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ABSTRACT

Physics-based animation has proven to be a powerful tool for creating compelling ani

mations for film and games. Most techniques in graphics are based on methods developed 

for predictive simulation for engineering applications; however, the goals for graphics ap

plications are dramatically different than the goals of engineering applications. As a result, 

most physics-based animation tools are difficult for artists to work with, providing little 

direct control over simulation results. In this thesis, we describe tools for physics-based 

animation designed with artist needs and expertise in mind.

Most materials can be modeled as elastoplastic: they recover from small deformations, 

but large deformations permanently alter their rest shape. Unfortunately, large plas

tic deformations, common in graphical applications, cause simulation instabilities if not 

addressed. Most elastoplastic simulation techniques in graphics rely on a finite-element 

approach where objects are discretized into a tetrahedral mesh. Using these approaches, 

maintaining simulation stability during large plastic flows requires remeshing, a complex 

and computationally expensive process. We introduce a new point-based approach that 

does not rely on an explicit mesh and avoids the expense of remeshing. Our approach 

produces comparable results with much lower implementation complexity. Points are a 

ubiquitous primitive for many effects, so our approach also integrates well with existing 

artist pipelines.

Next, we introduce a new technique for animating stylized images which we call Dynamic 

Sprites. Artists can use our tool to create digital assets that interact in a natural, but styl

ized, way in virtual environments. In order to support the types of nonphysical, exaggerated 

motions often desired by artists, our approach relies on a heavily modified deformable body 

simulator, equipped with a set of new intuitive controls and an example-based deformation 

model. Our approach allows artists to specify how the shape of the object should change 

as it moves and collides in interactive virtual environments.

Finally, we introduce a new technique for animating destructive scenes. Our approach 

is built on the insight that the most important visual aspects of destruction are plastic 

deformation and fracture. Like with Dynamic Sprites, we use an example-based model 

of deformation for intuitive artist control. Our simulator treats objects as rigid when



computing dynamics but allows them to deform plastically and fracture in between timesteps 

based on interactions with the other objects. We demonstrate tha t our approach can 

efficiently animate the types of destructive scenes common in film and games.

These animation techniques are designed to exploit artist expertise to ease creation 

of complex animations. By using artist-friendly primitives and allowing artists to provide 

characteristic deformations as input, our techniques enable artists to create more compelling 

animations, more easily.
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CHAPTER 1

INTRODUCTION

Physics-based animation has become a ubiquitous tool for creating realistic depictions of 

natural (and sometimes unnatural) phenomena in film and games. These approaches solve 

the equations of motion, discovered by physicists and engineers for a variety of materials, 

to compute lifelike motion. Using computers to simulate physics is not a new idea: some 

of the earliest uses of computers were to compute bullet trajectories to create firing tables. 

Since then, engineers have used simulation to aid design and predict failures before building 

expensive physical prototypes. In the 1980s, graphics researchers began to use simulation as 

a tool for animation, adapting the tools and techniques developed by engineers and scientific 

computing researchers for a new application. This approach was remarkably successful as 

evidenced by the pervasive, high-quality effects in movies and video games today.

Though popular, physics-based animation is very challenging for artists to use effectively 

since it removes the direct control artists rely on for most other aspects of animation -  mod

eling, key-framing, or manipulating animation curves. A typical workflow for artists using 

simulation techniques is a costly and time-consuming simulate, tweak, repeat cycle. Artists 

adjust initial conditions and material properties, such as density or stiffness, then rerun 

the simulation, hopefully achieving an animation closer to the desired result. Large-scale 

simulations are slow to run, and it is difficult to predict the result of changing simulation 

parameters since they are interconnected in complex, nonlinear ways.

Most research about physics-based animation is focused on simulating more phenomena, 

more accurately, and more efficiently. Many of these works focus on issues important to 

engineers and numericists, such as rate of convergence or discretization error. For graphics 

applications, however, our goal is to create compelling animations: simulation can be a 

useful tool, but the end goal is to aid animators, not to predict physical phenomena. In 

particular, artistic control is a more important design criterion for graphics applications 

than physical accuracy. Inspired by this philosophy, in this dissertation, we describe tech

niques for artist-guided physics-based simulation. Specifically we created new techniques for 

animating deformable solids tha t allow artists more direct control over simulation results
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than existing approaches. Our methods can be used to animate elastoplastic materials, 

create stylized animated sprites, and animate deforming, near-rigid objects.

Our first contribution is a new approach for animating elastoplastic materials. Most ma

terials can be modeled as elastoplastic, deforming elastically up to a limit, then undergoing 

permanent plastic deformation if internal stresses are too great. In order to compute elastic 

forces, we require a surjective map from the object’s rest shape to its current configuration, 

i.e. no two distinct points in the current configuration can map to the same point in 

the rest configuration. Since plastic deformation changes the rest shape of the object, 

this mapping may become degenerate, causing simulation instability. In order to ensure 

stability, plastic deformation must either be limited, or the rest shape discretization must 

be modified after large plastic flows. Most existing methods use a finite-element-based 

approach using a tetrahedral mesh discretization and require complex, computationally ex

pensive volumetric remeshing operations to maintain stability. We introduce a point-based 

approach to animating elastoplastic materials tha t avoids the need for remeshing, only 

requiring nearest-neighbors queries. As an added benefit, artists frequently work with point 

primitives, for example in particle systems, so they can leverage their tools and experience 

to postprocess simulation results.

Our second contribution is the method for creating stylized, animated artistic assets 

tha t we call Dynamic Sprites. While powerful tools exist for creating stylized static images, 

animating such images is a challenging problem. Stylized object behaviors are often non

physical, so traditional simulation techniques are unable to produce satisfactory results. Our 

approach allows artists to intuitively describe object behaviors using example deformations. 

These objects exhibit stylized motions when placed in an interactive environment. We intro

duce a set of controls that allow artists flexibility with respect to the laws of physics, while 

using physics to naturally handle collision response and timing. The resulting animations 

have exaggerated motion tha t matches the stylized static images provided as input.

Finally, we introduce a new artist-guided technique for animating destructive scenes 

containing near-rigid objects. For these scenes, the most important visual features are 

plastic deformation and fracture. State-of-the-art methods either animate objects using 

finite-element-based elastoplastic simulation techniques, with all the challenges described 

above, or model them as purely rigid and do not support plastic deformation. Elastic 

vibrations are mostly imperceptible, so spending computational resources to simulate them 

is a waste of effort, but we still want to capture plastic deformation. We introduce an 

example-based model for plasticity while computing dynamics and fracture using existing
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rigid-body techniques. Artists provide example deformations and fracture patterns while 

authoring a scene. At runtime, we simulate objects as rigid bodies and deform and frac

ture objects based on the impulses computed by the rigid body simulator. The resulting 

animations contain physically plausible deformations tha t match the style of the provided 

examples.

1.1 Thesis Statement
Physics-based animation is a tool for artists, so simulation methods must be designed 

to address the needs and challenges of artists. This approach requires rethinking design 

decisions and tradeoffs made for engineering applications such as choice of discretization 

primitive, and developing new material models tha t provide flexible artistic control.



CHAPTER 2

RELATED WORK

Since the 1980s, researchers have developed techniques to animate a huge variety of 

materials, including rigid bodies, deformable bodies, gasses, and liquids. Since the methods 

described in this thesis are focused on deformable solids, our survey of related work will 

also be concentrated on those phenomena.

2.1 Elasticity
The use of simulation to animate elastic materials dates back to Terzopoulos and 

colleagues in the late 1980s [Terzopoulos et al. 1987]. Their work was the first to solve 

the partial differential equations resulting from continuum mechanics to compute motion of 

deformable objects. Most modern approaches are based on the finite-element discretization 

described by O’Brien and Hodgins [1999]. O’Brien and Hodgins used a quadratic strain 

measure in their approach that is invariant to rotations, but is less stable and more expensive 

than a linear strain measure. Muller and colleagues introduced stiffness warping, which 

permits the use of a linear strain measure while avoiding linearization artifacts, even in 

the presence of rotational deformation [MUller et al. 2002; MUller and Gross 2004]. Irving 

and colleagues introduced invertible finite elements, a method stable even in the presence 

of extreme deformations [Irving et al. 2004]. Successful production systems have been 

developed using these techniques for both real-time [Parker and O’Brien 2009] and offline 

applications [Cole 2011].

A variety of meshless methods have been developed for animating elasticity. The 

conceptually most simple approach is to connect point masses with springs (e.g. [Baraff 

and W itkin 1998; Liu et al. 2013]). However, these approaches are not based on continuum 

mechanics and typically do not converge under refinement; forces depend on mesh topology 

and spring stiffnesses rather than elastic parameters such as Young’s modulus or Poisson’s 

ratio. MUller and colleagues [2004] developed a point-based approach using a moving least 

squares approximation of the deformation gradient and is based on continuum mechanics. 

Deformation is estimated by animating the relative motion of each particle and its neigh
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bors. Many researchers, including ourselves, use a similar moving least squares approach 

[Gerszewski et al. 2009; Zhou et al. 2013]. Martin and colleagues [2010] introduced elastons, 

which provide a unified point-based approach for elastic volumes, shells, and rods. Their 

method relies on a generalized moving least squares estimate of deformation tha t considers 

derivative information, avoiding the need for volumetric sampling around shells and rods.

For many real-time applications, continuum-mechanics-based approaches are too com

putationally expensive, and in the case of finite-element approaches, complicate modeling 

since they require volumetric (typically tetrahedral or hexahedral) meshes. This has led 

researchers to develop geometric methods tha t produce plausible deformations but have low 

implementation complexity and runtime cost, and do not require volumetric meshes. The 

first popular technique is known as position-based dynamics, first developed by Jakobsen 

for the video game Hitman [2001] and later formalized by Muller and colleagues [2007]. In 

this framework, objects are modeled as a set of particles and elasticity is emulated through 

the use of constraint functions. Particles are integrated through time independently using a 

first-order forward Euler scheme, and then the particle positions are iteratively adjusted to 

satisfy the constraints, which are functions of positions only (i.e. do not depend on velocity). 

This approach is incredibly flexible: the solver can operate on any constraint functions of 

position. Researchers have developed constraints to model a variety of materials, including 

gasses and liquids at interactive rates [Macklin and Muller 2013; Macklin et al. 2014]. 

Because position-based dynamics modifies positions of particles directly, rather than by 

applying forces, animations often suffer from artificial damping.

Another geometric approach for animating deformable bodies is shape matching, de

veloped by Muller and colleagues [2005]. In this method, objects are divided into shapes 

-collections of particles. Elastic forces are computed by finding a best-fitting rigid trans

formation from the rest position of a shape to its current world configuration and then 

applying spring forces to pull particles toward the rigidly transformed shape. The main 

advantage of this approach is tha t shapes are a very flexible primitive: they can consist 

of a few particles, or the entire object. For example, Rivers and James [2007] developed 

an optimized approach using shapes defined as overlapping subsets of a voxel lattice. One 

limitation of the original shape-matching approach is tha t shapes must occupy a volume, 

making it poorly suited to modeling strands or hair, for which points are nearly collinear. 

Muller and Chentanez [2011] proposed a solution to this problem by associating orientations 

with particles, which reduced volumetric sampling requirements. While this approach relies 

on summing rotation matrices, which will not compose or interpolate rotations, the authors
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produced compelling results.

Though Muller and colleagues provided a parameter range where shape matching is 

provably stable for a single shape, this analysis breaks down in the presence of nonlinearities 

introduced by many overlapping clusters. Bargteil and Jones [2014] proposed a strain lim

iting approach similar to position-based dynamics to improve stability when using multiple 

clusters while avoiding the artificial damping of pure position-based dynamics.

2.2 Plasticity
Terzopolous and Fleischer recognized the importance of animating plastic phenomena, 

extending their pioneering work simulating elastic materials to include plasticity just one 

year later [1988]. O’Brien and colleagues similarly incorporated plasticity into their finite- 

element approach to simulate ductile fracture [2002]. Early work in graphics relied on an 

additive plasticity model, in which total strain is the sum of elastic and plastic components. 

