectional 

myringotomy incision (43%); (2) multiple attempts to place ventilation tube instead of 

one attempt (16%); (3) multiple attempts to complete the myringotomy as opposed to one 

attempt (13%); and (4) using a magnification setting that was too high (13%). Others 

were using a speculum that was too large or too small, traumatic clearance of wax, the 

wrong myringotomy site, a circumferential incision, making a myringotomy incision too 

large or too small, and failing to aspirate the middle ear fluid. Furthermore, experience at 

Western University suggests that the number of accidental contacts of the blade with the 

ear canal and with the middle ear bones can also be considered errors in blade navigation 

and incision creation.  

1.4 Training in myringotomy  

Currently, surgical residents are taught and trained in the procedure using either actual 

patients in the clinic or operating room or using cadavers in the laboratory. 

The standard apprenticeship model (Halstedian approach), as used in other surgical 

specialties [19], is also employed for training in myringotomy. Residents learn about the 

surgery, watch experienced surgeons performing the surgery and perform the surgery 



 
 

15 
 

themselves.  Through a monitor connected to the microscope, views of surgical scenes 

are displayed on a screen in real time. The residents can observe all the steps of an entire 

surgery demonstrated by an experienced surgeon. After assisting in a sufficient number 

of surgeries, the residents are allowed to perform the surgery on a real patient under the 

supervision and assistance of an expert surgeon. The major drawback of this approach is 

the potential risk of trauma to the patient. Moreover, the opportunities to practice inside 

of the operating room are limited by the number of available patients who present during 

a trainee’s residency. 

Training on cadavers is another way to improve the skills of trainees. However, because 

cadaver donations are becoming increasingly scarce and cadaver preservation costs are 

high, their use for training a large number of residents is unsuitable. Furthermore, an 

expert is still required in supervising the trainee’s progress during this training.    

Physical models such as the Wigan Grommet Trainer [20], the Bradford Grommet 

Trainer [21], and artificial ears [22-23] are designed to provide practice in myringotomy 

without the risk of harm to patients. In these simple models, a rigid tube is typically used 

to represent the ear canal, and a flat synthetic membrane is affixed to one end of the tube 

to represent the eardrum. A further development of such a model was reported in [24]. 

The component of the ear canal was made of acrylonitrile butadiene styrene (ABS) 

plastic and was bent 10% in the medial third to simulate the anterior bony overhang.  

These replicas are placed under a surgical microscope and operated upon by residents. 

Physical replicas do not accurately represent the geometry and mechanical properties of 

the ear canal and eardrum, nor can they easily simulate inter-patient variability. In 
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addition, there is no method for providing automatic feedback to the trainee. Thus, 

physical replicas are not commonly used in training. 

Surgical simulators based on virtual-reality (VR) technologies have been introduced as 

training tools to overcome the shortcomings of the apprenticeship approach and of 

physical models. A VR system is a computer-based application that provides real-time 

interaction with digital models of deformable tissues by pushing, cutting, suturing, and 

even drilling. VR-based simulators can provide realistic visual scenery and force 

feedback through special hardware interfaces. The geometries and mechanical properties 

of virtual objects such as tissue models can be changed easily. The user’s actions can be 

recorded and analyzed to provide quantitative feedback on surgical technique and skill 

progression. Ideally, it can be a self-contained teaching tool.  

The first VR-based myringotomy simulator was created by the Auditory Biophysics 

Laboratory (ABL) at Western University [25-27] (see section 1.5.2). Various aspects of 

the myringotomy procedure are implemented as separate systems. One is a training 

system  for surgical tool navigation [25, 26], in which a trainee can see a 3D model of the 

ear through a stereoscopic visor, and navigate the surgical blade through the ear canal to 

make an incision on the eardrum by drawing a line on it. Another one is a cutting 

simulation system [27], in which a user can perform an incision on a deformable eardrum 

while force feedback can be applied to the user’s hand via the haptic device to give the 

sense of cutting through tissue. 

The current simulator cannot be used to perform ventilation tube insertion into the virtual 

incision. From discussions with surgeons at Western University and elsewhere [18], it is 
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apparent that tube insertion is challenging for most residents to master. In addition, the 

simulator does not provide quantitative feedback on the skill of the trainees. 

1.5 Literature review  

1.5.1 Simulators in Otolaryngology 

In Otolaryngology, VR surgical simulators have been developed as training tools [28-29], 

especially for endoscopic sinus surgery [30-37] and temporal bone drilling [38-42].  

In sinus surgery simulation, the Lockheed Martin endoscope sinus surgery simulator 

(ES3) [30] was the first and leading simulator used for training in the past ten years. It ran 

on a Silicon Graphics workstation. The surgical view could be adjusted by manipulating 

an endoscope replica. Force feedback was transmitted through a surgical handle replica. 

Both the endoscope and surgical handle replicas were set in a rubber head model when 

performing the simulation. Four validation studies covering face, content and construct 

validity, were completed between 1998 and 2010 [29]. The validity studies demonstrated 

that the ES3 was a very good simulator, but its antiquated computer platform cannot 

compare with current high-end computer systems. The ES3 simulator is no longer being 

made.  Another two notable simulators were VOXEL-MAN SinuSurg [33] from the 

University of Hamburg — Eppendorf group in Germany and the McGill simulator for 

endoscopic surgery (MSESS) [34]. The SinuSurg ran on a standard personal computer. A 

Phantom Omni haptic arm (Geomagic, Inc., Morrisville, NC) was employed for the 

positioning of surgical tools and adjusting of microscope and endoscope and providing 

force feedback. The user could also see a stereoscopic surgical view through shutter 

glasses. However, feedback from users has yet to be collected. The MSESS was 
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developed on the NeuroTouch platform [35, 36], which was a neurosurgery simulator 

made by the National Research Council of Canada. It was equipped with two haptic arms 

for positioning and providing tactile feedback.  A 0-degree endoscope and a 

microdebrider were connected to the two haptic arms respectively permitting the user to 

practice holding an endoscope with the non-dominant hand and removing tissue using a 

microdebrider with the dominant hand. Two pedals were designed for the control of 

washing the endoscope and activating the microdebrider. The surgical scene was 

displayed on a flat panel monitor. A validity study demonstrated its realism in terms of 

appearance and its capacity for differentiating different levels of expertise [37]. 

In temporal bone surgery simulation, the simulators at Stanford University [38-39], the 

Ohio State University [40-41] and VOXEL-MAN TempoSurg [42-43] are well known 

VR-based simulators. TempoSurg was the most studied and first commercialized 

temporal bone simulator. It ran on a high-performance personal computer with a 

Windows platform. Two PHANTOM Omni haptic arms were employed to enable two-

handed operations including drilling, suction, and bleeding. A foot pedal was utilized to 

control the drilling speeds of burs of different shapes. Drill and suction sounds were 

rendered depending on drill pressure and speed. The unique volume sculpting algorithm 

contributed to a highly detailed visual and haptic rendering when drilling and milling of 

hard tissue such as bones and teeth. A virtual stereoscopic scene could also be 

experienced through a pair of 3D goggles. Automatic scoring of the trainee was provided 

during the operation [42].  Face, content and construct validity were thoroughly tested by 

6 studies from 2007 to 2012 [43]. The Ohio State University’s simulator had a similar 

interface to the VOXEL-MAN TempoSurg including a 3D stereoscopic visual device, a 
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haptic component (e.g., Omni haptic arm), a pedal and an aural element. An intelligent 

tutor was developed to highlight relevant anatomic structures within the temporal bone 

upon the user’s prompt, and automatic feedback was provided to assess the trainee’s 

performance through validated metrics [40]. A multi-institutional study indicated that 

there was no difference in training performance between two groups of learners, one 

group using cadaveric temporal bones and the other using the virtual simulator [41]. The 

simulator at Stanford University was the first temporal bone simulator to be developed. 

The system used a volumetric voxel model for rapid collision detection and bone removal, 

while a surface-based model was used for visual rendering. A haptic tutor was designed 

to allow the trainee to feel forces experienced by a remote expert operating on the same 

bone model [38]. The instant automatic feedback was designed to promote trainee self-

learning on the simulator. A construct validity study was completed by performing a 

mastoidectomy twice by two groups: eight experts and seven novices [39].  

1.5.2 Simulators in myringotomy 

For myringotomy, several aspects of VR-based myringotomy simulation were 

implemented by the Auditory Biophysics Laboratory at Western University.  First, 

Wheeler et al. [25] created a training module for blade navigation as shown in Figure 1.7-

a). An idealized 3D graphical model of an ear was created. The ear canal was modeled as 

a straight and hollow cylinder.  The eardrum was represented as a flat circular plate 

attached to the inner end of the ear canal. A virtual speculum was embedded in the open 

end of the ear canal.  A mock surgical microscope consisting of a visor for stereoscopic 

display and a customized stand was used to visualize the model. A real blade was tracked 

in 3D space by a Claron Micron Tracker (Claron Technology Inc., Toronto, Canada), and 
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collisions between the blade’s virtual counterpart and the virtual ear canal were detected. 

The incision in the virtual eardrum was represented by a straight line drawn from the 

point where the virtual blade first touched the eardrum to the last touching point (Figure 

1.7-b). The Object-Oriented Graphics Rendering Engine (OGRE) [44] and the Open 

Dynamics Engine (ODE) [45] were employed as software tools for graphic rendering and 

collision detection. A face validity study was performed by four residents and two 

practicing surgeons. The results suggested that the simulator may be useful for improving 

hand-eye coordination and motor skills related to the myringotomy procedure. Since no 

haptic device was included in the hardware setup, this simulation was not able to provide 

tactile feedback. Also, due to limited tracking accuracy, the tracking system created too 

much tool vibration displayed in the virtual scene whenever the tracked tool (blade) was 

in motion or static. 

 

Figure 1.7 The myringotomy simulator designed by Wheeler et al. [25]. a) A mounted 

three-dimensional visor was used to simulate binocular vision of the microscope. The 

blade was tracked by an optical tracker. b) Snapshot of scene through the visor when 

performing the myringotomy incision. The incision was simulated by drawing a straight 

line on the eardrum. 
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Second, Sowerby et al. [26] replaced the optical tracker with a PHANTOM Omni haptic 

arm. The simulator setup is shown in Figure 1.8-a). OpenHaptics [46] and OGRE were 

used as the software development platforms. The incision was simulated by simply 

drawing a curve on the surface of the eardrum using the virtual blade (Figure 1.8-b). 

Force feedback was programmed for the situation when the virtual blade touched the ear 

canal and eardrum and the level of force feedback was adjusted empirically by two 

experienced surgeons. It was demonstrated that the minimal force that can be rendered by 

the employed Omni haptic arm was larger than the force perceived by a surgeon when 

cutting the eardrum. Even so, receiving force feedback from Omni when the virtual blade 

was touching a bony structure such as the ear canal was valuable. Seven residents and 

four Otolaryngologists demonstrated face validity of the simulation [26].  

 

Figure 1.8 The myringotomy simulator designed by Sowerby et al. [26]. a) An Omni 

haptic arm was employed for the surgical tools’ positioning and providing force feedback. 

b) A screenshot when performing a myringotomy incision. The incision was represented 

by drawing a curve on the eardrum surface by the blade. 

 

Third, since there is no support for deformation modeling in OGRE and ODE, Ho et al. 

[27] implemented a deformable eardrum with cutting capabilities using the CHAI3D [47] 
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platform. A topologically correct eardrum was modeled using the mass-spring method, 

and cutting was implemented using the element removal, direction prediction and 

Delaunay cutting algorithms, as shown in Figure 1.9. The performance of the three 

cutting algorithms running on the deformable eardrum was tested by eight surgeons and 

four surgical residents. The results were summarized by a face validity study. Overall, the 

Delaunay cutting algorithm was perceived to be more realistic than both element removal 

and direction prediction methods. However, in this simulation, the speculum, microscope 

and ear canal were not implemented in the myringotomy simulation. 

 

Figure 1.9 Three cutting algorithms implemented by Ho et al. [27]. a) element removal, b) 

direction prediction, c) Delaunay cutting. 

 

Since the simulator was fragmented into different functional modules running on three 

incompatible software platforms, and the operations of the speculum and microscope as 

well as tube insertion were not simulated by these modules, trainees were unable to 

practice the myringotomy procedure with tube insertion as a whole. An integration of 

these processes into one single system is essential to produce an end-to-end simulator for 

surgical residents. 
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1.5.3 VR algorithms and hardware 

VR-based surgical simulation pursues immersive interactions between users and virtual 

tissues, which could be interpreted by real-time visual rendering, realistic deformation of 

the tissues and tactile feedback. A simulation system is, in essence, a harmonious 

unification of these effects. The underlying approaches to achieve these effects, such as 

mesh rendering, tissue deformation modeling, cutting simulation, collision detection, and 

force feedback calculation can dramatically impact the performance of the system due to 

computational loading, and therefore impact the overall effect of the simulation. Each of 

these effects may have a variety of algorithmic solutions with different computational 

complexities. The selections of these algorithmic solutions are subject to the level of 

rendering speed and precision required in a specific simulation. In order to achieve a 

good simulation effect, choosing a suitable combination of these algorithmic solutions is 

critical.  

Moreover, the software platform and the hardware used for the implementation also 

should be well selected according to the functions to be realized in the simulation. The 

selection of a software platform pertains to the required algorithmic solutions. As 

hardware, for example, a haptic device should be selected for rendering the force 

feedback in the simulation of cutting tissue.  A computer is an essential part of a VR 

simulation system for all the calculation tasks and control. In practice, the calculation 

capacity of a computer’s processor is limited; there is often a trade-off between the 

accuracy, which can be set in the software solution, and the computational loading, which 

is limited by the hardware, for each of the tasks. So, it is necessary to customize both the 

hardware and software platforms to fit the implementation of the specific simulation tasks.  
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Furthermore, as part of the simulator design, the validation of the implemented simulator 

is essential. The design of the validation methods need not only stem from the nature of 

scientific validation, but also should apply to the specific research domain —virtual 

reality surgical simulation. 

Therefore, prior to designing a simulator, it is important to investigate the possible 

algorithmic solutions, hardware and software platforms and validation method. The 

following sections review these topics as they relate to Otolaryngology, particularly to 

myringotomy with tube insertion.  

