
D E F O R M A T I O N E M B E D D I N G F O R P O I N T - B A S E D

E L A S T O P L A S T I C S I M U L A T I O N

by

Stephen J. Ward

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computing

School of Computing

The University of Utah

August 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276264229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © Stephen J. Ward 2012

All Rights Reserved

The University of Utah Graduate School

S T A T E M E N T O F T H E S I S A P P R O V A L

The thesis of Stephen J. Ward

has been approved by the following supervisory committee members:

Adam W. Bargteil

Mike Kirby

Peter Pike Sloan

Chair

Member

Member

3/19/2012
D a te A p p r o v e d

3/19/2012
D a te A p p r o v e d

3/19/2012
D a te A p p r o v e d

and by Alan Davis

the Department of

, Chair of

School of Computing

and by Charles A. Wight, Dean of the Graduate School.

A B S T R A C T

We present a straightforward, easy-to-implement, point-based approach for animating

elastoplastic materials. The core idea of our approach is the introduction of embedded

space—the least-squares best fit of the material’s rest state into three dimensions. To­

gether with plastic offsets that map embedded space to rest space, the embedded space
allows us to robustly estimate the deformation gradient, compute elastic forces, and
account for plastic flow. We additionally introduce an estimate for the volume of a
particle, opening the door for nonuniform sampling, and describe a technique to increase

the robustness of point-based elastic simulation. Our approach can handle arbitrarily

large elastic deformations and extreme plastic deformations. Because the approach is
point-based, there is no need for complex remeshing—the corresponding operation is

a simple neighborhood query in embedded space. We demonstrate our approach on a

variety of examples that display a wide range of material behaviors.

“You know, for kids!” But especially for Jeana.

C O N T E N T S

A B S T R A C T ... iii

LIST OF FIGU RES ... vi

C H A P TE R S

1. IN T R O D U C T IO N ... 1

2. RELATED W O R K ... 3

3. R E S E A R C H .. 5
3.1 Fundamental Concepts of

Continuum Mechanics.. 5
3.1.1 Deformation Gradient... 5
3.1.2 Strain .. 6
3.1.3 Stress.. 7
3.1.4 Elastic Energy and F orce ... 7

3.2 Method Overview ... 7
3.3 Approximating Deformation... 8
3.4 Particle Volume... 10
3.5 Elastoplasticity... 11

3.5.1 Deformation Factorization .. 11
3.5.2 Elasticity... 12

3.6 Embedding Deformation.. 13
3.7 Updating Neighborhoods.. 14
3.8 Implementation Details .. 15

4. RESULTS AN D FU TU RE W O R K .. 16

REFERENCES 20

L I S T O F F I G U R E S

3.1 The embedded space of a material (circles) approximates the rest space
(vectors) but cannot represent it exactly due to inconsistencies between
particles.. 9

3.2 Deformation of an unevenly sampled sphere. Our volume estimate permits
coarse sampling inside and dense sampling on the surface............................... 10

3.3 Percent change in volume of the unevenly sampled sphere featured in Fig­
ure 3.2 undergoing plastic deformation... 11

4.1 A tower undergoes plastic deformation with work softening as it falls down
stairs into a pool. The embedded space is shown below................................... 18

4.2 World space (above) and embedded space (below) of cubes with varying
material parameters dropped on a rigid bar ... 18

4.3 World space (above) and embedded space (below) of cubes with varying
material parameters dropped on flat ground... 18

4.4 A bunny falls on a rod and undergoes elastic and plastic deformation. The
embedded space (center column) captures much of the deformation from
the initial configuration (top right), but does not quite match the teal rest
space positions (bottom right). World space (left column) shows additional
elastic deformation compared to embedded space... 19

CHAPTER 1

I N T R O D U C T I O N

Computer animation of elastoplastic materials, such as modeling clay, chewing gum,

and bread dough has long been a goal of computer graphics, probably because these

materials demonstrate such intriguing behavior. As a field we have made progress toward

this goal and elastoplastic materials have recently been showcased in special effects, for

example, the honey in Bee Movie [18] and the food in Ratatouille [9]. However, significant
limitations in current techniques remain; some handle only limited plastic deformation,

some handle only limited elastic deformation, and others require complex remeshing

methodologies.
We present a straightforward, easy-to-implement, point-based approach for animating

elastoplastic materials. Our approach can handle arbitrarily large elastic deformations

and extreme plastic deformations. Because the approach is point-based, there is no need
for complex remeshing—the corresponding operation is a simple neighborhood query.

