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We present a straightforward, easy-to-implement, point-based approach for
animating elastoplastic materials. The core idea of our approach is the intro-
duction of embedded space—the least-squares best fit of the material’s rest
state into three dimensions. Nearest neighbor queries in the embedded space
efficiently update particle neighborhoods to account for plastic flow. These
queries are simpler and more efficient than remeshing strategies employed
in mesh-based finite element methods. We also introduce a new estimate for
the volume of a particle, allowing particle masses to vary spatially and tem-
porally with fixed density. Our approach can handle simultaneous extreme
elastic and plastic deformations. We demonstrate our approach on a variety
of examples that exhibit a wide range of material behaviors.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation; I.6.8 [Simulation and
Modeling]: Types of Simulation—Animation

Additional Key Words and Phrases: viscoelastic materials, point-based ani-
mation, natural phenomena, physics-based animation.

1. INTRODUCTION

Computer animation of elastoplastic materials, such as modeling
clay, chewing gum, and bread dough has long been a goal of com-
puter graphics, probably because these materials demonstrate such
intriguing behavior. As a field we have made progress toward this
goal and elastoplastic materials have recently been showcased in
special effects, for example the honey in Bee Movie [Ruilova 2007]
and the food in Ratatouille [Goktekin et al. 2007]. However, sig-
nificant limitations in current techniques remain: some handle only
limited plastic deformation, some handle only limited elastic defor-
mation, and others require complex remeshing methodologies.

We present a straightforward, easy-to-implement, point-based ap-
proach for animating elastoplastic materials. Our approach can han-
dle extreme elastic and plastic deformations. Because the approach
is point-based, there is no need for complex remeshing—the corre-
sponding operation is a simple neighborhood query.

A material that has undergone plastic deformations does not, in
general, have a zero-stress state that can be realized in three-
dimensional space. Put another way, the rest space is not embed-
dable in three-dimensional space. This fact poses a challenge be-
cause elastic forces depend on a mapping from rest space to de-
formed or world space. Some authors have addressed this chal-
lenge by keeping plastic offsets from an initial rest state, but this
places limitations on the amount of plastic deformation that is pos-
sible. Others have abandoned the rest state and keep elastic off-
sets, resulting in limited elastic deformations and/or artificial plas-
ticity. Borrowing an idea from Wicke and colleagues [2010], we
take a compromise approach and store an embedded space—the
weighted least-squares best embedding of rest space into three
dimensions, while preserving the rest space exactly per particle.
Nearest neighbor queries can be performed efficiently in embedded

space, allowing us to update particle neighborhoods, while defor-
mation can be computed accurately from the rest space. As Fig-
ure 5 demonstrates, without updating particle neighborhoods, sim-
ulations become unstable under large plastic flows. By maintaining
both spaces, our method can handle large plastic and elastic defor-
mation simultaneously.

While our primary contribution is the development of our embed-
ding into three-dimensions, we also suggest an approach for esti-
mating volume that allows for non-uniform samplings. We demon-
strate our approach on a variety of examples that display a large
range of material behaviors, including simultaneous elastic and
plastic deformations. Our method is the first point-based approach
capable of simulating these examples, and is much simpler to im-
plement than competing finite element approaches.

2. RELATED WORK

The pioneering work of Terzopoulos and colleagues [1988; 1989]
first addressed elastoplastic deformations almost 25 years ago. Per-
haps foreshadowing their use in Ratatouille, elastoplastic materi-
als played a key role in the short film Cooking with Kurt [Fleis-
cher et al. 1987]. Elastoplastic materials have also generated inter-
est in the recent renaissance in physics-based animation. O’Brien
and colleagues [2002] modeled ductile fracture by keeping track of
plastic offsets that could be subtracted from the total deformation
computed using a finite element method, essentially adding lim-
ited plasticity to a simulator designed for elastic solids. Irving and
colleagues [2004] introduced a multiplicative model of plasticity
that is more appropriate for finite plastic deformations. Still, the
amount of plastic deformation had to be limited to avoid inverting
singular matrices. Bargteil and colleagues [2007] allowed for large
plastic flow by abandoning the initial rest configuration in favor of
storing a rest state for every element. When rest states became ill-
conditioned, the entire object was remeshed (in world space) and
simulation variables interpolated to the new mesh. A similar ap-
proach was employed by Wojtan and Turk [2008] who incorpo-
rated a high-resolution surface mesh. Unfortunately, this wholesale
remeshing leads to artificial diffusion due to resampling.