1.5.4 Deformation modeling  

Deformation of soft tissues needs to be visually realistic and needs to be performed in 

real time for interactive performance. For training applications, simulated deformations 

do not need to be as accurate as in predictive models used for surgical planning, and the 

acceptability of deformation simulation can be judged through a face validity study, as 

for instance in [27]. Most deformation modeling uses physics-based methods, which 

calculate deformation according to structural mechanics. The mass spring method and 

finite element method are two numerical approaches that are commonly used to simulate 

tissue deformation. 

Mass spring method         

The mass spring (MS) method models the object as a spatial distribution of point masses 

that are connected to each other with springs and dampers (Figure 1.10). Each point is 

described by its position, mass, velocity and acceleration.                                   
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Figure 1.10 Examples of soft tissue surface representations using MS models. Several 

topologies are used with MS models including a) quadrilaterals, b) triangles, and c) 

duplicated triangular shapes. 

                            

As early as 1992, the MS method was used to model nonuniform 3D surfaces such as the 

human head and foot [48]. In 1999, the MS method was extended to simulate collisions, 

carving, cutting, tearing, and joining for use in surgical training [49]. Brown et al. 

introduced a quasi-static algorithm as opposed to a fully dynamic algorithm to speed up 

computation time. Their application was used in microsurgery simulation [50]. The 

algorithm was based on the assumption that the tissue’s deformation occurs at a very 

slow speed and is well damped, thus allowing inertial effects to be ignored. Other 

researchers have improved the MS method including optimization of the distribution of 

points to better model the geometry and response [51-54], optimal selection of 

parameters [55] and combining the method with a gas filled model simulating a tissue’s 

internal pressure [56], and limiting computations to small regions to speed up 

computation [57]. 

The MS method has obvious advantages, such as less expensive computation than the 

finite element method and ease of handling changes in mesh topology because of surgical 

operations such as cutting. The main drawbacks of the MS method are potential for 

oscillatory or unstable behavior and limited accuracy. 
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Since the eardrum is a fibrous surface, the MS method is highly suitable for simulation of 

eardrum deformation and cutting. 

Finite element method  

The finite element (FE) method handles complex geometries by dividing the geometry 

into simple surface (e.g., triangles) or volumetric elements (e.g., tetrahedra). The simpler 

elements are easy to analyze and analysis can be done automatically by computers, 

resulting in an element stiffness matrix relating nodal displacements and rotations to 

applied nodal forces. The solutions to each individual element are then combined into a 

structural stiffness matrix that can be inverted to compute the organ’s deformation. Since 

the FE method is based on continuum solid mechanics, it can potentially provide accurate 

deformation results if the modeling parameters are set appropriately. Accurate 

deformation leads to visual realism. 

The main disadvantage of the FE method is that it is computationally expensive to use in 

real-time simulation. Also, when simulating a procedure such as cutting, it is hard to 

change the FE mesh structure in real time because element stiffness matrices will need to 

be recalculated and reassembled [58]. Many researchers have tried to overcome these 

drawbacks, and adjust the FE method to meet the requirements of real-time surgical 

simulation [59-62]. 

Other deformation models 

Other modeling methods include the Tensor-Mass Model (TMM), Finite-Spheres Model 

(FSM), Long-Element Model (LEM), ChainMail, and Neural Network Model which are 

described briefly below. 



 
 

27 
 

 TMM discretizes the object into tetrahedra. The edges of the tetrahedra are the tensors. 

The nodes of each tetrahedron store the lumped mass of the object. The calculation 

method of TMM is derived from the FE method and the computations are 

independent of mesh topology [63]. Because of the simplified structure of TMMs, the 

calculation time of a TMM is less than the FE method and maintains the accuracy of 

the FE method. TMMs can be applied to simulate tissue cutting and tearing. 

Delingette et al. developed the TMM as a continuum model based on linear elasticity 

[63, 64].  

 FSM is a meshless approach. It represents objects as a collection of nodes like MSM, 

but there is no direct link between the nodes. The nodes possess a finite region of 

influence which determines their effects on neighbouring nodes and coordinates their 

motions during simulation. Since no mesh is used, a multi-resolution strategy can be 

applied to zoom into regions of interest with no expensive computations. Also, since 

there is no mesh to constrain the movement of the nodes, they can slide past each 

other. This makes FSM suitable for simulating phenomena such as water, fog, as well 

surgical cutting [65]. 

 LEM supports static or dynamic solutions for elastic and plastic deformations of 

biological tissues, which are treated approximately as objects filled with 

incompressible fluid. It discretizes the volume of an object into a set of long elements. 

Each element starts at a point of the surface bounding the object and crosses the 

volume until it reaches the end of the material. The deformation is calculated based 

on Hooke’s law and Pascal’s principle [66]. It is suitable for simulation of small 

topological changes such as cutting [67, 68].  
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 ChainMail is a non-physics based method. The elements of an object are simulated by 

a linked chain. The movements of the elements are calculated by arbitrarily 

displacing an element contacted by a tool and then propagating the displacement 

under certain constraints as in a real chainmail. Fast computational speed is the main 

advantage of the ChainMail method. However, it is difficult to adjust the constraints 

of the model to represent the physical characteristics of a given material. An 

extension of ChainMail has been developed to support web-based surgical training 

[69]. 

 Neural networks are used by researchers to learn the relationship between the applied 

force and the resulting displacement depending on the test data used to create the 

models. As an example, this method has been applied to a cataract eye surgery 

simulator to model the deformation of eye tissues [70]. Another example is using a 

fuzzy-neural network combined with a physics model to create a simulation system 

[71]. 

1.5.5 Cutting methods 

As noted earlier, the eardrum is a membrane; therefore, surface cutting methods as 

opposed to volumetric cutting methods are suitable for simulation of eardrum cutting. 

Here, an “actual” cutting curve is defined as the path traced by the user, whereas the 

“sampled” cutting curve is a polyline representation of the actual cutting curve. A very 

simple virtual surface-cutting operation can be implemented by directly removing the 

mesh elements that are intersected by the actual cutting curve (see Figure 1.11). More 

realistic methods involve re-meshing of the intersected meshes. The re-meshing method 

reconstructs the boundaries along the cutting curve to get a smooth visual representation. 
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The reconstructed boundaries form the sampled cutting curve. Three major kinds of 

implementations of re-meshing based cutting can be found in the literature and are briefly 

described below. 

 

                             Figure 1.11 Sample cut with element removal algorithm. 

 

Delaunay cutting (DC)  

Delaunay Triangulation (DT) is a popular criterion for generating a well-shaped 

triangulation of a given set of points and is applied in DC [72] to reshape the mesh 

elements along the sampled cutting path. In DT an illegal edge belongs to a triangle 

whose circumcircle contains the opposite vertex of a neighboring triangle (Figure 1.12-a). 

By changing the edge to connect the other diagonal (an operation called ‘flipping’), the 

new edge will satisfy the DT criterion (Figure 1.12-b).  

                  

  Figure 1.12 Flipping operation in DT [72].  a) Illegal edge in DT. b) After flipping.  
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Figure 1.13-b shows an example of flipping when applying Delaunay cutting in Figure 

1.13-a. This method keeps the mesh density low and element quality high, but can change 

the surface shape when performing flipping in 3D [72]. DC delays the displaying of the 

cut, and this affects real-time display of the cutting path. In particular, at the beginning of 

the cutting operation, users lose extremely important visual feedback indicating when the 

blade has punctured the eardrum [27].  

          

Figure 1.13 A demonstration of DC [72]. a) The start of cutting using DC. b) After flipping 

in DC. 

 

Backward longest-size refinement based cutting (BLSRBC)  

The BLSRBC method uses the Backward Longest-Side Refinement Algorithm (BLSRA) 

to split triangles around the reference node on an existing cutting path [73, 74]. As an 

illustration, Figure 1.14-a shows a mesh and an actual cutting curve; the cutting curve is 

acquired by the input device (e.g., haptic arm). Figure 1.14 illustrates one step of 

BLSRBC with only the reference node shown being considered. The edges of all 

triangles that share the reference node are split if their lengths are above a user-specified 

range. For example, the edge shared by triangles t2 and t3 is split as shown in (b). The 
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splitting of triangles continues as shown in Figure 1.14-c, d. After this, node 3 in Figure 

1.14-d is considered as the next reference node. 

 

Figure 1.14 A demonstration of BLSRA [74]. The red curve is not displayed in the 

simulation but is shown here for reference.  a) The original mesh with actual cutting 

curve. b) - c) Splitting of triangles. d) Refined triangles and sampled cutting path. 

 

BLSRBC does not change the shape of the surface being cut. The density of the triangles 

can increase dramatically along the cutting path which can slow down performance, but 

the spatial extent around which triangle density is increased can be controlled by a 

parameter. Simulated cuts made using this algorithm can be smooth because of the 

increase in the number of triangles. However, a zig-zag sampled cutting curve will 

emerge inevitably when the next selected node is not close enough to the actual cutting 

curve. Although this can be remedied by drastically increasing triangle density, this 

solution can slow down performance to the point where the algorithm is no longer 

interactive. 

Subdivision cutting (SC) 

The basic SC approach splits the triangles along the sampled cutting curve [75, 76], 

rather than using a refinement strategy like DC and BLSRBC. The sampled cutting curve 
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is formed by line segments whose pairs of endpoints are the approximate intersections of 

the curve and the edges of mesh triangles. For example, in Figure 1.15, ABCEDFG is the 

sampled cutting curve. The triangle LMN is split by segment AB and re-meshed by 

shaded triangles 1, 2, and 3. The algorithm attempts to keep the sampled cutting curve 

smooth.   

 

Figure 1.15 A demonstration of SC.  The dotted lines are new edges for the re-meshed 

triangles. 

 

However, if the distance between a pair of vertices, e.g., E and F, becomes small and is 

below the limit of the spatial resolution of the haptic arm, the segment EF will be missed, 

resulting in part of the cutting path being lost. A series of segments can be lost in a fast 

cutting operation. In [75], the lost segments are made up by recursively calling the basic 

SC algorithm to split the missed triangles.  

1.5.6 Hardware and software 

In this section, the hardware and software used in existing simulators in Otolaryngology 

are described as a starting point for the development of the proposed myringotomy 

simulator.  
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Hardware 

VR-based simulators are supported by high performance graphic workstations or a 

personal computer (PC). With regards to simulators for Otolaryngology, ES3 [77] and the 

Ohio University simulator [41] use Silicon Graphics workstations. Voxel-Man [78] and 

the Stanford simulator [79] use high performance PCs. CSIRO (virtual reality ear surgery 

training system) has a networked structure to support interactive processes among 

different users in the same simulation [80].  

Haptic arms are usually used for tracking the movement of the surgical instruments and 

rendering force feedback originating from cutting, drilling, and other surgical operations. 

Ohio [41], Voxel-Man [78] and Stanford [79], simulators are equipped with two 

PHANTOM Omni haptic arms (Geomagic, Inc., Wilmington, MA). For rendering the 

surgical view, binocular views of the synthesized surgical field are used in the Ohio 

University simulator, whereas shuttered glasses are used by Voxel-Man to render 3D 

graphics. 

 

                                                Figure 1.16 Omni haptic arm. 
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As mentioned in section 1.5.2, at Western University an Omni haptic arm (see Figure 

1.16) was used in myringotomy simulations for 3D positioning and to provide force 

feedback. The relevant specifications are documented in Table 1.1. The positioning 

accuracy and resolution and the size of the workspace are well suited for myringotomy 

simulation. The contact forces involved when contacting the eardrum with a 

myringotomy blade are miniscule, and cannot be rendered using this haptic arm or any 

other existing device. However, surgeons do not perceive any force feedback from the 

eardrum when cutting. Other sources of tactile feedback in the procedure occur when 

touching the ear canal wall and when inserting the tube into the incision; these can be 

simulated using the Omni. 

          Table 1.1 Specifications of the PHANTOM Omni haptic arm [81]. 

Force  Feedback Workspace > 160W ×120H ×70d mm 

Nominal Position Resolution  ~ 0.055 mm 

Backdrive Friction < 0.26 N 

Maximum Exertable Force 3.3 N 

Continuous Exertable Force > 0.88 N 

Force Feed Back X, Y, Z 

Stiffness X axis > 1.26 N/mm 
Y axis > 2.31 N/mm 
Z axis > 1.02 N/mm 

 

Software platforms  

CHAI3D [82] is an open source C++ platform developed by Stanford University and is 

used in their simulators. It supports algorithms for surgical simulation, e.g., deformation 

modeling and force feedback. The CSIRO simulator is built on the Reachin API [83]. The 

Reachin API provides an extensive library of pre-written code to support haptics-enabled 

applications. SOFA [84] is another open source framework primarily targeted at real-time 

simulation, with an emphasis on medical simulation. It is mostly intended for the research 
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community to help develop newer algorithms, but can also be used as an efficient 

prototyping tool.  

Game engines have garnered significant attention for medical simulation because of their 

excellent support for high-quality real-time rendering of interactive virtual environments 

[85]. In addition to rendering, it is now possible to integrate a high quality real-time 

haptics system into a digital gaming engine, e.g. haptic interfaces have been integrated 

into the Unity3D gaming engine (Unity Technologies, San Francisco, CA) [86, 87]. Even 

though complicated physics-based models for the simulation of tissue deformation and 

cutting have not been directly implemented in gaming engines, the basic interaction with 

soft tissues can be simulated by using mass spring models [85], which are available in 

many gaming engines. Also most game engines have capabilities for collision detection. 

Moreover, commercial game engines are cost effective, well documented and have a 

large community of users who can provide support. The availability of these features 

indicates that gaming engines may soon be used to create serious surgical simulators.   

1.5.7 Validation methods  

Scientific validation is a common concern in area such as psychology.  “The problem of 

validity is that of whether a test really measures what it purports to measure” [88]. It 

relates to the property of “being true, correct, and in conformity with reality.” Extending 

to the field of surgical simulation, it is widely used in evaluating simulators before they 

can be integrated into training programs effectively.  
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Face and content validity study  

As summarized by Shout et al. [89], the methods of validity studies can be categorized 

into two kinds — subjective and objective approaches. Face and content validity belong 

to subjective approach of validity, which examine the opinions of the selected 

participants (subjects) with regard to the simulator. Face validity refers to the degree to 

which a simulation appears like the real situation [90]. Content validity indicates the level 

to which a simulator covers all aspects of the subject matter being taught [89, 91]. 