Irving and colleagues [2004] recognized tha t such an additive model is appropriate only 

for infinitesimal deformations, and tha t for finite deformations a multiplicative model is 

more appropriate. Bargteil and colleagues [2007] proposed a method for performing such a 

factorization tha t incorporates important features of plasticity such as plastic yield, work 

hardening/softening, and creep.

W ith a suitable model for how and when plastic deformation should occur, the remaining 

challenges for simulating plastic materials are related to ensuring simulation stability in the 

presence of large plastic flows. Bargteil and colleagues performed wholesale, conforming 

volumetric remeshing when basis functions became sufficiently ill-conditioned. W ojtan and 

Turk [2008] used a nonconforming tetrahedral mesh, greatly reducing time spent performing 

remeshing. They also avoided visual artifacts by maintaining separate surface and simula

tion meshes. Both of these approaches remesh the entire domain, interpolating simulation 

variables to the new tetrahedra. This approach causes artificial smoothing and diffusion. 

To combat this, Wicke and colleagues [2010] proposed a method based on local-remeshing, 

where only elements with poorly conditioned basis functions are remeshed. There are 

two issues tha t complicate this approach. First, volumetric meshing generally, and local 

remeshing specifically, are challenging, poorly understood problems; solutions often rely on 

heuristics tha t seem to work “well-enough” in practice with very few quality guarantees. 

Second, plastic deformation modifies the rest shape of each element independently, so when 

remeshing is required, tetrahedra no longer fit together. In order to apply topological 

operations such as edge flips, Wicke and colleagues construct a consistent material space
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which minimizes internal strain energy, storing a per-element map from rest space to this 

material space. By extending the set of mesh improvement operations and introducing 

an approach to enforce incompressibility without locking, Clausen and colleagues [2013] 

extended this technique to animate materials ranging from purely elastic to purely liquid. 

These finite-element-based techniques produce extremely high-quality results, but have very 

high implementation complexity.

Meshless methods have also been developed for animating plasticity. Muller and col

leagues [2004] divided plasticity into two regimes, storing either plastic offsets for mostly 

elastic materials, or elastic offsets for mostly plastic materials. This allowed them to model 

mostly elastic objects with limited permanent deformation, or liquid-like materials with 

limited elasticity. Gerszewski and colleagues [2009] compute elastic forces by tracking the 

deformation gradient of the object rather than its rest state. This avoids instabilities when 

the rest state may become degenerate, for example deformed into a coplanar configuration, 

but is susceptible to drift and can therefore handle limited elastic deformation. Zhou 

and colleagues [2013] adapted the technique of Gerszewski and colleagues to use implicit 

integration to improve stability. Our approach, deformation embedding, explicitly maintains 

the rest state of the object, allowing for arbitrary elastic deformations.

Other researchers have modeled plastic materials as mostly-liquid, modifying fluid sim

ulators to incorporate elastic forces. Goktekin and colleagues [2004] used an eulerian fluid 

simulator, adding elastic forces computed by tracking the elastic strain throughout the ma

terial. Clavet and colleagues [2005] developed a meshless approach using an SPH-like fluid 

simulator and incorporating elasticity by adding spring forces between particles. Plasticity 

is incorporated by changing spring rest lengths. Since these approaches model materials as 

modified fluids, animated materials behave more like fluids than solids.

2.3 Fracture
As with plasticity, fracture was quickly recognized as an important visual feature when 

animating deformable solids. Terzopolous and Fleicher [1988] incorporated fracture along 

with plasticity one year after their seminal paper on simulating elastic bodies. Approaches 

based on finite-elements are common in practice, and typically rely on the method of 

O’Brien and Hodgins [1999] and its refinements [O’Brien et al. 2002; Parker and O’Brien 

2009; Pfaff et al. 2014]. To avoid the complexity of meshing, Pauly and colleagues [2005] 

developed a meshless approach. Hegemann and colleagues [2013] proposed a level-set-based 

technique capable of handling topological changes implicitly, capturing small-scale surface
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details without high-resolution volumetric meshing.

For brittle materials, it is often undesirable to compute elastic dynamics, when only rigid 

motion and fracture are desired. Muller and colleagues [2001] were able to animate fracture 

in real time by treating objects as rigid for the purpose of dynamics, and performing a 

quasistatic solve to incorporate plastic deformation and fracture in between timesteps. Bao 

and colleagues [2007] improved on this approach by projecting out the null space (i.e. rigid 

motion) during quasistatic analysis and supporting a simple plasticity model.

To support artistic control, and to reduce computational costs during simulation, a 

variety approaches based on prescoring have been developed. Su and colleagues [2009] 

aligned a fracture pattern to the location of impacts to produce plausible and controllable 

fracture. By performing an approximate convex decomposition, MUller and colleagues [2013] 

were able to achieve high-quality, intricate fractures in real time.

2.4 Example-Based Deformation
One of the biggest challenges when using physics-based animation is providing artists 

with appropriate controls over the outcome of simulations. For modeling tasks, artists have 

precise control over their meshes. Likewise, for keyframe animations, artists have control 

of both the keyframes and animation curves between them. Once an artists has chosen to 

use physics-based animation, however, their control is limited to material properties and 

initial conditions. A popular solution is to allow artists to iterate using lower resolution 

simulations and then add detail to create a high-resolution animation [Bergou et al. 2007; 

Kavan et al. 2011].

M artin and colleagues [2011] proposed an alternative approach: example-based defor

mations. Artists provide example deformations of their model and an extra potential is 

included to create internal forces tha t act to return a deformed object to the example 

manifold -  interpolations of the provided examples. The main benefit of this approach 

is tha t artists have intuitive controls over high-level object behavior (i.e. shapes), but 

features such as global motion and collision response are handled automatically. Since its 

introduction, researchers have proposed more efficient formulations, suitable for real-time 

scenarios [Schumacher et al. 2012; Koyama et al. 2012]. Our work is inspired by the 

example-based simulation paradigm and extends the method, addressing shortcomings of 

the original approach and adapting it to new applications.

These example-based approaches require a method of interpolating between deformed 

shapes. Martin and colleagues interpolated the per-element strains of mesh tetrahedra to 

compute intermediate shapes. As described above in the case of plastic deformation, these
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deformed tetrahedra do not “fit together,” so they must perform an optimization to find 

a similar, realizable configuration. Schumacher and colleagues [2012] avoided explicitly 

performing this reconstruction to improve efficiency. In their shape-matching framework, 

Koyama and colleagues [2012] linearly interpolated the scale-shear component of their shape 

basis matrices. In contrast, our approach is based on linear blend skinning; each example 

is defined as the set of transformations for each bone and shape interpolation is performed 

by interpolating these bone transformations.



CHAPTER 3

DEFORMATION EMBEDDING FOR 
POINT-BASED ELASTOPLASTIC 

SIMULATION 

3.1 Introduction
Computer animation of elastoplastic materials, such as modeling clay, chewing gum, 

and bread dough, has long been a goal of computer graphics, probably because these 

materials demonstrate such intriguing behavior. As a field we have made progress toward 

this goal and elastoplastic materials have recently been showcased in special effects, for 

example the honey in Bee Movie [Ruilova 2007] and the food in Ratatouille [Goktekin 

et al. 2007]. However, significant limitations in current techniques remain: some handle 

only limited plastic deformation, some handle only limited elastic deformation, and others 

require complex remeshing methodologies.

We present a straightforward, easy-to-implement, point-based approach for animating 

elastoplastic materials. Our approach can handle extreme elastic and plastic deformations. 

Because the approach is point-based, there is no need for complex remeshing—the corre

sponding operation is a simple neighborhood query.

A material tha t has undergone plastic deformations does not, in general, have a zero- 

stress state that can be realized in three-dimensional space. Put another way, the rest 

space is not embeddable in three-dimensional space. This fact poses a challenge because 

elastic forces depend on a mapping from rest space to deformed or world space. Some 

authors have addressed this challenge by keeping plastic offsets from an initial rest state, 

but this places limitations on the amount of plastic deformation that is possible. Others have 

abandoned the rest state and keep elastic offsets, resulting in limited elastic deformations 

and/or artificial plasticity. Borrowing an idea from Wicke and colleagues [2010], we take 

a compromise approach and store an embedded space—the weighted least-squares best 

embedding of rest space into three dimensions, while preserving the rest space exactly per 

particle. Nearest neighbor queries can be performed efficiently in embedded space, allowing 

us to update particle neighborhoods, while deformation can be computed accurately from
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the rest space. W ithout updating particle neighborhoods, simulations become unstable 

under large plastic flows. By maintaining both spaces, our method can handle large plastic 

and elastic deformation simultaneously.

While our primary contribution is the development of our embedding into three di

mensions, we also suggest an approach for estimating volume tha t allows for nonuniform 

samplings. We demonstrate our approach on a variety of examples tha t display a large 

range of material behaviors, including simultaneous elastic and plastic deformations. Our 

method is the first point-based approach capable of simulating these examples, and is much 

simpler to implement than competing finite element approaches.

It is worth noting tha t most previous point-based approaches for animating large plastic 

flows incorporated SPH-like pressure forces. Such forces provide additional stability [Ger- 

szewski et al. 2009] by favoring uniform sampling of simulated materials. However, they 

also alter the behavior of the underlying material model, preventing, for example, the 

simulation of hyperelastic materials. Moreover, such forces do not allow for adaptive 

sampling without employing complex adaptive simulation frameworks [Adams et al. 2007]. 

By eschewing these nonphysical pressure forces and relying exclusively on elastic forces and 

a volume preserving plasticity model, our framework allows for the simulation of arbitrary 

material models. While a subtle point, this represents a significant scientific advance and 

our examples demonstrate far larger plastic deformations than previously possible with 

point-based methods for purely elastoplastic materials.

3.2 Method
The core of our approach is the maintenance of three domains: world space, rest space, 

and embedded space. World space refers to the current, deformed object configuration. 

Rest space is local to a particle and refers to the particle’s preferred relative positions 

of its neighbors, stored as 3D vectors per neighbor. In general, the rest space cannot 

be represented as a set of 3D points, as per-neighbor vectors cannot be reconciled exactly 

between all particles. We introduce the embedded space, which is a global, least-squares best 

fit of the rest space into three dimensions. It can be thought of as an approximate reference 

configuration for the material. The rest space and world space are used to compute the 

deformation gradient, from which we can compute elastic forces and plastic deformations. 

The embedded space allows efficient updates to neighborhoods in the presence of plastic 

deformation. Our method is summarized in Algorithm 1 and visualized in Figure 3.1.
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A lg o rith m  1 Deformation Embedding for Elastoplasticity 
initialize kernel support radii and particle neighborhoods 
w hile Animating do

approximate deformation gradient 
factor deformation into elastic and plastic components 
compute elastic forces 
integrate elastic, body, and damping forces 
compute global embedding 
resample particles 
update neighborhoods 

end  w hile

3.2.1 N o ta tion

We use x j , e j , u j  to denote to neighbor vectors—vectors between particles i and j —in 

world, embedded, and rest space, respectively. Capital bold face letters refer to matrices. 

The index j  refers to the neighbors of particle i , which may change during the course of the

3.2.2 A pp roxim ating  D eform ation

Following the work of Muller and colleagues [2004], we use moving least squares (MLS) 

to approximate the deformation gradient, F. For each particle i, we seek the matrix Fj that 

minimizes

j
where the sum is taken over the neighbors, j ,  and w j is a weighting kernel evaluated in 

rest space. We compute the minimizer by solving the following linear system,

We refer to the quantity J2j wiju j u J  as the particle i ’s basis matrix, Aj, which we invert 

to solve the system. Note that if the rest space vectors u  become coplanar, then A  becomes 

singular.

3.2 .2 .1  P artic le  V olum e

It is common in point-based animation to assume tha t particles have a fixed, often 

uniform, mass or volume. This assumption often leads to density fluctuations tha t can 

cause spurious oscillations. In the context of plastic deformation, it is desirable to allow the 

sampling to vary over time and thus we require a way of estimating the volume occupied by 

a particle. Noting tha t A  serves the same purpose as the basis matrix in tetrahedral finite

simulation.

