
PHYSICS-BASED ANIMATION OF LARGE-SCALE

SPLASHING LIQUIDS, ELASTOPLASTIC SOLIDS,

AND MODEL-REDUCED FLOW

by

Daniel James Gerszewski

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

August 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276263582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © Daniel James Gerszewski 2014

All Rights Reserved

The U n i v e r s i t y of Ut ah G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Daniel James Gerszewski

has been approved by the following supervisory committee members:

Adam W. Bargteil Chair 5/9/2014
Date Approved

Robert M. Kirby Member 5/8/2014
Date Approved

Charles Hansen Member 5/14/2014
Date Approved

Peter-Pike Sloan Member 5/20/2014
Date Approved

James F. O’Brien Member 6/10/2014
Date Approved

and by Ross Whitaker Chair/Dean of

the Department/College/School o f ___________________Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

Physical simulation has become an essential tool in computer animation. As

the use of visual effects increases, the need for simulating real-world materials

increases. In this dissertation, we consider three problems in physics-based

animation: large-scale splashing liquids, elastoplastic material simulation, and

dimensionality reduction techniques for fluid simulation.

Fluid simulation has been one of the greatest successes of physics-based

animation, generating hundreds of research papers and a great many special

effects over the last fifteen years. However, the animation of large-scale, splashing

liquids remains challenging. We show that a novel combination of unilateral

incompressibility, mass-full FLIP, and blurred boundaries is extremely well-suited

to the animation of large-scale, violent, splashing liquids.

Materials that incorporate both plastic and elastic deformations, also referred

to as elastioplastic materials, are frequently encountered in everyday life.

Methods for animating such common real-world materials are useful for effects

practitioners and have been successfully employed in films. We describe

a point-based method for animating elastoplastic materials. Our primary

contribution is a simple method for computing the deformation gradient for

each particle in the simulation. Given the deformation gradient, we can apply

arbitrary constitutive models and compute the resulting elastic forces. Our

method has two primary advantages: we do not store or compare to an initial

rest configuration and we work directly with the deformation gradient. The first

advantage avoids poor numerical conditioning and the second naturally leads to

a multiplicative model of deformation appropriate for finite deformations.

One of the most significant drawbacks of physics-based animation is that

ever-higher fidelity leads to an explosion in the number of degrees of freedom.

This problem leads us to the consideration of dimensionality reduction techniques.

We present several enhancements to model-reduced fluid simulation that allow

improved simulation bases and two-way solid-fluid coupling. Specifically,

we present a basis enrichment scheme that allows us to combine data-driven

or artistically derived bases with more general analytic bases derived from

Laplacian Eigenfunctions. Additionally, we handle two-way solid-fluid coupling

in a time-splitting fashion—we alternately timestep the fluid and rigid body

simulators, while taking into account the effects of the fluid on the rigid bodies

and vice versa. We employ the vortex panel method to handle solid-fluid coupling

and use dynamic pressure to compute the effect of the fluid on rigid bodies.

Taken together, these contributions have advanced the state-of-the art in

physics-based animation and are practical enough to be used in production

pipelines.

iv

For my parents Jim and Monika and my grandfather Richard

CONTENTS

A BSTRA CT iii

LIST OF FIG U R E S..viii

ACRONYM S x

ACKNOWLEDGMENTS xi

CHAPTERS

1. INTRODUCTION 1
1.1 Thesis Statement... 5

2. RELATED W O R K 6
2.1 Fluid Simulation... 6
2.2 Point-based Methods and Elastoplastic M aterials............................. 8
2.3 Dimensionally Reduced F lu id s.. 11

3. PHYSICS-BASED ANIMATION OF LARGE-
SCALE SPLASHING LIQUIDS .. 13
3.1 Unilateral Incompressibility .. 13
3.2 Mass-full FLIP... 16

3.2.1 Particle Rasterization... 17
3.2.2 Velocity Extrapolation... 17
3.2.3 Update Particle V elocity.. 18
3.2.4 Particle Advection... 18

3.3 Obstacle Handing .. 18
3.4 Results and Discussion... 19
3.5 Lim itations... 30

4. A POINT-BASED METHOD FOR ANIMATING ELASTOPLASTIC
SOLIDS 32
4.1 Computing the Deformation Gradient ... 32
4.2 Composing Deformation Gradients ... 33
4.3 Constitutive Model .. 34
4.4 Results and Discussion... 35

5. ENHANCEMENTS TO MODEL-REDUCED
FLUID SIMULATION .. 42
5.1 Reduced Fluid Simulation... 42
5.2 Basis Enrichment .. 44
5.3 Two-way Solid-fluid C oupling.. 46

5.3.1 Solid-to-Fluid Coupling.. 47
5.3.2 Multiple B od ies.. 49
5.3.3 Domain Boundaries ... 50
5.3.4 Feedback ... 50
5.3.5 Fluid-to-Solid Coupling.. 53

5.4 Results and Discussion... 53

6. CONCLUSIONS... 58

APPENDIX: PUBLICATIONS.. 60

REFERENCES.. 61

vii

LIST OF FIGURES

3.1 The artificial surface tension from forcing incompressibility leads
to seeming small-scale behavior (left). Unilateral incompressibility
allows the fluid to separate and leads to the impression of a larger-
scale fountain (right)... 20

3.2 A dam breaking over an obstacle. Left Column: Incompressible
FLIP. Right Column: Our Method.. 21

3.3 A sequence of images showing a city being flooded by a tidal wave. 22

3.4 A quadruple dam break creates a large splash in the center of the
scene. Left: Top view. Right: Side v iew .. 23

3.5 Left: Several liquid objects fall into a circular pool of water. Right:
A large dam breaks over uneven terrain.. 24

3.6 A closer view as a large dam breaks over uneven terrain.................... ..25

3.7 Two streams of liquid collide.. ..25

3.8 Several liquid objects fall into a circular pool of water............................26

3.9 A series of underwater explosions cause large-scale splashing.......... ..26

3.10 A sequence of images from an animation of two streams colliding. . 27

3.11 A sequence of images from an animation of two streams colliding
visualized as particles... 28

3.12 A sequence of images from an animation of several underwater
explosions rendered from different viewpoints...................................... 29

4.1 Two different shapes form a pile on the ground. The right image
shows the simulation particles.. 36

4.2 An armadillo demonstrates non-Newtonian behavior similar to a
cornstarch solution—resisting large stresses, it initially bounces on
the ground, but when the stress is reduced it flows readily. 36

4.3 An elastoplastic bunny falls on a sphere.. 37

4.4 Hyperelastic boxes dropped on the ground. The left cube is quite
stiff, the right cube is softer.. 37

4.5 Three cylinders with different material properties fall on the ground. 37

4.6 Real-world footage of bread dough shaped like a star (left) is
compared to a simulation (right).. 38

4.7 We demonstrate the effects of our plastic material parameters by
dropping a box on the ground.. 39

4.8 Final frames in a comparison of our method (left) against a method
that uses a rest configuration (middle) and a method with an
additive strain model (right). The top row is an elastic material,
the bottom row is a very plastic material. The simulation consists
of applying and then releasing an analytic compression force that
increases away from the center of the object. The lower middle
image is the last frame before the simulation became unstable.......... 40

5.1 A vortex panel. Left: Panel coordinate system. Right: Velocity field
induced by the panel... 48

5.2 Domain boundary comparison. Left: A visualization of the velocity
field of an object near a domain boundary. Note that, along the
black line, the velocities point into and out of the domain. Right:
After the addition of a mirrored object below the black line, there is
no flow across the domain boundary.. 51

5.3 Artist input comparison. Left: Line integral convolution (LIC) is
used to visualize the input from the artist. Right: The input from
the artist after it has been projected to be divergence free................... 54

5.4 Basis comparison. Left: Only Eigenmodes. Right: A data driven
mode with Eigenmodes. When exciting the jet with high intensity,
the induced flow is not well represented using only the Eigenmodes. 55

5.5 Drafting example: Objects above draft off of and catch up to the
objects below. This example demonstrates solid-fluid coupling and
object-object interactions.. 55

5.6 An image from a game using our system... 56

ix

ACRONYMS

Two-Dimensional (2D)

Three-Dimensional (3D)

Graphics Processing Unit (GPU)

Unilateral Incompressibility Constraint (UIC)

Proper Orthogonal Decomposition (POD)

Computational Fluid Dynamics (CDF)

Modified Proportioning with Reduced Gradient Projections (MPRGP)

Modified Incomplete Cholesky (MIC)

Linear Complementary Problem (LCP)

Fluid Implicit Particle (FLIP)

Particle in Cell (PIC)

Smoothed Particle Hydrodynamics (SPH)

Singular Value Decomposition (SVD)

ACKNOWLEDGMENTS

I would like to thank my advisor Adam Bargteil for his guidance in all aspects

of getting through graduate school. Your mentorship, patience, knowledge, and

words of wisdom have been extremely valuable. I am grateful for the time spent

tirelessly going through my drafts, providing feedback on presentations, and

correcting me when I go off course.

I would also like to thank the members of my committee, Chuck Hansen, Mike

Kirby, Peter-Pike Sloan, and James O'Brien. I would like to thank Chuck for his

guidance when I was an undergraduate and being instrumental in my decision

to attend graduate school. Your early graphics classes sparked my interest in

computer graphics research. I would like to thank Mike for his rigorous scientific

computing classes that inspired my work greatly. I feel lucky for the opportunity

I had to work at Disney Research with Peter-Pike Sloan and Ladislav Kavan. I

couldn't have asked for better mentors who taught me more than they know.

Thank you Peter-Pike for taking the time to explain the details; you have a way

of teaching that opens my mind. I would also like to thank James for all your

feedback on my research; your comments and questions were greatly appreciated.

I would also like to thank all the students and faculty I had the opportunity to

work with and learn from.

Lastly, I would like to thank my friends and family for their love and support.

I owe a great deal to my brother-in-law Ryan Petrie whose excitement for

computer graphics was infectious. Thank you for teaching me the basics of

programming and helping me write my first renderer. I'm grateful for all the

awesome relationships and roommates I've had over the years and for the great

times and good company. I owe the greatest thanks to my family for their

continued love and support and always believing in me.

CHAPTER 1

INTRODUCTION

Over the last decade and a half, physical simulation has become an essential

tool in computer animation. With advances in rendering and physics-based

animation, many stories where the visuals were previously left to the imagination

of readers are now realistically brought to life in film. Nearly every major film

uses visual effects in some way. Some blockbuster films use visual effects for

nearly every shot, allowing film makers, writers, and directors to tell any story

they like. As the demand for visual effects increases, the need for realistically

animating real-world materials increases. A major goal in computer animation

research is to simulate the behavior of real-world materials, including such

phenomena as fracturing rigid and soft bodies, cloth, hair, explosions and smoke,

flowing and splashing liquids, and even muscle deformations.