Participants in face and content validity studies can be both experts (surgeons) and 

juniors (residents) since subjective impressions of both groups are important. The test can 

be achieved by permitting two groups of participants (expert surgeons and junior 

residents) to perform a procedure using the simulator and then asking them to complete a 

questionnaire about their experience with the simulator. See e.g., Bajka et al. [92].    

In Otolaryngology, nine face and content validity studies were reported for four 

simulators — Voxel-Man, Mediseus, ES3 and Western University’s myringotomy 

simulator [29]. Seven out of nine studies used questionnaires with Likert scale responses 

as the measurement method.  The remaining two studies used objective assessment tools, 

for example, OSATS (Objective Structured Assessment of Technical Skill), and metrics 

to reflect users’ evaluation. In all the studies, the number of the participants recruited was 

less than 20 except in one study which had 85 participants [29]. In the past three face 

validity studies for Western’s myringotomy simulator, the participants recruited were 

fewer than twelve in each study. The simulator was evaluated by using questionnaires, 

and each question was answered using a 7-point Likert scale ranging from "strongly 
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disagree" to "strongly agree”. Descriptive statistics were used to summarize the data and 

identify strengths, weaknesses and future directions. 

Construct validity study 

Construct validity is an objective assessment approach which generally involves 

experiments for “evaluating a testing instrument based on the degree to which test items 

identify the quality, ability, or trait it was designed to measure” [91]. This form of 

validity consists of convergent and discriminant validity. Convergent validity is defined 

as the degree to which measures that are supposedly related agree with each other. On the 

other hand, discriminant validity refers to the degree of agreement between measures that 

should not be related [93]. In discriminant validity study of a surgical simulator, the 

experiments are designed to ascertain whether a simulator can differentiate different 

levels of expertise. Usually, participants are grouped depending on their experience. Each 

participant is asked to perform a surgery using the simulator being validated and repeat 

the simulated surgery a certain number of times. Often kinematic operation data of users 

are collected by the simulator. Then metrics are applied to quantitatively measure the 

user’s performance based on the collected data. Statistical analysis is applied to evaluate 

the level of the variance between groups. 

In the area of Otolaryngology, automatic metrics have been designed for simulators such 

as the Stanford Surgical Simulator [39], the Voxel-Man Tempsurg [94] and the Mesiseus 

Surgical Drilling Simulator [95] for temporal bone surgery, and MSESS [96] and ES3 [97] 

for sinus surgery. The time to completion was reported in [94-97] as an important metric 

for measuring users’ proficiency. Efficiency measurements such as the magnitude of 

the drilling force [39, 94-96], the length of the motion trajectory [96], the drilling velocity 
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[39], the amount of tissue removed [39, 94, 96] and the amount (or frequency) of the 

operations [96] such as number of washes and number of drill activations were calculated. 

The level of injury or dangerous operations was also evaluated using metrics [39, 94-96].  

For each metric, mean scores with 95% confidence intervals were determined for user 

trials to see if training can improve the skills of the participants [96, 97]. Dynamic 

differences between expert and novice groups were compared, e.g., using analysis of 

variance [95-97] and the Mann-Whitney U test [96] to see if the simulator can distinguish 

the different levels of experience.     

VR-to-OR transference  

The study of skill transfer from the VR training environment to the operating room (OR) 

is the most rigorous form of validation, and involves investigating if the skills acquired 

from VR training environment can positively transfer to the OR [98]. Such a study can be 

conducted by comparing the outcomes (e.g., measures of surgical task performance or 

morbidity and discomfort of the patients [98]) between two groups of trainees (e.g., a 

group trained using the traditional approach and another group whose training is 

augmented by simulation [98]). The results are used to establish if surgical practice can 

benefit from VR-based training without being negatively affected by the simulated virtual 

environment. A VR-to-OR transference study is usually the final stage of validating the 

training capabilities of a simulator. 

Based on attempts to establish skills transference, claims have been made that some 

simulators provide positive impact on resident performance in the OR, e.g., ES3 in sinus 

surgery [99], and CSIRO [100] and Voxel Man [101] for the temporal bone. However, a 

critical examination of the results [98] indicates that in these studies the VR-to-OR skill 
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transference was not fully validated because of challenges in conducting randomised 

controlled trials and the limited number of participants involved. 

1.6 Objectives 

The long-term objective of the ABL is to develop and validate a full myringotomy 

simulator and deploy it in surgical residency programs in Otolaryngology departments. 

As noted in Section 1.4, some aspects of this long-term objective have been reached. The 

specific focus of this proposed doctoral work is to simulate myringotomy with ventilation 

tube placement and to validate some aspects of the simulator. The specific objectives are: 

I. Design and implement a VR-based simulator for training residents in myringotomy and 

ventilation tube placement. A major focus of this effort is the implementation of the 

system using existing simulation software libraries that are readily available, well 

supported and extensible.  

II. Perform face and content validity studies for the simulator. The aim is to determine 

whether the simulator’s appearance and the training potential are acceptable, especially 

from the perspectives of junior residents and expert surgeons.  

III. Identify and implement metrics to assess trainee performance in myringotomy 

surgical simulation. Then validate these metrics by performing a construct validity study 

for the simulator. 
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1.7 Thesis outline and contributions 

As noted, the long-term objective of the ABL is to develop a surgical simulator for 

myringotomy with tube placement and completely validate the simulator and transfer it to 

residency programs. This work focuses on further development of the simulator and 

performing initial validity testing, including face and content validity and discriminant 

validity. Transference testing is beyond the scope of this work but is required for 

acceptance into training curricula.  

The contributions of this work are three-fold: (1) the development of a simulator on a 

common digital gaming platform that goes beyond previous simulator implementations 

by including microscope manipulation, speculum positioning, tube placement and 

computation of performance metrics; (2) face and content validity testing; and (3) 

identification, implementation and evaluation of quantitative performance metrics. 
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Chapter 2.                                                                     
Virtual-Reality Simulator for Training in 

Myringotomy with Tube Placement 
 

This chapter is a post-print of a research paper that was in press at the time of submission 

of this thesis: C. Huang, S. K. Agrawal, H. M. Ladak, A virtual-reality simulator for 

training in myringotomy with tube placement,” Journal of Medical and Biological 

Engineering, in press. The final publication is available at Springer via 

http://dx.doi.org/10.1007/s40846-016-0124-1.  

2.1 Introduction 

Myringotomy with tube insertion is a very common surgical procedure in which a tiny 

incision is made in the eardrum and a ventilation tube is inserted to treat middle-ear 

infections. As this is the first procedure that surgical residents in Otolaryngology learn, 

there is great potential for damaging the delicate structures of the ear, potentially 

resulting in poor hearing outcomes [1]. 

In this surgery, a surgeon uses one hand to hold a speculum and uses the other hand to 

perform procedures under a surgical microscope such as removing wax, inserting a blade 

through the narrow ear canal, creating the incision and placing the tube. High levels of 

dexterity and experience are needed to operate in the small confines of the ear canal.  

Surgical simulators based on virtual-reality (VR) technologies have been developed as 

potential training tools in Otolaryngology, especially for endoscopic sinus surgery [2-5] 
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and for temporal bone drilling [6-9]. In contrast to training on an actual patient, VR-based 

simulators allow surgical residents to practice without any risk to a patient. Moreover, the 

flexibility of VR systems allows a variety of anatomies and mechanical properties to be 

simulated, in contrast to several physical simulators that exist for myringotomy [10-13].  

VR simulators can also be more readily available and cost-effective in comparison to 

cadaveric specimens. Finally, unlike physical simulators, VR-simulators can track 

quantitative performance metrics and provide real-time feedback and tutoring for trainees 

[6,8]. 

The Auditory Biophysics Laboratory at Western University has reported on several 

aspects of VR-based myringotomy simulation. A blade navigation system [14,15] and a 

system for modeling deformation and cutting of the eardrum [16] were implemented on 

different software platforms as separate training modules.  As the speculum, microscope, 

and tube insertion were not simulated, trainees were unable to practice the myringotomy 

procedure. Furthermore, since the simulator was fragmented by the use of various 

software platforms, integration into one single system was essential to allow an end-to-

end simulator for surgical residents. 

VR-based surgical simulation pursues immersive interactions between users and virtual 

tissues, providing real-time visual rendering, realistic deformation of the tissues and 

tactile feedback. Digital gaming engines have excellent support for high quality real-time 

rendering of interactive virtual environments; therefore, they have garnered significant 

attention for medical simulation [17].  In addition to rendering, it is now possible to 

integrate a high quality real-time haptics system into a digital gaming engine [e.g. haptic 

interfaces have been integrated into the Unity3D gaming engine (Unity Technologies, 
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San Francisco, CA)] [18,19]. Even though complicated physics-based models for the 

simulation of tissue deformation and cutting have not been directly implemented in 

gaming engines, the basic interaction with soft tissues can be simulated by using mass-

spring models [17], which are available in many gaming engines. The availability of 

these features indicates that gaming engines may soon be used to create serious surgical 

simulators. 

Myringotomy with tube insertion involves a sequence of discrete steps as described in the 

literature [1]. In this paper, a new integrated VR-based myringotomy simulator is 

described that supports surgical tasks such as adjustment of the surgical view by 

positioning and orienting the speculum and microscope, blade navigation through the 

speculum and ear canal, cutting of a deformable eardrum model, and inserting a 

ventilation tube into the incision. The cutting model was redesigned to allow 

implementation in an existing gaming engine, and new tube insertion algorithms were 

developed based on the new model for deformation and cutting.  The simulator was 

implemented using the Unity3D gaming engine, and a haptic interface was added to 

provide force feedback when adjusting the microscope, positioning the speculum, and 

inserting the tube.  Finally, the simulated graphical scenes are displayed in stereoscopic 

3D to mimic the actual view through a surgical microscope.  This paper is unique in that 

it integrates both our previous work and the newly developed algorithms into a single 

unified gaming engine (Unity 3D). 
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2.2 Methods 

2.2.1 System overview 

The simulator runs on a Z420 HP workstation with a DevinSense Display 300 system 

(Devinsense Display Solutions, Sundbyberg, Sweden) [20] and the Windows 7 operating 

system. A Phantom Omni haptic arm (Geomagic, Inc., Morrisville, NC) is employed for 

3D positioning of surgical instruments such as the virtual microscope, speculum, blade, 

forceps, and ventilation tube.  The arm also provides force feedback during the various 

surgical maneuvers to simulate the actual procedure.  The Phantom Omni provides 6 

degrees of freedom (DOF) in positioning and 3DOF in force feedback. The simulated 

scenes are displayed on a silver screen mirror. The user can experience an immersive 

stereoscopic 3D view through a pair of Nvidia active 3D glasses (Nvidia Corp., Santa 

Clara, CA) as shown in Figure 2.1. 
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 Figure 2.1 Hardware for myringotomy simulator. In the DevinSense Display 300 system 

(Devinsense Display Solutions, Sundbyberg, Sweden), scenes are viewed using 3D glasses. 

To the user, the 3D scene appears in the space below the silver screen mirror. The scene 

in this region is correctly collocated with the haptic arm so movements of the haptic arm 

appear to occur in the same space as the 3D scene. 

 

Unity3D, a leading commercial digital gaming engine, was used as the framework for the 

new simulator, however custom code had to be written using the C# programming 

language to appropriately model and manipulate the eardrum and instruments. A 

functional block diagram of the simulation software is shown in Figure 2.2. Unity has 

built-in support for Nvidia’s PhysX physics calculation engine and for the Direct3D 

(Microsoft Corp, Redmond, WA) and OpenGL (Khronos Group, Beaverton, OR) 

graphics rendering engines in Windows.  Digital models of the auricle, ear canal, eardrum, 

middle-ear space, and surgical tools were imported into Unity3D. Most of the program 
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code was added into two built-in functions, Update and FixedUpdate, to control the 

behaviors of each imported digital model and to manipulate the rendering and physics 

engines.  

 

Figure 2.2 Simulation software’s framework. See text for description. The box labelled 

"Physics" represents the physics calculation engine in Unity3D. The box labelled 

"Rendering" represents graphic rendering engines in Unity3D. The boxes labelled 

"Update" and "FixedUpdate" represent built-in functions in Unity3D.  The box labelled 

"Graphic models" stands for the digital models imported into Unity3D for the simulation. 

The box labelled "Plugin_A" is the plugin for integration of the Omni haptic arm with 

Unity3D, whereas the box labelled "Plugin_B" is the plugin for 3D stereo display in 

Unity3D. 

 

Unity3D does not have native support for haptic devices (e.g., Phantom Omni) or for 

stereoscopic 3D displays. Therefore, the basic Omni application programming interface 

(API) for force rendering and positioning provided by the manufacturer forms the basis 

for “Plugin_A” shown in Figure 2.2 [21].  The plugin is embedded into the myringotomy 
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simulator to integrate the Omni to Unity3D for positioning and force rendering via the 

box labelled "Plugin_A" shown in Figure 2.2.  In order to allow a stereo 3D display, 

“Plugin B” was imported into the simulator as seen in the same Figure 2.2 [22].  

2.2.2 Geometrical model 

A high-resolution 3D clinical computed tomography (CT) image was used to reconstruct 

the geometric model of the ear canal. The auricle, ear canal, eardrum, ossicles and 

middle-ear walls were all modeled, as these structures are relevant to myringotomy. 

Although surgery is only performed on the eardrum, the blade must be navigated down a 

narrow ear canal without creating any trauma or bleeding.  Inclusion of the ossicles and 

middle-ear wall behind the eardrum was necessary as these structures can accidentally be 

damaged during myringotomy.  
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Figure 2.3 Geometrical model of the ear and speculum. For ease of viewing, the middle-

ear wall is not shown. Users of the system would not see the underlying meshes. Figure 

2.10 shows what the user would see with the exception of stereo viewing. 