Wicke and colleagues [2010] addressed these problems by intro-
ducing the notion of a material space—the equilibrium pose of
the object in the absence of external forces. Note that this pose
has minimum, but non-zero, elastic energy. By performing local
remeshing in the material space, artificial diffusion is limited to
small errors exactly where plastic flow is occurring. Their ap-
proach allows for arbitrary elastic deformations and robustly han-
dles extreme plastic deformations. They achieve very impressive
results, but quality tetrahedral mesh generation is still an open prob-
lem and local remeshing is even more difficult. Even interfacing
with such libraries is necessarily more complex than using point-
based structures such as KD-trees. More recently, Narain and col-
leagues [2013] developed a similar method for thin shells, while
Clausen and colleagues [2013] extended the method into a unified
framework for animating solids and incompressible liquids.
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Our own approach adapts the key idea of Wicke and col-
leagues [2010], but we apply it in a point-based context where the
equivalent operation to remeshing is a simple neighborhood query
in the embedded space. Additionally, instead of performing a non-
linear optimization to find the equilibrium pose, we cast the em-
bedding problem as a least-squares optimization, which results in
a single linear solve. We use the term embedded space instead of
material space to highlight this difference. Our embedding formu-
lation is quite similar to the “global stitching” approach that Tsik-
nis and Bridson [2006] developed for cloth. In that context they
timestep individual cloth elements independently, then perform a
least squares solve to find node positions that match triangle edge
vectors as well as possible.

An alternative approach to modeling elastoplasticity has focused on
adding elastic behavior to fluid simulations [Goktekin et al. 2004;
Losasso et al. 2006]. As one would expect, this approach easily
handles arbitrary plastic flow, but demonstrates only limited elas-
tic effects. However, this approach is able to animate a variety of
common materials, such as honey [Ruilova 2007].

Researchers have also explored point-based animation of elasto-
plastic materials. In this case, moving least squares methods are
used to estimate the deformation gradient and compute elastic
forces. To handle limited plasticity, Müller and colleagues [2004]
introduced plastic offsets similar to those employed by O’Brien and
colleagues [2002]. For larger plastic deformations, they switched to
a model closer to that of Goktekin and colleagues [2004] that es-
sentially stores elastic offsets that can be used to compute elastic
forces. In their framework, materials can switch from one model to
the other. Keiser and colleagues [2005] introduced a unified frame-
work by combining forces from smoothed particle hydrodynam-
ics (SPH) with elastic forces. Plasticity was modeled with additive
plastic offsets, resulting in limitations on the amount of plastic flow.
Solenthaler and colleagues [2007] also adopted additive plastic off-
sets. Gerszewski and colleagues [2009] developed a technique that
tracked the deformation gradient through time, allowing the use of
multiplicative plasticity and abandoning the storage of a rest state.
This resulted in a unified framework for elastic solids and fluids,
but, because they lack a rest state, they were only able to handle
limited elastic deformations. They also demonstrate the limitations
of both additive strain models and naı́ve plastic offsets.

The material point method (MPM) [Sulsky et al. 1994] is an-
other point-based approach to simulating elastic and elastoplastic
materials. It extends marker-and-cell [Harlow and Welch 1965],
particle-in-cell [Harlow 1963] and fluid-implicit-particle [Brack-
bill and Ruppel 1986] methods to “history dependent materials.”
Instead of direct communication between particles, they commu-
nicate through a background grid; making the method extremely
efficient and popular for solving large problems on large comput-
ing clusters. Unfortunately, like other methods without a rest state
MPM suffers from drift, which is exacerbated by a Taylor expan-
sion approximation of the deformation gradient, limiting the ability
to simulate large elastic deformations over long timeframes. MPM
was recently used in graphics to animate snow by Stomakhin and
colleagues [2013].