This dissertation considers three problems in physics-based animation: large-

scale splashing liquids, elastoplastic material simulation, and dimensionality

reduction techniques for fluid simulation. This chapter continues with the

introduction of these problems which are covered in detail in later chapters,

Large-scale splashing liquids in Chapter 3, elastoplastic material simulation in

Chapter 4, and finally reduced fluid simulation in Chapter 5.

Computers have been used to simulate fluids for scientific and engineering

applications since the advent of the electronic computer. Over the last fifteen

years, fluid simulation has emerged as one of the most effective applications

of physics-based approaches to animation and has become a valuable tool for

movie production, producing realistic bodies of water, fire, smoke, and other

2

phenomena. The use of fluid simulation for special effects is now commonplace

and the topic has received copious attention in the graphics community and

several fluid simulations have won awards. For example, the Visual Effects

Society awarded the tidal wave in The Day After Tomorrow the award for The Best

Single Visual Effect of the Year, while Digital Domain, Dreamworks, and Industrial

Light and Magic have each received Academy Awards for their fluid simulators.

However, despite tremendous progress, challenges remain. One such challenge is

the simulation of large-scale splashing liquids. Such simulations are challenging

for a variety of reasons. Simulating large-scale liquids with fine-scale details can

require high grid resolutions, which dramatically increases computational costs.

Splashing liquids separate into a variety of scales from large blobs down to fine

mist, and capturing these scales can be difficult with surface tracking methods.

Allowing liquid to separate and expand freely is also restricted by the standard

incompressible fluid solvers.

Because at the spatial and temporal scales we seek to animate, liquids

compression is negligible, computer graphics researchers have largely focused on

simulating incompressible fluids. Even approaches, such as smoothed particle

hydrodynamics (SPH), that are naturally suited to simulate compressible flow

are often modified for incompressible flow [63]. While computationally efficient,

incompressibility induces an artificial surface tension that prevents liquid near

the surface from mixing with the surrounding air. This mixing is important

at large scales, especially during violent splashes, such as after underwater

explosions. In Chapter 3, we show that for single-phase fluid simulation, such

mixing is effectively modeled with unilateral incompressibility [50, 51], which

allows positive divergence while prohibiting negative pressures, thus avoiding

the pressure oscillations found in compressible simulation, while removing the

artificial surface tension caused by bilateral incompressibility.

We use a variant of the fluid-implicit-particle (FLIP) method as our underlying

simulation method. However, our approach, which we call mass-full FLIP,

attaches mass to the particles and more closely resembles compressible FLIP [9]

3

than the incompressible variety [76]. Mass-full FLIP is extremely well-suited

to the unilateral incompressibility (UIC) solve. In the context of UIC, ensuring

conservation of mass becomes difficult—allowing positive divergence can result

in significant volume gain. Like SPH methods, mass-full FLIP conserves mass by

conserving particles. Additionally, the UIC is most appropriate in highly turbulent

simulations where the numerical viscosity associated with semi-Lagrangian and

related schemes would be especially inappropriate.

Finally, we treat obstacles and fluid in a unified manner—we discretize

obstacles using particles and rasterize their mass onto the background grid using

the same trilinear kernel. We additionally employ the variational approach

to obstacles endorsed by Batty and colleagues [4]. Combined with unilateral

incompressibility, our treatment of boundaries easily allows liquids to separate

from obstacles, avoiding the common visual artifact of liquid gliding along the

ceiling.

In Chapter 3, we show that a novel combination of unilateral incompressibility,

mass-full FLIP, and blurred boundaries is extremely well-suited to the animation

of such liquids and avoids common artifacts such as artificial surface tension,

volume loss/gain, and fluid sticking to obstacles. We demonstrate our approach

on several examples, such as the flooding of a city. Side-by-side comparisons

with incompressible simulations clearly demonstrate the different behavior

afforded by our approach. In general, the more tumultuous the motion, the

more different the results. While we do not expect our approach to replace

bilateral incompressibility, we believe the rich behavior afforded by it will prove

an important tool for animating large-scale splashing liquids.

Materials that incorporate both plastic and elastic deformations such as

chewing gum, toothpaste, shaving cream, sauces, bread dough, and modeling

clay are frequently encountered in everyday life and have been successfully used

in special effects such as the honey in Bee Movie [58] and the food in Ratatouille [26].

In fact, the later work won the Visual Effects Society award for Outstanding Effects

in an Animated Motion Picture. At the same time, point-based simulation methods

4

have increased dramatically in popularity and sophistication in recent years.

These methods are capable of modeling a wide range of materials in a variety

of contexts, from real-time fluid simulations [11] to fracturing solids [54]. Their

versatility makes them especially attractive for computer graphics applications.

We describe a point-based approach for animating elastoplastic materials. Our

primary contribution is a simple method for computing the deformation gradient

for each particle in the simulation. The deformation gradient is computed for each

particle by finding the affine transformation that best approximates the motion of

neighboring particles over a single timestep. This transformation is found using

a least-squares fit to the positions of neighboring particles at the beginning and

end of the timestep. These transformations are then multiplicitively composed to

compute the total deformation gradient that describes the deformation around a

particle over the course of the simulation.

Our approach has two primary advantages. First, we do not store and

compare to an initial rest state. Under large plastic deformations, the mapping

from an initial rest state to the current state becomes numerical ill-conditioned.

By storing only the elastic part of the deformation, we avoid these numerical

problems. Second, instead of working with a strain metric, we work directly with

the deformation gradient. By focusing on the deformation gradient, our approach

can handle arbitrary constitutive models [35]. More importantly, working with

the deformation gradient naturally leads to a multiplicative formulation of

deformation, which is more suitable to finite deformations than the additive

models from classical plasticity that are often used in graphics [61]. In Chapter 4,

we demonstrate our approach on a number of examples that exhibit a wide range

of material behaviors.

One of the most significant drawbacks of physics-based animation is "the curse

of dimensionality"—the quest for ever-higher fidelity leads to an explosion in the

number of degrees of freedom. This problem naturally leads to the consideration

of dimensionality reduction techniques. By constructing a problem-specific

model of our fluid, we can reduce the number of degrees of freedom to only

5

the ones needed for our specific problem. While this is less accurate than a

full dynamics simulation, we can tailor the simulation to our specific time and

computational requirements.

In Chapter 5, we present several enhancements to the basic reduced fluid

simulation pipeline. Specifically, we present a basis enrichment scheme for

combining analytic, data-driven, and artistically authored bases as well as a new

approach to two-way solid-fluid coupling that scales to a large number of rigid

bodies.

The analytic bases act somewhat like regularization, allowing our approach

to generalize outside the training data and thus requiring significantly less

training data without the risk of over-fitting. We treat two-way solid-fluid

coupling in a time-splitting fashion—we first compute the effect of the solid

on the fluid and then compute the effect of the fluid on the solid. We employ

a vortex panel method to compute obstacles' effects on the fluid and dynamic

pressure to compute forces induced on the obstacle by the surrounding fluid. In

a precomputation step, we account for the geometric boundary of each object,

which involves assembling and inverting a dense "panel matrix;" however, at

runtime, solid-fluid coupling reduces to a matrix multiplication for each object.

We handle multiple obstacles by iteratively computing the coupling in a way

similar to Schwarz alternating methods [68]. Fluid-solid coupling is achieved

using dynamic pressure to compute forces on solid objects from fluid velocities;

these forces are then treated as external forces in a rigid body simulator. Our

results demonstrate that our enhancements are practical for two-way coupled

reduced fluid simulation with rigid bodies.

1.1 Thesis Statement
The choice of the degrees of freedom for simulating real-world phenomena

is important. By combining degrees of freedom like particles, grids, different

global bases, and vortex panels, we can make tradeoffs in simulation speed and

detail to effectively simulate various real-world phenomena.

CHAPTER 2

RELATED WORK

2.1 Fluid Simulation
The most popular approach for animating fluids has been to discretize the

governing equations on a regular Cartesian grid and staggering the velocity and

pressure samples, known as the "staggered-grid" [30]. In graphics, the first use

of this approach for a grid-based liquid simulation in 3D was introduced by

Foster and Metaxas [24], who pioneered its use for graphics applications. Semi-

Lagrangian advection was introduced by Stam [65], which allowed simulations to

remain stable even with very large timesteps, but also led to excessive numerical

dissipation. To address excessive dissipation, Fedkiw et al. [22] used vorticity

confinement and higher order interpolation; additionally, this method was

incorporated into a liquid solver with a combination of level sets and marker

particles for surface tracking [23]. This approach was later extended by Enright et

al. [21], who used marker particles on both sides of the interface as well as velocity

extrapolation into the air.

The goal of our method is to simulate large-scale splashing liquids without

sacrificing small-scale details, which is very similar to that of Losasso and

colleagues [43], who coupled incompressible flow to a particle system to achieve

some of the first really convincing animations of breaking waves. Their particle

system is quite similar to our mass-full FLIP, though they do not create particles

deep in the body of the fluid. More significantly, like us, they adopted variable

densities and are able to achieve fluid expansion in the form of spray and

foam. However, they used these variable densities as targets for bilateral

7

incompressibility, whereas we adopt UIC. McAdams and colleagues [47] adopted

this density targeting approach to precondition collisions in hair simulation and

Solenthaler and colleagues [63] also used density targeting to reduce fluctuations

in SPH simulations. Raveendran and colleagues [57] advocated using a coarse

grid projection to reduce compressibility in SPH simulations. Lentine and

colleagues [39] similarly use coarse grids to resolve large-scale divergence

and then perform finer scale projections to achieve high detail. Bodin and

colleagues [7] introduced inequality constraints to incorporate boundaries into

incompressibility solves in SPH fluid simulations.

The most closely related work to ours from a technical standpoint is the

work of Narain and colleagues, who introduced unilateral incompressibility

and applied it to two-dimensional crowd simulation [50] and to the animation

of granular materials [51]. The latter approach was extended to the PCISPH

framework by Alduan and colleagues [2]. These impressive results prompted us

to consider the application of unilateral incompressibility to liquids. The chief

technical innovation required in the context of liquids is the unified treatment of

liquid and obstacles through particle sampling and rasterization with the same

trilinear filter.

Recently, Schechter and Bridson [60] introduced Ghost SPH to address artificial

surface tension in SPH simulations. Their approach involves using improved

boundary conditions through the introduction of ghost particles. This technique

alleviates particle clumping that results when particles do not have sufficient

neighbors to reach their target density—by introducing ghost particles, the target

density is reached. Another solution to this problem was presented by Macklin

and Muller [46]. Our solution is different. Instead of modifying the free-surface

boundary conditions, we place a one-sided constraint on the divergence, which

is more analogous to turning off SPH pressure forces if the density were below

the target.