 

All structures were manually segmented by a fellowship-trained otologist (SKA) using 

the MIPAV (Medical Image Processing, Analysis, and Visualization) software that is 

freely available from the National Institutes for Health (Bethesda, MD). By applying the 

Marching Cubes algorithm implemented in MIPAV, the contours for each structure were 

converted into a triangulated surface mesh. The meshes were imported into Geomagic 

Studio (Geomagic, Inc., Morrisville, NC) to smoothen the surfaces and create the final 

model of the ear to be used with Unity3D (Figure 2.3). The virtual surgical tools such as 

blade, forceps, tube, and speculum were created using the Blender software (Blender.org, 

Amsterdam, The Netherlands) and imported into Unity3D. 
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2.2.3 Deformation and collision models for the eardrum 

To simulate the deformation of the eardrum, a mass-spring system was created (Figure 

2.4) using the eardrum model developed in Section 2.2.2. Prior to incorporation into the 

simulation software, the eardrum mesh in Section 2.2.2 was decimated so that it consisted 

of 700 nodes and 1250 triangles. The size of the mesh was a compromise between 

accuracy and real-time performance for collision detection, deformation modeling, 

cutting simulation and interactive visualization. Each node in the mesh is regarded as a 

point mass. To model deformations in Unity3D, an invisible rigid ball was placed at each 

node. The radius of the ball was slightly smaller than half of the distance between 

adjacent nodes, and the balls were connected to each other using a “Spring Joint”, a 

Unity3D component that groups together two rigid bodies and constrains them to move 

as if they are connected by a spring.  The mass of each ball was set to a very small value 

because inertial effects can be ignored for the slow movements made during surgical 

procedures. The “Spring Joint” also has a damping coefficient and a spring stiffness 

associated with it. The mechanical behavior of the virtual eardrum is mainly governed by 

the spring constants used in modeling. Initially, the spring constants were determined 

using van Gelder’s formulation [23] which requires membrane thickness and Young’s 

modulus. The eardrum was taken to have a uniform thickness of 75 µm and a Young’s 

modulus of 40 MPa as in previous modeling studies [24]. The spring constants were 

subsequently fine-tuned by surgical collaborators to match their subjective impressions in 

the operating room. 

The balls along the boundary of the spring network were fixed to simulate the 

physiological condition of the actual eardrum being attached to solid bone along its edges. 
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The attachment of the eardrum to the malleus (the most lateral ossicle) was simulated by 

constraining the motion of the balls along the central portion of the eardrum to simulate 

the loading of the eardrum at its center. 

 

Figure 2.4 Collision models. Ball-shaped collision detectors are associated with each 

node of the eardrum model and control eardrum deformation. The mesh collision 

detector activates cutting when contacted by the virtual blade. 

 

To implement collision detection in Unity3D, two types of collision detectors were 

designed for the eardrum: a ball-shaped collision detector and a mesh collision detector 

(Figure 2.4). The ball-shaped detector is associated with every ball of the mass-spring 

network.  When the blade touches a ball, the ball will move and lead to a deformation of 

the entire eardrum mesh. The mesh collision detector is placed just underneath the 

surface of the eardrum mesh, as shown in Figure 2.4, and it is used to activate the cutting 

algorithm. While the ball-shaped detectors are responding dynamically and causing 

deformations, the mesh collision detector is immediately being updated and transformed 

to ensure that it stays aligned with the deformed eardrum mesh.  
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During the simulated operation, if the blade touches a ball before penetrating the eardrum 

mesh, it causes a local deformation providing an important visual cue that the eardrum 

has been touched. When the blade moves further, the balls are pushed away, and the 

blade touches the eardrum mesh collision detector and activates the cutting algorithm. 

During the cutting, the blade interacts with the ball-shaped collision detector and the 

eardrum mesh collision detector at the same time. The balls along the cutting path 

successively collide with the blade causing progressive deformation of the eardrum mesh; 

meanwhile, the incision path is calculated when the blade touches the eardrum mesh 

collision detector. 

2.2.4 Cutting algorithm  

The subdivision cutting (SC) algorithm [25] was implemented for cutting because it 

accurately represents the actual cutting curve. Briefly, the basic SC approach splits the 

triangles along the sampled cutting path. Note the distinction between “actual cutting 

curve” and “sampled cutting curve”: the “actual cutting curve” reflects the physical 

motion of the virtual blade, whereas the “sampled cutting curve” is a digitized 

representation of the actual cutting curve.  The sampled curve is formed by computing 

the intersection points between the virtual blade and the triangulated surface representing 

the eardrum. For instance, in Figure 2.5-a, the blue curve is the actual cutting curve, 

whereas polyline ABCDEFG is the sampled cutting curve formed by all collision points 

between the virtual blade and the edges of the triangles representing the surface. After 

computing intersections, the algorithm splits each triangle in the original triangular mesh 

so that edges along the sampled cutting curve form sides of new triangles. For example, 

triangle LMN in the original mesh (see Figure 2.5-a) is split by segment AB and re-



 
 

59 
 

meshed by shaded triangles 1 (formed by vertices LMA), 2 (vertices LAB), and 3 

(vertices BAN) as shown in Figure 2.5-b.     

 

Figure 2.5 Illustration of subdivision cutting. a) An illustration of the actual cutting curve 

(blue) and sampled cutting curve (black). b) The triangle LMN is split into two parts and 

re-meshed by triangles 1 (nodes LMA), 2 (nodes LAB) and 3 (BAN). c) Three shaded 

triangles are missed in the sampled cutting curve due to an excessively fast cutting speed. 

Dashed line CF indicates the vector that the cutting plane goes through. d) Polyline 

ABCDEF is the "corrected" sampled cutting curve. 
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The number of collision points calculated along the actual cutting curve is related to the 

cutting speed. If the mesh triangles are small, even at normal cutting speed, it always 

occurs that more than one triangle is contained between a pair of successive points along 

the sampled cutting curve. In the example shown in Figure 2.5-c, assume the sampled 

cutting curve is polyline ABCFG.  C and F are a pair of successive points along the 

polyline. The points D and E that are present in Figure 2.5-a are not included since there 

were no collision points calculated between C and F (due to the excessively fast motion 

of the virtual blade). The shaded triangles I, II, and III are nested between C and F, but 

they need to be split. To solve this situation, a cutting plane is used to intersect these 

nested triangles in one shot rather than splitting every contained triangle by invoking the 

basic SC algorithm recursively as described in reference [25]. This cutting plane is 

determined by the coordinates of the point C and F and a normal vector n, where n is 

defined as:                         

n=CF × (VC+VF)/2 

where VC and VF are two unit vectors representing the axis of the blade at point C and at 

point F, and CF is a unit vector pointing from C to F. Figure 2.5-d shows the “corrected” 

version of 2-5c. 

2.2.5 Speculum and microscope  

Before the cutting is performed, the surgical view can be adjusted by rotating the 

speculum and tilting the microscope. In this simulator, the movements of the speculum 

and of the microscope are simulated by moving the handle of a haptic arm in 3D space.   



 
 

61 
 

The simulated microscope was designed to move in a small bounded box. The user can 

feel friction effects when moving the microscope within the box, but the movement is 

completely limited by haptic feedback at the edge of the box to simulate a rigid boundary. 

Friction is modeled by Plugin_A (see Figure 2.2 and Section 2.2.1) by a parameter 

normalized between 0 to 1.0. The value of this parameter was set empirically by an 

experienced ear surgeon. The zoom operation on the virtual microscope is available at 

any stage of the simulated surgery.  

 

Figure 2.6 Rotation of the speculum. The top panel illustrates three rotation values that 

the speculum is taken through in real space. The bottom panel indicates three rotation 

values in the virtual scene that are actually rendered.  θ is the rotational limit based on 

ear canal geometry. In the top panel (real space), the user can rotate the haptic arm to 

θ1 > θ, but in the corresponding virtual scene (bottom panel), the rotation is limited to θ. 

When the user attempts to decrease the amount of rotation to θ2 (θ < θ2 < θ1) in real 

space, the rendered angle in the virtual scene is θ - (θ1 - θ2). 

 

Along with the microscope, the user can also rotate the virtual speculum around a 

selected pivot to see different parts of the eardrum. The position of the pivot is fixed by 

force feedback to simulate the speculum resting within the ear canal. Since the ear canal 

is essentially a narrow cylinder, this greatly limits the rotation of the speculum. In the 
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corresponding virtual scene, the rotation of the speculum is limited within a very small 

range, for example, within θ as shown in Figure 2.6-a (top and bottom panels).  The value 

θ = 5 degrees was used based on the geometry of the ear canal. In the simulation, the 

rotation of the speculum is controlled by the handle of the haptic arm, but the Omni 

haptic arm is not able to provide torque to the handle to restrain rotation beyond θ. 

Therefore, the rotation of the haptic arm cannot be limited in real space. In the 

implementation, while the haptic arm rotates beyond the limit (θ) to θ1 (θ1 > θ) as shown 

in Figure 2.6-b (top panel), the rotation of the virtual speculum does not follow the 

change and is stopped automatically at θ, as shown in Figure 2.6-b (bottom panel). When 

the rotation direction is changed and the rotation angle decreases from θ1 to θ2 with θ < 

θ2 < θ1 as shown in Figure 2.6-c (top panel), the virtual speculum will start to rotate back, 

from θ to θ - (θ1 - θ2) as shown in Figure 2.6-c (bottom panel). This algorithm lets the 

user easily recover control of the virtual speculum lost due to the excessive rotation of the 

haptic arm beyond the limit θ in real space, and thus can effectively maintain instant 

interaction between the user and the virtual speculum. 

2.2.6 Tube insertion 

After the incision is made (Figure 2.7-a), surgeons usually use a suction tip inserted into 

the incision to drain fluid from the middle ear. In the simulator, the suction tip is modeled 

as a rigid body. When the suction tip squeezes into the incision and touches the ball-

shaped colliders around the incision, these invisible rigid balls are pushed away and move 

in opposite directions as shown in Figure 2.7-b. This leads to an increase in the distance 

between mesh nodes that are attached to the centers of these balls and are situated 
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opposite each other across the incision. The displacements of the nodes along the cutting 

path simulate splaying of the incision as shown in Figure 2.7-c. 

 

 Figure 2.7 Illustration of tube placement. a) The incision shape after cutting.  b) The 

invisible rigid balls are pushed away to widen the incision. c) The incision is deformed by 

a suction device. d) The incision is deformed by positioning of a tube. 

 

Next, the surgeon will grasp a ventilation tube using virtual forceps and navigate the tube 

down the ear canal to the incision in the eardrum. The movement of the virtual forceps is 

controlled by moving the haptic arm in 3D space. When grasping a ventilation tube, the 

opening and closing actions of the forceps are controlled by pressing a button on the 

handle of the haptic arm.  Both the forceps and the tube are modeled as rigid bodies, so 

the grasping action does not deform either item. The physical interaction between the 
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forceps and the tube is ignored in the simulation for two reasons. First, the Omni does not 

have a grasping end effector. Secondly, the force needed to grasp the tube is very small; 

therefore, the tube is typically grasped and attached rigidly to the forceps without 

dropping.  If the trainee prematurely lets go of the grasping button, an animation causes 

the tube to fall based on gravity. 

After moving the tube down the ear canal, the user will attempt to insert the virtual tube 

into the incision. This will deform the incision and the eardrum. The same method 

discussed above is applied to simulate splay of the incision when the tube enters the 

incisions as shown in Figure 2.7-d, and the interactions between the tube and eardrum are 

based on the eardrum physics model that was discussed previously in Section 2.2.3.  

After insertion, the user can use a simulated needle to adjust the tube into the final 

position. When the tube is touched by the needle, it rotates and slides into the incision 

along a pre-calculated route. 

2.3 Results and discussion 

2.3.1 System performance analysis 

In Unity3D, each object can be attached with more than one script. These scripts describe 

the behaviors of the graphical objects or respond to events from the scene or call an API 

(e.g., that associated with the haptic arm). Each script includes two built-in functions: 

"Update" and "FixedUpdate". Update is called when the game engine renders every 

graphical frame. The graphical frame rate (FR) is automatically changed by Unity3D at 

runtime depending on loading of the CPU. Physics calculations such as collision 

detection are performed in discrete fixed time steps that are not dependent on the 
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graphical frame rate. The value of the Fixed Timestep (FTS) is a time interval set by the 

programmer in Unity3D and dictates when physics calculations are done. It is very 

important for stable physics simulation as discussed below. FixedUpdate is called when 

each physics calculation step is executed. The relationships of all above modules are 

illustrated in Figure 2.2. 

At runtime, the kinematic time-series data of the haptic arm (positions and rotations as a 

function of time) are read within the FixedUpdate function by calling Plugin_A. These 

data are then smoothed by applying a moving average filter. A filter of length 4 for 

rotation was empirically determined as a reasonable compromise between real-time 

performance and vibration reduction from the haptic arm; no filtering was required for 

translations. After processing these input data in FixedUpdate, force rendering commands 

are sent to the Omni’s device driver by invoking Plugin_A. Then the driver renders 

forces at a high frequency of 1 kHz. The data related to movements of the objects are 

used directly for graphical rendering at a rate of FR. The eardrum mesh is dynamically 

refreshed within the Update function for displaying, and the myringotomy cutting 

algorithm is applied on the eardrum mesh in the meantime. 

Theoretically, the smaller the value of FTS, the higher the frequency with which 

FixedUpdate is called. This will contribute to more accurate physics simulation and more 

smooth and coherent force feedback. However, high frequency physics calculations 

usually dramatically increase CPU load and have negative impact on real-time 

performance. In this simulator, eardrum deformation and cutting modeling heavily 

depend on physics calculations. High frequency physics calculations inevitably result in 

low FR. 
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Figure 2.8 Relationship of FR and FTS. FR is graphic rendering frame rate. FTS is the 

“Fixed Timestep” for physics calculations defined by Unity3D. The blue curve represents 

the raw data, whereas the red curve is a least-squares fitted exponential to the data. FTS 

values between 27 ms and 42.5 ms result in accurate physics calculations and also result 

in FR values (20 Hz to 23.5 Hz) that lead to a smooth animation. 

 

To maintain a balance between FR and the physics calculation frequency which is equal 

to the inverse of FTS, i.e., FTS-1, a test is performed on the simulator. The myringotomy 

simulator runs beginning at a small pre-set FTS value of 10 ms (i.e., physics calculation 

frequency of 100 Hz). Then this value is gradually increased automatically, and the 

corresponding FR values are recorded. The results are shown in Figure 2.8. As FTS 

increases, FR increases rapidly at first then increases more gradually with increasing FTS 

until FR plateaus at about 26 Hz with further increases in FTS above 80 ms.  From the 

figure, it can be seen that a small FTS value of 10 ms results in a very small FR value of 

5 Hz. Although such a small value of FTS would result in accurate physics calculations, 

the resulting slow FR is not enough to support smooth graphical rendering of movements. 