(3.1)

(3.2)
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element methods, tha t the volume of a tetrahedron is a multiple of the determinant of the 

basis matrix, and tha t the units of det(A) are m 6, we approximate the volume of a particle

as,

V y a p - W ij) 3■ (3.3)
The denominator normalizes with respect to the weights used to compute A, which are 

cubed by the determinant operation. We assign a constant density to the material and 

allow each particle’s mass to change over time. The total mass of the material fluctuates 

slightly due to this approximation (see Section 3.3), but we did not observe any resulting 

artifacts in our examples.

3.2 .3  E lastop lastic  M odel

We use a multiplicative plasticity model, where the total deformation gradient is the 

product of elastic and plastic deformations, i.e. F  =  F eF p.

Following Irving and colleagues [2004], we diagonalize F e =  U F eV T and compute the 

diagonalized first Piola-Kirchhoff stress:

P  =  Atr(Fe -  I)I +  2^(Fe -  I). (3.4)

We then rotate the diagonalized stress P  =  U P V t  and compute symmetrized forces

fi =  V iP iA -1Wij u -  (3.5)

f  =  —ffj =  -  fi

which are linear in position.

Using the plasticity model developed by Bargteil and colleagues [2007], we factor our 

deformation gradient, F, into elastic and plastic components F e and F p, respectively. This 

model preserves volume in rest space, and accounts for a range of material properties 

including yield point, creep, and work hardening/softening. Specifically, we compute the 

singular value decomposition of F  =  U F V T and factor the diagonal matrix F  into F eF p. 

To compute F p, we first compute

F
~  (3.6)

d e t(F 1/3)

This computation is essentially normalizing F  to have determinant 1, ensuring volume 

preservation. Since F  is diagonal, we can perform the cube root operation on each entry 

independently. We then compute F p =  F 7, where

y (p  P a v  ( IIP II -  m ax(pY +  K a))y (p  > p y  , K) = --------------- i i p ---------------  (3.7)
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which is clamped between 0 and 1. Py  is the yield stress (at lower stresses there is no 

plastic flow); v is the flow rate, which controls how quickly flow will occur; a  is the total 

accumulated plastic stress as computed by the simulation; and K  controls the rate of work 

hardening or softening. P y , v , and K  are user-defined, while a  is a simulation variable 

integrated through time. The K a  term  can be thought of as adjusting the yield point. To 

prevent rotation of the plastic deformation, we rotate the diagonalized deformation into 

F e =  U F eV T and F p =  V F PV T. We use F e to compute elastic stress in Equation 3.4. For 

more details, refer to Bargteil and colleagues [2007].

For damping forces, we use the SPH viscosity formulation of MUller and colleagues [2003]. 

These forces act to minimize velocity differences between neighboring particles, and are 

computed by

=  V—  (vj -  Vi) V 2W (u ij,h ). (3.8)
pj

Note tha t this simple model damps all relative motion and is non-zero for rigid rotation. 

Alternatively one could base damping forces on the time derivative of stress.

To update positions and velocities, we use either an explicit leapfrog scheme, or the 

following Newmark integration scheme adapted from Bridson and colleagues [2003], which 

integrates viscous forces implicitly and elastic forces explicitly:

- vn+1/2 =  vn i At (tn xn vn+1/2)• v v +  2 aviscous(l )

• xn+1 =  x n +  Atvn+1/2

• Vn+1 =  Vn+1/2 +  At aelastic,body (tn+  ,Xn+1 ,Vn+1/2)

Each timestep of the Newmark scheme is more expensive than the explicit scheme, but 

for simulations where high viscosity is desired, the implicit viscous solve permits larger 

timesteps, resulting in better performance overall. We experimented with linearly implicit 

Euler integration, but found tha t rotational motion was severely damped (see accompanying 

video) and did not pursue this further.

3.2 .4  E m bedding D eform ation

As the material undergoes plastic deformation a particle’s neighbors may move far away 

in rest space and no longer provide useful information. To update these neighborhoods 

when such changes occur, we maintain a globally optimal embedded space, encoded as a 

three-dimensional position, ei , for each particle. To update these positions, we first compute 

temporary rest space vectors tha t incorporate the plastic deformation tha t occurred over 

the previous timestep, u ij- =  F pu ij .
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The optimal least-squares embedding of the particles into three-dimensional space will 

minimize the discrepancy of neighbor vectors between the embedded and rest spaces. We 

formulate this optimization over the embedded positions, ei , as a weighted linear least- 

squares problem

a r g m i n ^  | |w j ( u j  -  e j ) (3.9)
i j

which requires solving three decoupled, over-constrained linear systems: one for each di

mension, x, y, and z. In matrix form, each system can be expressed as

Ce =  u. (3.10)

C is similar to the constraint matrices tha t appear when using Lagrange multipliers or 

projection methods for constrained dynamics. In our case, each row, r, of C encodes the 

(weighted) constraint tha t if particle j  is a neighbor of particle i then eij =  u j . More 

specifically,

C ri =  Wij

C rj Wij

The vector e contains the embedded space positions for all particles and u j  =  w jU j . Note 

tha t while eij =  - e j i , the same is not true for u j  and uji because rest space vectors, u j  

are transformed by F Pi each timestep and diverge over time.

Because each particle has roughly 32 neighbors (constraints), C is roughly 32n x n. We 

solve this non-square, highly over-constrained system by applying conjugate gradients to 

the normal equations,

C T Ce u . (3.11)

Denoting the set of neighbors of i as n(i), the entries of C T C are

' 2 E  wik if i =  j
k2n(i)

( c t c ) h  = { - 2 w j
-W
0

ij

if i 2 n (j)  A j  2 n(i) 
if i 2 n (j) ® j  2 n(i) 
otherwise.

(3.12)

This matrix is symmetric and diagonally dominant, but if all the neighborhoods are sym

metric, will have a null-space containing the constant vector (corresponding to global 

translations). We explicitly remove this by adding a row to C constraining the first particle 

to maintain its current embedded position. Note tha t the system is not invariant to global

2



16

rotations, so no special handling is required. Because the system changes structure as 

neighborhoods change or particles are split or merged, prefactoring is not possible.

While these embedded space positions provide a globally consistent reference configura

tion, there will still be discrepancy between the rest and embedded spaces. The vectors U j 

become the rest space vectors u j  for the next timestep.

It is natural to compare our embedding to the elastic-energy minimization approach of 

Wicke and colleagues [2010]. Interestingly, our linear embedding does not capture some 

rotational changes to the rest space. However, world space dynamics are nearly identical 

compared to the more expensive nonlinear optimization used by Wicke and colleagues, 

as shown in Figure 3.2. This behavior is because rotations typically do not change the 

neighbors with the highest smoothing weights (those closest to the particle), and the rest- 

space vectors for those particles are preserved exactly. In our experiments, our linear solve 

was nearly twice as fast as the elastic-energy minimization approach of Wicke and colleagues.

Another difference between our approach and that of Wicke and colleagues [2010] is in 

how we store rest space. Wicke and colleagues store a single 3 x 3 matrix per tetrahedron, 

which they call a plastic offset, tha t maps from embedded space to rest space. Instead, we 

store rest space as about 30 rest-space neighbor vectors per particle. While our approach 

requires more memory, we found storing a single matrix per particle problematic as a simple 

least-squares fit introduced too much error into the mapping from embedded to rest space. 

If memory consumption is a significant concern, higher order fitting techniques and/or 

compression may prove effective.

3.2.5 U p d a tin g  N eigh b orh ood s

After plastic flow, a particle’s neighbors may have moved far away, and no longer provide 

useful information about the deformation gradient. We therefore update each particle’s 

neighborhood by finding the nearest neighbors in the embedded space. We expect that 

neighborhoods in embedded space are a good approximation of neighborhoods in rest space, 

and they can be queried efficiently using a KD-tree. The only information lost in this process 

is the difference between the rest space vector, u j , and the embedded space vector, e j , 

when a particle j  moves out of particle i ’s neighborhood. When a new particle enters a 

neighborhood, we initialize u j  =  e j . This process does lose some information about the 

rest state (and, consequently, the internal stress), but the lost information is the least useful 

as it comes from the particles tha t are farthest away.
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3.2 .6  P artic le  R esam pling

To improve computational efficiency and stability, we enable particle resampling in our 

simulator. We selectively split and merge particles when neighborhood sampling is either 

too dense, or too sparse. We quantify this by computing a basis matrix for each particle as

= X  j  (3-13)

where the index j  runs over the neighbors of particle i, which may vary over time. Note 

tha t this is simply a weighted covariance matrix, where the 4th power in the denominator 

results in a 1 /r2 falloff away from particle i.

We perform an eigendecomposition of this matrix and examine its eigenvalues to decide 

to split or merge particles. If the maximum eigenvalue is small, this indicates that there 

are too few particles nearby, and the particle should be split. We split the particle into 

two particles and place them along the eigenvector with the minimum eigenvalue. They are 

offset from the particle’s original position by half the average distance to the particles in 

the neighborhood.

Splitting particles near the surface can potentially cause rendering artifacts on the 

object’s surface, which we attem pt to mitigate in two ways. First, we chose the middle 

eigenvalue as a splitting direction because for surface particles, the smallest eigenvalue is 

typically perpendicular to the surface, and the largest is already well sampled. The middle 

eigenvector corresponds to a direction tangent to the surface tha t is poorly sampled. Second, 

we reject splits tha t are likely to cause surface artifacts. We compute the distance from the 

original particle to the center of mass of its neighborhood. If either split particle is more 

than a factor of V2  away from the center of mass, the split is cancelled. Intuitively, this 

condition attem pts to eliminate splits that are not tangent to the surface, as shown in Figure 

3.3. We also cancel splits tha t would place a new particle inside of an obstacle. We classify 

particles as “surface particles” if the distance from the particle to its neighborhood center 

of mass is greater than a user-defined threshold, as interior particles likely have a uniformly 

distributed neighborhood, while surface particles will have a neighborhood skewed away 

from the surface.

If the minimum eigenvalue is too large, then there are too many particles nearby and the 

particle should be merged with its nearest neighbor. The merged particle is placed halfway 

between the two original particles. The split and merge thresholds are a user-specified 

parameter, but reasonable values can be chosen by examining minimum and maximum 

basis matrix eigenvalues from the object’s initial configuration.
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While much more complex resampling methods exist [Adams et al. 2007; Ando et al. 

2012], we consider the ease of implementation of our technique to be a major benefit.

3 .2 .7  Im plem en tation  D eta ils

For our weighting kernels, we use the standard SPH kernels of MUller and colleagues [2003]: 

The poly6 kernel, Equation 3.14, for all weights except for viscosity, where we use the SPH 

viscosity kernel, Equation 3.15.

We initialize each particle’s smoothing radius by finding its nearest 32 neighbors, and 

setting its radius to twice the average neighbor distance. During the simulation, a particle 

can have a maximum of 32 neighbors, which must be within its radius in embedded space. 

This constraint limits the number of neighbors and the number of non-zeroes in our matrices.

3.2 .7 .1  R endering

Generating visually appealing surfaces from particle data for rendering is a difficult 

problem. In the examples in this paper, we used two methods: the skinning method of 

Bhattacharya and colleagues [2011], and a simple surface mesh embedding technique. When 

embedding a surface mesh, we update mesh vertex positions with the weighted average 

of the displacements of nearby particles from the first frame of animation. The weights 

are computed using the poly6 kernel with a user-defined, constant support radius. This 

approach is sufficient for simulations with largely elastic deformations, but breaks down for 

large plastic flows. Including more robust surface tracking and using the embedded space 

to update weights are interesting directions for future work.

We have used our proposed method to simulate materials exhibiting a wide range of 

elastoplastic behavior as shown in our figures and included videos. All examples were run 

on a dual-2.8 GHz Intel Xeon processor machine using up to 12 cores. Trivially parallelizable 

loops were multithreaded using the Intel TBB library.