However, the underlying causes of artificial surface tension in SPH and FLIP

simulation are similar, but different. Artificial surface tension in SPH results

8

from small particle neighborhoods clumping together to try and achieve a target

density, while in grid-based and FLIP simulations, artificial surface tension is

caused by negative pressures that result from disallowing positive divergence.

Chentanez and Muller-Fischer [14] also set out to create large-scale effects. To

do so in real-time they developed an Eulerian "tall-cell" simulation system that

runs on a GPU. They also incorporated important secondary effects, including

wave textures and spray, mist, and foam particles. Incorporating such elements

into our approach would likely lead to a much richer visual experience. The

same year, they also achieved separation from solid boundaries by solving a

linear complementarity problem [13]. They adopted a multigrid solver and

enforced non-negative pressures only in obstacle boundaries, whereas we use

preconditioned conjugate gradient wrapped in an active-set method and disallow

negative pressures in all cells near the liquid surface.

We also draw on the work of Batty and colleagues [4] for handling boundary

conditions. Similar to their work, we take into account the volume occupied

by obstacles to adjust the amount of fluid that can enter a cell. However, while

they use a box filter for obstacles, we use the same trilinear filter for rasterizing

obstacles as we use for particles. We also note that they were the first to cast

wall-separation as a linear complementarity problem, which they solved with a

PATH solver that did not scale to large problems.

There is a rich body of work on fluid simulation in computer graphics.

A complete survey is beyond the scope of this dissertation, but we whole

heartedly refer the interested reader to the book by Bridson [10] or, for the more

mathematically oriented, the text by Chorin and Marsden [15].

2.2 Point-based Methods and Elastoplastic Materials
For a complete survey of point-based methods, we heartily recommend

the book by Gross and Pfister [28]. We focus our attention on methods

for animating elastoplastic solids and viscoelastic fluids. Terzopoulos and

Fleisher [67] introduced inelastic deformations, including viscoelasticity, plasticity,

9

and fracture, to the graphics community. O'Brien and colleagues [52] incorporated

a similar plasticity model into a finite element simulation to animate ductile

fracture. To avoid problems with poorly conditioned or tangled elements, they

demonstrated only limited amounts of plastic deformation. We also note that they

used an additive model of plasticity. While such a model is appropriate when

considering infinitesimal deformations, as Irving and colleagues [35] pointed

out, a multiplicative model is more appropriate in the context of finite plastic

deformation. Clavet et al. [16] modeled viscoelastic fluids with a mass-spring

system in which the springs are dynamically inserted and removed. Their springs

explicitly model viscous and elastic forces and include a model of plastic flow.

Goktekin et al. [25] took an alternative approach and added elastic forces to an

Eulerian fluid simulation. In their approach, a linear strain rate is integrated

through time and undergoes plastic decay. Their approach used a linear model

of elastic deformation that is not invariant to rotations. This shortcoming was

addressed by Losasso and colleagues [42], who applied a rotation to the advected

elastic strain to account for rotations in the velocity field. However, as noted by

Irving [34], because this model is not based on the deformation gradient, it is

unable to model hyperelastic materials.

Muller et al. [49] introduced a point-based method for animating elastic, plastic,

and melting objects. They broke the possible deformations into two separate

regimes. Deformations that were largely elastic were treated by comparing the

current configuration of neighboring particles to a rest configuration, while large

plastic deformations were handled by updating a strain measure in a way similar

to Goktekin et al. [25]. Their approach to primarily elastic deformation uses

moving least-squares to fit a transformation that maps neighbors in a reference

shape to the current shape. While we use a very similar moving least-squares

fit to compute the deformation gradient, we fit the deformation over individual

timesteps and compose the deformations to arrive at the total deformation. While

this approach invariably leads to drift in the deformation gradient over time,

it is able to handle changing neighborhoods and large plastic flow in a unified

10

way. Keiser et al. [37] also developed a unified approach by substituting fluid

dynamics for the large plastic deformation regime of Muller et al. [49]. Like ours,

their approach is able to model a wide variety of materials in a unified way.

Solenthaler and colleagues [64] have replaced the moving least-squares

approach used by Muller et al. [49] and Keiser et al. [37] with an SPH formulation.

Their approach is able to model fluids, elastic, and rigid objects as well as

objects that have parts of different types. Additionally, they include melting and

solidification, merging and splitting, and plasticity using the model of O'Brien et

al. [52]. More recently, Becker et al. [5] extended the approach of Solenthaler

and colleagues by employing a corotated SPH formulation that extracts the local

orientations of the object from the deformation field and calculating the elastic

forces in a rotated configuration. Hieber and Koumoutsakos [32] described a

Lagrangian particle method for simulating linear and nonlinear elastic solids

that does not require a rest configuration. Instead of performing a least-squares

fit to the deformation in every timestep, they update the deformation gradient

by integrating the gradient of the velocity field. In contrast to these meshless

methods, Bargteil et al. [3] introduced a finite element method for animating

large viscoplastic flow. Their approach relied on a robust remeshing operation

to maintain well-conditioned elements. Wojtan and Turk [73] improved on

this approach by using embedded surface meshes, producing highly detailed

animations of heavily deformed objects. By using embedded meshes, they

were also able to adopt a fast and simple remeshing procedure. These last two

papers are the only work in graphics that shares both the main advantages of

our approach. However, our approach has the advantage of being meshless,

allowing us to avoid remeshing and the consequent resampling and smoothing

of simulation variables. More recently, Wicke et al. [70] introduced a dynamic

meshing algorithm that attempts to replace as few elements as possible while

still maintaing high element quality even under gross mesh deformation.

11

2.3 Dimensionally Reduced Fluids
Dimensionality reduction for computational fluid dynamics (CFD) has

been well studied in engineering. These methods are variously referred to

in the literature as proper orthogonal decomposition (POD), Karhunen-Loeve

decomposition, or subspace integration. The POD method has been used in

many applications involving dimensionality reduction of complex flows and

to investigate coherent structures in turbulent flows [44,45, 33]. The snapshot

POD method introduced by Sirovich [62] for the study of coherent structures can

be used to create a reduced model from a series of snapshots of a simulation.

Treuille and colleagues [69] introduced this snapshot technique to graphics and

described how each step of a fluid simulation can be performed in the reduced

space.

Since that work, researchers have also developed modular techniques by

connecting fluid tiles, which capture specific boundary conditions, at runtime to

create large novel reduced fluid simulations [71]. Additionally, researchers have

also experimented with different bases for fluid simulation. Gupta et al. [29] used

the Legendre polynomials for both simulation and rendering of participating

media. Long et al. [40] improve upon Fourier-based solutions by shifting to the

discrete sine/cosine transform to handle boundary conditions. However, this

method is limited to simple domains. More recently, DeWitt et al. [18] used static

analysis of the domain to construct a basis from Eigenfuctions of the Laplacian.

In some simple domains, this basis even has a closed form. In our work, we

combine this basis with the snapshot POD method. Other researchers have

extended reduced fluid methods by applying a cubature approach for nonlinear

functions [38] and including inverse operators for solid-fluid coupling [66].

Treuille et al. [69] handled solid obstacles by defining a local basis on a fixed

size grid surrounding each obstacle. This local basis was created by computing

the velocity field that cancels the flow into the obstacle induced by each mode of

the fluid simulation basis and then applying the same snapshot POD technique

to compute a compressed basis. This process was repeated for a number of

12

translations and rotations of the obstacle. Additionally, the rigid body motion

of each object was also sampled to incorporate object movement into the local

basis. At runtime, the local basis for canceling the normal flow is determined

based on the location, rotation, and movement of the object. In contrast to this

approach, our approach to solid-fluid coupling, based on vortex panel methods,

does not limit interaction to a small region around the obstacle, has a small

runtime memory footprint, avoids expensive precomputation, and allows for

direct interaction between obstacles.

Other approaches for handling moving boundary conditions in reduced fluid

simulations involve taking the difference of the normal velocity and the desired

normal velocity, and projecting it onto the velocity basis and then subtracting the

result from the reduced state [18]. This method approximates the forces up to

the resolution representable by the basis modes. In contrast, our method is able

to increase the resolution of our boundary conditions independent of our fluid

basis.

Our approach to solid-fluid coupling makes use of the vortex panel method,

which was developed to study flow around airfoils [31,17] and was introduced

to graphics by Park and Kim [53] to handle obstacles in a vortex particle method.

More recent variations have been used to simulate smoke as a surface [55,12].

CHAPTER 3

PHYSICS-BASED ANIMATION OF LARGE-

SCALE SPLASHING LIQUIDS

Our approach brings together several components: unilateral incompress

ibility, mass-full FLIP, and blurred obstacles. While some of these techniques

have been employed before inside and outside of the graphics literature, we

demonstrate that their novel combination is especially effective for computer

animation of large-scale splashing liquids.

3.1 Unilateral Incompressibility
For completeness, we briefly describe the unilateral incompressibility con

straint (UIC) and discuss practical issues in its application to simulating liquids.

The Euler equations describe the motion of inviscid fluids by stating that mass

and momentum are conserved:

@P = -V • (pu) (3.1)

= -u •Vu - Vp + f , (3.2)
@t p p v ’

where P denotes the density of the fluid, t time, u the velocity, p the pressure,

and f external forces such as gravity. For incompressible flow, the constraint that

density be a constant leads to the solution of a Poisson equation to determine the

pressure that will lead to a divergence-free velocity field, while for compressible

flow, an equation of state determines pressure as a function of density [6]. In

the case of unilaterally incompressible flows, we place an upper bound on the

density of fluid in any given cell, pmax, and require that pressures be non-negative.

14

Additionally, we require that for any given cell, either the density is pmax or that

the pressure is zero. Intuitively, this last constraint requires that the cell be full of

liquid or be treated like air.

These constraints can be formulated as a linear complementarity problem,

Here, Vf is a face-centered volume fraction (see Section 3.3) representing the

pc and pf are cell-centered and face-centered liquid densities, respectively

(see Section 3.2). Intuitively, b estimates the amount of free space (air) in a

cell at the end of the timestep if pressure was zero.

We solve this system using the modified proportioning with reduced gradient

projections (MPRGP) method as described by Dostal [20,19], with the Modified

Incomplete Cholesky (MIC(0)) preconditioner as described by Bridson [10].