However, increasing FTS beyond 80 ms which would result in inaccurate physics 
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calculations, produces negligible benefits in FR. At the point A in Figure 2.8, FR (23.5 

Hz) is equal to the physics calculation frequency [(0.0425 s)-1 = 23.5 Hz]. As FTS is 

increased beyond 42.5 ms, the physics calculation frequency was empirically deemed to 

be too low in terms of accuracy of the physics calculations and force feedback. So FTS 

values above 42.5 ms are not suitable for myringotomy simulation in which the realism 

of tissue deformation heavily depends on physics calculations. Practically, FTS values 

between 27 ms (37 Hz) and 42.5 ms (23.5 Hz) are appropriate as empirically determined 

by surgeons and residents who tried the simulator; the corresponding FR values range 

from 20 Hz to 23.5 Hz. In this range, which is shaded in Figure 2.8, a stable physics 

simulation is achieved with accurate force feedback and smooth display. 

2.3.2 Cutting performance  

As mentioned in Section 2.2.4, a cutting plane is used to split missed triangles along the 

cutting path when the cutting speed is too fast. The use of a cutting plane as opposed to 

recursive calls of the SC algorithm reduces the calculation time to deal with missed 

triangles with the intent of meeting the need for real-time performance; however, the 

smoothness of the rendered cutting path may be compromised. To test the algorithm, 

cutting is performed by a programmed virtual blade with different speeds along the same 

cutting curve, i.e., the blade was not user controlled but was programmed to follow a 

specific test trajectory at a variety of preset speeds. The object to be cut is the virtual 3D 

eardrum illustrated in Figure 2.9.  
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Figure 2.9 Effects of blade movement speed on cutting algorithm. (a) Cutting is 

performed with a slow cutting speed denoted as V. Total cutting time is 9.65 seconds. (b) 

Cutting is performed at speed of 9.75V with total cutting time of 0.99 seconds (c) Cutting 

is performed at a fast speed of 14.8V with a total cutting time of 0.65 seconds. 

 

In Figure 2.9, panels (a)-(c) illustrate the performance of the algorithm with progressively 

increasing cutting speeds from left to right. Even with over a 10-fold increase in cutting 

speed the improved SC algorithm easily handles the increased speed and maintains a 

reasonably smooth cutting path. However, only one difference can be seen between panel 

(a) [slowest cutting speed] and panel (c) [fastest cutting speed]: The cutting path in (c) 

becomes a little bit sharper relative to the path in (a) where the blade turns, e.g., points 

labelled M and N in (c). This happens because as the cutting speed increases, the distance 

between two sampled points becomes longer, and the path will be arbitrarily interpolated 

using the cutting plane rather than following the actual cutting curve. 

2.3.3 Overall impression of simulator 

A complete simulator has been now implemented, with the major graphical components 

shown in Figure 2.10-a. The user experiences immersive interactions with virtual objects 

through stereo 3D vision. Different parts of the eardrum can be observed by rotating the 
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virtual speculum and positioning and orienting the microscope as shown in Figure 2.10-b. 

After the view of the microscope is selected, cutting is performed on the deformable 

eardrum as shown in Figure 2.10-c. During the cutting, deformation of the eardrum is 

observed in real time. During tube insertion, the user sees the incision splaying and the 

tube entering as shown in Figure 2.10-d.  Then the tube is pushed into the incision 

appropriately by a needle and repositioned to sit within the incision; the final position of 

the tube is shown in Figure 2.10-e.  
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Figure 2.10 Simulated scene as viewed by user. Excludes stereo display. a) Zoomed out 

view.  b) Zoomed in view demonstrating viewing of two different parts of the model 

eardrum by rotating the virtual speculum or tilting the simulated microscope. The black 

areas are portions of the speculum through which the eardrum is seen. c) Demonstration 

of cutting. d) Demonstration of tube insertion. e) The tube in its final position. 

 

Quantitative performance tests in Sections 2.3.1 and 2.3.2 demonstrate that all operations 

can be performed in real time. Although the simulated microscope, speculum, and blade 

can all be manipulated individually, in an actual procedure, combinations of these 

instruments need to be manipulated simultaneously. In consultation with instructing 

surgeons at Western University, it was felt that in the first iteration of the design, 

separating the microscope movement, speculum movement, and blade navigation may 
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suffice for skills transference for junior residents. Certainly, low fidelity simulators that 

train on specific simplified tasks can often be equally efficacious to high fidelity 

simulators [26]. A skills transference study is being planned to determine the adequacy of 

our design choices. 

Separating surgical tasks as noted above greatly simplified programming and hardware 

requirements. As an example, one might consider the task of navigating a myringotomy 

blade through a speculum and down the ear canal towards the eardrum. During an actual 

procedure, the surgeon holds the speculum with one hand and navigates the blade using 

the other hand. To steady the blade, the surgeon rests it against a portion of the speculum. 

Learning to position and orient a speculum and to simultaneously insert a blade in the 

speculum while maintaining an unobstructed view of the operative site is challenging. 

The current simulator cannot be used to train on this aspect of the procedure. Creating a 

virtual speculum on which a virtual myringotomy blade can rest is a difficult engineering 

task. It would require real-time multi-point collision detection along the length of the 

blade, as well as a 6-DOF haptic arm in order to provide the necessary force feedback. 

Our future goal is to create a hybrid simulator where an actual myringotomy blade is 

attached to a haptic arm and navigated through a real speculum (that has been registered 

to the virtual scene). A second haptic arm would monitor the movement of the speculum 

that has been placed into a mannequin head. The trainee would then feel a real blade, 

navigate it through a real speculum, be able to use the speculum as a fulcrum, and finally 

be able to move the speculum and the blade simultaneously. In the present study, the 

primary objective was to integrate various components of the simulator using off-the-
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shelf interfaces and a digital gaming software engine, and simplifications were made to at 

least demonstrate feasibility. 

Qualitative feedback from instructing ear surgeons indicates that the models are 

anatomically accurate and contain all landmarks necessary for surgical training. 

Moreover, surgeons agreed that speculum placement, microscope positioning, eardrum 

cutting and tube insertion as simulated could potentially aid in training on individual 

tasks. However, an extensive face and content validity study is planned to quantify these 

impressions. It is hoped that construct validity can then be established after incorporating 

performance metrics to differentiate novices from experts. A final goal is to perform a 

rigorous transference study to determine whether this VR training translates into 

improved OR (operating room) performance. 

The current implementation of the simulator incorporates only one ear. Repeated training 

with the same model is problematic because users could adapt to the particular anatomy 

being simulated. In practice, surgeons must deal with large anatomical variations between 

patients. Incorporation of other ears in the simulator is simple in terms of programming, 

but the main challenge is constructing models from medical images. Specifically, manual 

delineation of anatomical structures from images as described in Section 2.2.2 is both 

tedious and time consuming, hence we are investigating semi-automated delineation 

approaches such as active contours, i.e., contours that change shape automatically to fit 

boundaries in images [27]. When using active contours, the user only needs to draw an 

anatomical boundary approximately in one image slice. After the contour has been 

automatically deformed by the active contour algorithm to fit anatomical boundaries in 

the image, it can be propagated to the next image slice to initiate automated boundary 



 
 

73 
 

fitting until all image slices have been processed. Our group has previously demonstrated 

this approach for other anatomical structures [28]. 

Despite positive qualitative feedback from end users, several other areas of improvement 

were noted. Currently, grasping of the tube is not simulated but is rendered as a preset 

animation. This was done because the haptic arm utilized in this work does not have a 

grasping end effector. However, such end effectors have been implemented for more 

costly haptic devices [29]. Moreover, the inclusion of performance metrics and tutoring 

based on automated error detection are recommended. As noted, the inclusion of 

performance metrics would pave the road for a discriminant validity study to determine if 

the simulator and its metrics can distinguish novices from experts. 

2.4 Conclusions 

The VR-based myringotomy simulator implemented in this work can allow the user to 

perform individual tasks such as speculum and microscope adjustment, blade navigation, 

cutting of the eardrum, and tube placement. The cutting simulation can be performed 

over a wide range of speeds from slow to unrealistically fast while maintaining a visually 

smooth cutting path. System performance analysis confirms that simulations operate at 

interactive rates. A key contribution of this work is implementation using a widely 

available digital gaming software engine that is cost effective and that is well maintained. 

Initial opinions from surgeons involved in the design of this simulator are encouraging, 

and planning of rigorous studies to evaluate face, content and construct validity as well as 

skills transference is underway.    
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Chapter 3.                                                                                

Face and Content Validity of a Virtual-Reality 

Simulator for Myringotomy with                    

Tube Placement  
 

This chapter is a post-print of the following research paper which is available online 

through the journal’s open access portal: C. Huang, H. Cheng, Y. Bureau, S. K. Agrawal, 

H. M. Ladak, “Face and content validity of a virtual-reality simulator for myringotomy 

with tube placement,” Journal of Otolaryngology-Head and Neck Surgery, DOI: 

10.1186/s40463-015-0094-2. 

3.1 Introduction 

Myringotomy with tube insertion is one of the most common procedures in 

Otolaryngology – Head & Neck Surgery, and is encountered by residents throughout 

their training. Despite the fact that it is a ubiquitous procedure, the instruction of junior 

trainees, who often have little experience in microscopic procedures, is often challenging.  

Montague et al. [1] have analyzed surgical errors through video analysis of actual 

procedures and note that the 4 most frequently occurring errors in order from most to 

least occurring include (1) failure to perform a unidirectional myringotomy, (2) making 

multiple attempts to place the tube, (3) making multiple attempts to complete the 

myringotomy, and (4) setting the microscope magnification too high.  More serious 

intraoperative complications can also occur including external auditory canal lacerations, 

medial displacement of tubes into the middle ear, and vascular injuries [2-4].  Although 

surgical residents can eventually perform standard cases well, they often struggle with 
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narrow canals, retracted tympanic membranes, T-tubes, and procedures performed under 

local anaesthestic.   The goal of simulation is to decrease the learning curve prior to 

entering the operating, minimize complications in patients, and provide the ability to 

practice difficult cases.   

Several physical models have been described in the literature to provide practice without 

potential harm to patients [5-9]. Generally, these consist of a tube to mimic the ear canal 

with a synthetic membrane attached to one end to represent the eardrum. These models 

do not appear to have gained general acceptance in residency programs, presumably 

because they are not able to represent anatomical variability easily and the mechanical 

properties of the materials used do not mimic that of the actual tissues. 

Compared with physical models, simulators based on virtual-reality (VR) technologies 

have the ability to simulate difficult anatomy, model various pathologies, provide 

automated feedback, and even allow trainees to practice on patient-specific models 

generated from CT/MRI scans.  VR-based simulators have been applied in 

Otolaryngology, especially for endoscopic sinus surgery [10-14] and for temporal bone 

drilling [15-18]. 

In VR simulators, the trainee interacts with realistic 3D digital models of anatomical 

structures and views them using 3D displays. Simulated tissues can be operated upon 

using digital representations of actual surgical tools that can be moved in the workspace 

using devices such as a haptic arm. The sensation of contact force between a digital 

surgical tool and simulated tissue can be computed and applied to the trainee’s hand via 

the haptic arm.     



 
 

78 
 

The Auditory Biophysics Laboratory at Western University has developed and reported 

on several aspects of VR-based myringotomy simulation. A blade navigation software 

system [19,20] and a system for real-time deformation and cutting of the tympanic 

membrane [21] were implemented on different software platforms as separate training 

modules.  These versions of the simulator were not integrated and they did not include 

speculum placement, operating microscope controls for positioning/zooming, or tube 

insertion through the myringotomy.    

As recently reported [22], the Western myringotomy simulator has integrated the 

previous modules into a common software platform. Moreover, new software modules 

have been added to allow the user to adjust their surgical view through positioning and 

tilting of the virtual speculum and operative microscope, and to allow insertion of a 

ventilation tube into the myringotomy created in a deformable tympanic membrane.  The 

goal is to further expand this simulator in the future to allow trainees to raise 

tympanomeatal flaps and eventually perform tympanoplasty/ossiculoplasty on patient-

specific anatomy.   

In order for training simulators to be accepted into a residency curriculum, a variety of 

validation studies need to be conducted starting with face validity and culminating in the 

demonstration that skills acquired in the VR environment transfer to the OR (operating 

room) environment. Face validity refers to the degree to which a simulation appears like 

the real situation [23] and content validity measures whether the simulator would be 

appropriate or useful in training [24, 25]. Although face validity has previously been 

established for individual software modules [19-21], validation testing has not been 
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performed on the current integrated system, which simulates the entire procedure from 

microscope positioning to ventilation tube insertion [22].  

The objective of this paper is to determine the face and content validity of the new 

integrated Western myringotomy simulator. 

3.2 Methods 

3.2.1 Simulator 

An overview of the major features of the simulator is given here; in-depth technical 

details on the system can be found in a previous publication [22]. The simulator consists 

of 3 major components:  the simulation software, a display system, and a haptic arm as 

shown in Figure 3.1. The simulation software was developed in the Auditory Biophysics 

Laboratory at Western University [19-22].  The simulator runs on a Z420 Hewitt-Packard 

personal computer, equipped with an Intel(R) Xeon E5-1620 processor (Intel Corp., 

Sanata Clara, CA) and a NVIDIA Quadro 4000 graphics card (NVIDIA Corp., Santa 

Clara, CA).  The system is capable of real-time rendering of the 3D digital models of the 

ear, surgical tools, and tympanic membrane as shown in Figure 3.2-a.  The simulator can 

import various ear canal and tympanic membrane models, however for the purposes of 

this study, a normal pediatric ear canal and tympanic membrane was used.  The system 

also incorporates multi-point collision detection to monitor for all interactions between 

the virtual tools and virtual ear and performs real-time deformation and tissue cutting as 

required. The software displays the models and all interactions on a silver screen mirror 

that is part of the DevinSense Display 300 system (DevinSense Display Solutions, 

Sundbyberg, Sweden). When the screen is viewed using active 3D glasses (Nvidia Corp., 
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Santa Clara, CA) provided with the DevinSense system, the 3D digital scene consisting 

of the virtual ear and tools appears to exist in the space below the silver screen mirror. 