Clavet and colleagues [2005] modeled elastoplastic materials with
a mass-spring system in which springs were dynamically inserted
and removed. Their springs explicitly model elastic and viscous
forces and include a model of plastic flow. By explicitly storing an
evolving rest state that accounts for plastic deformation we are, for
the first time, able to accommodate arbitrary elastic deformations
and large plastic flow in a unified point-based setting. More re-

cently, Müller and Chentanez [2011] extended point-based elasto-
plastic simulation to handle degenerate neighborhoods with ori-
ented particles; this might be a compelling idea for future work.

It is worth noting that most previous point-based approaches for an-
imating large plastic flows incoporated SPH-like pressure forces.
Such forces provide additional stability [Gerszewski et al. 2009]
by favoring uniform sampling of simulated materials. However,
they also alter the behavior of the underlying material model,
preventing, for example, the simulation of hyperelastic materi-
als. Moreover, such forces do not allow for adaptive sampling as
in Figure 8 without employing complex adaptive simulation frame-
works [Adams et al. 2007]. By eschewing these non-physical pres-
sure forces and relying exclusively on elastic forces and a volume
preserving plasticity model, our framework allows for the simula-
tion of arbitrary material models. While a subtle point, this repre-
sents a significant scientific advance and our examples demonstrate
far larger plastic deformations than previously possible with point-
based methods for purely elastoplastic materials.

3. METHODS

The core of our approach is the maintenance of three domains:
world space, rest space, and embedded space. World space refers
to the current, deformed object configuration. Rest space is local to
a particle and refers to the particle’s preferred relative positions of
its neighbors, stored as 3D vectors per neighbor. In general, the rest
space cannot be represented as a set of 3D points, as per-neighbor
vectors cannot be reconciled exactly between all particles. We in-
troduce the embedded space, which is a global, least-squares best
fit of the rest space into three dimensions. It can be thought of as
an approximate reference configuration for the material. We store
the rest space per each particle as a 3D vector for each neighbor.
The rest space and world space are used to compute the deforma-
tion gradient, from which we can compute elastic forces and plas-
tic deformations. The embedded space allows efficient updates to
neighborhoods in the presence of plastic deformation. Our method
is summarized in Algorithm 1.

Algorithm 1 Deformation Embedding for Elastoplasticity

initialize kernel support radii and particle neighborhoods
while Animating do

approximate deformation gradient
factor deformation into elastic and plastic components
compute elastic forces
integrate elastic, body, and damping forces
compute global embedding
resample particles
update neighborhoods

end while

Notation. We use xij , eij , uij to denote to neighbor vectors—
vectors between particles i and j—in world, embedded, and rest
space, respectively. Capital bold face letters refer to matrices. The
index j refers to the neighbors of particle i, which may change
during the course of the simulation.
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original undeformed 
configuration

per-particle “rest space” 
after plastic deformation

“embedded space”
after least squares fit

current “world space”
configuration

Deformation Gradient

Deformation Gradient

(a) (b) (c) (d)

Fig. 1: From the initial configuration (a), each particle’s neighborhood undergoes plastic deformation, resulting in a new rest space config-
uration (b). However, the red and blue particles disagree about where their shared neighbors should be. Performing a least squares global
fit, we obtain the embedded space configuration (c), which is used to update particle neighborhoods. Each particle’s deformation gradient
maps from its own rest space to the current world space configuration (d).