A material that has undergone plastic deformations does not, in general, have a

zero-stress state that can be realized in three-dimensional space. Put another way, the rest

space is not embeddable in three-dimensional space. This fact poses a challenge because

elastic forces depend on a mapping from rest space to deformed or world space. Some
authors have addressed this challenge by keeping plastic offsets from an initial rest state,

but this places limitations on the amount of plastic deformation that is possible. Others

have abandoned the rest state and keep elastic offsets, resulting in limited elastic defor­

mations and/or artificial plasticity. Borrowing an idea from Wicke and colleagues [22],

we take a compromise approach and store an embedded space—the weighted least-squares

best embedding of rest space into three dimensions. Combined with per particle plastic

offsets that map from embedded space to rest space, the embedded space gives us a

robust mapping from rest space to world space and allows us to handle arbitrary elastic
deformations and extreme plastic deformations.

While our primary contribution is the development of our embedding into three-

2

dimensions, we also suggest ways of improving robustness for particle-based animation
of elastic bodies and an approach for estimating volume that allows for nonuniform

samplings. We demonstrate our approach on a variety of examples that display a large
range of material behaviors.

CHAPTER 2

R E L A T E D W O R K

The pioneering work of Terzopoulos and colleagues [20, 21] first addressed elastoplas-

tic deformations almost 25 years ago. Perhaps foreshadowing their use in Ratatouille,

elastoplastic materials played a key role in the short film Cooking with Kurt [5]. Elasto-

plastic materials have also generated interest in the recent renaissance in physics-based

animation. O’Brien and colleagues [17] modeled ductile fracture by keeping track of

plastic offsets that could be subtracted from the total deformation computed using a finite

element method, essentially adding limited plasticity to a simulator designed for elastic

solids. Irving and colleagues [10] introduced a multiplicative model of plasticity that is
more appropriate for finite plastic deformations. Still, the amount of plastic deformation

had to be limited to avoid inverting singular matrices. Bargteil and colleagues [1] allowed
for large plastic flow by abandoning the initial rest configuration in favor of storing

a rest state for every element. When rest states became ill-conditioned, the entire

object was remeshed and simulation variables interpolated to the new mesh. A similar
approach was employed by Wojtan and Turk [23] who incorporated a high-resolution

surface mesh. Unfortunately, this wholesale remeshing leads to artificial diffusion due

to resampling. Wicke and colleagues [22] addressed these problems by introducing the
notion of an embedded space—a globally consistent embedding of the rest space into three
dimensions. By performing local remeshing in the embedded space, artificial diffusion is

limited to small errors exactly where plastic flow is occurring. Their approach allows for

arbitrary elastic deformations and robustly handles extreme plastic deformations. Our

own approach borrows their key idea, but to avoid complex remeshing strategies, we apply

it in a point-based context where the equivalent operation is a simple neighborhood query

in the embedded space.

An alternative approach to modeling elastoplasticity has focused on adding elastic
behavior to fluid simulations [8, 12]. As one would expect, this approach easily han­

dles arbitrary plastic flow, but demonstrates only limited elastic effects. However, this

4

approach is able to animate a variety of common materials, such as honey [18].
Researchers have also explored point-based animation of elastoplastic materials. In

this case, moving least squares methods are used to estimate the deformation gradient
and compute elastic forces. To handle limited plasticity, Muller and colleagues [16]

introduced plastic offsets similar to those employed by O’Brien and colleagues [17]. For

larger plastic deformations, they switched to a model closer to that of Goktekin and

colleagues [8] that essentially stores elastic offsets that can be used to compute elastic
forces. In their framework, materials can switch from one model to the other. Keiser and

colleagues [11] introduced a unified framework by combining forces from smoothed particle

hydrodynamics with elastic forces. Plasticity was modeled with additive plastic offsets,

resulting in limitations on the amount of plastic flow. Solenthaler and colleagues [19]

also adopted additive plastic offsets. Gerszewski and colleagues [7] developed a technique
that tracked the deformation gradient through time, allowing the use of multiplicative

plasticity and abandoning the storage of a rest state. This resulted in a unified framework

for elastic solids and fluids, but, because they lack a rest state, they were only able

to handle limited elastic deformations. Clavet and colleagues [4] modeled elastoplastic

materials with a mass-spring system in which springs were dynamically inserted and

removed. Their springs explicitly model elastic and viscous forces and include a model of

plastic flow.