Figures 3.2 and 3.4 demonstrate the importance of the two components of our mapping 

to rest space: plastic offsets and embedded space. W ithout plastic offsets, the final world 

pose of the bar in Figure 3.2 would not include any twist. W ithout neighborhood updates, a

(3.14)

V 2W (r , h) = - m ( h  -  r) 
'KhP

(3.15)

3.3 Results and Discussion



19

particle’s neighborhood may become degenerate, leading to an ill-conditioned basis matrix 

and instability. By using embedded space to update neighborhoods, we maintain well 

sampled neighborhoods and increase stability (see Figure 3.4). Resampling also improves 

stability by merging particles that become extremely close in embedded space.

Figure 3.5 demonstrates our method’s ability to animate a wide range of plastic param

eters, including spatially varying plasticity.

Figures 3.6 and 3.7 compare the world space and embedded space deformations of a 

bunny dropped onto obstacles. The embedded space captures the key features of the global 

plastic deformation. The high-frequency details of the original mesh are preserved as the 

material flows plastically.

Figure 3.8 demonstrates our method’s robust handling of uneven sampling. Our new 

volume estimate allows us to simulate objects with dramatically varying particle densities. 

Previous work has required expensive fully adaptive sampling techniques [Adams et al. 2007] 

or special handling of boundaries where regions of varying particle density meet [Solenthaler 

and Gross 2011].

As the “upset fowl” collides with the rigid obstacles in Figure 3.9, it undergoes significant 

elastic and plastic deformation. As it is crushed, it reacts elastically, lifting the upper block 

before succumbing to creep and flowing plastically.

As shown in Figure 3.10, our volume estimate closely tracks both the “ground tru th ” 

volume computed using the skinned, embedded space mesh, and the estimate used by SPH 

based approaches.

Timing results are shown in Table 3.1 and Table 3.2.

3.3.1 L im itations and Future W ork

In practice, we found our method to be robust and stable for bulk motion. Typical failure 

cases are a single particle or a small group of particles drifting away from the bulk material, 

or getting caught on an obstacle (we colloquially refer to such particles as “jerk particles”). 

These artifacts are usually induced by extreme or violent deformations or sharp corners 

of rigid obstacles. In a production environment, these troublesome particles can be easily 

deleted before skinning or rendering. Using a robust least squares solve, or minimizing the 

L 1 norm in our embedding, may eliminate these problems, albeit at significant additional 

cost.

In the current implementation, we allow particles to apply forces through solid obstacles, 

which can lead to unnatural and undesirable behavior near sharp corners. Also, we do not 

check for collisions between particles nearby in world-space, but far apart in embedded
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space, which can result in interpenetration artifacts. We suspect both problems can be 

efficiently resolved with an additional spatial partitioning scheme in world space.

Although our simple resampling scheme works to improve stability, our splitting method 

can cause surface artifacts. Increasing the model resolution reduces these artifacts, but 

a more robust resampling or skinning approach is a possible direction of future work. 

Additionally, aggressively coarsening regions on the object interior could lead to improved 

performance while preserving surface detail.

It is common for materials to become brittle after work hardening and become prone 

to fracture. In our implementation, such topological changes happen by accident, when 

particle neighborhoods change and parts of the material stop interacting. By intentionally 

causing such topological changes, our method could be adapted to simulate ductile fracture. 

Relatedly, we do nothing in particular to address “fusing” in embedded space, but did not 

notice this to be a problem in our examples. One could address such issues using an embed

ded surface mesh and ray casting when computing neighborhoods. We also note tha t many 

previous techniques, both point-based [Gerszewski et al. 2009] and mesh-based [Bargteil 

et al. 2007], allow such fusing and sometimes consider it a “feature.”

Because points behave nearly independently, this method is well suited to parallelization 

on multicore architectures or GPUs. Most computations only output results for a single 

particle, and read only from nearby particles. We employed multithreading to parallelize 

these independent loops on the CPU; however, these access patterns are also well suited 

for the memory hierarchy on current GPU architectures. Preliminary GPU implementation 

efforts resulted in an order of magnitude speedup for simple elastic examples.

We have presented a simple to implement point-based method for animating elastoplastic 

materials. By maintaining a globally optimal fit of the material's reference configuration 

we are able to simulate materials undergoing simultaneous and extreme elastic and plastic 

deformations. Like all point-based methods, our approach trades the numerical advantages 

of discretizing the domain into disjoint elements (better conditioning, sparser matrices, etc.) 

for the significant implementation advantage and simplicity of avoiding computing such a 

discretization altogether.
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F ig u re  3.1. From the initial configuration (a), each particle’s neighborhood undergoes 
plastic deformation, resulting in a new rest space configuration (b). However, the red and 
blue particles disagree about where their shared neighbors should be. Performing a least 
squares global fit, we obtain the embedded space configuration (c), which is used to  update 
particle neighborhoods. Each particle’s deformation gradient maps from its own rest space 
to  the current world space configuration (d).

F ig u re  3.2. Comparison between our linear embedding (left) and nonlinear embedding 
(right) for a twisted plastic bar. The world space behavior (blue) is nearly identical, even 
though the linear embedding captures very little rotation. Though small, changes in the 
linear embedding did cause neighborhoods to change in this example.
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F ig u re  3.3. We cancel splits that are likely to cause popping artifacts near the object 
surface.
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F ig u re  3.4. A plastic bar is dropped onto the ground. W ithout neighborhood updates 
(center left), the simulation becomes unstable after the object is significantly flattened. Our 
embedding allows neighborhood updates which improve stability (center right), but this also 
becomes unstable. Adding resampling (right) preserves stability through the entire scene.

F ig u re  3.5. A bar is twisted and sheared (left), then released. The final world space 
configurations for (clockwise from top, left) elastic, slightly plastic, highly plastic, and 
varying plasticity materials. For the nonuniform bar, the plastic flowrate varies from 
high(red) to low(blue) along the bar.
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F ig u re  3.6. World space (above) and embedded space (below) of bunny dropped on a rigid 
bar.
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F ig u re  3.7. A bunny is dropped on a set of spheres. Clockwise from top left: Initial 
configuration, world (skinned), world(particles), and embedded spaces after impact.

F ig u re  3.8. A plastic block with dramatically different sampling densities flows when 
dropped.
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F ig u re  3.9. An “upset fowl” destroys a pig’s house.

F ig u re  3.10. Estimated total volume computed using our new approach, SPH, and the 
skinned embedded space mesh for Figure 3.4.
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T able 3.1. Timing results for pictured examples. Time is given in seconds to produce one 
30 Hz frame of animation.__________________________________________

Example #Particles At Sec/frame
Figure 3.2 linear 5,000 .001 2.36
Figure 3.2 nonlinear 5,000 .001 4.30
Figure 3.4 5,408 .001 1.2
Figure 3.7 36,675 .0004 278
Figure 3.8 10,470 .005 2.39
Figure 3.9 21,708 .0001 92

T able 3.2. Timing detail for Figure 3.4
Step % computation time
Compute basis matrices 3.54
Viscosity solve 17.19
Compute forces 4.55
Explicit integration step 0.36
Embedding solve 41.70
Resampling 2.24
Neighborhood updates 22.91
Compute plastic offsets 3.73
Handle collisions 0.19



CHAPTER 4

DYNAMIC SPRITES: ARTISTIC AUTHORING  
OF INTERACTIVE ANIMATIONS 

4.1 Introduction
Drawing pictures is one of the oldest and most fundamental forms of human communi

cation. Ever since our ancestors began creating cave paintings in prehistoric times, humans 

have been making pictures to tell stories, explain ideas, and express emotions. Over the 

years, technical advances have provided artists with an ever expanding arsenal of tools and 

techniques for creating and editing images, and today, sophisticated software packages like 

Adobe Photoshop and GIMP include a variety of features tha t enable users to copy, paste, 

compose, morph, and otherwise manipulate their images. Unfortunately, while existing 

digital tools make it easier than ever to create high-quality static images, making drawings 

come “alive” through movement and interactive behaviors in cartoons, videos, or games is 

a very different and challenging task.

Turning a drawing into a dynamic, interactive entity typically involves several steps 

tha t require different types of expertise: a rigger defines articulation variables; an animator 

creates keyframes that specify how those variables change over time; and a programmer 

encodes the keyframed motions into behaviors. In some cases, simulation can provide 

a more automated alternative for generating motions and behaviors, but it often requires 

significant amounts of tuning to produce results that exhibit specific, desired characteristics. 

For professional film and game production, these steps can be distributed to separate teams 

of artists, riggers, animators, and programmers, which makes for a highly modular content 

creation pipeline. However, for more casual users, the gap in required skills and expertise 

between creating a drawing and making it come to life represents a significant barrier. This 

is one likely reason why it is much easier to find examples of high-quality static drawings 

(e.g., in online image repositories) than compelling dynamic content.

Sprite sheets, collections of static 2D drawings tha t depict representative poses for an 

object, like the example shown in Figure 4.1, offer a more cohesive, drawing-centric approach 

to creating dynamic images.
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Producing motion with a sprite sheet involves cycling through drawings of the object. 

Thus, artists can change both the appearance and dynamic behavior of an object using 

traditional drawing tools by creating or editing various poses. Unfortunately, sprite sheets 

require many drawings to produce smooth animations since even small deformations to a 

pose require an entirely new drawing. Furthermore, even if these in-between poses can be 

generated automatically, sprite sheets alone encode neither the timing information that is 

critical for producing high-quality motions, nor the logic tha t defines how an object should 

behave in response to external stimuli. As a result, sprite sheets still require a significant 

amount of work to create and use. In contrast, we use physics to automatically provide 

timing and achieve generalization outside the hand-drawn examples.

In this work, we present an approach for transforming static drawings into dynamic 

sprites. To produce a dynamic sprite, the artist creates a pose manifold by drawing an 

object, deforming it into example poses, and specifying sets of these example poses tha t can 

be interpolated as the object moves. Our system uses example-based physical simulation to 

automatically move the object through this pose manifold based on forces applied from the 

external environment or user commands. In this way, we allow the artist to create dynamic 

objects and characters without specifying many in-between frames, adjusting animation 

curves, or writing code tha t defines object behavior.

The key feature of our approach is that it provides a set of explicit artistic controls over 

various characteristics of dynamic sprites. First, the example poses themselves give artists 

significant control over the appearance of the pose manifold.

However, combining several example poses at once can lead to a “muddy” manifold 

where interesting features of the individual examples get lost in the blended pose. Thus, 

we allow the artist to explicitly construct a simplicial complex (mostly line segments with 

the occasional triangle) over the set of example poses. Furthermore, since external physical 

forces alone may not induce sufficient motion within the pose manifold, our method provides 

several additional knobs for controlling the manner in which objects transition between the 

poses. For example, artists can tell the system to favor particular poses for specific object 

states, such as a stretched out pose when an object has high velocity, or a neutral pose 

tha t represents the object at equilibrium. The artist can also adjust how much energy an 

object retains after interactions (e.g. the bounciness of a ball sprite). Modifying these 

parameters allows artists to control the look and feel of motions and behaviors in a more 

direct, intuitive manner than fine-tuning physical properties like the elasticity or density of 

deformable objects.
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For more complicated behaviors, arbitrary controllers can be used to traverse the pose 
manifold. Compared to controllers used in traditional physics-based character animation, 
our controllers are simpler because the sprites themselves can maintain important features 
of the motion, such as balance, and otherwise “bend” the laws of physics when desired.

We used our approach to generate a variety of sprites that exhibit different types 
of dynamic behavior, including a cartoony ball, bouncy characters, lively construction 
materials, and articulated ragdolls, either passively animated or controlled by a finite 
state machine. We also created three games that combine multiple sprites into interactive 
environments. Our results demonstrate how our approach facilitates the creation of dynamic 
objects from static drawings and gives artists intuitive and powerful control over not only 
the pose manifold, but also how the pose manifold is navigated.

4.2 Method
Our approach proceeds in two phases: an authoring phase, in which an artist designs a 

low-dimensional deformation rig, shown in Figure 4.2, then uses this rig to create example 
poses and defines a simplicial complex connecting these poses, as shown in Figure 4.3. Then, 
in the simulation phase, our system uses example-based simulation to create a dynamic, 
interactive animation like the ones shown in Figure 4.4. We note that though the details of 
our example-based simulation differ from previous work, our primary technical contribution 
is in how we provide explicit artistic control over the pose manifold and how it is navigated.