3.1 Approximating Deformation

Following the work of Müller and colleagues [2004], we use mov-
ing least squares (MLS) to approximate the deformation gradient,
F. For each particle i, we seek the matrix Fi that minimizes∑

j

||wij(Fiuij − xij)||2 (1)

where the sum is taken over the neighbors, j, and wij is a weight-
ing kernel evaluated in rest space. We compute the minimizer by
solving the following linear system,

Fi(
∑
j

wijuiju
T
ij) =

∑
j

wijxiju
T
ij . (2)

We refer to the quantity
∑
j wijuiju

T
ij as the particle i’s basis ma-

trix, Ai, which we invert to solve the system.

Particle Volume. It is common in point-based animation to as-
sume that particles have a fixed, often uniform, mass or volume.
This assumption often leads to density fluctuations that can cause
spurious oscillations. In the context of plastic deformation, it is de-
sirable to allow the sampling to vary over time and thus we require
a way of estimating the volume occupied by a particle. Noting that
A serves the same purpose as the basis matrix in tetrahedral finite
element methods, that the volume of a tetrahedron is a multiple of
the determinant of the basis matrix, and that the units of det(A)
are m6, we approximate the volume of a particle as,

Vi =

√
det(Ai)

(
∑
j wij)

3
. (3)

The denominator normalizes with respect to the weights used to
compute A, which are cubed by the determinant operation. We as-
sign a constant density to the material and allow each particle’s
mass to change over time. The total mass of the material fluctuates
slightly due to this approximation (see Section 4), but we did not
observe any resulting artifacts in our examples.

3.2 Elastoplastic Model

We use a multiplicative plasticity model, where the total deforma-
tion gradient is the product of elastic and plastic deformations, i.e.
F = FeFp.

Following Irving and colleagues [2004], we diagonalize Fe =

UF̂eV
T and compute the diagonalized first Piola-Kirchhoff stress:

P̂ = λtr(F̂e − I)I + 2µ(F̂e − I). (4)

We then rotate the diagonalized stress P = UP̂VT and compute
symmetrized forces

fi = ViPiA
−1
i wijuij (5)

fj = −fi

which are linear in position.

Using the plasticity model developed by Bargteil and col-
leagues [2007], we factor our deformation gradient, F, into elas-
tic and plastic components Fe and Fp, respectively. This model
preserves volume in rest space, and accounts for a range of ma-
terial properties including yield point, creep, and work harden-
ing/softening. Specifically, we compute the singular value decom-
position of F = UF̂VT and factor the diagonal matrix F̂ into
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F̂eF̂p. To compute F̂p, we first compute

F̃ =
F̂

det(F̂1/3)
. (6)

This computation is essentially normalizing F̃ to have determinant
1, ensuring volume preservation. Since F̂ is diagonal, we can per-
form the cube root operation on each entry independently. We then
compute F̂p = F̃γ , where

γ(P, PY , ν, α,K) =
ν (||P|| −max (PY +Kα, 0))

||P||
(7)

which is clamped between 0 and 1. We use the total, unfactored
stress, P, to compute γ. PY is the yield stress (at lower stresses
there is no plastic flow); ν is the flow rate, which controls how
quickly flow will occur; α is the total accumulated plastic stress
as computed by the simulation; and K controls the rate of work
hardening or softening. PY , ν, and K are user-defined, while α is
a simulation variable integrated through time. The Kα term can be
though of as adjusting the yield point. To prevent rotation of the
plastic deformation, we rotate the diagonalized deformation into
Fe = UF̂eV

T and Fp = VF̂pV
T . We use F̂e to compute elas-

tic stress in Equation (4). For more details, refer to Bargteil and
colleagues [2007].

For damping forces, we use the SPH viscosity formulation of
Müller and colleagues [2003]. These forces act to minimize ve-
locity differences between neighboring particles, and are computed
by

fij = η
mj

ρj
(vj − vi)∇2W (uij , h). (8)

Note that this simple model damps all relative motion and is non-
zero for rigid rotation. Alternatively one could base damping forces
on the time derivative of stress.