CHAPTER 3

R E S E A R C H

For more than two decades, computer graphics researchers have turned to the field of
continuum mechanics for realistically animating deformable bodies. Our work makes use

of several fundamental ideas from continuum mechanics. As a convenience to the reader,

we present some background in the field prior to describing the specifics of our method.
For a more thorough treatment, we refer the reader to the work of Fung [6].

3 .1 F u n d a m e n t a l C o n c e p t s o f
C o n t i n u u m M e c h a n i c s

At its core, the study of continuum mechanics is a study of how materials behave as

they undergo displacement and deformation. As such, a sensible starting place for our

discussion is the measuring of these quantities.

3.1.1 D eform ation G radient
A convenient means of expressing an object's deformation is to define a mapping from

the object’s reference state to its world state. The reference state is the shape the object
would assume in the absence of all external forces, while the world state represents any

configuration the shape might have assumed due to applied forces. We can express the

mapping between the two states, or spaces, as:

x(X , t) = X(t) + u(X, t), (3.1)

where x represents the world space, X represents the reference space, and u is a vector
field representing the displacement. All three are time dependent functions.

The measure of deformation around any arbitrary point in X is the Jacobian of this

mapping with respect to changes in X, which is given by

V x x = I + V xu = F. (3.2)

This mapping, F, captures both rigid body rotations and shape changing deformations

(stretch and shear). If no displacement is present, F is clearly just the identity, I.

6

3.1.2 Strain

Closely related to the deformation gradient, F, is a quantity known as strain. Ideally,
strain is a measure of how much the nonrotational portion of F deviates from the identity

If we were to write F in terms of its polar decomposition, F = RU, we can rewrite
Equation (3.3) as

The rotational terms fall out of the equation by virtue of the fact that the transpose of
a rotation matrix is its inverse. Thus, this strain metric is invariant to rotations and will

only measure deformations that actually change the shape of the material.

Again rewriting Equation (3.3), this time in terms of Equation (3.2) and shortening

V Xu to Vu, yields

Under very small amounts of deformation, the small values in Vu become even smaller

approximation of the Green-Saint-Venant strain. This linearized strain is known as

Cauchy's strain and can be written:

Unfortunately, Cauchy's strain is not invariant to rotations, which will lead to artifacts

if it is used for large deformations.

transformation. A simple and common formulation known as the Green-Saint-Venant

strain is given as

e = 1 ((R U)t (RU) - I)

= 1 (Ut R t RU - I)

= 1 (Ut IU - I)

= 2(Ut U - I).

(3.4)

e 2((I + V u)T(I + Vu) - I)

2((I2 + Vu + VuT + VuTVu) - I)

2 (Vu + VuT + VuT Vu).

(3.5)

in VuTVu, and dropping this quadratic term out of the equation yields a fairly good

e = 1 (Vu + VuT)

= 1 (F + FT) - I.
(3.6)

7

3.1.3 Stress

Hooke’s law for three-dimensional volumes states that stress, which is measured in

units of force per unit area, depends linearly on the strain:

a = Ce, (3.7)

where C is a rank four tensor (the stiffness tensor) representing the constitutive model of

the material. The stiffness tensor is comprised of 81 entries, though due to symmetries,
it contains only 21 independent entries. Furthermore, if we can assume material isotropy,

the number of independent entries reduces to two: Young’s Modulus and Poisson’s Ratio.

These two values can be expressed in terms of the Lame constants A and ^, ultimately

yielding the following equation for stress:

a = Atr(e)I + 2^e. (3.8)

3.1.4 E lastic E n ergy and Force

We define elastic energy density as:

n = 2(e ■a) (3.9)
2 (e ■ Ce)= 1 (e ■ Ce).

