2,846 research outputs found

    Doctor of Philosophy in Computing

    Get PDF
    dissertationPhysics-based animation has proven to be a powerful tool for creating compelling animations for film and games. Most techniques in graphics are based on methods developed for predictive simulation for engineering applications; however, the goals for graphics applications are dramatically different than the goals of engineering applications. As a result, most physics-based animation tools are difficult for artists to work with, providing little direct control over simulation results. In this thesis, we describe tools for physics-based animation designed with artist needs and expertise in mind. Most materials can be modeled as elastoplastic: they recover from small deformations, but large deformations permanently alter their rest shape. Unfortunately, large plastic deformations, common in graphical applications, cause simulation instabilities if not addressed. Most elastoplastic simulation techniques in graphics rely on a finite-element approach where objects are discretized into a tetrahedral mesh. Using these approaches, maintaining simulation stability during large plastic flows requires remeshing, a complex and computationally expensive process. We introduce a new point-based approach that does not rely on an explicit mesh and avoids the expense of remeshing. Our approach produces comparable results with much lower implementation complexity. Points are a ubiquitous primitive for many effects, so our approach also integrates well with existing artist pipelines. Next, we introduce a new technique for animating stylized images which we call Dynamic Sprites. Artists can use our tool to create digital assets that interact in a natural, but stylized, way in virtual environments. In order to support the types of nonphysical, exaggerated motions often desired by artists, our approach relies on a heavily modified deformable body simulator, equipped with a set of new intuitive controls and an example-based deformation model. Our approach allows artists to specify how the shape of the object should change as it moves and collides in interactive virtual environments. Finally, we introduce a new technique for animating destructive scenes. Our approach is built on the insight that the most important visual aspects of destruction are plastic deformation and fracture. Like with Dynamic Sprites, we use an example-based model of deformation for intuitive artist control. Our simulator treats objects as rigid when computing dynamics but allows them to deform plastically and fracture in between timesteps based on interactions with the other objects. We demonstrate that our approach can efficiently animate the types of destructive scenes common in film and games. These animation techniques are designed to exploit artist expertise to ease creation of complex animations. By using artist-friendly primitives and allowing artists to provide characteristic deformations as input, our techniques enable artists to create more compelling animations, more easily

    A practical method for animating anisotropic elastoplastic materials

    Get PDF
    This paper introduces a simple method for simulating highly anisotropic elastoplastic material behaviors like the dissolution of fibrous phenomena (splintering wood, shredding bales of hay) and materials composed of large numbers of irregularly‐shaped bodies (piles of twigs, pencils, or cards). We introduce a simple transformation of the anisotropic problem into an equivalent isotropic one, and we solve this new “fictitious” isotropic problem using an existing simulator based on the material point method. Our approach results in minimal changes to existing simulators, and it allows us to re‐use popular isotropic plasticity models like the Drucker‐Prager yield criterion instead of inventing new anisotropic plasticity models for every phenomenon we wish to simulate

    Master of Science

    Get PDF
    thesisWe present a straightforward, easy-to-implement, point-based approach for animating elastoplastic materials. The core idea of our approach is the introduction of embedded space-the least-squares best fit of the material's rest state into three dimensions. Together with plastic offsets that map embedded space to rest space, the embedded space allows us to robustly estimate the deformation gradient, compute elastic forces, and account for plastic flow. We additionally introduce an estimate for the volume of a particle, opening the door for nonuniform sampling, and describe a technique to increase the robustness of point-based elastic simulation. Our approach can handle arbitrarily large elastic deformations and extreme plastic deformations. Because the approach is point-based, there is no need for complex remeshing-the corresponding operation is a simple neighborhood query in embedded space. We demonstrate our approach on a variety of examples that display a wide range of material behaviors

    Deformation embedding for point-based elastoplastic simulation

    Get PDF
    pre-printWe present a straightforward, easy-to-implement, point-based approach for animating elastoplastic materials. The core idea of our approach is the introduction of embedded space-the least-squares best fit of the material's rest state into three dimensions. Nearest neighbor queries in the embedded space efficiently update particle neighborhoods to account for plastic flow. These queries are simpler and more efficient than remeshing strategies employed in mesh-based finite element methods.We also introduce a new estimate for the volume of a particle, allowing particle masses to vary spatially and temporally with fixed density. Our approach can handle simultaneous extreme elastic and plastic deformations. We demonstrate our approach on a variety of examples that exhibit a wide range of material behaviors