MPRGP is an active-set method where the active set includes cells where the

pressure is currently zero and the free set contains cells where the pressure is

positive. The method interleaves conjugate gradient steps with expansion steps

that increase the size of the active set and proportioning steps that add cells to the

free set. The method requires an estimate of the induced norm of the matrix (the

largest eigenvalue) to use as a bound on step sizes. In practice, this can be found

using power iterations. We have found that warm-starting these iterations with

the eigenvector from a previous matrix can dramatically reduce the resulting

number of matrix multiplications. The method is more general than the problem

we have described—it also allows for constraints of the form pi > lj. We can take

Ap + b > 0

p > 0

pT (Ap + b) = 0

(3.3)

(3.4)

(3.5)

with the substitutions

(3.6)

(3.7)

fraction of the volume around the face that may be occupied by liquid, and

15

advantage of this functionality to allow for negative pressures (suction) away

from the surface of the liquid.

After solving for the pressure, we update the velocity field,

un+1 = u
Vpn

V f- p - . (3.8)
f Pf

It is worth noting that this formulation is not unique. In particular, the volume

fractions, Vf in Equation (3.8) could be moved to the right-hand side and/or the

densities, pf, could be included in the matrix, both of which may seem more

natural choices. Just moving the volume fractions to the right-hand side leads to

instability as the cell-centered volume fractions, needed to multiply pmax and pc,

may disagree somewhat with the face-centered volume fractions. Moving the

densities into the matrix does not cause instabilities, but leads to fewer expansion

steps and less lively motion. If the densities are moved to the matrix, moving the

face fractions to the right-hand side has little effect.

The intuition behind the UIC solve is less straightforward than standard

incompressible solves. In a traditional incompressible solve, the solver is

prohibited from allowing divergence in any cell that has been labeled liquid.

However, with unilateral incompressibility, the solver is free to relabel liquid

cells as air by setting the pressure to zero and allowing negative divergence. The

presence of zero pressures and negative divergence in the liquid prohibits the

sort of long-distance pressure gradients that allow fluid to slosh back and forth.

Instead, the fluid quickly settles and comes to rest. Intuitively, our formulation

encourages the solver to consider cells labeled liquid as liquid by making them

look full, as in an incompressible solve. However, this formulation is more

sensitive to spatial oscillations in the density field that naturally occur from

numerical errors in particle advection. These oscillations can lead to popping and

even explosions, especially when timesteps are large relative to the grid spacing.

The fix, as detailed by Narain and colleagues [51], is a density correction—

essentially an additional linear complementarity problem that operates on

positions rather than velocities to instantaneously adjust the density to satisfy the

16

constraint that p < pmax. The matrix in this solve sets At to 1 and removes the last

term from b (i.e., setting the velocity to zero). After solving for pseudo-pressures,

y, in each cell, we compute the gradient on each face, x = Vy, and update the

density of each cell using the divergence of x,

pc+ = V •x. (3.9)

We also apply averaged corrections to the face densities, pf , and store the

face-centered x for application as an instantaneous offset to particle positions

during advection (immediately before time integration). Note that sign errors

are especially easy to make.

3.2 Mass-full FLIP
Unilateral incompressibility and mass-full fluid implicit particle (FLIP) methods

are very well-suited to each other. Unilateral incompressibility, like bilateral

incompressibility, requires the solution of a global system every timestep. This

solve is easily performed on mass-full FLIP's background grid. Moreover,

we require density estimates at various locations on the grid. These are

easily obtained by rasterizing particle mass onto the grid and dividing by

volume. Furthermore, mass-full FLIP, like SPH, automatically conserves mass

by conserving the number of particles—a very attractive feature. Finally, FLIP's

advection scheme results in very low dissipation, perfect for our target of

large-scale splashing liquids.

Given the popularity of FLIP in computer graphics, we only briefly describe

the method (for details please see [76, 10]). The anatomy of a timestep in our

system is as follows:

1. Rasterize particle velocities and masses onto the grid

2. Apply external forces (gravity)

3. Solve unilateral incompressibility and apply pressure gradient (see Sec

tion 3.1)

17

4. Extrapolate velocity field

5. Update particle velocities

6. Advect particles through velocity field

3.2.1 Particle Rasterization

In the first step, we rasterize particle velocities and masses onto the grid.

Velocity and mass contributions from each particle are accumulated onto each face;

just mass is contributed to cell centers. We use the standard trilinear weighting

kernel. After all particles have contributed, velocities are normalized and masses

are converted to densities by dividing by the volume of a cell. Specifically,

where m f is the mass of a face, mp is the mass of a particle, T(-) is the trilinear

interpolation kernel, xp is the particle position, x f is the position of the center of

a face, up and uf are the u-components of the velocity of the particle and face,

respectively (similar equations exist for the v- and w- components), pf is the

density at the face center, and h is the grid spacing. Note we do not need to

explicitly store both mf and pf .

Because we divide by density in Equation (3.8), any cell that has mass less than

a threshold is treated as air and not included in the unilateral incompressibility

solve.

(3.10)
p

(3.11)

(3.12)

3.2.2 Velocity Extrapolation

We perform a simple velocity extrapolation algorithm that is similar in spirit

to fast sweeping, but does not make use of levelset values. We first mark each

18

grid face that received any density. We then sweep over the grid several times.

In each sweep, a face that has marked neighboring faces is assigned an average

than building a levelset and applying fast sweeping, but is much faster.

3.2.3 Update Particle Velocity

As is commonly done, we use a combination of particle in cell (PIC) and FLIP

to update the particle velocities. That is, we combine the trilinear interpolated

velocity from the grid (PIC) with the change in grid velocity (FLIP).

3.2.4 Particle Advection

We use the second-order trapezoidal rule or first-order Euler integration for

advection. In the later case, the extrapolation step may be skipped. Particle

paths are clipped against domain boundaries and the levelset representation of

obstacles. In the later case, we try stepping along the gradient of the levelset to

place the particle on the obstacle surface. If this fails to converge (or places the

particle outside the domain boundary), we perform several bisection steps along

the particle's initial path to find a position with a positive (outside the obstacle),

but small, levelset value.

Our handling of obstacles is the most novel component of our approach. We

sample the obstacles with particles, just as we do the liquid. We then rasterize

obstacle particles onto the grid using the trilinear interpolation weights we also

use for the liquid particles. In effect, we are blurring the boundaries of the

obstacles in the same way that we blur the boundaries of the liquid. More

specifically, to compute pmax for a cell, we approximate the integral

of the neighboring velocities and is itself marked. This approach is less accurate

3.3 Obstacle Handing

f f f T(x - xc) f (x)dV
(3.13)pmax = p f

19

where pf is the default density of the fluid (1000 kg/m 3 for water), T(-) is the

trilinear interpolation basis centered at the cell, x is a dummy variable for

integration, xc is the position of the cell center, and f is a characteristic or indicator

function that is 0 inside the obstacle and 1 outside. The integral for the face

volume fractions, v f , which represent the maximum amount of liquid that can

rasterize to a face, are computed similarly by leaving out the scaling by pf .

In practice, we uniformly sample the obstacles to evaluate the integral. This

approach ensures that the volume computations agree with the rasterization

stencil used by the fluid particles. If this were not the case, for example with the

"box filter," a cell could be marked as containing zero fluid volume and yet, a

liquid particle would be able to rasterize to it.

As our unilateral incompressibility solve does not allow negative pressures,

there is no "suction" along obstacles and we automatically obtain wall-separating

boundary conditions as cells next to obstacles "expand." That is, the pressure

solve allows the fluid velocity field to point out of the obstacle, but not into it

once the maximum density is reached. Additionally, as noted above, during

advection, we ensure that particles are outside obstacle levelsets.

It is the novel combination of blurred obstacle boundaries, unilateral incom

pressibility, variational volume fractions and particle collision detection that

allows our method to handle obstacles seamlessly—with no special effort we

get wall-separation. These benefits do come at a cost, however. We sacrifice

sharp boundary conditions and sharp interfaces. This sacrifice is justified in the

context of large-scale single-phase liquid simulation, but would prove too great

for multiphase flow or in cases where the boundary layer plays a key role.

3.4 Results and Discussion
We include two comparisons between our approach and an incompressible

FLIP solver. Like the solver detailed above, our incompressible FLIP uses the

second-order trapezoidal rule, which produces somewhat smoother results than

the commonly used midpoint method, and our simple velocity extrapolation.

20

One difference is that while our particles will contribute mass to nearby cells due

to the trilinear filter, our incompressible solver uses a "box filter" to determine

which cells are labeled "liquid." In our experience, this diminished volume gain

and led to better results from particle skinning. Our incompressible solver also

uses traditional nonblurred obstacles.

In the first comparison, we set up two fountains (see Figure 3.1). Our approach

allows the liquid to separate and expand in a natural manner, while the artificial

surface tension of the incompressible solver causes the fountain to oscillate and

collapse on itself.

The second comparison is a dam break with an obstacle (see Figure 3.2).

In this example, our approach creates a large splash as the liquid passes over

the obstacle, while the incompressible approach flows over the obstacle with

almost no noticeable splash. This example also demonstrates incompressible

FLIP's tendency toward volume gain as a single particle can force a cell to be

labeled liquid. Our additional examples (see Figures 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,

3.9, 3.10, 3.11, and 3.12) demonstrate more large-scale, splashy fluid effects. Our

simulations were performed with a variety of grid resolutions and domain scales,

see Table 3.1 and Table 3.2 for details and timing results.

Figure 3.1. The artificial surface tension from forcing incompressibility leads to
seeming small-scale behavior (left). Unilateral incompressibility allows the fluid
to separate and leads to the impression of a larger-scale fountain (right).

21

Figure 3.2. A dam breaking over an obstacle. Left Column: Incompressible FLIP.
Right Column: Our Method.

22

Figure 3.3. A sequence of images showing a city being flooded by a tidal wave.

23

Figure 3.4. A quadruple dam break creates a large splash in the center of the
scene. Left: Top view. Right: Side view.

24

Figure 3.5. Left: Several liquid objects fall into a circular pool of water. Right: A
large dam breaks over uneven terrain.

25

Figure 3.7. Two streams of liquid collide.

26

Figure 3.9. A series of underwater explosions cause large-scale splashing.

27

Figure 3.10. A sequence of images from an animation of two streams colliding.

28

Figure 3.11. A sequence of images from an animation of two streams colliding
visualized as particles.

29

Figure 3.12. A sequence of images from an animation of several underwater
explosions rendered from different viewpoints.

30

Table 3.1. Grid scale, resolutions, and particle counts for all examples in this
chapter.

Figure Grid
spacing (h)

Domain
size

Particle
count

Figure 3.3
Figure 3.1 (UIC)
Figure 3.2 (u Ic)
Figure 3.4
Figure 3.8
Figure 3.6
Figure 3.9

2
0.05
0.1
0.1
0.1
0.125
0.0625

250x80x80
50x100x50
80x60x40
100x100x100
100x120x100
208x112x160
80x80x80

16,307,596
104,988
1,539,000
5,508,794
2,060,247
6,937,747
3,430,944

Table 3.2. Timing results for all examples in this chapter. Timing results are given
in average seconds for one 30 Hz frame.