4.2 .1  A u th orin g  P h ase
As the first step to creating stylized interactive animations, the artist specifies a low 

degree of freedom rig using the method of Jacobson and colleagues [2012]. Specifically, 
the artist places a small number (5-10) of bones and/or pins on the input shape. By 
manipulating this simple rig the artist creates a set of example poses that will guide the 
simulation. This rig also determines how the example poses will be interpolated. The artist 
additionally defines a simplicial complex over the example shapes that determines which 
shapes may be blended. Then the artist loads the simplicial complex into our example-based 
simulation and interactively tunes how the pose manifold is navigated by choosing what 
optional filters to apply and with what strengths.

4.2 .2  E xam ple-b ased  S im ulation
Our runtime environment builds on recent work that applies example-based simulation 

to shape matching/position-based dynamics [Schumacher et al. 2012; Koyama et al. 2012].
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Deformable objects are modeled as a set of particles, p i 2 P  with positions, x i , and veloci
ties, v i . The neighborhood of a particle N (p i) is the set of particles in the k-ring (typically, 
k =  3) of p i in a precomputed triangulation of the particle set. At its most basic level, our 
method applies a series of filters to the particle’s positions and velocities to satisfy the goals 
of the artist. Our approach can also be cast in the prediction/correction framework: we 
predict particle positions with a forward Euler integrator and then correct them to achieve 
various goals; including pulling toward the pose manifold, removing interpenetration, and 
artistic goals, such as setting the global orientation. See Algorithm 2 for a summary of the 
simulation timestep. We now describe these operations in more detail.

A lg o rith m  2 Simulation Timestep
Apply body forces (e.g. gravity): v + =  f / m  * dt 
Forward-euler position update: x + =  v * dt 
Compute desired rest shape 
In te rleav e  an d  I te ra te

Local-neighborhood shape match 
Global shape match 
Resolve collisions

Compute velocity
Global momentum adjustment
Correct global orientation

4 .2 .2 .1  C om p u te  D esired  R est Shape
Our runtime environment takes as input the artist-authored pose manifold described by 

a set of example poses, a low degree of freedom animation rig, a simplicial complex that 
describes which poses can be blended, and any other rules (such as an equilibrium pose) 
that guide navigation on the manifold. Then, during each simulation step we must select a 
pose on this pose manifold that will be used as a rest state for shape matching.

To interpolate poses within a simplex, we first factor each handle transform into trans
lational, scale/shear, and rotational components using a polar decomposition. Translation 
and scale/shear terms are interpolated linearly, while rotations are combined using spherical 
linear interpolation. The final pose is generated by applying linear blend skinning to the 
interpolated transforms. Specifically, to blend two example poses with weights a  and we 
would have,
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ei =  YJjj=1 Wj(ri) S lerp(aR i , ftR 2)(aS i +  ftS2)ri
+ a t i  +  f tt2 , (4.1)

where ei is the particle’s position in the pose selected from the pose manifold, r i is the 
particle’s position in the initial rest configuration where the weights were computed, Wj(■)

blending more poses is straightforward.
It remains to describe how we compute the weights (a  and ft above) we will use to 

combine the example poses. The straightforward solution is to simply project the current 
simulated shape onto the pose manifold. When external forces deform an object toward an 
example pose, this straightforward manifold projection generates animations that smoothly 
and plausibly transition between the user-provided examples. However, projection alone is 
not adequate for forces orthogonal to the pose manifold, or when other artistic control is 
desired. Thus, we have included additional control over how the simulation navigates the 
pose manifold, resulting in richer behavior. The weights are computed by performing the 
following operations:

1. Project current shape onto pose manifold
2. Adjust the equilibrium pose
3. A ttract toward equilibrium pose
4. Apply energy adjustment
5. Apply velocity-based adjustment

Note that the first two elements have been incorporated into previous example-based sim
ulation approaches, while the last two are critical to achieving our results.

Project current shape onto pose manifold: The goal of this step is to find interpolation 
weights in the simplicial complex, such that the skinned shape matches the current shape 
as closely as possible. To account for rotations we additionally compute a global, best-fit 
rotation. We alternate between solving for optimal weights with this rotation held fixed, 
and solving for the optimal rotation with weights held fixed. To compute optimal weights, 
we define our cost function as

i,j
where i and j  are connected particles, R g is the current global rotation, x-  is the vector 
between particles i and j  in world space, and e -  is the vector between i and j  computed

gives the weight of the j th handle at the specified position, and R , S, and t  are the rotation, 
scale/sheer, and translations computed by the polar decomposition. Generalization to

(4.2)



33

via linear blend skinning with the current interpolation weights (see Equation 4.1). This 
projection yields barycentric coordinates, m p , in the simplicial complex that defines the 
manifold.

As noted by Jacobson and colleagues [2012], positions of nearby particles computed 
by linear blend skinning are highly correlated, so we adopt their “rotation clusters” op
timization. Instead of summing over all particles i and j ,  we compute a smaller set of 
representative particles using k-means clustering and sum over them. We use a simple 
Newton solver to optimize the objective, using automatic differentiation to compute the 
gradient and Hessian [Fike and Alonso 2011]. To compute the optimal global rotation, we 
use the method of Sorkine and Alexa [2007].

Adjusting the equilibrium pose: As described thus far, our example-based framework 
has no notion of a rest pose—all poses in the pose manifold generate zero elastic energy. To 
address this limitation, we introduce the notion of an equilibrium pose, q, in the example 
manifold. High-level planning and control strategies are incorporated into our method by 
allowing artists explicit control over how this equilibrium pose is chosen. In our prototype, 
complex behaviors are implemented using a 2-level finite state machine. The high-level 
state machine switches between character behaviors (walking, jumping, falling, etc.), and 
is controlled by user input and dynamic properties of the simulation, such as whether 
or not the character is standing on the ground. The lower-level state machine controls 
individual behaviors by adjusting the location of the equilibrium pose in the manifold, such 
as transitioning through the poses in a walk cycle.

Attract toward equilibrium pose: In the spirit of position-based dynamics, we use a 
first-order spring to attract toward the equilibrium pose:

meq =  me +  keq (q -  me) , (4.3)

where m eq is the pose after attracting to the equilibrium pose, keq is a stiffness, m e the 
barycentric coordinates after energy adjustment, and q the barycentric coordinates of the 
equilibrium pose. By adjusting the stiffness of the manifold spring, the artist can control 
how closely the specified trajectory is followed, and how the motion is influenced by other 
other aspects of the simulation (e.g. energy adjustment).

Apply energy adjustment: Often, an artist will want the simulation to closely match 
the pose manifold, requiring very high material stiffness. In these cases, any energy from 
deformations orthogonal to the pose manifold is lost. To combat this, we apply some of this
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lost energy in the pose manifold. Position-based dynamics does not have a explicit notion 
of energy; however, a good proxy for kinetic energy is

e =  X  mi(A x)2, (4.4)
ie r

where mi is the mass of pi and A x is the change in a particle’s position. We compute this 
energy when particles interact with other objects (e.g. during collisions). Our simulator 
then pushes the interpolation weights by an amount proportional to this energy,

me =  m p +  kedee, (4.5)

where m e is the pose after applying energy adjustment, m p is the initial projection onto 
the manifold, ke is a stiffness, and d e is the direction of energy offset. This direction can 
be variably chosen as the direction away from the equilibrium (mp — m eq), the velocity in 
the manifold, or an explicitly specified direction. To avoid unwanted oscillations, we ignore 
energy contributions below a user-defined threshold.

The result is in-manifold deformation for shapes, even when experiencing orthogonal 
interactions, and a reduction of out-of-manifold deformation. Transferring energy normal 
to the manifold to a tangent direction may seem unphysical— it is. However, in practice 
we have found that this approach does an excellent job of preserving the artist's intent, 
expressed through the example shapes, as unphysical as this intent may be.

Apply velocity-based adjustment: In our framework, it is straightforward to use any 
information from the simulation state to guide navigation of the manifold. For example, in 
order to add cartoon-inspired stretch to a fast moving object, we attract interpolation 
weights to a manifold vertex corresponding to the stretched pose, a, with a strength 
proportional to the object’s speed, s.

m v =  meq +  kvs (a — m e,) , (4.6)

where m v is the pose after applying velocity adjustment, m eq is the pose after being 
attracted to the equilibrium, kv is a stiffness, and a  is the pose being attracted to (e.g. 
the stretched pose).

4 .2 .2 .2  Shape M atch in g
Once we compute the current rest pose of the object using linear blend skinning with 

appropriate interpolation weights, we are ready to compute dynamics. While any elastic 
simulation method could be used, we use shape matching [Muller et al. 2005] for its efficiency
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and implementation simplicity. Furthermore, because shape-matching models elasticity 
with simple first-order dynamics, it fits in well with our framework of filtering of positions 
and velocities, allowing a greater degree of artistic control.

While the initial shape matching work [Muller et al. 2005] supported only global shape 
matching, more recently Rivers and James [2007] introduced a hierarchical approach. We 
take a middle ground and interleave global shape matching passes, which quickly correct 
any out-of-manifold deformation, and passes over local neighborhoods, which allow elastic 
deformations not described by example poses. For completeness, we briefly describe the 
shape matching approach. Given corresponding points in world space, xj, and in our 
example pose, ej, we solve for translations, t x and t e, and rotation, R , that minimize

X  m  (R (ei -  te) -  (xj -  tx ))2 . (4.7)
i

The translations correspond to the center of mass for each set of particles and the rotation 
is found by a polar decomposition. We can then compute goal positions, gi

gi =  R  (ej -  te) +  tx. (4.8)

We include all particles in the global shape matches. For the local-neighborhood passes, 
we iterate over all the particles performing the shape match using only the particles in the 
local neighborhood, N (p i), that is,

X  mj (R (ej -  t e) -  (xj -  t x))2 . (4 .9)
(Pi)

We then compute a particle’s goal position by averaging over all neighborhoods that contain 
it.

gi =  E j  1 ^ - (p, ) gj  , (4.10)
z^j\ieN  (pj) 1

where gij is pi ’s goal position when shape matching using N (pj).
Additionally, we allow the artist to decompose an image into disjoint layers. To propa

gate constraints between layers, we add an additional constraint on a set of “pin” particles 
which join two layers. At initialization, for each pin, we find the triangle on the connecting 
layer in which it is contained. Then, we compute the barycentric coordinates of the pin 
with respect to its containing triangle. To enforce the constraint, we compute the world 
position of the stored barycentric coordinates with the current triangle vertex positions, 
and pull the pin particle toward it.

Collisions are handled by projecting overlapping particles out of objects, using the 
underlying triangle mesh to detect and resolve collisions.
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4 .2 .2 .3  G lobal M om en tu m  A d ju stm en t
Position-based dynamics has difficulty producing highly elastic, “bouncy” collisions. 

The inclusion of squashed poses in the pose manifold exacerbates this issue as they appear 
to be rest poses to the shape matching. However, such collisions are essential to lively, 
cartoon-style animation. To address this limitation, we add momentum directly to the 
system after collisions with the ground. Specifically, for each object we store the momentum 
we wish to add, p, which is updated each timestep with a contribution from each colliding 
particle.

p i p  +  mikm (Xpro -  Xpen) (4.11)
where mi is the particle mass, km is a scale, xpro is the particle’s (projected) position after 
resolving the collision, and xpen is the penetrating particle position. Over time we add this 
momentum to the system, for each particle,

Vi i Vi +  m ir p /m 20, (4.12)

where v i is the particle’s velocity, mi its mass, r  the rate at which we add the momentum, 
and mo is the total mass of the object. Finally, we update p

p i  (1 -  r)p  (4.13)

This approach has two important features. First, by computing p per object rather than 
per particle, we avoid spatial discontinuities. Second, by adding momentum over time, we 
allow the collisions to occur over a finite time period, allowing the object to deform while 
it is on the ground, before jumping back into the air.