The display in this region is correctly co-located with the haptic arm (Omni haptic arm, 

Geomagic, Inc., Morrisville, NC) so movements of the haptic arm appear to occur in the 

same space as the 3D scene. Using the haptic arm, the user can move the virtual surgical 

tools. Currently, a single haptic arm is used to control the various instruments, however a 

second haptic arm could be added to simultaneously manipulate multiple instruments (e.g. 

speculum and myringotomy blade). 

 

Figure 3.1 Simulator set up. A user is shown using the Western myringotomy simulator. 

By moving the handle of the haptic arm, the user controls the movement of a virtual 

myringotomy blade and forceps. The virtual ear and tools floating under the silver screen 

mirror are an artistic rendering of what the user would see through the 3D glasses. 

 

The haptic arm can be used to position and rotate the virtual speculum, position and tilt 

the microscope, and adjust magnification to obtain different views of the operative site as 
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shown in Figure 3.2-b. The user can then create a myringotomy as shown in Figure 3.2-c 

using a virtual myringotomy blade; the position and orientation of the blade are 

controlled by moving the handle of the haptic arm. A tube may be inserted using virtual 

forceps, which is also controlled by the user using the haptic device [Figure 3.2-d].  The 

opening and closing of the forceps can be toggled using a button on the haptic arm.  

During tube insertion, the eardrum deforms and the incision splays as the tube enters the 

myringotomy. The tube may also be repositioned with various instruments until it is in its 

final position [Figure 3.2-e]. 
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Figure 3.2 Simulator scene shown in 2D. The actual scene would be viewed by the user in 

stereoscopic 3D.  a) View of the speculum and myringotomy blade.  b) Magnified views 

of the tympanic membrane through the speculum (represented by the black circle).  The 

view changes depending on the (i) magnification and (ii) position and tilt of the speculum 

and microscope.  c) Myringotomy d) Tube insertion and splaying of the incision. e) Tube 

in final position with middle ear visible through the lumen of the tube.   

 

3.2.2 Participants  

Research ethics board approval was obtained from Western University (#105239; 

Appendix A) and participants were contacted via telephone or electronic mail.  All 

participants were recruited from the Department of Otolaryngology - Head & Neck 

Surgery, Western University. A total of 12 subjects agreed to participate, which included 

seven junior Otolaryngology residents (postgraduate years 1 to 3) and five senior 
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Otolaryngologists who routinely performed ventilation tube insertions in their practice.  

These groups were chosen to reflect the target group of the simulator (junior residents) as 

well as experts in the field (Otolaryngologists).  The participants did not have any 

previous exposure to myringotomy simulation.     

3.2.3 Protocol  

All participants were initially given an orientation session which consisted of:  1)  an 

information sheet outlining the software features of the simulator, 2) a demonstration 

video of how to perform a myringotomy and tube insertion using the simulator controls, 

and 3) a live demonstration of the simulator and haptic arm.  The same graduate student 

and surgical resident performed the orientation session for each participant, and a 

standardized script was used to ensure consistency.  The participants were specifically 

asked to perform the tasks listed in Table 3.1 so that they could comment on all the 

various aspects of the simulator.  Finally, the participants were given an unlimited period 

of time to use the simulator until they felt comfortable completing the face and content 

validity questionnaires. 

                      Table 3.1 Tasks involved in the face validity study. 

 

Tasks Description 

Speculum 
adjustment    

Rotate and tilt the speculum to obtain view of tympanic 
membrane Microscope 

manipulation           

Translate and rotate the microscope to obtain a proper view 

Blade navigation                         Navigate surgical blade through the external auditory canal 

Myringotomy Make an incision in the tympanic membrane 

Ventilation tube 

insertion         

Insert ventilation tube into the myringotomy using forceps 
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3.2.4 Questionnaire 

Previously, we had tested individual software modules focusing on blade navigation [19], 

haptics [20] and tympanic membrane deformation and cutting [21]. Since this new 

simulator [22] refined each of these components, including the graphical representations 

of the ear and virtual tools, and included new features such as microscope handling, 

speculum positioning and tube insertion, the Myringotomy Surgery Simulation Scale 

(MS3) used in previous publications [20,21] was modified to include these features. The 

questionnaire was divided into three sections (A, B, and C) with a total of 20 questions. 

Section A included 14 questions focusing on face validity as listed in Table 3.2. The 

appearance and realism of the surgical instruments; anatomy of the auricle, ear canal and 

eardrum; movement of surgical instruments; deformation and cutting of the eardrum; 

tube insertion and 3D microscopic view of the scene were assessed.   

                               Table 3.2 Questions in Section A for face validity 

No. 
 

Question : Rate whether the following aspects of the simulator  
are realistic 

  1 Visual appearance of the auricle and ear canal 
  2 Visual appearance of the speculum 
  3 Movement of the speculum 
  4 Movement of the microscope/camera 
  5 Zoom of the microscope/camera 
  6 Visual appearance of the eardrum                                       
  7 Movement of the eardrum when physically contacted 
  8 Visual appearance of the myringotomy blade 
  9 Visual appearance and splay of the myringotomy 
 10 Visual appearance of the forceps 
 11      Movement and stability of the myringotomy blade and forceps 
 12 Visual representation of the tube 
 13 Movement of the tube within the myringotomy 
 14 
 

Three-dimensional microscopic view of the scene based on light rendering, 
shadows, and 3D goggles 
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Section B included six questions focusing on content validity as listed in Table 3.3. These 

questions were used to determine training potential on specific surgical tasks. 

                         Table 3.3 Questions in Section B for training potential 

  
No. 

Question: Do you feel that the simulator would be useful in 
teaching Otolaryngology trainees the following skills  

 15 Speculum placement 
 16 Microscope positioning 
 17 Tool navigation 
 18 Ear canal and eardrum anatomy 
 19 Myringotomy creation 
 20 Tube insertion                                       

 

In Sections A and B, study participants were asked to answer each question using a 7-

point Likert scale, an equal appearing interval measurement. The scale had values of 1-

“Strongly Disagree”, 2-“Mostly Disagree”, 3-“Disagree”, 4-“Neither Agree/Disagree”, 5 

-“Agree”, 6-“Mostly Agree” and 7-“Strongly Agree”.  

In Section C, a free-form comment area was provided for each participant to provide 

feedback to elaborate on previous questions and to address issues not covered in Sections 

A and B. 

3.2.5 Statistical analysis  

The responses were initially divided by group (junior resident or practising 

Otolaryngologist), and the median, quartiles, minimum, and maximum response values 

were computed for each question. The sample size was maximized to include all eligible 

participants at a single academic institution. For each question, the Mann-Whitney U-test 

was used to test the significance of the differences in responses between the two groups. 

A frequency distribution histogram was plotted to investigate the number of favourable 
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responses (score ≥ 5), neutral responses (score = 4), and negative responses (score ≤ 3) to 

each question. All data were computed and analysed using the SPSS statistical software 

(SPSS Inc, Chicago, IL).  The significance was set at p < .05 and the Holm-Bonferroni 

method was used to correct for multiple comparisons.    

3.3 Results  

3.3.1 Demographics  

The first group was comprised of seven junior Otolaryngology residents in postgraduate 

years 1 to 3.  They were all familiar with the operating microscope and the procedure, 

however they were in the active phase of learning with each resident having performed 

fewer than 20 myringotomy and tube insertions in training.  The second group had five 

fellowship trained Otolaryngologists who routinely performed myringotomy and tube 

insertions in their practice.  Each member of this group had performed at least 200 

procedures since completing their fellowship.   

3.3.2 Comparison of groups 

The mean response and confidence interval for each question in Section A (face validity) 

and Section B (content validity) are summarized in Figure 3.3. Application of the Mann-

Whitney U-test indicates no statistically significant differences between residents and 

senior Otolaryngologists. However, the largest differences between the groups were seen 

in Question 13 (U = 5.5, p = 0.043) and Question 20 (U = 7, p = 0.097), which related to 

the movement of the tube within the myringotomy. 
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Figure 3.3 Box plot of the Likert item responses for the two groups of participants. Face 

validity was assessed in Questions 1-14, and content validity was assessed in Questions 

15-20.  A response of 4 is neutral, and higher values are more favourable than lower 

values. 

 

3.3.3 Face and Content Validity 

Given that mean responses were not different at the p = .05 level, the results for the two 

groups were pooled when analyzing face and content validity. The responses to the 

questionnaires were categorized as positive (score ≥ 5), neutral (score = 4) or negative 

(score ≤ 3). 

Face validity  

The realism of the simulator was investigated through the 14 questions in Section A of 

the questionnaire. As can be seen in Figure 3.4, the number of positive responses exceeds 

the number of neutral and negative responses except in the case of Questions 9 and 11. 

Question 9 focuses on the realism of the visual appearance and splay of the myringotomy, 
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whereas Question 11 focuses on the realism of the movement and stability of the 

myringotomy blade and forceps. Overall, when the 14 questions over 12 participants (168 

total responses) were considered, there were 116 (69.0%) positive responses, 21 (12.5%) 

neutral responses, and 31 (18.5%) negative responses. 

 

 

Figure 3.4 Total number of positive, neutral and negative responses to each question, 

pooling responses of junior residents and of senior Otolaryngologists. The blue bar 

indicates the number of positive responses (score ≥ 5), the green bar is the number of 

neutral responses (score = 4), and the beige bar indicates the number of negative 

responses (score ≤ 3). 

 

Content validity 

The training potential of the simulator was tested through 6 questions in Section B of the 

questionnaire. As shown in Figure 3.4, the number of positive responses was greater than 

the number of negative responses for each question in this section. Among the total 72 
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responses (6 questions x 12 participants), 46 (63.9%) were positive, 15 (20.8%) were 

neutral, and 11 (15.3%) were negative.  

3.4 Discussion 

The MS3 scale used in this study had to be developed at our institution as no other 

validated measure was available to assess a virtual-reality myringotomy simulator.  This 

questionnaire has not been externally validated by other centres, however content validity 

was assessed by a group of experts during the development of the questionnaire.  In 

addition, previous publications [20,21] did demonstrate reliability of the MS3 with a 

strong correlation across raters.  The MS3 was also correlated against a visual analogue 

scale measuring the same construct, thus providing us with a measure of concurrent 

validity [21].      

The lack of statistically significant differences in mean responses between residents and 

senior Otolaryngologists to Questions 1 to 20 at the p = .05 level suggests that even with 

limited exposure to the actual procedure of myringotomy with tube insertion, junior 

residents had similar assessments of the realism and utility of the simulator as those 

experienced in the OR.  

The only differences between the groups approaching significance were in Questions 13 

and 20, which pertained to the movement of the tube within the myringotomy.  Senior 

Otolaryngologists perceived the simulated tube movement to be less realistic than did 

residents.  Similarly, Question 9 in the pooled responses dealt with the splay of the 

myringotomy, and this had a higher number of negative responses overall.  From the 

written comments in Section C of the questionnaire, it appears that splaying (i.e., 
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spreading) of the virtual eardrum when it is contacted by the virtual blade is realistic, and 

this was also the case in our previous report [21]; however, splaying is less realistic 

during tube insertion when the virtual tube contacts the eardrum and causes it to spread.      

This difference could be explained by a design decisions made during the development of 

the tube insertion module.   First, although the tympanic membrane has real-time 

deformation, the physics of the interaction between the edges of the myringotomy and a 

ventilation tube is quite complex.  In order to detect contact with the tube, the tympanic 

membrane is represented as a discrete collection of spatially distributed points as shown 

in Figure 3.5.  Collision detection is performed at each of these discrete contact points.  

When the spatial density of points is high (i.e. the points are close together) the location 

of contact can be calculated with more precision than when the spatial density is lower. 

Unfortunately, multi-point collision detection is computationally intensive, therefore the 

rendering speed decreases rapidly as the spatial density and precision is increased.  The 

particular choice of density in the simulator was chosen to permit animations to occur at a 

realistic pace on an inexpensive personal computer, however this negatively affected the 

precision of the tympanic membrane splay in response to the tube.        
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Figure 3.5 Representation of the virtual tympanic membrane by a collection of discrete 

points. The points define the geometry of the tympanic membrane and act as contact 

detectors with the virtual instruments (myringotomy blade, forceps, and ventilation 

tube). 

 

Second, the physics of tympanic membrane ‘tearing’ with large forces and displacements 

during tube insertion are difficult to model in real-time.  To overcome this, pre-

programmed animations were used based on the length of incision, the trajectory of the 

tube, and the contact between the flange of the tube and the myringotomy.  Although this 

significantly reduced computation time, Question 13 revealed that this lack of realism 

was noted by the experts and not the residents.   This could be explained by the fact that 

senior surgeons would have had much more experience knowing how the ventilation tube 

should slide into the incision, therefore they were able to notice the subtle differences 

more than the junior trainees still learning the procedure. On average, Otolaryngologists’ 

rankings fell between “Disagree” to “Neither Agree/Disagree”, suggesting that slight 

improvements to the tube insertion simulation could make this aspect more acceptable.  
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Question 11 was the only other question with a higher proportion of negative responses, 

and this pertained to the movement and stability of the blade and forceps.  Section C 

clarified this finding as concerns were raised about the limited range of motion of the 

haptic device and that the friction of the device affected the movements of the virtual 

blade and forceps. The haptic arm used in this study is a low-cost device that is suitable 

for design of a prototypical simulator. The device can easily be swapped for a higher 

fidelity device with greater range of motion and substantially reduced friction (e.g., 

Geomagic Phantom Premium device from Geomagic, Inc., Morrisville, NC), albeit at 

greater financial cost. Utilizing the higher fidelity device may result in acceptable range 

of motion and unnoticeable friction. A second concern with the device was the feel of the 

handle of the haptic arm when it was used to control the blade and forceps (Figure 3.1). 

As the handle is thick, it feels unnatural compared to holding an actual surgical tool. We 

have implemented approaches described in the literature to replace the haptic arm handle 

with actual surgical tools to improve the feel and realism of the simulation [26].  The goal 

in this hybrid simulator would be have one haptic arm attached to a myringotomy blade 

or forceps, and have the second haptic arm attached to a real speculum to maximize 

realism.    