    GETTING SANDY: CREATING COLLAPSING SAND EFFECTS FOR \u3ci\u3eAN ODE TO LOVE\u3c/i\u3e

    Get PDF
    This thesis presents an artistic approach of creating collapsing sand effects in Brown Bag Films\u27 animated short, An Ode To Love, directed by Matthew Darragh. A combination of rigid body simulation and fluid simulation tools, which are available in Houdini 3D animation software version 13, was used to successfully complete the task. A detailed design and implementation process to achieve the effects is documented in this work

    Fundamental solutions for water wave animation

    Get PDF
    This paper investigates the use of fundamental solutions for animating detailed linear water surface waves. We first propose an analytical solution for efficiently animating circular ripples in closed form. We then show how to adapt the method of fundamental solutions (MFS) to create ambient waves interacting with complex obstacles. Subsequently, we present a novel wavelet-based discretization which outperforms the state of the art MFS approach for simulating time-varying water surface waves with moving obstacles. Our results feature high-resolution spatial details, interactions with complex boundaries, and large open ocean domains. Our method compares favorably with previous work as well as known analytical solutions. We also present comparisons between our method and real world examples

    Influence of porosity percolation on mechanical properties of ceramic materials. 3D simulation using movable cellular automata

    Get PDF
    3D computer simulation of mechanical behavior of a brittle porous material under uniaxial compression is considered. The movable cellular automaton method, which is a representative of particle methods in solid mechanics, is used for computation. In an initial structure the automata are positioned in FCC packing. The pores are set up explicitly by removing single automata from the initial structure. The computational results show that the curves of dependence of strength and elastic properties of the modeled specimens on porosity have a break at the porosity value about 20 %, i.e. percolation threshold. The obtained results are in close agreement with available experimental data

    A moving least square reproducing kernel particle method for unified multiphase continuum simulation

    Get PDF
    In physically based-based animation, pure particle methods are popular due to their simple data structure, easy implementation, and convenient parallelization. As a pure particle-based method and using Galerkin discretization, the Moving Least Square Reproducing Kernel Method (MLSRK) was developed in engineering computation as a general numerical tool for solving PDEs. The basic idea of Moving Least Square (MLS) has also been used in computer graphics to estimate deformation gradient for deformable solids. Based on these previous studies, we propose a multiphase MLSRK framework that animates complex and coupled fluids and solids in a unified manner. Specifically, we use the Cauchy momentum equation and phase field model to uniformly capture the momentum balance and phase evolution/interaction in a multiphase system, and systematically formulate the MLSRK discretization to support general multiphase constitutive models. A series of animation examples are presented to demonstrate the performance of our new multiphase MLSRK framework, including hyperelastic, elastoplastic, viscous, fracturing and multiphase coupling behaviours etc

    Doctor of Philosophy

    Get PDF
    dissertationPhysical simulation has become an essential tool in computer animation. As the use of visual effects increases, the need for simulating real-world materials increases. In this dissertation, we consider three problems in physics-based animation: large-scale splashing liquids, elastoplastic material simulation, and dimensionality reduction techniques for fluid simulation. Fluid simulation has been one of the greatest successes of physics-based animation, generating hundreds of research papers and a great many special effects over the last fifteen years. However, the animation of large-scale, splashing liquids remains challenging. We show that a novel combination of unilateral incompressibility, mass-full FLIP, and blurred boundaries is extremely well-suited to the animation of large-scale, violent, splashing liquids. Materials that incorporate both plastic and elastic deformations, also referred to as elastioplastic materials, are frequently encountered in everyday life. Methods for animating such common real-world materials are useful for effects practitioners and have been successfully employed in films. We describe a point-based method for animating elastoplastic materials. Our primary contribution is a simple method for computing the deformation gradient for each particle in the simulation. Given the deformation gradient, we can apply arbitrary constitutive models and compute the resulting elastic forces. Our method has two primary advantages: we do not store or compare to an initial rest configuration and we work directly with the deformation gradient. The first advantage avoids poor numerical conditioning and the second naturally leads to a multiplicative model of deformation appropriate for finite deformations. One of the most significant drawbacks of physics-based animation is that ever-higher fidelity leads to an explosion in the number of degrees of freedom
    • 

    corecore