This energy is quadratic in e, which is a measure of the material’s deviation from the

reference state. A quadratic function has no local minima, only a single global minimum.

Taking a derivative of this energy term with respect to the displacement, u, gives us a
force that minimizes the strain, and thereby the stretch and shear displacements of the

material, restoring the object to its reference state. This minimizing force can be written
as

f = -V u n
= - 2 Vu(e ■ Ce) (3.10)

= -aVue.

Once we have computed the force, we can integrate the force over time to compute

the material’s velocity and position at any time. In short, we can animate its motion.

3 .2 M e t h o d O v e r v i e w

The core of our approach is the maintenance of three domains: world space, embedded
space, and rest space. World space refers to the current, deformed object configuration.

8

Embedded space is a global, least-squares best fit of the accumulated plastic deformation
into three dimensions. It can be thought of as an approximate reference configuration

for the material. Rest space is local to a particle and refers to the particle's preferred
locations of its neighbors, or its preferred neighborhood orientation. Unlike world and

embedded space, it cannot be encoded by storing a single position for each particle.

Instead, we approximate the mapping from embedded to rest space with a per-particle

linear transformation. We refer to these transformations as plastic offsets. Together these

three spaces allow us to robustly define a mapping from rest space to world space, from

which we can compute elastic forces and plastic deformations and account for changing
local neighborhoods. Our method is summarized in Algorithm 1.

Algorithm 1 Deformation Embedding for Elastoplasticity
initialize kernel support radii and particle neighborhoods
while Animating do

approximate deformation gradient
factor deformation into elastic and plastic components
compute elastic forces
integrate elastic, body, and damping forces
compute global embedding
update neighborhoods
compute local plastic offsets

end while

Figure 3.1 is an illustration of a possible state of the simulator. Globally, the par­

ticles disagree about their neighbors' positions. We resolve the inconsistencies through

embedding and per-particle plastic offsets.

Notation: We use x j , e j , u j to denote neighbor vectors—vectors between particles

i and j — in world, embedded, and rest space, respectively. Capital bold face letters refer

to matrices.

3 .3 A p p r o x i m a t i n g D e f o r m a t i o n

Following the work of Muller and colleagues [16], we use moving least squares (MLS)

to approximate the deformation gradient, F. For each particle i, we seek the matrix Fj
that minimizes

^ IK j (Fiuij - xij)|1 (3.11)
j

9

Figure 3.1. The embedded space of a material (circles) approximates the rest space
(vectors) but cannot represent it exactly due to inconsistencies between particles.

where the sum is taken over the neighbors, j . The minimizer can be found by solving the
following linear system,

Fi (^] wijuijuT) "y v WijXijUT ’ (3.12)
j j

which can be performed by inverting A i = X j W juij u j . However, if the rest space near a

particle is degenerate, i.e. neighboring particles are coplanar, colinear or nonexistent, A i

becomes singular and the simulation breaks down. Inspired by oriented particles [15], we
assume that every particle occupies some finite volume in all directions. This assumption
leads to adding AI to A i, which in turn leads to adding AFi to both sides of Equation (3.12)

yielding

Fi (AI + ^ 2 Wij uij u j) = ^ 2 Wij Xij u j + AFi (3.13)
j j

where A is a positive constant, the magnitude of which is representative of the amount

of volume intrinsic to a particle. This results in a basis matrix, A i = AI + Y1 j wij uij u j ,
which is always invertible.

Because the Fi term on the right-hand-side is unknown, we approximate it using
the deformation gradient from the previous timestep. The error introduced by this

approximation is related to the change in Fi over a timestep, which we assume to be small.

This technique works surprisingly well in practice—we have not noticed any artifacts, and
our simulator is considerably more robust than if we were to use Equation (3.12).

The resulting computation of the deformation gradient is

Fi = (AFprev + ^ wij x ij uj)A-_1. (3.14)
j

10

3 .4 P a r t i c l e V o l u m e

It is common in point-based animation to assume that particles have a fixed, often

uniform, mass or volume. This assumption often leads to density fluctuations that can
cause spurious oscillations. In the context of plastic deformation, it is desirable to allow

the sampling to vary over time and thus we require a way of estimating the volume

occupied by a particle. Noting that A serves the same purpose as the basis matrix in

tetrahedral finite element methods, that the volume of a tetrahedron is a multiple of the

determinant of the basis matrix, and that the units of det(A) are m6, we approximate

the volume of a particle as

”• = (3.15)y A + (x j Wij)3

where A is the value introduced in Equation (3.13). We initialize the value of A to the

volume of the sphere whose radius is half the global average neighbor distance at the

start of the simulation. We subsequently hold the value of A constant. As distances

to neighbors get large, and as particles exit the neighborhood, the volume of particle i

becomes A.