To update positions and velocities, we use either an explicit
leapfrog scheme, or the following Newmark integration scheme
adapted from Bridson and colleagues [2003], which integrates vis-
cous forces implicitly and elastic forces explicitly:

• vn+1/2 = vn + ∆t
2
aviscous(t

n, xn, vn+1/2)

• xn+1 = xn + ∆tvn+1/2

• vn+1 = vn+1/2 + ∆t
2
aelastic,body(tn+1, xn+1, vn+1/2)

Each timestep of the Newmark scheme is more expensive than the
explicit scheme, but for simulations where high viscosity is desired,
the implicit viscous solve permits larger timesteps, resulting in bet-
ter performance overall. We experimented with linearly implicit
Euler integration, but found that rotational motion was severely
damped (see accompanying video) and did not pursue this further.

3.3 Embedding Deformation

As the material undergoes plastic deformation a particle’s neigh-
bors may move far away in rest space and no longer provide useful
information. To update these neighborhoods when such changes
occur, we maintain a globally optimal embedded space, encoded as
a three-dimensional position, ei, for each particle. To update these
positions, we first compute temporary rest space vectors that in-
corporate the plastic deformation that occurred over the previous
timestep, ũij = Fpuij .

The optimal least-squares embedding of the particles into three-
dimensional space will minimize the discrepancy of neighbor vec-
tors between the embedded and rest spaces. We formulate this op-
timization over the embedded positions, ei, as a weighted linear
least-squares problem

argmin
ei

∑
i,j

||wij(ũij − eij)||2, (9)

which requires solving three decoupled, over-constrained linear
systems: one for each dimension, x, y, and z. In matrix form, each
system can be expressed as

Ce = u. (10)

C is similar to the constraint matrices that appear when using La-
grange multipliers or projection methods for constrained dynamics.
In our case, each row, r, of C encodes the (weighted) constraint
that if particle j is a neighbor of particle i then eij = ũij . More
specifically,

Cri = −wij
Crj = wij .

The vector e contains the embedded space positions for all particles
and uij = wijũij . Note that while eij = −eji, the same is not true
for ũij and ũji because rest space vectors, uij are transformed by
Fpi

each timestep and diverge over time.

Because each particle has roughly 32 neighbors (constraints), C is
roughly 32n×n. We solve this non-square, highly over-constrained
system by applying conjugate gradients to the normal equations,

CTCe = CTu. (11)

Denoting the set of neighbors of i as n(i), the entries of CTC are

(
CTC

)
ij

=


2
∑

k∈n(i)

w2
ik if i = j

−2w2
ij if i ∈ n(j) ∧ j ∈ n(i)

−w2
ij if i ∈ n(j)⊕ j ∈ n(i)

0 otherwise.

(12)

This matrix is symmetric and diagonally dominant, but if all the
neighborhoods are symmetric will have a null-space containing the
constant vector (corresponding to global translations). We explic-
itly remove this by adding a row to C constraining the first particle
to maintain its current embedded position. Note that the system is
not invariant to global rotations, so no special handling is required.
Because the system changes structure as neighborhoods change or
particles are split or merged, prefactoring is not possible.

While these embedded space positions provide a globally consis-
tent reference configuration, there will still be discrepancy between
the rest and embedded spaces. The vectors ũij become the rest
space vectors uij for the next timestep.

It is natural to compare our embedding to the elastic-energy min-
imization approach of Wicke and colleagues [2010]. Interestingly,
our linear embedding does not capture some rotational changes to
the rest space. However, world space dynamics are nearly identi-
cal compared to the more expensive nonlinear optimization used
by Wicke and colleagues, as shown in Figure 2. This behavior is
because rotations typically do not change the neighbors with the
highest smoothing weights (those closest to the particle), and the
rest-space vectors for those particles are preserved exactly. In our
experiments, our linear solve was nearly twice as fast as the elastic-
energy minimization approach of Wicke and colleagues.
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Fig. 2: Comparison between our linear embedding (left) and nonlinear em-
bedding (right) for a twisted plastic bar. The world space behavior (blue)
is nearly identical, even though the linear embedding captures very little
rotation. Though small, changes in the linear embedding did cause neigh-
borhoods to change in this example.