Face and content validity are only initial steps in validation, and they do not ensure that a 

simulator will be useful in training residents [24, 25].  Future development on the 

Western myringotomy simulator will address concerns raised in this study.  Refinement 

and optimization of the tube insertion and tympanic membrane splay may help to 

increase the realism of the simulator, but it is unclear if increased fidelity will actually 

result in additional skills transference [27].  In order to determine the construct validity of 
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the simulator, automated metrics including time, length and direction of incision, 

collisions, magnification, etc. have been incorporated into the simulator.  A separate 

study will examine if these metrics are capable of distinguishing experts from residents, 

and a skills transference study will be needed to determine if the simulator can result in 

better operating room performance.  A multi-centred study will be considered at that time 

to maximize sample size and feedback from different centres.   

The authors hope that by using standardized libraries while programming the simulator, 

and the ability of the simulator to run on low-cost hardware, will allow easy adoption by 

Otolaryngology training programs and allow other groups to make modifications as 

needed. 

3.5 Conclusion 

The Western myringotomy simulator has a number of new features including microscope 

handling, speculum positioning and ventilation tube insertion.  The simulator has good 

face and content validity, except with respect to splaying of the myringotomy during tube 

insertion and with respect to haptic arm. These issues are currently being addressed with 

further refinements and adaptations.  Automated metrics have been developed and they 

will be used to assess for construct validity of the simulator.  Although the entire 

myringotomy and ventilation tube insertion can now be simulated, a skills transference 

study is needed to establish training efficacy and clinical impact.   
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Chapter 4.                                                             

Automated Quantitative Metrics in a Virtual-

reality Myringotomy and Tube Simulator:  

Development and Construct Validity  
 

This article is a preprint of the following article: C. Huang, H. Cheng, Y. Bureau, H. M. 

Ladak, S. K. Agrawal, “Automated quantitative metrics in a virtual-reality myringotomy 

and tube simulator:  Development and construct validity, The Laryngoscope, Submitted 

in December, 2015. 

4.1 Introduction 

Although myringotomy with tube insertion is one of the most common procedures in 

Otolaryngology – Head & Neck Surgery, junior trainees can often find the procedure 

difficult because of retracted tympanic membranes, narrow external auditory canals, and 

when performed in a clinic setting.  Montegue et al.[1] described the most common errors 

during myringotomy, however more serious complications including vascular injuries 

have been reported [2-4].  

To date, physical models have primarily been used in order to allow trainees to practice 

prior to entering the operating room [5-12]. These models generally consist of a tube with 

a synthetic membrane to model the external auditory canal and eardrum.  These models 

have the advantage of being relatively inexpensive, however only one has established 

construct validity [9].  Mahalingam et al. [13] recently reviewed the literature and 
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independently assessed ventilation tube insertion simulators; unfortunately, none of the 

five simulators assessed achieved face or global content validity.   

Virtual-reality (VR) simulators have been increasingly developed and adopted with the 

advances in technology.  In the field of laparoscopic surgery, many studies have been 

shown that these simulators result in skills transference in the operating room [14]. In 

Otolaryngology, a number of VR simulators have been described for mastoidectomy and 

endoscopic sinus surgery [15-23], however validation of skills transference has been 

lacking [24]. These simulators are technically challenging to develop, but they have the 

advantage of being able to model various pathologies, simulate difficult cases, and allow 

trainees to practice on patient-specific models.   

One of the main challenges in simulator adoption by training programs has been the 

continued need for an instructor to be present to provide feedback [22]. As VR simulators 

can capture and analyze the learning environment, automated metrics and feedback can 

be incorporated allowing surgical residents to practice and train independently.  

Automated performance metrics have been described in the Stanford Surgical Simulator 

[22], Voxel-Man Temposurg Simulator [25], Mediseus Surgical Drilling Simulator [26], 

Endoscopic Sinus Surgery Simulator (ES3) [27],  and McGill Simulator for Endoscopic 

Sinus Surgery [28]. 

The Auditory Biophysics Laboratory at Western University has developed a VR 

myringotomy and tube simulator capable of running on inexpensive hardware.   Various 

aspects have been incorporated including blade navigation [29], real-time deformation of 

the tympanic membrane [30], operating microscope manipulation, and tube insertion [31]. 
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Face and content validity was also established for the integrated simulator [32], however 

there have been no metrics or ability to conduct construct validity testing to date.   

The primary objective of this study was to design and implement a set of automated 

performance metrics into the Western myringotomy simulator based upon previously 

published metrics [22, 25-28], described errors in myringotomy [1], and objective 

structured assessments [33]. The second objective was to perform a discriminant validity 

study of these metrics to establish construct validity.    

4.2 Materials and methods 

4.2.1 Simulator 

The technical details of the Western myringotomy simulator have been previously 

described [30-32]. Active 3D glasses (Nvidia Corp., Santa Clara, CA) are mounted on a 

stand to obtain a stereoscopic view of the simulation.   The user controls the instruments 

with a haptic arm (Omni haptic arm, Geomagic, Inc., Morrisville, NC), and this also 

allows them to feel force feedback whenever contact is made with structures in 3D space.  

The simulator in this study was run on a Z420 Hewitt-Packard personal computer, 

equipped with a NVIDIA Quadro 4000 graphics card (NVIDIA Corp., Santa Clara, CA) 

and an Intel(R) Xeon E5-1620 processor (Intel Corp., Santa Clara, CA).  With current 

graphical processing units providing much better performance at a lower cost, fairly 

inexpensive hardware can be used to run the simulator with real-time soft tissue 

deformation and multi-point collision detection.  
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4.2.2 Development and implementation of automated metrics 

The overall simulation and kinematics data of the participants was recorded by the 

simulator.  Custom metrics were then programmed and used to analyze the captured data.  

The five primary performance metrics were time to completion, surgical errors, incision 

angle, incision length, and the magnification of the microscope.   

The simulator measured the time taken to adjust the microscope, adjust the speculum, 

perform the myringotomy, and insert the ventilation tube.  The total time to completion 

was then calculated from the activation of the microscope until the tube was placed into 

the myringotomy.   

Surgical errors were based upon those described by Montegue et al. [1].   The location of 

the virtual instruments was tracked, and any contact with the external auditory canal or 

middle ear structures constituted an error.  Participants were clearly instructed to perform 

a myringotomy in the inferior half of the tympanic membrane, therefore incisions 

crossing into the superior tympanic membrane were considered an error.   Finally, 

multiple attempts at completing the myringotomy or tube insertion, along with any 

associated trauma, were also collected.    

Participants were asked to perform a radial incision in the tympanic membrane, and any 

deviation from the radial line was measured by the value θ (Figure 4.1).  The incision 

angle was measured as the angle between the myringotomy and the radius as drawn 

through the umbo (point O) and the centre of the incision (point A).  The angle θ ranged 

from 0 to 90 degrees, with 0 degrees representing a perfectly radial incision, and 90 

degrees representing a circumferential incision. 
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 Figure 4.1 Illustration of incision angle θ. The shaded area represents the inferior half of 

the tympanic membrane.  The umbo is marked as point ‘O’, and the radial line between 

the umbo and annulus is shown with a dotted line.  The intersection between the centre 

of the incision and the radial line is marked as point ‘A’.  The value θ is the angle 

between the incision and the radial line along points O and A. 

 

Incision length was calculated as the actual length of the myringotomy from the start 

point to the end point.  The outer diameter of the modeled tube was 1.5 mm.   

The magnification of the microscope was calculated by the distance D as illustrated in the 

Figure 4.2.  The simulator captured the microscopic view as the myringotomy was made, 

and the value of D was measured as the number of pixels visible at the medial end of the 

speculum.  The value of D increased with higher microscope magnification and was used 

as a marker of the participants’ field of view during the procedure.   In addition, the 

simulator captured whether the umbo and/or annulus were visible as landmarks during 

the myringotomy.   
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 Figure 4.2 A two-dimensional view from the simulator is shown. The value of D is 

calculated as the number of pixels visible at the medial end of the speculum during the 

myringotomy.   This value increases with higher magnification of the microscope.  The 

inset shows a ventilation tube being inserted into a myringotomy with forceps.    

 

4.2.3 Subjects 

Research ethics board approval was obtained from Western University, and all 

participants were recruited from the Department of Otolaryngology – Head & Neck 

Surgery.  Eleven participants (N=11) volunteered for the study including seven junior 

residents (postgraduate years 1 to 3) and four senior Otolaryngologists who routinely 

performed myringotomy and tube insertion.  The participants had not had any prior 

exposure to myringotomy simulation.  

4.2.4 Protocol 

Each participant was given a standardized orientation session outlining myringotomy, 

tube insertion, and simulator controls.  To ensure consistency, a script was used by the 
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same graduate student and surgical resident during each session.  The participants were 

then given an unlimited amount of time to practice on a special version of the simulator 

which had the myringotomy and ventilation tube functions removed.   This ensured that 

all users were comfortable with the 3D glasses, haptic arm, and adjustment of the 

microscope/speculum.   

Each participant was then asked to 1) obtain the optimum microscopic view, 2) create a 

radial myringotomy anywhere in the inferior half of the tympanic membrane, and 3) 

insert a ventilation tube into the myringotomy.  This task was outlined to each participant 

using verbal instructions, diagrams, and an information sheet.   Members of both groups 

then performed 10 trials of myringotomy and tube insertion, and all data was 

automatically recorded and analyzed by the simulator.    

4.2.5 Statistical analysis 

The performance metrics were analyzed for each group and the mean, standard error of 

the mean (SEM), and 95% confidence internals (CI) were calculated for the entire testing 

session and for each individual trial.  The sample size was maximized to include eligible 

participants at Western University.  The Mann-Whitney U-test was used to test 

differences between the groups, and the Bonferroni method was used to correct for 

multiple comparisons.  The significance level was set at p < 0.05.  All data were analyzed 

using SPSS software for Windows (SPSS Inc., Chicago, IL). 
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4.3 Results 

4.3.1 Demographics 

The junior resident group consisted of seven Otolaryngology residents in postgraduate 

years 1 to 3.   All residents were familiar with the operating microscope, but had 

performed fewer than 20 myringotomy and tube insertions in training.  The senior 

otolaryngologists were all fellowship trained and had performed at least 200 

myringotomy and tube insertions since entering independent practice.   

4.3.2 Automated Performance Metrics 

A summary of the performance metrics for junior residents and senior otolaryngologists 

is given in Table 4.1.  The individual learning curves over 10 trials are shown in Figures 

3 to 7.   

Table 4.1 Automated Performance Metrics Over 10 Trials 

Performance Metric 
Junior Residents 
Mean (95% CI) 

Senior Otolaryngologists 
Mean (95% CI) 

Significance 

Time to completion (seconds) 68.2 (60.5 – 75.9) 41.5 (36.4 – 46.6) p < 0.001 

Surgical errors per trial 0.93 (0.71 – 1.15) 0.33 (0.16 – 0.49) p < 0.001 

Incision angle θ (degrees) 27.1 (24.4 – 29.9) 20.2 (17.7 – 22.7) P < 0.002 

Incision length (mm) 1.7 (1.6 – 1.8) 2.1 (1.9 – 2.3) p < 0.002 

Microscope magnification 
(pixels) 

415 (397 – 433) 319 (305 – 334) p < 0.001 

 

Junior residents on average took 64% longer to complete the task as compared to the 

experienced group (p < 0.001).  The results from each trial in Figure 4.3 reveal that both 
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groups improved over time, and that the differences became smaller with additional 

experience on the simulator.   

 

Figure 4.3 Time to completion shown for each group over 10 trials. Results are displayed 

as mean +/- SEM.   

 

Senior otolaryngologists made 2.8 times fewer surgical errors as compared to the junior 

residents (p < 0.001).  Both groups had improvement over time as shown in Figure 4.4.   

When examining the types of errors made, 39% of the errors involved trauma to the 

external auditory canal or middle ear cavity with the myringotomy blade; 51% involved 

requiring multiple attempts to complete the myringotomy or tube insertion; and 10% 

involved placing the tube in the superior half of the tympanic membrane.   
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Figure 4.4 Number of surgical errors shown for each group over 10 trials. Results are 

displayed as mean +/- SEM.   

 

The automated analysis of the incision angle revealed that the senior otolaryngologists 

were able to follow the instructions and create a more accurate radial incision (p < 0.002).   

However, when examining performance over time in Figure 4.5, it is clear that the 

primary differences occurred in the first 5 trials.   After this point, the residents improved 

and their results were similar to the senior otolaryngologists.   
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Figure 4.5 Incision angle θ shown for each group over 10 trials. Results are displayed as 

mean +/- SEM.   

 

The size of the ventilation tube used in the simulator had an outer diameter of 1.5 mm.  

Senior otolaryngologists tended to create 24% longer myringotomy incisions as 

compared to junior residents (p < 0.002).  In reviewing each incision, 36% of the 

myringotomies made by the residents were smaller than 1.5mm, whereas this only 

occurred with 10% of the incisions made by senior otolaryngologists.  By examining the 

trend over each in Figure 4.6, the experienced group tended to reduce their incision size 

over time, whereas the residents’ incisions became slightly longer.   The two groups 

converged in trials 9 and 10 with the myringotomy size being just larger than the tube.   
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Figure 4.6 Incision length shown for each group over 10 trials. Results are displayed as 

mean +/- SEM.   

 

The level of magnification of the microscope revealed one of the largest differences 

between the two groups (p < 0.001).   The senior otolaryngologists tended to be less 

zoomed in, and in all 40 myringotomies performed by the experts, both the umbo and the 

annulus were visible when the myringotomy was created.   The residents tended to be 

much more magnified, and the umbo and annulus were only visible in 34% of their 

procedures.  In Figure 4.7, both groups remained fairly stable over time with no 

significant improvement in the resident group.   
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Figure 4.7 Microscope magnification level shown for each group over 10 trials. Results 

are displayed as mean +/- SEM.   

 

4.4 Discussion 

Virtual reality simulation training in Otolaryngology has now become widely accepted, 

and a recent systematic review by Arora et al. [34] revealed a large number of studies in 

temporal bone surgery and endoscopic sinus surgery.   Although there are a large number 

of physical simulators for myringotomy and tube insertion, they are underrepresented in 

the realm of virtual reality and automated performance metrics [13, 34]. 

Volsky et al. [9] established construct validity for their physical myringotomy simulator 

using a non-blinded expert, however trainees required an expert to be present in order to 

collect metrics and provide feedback.  Both Stanford University and Ohio State 

University have laid out comprehensive frameworks for automated simulator-based 
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quantitative metrics, programming, and feedback [22, 35-36]. The data collection and 

computation used in the Western myringotomy simulator follows these previously 

published paradigms.  The automated performance metrics were able to provide feedback 

in real-time, and accuracy was manually verified by reviewing the captured data and 

video playback.   