4 .2 .2 .4  O rien ta tion  C orrection
In addition to the shape control provided by example-based shape matching, artists 

may desire control over other aspects of the object’s motion. For example, an artist may 
want to keep a character upright or aligned with its velocity. Providing such control is 
straightforward in our framework and requires only applying another filter to the set of 
particles. For the case of rotation control, we apply a first-order spring to the global 
orientation of the object about its center of mass,

✓a =  ✓b +  koc (@g -  ✓b) , (4.14)

where ✓b and ✓a are the global orientation before and after orientation control, respectively, 
koc is a stiffness, and ✓g is the goal orientation. This goal angle can be a particular value, a
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scripted trajectory, or other user-defined criteria, such as the current velocity direction. The 
ordering of filters is important. For example, applying this filter before updating particle 
velocities leads to the computed velocities having an unwanted ”spin” component.

4 .2 .2 .5  F lipp ing  Sprites
In most sprite-based applications, characters can turn around simply by reflecting the 

sprite about a vertical axis. Incorporating such a discontinuous change in our physics-based 
simulator requires care to maintain plausible elastic simulation. Since the velocity at the 
next timestep is computed as pn+1 _ pnv n+1 =  P---- — ^  (4.15)dt v !
after flipping the sprite, we adjust the previous positions, pn so that velocities are not 
changed by flipping. Artistically, this gives a sense of weight to objects as they change 
direction; physically, it preserves linear momentum.

4.3 Results
To illustrate our authoring process we consider the classic animation task of creating a 

bouncing ball with squash and stretch. Figure 4.2 shows the simple rig we use to create 
the example poses in Figure 4.3. Figure 4.3 also visualizes the three line segments that 
make up the example manifold, which allows interpolation between the undeformed pose 
and either the squashed or stretched poses. In this example, the undeformed pose is set as 
the equilibrium pose. In addition, we use energy adjustment to move the selected example 
toward the squashed pose, which is otherwise largely ignored. Velocity-based adjustment 
pushes the selected example toward the stretched pose when the ball is moving quickly, 
and global orientation control aligns the pose with the velocity direction. Finally, global 
momentum adjustment allows the ball to bounce, appearing to “come alive” and move of 
its own volition. Figure 4.4 shows a variety of behaviors that can be achieved by changing 
the parameters.

We have also incorporated dynamic sprites into several simple games. In this context, 
the dynamic sprites enhance both visual complexity as well as gameplay compared to static 
objects or previous example-based approaches.

In our first game, players attem pt to navigate a character vertically towards a finish 
line by jumping on a sequence of platforms. The player can control the rest pose of the 
character and apply left and right forces while in the air. W ith dynamic sprites, it is easy to 
create a variety of platform types, as shown in Figure 4.5, that look and behave differently 
based on the underlying examples and settings for the artistic controls.
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For example, the brick platforms are mainly rigid and provide little vertical boost after 
impact, while the I-beams bend elastically when the player lands. The rope platforms are 
softer than the I-beams and do not spring back to their original shape as quickly.

In the second game, players position I-beams, catapults, and other objects to direct 
a passive object (e.g. a bouncy ball) that is dropped from above towards a target. Our 
dynamic sprites can be used to animate a variety of game objects ranging from sturdy brick 
obstacles, to an energetic catapult and launching pad. A sample level is shown in Figure 
4.6.

In our third game, ragdoll figures are fired from a cannon toward a target while various 
boxes and I-beams serve as obstacles. Sample frames are shown in Figure 4.7.

We represent all game elements as dynamic sprites with different behaviors: the cannon 
contracts on firing; the character is drawn to an elongated, “superman” pose when moving 
quickly but assumes a fetal position upon impact; the I-beams wiggle elastically due to 
bent example poses; and energy adjustment draws the boxes to a variety of poses that are 
largely orthogonal to the external forces. As can be seen in the figure and accompanying 
video, our dynamic sprites generate richer deformations than shape matching or standard 
example-based physics, where the red poses are not activated. Unless a large number of 
particles are perturbed toward an example pose, the manifold projection does not move 
the current rest pose significantly through the manifold; the bulk of the material, which 
is undeformed, has lowest cost for the current rest pose, especially for the stiff materials 
we desire. The “rotation cluster” approximation we use for efficiency exacerbates this, 
since only the representative particles are considered during our manifold projection step. 
However, even when considering all particles during the projection step, it is difficult to 
trigger example poses through local collisions when using stiff materials.

In the final game, our ragdoll character is now actively controlled using a 2-level finite 
state machine (see Figures 4.8 and 4.9). The walking behavior state machine moves the 
equilibrium pose through 6 keyframe poses on a manifold with a loop topology. Unlike in 
traditional physics-based controllers, we did not need to consider balance and robustness of 
the character’s locomotion; global orientation control keeps the character upright.

When the user wants to jump, first the character must crouch to prepare, and then can 
spring upward into a standing pose, similarly to the snake character in the platformer game. 
The character’s inflatable jacket can also be used to shoot him further up in the air, and 
allow him to float down slowly. The floating behavior slowly blends from the inflated pose 
to the neutral pose. The position in the pose manifold also determines the magnitude of
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a drag force on the man as he slowly floats to the ground. Figure 4.10 shows the ragdoll 
using a bouncy I-beam to help him float across a dangerous ball pit.

Our results exhibit many behaviors that might be considered artifacts in other physics- 
based approaches. However, many of these are both desirable, and easily controllable by 
an artist. For example, the “jiggliness” and excitability of the I-Beams in the cannon game 
are easily adjustable from passive and stiff, to energetic and oscillatory, as seen in the 
accompanying video. In the same way that cartoon drawings do not accurately reflect their 
real-world inspiration, our physics-inspired (nonphysical) behavior is a stylized exaggeration 
of real-world motion.

Our method does exhibit some behaviors that we consider to be artifacts. Some of the 
blended poses seem unnatural or undesirable. This can be alleviated to some extent by 
including more in-between poses in the manifold. Contact handling sometimes introduces 
oscillations near collisions, especially during resting contact. Finally, the global rotations 
applied by our orientation control can be visually jarring. A first-order spring-based control 
method may not be adequate to achieve smooth, subtle rotation control.

Timing information is shown in Table 4.1.

4.4 Conclusion
Our current system allows artists to turn sketches of example poses into dynamic, 

physical, reactive objects and actively controlled characters. We see several promising 
directions for future work. In our current pipeline, objects are posed using a warping system. 
This is not a requirement of the method; adding support for automatic registration (e.g. 
[Sykora et al. 2009]) would allow us to use traditional sprite sheets as input. While we believe 
that our parameters are intuitive, it might still be interesting to investigate automatic tuning 
-  e.g. changing momentum-preservation based on an artist-sketched bounce. Similarly, it 
may be difficult for users of our system to understand if a behavior they are seeing results 
from badly-tuned parameters or the need for more example poses; this is also a question 
that we may be able to answer algorithmically. Because we focus on sketched input, our 
technique works only in 2D; however, we believe that the pose manifold concept and the 
control methods we propose should generalize to 3D.

Overall, we find that our system sits at an interesting point in the design space of 
methods for creating dynamic content. By directly connecting artist-created poses with 
physical properties, dynamic sprites enable artists to create more interesting and detailed 
physics-based characters and objects with less effort than either traditional sprite sheets



40

(which sacrifice physical realism) or rigging and animation systems (which require several 
different areas of expertise).
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F ig u re  4.1. Traditional sprite sheets capture all the poses a character or object can assume 
in a game. (Example from “Age of Umpires” ; http://hockey.spacebar.org/. Copyright Tom 
Murphy VII, used with permission.)

F ig u re  4.2. The rig used to generate poses of the cartoon ball. The yellow dots are control 
handles.

http://hockey.spacebar.org/
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F ig u re  4.3. The example poses and the simplicial complex used to create a stylized 
bouncing ball.
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r
F ig u re  4.4. Three stylized behaviors generated by our system.

F ig u re  4.5. These dynamic sprites platforms cover a broad range of behaviors.
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F ig u re  4.6. The user places the catapult and springy platform to help the ball reach the 
goal.

F ig u re  4.7. From left to right: Shape matching only, shape matching with examples, 3 
different dynamic sprites.
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F ig u re  4.8. W ith 3 example poses and their reflections, a simple manifold, and a finite 
state machine, our system generates a lively, stylized walking behavior.
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Figure 4.9. A simple state machine transitions between behaviors based on user input, 
the ragdoll’s state.

Figure 4.10. Our ragdoll uses a bouncy I-beam like a trampoline to gain enough sideways 
momentum to float over a pit of balls.



47

T able 4.1. Timing results for selected examples (ms per 60Hz frame).
Platform

Game
Puzzle
Game

Launcher
Game

Neighborhood Shape 
Matching

3.3 2.2 6.0

Global Shape 
Matching

0.3 0.1 0.1

Manifold Projection 5.0 8.9 2.0

Collisions 0.7 13.2 0.3
Other 1.2 1.0 0.5



CHAPTER 5
EXAMPLE-BASED PLASTIC DEFORMATION  

OF RIGID BODIES 
5.1 Introduction

One of the greatest successes of physics-based animation is its widespread use for creating 
scenes containing large-scale destruction. The materials in these scenes are often man-made, 
carefully engineered and designed to be nearly rigid. Ensuring that building foundations 
remain stable, or that airplane wings maintain their shape in the presence of strong winds is 
vital to ensuring safety. The assumption of rigidity breaks down, however, when materials, 
well... break. During failure, man-made materials such as steel and concrete exhibit fracture 
and plastic deformation. For computer graphics applications, these failure cases are the most 
important -  and most challenging -  to animate.

Fracture is well-studied, both in engineering, and in computer graphics. Methods based 
on continuum mechanics and finite elements can produce realistic crack patterns and prop
agation. These methods are computationally expensive and in most cases model materials 
as elastic bodies. For mostly rigid objects, spending computational resources on elasticity 
calculations is essentially wasted effort, as most vibrations occur at frequencies that we 
cannot see; rigid body simulation can capture almost all of the important dynamics of 
the system. Consequently, geometric or artist-guided approaches to fracture are commonly 
employed in practice [Weinstein et al. 2008; Zafar et al. 2010; Criswell et al. 2010; Budsberg 
et al. 2014]. We adopt a similar approach to fracture: a nonphysical, artist-guided technique 
that integrates well with our plasticity model.

In comparison to fracture, plasticity is relatively poorly understood. Metalworkers 
have had some intuition about the properties of plasticity for centuries, heating, cooling, 
and folding the blades of their swords to maximize their strength. Analytical models, 
especially in graphics, are still based on heuristics. Measuring physical parameters is difficult 
because the materials must be destroyed during measurement. Also, in many engineering 
applications, analysts are concerned only with whether or not a material may fail; can they 
expect a particular component to withstand its environment or not? In computer graph
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ics, methods based on continuum mechanics are commonly used to animate elastoplastic 
materials. Again, this requires performing expensive, and frequently unnecessary, elasticity 
calculations. To ensure robustness, plasticity must either be limited, or the simulation 
domain must be periodically resampled or remeshed.

Rather than adapting engineering tools and techniques for use in graphics, we approach 
the problem from a different perspective: in this paper, we present a method specifically 
designed to animate destructive scenes, leveraging artist expertise and experience as much 
as possible. Our method is built on a new variant of linear blend skinning, example-based 
deformation, and rigid body dynamics. Artists create a simple rig for their simulated 
objects, then deform the object using this rig to create characteristic deformations. At 
simulation time, object dynamics are computed using an unmodified rigid body simulator. 
The objects are deformed by mapping impulses computed by the rigid body simulator to 
a spatially varying blend of the example deformations. This spatial variation allows us to 
create a wide range of deformations at run time with only two or three example poses.

The major contributions of this work are:
• An example-based deformation model based on linear blend skinning with a spatially 

varying blend of examples

• A method for mapping from discrete rigid body impulses to deformations

• A method for incorporating energy dissipation due to plastic deformation in system 
dynamics by modulating the coefficient of restitution

• A prescoring fracture approach that complements our deformation model.
The end result is a method that leverages existing artist expertise with rigging and 

skinning models; provides intuitive control over deformations by allowing artists to choose 
example deformations; and leverages common, efficient rigid body simulators to compute 
dynamics.