Another difference between our approach and that of Wicke and
colleagues [2010] is in how we store rest space. Wicke and col-
leagues store a single 3 × 3 matrix per tetrahedron, which they
call a plastic offset, that maps from embedded space to rest space.
Instead, we store rest space as about 30 rest-space neighbor vec-
tors per particle. While our approach requires more memory, we
found storing a single matrix per particle problematic as a simple
least-squares fit introduced too much error into the mapping from
embedded to rest space. If memory consumption is a significant
concern, higher order fitting techniques and/or compression may
prove effective.

3.4 Updating Neighborhoods

After plastic flow, a particle’s neighbors may have moved far away,
and no longer provide useful information about the deformation
gradient. We therefore update each particle’s neighborhood by find-
ing the nearest neighbors in the embedded space. We expect that
neighborhoods in embedded space are a good approximation of
neighborhoods in rest space, and they can be queried efficiently
using a KD-tree. The only information lost in this process is the
difference between the rest space vector, uij , and the embedded
space vector, eij , when a particle j moves out of particle i’s neigh-
borhood. When a new particle enters a neighborhood, we initialize
uij = eij . This process does lose some information about the rest
state (and, consequently, the internal stress), but the lost informa-
tion is the least useful as it comes from the particles that are farthest
away.

3.5 Particle Resampling

To improve computational efficiency and stability, we enable par-
ticle resampling in our simulator. We selectively split and merge
particles when neighborhood sampling is either too dense, or too
sparse. We quantify this by computing a basis matrix for each par-
ticle as

Bi =
∑
j

uiju
T
ij

||uij ||4
, (13)

d

d

surface

Bad split Good split

position after split

original position

neighborhood 
center of mass

d

Fig. 3: We cancel splits that are likely to cause popping artifacts near the
object surface.

where the index j runs over the neighbors of particle i, which may
vary over time. Note that this is simply a weighted covariance ma-
trix, where the 4th power in the denominator results in a 1/r2

falloff away from particle i.

We perform an eigendecomposition of this matrix and examine its
eigenvalues to decide to split or merge particles. If the maximum
eigenvalue is small, this indicates that there are too few particles
nearby, and the particle should be split. We split the particle into
two particles and place them along the eigenvector with the mini-
mum eigenvalue. They are offset from the particle’s original posi-
tion by half the average distance to the particles in the neighbor-
hood.

Splitting particles near the surface can potentially cause rendering
artifacts on the object’s surface, which we attempt to mitigate in
two ways. First, we chose the middle eigenvalue as a splitting di-
rection because for surface particles, the smallest eigenvalue is typ-
ically perpendicular to the surface, and the largest is already well
sampled. The middle eigenvector corresponds to a direction tangent
to the surface that is poorly sampled. Second, we reject splits that
are likely to cause surface artifacts. We compute the distance from
the original particle to the center of mass of its neighborhood. If ei-
ther split particle is more than a factor of

√
2 away from the center

of mass, the split is cancelled. Intuitively, this condition attempts
to eliminate splits that are not tangent to the surface (Figure 3). We
also cancel splits that would place a new particle inside of an obsta-
cle. We classify particles as “surface particles” if the distance from
the particle to it’s neighborhood center of mass is greater than a
user-defined threshold, as interior particles likely have a uniformly
distributed neighborhood, while surface particles will have a neigh-
borhood skewed away from the surface.

If the minimum eigenvalue is too large, then there are too many
particles nearby and the particle should be merged with its near-
est neighbor. The merged particle is placed halfway between the
two original particles. The split and merge thresholds are a user-
specified parameter, but reasonable values can be chosen by exam-
ining minimum and maximum basis matrix eigenvalues from the
object’s initial configuration.