Figure Total
time

Solve
time

Extrapolate
velocity

Particle
advection

Particle
rasterization

Figure 3.3 75.6 35.3 1.5 23.5 14.4
Figure 3.1 (UIC) 7.8 5.1 0.8 0.7 0.7
Figure 3.2 (UIC) 21.7 5.2 0.5 9 6.8
Figure 3.4 118.5 54.2 2.7 30.3 29.9
Figure 3.8 81.6 52.1 4.6 12.4 10.2
Figure 3.6 556 470 12.6 39.1 28.7
Figure 3.9 20 11.3 0.3 4.2 4

3.5 Limitations
A primary limitation of our approach is that there is no representation of the

liquid surface, forcing us to rely on particle skinning approaches—generating

surfaces from animated particle data, which can lead to artifacts, especially at

low resolutions and with uniform or overly randomized samplings. Interestingly,

while other researchers using FLIP have generally favored lower numbers of

particles per cell, we found that increasing the number of particles per cell was

a very effective strategy for achieving higher resolution animations without

requiring the solution of larger LCPs. An alternative to particle skinning

31

would be to couple our particles to an explicit mesh surface as done by Yu and

colleagues [74], though this would not allow for the frame-level parallelism of

our particle skinning approach. Another disadvantage of our approach is the

necessity for two LCP solves, both of which are more expensive than the simple

Poisson solve in traditional incompressibility. We would also like to improve

the computational efficiency of our approach. Many software design decisions

were made favoring ease of debugging and experimentation over efficiency, so

we believe there is much room for improvement.

One, perhaps subtle, disadvantage of assigning mass to the particles is that it

makes reseeding very difficult. Placing too many particles in a cell will result

in unwanted expansion, while too few will result in collapse. It took several

iterations to produce the example in Figure 3.1, which required solving for the

number of particles to add based on the fountain velocity and simulation timestep.

Finally, we note that our approach essentially blurs both the liquid surface and

obstacles. While this is acceptable for large-scale, splashy behavior, in many

contexts, sharp boundaries are essential to compute the desired behavior [56].

CHAPTER 4

A POINT-BASED METHOD FOR ANIMATING

ELASTOPLASTIC SOLIDS

We describe a point-based approach for animating elastoplastic materials. Our

primary contribution is a simple method for computing the deformation gradient

for each particle in the simulation. The deformation gradient is computed for

each particle by finding the affine transformation that best approximates the

motion of neighboring particles over a single timestep. These transformations

are then composed to compute the total deformation gradient that describes

the deformation around a particle over the course of the simulation. Given the

deformation gradient, we can apply arbitrary constitutive models and compute

the resulting elastic forces.

4.1 Computing the Deformation Gradient
In this section, we describe our method for computing the deformation

gradient and the consequent elastic forces. We focus on the modifications

we made to the open-source SPH simulator released by Adams et al. [1]. For

additional details on SPH simulation, we refer the reader to that paper and its

references.

Our goal is to compute elastic forces in a point-based simulation. In order

to do so, we must first compute the deformation in the vicinity of each particle,

pi. We first consider how to compute the deformation around pi over a single

timestep. Let xi be the position of pi at the beginning of the timestep and yi be

the location of pi at the end of the timestep. If pj are the neighbors of pi, we seek

33

the transformation matrix F, such that

n

D F(x j - xi) - (y j - y ^ (4.1)
j=1

is minimized. If we let

(4.2)

and

Y = (y1 y2 y3 ••• y n), (4.3)

where the individual xi and yi are column vectors; then if the deformation can be

represented with an affine transformation, we have

Taking the transpose of both sides and multiplying both sides by X we obtain the

normal equations,

This solution gives us the best linear transformation for the neighborhood

around pi in a least-squares sense. However, we want nearer particles to have

greater influence, so we multiply the columns of X and Y by a weighting kernel.

Our implementation uses the poly6 kernel (the default smoothing kernel given

by Muller et al. [48]),

FX = Y. (4.4)

XXT f t = x y t . (4.5)

Solving for F, we have

(4.6)

0 < r < h
otherwise.

(4.7)

4.2 Composing Deformation Gradients
This approach gives us the deformation over a single timestep. However, this

deformation is a linear transformation and transformations compose through

34

multiplication. Thus, to compute the deformation over some time interval, we

break the interval into a series of k timesteps, estimate the deformation over each

timestep, and compute
k

F = [] Fi. (4.8)
i=1

We note that only a single F, representing the total elastic deformation, need be

stored for each particle. The individual Fi are computed during the associated

timestep, but not stored.

4.3 Constitutive Model
Once we have the deformation gradient, we can apply any constitutive

model we like, compute strain, stress, and elastic forces, and move the simulator

forward. In our implementation, we diagonalize F into UFVt using a singular

value decomposition [35] and apply the multiplicative plasticity model described

by Bargteil et al. [3] to obtain the elastic deformation, Fe. We then compute the

diagonalized stress as in Irving et al. [35],

P = 2 ^ (Fe - I) + ATr (Fe - i) I. (4.9)

Following Solenthaler et al. [64] and accounting for our diagonalized deformation

gradient and stress, the elastic force pi exerts on pj is

fij = -2v{Uj UFePVT dij (4.10)

where vi and vj are the volumes of particles pi and pj and

dij = VW(F-1(y j - y), h). (4.11)

Note that the vector from y\ to yj is back projected to the reference space

before applying the weighting kernel. We use the weighting kernel developed

specifically for elastic forces by Solenthaler et al. [64],

h) = | c — cos((r+h)n) + c — 0 < r < hn \ 2h / nW(r,h) = < ' n ^ y 2h) - n - " (4 .12)
0 otherwise,

35

where
f

c = -----(-------------) • (4.13)
8h4 (f - f + f2)

In order to ensure conservation of momentum, fij and f ji are averaged and equal

and opposite forces are applied to the particles. We note that because we have

diagonalized F and P, the forces computed in Equation (4.10) are rotationally

invariant.

4.4 Results and Discussion
Our implementation adds the elastic forces described in this chapter to the

open source SPH simulator by Adams and colleagues [1]. The resulting system

may be thought of as a "unified SPH" simulator and is capable of simulating

liquids and solids as well as materials that demonstrate properties of both liquids

and solids. In fact, many of our examples included SPH pressure forces as well

as elastic forces, as we found that pressure forces provided additional stability.

We refer the interested reader to the paper by Adams and colleagues [1] and the

associated source code for details such as time integration (symplectic forward

Euler), neighborhood selection (the 30 nearest neighbors within a given radius),

etc.

Figures 4.1-4.7 demonstrate our method's ability to handle a wide range of

materials. Figure 4.2 shows an example with a modified version of our plasticity

model that divides the flow rate by the magnitude of the stress, so that the material

flows more easily under small stresses. Figure 4.4 demonstrates a hyper-elastic

material where the eigenvalues of F are squared before computing the stress.

Figure 4.6 compares one of our simulations with real-world footage of bread

dough and Figure 4.7 demonstrates the effects of varying our material parameters.

Figure 4.8 shows a comparison of our approach with an approach that stores

and compares to a reference shape and then removes plastic deformation before

computing elastic forces and an additive approach that computes Green's strain

at every timestep and adds it to the total elastic strain. As is expected, storing the

36

Figure 4.1. Two different shapes form a pile on the ground. The right image
shows the simulation particles.

Figure 4.2. An armadillo demonstrates non-Newtonian behavior similar to a
cornstarch solution—resisting large stresses, it initially bounces on the ground,
but when the stress is reduced it flows readily.

reference configuration works very well for largely elastic bodies, but under large

plastic flow, the simulation becomes unstable. Conversely, an additive model of

elastic deformation works well enough when most of the deformation is plastic,

but fails to return to the rest shape when the deformation is primarily elastic.

Table 4.1 summarizes our computation times. All results were obtained

on a single core of a Xeon E5410 (2.33 Ghz), with 16 GB of memory available.

Profiling has shown that in the example in Figure 4.3,14% of the computation

time was spent in our elasticity code. Half of this time was spent performing

eigendecompositions. This total cost is roughly twice the cost of surface tension

forces, which we did not use in our examples. We note that our examples were

run with very conservative timesteps—some of our examples ran successfully

with 10x larger timesteps.

Generating visually appealing, time-coherent surfaces for particle-based

simulations remains a difficult problem that is beyond the scope of this disserta-

37

Figure 4.3. An elastoplastic bunny falls on a sphere

Figure 4.4. Hyperelastic boxes dropped on the ground. The left cube is quite
stiff, the right cube is softer.

Figure 4.5. Three cylinders with different material properties fall on the ground.

38

Figure 4.6. Real-world footage of bread dough shaped like a star (left) is compared
to a simulation (right).

39

Yield Point = 100

Flow Rate = 2000

Yield Point = 100m
Flow Rate = 50

Yield Point = 900

O
Flow Rate = 2000

Yield Point = 900
i V

f J

Flow Rate = 50
Yield Point = 6100

G
Flow Rate = 2000

Yield Point = 6100

i l l

Flow Rate = 50

Figure 4.7. We demonstrate the effects of our plastic material parameters by
dropping a box on the ground.

40

u I u
w

Figure 4.8. Final frames in a comparison of our method (left) against a method
that uses a rest configuration (middle) and a method with an additive strain
model (right). The top row is an elastic material, the bottom row is a very plastic
material. The simulation consists of applying and then releasing an analytic
compression force that increases away from the center of the object. The lower
middle image is the last frame before the simulation became unstable.

Table 4.1. Timing results for the examples in this chapter.
Figure At (ms) Particles Sec/Frame
Fig. 4.2 0.5 52316 96.4888
Fig. 4.3 0.1 40556 379.065
Fig. 4.5 (left) 0.1 16770 138.257
Fig. 4.5 (center) 0.1 16770 137.909
Fig. 4.5 (right) 0.1 16770 141.591
Fig. 4.4 (left) 0.1 665 4.76452
Fig. 4.4 (right) 0.1 665 4.88767
Fig. 4.7 (top, left) 0.1 12152 102.545
Fig. 4.7 (center, left) 0.1 12152 86.9948
Fig. 4.7 (bottom, left) 0.1 12152 94.4097
Fig. 4.7 (top, right) 0.1 12152 96.135
Fig. 4.7 (center, right) 0.1 12152 87.1509
Fig. 4.7 (bottom, right) 0.1 12152 94.3632

41

tion. Our results were generated with a variation of the method described by

Williams [72].