We assign a constant density to the material and allow each particle’s mass to change
over time. The total mass of the material fluctuates slightly due to this approximation,

but we did not observe any resulting artifacts in our examples.
This volume estimate permits uneven particle sampling as particles in coarser regions

are assigned larger volumes than particles in dense regions. For example, it is possible to

sample the object surface more densely than its interior as shown in Figure 3.2.

Figure 3.2. Deformation of an unevenly sampled sphere. Our volume estimate permits
coarse sampling inside and dense sampling on the surface.

11

In Figure 3.3 we plot the percent change in volume of the unevenly sampled sphere as

it undergoes plastic deformation. Over the course of 10 seconds of animation, the sphere

loses a total of about 6 percent of its volume.

3 .5 E l a s t o p l a s t i c i t y

Once we have found the deformation gradient, we must factor it into its elastic and

plastic components. Upon computing the factorization, we use the elastic component to

compute and integrate elastic forces. Subsequently we apply the plastic portion of the
deformation to the rest shape of the material.

3.5.1 D eform ation F actorization

We employ the plasticity model developed by Bargteil and colleagues [1] to factor the

deformation gradient, F, into elastic and plastic components:

F = Fe ■ Fp. (3.16)

Prior plasticity models in computer graphics had used an additive strain decomposition,

which is only physically meaningful under infinitesimal deformation. A multiplicative
deformation decomposition, as noted by Irving and colleaques [10], allows a complete

Unevenly Sampled Sphere Dropped On Table 10 seconds

■ Percent Volume Loss

0

Figure 3.3. Percent change in volume of the unevenly sampled sphere featured in
Figure 3.2 undergoing plastic deformation.

12

separation of plastic flow and elastic forces. Additionally, by choosing Fp to have a

determinant of 1, we can easily enforce volume preserving plastic flow.

To compute the plastic deformation in the neighborhood of a single particle, we first
diagonalize the deformation gradient using the singular value decomposition:

F = U F V T. (3.17)

The matrices U and V are rotations and F is diagonal. Making use of F, we compute

F* = (det(F))-1/3F , (3.18)

where det(F*) = 1 and thus preserves volume. We then compute

Fp = (F *)Y, (3.19)

where y is the following function of the current stress (S), the yield stress limit (Sy), the

flow rate (v), and hardening parameters (a ,K):

Y (S, Sy ,v ,a ,K) = Atv — S y — K a . (3.20)
II s II

This function, clamped to values between 0 and 1, represents the amount of deformation
that is absorbed into the rest shape in a timestep At. The parameter a serves as an

accumulator for plastic stress over time and is updated at every timestep as follows:

a = ||S||. (3.21)

The hardening parameter K, depending on its sign, effectively serves either to raise

or lower the yield stress limit S y , enabling either work hardening or work softening,

respectively.

3.5.2 E lasticity

Factoring Fe as in Equation (3.17), and plugging in to Equation (3.6), we can compute

a diagonalized Cauchy strain that is invariant to rotations. The following equation

simplifies due to the symmetric nature of Fe:

e = 1 (Fe + FT) - I
2V e eJ (3.22)

= Fe e I.

13

As noted by Irving and colleagues [10], the diagonalization of Fe, results in the

diagonalization of stress. Thus, making use of the diagonalized Cauchy strain, as well as

Equation (3.8), we compute diagonalized stress:

We then rotate the diagonalized stress a = U aV t and following Muller and colleagues [16],
compute symmetrized forces:

which are linear in position.

For damping forces, we use the SPH viscosity formulation of Muller and colleagues [14].