While much more complex resampling methods exist [Adams et al.
2007; Ando et al. 2012], we consider the ease of implementation of
our technique to be a major benefit.
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3.6 Implementation Details

For our weighting kernels, we use the standard SPH kernels of
Müller and colleagues [2003]: The poly6 kernel, Equation (14), for
all weights except for viscosity, where we use the SPH viscosity
kernel, Equation (15).

Wpoly6(r, h) =
315

64πh9

{
(h2 − r2)

3
0 ≤ r ≤ h

0 otherwise
(14)

∇2W (r, h) =
45

πh6
(h− r) (15)

We initialize each particle’s smoothing radius by finding its nearest
32 neighbors, and setting its radius to twice the average neighbor
distance. During the simulation, a particle can have a maximum of
32 neighbors, which must be within its radius in embedded space.
This constraint limits the number of neighbors and the number of
non-zeroes in our matrices.

Rendering. Generating visually appealing surfaces from particle
data for rendering is a difficult problem. In the examples in this
paper, we used two methods: the skinning method of Bhattacharya
and colleagues [2011], and a simple surface mesh embedding tech-
nique. When embedding a surface mesh, we update mesh vertex
positions with the weighted average of the displacements of nearby
particles from the first frame of animation. The weights are com-
puted using the poly6 kernel with a user defined, constant support
radius. This approach is sufficient for simulations with largely elas-
tic deformations, but breaks down for large plastic flows. Including
more robust surface tracking and using the embedded space to up-
date weights are interesting directions for future work.

4. RESULTS AND DISCUSSION

We have used our proposed method to simulate materials exhibiting
a wide range of elastoplastic behavior as shown in our figures and
included videos. Timing results are shown in Table I and Table II.
All examples were run on a dual-2.8 GHz Intel Xeon processor
machine using up to 12 cores. Trivially parallelizable loops were
multithreaded using the Intel TBB library.

Figures 2 and 5 demonstrate the importance of the two components
of our mapping to rest space: plastic offsets and embedded space.
Without plastic offsets, the final world pose of the bar in Figure 2
would not include any twist. Without neighborhood updates, a par-
ticle’s neighborhood may become degenerate, leading to an ill con-
ditioned basis matrix and instability. By using embedded space to
update neighborhoods, we maintain well sampled neighborhoods
and increase stability (see Figure 5). Resampling also improves sta-
bility by merging particles that become extremely close in embed-
ded space.

Figures 6 and 7 compare the world space and embedded space
deformations of a bunny dropped onto obstacles. The embedded
space captures the key features of the global plastic deformation.
The high frequency details of the original mesh are preserved as
the material flows plastically.

Figure 8 demonstrates our method’s robust handling of uneven
sampling. Our new volume estimate allows us to simulate objects
with dramatically varying particle densities. Previous work has re-
quired expensive fully adaptive sampling techniques [Adams et al.

Fig. 4: A bar is twisted and sheared (left), then released. The final world
space configurations for (clockwise from top, left) elastic, slightly plastic,
highly plastic, and varying plasticity materials. For the nonuniform bar, the
plastic flowrate varies from high(red) to low(blue) along the bar.

Fig. 5: A plastic bar is dropped onto the ground(a). Without neighborhood
updates (b), the simulation becomes unstable after the object is significantly
flattened. Our embedding allows neighborhood updates which improve sta-
bility (c), but this also becomes unstable. Adding resampling (d) preserves
stability through the entire scene.

Fig. 6: World space (above) and embedded space (below) of bunny dropped
on a rigid bar.
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Fig. 7: A bunny is dropped on a set of spheres. Clockwise from top left: Ini-
tial configuration, world (skinned), world(particles), and embedded spaces
after impact.

Fig. 8: A plastic block with dramatically different sampling densities flows
when dropped.

2007] or special handling of boundaries where regions of varying
particle density meet [Solenthaler and Gross 2011].

As the “upset fowl” collides with the rigid obstacles in Figure 10,
it undergoes significant elastic and plastic deformation. As it is
crushed, it reacts elastically, lifting the upper block before suc-
cumbing to creep and flowing plastically.