One of the paramount concerns in any computer graphics simulator is stability

and ours is no exception. One of the sources of error and instability in our

approach is the estimation of the deformation gradient. In particular, if a particle

does not have enough neighbors or the distribution of particles is degenerate,

XXT will be ill-conditioned. To address this problem, we do not update the

deformation gradient if a particle has less than a set number of neighbors (6 in

our implementation), if XXT is ill-conditioned, or if the update would cause any

of the eigenvalues of F to be less than or equal to zero. We also note that plastic

flow tends to improve stability by bringing F towards the identity. Consequently,

relaxing the constraint that plastic deformation be volume preserving in cases

when F encodes large volume changes further improves stability. When the

method does fail, it tends to be in areas around sharp features, where a particle's

neighbors subtend a small solid angle, or in areas where topological changes are

occurring. Addressing these issues is an important area of future work.

CHAPTER 5

ENHANCEMENTS TO MODEL-REDUCED

FLUID SIMULATION

We present several enhancements to model-reduced fluid simulation that

allow improved simulation bases and two-way solid-fluid coupling. Specifically,

we present a basis enrichment scheme that allows us to combine data-driven or

artistically derived bases with more general analytic bases derived from Laplacian

Eigenfunctions. We handle two-way solid-fluid coupling in a time-splitting

fashion; we alternately timestep the fluid and rigid body simulators, while taking

into account the effects of the fluid on the rigid bodies and vice versa. We employ

the vortex panel method to handle solid-fluid coupling and use dynamic pressure

to compute the effect of the fluid on rigid bodies.

In this section, we will first briefly review the mechanics of reduced fluid

simulation, then in following sections, we introduce our basis enrichment scheme,

and finally present our approach for two-way solid-fluid coupling.

The basic mechanics for reduced fluid simulation were introduced by Treuille

and colleagues [69]. We begin with the incompressible Navier-Stokes equations

which describe the motion of a viscous fluid,

5.1 Reduced Fluid Simulation

— = -(u • V)u - vV2u + Vp + fe

V u = 0

(5.1)

(5.2)

43

where u is the velocity, v is the viscosity parameter, p is the pressure, and fe are the

external forces. The goal of reduced simulation is to reduce the dimensionality

of u through Galerkin projection onto a low-dimensional basis,

r = Bt u (5.3)

where, r e R r represents the reduced coefficients and B is the basis represented as

a matrix with r columns, each representing a basis function.

A typical fluid simulation in computer graphics employs operator splitting

breaking the simulation into several individual steps: advection, applying

external forces, applying viscosity, and projection onto a divergence-free field.

To perform reduced fluid simulations, we must address each of these steps.

Fortunately, because we only include divergence-free fields in our basis, we

can only represent divergence-free fields, removing the need for the expensive

projection step. External forces are easily handled by Galerkin projection onto

the basis. Specifically, given external forces, fe, we compute reduced forces

fe = BT fe. (5.4)

These are simply scaled and added to the reduced velocity coefficients,

r := r + sfe, (5.5)

for some scaling factor s that accounts for density, grid-spacing, and timestep.

The diffusion term is also easily handled. Being a linear operator, the

discretization of the diffusion operator V2u can be represented as a matrix D.

Projecting into the subspace, we get the reduced diffusion matrix

D = BtDB, (5.6)

which is precomputed for a given domain.

The nonlinear advection operator, - (u • V)u, is more complicated. The

nonlinearities preclude it from being written as a single reduced matrix. Instead,

a reduced advection matrix for each basis function can be precomputed and then

44

at runtime combined into the final reduced advection operator. The discretization

of the advection operator for a given velocity field, u, can be expressed as a

matrix, Au. This matrix, when applied to a field, v, (i.e., Auv) has the effect of

advecting v through u.

Thus, we precompute, for each basis function or mode, b i, in the basis

B = [b1 . . .b r] a matrix, Abi, that represents advection through the velocity field

b i. Each of these matrices can be reduced

Ab = BTAbiB, (5.7)

during precomputation. During simulation, the reduced advection matrix

is computed by summing all mode advection matrices weighted by their

corresponding reduced state coefficient

X AbA (5.8)

Viscosity and advection can be combined into a single update from time t to

t + At and can be written as:

rt+At = (eAt(vD+A)) rt= êAt(vD+A)) rt. (5.9)

This matrix-vector product is computed efficiently using an iterative Taylor

approximation [71].

We note that while the reduced simulation can proceed without the notion of

a grid, for collecting training data and visualization purposes, a grid is useful. In

our system, we explicitly use the grid for solid-fluid coupling.

5.2 Basis Enrichment
The divergence-free bases used in reduced fluid simulations have been

constructed in either of two ways. The first method involves running a training

simulation and then extracting a reduced basis using a Singular Value Decom

position (SVD). This process is accomplished by concatenating velocity-field

snapshots of a high-resolution fluid simulation into a matrix, computing the

45

SVD, and then selecting r singular vectors [69]. A basis generated in this way can

capture motion similar to the training data very well in the least squares sense;

however, it suffers from a number of problems. Arbitrary motion during runtime

can be problematic as the basis may not generalize well to motion outside of the

training simulation, e.g., using a training simulation where an obstacle generates

flow in one half of the domain for a runtime where the obstacle moves to the other

half. To minimize problems from over fitting, a significant amount of simulation

data has to be precomputed. Additionally, it can be difficult for artists to know

what kinds of training simulations to run in order to generate a suitable basis,

not to mention the large amount of precomputation space and time needed.

The second method involves creating a basis using an analytic approach, for

example choosing Eigenfunctions of the Laplacian operator. For a few simple

domains, these bases can be computed in closed form. In more general domains,

the Eigenfunctions of the discrete Laplacian operator are computed using an

Eigendecomposition [18]. In simple domains like a box, the advection operators

can be computed analytically and because the modes are only loosely coupled, the

resulting matrices are sparse. The Eigenfunction modes work well for gross flow

and do not suffer from over-fitting, but detailed flow can require an impractically

large number of modes.

To give artists control over generating a basis, we provide a velocity drawing

tool. After the velocity has been drawn, it is projected onto a divergence-free field

and the artist can timestep the simulation to generate the desired velocity field.

This process allows an artist to create different flow effects, such as vortices or

laminar flow paths, with minimal training data. Alternatively, artists can simply

interact with the simulation to generate training data. We will now describe how

to combine different bases; a similar approach has been used in the context of

reduced bases for direct to indirect radiance transfer [41].

To exploit any sparsity that might exist in the Laplacian Eigenfunctions,

we would like to keep this basis intact when including the data-driven, artist

generated modes. Thus, given a Laplacian Eigenfunction basis, E, and velocity

46

fields generated by an artist, D = [d1 ... d^], where each column is a user-generated

velocity field scaled to unit length, we would like to construct a combined basis

that keeps the structure of E intact. First, the SVD of D = USVT is computed and

the left singular vectors, U, with corresponding singular values greater than zero

are retained. U is then deflated against the basis,

Ud = U - EEt U, (5.10)

where the columns of Ud now contain the parts of the velocity fields, U, that could

not be represented by the basis, E. The columns of matrix Ud are now orthogonal

to the columns of E but may no longer be orthogonal to each other, i.e., U jU d

may not be the identity. To generate a basis that spans the same subspace, we

simply compute the SVD of Ud and retain the singular vectors corresponding to

non-zero singular values,1 resulting in an orthonormal basis R. Concatenation of

E and R forms an orthogonal basis, perfectly valid for reduced fluid simulation.

From now on, we therefore assume that B is the concatenated matrix [E|R].

We would also like the ability to specifically activate the artist-generated

modes during runtime. If one wishes to directly excite an artist-created mode

during runtime, the projection of those modes into B can be precomputed. At

runtime the resulting coefficients can be added to the reduced state. No projection

is necessary during runtime.

5.3 Two-way Solid-fluid Coupling
We use the reduced fluid simulation engine described in Section 5.1 and

Box2D [8] for rigid body simulation. To couple them, we use a time splitting

technique and alternately timestep each simulator while taking into account the

effects of the fluid on the rigid bodies and vice versa.

1 W hile U is full rank, if there is a large overlap betw een U and E, deflation will result in a
rank deficient m atrix Ud (with zero singular values).

47

5.3.1 Solid-to-Fluid Coupling

To account for the effect of rigid bodies on the fluid flow, we adopt a vortex

panel method [17, 53]. This approach has two advantages over previous work.

First, obstacles are not limited to a finite range of spatial influence. In fact, they

have global influence, though the fall-off is quite fast. Second, we avoid the

substantial precomputation of sampling the object's effect at various positions and

orientations in the domain. Our only precomputation involves inverting matrices.

Finally, we note that our approach generalizes beyond reduced fluid simulation

and could be used in other contexts, such as smoothed particle hydrodynamics,

Eulerian, or semi-Lagrangian methods.

In two dimensions, objects are discretized into M piecewise linear segments

called panels. In our system, the panel lengths are chosen to be on the order of

the fluid simulation's grid spacing. The panels are then used both as quadrature

points and as vorticity sources that cancel flow normal to the obstacle.

The velocity, u = (u, v), generated by a panel at a point x in the local coordinate

system of the panel, is given by

Yp Y , do + e
u = — , v = — ln - ----- , (5.11)

2n 2n de + e

where y is the panel strength, p is the angle subtended by the panel from the

point x, do, and de are the distances from x to the origin and end of the panel,

respectively, and e is a small constant to avoid division by zero (see Figure 5.1).

To cancel the flow normal to an object, we must consider the interactions

between all the panels of the object. To do so, we compute a coupling matrix

P e RMxM that encodes the influence of the strength of panel i on the velocity at

panel j. Specifically, let u j be the velocity induced at the midpoint of panel j by

panel i when panel i has unit strength (i.e., yi = 1). Then the Pji is given by

Pji = - uij • nj, (5.12)

where nj is the normal vector of the j-th panel.

48

e

o A; e

Figure 5.1. A vortex panel. Left: Panel coordinate system. Right: Velocity field
induced by the panel.

Given P and a velocity field, u, to cancel the flow normal to the obstacle, we

must solve the linear system,

Py = b (5.13)

where y is the panel strength vector, and b is a vector encoding the violation of

the boundary condition. Specifically,

bi = A((uf - uo) • n (5.14)

where b; is the violation at panel i, A; is the panel area, uf is the fluid velocity

evaluated at the midpoint of the panel, and uo is the velocity of the object. This

approach corresponds to a 1-point quadrature rule. Of course, higher order

methods could be used.