To update positions and velocities, we use the modified Newmark-beta integration scheme
proposed by Bridson and colleagues [3], which integrates viscous forces implicitly and

elastic forces explicitly:

This is a second order method. The first half-velocity step is integrated implicitly,

while the position update and the second half-velocity step are integrated explicitly. As
noted by Bridson and colleagues, by performing the implicit portion of the integration

only on the viscous forces, any artificial damping introduced by the integration is added
to the portion of the system where there is damping anyway. No artificial damping is

introduced into the elastic modes of the system.

To handle plastic flow, we maintain a globally optimal embedded space, encoded as

a three-dimensional position, e^ for each particle. We also update local plastic offsets

to rest space, encoded as a 3 x 3 transformation matrix, Pj, for each particle. We now

describe how these are computed. First, we compute temporary rest space vectors that
incorporate the plastic deformation that occurred over the previous timestep, U j = Fpuij .
The optimal embedding of the particles into three-dimensional space will minimize the

a — Atr(F e — I) + 2^(F e — I). (3.23)

(3.24)

• v™+!/2 = vn + ■ (tn xn v™+l/2)

• xn+1 = xn + Atvn+1/2

• vn+1 = vn+1/2 + aelastic,body (tn+1, Xn+1, vn+1/2)

3 .6 E m b e d d i n g D e f o r m a t i o n

14

differences of neighbor vectors between the embedded and rest spaces. We formulate this

optimization as a weighted linear least-squares problem

argmin E \\wij (uij eij ̂ . (3.25)
e i . .

z i,J
We solve this over-constrained problem using the normal equations,

K t Ke = K t u. (3.26)

The vector e contains the embedded space positions for all particles. For each particle i
and neighbor j , K contains three rows corresponding to the operation wij (ej — ei) and

the corresponding entry in u contains wij Uij . K contains three rows constraining the first
particle to maintain its current embedded position, preventing arbitrary translations. We

solve this linear system with conjugate gradients and do not explicitly compute K t K.
While these embedded space positions provide a globally consistent reference config­

uration, there will still be differences between the rest and embedded spaces. To account

for this, we compute a local fit per particle similar to the “plastic offsets” of Wicke and

colleagues [22]. Here we seek the best mapping, P i, from embedded space to rest space

for each particle, which we again compute using a weighted least squares solve. Here we
minimize

argmin V] \\wij(P ie j — Uij)\\ (3.27)
P ^Z j

We use a regularization similar to that in Equation (3.14) to handle degenerate

embedded space positions and obtain

p i = (pprev + ^ wij uij ej)(I + ^ wij eij ej)-1 (3.28)
j j

We do not store rest space vectors, and instead compute them as needed by P ieij .

3 .7 U p d a t i n g N e i g h b o r h o o d s
After plastic flow, a particle’s neighbors may have moved far away, and no longer

provide useful information about the deformation gradient. We therefore update each

particle’s neighborhood by finding the nearest neighbors in the embedded space. We

expect that neighborhoods in embedded space are a good approximation of neighborhoods

in rest space, and they can be queried efficiently using a KD-tree. In order to avoid
popping artifacts, we fade neighbors in and out over several timesteps by scaling kernel

weights when neighbors enter or exit a particle’s neighborhood.

15

3 .8 I m p l e m e n t a t i o n D e t a i l s

For our weighting kernel, we use the standard SPH Poly6 kernel of Muller and

colleagues [14],
wt / _ 315 f (h2 - r2) 3 0 < r < h lo on^
Wp°iy6(r,h) = 64nhU 0 otherwise, (3.29)

where r is the distance between a pair of particles, and h is the support radius. This

kernel has local support, and because it is a function of the square of the distance between

particles, it is not necessary to perform a square root in the distance computations.

We initialize each particle’s radius by finding its nearest 32 neighbors, and setting its

radius to twice the average neighbor distance. During the simulation, a particle can have
a maximum of 32 neighbors, which must be within its radius in embedded space.

CHAPTER 4

R E S U L T S A N D F U T U R E W O R K

We have used our proposed method to simulate materials exhibiting a wide range of

elastoplastic behavior as shown in our figures. Timing results are shown in Table 4. All

examples were run on a single core of a 2.8 GHz Intel Xeon processor. Rendering surfaces

were generated using the particle skinning method of Bhattacharya and colleagues [2].

All timestep sizes listed were experimentally determined to be the largest one can take

for stability.