5.2 Method
To author assets that can be simulated using our technique, artists begin by rigging 

their model with bones.1 Then, they use this rig to deform their input mesh into a set of 
characteristic example poses. We describe the particular methods used in the authoring 
phase of our pipeline in Section 5.3. An overview of our method is shown in Figure 5.1.

1In this discussion, we use the word “bone” generically to refer to the rig’s degrees of freedom.
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Objects in our system are modeled as rigid bodies, with a shape computed via modified 
linear blend skinning. Each object in our system stores standard rigid body properties:

• density, p, and mass, m (both constant during simulation)
• inertia tensor, I
• linear position, xcom, and momentum, p
• orientation, O, and angular momentum, L
• coefficient of restitution, Cr .

The geometry of our object is modeled using a tetrahedral mesh with N  vertices. The 
skinned vertex positions are determined by the transformations of the B bones. The user 
provides a set of E  example poses for the object, where each example contains a rotation 
and translation for each bone. To track skinning properties over time, each object stores

• undeformed mesh vertex positions, u  2 RNx3

• skinned mesh vertex positions, x  2 RNx3

• skinning weights, W  2 RNxB
• example weights, E  2 RNxE
•  deformation accumulator, A E  2 RNxE.

u  and W  are constant, while the remaining properties change during simulation. Other 
material parameters are described below.

5.2.1  Skinning
Our method supports stylized deformation of object geometry while producing plausible 

local deformations by using a modified version of linear blend skinning. In traditional linear 
blend skinning, skinned vertex positions are computed as

where Tb is the current transformation of bone, b. To incorporate artist examples, we 
restrict bone transformations, Tb, to interpolations of the bone transformations in the 
provided examples, T be. We store barycentric coordinates e 2 RE that describe how to 
combine the example transformations. We split each transformation into a translation and 
rotation; translations are combined using linear interpolation and rotations are combined 
using QLERP [Kavan and Zara 2005].

Unfortunately, skinning the whole object using a single set of barycentric weights has 
two major drawbacks. First, the example deformations are global, while we expect plastic

(5.1)
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deformation due to collision or other interactions to be somewhat localized. Second, as 
discussed in Chapter 4, blending many different poses simultaneously gives unintuitive 
results that poorly match the provided example poses.

Our solution to these problems is to allow the barycentric weights, e, to vary spatially 
over the object, storing the weights for each mesh vertex in the matrix E. This approach 
naturally supports local deformations, solving the first problem. We found that this ap
proach also solves the second problem in most of our examples because interactions in the 
simulation tend to locally induce deformations that blend a small number of examples, 
avoiding “muddy” blends.

In traditional deformable body simulation, each vertex has its own positional degrees 
of freedom and elastoplastic response is computed by analyzing stresses. Since we model 
our objects as rigid, this approach is unsuitable. Instead, we map the impulses generated 
by the rigid body constraint solver to deformations. Specifically, an impulse j i at vertex i

smooth deformations, we propagate this change to nearby vertices using a smoothing kernel. 
An overview of this process is shown in Figure 5.2.

5 .2 .2 .1  P ro jection
To compute the deformation at a single vertex, we seek to find a change in barycentric 

coordinates, A e, that would move the vertex in the direction of the applied impulse. We 
first map the impulse to a desired change in position by

where a  is a scaling parameter and fi is a threshold magnitude, preventing deformation, for 
example, during resting contact.

Next we compute the change in example weights that best matches this desired change 
in position. We can construct a Jacobian matrix whose columns represent the change in 
skinned position of vertex i with respect to change of example weights,

5.2 .2  Im pu lse-based  D eform ation

is mapped to a change in the barycentric coordinates in row i of the matrix, E. To ensure

A xi =  a  m ax(||ji|| — fi, 0) ji, (5.2)

Column e of this matrix is the change in skinned position for vertex i due to a change in
example weight e. Using Equation 5.1, we can see

(5.4)
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where the transformation, Tb, has been separated into its translational, tb, and rotational, 
R b, parts.

Using a Jacobian to map from one coordinate space to another is a common strategy. 
For example, in character animation, the principal of virtual work maps forces in Cartesian 
space to torques in joint space by applying the Jacobian transpose [Pratt et al. 2001]. We 
could employ a similar strategy by computing a mapping using

A e, =  J T A x,, (5.5)

which could be viewed as a transformation to generalized coordinates. If J , is full-rank 
and orthonormal, this change of basis works well. However, for most sets of example 
deformations, J j is likely to have neither of these features. Small, or zero, singular values 
in J j cause some impulses to result in little or no deformation; if there are large singular 
values or if the columns of J j form an overcomplete basis, the result is deformations that 
are too large. The pseudo-inverse does not completely address these issues.

Instead, we advocate a mapping such that the magnitude of A e j is proportional to 
A x j , regardless of the direction of the impulse, while still ensuring that the deformation 
is plausible. To accomplish this, we compute the SVD of the Jacobian, J j =  U S V T. 
In our setting, the matrices computed by the SVD have an intuitive meaning: the matrix 
U 2 R3x3 is a rotation matrix that encodes the preferred world space directions that trigger 
deformation. The matrix V  encodes the deformation modes at that vertex, while S  encodes 
their relative weights. Using this intuition, we compute the change in example weights as

(S U T A x,'
|| (S U TA x,) ||

Because of the normalization (and unit magnitude columns in V), the change is alway 
proportional to the desired change. The direction and weighting between modes is taken 
into account by the matrices S  and U. In the case that the impulse is orthogonal to the 
columns of J ,, this approach will change the direction of the deformation to match the 
examples. If the columns of J , form an overcomplete basis, this approach computes weights 
that balance between the different examples.

5 .2 .2 .2  P rop agation  and A p p lica tion
Once we compute A e for the vertices where impulses have been applied, we propagate 

the change to nearby vertices using a smoothing kernel. However, we must be careful when 
choosing a distance metric. Distances should be shape aware, which rules out Euclidian

A e, =  ||A x ,||V  , , ( _  j( „ . (5.6)
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distances. Because our skinning weights are smooth by design, we considered computing 
weights between coordinates in skinning weight space. However, we found that distances 
between points in this space were close to a step function in our examples. Approximate 
geodesic distances, computed using a few passes of Dijkstra’s algorithm, work well, and are 
used in all of our examples. We update each row of the matrix A E  by

A E j + =  * ( )  A ei (5.7)

where the y is the radius of the kernel, *, and represents a user tunable parameter. We use 
the cubic kernel

*(x) =  I  -  3x2 +  1 : ^  (5.8)0 : otherwise.
We emphasize that this smoothing is applied to the example weights not to the rigid body 
impulses. Smoothing the impulses would lead to “dent-like” behavior while smoothing the 
example weights more closely follows the artis t’s intent.

Large impulses could result in large, instantaneous deformations. We address the 
resulting discontinuities by deforming our objects over time, rather than at the instant 
of impact. Specifically, we update the barycentric matrix by

E  + =  AAE , (5.9)

and then apply A E  *= (1 -  A), where A 2 [0 , 1]. This geometric series falls off quickly to 
negligible values, but allows plastic deformations to occur over several frames of animation. 
Please see the video for a comparison between several values of A. To ensure that the rows 
of E  remain barycentric, we clamp negative values to 0 and then scale each row so that 
its entries sum to one. This normalization discards deformation that would cause us to 
extrapolate outside our example space.

This delayed plasticity is related to the concept of plastic creep. When a material is 
held in a deformed state, plastic deformation accumulates over time, even though such 
deformation would be (almost) entirely elastic if the deformation occurs over a short period 
of time. Silly putty, for example, exhibits this behavior: it will bounce elastically, but 
well deform plastically if held against the ground. Since objects in our system are treated 
as rigid and experience instantaneous impulses at a small (and changing) set of contacts 
rather than sustained deformations, we cannot directly model creep. However, like creep, 
out approach accumulates plastic deformation over time.

Once we have updated example weights, we compute new skinned vertex positions, x . 
We translate and rotate x so the local center of mass is at the origin, and is aligned with



54

the principal axes of inertia, as is required by our rigid body simulator. We also update the 
moment of inertia to account for changes in mass distribution.

5.2 .3  D yn am ics
As outlined in Figure 5.1, object dynamics are computed using an unmodified rigid body 

simulator (BulletPhysics in our implementation [Coumans 2014]). Each timestep is split 
into two phases, deformation and time integration. Before the deformation step, we save 
the rigid body state (xcom, p, O, L) of each object. In the deformation phase, the simulator 
is stepped forward. The impulses computed during this step are used to deform the objects 
as described in Section 5.2.2.

Before the time integration step, the rigid body state is reset to its saved value, but the 
the shape is updated to account for the deformation step. The time integration step simply 
calls the rigid body simulator to get new positions and momenta.

This two-step scheme has two convenient features: first, it requires no modifications to 
the rigid body simulator; and second, the rigid body solver is given a full timestep to resolve 
any new collisions that may be caused by deformation.

5 .2 .3 .1  R e stitu tio n  M odification
During a violent collision, part of the kinetic energy of the system is dissipated as 

plastic deformation. This important aspect of plasticity is exploited by auto manufacturers, 
for example, who engineer components to crumple, reducing impact on passengers. We 
model this phenomenon by modulating the coefficient of restitution, Cr, while objects are 
deforming. We found that the scaling function,

I|AE ^  )C r* ) , (5.10)

where C* is the default coefficient of restitution, and p and v are user controls, provides 
suitable damping. The second term ensures that Cr increases slowly after collisions, avoiding 
jittering artifacts. We experimented with several functions for the third term, such as a 
clamped linear falloff, and preferred the exponential function over the alternatives.

5 .2 .4  Fracture
Our implementation uses a prescoring approach to fracturing. The artist separates the 

input tetmesh into pieces using cutting planes, and we record which tetrahedra are split. 
For each piece, the collision geometry consists of the faces of the uncut tetrahedra, the 
triangulated cutting surfaces, and the triangulated, clipped faces of the cut tetrahedra as
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shown in Figure 5.3. In our implementation, we restrict cuts to be planar and use Triangle 
to compute the cut boundary and triangulate its interior in 2D space [Shewchuk 1996]. 
In principle, however, any technique that produces a triangulated cutting surface, such 
as Voronoi-based fracture, could be used. The cut tetrahedra are duplicated to simplify 
skinning and constraint generation, but are not used for collision detection directly.

In our initial implementation, we did not split the cut tetrahedra, assigning each tet to 
a piece based on which side of the cutting planes its barycenter was on. Unfortunately, this 
approach caused problems for the collision solver in Bullet, which generated unreasonably 
large impulses to separate pieces after fracture. We suspect this is due to the dramatically 
varying normals of the tetrahedra faces, as well as the large number of contacts near the 
fracture plane. Using the volumetric tetrahedra for collision detection (rather than a surface 
triangle mesh) did not solve this issue, and ran significantly slower. Our cutting approach 
also improves the final rendered appearance compared to the semiregular jaggedness of the 
uncut tetrahedra.

To incorporate fracture into object dynamics, we generate point-to-point constraints for 
each tetmesh vertex shared by two pieces. We use Bullet's constraint threshold feature to 
automatically break them when enforcement impulses violate a threshold. We only allow the 
constraints to be broken during the deformation phase of the timestep. The masses of these 
vertices are divided between the shared pieces. Skinned positions of the vertices on the cut
ting surface are computed by barycentric interpolation of the enclosing tetrahedra, though if 
coarse tetmeshes are used, the vertices could use interpolated skinning and example weights, 
then compute positions via linear blend skinning. The only modification required to the 
deformation procedure is to consider the constraints when computing approximate geodesic 
distances: active constraints are considered zero-length edges between vertices.