As described, the M x M panel coupling matrix P is singular and an additional

constraint must be added in order to obtain a unique solution. We add the

constraint that there is zero circulation around the boundary, i.e.,

M
Y ^ A i Yi = 0. (5.15)

i

This constraint is encoded by adding a row to the panel matrix containing the

panel lengths and a zero to the end of b. The panel matrix is computed in object

49

space, allowing for rigid body transformations without modification. P can be

inverted during precomputation; at runtime, panel strengths are computed with

a single matrix-vector product.

Some distributions of panels are problematic when objects contain symmetries.

For example, a square with two panels per side is unable to cancel the normal

velocities induced from rigid body rotation. In such cases, it suffices to use an

odd number of panels per side.

5.3.2 Multiple Bodies

Thus far, we have described how to handle a single object. To handle multiple

objects, we must account for their interaction. Ideally, we would compute a

single coupling matrix encoding the interactions of all panels in the system.

However, this would require solving a new and much larger linear system every

step, removing the ability to precompute an inverse [12]. Instead, we employ a

fixed point iteration approach that takes advantage of the precomputed inverse

panel matrices. First, the panel strengths of each object are computed to satisfy

the boundary conditions of the reduced velocity field, i.e., for all objects i we

compute

Yi = P-1bi. (5.16)

We then iteratively solve for panel strengths that additionally satisfy object-object

interactions.

Each iteration, for each object i in our simulation:

1. Compute b cobj, which is the boundary violation induced by all other objects.

2. Store the previously computed panel strengths.

3. Solve for the new panel strengths,

Yi = P71(bC"g + b f j). (5.17)

4. Compute the norm of the difference in panel strengths.

50

Iterations are performed until the panel strengths converge, or a user-specified

tolerance or iteration limit is reached. This scheme, which falls into the class of

Schwarz alternating methods [68], is guaranteed to converge to a unique solution

for second-order PDE's. Golas et al. [27] successfully demonstrate an alternating

method to couple Eulerian grids with vortex particle methods.

This alternating scheme may fail due to the singularities that occur when

evaluating the velocity very near a panel. Velocities evaluated too close to a

panel should not be relied upon and instead another approach should be taken,

such as interpolating from reliable positions [31].

5.3.3 Domain Boundaries

When an object approaches the domain boundary, the velocity field induced

by its vortex panels will not generally respect the solid wall boundary conditions

(see Figure 5.2). For simple domains with closed form Laplacian Eigenfunctions,

we employ the method of images—used in electrostatics to handle wall boundary

conditions—to accurately and efficiently enforce the wall boundary conditions.

To do so, objects that violate the solid wall boundary conditions above an error

threshold are reflected across the solid wall. The resulting combined velocity

field will only have tangential components along the solid wall. The velocities

induced from the reflected panels are evaluated only at positions that fall inside

the domain. This approach will correctly satisfy the domain wall boundary

conditions by canceling the normal components of the velocity induced by the

original object. This method is similar in spirit to Long et al. [40] who used the

reflection properties of the discrete sine/cosine transform to handle solid wall

domain boundaries.

5.3.4 Feedback

The resulting velocity field is a combination of the reduced fluid velocity, ur,

and a panel velocity field, up, where

51

Figure 5.2. Domain boundary comparison. Left: A visualization of the velocity
field of an object near a domain boundary. Note that, along the black line,
the velocities point into and out of the domain. Right: After the addition of a
mirrored object below the black line, there is no flow across the domain boundary.

up = X u (5.18)
i

and ui is the velocity field induced by panel i. up can be evaluated at any specific

point in space through evaluation of Equation (5.11) and a straightforward

summation. For example, to advect a tracer particle, we can combine the reduced

velocity, reconstructed in the neighborhood of the particle, with the velocity

evaluated from the panels.

However, the panel strengths have no memory and must be recomputed

from scratch each timestep. Thus, we need to feed their contribution back

into the reduced fluid simulation to preserve momentum. This step can be

accomplished by iterating over the panels and summing their contribution to

the background grid. The resulting velocity field, up, is then be projected

into the reduced space and added to the reduced coefficients. However,

naively evaluating Equation (5.11) at every background grid velocity sample is

52

computationally expensive and can be especially wasteful if there are large errors

when up is projected into the reduced basis.

Instead, we approximate the contributions of panels to distant background

grid samples using a quadtree data structure. Specifically, we build a quadtree

over the background grid where the root corresponds to the entire domain and the

leaf nodes correspond to disjoint subgrids. In our examples, the maximum size

of a leaf node subgrid is 4 x 4, corresponding to 4 u and 4 v velocity samples. We

use a precomputed error metric to determine how deep to descend the quadtree

when evaluating u;. To precompute this error metric, we consider a unit strength

vortex panel and evaluate ui at the center of the quadtree node, c, and additional

sample points inside the quadtree node, sj. Then, the maximum error induced

by using a constant approximation of ui for the quadtree node is

max ||u;(c) - u j(s j)||. (5.19)
j

We compute these error samples for quadtree nodes at a number of distances

and directions from the panel and store the maximum error incurred at a given

level of the quadtree for a given distance.

At runtime, when computing the contribution of ui to up, which is stored on

the background grid, we use these precomputed values to determine the error

induced by approximating the velocities using the center of a quadtree node. If

the error is below a threshold, the panel velocity is evaluated at the center of

the quadtree node and this value is added to all the background velocity values

covered by the quadtree node; otherwise, we descend the tree.

When using our quadtree acceleration, we still must project up onto the

reduced basis. Note that some details of the velocity field will be lost in this

projection and, in particular, the reduced velocity field may not respect obstacles

boundaries. However, before this feedback, the velocity field ur + up does satisfy

the boundary conditions and can be evaluated exactly at any point in space in

time linear in the number of panels and the number of reduced coefficients. This

velocity should be used for, e.g., advecting tracer particles.

53

5.3.5 Fluid-to-Solid Coupling

We incorporate fluid to solid coupling by computing the dynamic pressure

on the boundary of the rigid body. From the dynamic pressure, we compute the

force, which is then added to the rigid body simulation. The dynamic pressure,

sometimes called the velocity pressure, is

1 Tq = ^pu u, (5.20)

where p is the density of the fluid, and u is the fluid velocity. For each panel, we

have already computed the difference in relative velocity between the obstacle

and fluid when solving for the panel strengths. From that velocity, we compute

the dynamic pressure q at panel centers and then multiply by the panel area to

get forces [59], which are normal to the panels. Specifically, the force on panel i is

f = Aiqni, (5.21)

which is then applied to the rigid body at the panel centers.

Buoyancy forces can optionally be included with

fi = -pA ihigni, (5.22)

where hi is the depth of the panel center and g is the scalar gravitational constant.

The minus sign is to signify that the force is in the direction opposite the surface

normal of the panel.

Both forces integrate over surfaces and require that objects are closed.

5.4 Results and Discussion
In our first example, we have a single data-driven mode with 63 Eigenmodes.

The artist input and the input after it has been projected to be divergence-free is

shown in Figure 5.3. The Eigenmodes poorly capture this "jet," but represent

gross flow well, while our enhanced basis captures both the gross flow and the

jet well; see Figure 5.4.

54

Figure 5.3. Artist input comparison. Left: Line integral convolution (LIC) is used
to visualize the input from the artist. Right: The input from the artist after it has
been projected to be divergence free.

Our second example uses a 128x128 grid with 67 Eigenmodes and contains

two pairs of falling objects; each pair has one object above the other. After being

released, the objects above catch up to the objects below, closing the gap between

them. The objects that start out above draft off of the objects below, allowing them

to fall faster through the fluid, demonstrating the effects of solid-fluid coupling

and object-object interaction; see Figure 5.5.

Finally, we have combined both our basis enhancement and two-way coupling

into a simple 2D game; see Figure 5.6. The game uses 73 Eigenmodes and there

are 15 objects with a total of 147 panels. Timing results in Table 5.1 show that

the naive approach of computing feedback from the panel velocities to the

reduced simulation dominates timing, taking 41ms in this example. By using our

quadtree feedback approach, we can reduce the time spent computing feedback

by increasing the error threshold of the approximation. In practice, this error

threshold can be quite large because this error is hidden by errors made when

projecting the resulting velocity field into the reduced basis.

55

f

s . m ;^§|gg
* V V • c

«: A v-
y > 1 '^ 1< w<)'yv-< ,£>■> * ;.
'® %

Figure 5.4. Basis comparison. Left: Only Eigenmodes. Right: A data driven
mode with Eigenmodes. When exciting the jet with high intensity, the induced
flow is not well represented using only the Eigenmodes.

■

\ I

Figure 5.5. Drafting example: Objects above draft off of and catch up to the
objects below. This example demonstrates solid-fluid coupling and object-object
interactions.

56

Figure 5.6. An image from a game using our system.

57

Table 5.1. Timings in ms for game scene with 73 modes on a 65x65 staggered
grid. ___________________________________

Description Time (ms)
Advect 0.744
Diffuse 0.00536
Panel Solves 5.626
Panel Feedback Naive 41.175
Panel Feedback Quadtree 5.825

CHAPTER 6

CONCLUSIONS

This dissertation considered three problems in physics-based animation:

large-scale splashing liquids, elastoplastic material simulation, and dimension

ality reduction techniques for fluid simulation. We demonstrated that our

novel combination of unilateral incompressibility, mass-full FLIP, and blurred

boundaries provides a very effective simulation strategy for large-scale splashing

liquids. By avoiding the artificial surface tension of traditional incompressibility,

our approach is able to simulate liquids that mix freely with the surrounding air,

while also avoiding the oscillations present in smoothed particle hydrodynamics.

The particle-based mass-full FLIP is well-suited to splashes and the thin-sheets

they create and do not suffer from mass loss or gain. Our blurred boundaries

unify the liquid and obstacle representations and work with the unilateral

incompressibility to allow liquid to detach from obstacles. Overall, we believe our

approach offers a number of advantages over the state-of-the-art for animating

large-scale, splashy liquids. In future work, we would like to experiment

with alternative LCP solvers, such as the multigrid method of Chentanez and

Muller [13] and interior point methods.

Additionally, we demonstrated that our point-based approach for animating

elastoplastic materials is well-suited to simulating materials that experience

large plastic deformations. It is also capable of simulating rather stiff elastic

materials, though some drift is inevitable. Unfortunately, our approach is not

well-suited to the large elastic deformations exhibited by soft objects. In such

cases, the deformation gradient becomes ill-conditioned and our method breaks

59

down. Recently, Jones et al. [36] addressed this limitation and are able to handle

large elastic deformations by including a rest configuration. Other researchers

extended our method to handle larger timesteps and improved stability by

using an implicit integrator, which we suggested was a promising area of future

work [75]. Other interesting areas of future work include addressing topological

changes in a physically based manner (currently, topological changes occur when

particle neighborhoods change), and methods for resampling/adaptive sampling.

The last direction is particularly interesting as it may improve stability as well as

provide performance benefits.