Figure 4.1 shows a block falling down a set of stairs into a pool. The material

undergoes work softening; initially it bounces off of the obstacles, but eventually it oozes
out into the pool. This example demonstrates the ability of our method to handle both

elastic bounces and extreme plastic flow.

Figure 4.2 compares the world space and embedded space deformations of a set of

cubes dropped on a bar. The embedded space captures the key features of the global
plastic deformation. Again, we note the wide range of material parameters that can be

simulated using our approach. Similar results for cubes dropped on flat ground are shown
in Figure 4.3.

Figure 4.4 shows the simulated particles of a high-resolution bunny along the bottom
row, with corresponding surfaces along the top row.

Like most elastoplastic simulators, remaining stable during large plastic flows is a

significant challenge for our method. Because we guarantee Fp to be volume preserving,
plastic deformation in regions that are becoming planar can result in particles being

pushed away in an unstable manner. Typically when simulations become unstable, it is
due to particles gaining extreme velocities in regions that become very thin in embedded

space. One possible solution to these instabilities is to introduce a regularization term in

our embedding solve to prevent sudden changes in the embedding. In practice, reducing
the timestep increases stability at the cost of longer running times.

17

Table 4.1. Timing results for pictured examples

Example #Particles At sec/frame
Figure 3.2 1415 .0001 17
Figure 4.1 5488 .0002 105
Figure 4.2 (left) 8000 .0005 115
Figure 4.2 (center) 8000 .0005 95
Figure 4.2 (right) 8000 .0005 51
Figure 4.4 16525 .00005 536

Although our novel volume estimation technique permits us to use uneven sampling,
we have not thoroughly explored the space of sampling strategies. More work is necessary

to understand how changes in sampling rates affect stability. In addition, dynamically
resampling the volume is an obvious direction for future work.

It is common for materials to become brittle after work hardening and become prone

to fracture. In our implementation, such topological changes happen by accident, when

particle neighborhoods change and parts of the material stop interacting. By intentionally

causing such topological changes, our method could be adapted to simulate phenomena

such as ductile fracture.
Another opportunity for future work would be to extend our approach to the Elastons

framework of Martin and colleagues [13]. This direction seems particularly promising

as the use of derivative information could address difficulties with degenerate particle
neighborhoods.

We have presented a simple to implement point-based method for animating elasto-

plastic materials by maintaining a globally optimal fit of the material’s reference con­

figuration. This approach allows us to simulate materials undergoing arbitrary elastic

deformations as well as extreme plastic flows without expensive and complex remeshing
operations. In addition, we have introduced robustness improvements and a new volume

estimation technique that can improve existing point-based techniques.

18

Figure 4.1. A tower undergoes plastic deformation with work softening as it falls down
stairs into a pool. The embedded space is shown below.

Figure 4.2. World space (above) and embedded space (below) of cubes with varying
material parameters dropped on a rigid bar

Figure 4.3. World space (above) and embedded space (below) of cubes with varying
material parameters dropped on flat ground

19

Figure 4.4. A bunny falls on a rod and undergoes elastic and plastic deformation.
The embedded space (center column) captures much of the deformation from the initial
configuration (top right), but does not quite match the teal rest space positions (bottom
right). World space (left column) shows additional elastic deformation compared to
embedded space.

REFERENCES

[1] B a r g t e i l , A. W ., W o j t a n , C., H o d g i n s , J. K., a n d T u r k , G. A finite element
method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3 (2007), 16.

[2] B h a t t a o h a r y a , H., G a o , Y., a n d B a r g t e i l , A. W. A level-set method for skin­
ning animated particle data. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (Aug 2011).

[3] B r i d s o n , R., M a r i n o , S., a n d F e d k i w , R. Simulation of clothing with folds and
wrinkles. In The Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (2003), pp. 28-36.

[4] C l a v e t , S., B e a u d o i n , P., a n d P o u l i n , P. Particle-based viscoelastic fluid
simulation. In The Proceedings of the ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (2005), pp. 219-228.

[5] F l e i s c h e r , K., W i t k i n , A., K a s s , M., a n d T e r z o p o u l o s , D. Cooking with
kurt. Animation in ACM SIGGRAPH Video Review, 36 (1987).