Despite the small sample size, the metrics programmed were able to find significant 

differences between surgical residents and experts.  Time to completion is an established 

metric that has been used to differentiate level of expertise in a number of simulators [37-

39]. This study also found it was a powerful metric, however it may be more appropriate 

to assess level of expertise rather than to provide real-time feedback as the trainee is 

learning the procedure.   

The number of surgical errors has also been established as a solid metric to establish 

construct validity.   Volsky et al. [9] used the following errors in their construct validity 

study:  1) losing the ventilation tube in the middle ear space; 2) pushing and withdrawing 

the tube through the myringotomy creating a “popping” sound indicating damage; 3) 

trauma to the external auditory canal; and 4) if the ventilation tube was dropped in the 

external canal.  Montegue et al. [1] had 3 blinded experts rate 55 consecutive procedures 

and a total of 12 potential errors were identified.  The four most common errors included 

1) failure to perform a unidirectional incision, 2) multiple attempts to place the 

ventilation tube, 3) multiple attempts to complete the myringotomy, and 4) magnification 

of the microscope set too high.  Schwartz et al. [33] conducted a blinded assessment of 

experts and trainees using a task based checklist.  There were six items that best 

differentiated the participants’ level of training, and of those two involved injury and 
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trauma to surrounding structures during myringotomy.  The surgical errors assessed 

Western myringotomy simulator were consistent with these studies, and this particular 

metric had excellent discriminant validity.  It should be noted that not all of these errors 

necessarily led to complications for the patient (e.g. multiple attempt to insert the 

ventilation tube), however they provided an indication of the participants’ level of 

expertise.                 

The orientation of the incision has also been used as a metric in previous studies, 

however differences between the groups were not significant [1, 33]. The decision to 

instruct participants to create a radial incision in this study was based upon the authors’ 

clinical experience, however there is debate in the literature as to whether a radial or 

circumferential incision is actually clinically significant [40]. In this case, the study was 

likely testing the participants’ ability to follow instructions and technically perform the 

designated task.  In general, experts were much more accurate in the direction of their 

incision, whereas residents improved and converged with the experts over time.    

The accuracy of the incision orientation may be related to the microscope magnification.  

Having the microscope magnification setting too high was the fourth most common error 

found by Montague et al., [1] and microscope manipulation and positioning was found to 

be significantly different between groups by Schwartz et al. [33]. In this study, residents 

were also found to have a significantly higher microscope magnification, and the umbo 

and annulus were only visible in 34% of their procedures.  This may have had an impact 

on their ability to perform a myringotomy in a radial direction and in the correct quadrant 

of the tympanic membrane. 
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The final metric in this study was incision length, and this had previously not been shown 

to be significantly different between novices and experts when examining intraoperative 

videos [33]. In another evaluation of 55 procedures, only 2 were found to have 

myringotomies which were too small, and no cases where myringotomies were too large 

[1]. In this study, residents tended to have smaller myringotomies, and in 36% of the 

cases the myringotomy was smaller than the diameter of the tube.   Conversely, experts 

started with much larger myringotomies, and the size decreased over time until it was just 

larger than the ventilation tube in the final trials.  As the two groups converged, the 

discrimination validity of this metric would be most useful during the initial stages of 

simulator use.   

Although the Western myringotomy simulator now has automated performance metrics 

and established construct validity, this does not ensure that residents will obtain better 

intraoperative performance after using the simulator [41-42]. A virtual reality to 

operating room skills transference study will be needed to fully assess the utility of the 

simulator in a clinical setting.  Future work on the simulator includes defining metrics 

around operating microscope usage and implementing them into the simulator.   The 

authors plan to expand the soft-tissue deformation module to include other otologic 

procedures such as tympanomeatal flaps, tympanoplasty, and ossiculoplasty.  Finally, and 

multi-centred study is planned to formally assess whether the skills gained by using the 

simulator can be applied to the operating room setting.    
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4.5 Conclusion 

The Western myringotomy simulator has previously demonstrated face and content 

validity. Automated quantitative performance metrics were successfully developed and 

implemented into the simulator.  The performance metrics successfully discriminated 

between expert and novice subjects, thereby establishing construct validity.  Further 

studies will be needed to establish skills transference from the simulator to the operating 

room. 
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         Chapter 5.                                                  

Summary and Future Directions 
 

5.1 Summary  

5.1.1 Simulator design and implementation 

As described in chapter 2, a complete VR myringotomy simulator has been developed. 

The simulated scenarios include 1) the surgical instruments such as myringotomy blade, 

forceps, ventilation tube, ear speculum and microscope, 2) the human ear including the 

auricle, ear canal and eardrum, 3) microscope binocular (stereoscopic) vision, 4) 

positioning and operating of the surgical instruments in 3D space, 5) eardrum 

deformation, 6) cutting of the eardrum, 7) ventilation tube insertion, and 7) tactile 

feedback when the surgical instruments touch the ear canal, cut the eardrum and when the 

tube is inserted.  

The simulated anatomy was derived from clinical high resolution CT images. The Unity 

3D digital game engine was used as the software development platform for real-time 

graphical rendering, subdivision cutting and physics simulation. A haptic arm co-located 

with the stereo scene was used to manipulate virtual surgical tools and to interact with the 

virtual ear with force feedback. A unique collision model was successfully implemented 

in the simulation, in which ball-shaped collision detectors served for detecting contacts 

between the virtual surgical tools and the virtual eardrum and then deforming the 

eardrum, while the mesh collision detector was used for detecting contacts between the 

blade and the dynamic eardrum mesh and then activating the cutting algorithm. The 
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cutting algorithm was based on the subdivision method and permits cutting to be 

performed at realistic speeds. System performance was evaluated by changing the physics 

calculation rate while observing the variation of the display frame rate. When the physics 

calculation rate was set between 23.5 and 37 Hz, the corresponding display frame rate 

(FR) varied from 23.5 to 20 Hz. It was verified that this enables a stable physics 

calculation so as to achieve both force feedback and smooth display, and met the real-

time interactive requirement (frame rates 20 to 30 frames per second [1]) for the surgical 

manipulation.  

5.1.2 Face and content validity study 

A face and content validity study were conducted using a questionnaire. The 

questionnaire was developed in consultation with instructing surgeons. Fourteen face 

validity questions were developed that focused on the anatomy of the ear, simulation of 

the surgical microscope, appearance and movement of the surgical instruments, 

deformation and cutting of the eardrum, and tube insertion. Six content validity questions 

were developed that focused on training potential on surgical tasks such as speculum 

placement, microscope positioning, tool navigation, ear anatomy, myringotomy creation 

and tube insertion.  A total of 12 participants from the Department of Otolaryngology – 

Head and Neck Surgery (Western University) were recruited for the study.   

Responses to 12 of the 14 questions on face validity were predominantly positive. With 

regard to content validity, 64% of the responses were positive, 21% were neutral, and 15% 

were negative. One issue of concern was with collision detection modeling related to tube 

insertion into the eardrum, and the second was with the movement of the blade and 
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forceps, both of which can easily be remedied. The myringotomy simulator appears to 

have sufficient face and content validity.   

5.1.3 Construct validity study 

The construct validity study involved two groups of users consisting of four senior 

Otolaryngologists and seven junior Otolaryngology residents. Their skills were evaluated 

using five automated metrics, including time to completion, surgical errors, incision 

length, incision angle and the magnification of the microscope. The analysis of all ten 

trials combined showed their skills were differentiated by the simulator by all five 

metrics. As expected, the experts demonstrated superior performance with respect to all 

metrics; however, there tended to be an improvement in the performance of residents 

with continued use of the simulator. 

5.2 Discussion and future directions 

5.2.1 Simulator design and implementation 

A simulation system combines a number of sub-systems including those for graphical 

rendering, tissue deformation modeling and tactile feedback. In the simulator design, 

calculation models and algorithms are selected and implemented so that the calculation 

load is well balanced to obtain real-time performance while retaining realism.  

The selection of the mass-spring method to model eardrum deformation and the 

subdivision cutting algorithm for incision simulation was in part because their calculation 

load is relatively low. The collision detection model separated the calculation of the 

cutting and eardrum deformation through the use of two collision detectors. The Unity3D 
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digital engine was selected as it is a well-organized development platform with excellent 

rendering, collaboration of objects, and support for a physics engine – PhysX.  

In Chapter 2, an optimization experiment has been performed to balance the rendering 

speed, the calculation of eardrum deformation and the haptics.  In terms of the calculation 

loading, the most time consuming step is the calculation of eardrum deformation. The 

calculation time was highly correlated with the number of node points (collision detectors) 

distributed on the mass-spring network.  Testing on a personal computer indicated that 

increasing the density of the nodes could dramatically decrease the performance of the 

system in terms of speed and impeding the performance of other algorithms such as 

cutting calculation and visual and haptic rendering. By contrast, reducing the number of 

the nodes could improve the rendering speed and shorten the time for deformation 

calculation. However, this inevitably can decrease the accuracy of the collision detection.  

In the current simulation, seven hundred and eighty nodes (small ball-shaped collision 

detectors) were distributed on the eardrum surface; there were still small gaps between 

the ball-shaped collision detectors. These gaps can disable the deformation calculation 

when an instrument touches the eardrum in the gaps. This caused unrealistic 

representation of splaying during the tube insertion into the incision, which was evident 

in response to questions 9 and 13 of the face and content validity study.  

The situation could be improved by using a higher resolution collision model, e.g., 

increasing the density of the nodes in the models. This would improve the accuracy of 

contact detection between the virtual eardrum and surgical instruments, but this would 

require more processing power, which is attainable using current computers.  
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In regard to the hardware setup, users indicated that the motion of the virtual blade and 

forceps was occasionally not stable. In the simulation, the movements of the surgical 

tools were controlled by the handle of the Omni haptic arm. The haptic arm is an 

electromechanical device with mechanical linkages to the handle. When moving the 

surgical instrument by the handle, the user can feel some stiffness due to the mechanical 

friction from the joints of the linkage. Moreover, the shape of the handle was like a 

cylinder whose diameter is much bigger than the shaft of real surgical tools. Both issues 

result in the handle not feeling like a real-life instrument and lead to unstable movement 

of the virtual instruments.  

One possible solution to increase the stability of the instruments discussed in Chapter 2 

was change to a higher fidelity device with substantially reduced friction (e.g., Geomagic 

Phantom Premium device from Geomagic, Inc., Morrisville, NC) and modifying the 

handle of the device to match a standard surgical instrument as demonstrated in related 

literature [2]. A further consideration could be providing force feedback from the surface 

of the speculum so that additional stability can be achieved when the virtual blade moves 

forward against the surface of the virtual speculum. However, given that in the current 

simulator the calculation load has plateaued, enabling force feedback for the speculum is 

not suggested as it will substantially slow down graphical and haptic rendering.   

A hybrid approach introducing a real speculum and a real blade connected to the handle 

of the haptic arm is an alternative way to model interactions between the blade and 

speculum while avoiding extra calculation load.  Components such as the eardrum and 

ear canal would still be represented digitally as flexibility is required when modeling 

anatomical variability. This hybrid method combining some physical and some virtual 
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components requires the designer to co-locate the virtual scene (virtual blade and virtual 

speculum) with the real scene (real speculum and real blade) by highly accurate 

registration. In a feasibility experiment, the Omni haptic arm was modified and calibrated 

using the method reported in [3], which was applied to calibrate Phantom Premium haptic 

devices. The test results showed that the positioning accuracy of the employed Omni 

haptic arm was not enough for the registration accuracy required.   

Another hybrid solution could be a combination of a physical replica head and a high-

precision tracking device. Haptics would be provided because of the interaction between 

physical components. For example, the NDI (Northern Digital Inc., Waterloo, ON) 

electromagnetic tracker can act as a tracking device instead of haptic arm for the tracking 

of instruments. The tracked tool can then be moved freehand without a mechanical 

connection to the tracking device. A corresponding virtual tool would be rendered in the 

VR scene to mimic the movements of the actual tool. A real speculum could be set in the 

ear of a physical replica head. The actual speculum and device handle can be registered to 

the virtual speculum and blade and co-located when the simulation is started.  This 

setting would better mimic the actual surgical approach. For instance, it would permit the 

trainee to rest the fingers of the operating hand on the replica head to help reduce hand 

tremor. It would also allow easier guidance of the blade towards the eardrum at an 

appropriate angle as this would be guided by a physical speculum. A shortcoming of this 

solution is that the tracking device is not able to provide tactile feedback when contact is 

made with virtual objects such as the eardrum and ear canal models.   
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5.2.2 Face validity study 

In the face validity study, a 7-point Likert scale was used to answer each question. As 

further analysis, the intra-observer consistencies across the participants within each group 

were analyzed using intraclass correlation. The intraclass correlation coefficient (ICC) 

computed for the group of residents was 0.11, indicating that 11% of the variation is 

between the questions, whereas 89% is between residents. The ICC for senior 

Otolaryngologists was 0.22.  The ICC suggests that there is little agreement between 

residents or between experts when responding to the questions in the survey. A 

satisfactory ICC would normally be approximately 0.80 or above. It should be noted 

though that this poor result may be due to the restricted range of the scale, which is used 

to categorize the responses.  A fine scale may go beyond the raters’ resolving power [4, 

5]. It is possible that if the scale was expanded there would be a greater agreement 

between the users. Nevertheless, this result is interesting and may be more indicative of 

questionnaire design than of simulator problems, e.g., using 5-point Likert scale instead 

of current 7-point Likert scale to answer each question. 

5.2.3 Metrics and construct validity 

In the construct validity study (Chapter 4), the binary definition of metrics (e.g., 

measurement of error) poses a rigid classification problem. A further improvement could 

be to let the software record more details of the operation and replace the binary decision 

by a continuous scale. Such continuous metrics may be better able to represent trainees at 

various stages of learning. Furthermore, artificial intelligence classification techniques 

such as Hidden Markov Models and Naïve Bayes Classifier could be used to determine 

trainee stage [6].  Furthermore, validated metrics need to be formulated into a scoring 
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system to evaluate users’ performance as a whole. For example, based on validated 

metrics, a rule-based fuzzy inference model can be applied to design a scoring system so 

that user can get a final performance score after each training session [7].   
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