5.3 Authoring Simulation Assets
We leverage recent research contributions for tetrahedral meshing, rigging, and skinning 

to automate as much of the authoring pipeline as possible. Artists begin by creating a closed 
triangle mesh. Next, they position a set of control bones and handles within the mesh. 
Once the handles are positioned, we automate the process of assigning skinning weights to 
mesh vertices by using bounded biharmonic weights [Jacobson et al. 2011]. These weights 
are computed through a constrained optimization, which requires a tetrahedral mesh of 
the object. Because we expect skinning weights to vary smoothly across the mesh, we 
compute a coarse, enclosing, approximating tetrahedralization using the approach of Stuart
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and colleagues [Stuart et al. 2013], rather than using a conforming tetrahedral mesh as 
Jacobson and colleagues did. The meshing algorithm begins by tetrahedralizing a body 
centered cubic lattice that encloses the triangle mesh, then iteratively adjusts vertices of the 
mesh to match surface geometry. We ensure that the control handles specified by the artist 
correspond to vertices in the tetrahedralization by initially snapping the nearest vertices in 
the lattice to the handle locations and treating these vertex locations as constrained during 
the optimization.

Once the mesh is rigged, the artist manipulates the control handles to produce char
acteristic deformations. We use the fast automatic skinning transformations approach of 
Jacobson and colleagues [2012] to automate rotational degrees of freedom.

5.4 Results and Discussion
To demonstrate the effect of the material parameters in our system, we modify the 

parameters in a simple scene with 3 barrels being dropped on a loading dock. As seen 
in the accompanying video, it is possible to create widely varying results by tuning these 
parameters. Figure 5.4 demonstrates the effect of varying the kernel radius, y .

We also animated three more complex scenes that may appear in movies or games. In 
the first, a reckless drive crashes into a stack of barrels and a wall, wrecking the car and 
barrels. The barrels all have the same material properties but display a wide variety of 
deformations due to the different impulses applied. Sample frames from the animation and 
the example poses are shown in Figure 5.5. Figure 5.6 shows how the example weights, E, 
vary over the object meshes.

In the second, a bridge collapses under the weight of five shipping containers falling 
onto it, as shown in Figure 5.7. The bridge was prefractured with constraints automatically 
broken during the simulation. Our deformation model produces plausible deformations 
for both the containers and the bridge, even though they vary greatly in scale. While 
generating this example, the artist was unsatisfied with the bridge deformation in the 
preliminary results, so he added an additional example pose, resulting in significantly 
improved results. The ability to iterate quickly, including changing example deformations 
after seeing preliminary results, is a key advantage of our approach.

Finally, we animate a scene from a space battle. A fleet of small ships crashes into a 
larger one, causing minor damage to their foe, but completely destroying their fleet. The 
wings bend, twist, and break apart due to the impacts. Sample frames are shown in Figure 
5.8.
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5.4.1  P erform ance
The speed of our method is closely tied to the performance of the underlying rigid body 

simulator. Because each of our timesteps requires two calls to the rigid body simulator as 
well as our deformation computation, our simulator is 2.5 to 5 times slower than rigid body 
simulation, depending on the scene. For scenes with many interacting objects, such as the 
barrel pyramid in the car crash scene, collision detection dominates run time. The most 
expensive parts of our deformation model are computing approximate geodesic distances 
and performing skinning. In our implementation, these are multithreaded on the CPU, 
but a GPU-based implementation is likely to provide a significant speed boost, as both are 
very data parallel computations. These are computational bottlenecks because they affect 
every vertex of our volumetric mesh (or in the case of approximate geodesic distances, a 
subset that depends on kernel radius, 7 ). The car crash scene was the slowest scene due to 
the complex collision configuration. The average simulation time for that example was 1.5 
seconds per 60 Hz frame on a Macbook Pro. For that scene, 43% of computation time was 
spent performing rigid body simulation, while 55% was spent computing deformation and 
skinning. The other scenes simulated at more than one frame per second.

While our runtimes would not be acceptable for games, by reducing mesh resolution and 
offloading computation to the GPU, we expect our method could run at interactive rates.

5.4 .2  L im itation s and Future W ork
Because the space of deformations used in our system is so large, depending on the 

provided examples and parameters, objects may deform into self-intersecting configurations. 
This is most common when the plasticity scaling parameter, a, is large and the kernel 
radius, 7 , is small. Because the mesh is only used for collision detection and rendering, 
these interpenetrations do not cause stability issues during simulation. Treating objects as 
“two-sided” during rendering further mitigates this problem.

Integrating our approach into a full featured modeling application would allow for greater 
flexibility. For example, users could paint various parameters over the mesh to create weak 
or strong areas. Such tools could also provide more flexibility for fracturing objects.

Our examples deliberately use a small number of example deformations, reducing the 
burden on the artist. If more examples were used, the basis formed by the columns of Ji 
would be overcomplete and the mapping in Equation 5.6 would strike a balance between the 
input examples. It would be interesting to explore ways of computing the examples weights 
in such underconstrained scenarios that satisfy secondary goals, such as smoothness of the
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example weights or favoring using a single example over an average of all examples. Abe 
and Popovic [2006] might provide some guidance in this direction.

The objects in our results are all treated as volumetric solids. Even objects, like the 
barrels, that might be better approximated as thin shells have their interior volume meshed. 
While this approach worked well for our examples, extending our techniques to thin shells 
remains an interesting area for future work. Relatedly, we make no effort to preserve the 
volume of our objects. Even if the artist’s examples maintain volume, interpolations of the 
examples may not. It would be interesting to consider volume preservation as a secondary 
goal when the artist's examples form an overcomplete basis.

Due to the smoothness of linear blend skinning, it is difficult to achieve multiple scales 
of deformation simultaneously. For example, while the bridge our example demonstrates 
large-scale bending and twisting, it lacks smaller scale deformations such as denting or 
crumpling. Effects shots in film are often created by layering multiple simulations, so addi
tional deformations could be added as a postprocess; however, incorporating an additional 
surface deformation model may produce more plausible results.

One major limitation of our method is that, like most other simulation techniques, the 
simulation must be adjusted by changing material parameters and initial conditions. While 
our example-based approach and intuitive parameters make it easier to author a simulation, 
it may still be necessary to tune parameters and rerun simulations multiple times to achieve 
a desired result. Allowing users to more directly adjust simulation output is an interesting 
direction for future work.

In summary, we have presented a technique for animating the failure of near-rigid man- 
made materials. Our primary contribution is an example-based plasticity model based on 
linear blend skinning that leverages rigid body simulation for dynamics. Our method is 
fast, artist friendly, and integrates easily into existing pipelines.
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Figure 5.1. Overview of the authoring and simulation process.
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Figure 5.2. Overview of the deformation process.

Figure 5.3. A fracture plane creates two new pieces. The surface triangles of the cut 
tetrahedra are clipped against the cutting plane. Constraints are created between the two 
pieces at shared vertices.
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F ig u re  5.4. The kernel radius, 7 , controls how far deformations propagate. Smaller values 
generate denting behavior, while larger values result in deformations that more closely 
match the example poses.

F ig u re  5.5. A reckless driver crashes his car into a stack of barrels. An artist provided 
example deformations of the barrel (left). At runtime, our simulator maps collision impulses 
to deformations that match the style of the provided examples while remaining physically 
plausible.
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F ig u re  5.6. Colors represent the matrix, E, showing how the example weights vary over 
the objects. White vertices are undeformed; red and green correspond to the two input 
examples.
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F ig u re  5.7. A bridge collapses as shipping containers fall onto it.
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F ig u re  5.8. A small fleet of spaceships crashes into an enemy vessel.



CHAPTER 6
CONCLUSION

Though originally developed for engineering applications, physical simulation has proven 
to be a powerful tool for animation. In this dissertation, we showed that by reevaluating 
design decisions made for engineering applications, we can create tools that are easier 
for artists to work with and enable the creation of animations not feasible with existing 
techniques.

We first developed a point-based method for animating elastoplastic solids. Our tech
nique, deformation embedding, allows us to animate objects undergoing extreme elastic and 
plastic deformations without volumetric meshing. This reduces requirements for artists 
modeling assets to be simulated: as long as we can reliably tell inside from outside, we 
can sample its interior with points and animate it using our simulator. Since artists often 
have experience working with point primitives, for example particle systems, they can use 
familiar tools to postprocess simulation results.

Next we developed Dynamic Sprites, a tool for creating stylized, animated objects 
suitable for interactive applications. Using example-based simulation as a starting point, 
we developed a flexible set of controls that allow artists to create stylized, exaggerated, and 
even nonphysical animations. Traditional simulation tools for engineering were certainly 
not developed with these types of applications in mind, so our approach required somewhat 
drastic changes to traditional simulation techniques. However, our technique still leverages 
physics to naturally handle some aspects of timing and collision response; this foundation 
is what makes our approach suitable for interactive applications containing unpredictable 
inputs and interactions.

Finally, we developed a method for animating destruction that focuses computational 
resources on the most visually important features: rigid motion, plasticity, and fracture. Our 
example-based plasticity model leverages artist expertise in rigging and skinning allowing 
intuitive artistic control over deformations in the resulting animations. Dynamics are com
puted using an unmodified rigid body simulator, so our technique is simple to implement, 
easy to integrate with existing pipelines, and computationally efficient. Our results show
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that our method can be used to animate the types of destructive scenes common in film.

6.1 Future Directions
While we have demonstrated that our methods can be used to create stylized animations, 

we played the role of both researcher and artist for the examples in this dissertation. To 
develop methods that are optimized for artists and appropriate for production use, we must 
bring artists into the loop to validate and critique our designs. In particular, user studies 
can help us to understand which features of our techniques are improvements over existing 
tools, which features are regressions, and which artist challenges remain unaddressed.

A simple user study would entail asking artists to create an animation using both existing 
tools and our prototypes and comparing their experiences with each, for example using a 
concept art sketch as input. Qualitative results would be based on interviews both during 
and after the artist completes the task, while quantitative comparisons would be based on 
data such as the total time taken and the number of iterations required with various tools. 
To mimic production-like challenges, we could require the final animations to satisfy some 
“director constraints” such as the final location of objects.

In addition to validating the techniques in this thesis, there are a number of exciting 
further research opportunities for artist-guided animation tools. During the past decade, 
the internet has exploded as a place to share creative works as evidenced by the popularity 
of services like Flickr, Youtube, Reddit, and Vine. Armed with even the simplest content 
creation tools (for example a tool for putting funny text on a picture of a cat), users can 
create and share content that can inform, entertain, and inspire. By creating tools that 
let these users create interactive works, we can enable an entirely new way for people to 
express themselves. While the work presented in this dissertation is a start to making these 
tools a reality, there are still significant challenges to overcome.

Allowing users to provide example shapes is an effective means of artistic control; 
however, open questions about how best to use these shapes for simulation remain. Modal 
analysis has proven to be a valuable dimensional reduction technique for elastic simulation, 
speeding up integration by reducing the number of necessary degrees of freedom. This 
technique could prove to be useful for artist-guided simulation where the important degrees 
of freedom are hand-crafted, rather than computed. However, most graphics applications 
use linear modal analysis, assuming small deformations, whereas artists are likely to want 
extreme deformations where this assumption breaks down. Investigate how artist created 
modes and analytic or data-driven modes can be used to create a compact, expressive set 
of degrees of freedom that can be simulated efficiently is an exciting research direction.
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While the work in this dissertation used example deformations as a means for artists to 
specify desired behavior, there may be other inputs that are more intuitive and expressive 
for artists. In particular, deformations do not provide useful information about how the 
object’s global position and orientation should change over time. In our work with Dynamic 
Sprites, we allowed the user to control this via a set of simulation parameters, but allowing 
a user to specify characteristic trajectories in addition to characteristic deformations would 
help artists specify object behaviors in an intuitive way. Again, iteration with trained artists 
is necessary in order to validate that we are providing the most intuitive controls.

As 3D display technology improves and becomes inexpensive, there will be a strong 
demand for interactive, animated content for these devices. We may be able to leverage 
emerging input technologies such as hand and finger tracking to create such 3D content. 
Authoring tools that allow users to describe motions they wish to see, with their own, real- 
world motions, will greatly lower the barriers to entry for generating compelling animated 
content.
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