[6] F u n g , Y. C. A First Course in Continuum Mechanics. Prentice-Hall, Englewood
Cliffs, N.J., 1969.

[7] G e r s z e w s k i , D., B h a t t a o h a r y a , H., a n d B a r g t e i l , A. W. A point-based
method for animating elastoplastic solids. In Proceedings of the ACM SIG­
GRAPH/Eurographics Symposium on Computer Animation (Aug 2009).

[8] G o k t e k i n , T. G., B a r g t e i l , A. W ., a n d O ’ B r i e n , J. F. A method for
animating viscoelastic fluids. ACM Trans. Graph. 23, 3 (2004), 463-468.

[9] G o k t e k i n , T. G., R e i s o h , J., P e a c h e y , D., a n d S h a h , A. An effects recipe for
rolling a dough, cracking an egg and pouring a sauce. In ACM SIGGRAPH 2007
sketches (2007), p. 67.

[10] I r v i n g , G., T e r a n , J., a n d F e d k i w , R. Invertible finite elements for robust
simulation of large deformation. In The Proceedings of the ACM/Eurographics
Symposium on Computer Animation (2004), pp. 131-140.

[11] K e i s e r , R., A d a m s , B., G a s s e r , D., B a z z i , p . , D u t r e , p . , a n d G r o s s , M.
A unified Lagrangian approach to solid-fluid animation. In The Proceedings of the
Symposium on Point-Based Graphics (2005), pp. 125-133.

[12] L o s a s s o , F., S h i n a r , T., S e l l e , A., a n d F e d k i w , R. Multiple interacting
liquids. ACM Trans. Graph. 25, 3 (2006), 812-819.

21

[13] M a r t i n , S., K a u f m a n n , P., B o t s c h , M., G r i n s p u n , E., a n d G r o s s , M.
Unified simulation of elastic rods, shells, and solids. ACM Trans. Graph. 29 (2010),
39:1-39:10.

[14] M u l l e r , M., C h a r y p a r , D., a n d G r o s s , M. Particle-based fluid simulation
for interactive applications. In The Proceedings of the Symposium on Computer
Animation (2003), pp. 154-159.

[15] M u l l e r , M., a n d C h e n t a n e z , N. Solid simulation with oriented particles. ACM
Trans. Graph. 30 (Aug. 2011), 92:1-92:10.

[16] M u l l e r , M., K e i s e r , R., N e a l e n , A., P a u l y , M., G r o s s , M., a n d A l e x a , M.
Point based animation of elastic, plastic and melting objects. In The Proceedings of
the ACM/Eurographics Symposium on Computer Animation (2004), pp. 141-151.

[17] O ’ B r i e n , J. F., B a r g t e i l , A. W ., a n d H o d g i n s , J. K. Graphical modeling and
animation of ductile fracture. ACM Trans. Graph. 21, 3 (2002), 291-294.

[18] R u i l o v a , A. Creating realistic cg honey. In ACM SIGGRAPH 2007 posters (New
York, NY, USA, 2007), ACM, p. 58.

[19] S o l e n t h a l e r , B., S c h l a f l i , J., a n d P a j a r o l a , R. A unified particle model
for fluid-solid interactions. Journal of Visualization and Computer Animation 18,1
(2007), 69-82.

[20] T e r z o p o u l o s , D., a n d F l e i s c h e r , K. Modeling inelastic deformation: Vis­
coelasticity, plasticity, fracture. In The Proceedings of ACM SIGGRAPH (1988),
pp. 269-278.

[21] T e r z o p o u l o s , D., P l a t t , J., a n d F l e i s c h e r , K. Heating and melting de­
formable models (from goop to glop). In The Proceedings of Graphics Interface
(1989), pp. 219-226.

[22] W i c k e , M., R i t c h i e , D., K l i n g n e r , B. M., B u r k e , S., S h e w c h u k , J. R., a n d
O ’ B r i e n , J. F. Dynamic local remeshing for elastoplastic simulation. ACM Trans.
Graph. 29 (2010), 49:1-49:11.

[23] W o j t a n , C., a n d T u r k , G. Fast viscoelastic behavior with thin features. ACM
Trans. Graph. 27 (2008), 47:1-47:8.