As shown in Figure 9, our volume estimate closely tracks both
the “ground truth” volume computed using the skinned, embedded
space mesh, and the estimate used by SPH based approaches.

Example #Particles ∆t sec/frame
Figure 2 linear 5,000 .001 2.36
Figure 2 nonlinear 5,000 .001 4.30
Figure 5 5,408 .001 1.2
Figure 7 36,675 .0004 278
Figure 8 10,470 .005 2.39
Figure 10 21,708 .0001 92

Table I. : Timing results for pictured examples. Time is given in seconds to
produce one 30 Hz frame of animation.

time

volume

Fig. 9: Estimated total volume computed using our new approach, SPH,
and the skinned embedded space mesh for Figure 5.

Step % computation time
Compute basis matrices 3.54
Viscosity solve 17.19
Compute forces 4.55
Explicit integration step 0.36
Embedding solve 41.70
Resampling 2.24
Neighborhood updates 22.91
Compute plastic offsets 3.73
Handle collisions 0.19

Table II. : Timing detail for Figure 5

Limitations and Future Work. In practice, we found our method
to be robust and stable for bulk motion. Typical failure cases are
a single particle or a small group of particles drifting away from
the bulk material, or getting caught on an obstacle (we colloquially
refer to such particles as “jerk particles”). These artifacts are usu-
ally induced by extreme or violent deformations or sharp corners
of rigid obstacles. In a production environment, these troublesome
particles can be easily deleted before skinning or rendering. Us-
ing a robust least squares solve, or minimizing the L1 norm in our
embedding may eliminate these problems, albeit at significant ad-
ditional cost.

In the current implementation, we allow particles to apply forces
through solid obstacles, which can lead to unnatural and undesir-
able behavior near sharp corners. Also, we do not check for col-
lisions between particles nearby in world-space, but far apart in
embedded space, which can result in interpenetration artifacts. We
suspect both problems can be efficiently resolved with an additional
spatial partitioning scheme in world space.

Although our simple resampling scheme works to improve stabil-
ity, our splitting method can cause surface artifacts. Increasing the
model resolution reduces these artifacts, but a more robust resam-
pling or skinning approach is a possible direction of future work.
Additionally, aggressively coarsening regions on the object interior
could lead to improved performance while preserving surface de-
tail.
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Fig. 10: An “upset fowl” destroys a pig’s house.

It is common for materials to become brittle after work hardening
and become prone to fracture. In our implementation, such topo-
logical changes happen by accident, when particle neighborhoods
change and parts of the material stop interacting. By intentionally
causing such topological changes, our method could be adapted
to simulate ductile fracture. Relatedly, we do nothing in particu-
lar to address “fusing” in embedded space, but did not notice this
to be a problem in our examples. One could address such issues
using an embedded surface mesh and ray casting when comput-
ing neighborhoods. We also note that many previous techniques,
both point-based [Gerszewski et al. 2009] and mesh-based [Bargteil
et al. 2007], allow such fusing and sometimes consider it a “fea-
ture.”

Because points behave nearly independently, this method is well
suited to parallelization on multi-core architectures or GPUs. Most
computations only output results for a single particle, and read only
from nearby particles. We employed multithreading to parallelize
these independent loops on the CPU, however these access patterns
are also well suited for the memory hierarchy on current GPU ar-
chitectures. Preliminary GPU implementation efforts resulted in an
order of magnitude speedup for simple elastic examples.

We have presented a simple to implement point-based method for
animating elastoplastic materials. By maintaining a globally opti-
mal fit of the material’s reference configuration we are able to sim-
ulate materials undergoing simultaneous and extreme elastic and
plastic deformations. Like all point-based methods, our approach
trades the numerical advantages of discretizing the domain into dis-
joint elements (better conditioning, sparser matrices, etc.) for the
significant implementation advantage and simplicity of avoiding
computing such a discretization altogether.
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