We believe our approach has a number of advantages over competing

techniques. In particular, it does not require any rest configuration, no remeshing

is needed, it can handle elastic and large plastic deformations in a unified

framework and it is simple to implement and inexpensive to compute. While

we have demonstrated our approach with a particle-based method, the general

approach to computing the deformation gradient should be applicable in other

simulation methods, such as Eulerian grid-based or finite element techniques.

This work has garnered 26 citations in the last 3 years and inspired follow-on

work.

Finally, we discussed several enhancements to dimensionally reduced fluid

simulations: a basis enrichment scheme to mix data-driven and analytic modes,

and a new approach to two-way solid-fluid coupling. Our enrichment scheme

enables the combination of the generality of Eigenmodes with the context

awareness and art directability of data-driven modes. Our approach to solid-fluid

coupling combines vortex panel methods for solid-to-fluid coupling, dynamic

pressure for fluid-to-solid coupling, the method of images to handle domain

boundaries, and a quadtree-based method to accelerate the solid-to-fluid coupling.

This approach enables robust coupling of dynamic objects to the dimensionally

reduced simulation and requires no training data. In future work, we plan to

extend the technique to 3D.

APPENDIX

PUBLICATIONS

Assembling Large Mosaics of Electron Microscope Images Using GPU,
Kannan Venkataraju, Mark Kim, Dan Gerszewski, James R. Anderson, Mary
Hall,
In proceedings of Symposium on Application Accelerators in High Performance
Computing 2009. Urbana, Illinois, July 2009

A Point-based Method for Animating Elastoplastic Solids,
Dan Gerszewski, Haimasree Bhattacharya, Adam W. Bargteil,
In A C M SIGGRAPH/Eurographics Symposium on Computer Animation 2009

Physics-Inspired Upsampling for Cloth Simulation in Games,
Ladislav Kavan, Dan Gerszewski, Adam W. Bargteil, Peter-Pike Sloan,
In A CM Transactions on Graphics (SIGGRAPH 2011), August 2011, Vol 30. No.
4.

Physics-based Animation of Large-scale Splashing Liquids,
Dan Gerszewski, Adam W. Bargteil
In A C M Transactions on Graphics (SIGG RAPH A SIA 2013), November 2013,
Vol 32, No 6.

Enhancements to Model-reduced Fluid Simulation,
Dan Gerszewski, Ladislav Kavan, Peter-Pike Sloan, Adam W. Bargteil,
Proceedings of A C M Motion in Games, Dublin, Ireland, November 2013.

Basis Enrichment and Solid-fluid Coupling for Model-reduced Fluid
Simulation,
Dan Gerszewski, Ladislav Kavan, Peter-Pike Sloan, Adam W. Bargteil,
Computer Animation and Virtual Worlds, in submission January 2014

REFERENCES

[1] A d a m s , B., P a u ly , M., K e i s e r , R., a n d G u ib a s , L. J. Adaptively sampled
particle fluids. A C M Trans. Graph. 26, 3 (2007), 48.

[2] A l d u a n , I., a n d O ta d u y , M. A. Sph granular flow with friction and cohesion.
In Proc. of the A C M SIG GRAPH / Eurographics Symposium on Computer
Animation (2011).

[3] B a r g t e i l , A. W., W o j t a n , C., H o d g in s , J. K., a n d T u r k , G. A finite element
method for animating large viscoplastic flow. A CM Trans. Graph. 2 6 ,3 (2007),
16.

[4] B a t t y , C., B e r t a i l s , F., a n d B r i d s o n , R. A fast variational framework for
accurate solid-fluid coupling. A C M Trans. Graph. 26, 3 (2007), 100.

[5] B e c k e r , M., Ih m s e n , M., a n d T e s c h n e r , M. Corotated sph for deformable
solids. In Proceedings of the Fifth Eurographics Conference on Natural Phenomena
(Aire-la-Ville, Switzerland, Switzerland, 2009), NPH'09, Eurographics
Association, 27-34.

[6] B e c k e r , M., a n d T e s c h n e r , M. Weakly compressible sph for free surface
flows. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on
Computer animation (Aire-la-Ville, Switzerland, Switzerland, 2007), SCA '07,
Eurographics Association, 209-217.

[7] B o d in , K., L a c o u r s i e r e , C., a n d S e r v i n , M. Constraint fluids. IEEE
Transactions on Visualization and Computer Graphics 18 , 3 (Mar. 2012), 516-526.

[8] Box2D. Erin Catto, 2011.

[9] B r a c k b i l l , J. U., a n d R u p p e l , H. M. Flip: A method for adaptively zoned,
particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys.
65 (August 1986), 314-343.

[10] B r i d s o n , R. Fluid Simulation for Comuter Graphics. A K Peters, 2008.

[11] B r i d s o n , R., a n d MUl l e r - F i s c h e r , M. Fluid simulation: Siggraph 2007
course notes. In A C M SIGGRAPH 2007 courses (2007), 1-81.

[12] B r o c h u , T., K e e l e r , T., a n d B r i d s o n , R. Linear-time smoke animation with
vortex sheet meshes. In Proc. of the A CM SIGGRAPH/Eurographics Symposium
on Computer Animation (2012), 87-95.

62

[13] C h e n t a n e z , N., a n d Mul l e r , M. A multigrid fluid pressure solver handling
separating solid boundary conditions. In Proceedings of the 2011 A C M
SIGGRAPH/Eurographics Symposium on Computer Animation (New York, NY,
USA, 2011), SCA '11, ACM, 83-90.

[14] C h e n t a n e z , N., a n d Mu l l e r , M. Real-time eulerian water simulation using
a restricted tall cell grid. A C M Trans. Graph. 3 0 ,4 (July 2011), 82:1-82:10.

[15] C h o r i n , A., a n d M a r s d e n , J. A Mathematical Introduction to Fluid Mechanics.
Springer, 2000.

[16] C l a v e t , S., B e a u d o i n , P., a n d P o u l i n , P. Particle-based viscoelastic fluid
simulation. In The Proccedings of the Symposium on Computer Animation (2005),
219-228.

[17] C o t t e t , G.-H., a n d K o u m o u t s a k o s , P. Vortex methods: Theory and practice.
Cambridge University Press, June 2000.

[18] D e W i t t , T., L e s s ig , C., a n d F iu m e , E. Fluid simulation using laplacian
eigenfunctions. A C M Trans. Graph. 3 1 ,1 (Feb. 2012), 10:1-10:11.

[19] D o s t A l , Z. Optimal Quadratic Programming Algorithms: With Applications to
Variational Inequalities, 1st ed. Springer Publishing Company, Incorporated,
2009.

[20] D o s t A l , Z., a n d S c h O b e r l , J. Minimizing quadratic functions subject to
bound constraints with the rate of convergence and finite termination.
Comput. Optim. Appl. 3 0 ,1 (Jan. 2005), 23-43.

[21] E n r i g h t , D. P., M a r s c h n e r , S. R., a n d F ed k iw , R. P. Animation and rendering
of complex water surfaces. A C M Trans. Graph. 21, 3 (2002), 736-744.

[22] F e d k iw , R., S ta m , J., a n d J e n s e n , H. W. Visual simulation of smoke. In The
Proceedings of A C M SIGGRAPH 2001 (2001), 15-22.

[23] F o s t e r , N., a n d F ed k iw , R. Practical animation of liquids. In The Proceedings
of A C M SIGGRAPH 2001 (2001), 23-30.

[24] F o s t e r , N., a n d M e t a x a s , D. Realistic animation of liquids. In The Proceedings
of Graphics Interface (1996), 204-212.

[25] G o k te k in , T. G., B a r g t e i l , A. W., a n d O 'B r i e n , J. F. A method for animating
viscoelastic fluids. A C M Trans. Graph. 2 3 ,3 (2004), 463-468.

[26] G o k t e k i n , T. G., R e is c h , J., PEACHEy, D., a n d S h a h , A. An effects recipe for
rolling a dough, cracking an egg and pouring a sauce. In SIG GRAPH '07:
A C M SIGGRAPH 2007 sketches (New York, NY, USA, 2007), ACM, 67.

[27] G o l a s , A., N a r a i n , R., S e w a l l , J., KRAjCEVSKi, P., D u b ey , P., a n d L i n , M.
Large-scale fluid simulation using velocity-vorticity domain decomposition.
A C M Trans. Graph. 31, 6 (Nov. 2012), 148:1-148:9.

63

[28] G r o s s , M., a n d P f i s t e r , H. Point-Based Graphics. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2007.

[29] G u p ta , M., a n d N a r a s i m h a n , S. G. Legendre fluids: a unified framework for
analytic reduced space modeling and rendering of participating media. In
Proc. of the A C M SIGGRAPH/Eurographics symposium on Computer animation
(2007), 17-25.

[30] H a r l o w , F., a n d W e l c h , J. Numerical calculation of time-dependent viscous
incompressible flow of fluid with a free surface. The Physics of Fluids 8 (1965),
2182-2189.

[31] H e s s , J., a n d S m ith , A. Calculation of non-lifting potential flow about
arbitrary three-dimensional bodies. Technical Report E.S. 40622, Douglas
Aircraft Division, 1962.

[32] H ie b e r , S. E., a n d K o u m o u ts a k o s , P. A Lagrangian particle method for the
simulation of linear and nonlinear elastic models of soft tissue. J. Comp.
Phys. 227, 21 (2008), 9195-9215.

[33] H o l m e s , P., L u m le y , J., a n d B e r k o o z , G. Turbulence, Coherent Structures,
Dynamical Systems and Symmetry. Cambridge Monographs on Mechanics.
Cambridge University Press, 1996.

[34] iRviNg, G. Methods for the Physically Based Simulation of Solids and Fluids. PhD
thesis, Stanford University, 2007.

[35] IrviNg, G., T e r a n , J., a n d F e d k iw , R. Invertible finite elements for robust
simulation of large deformation. In The Proceedings of the Symposium on
Computer Animation (2004), 131-140.

[36] J o n e s , B., W a r d , S., J a l l e p a l l i , A., P e r e n i a , J., a n d BARgTEiL, A. Deformation
embedding for point-based elastoplastic simulation. A C M Trans. Graph.
(2014).

[37] K e i s e r , R., A d a m s , B., G a s s e r , D., B a z z i , P., D u t r E , P., a n d G r o s s , M. A
unified Lagrangian approach to solid-fluid animation. In The Proceedings of
the Symposium on Point-Based Graphics (2005), 125-133.

[38] K im , T., a n d D e l a n e y , J. Subspace fluid re-simulation. A C M Trans. Graph.
3 2 ,4 (July 2013), 62:1-62:9.

[39] L e n t i n e , M., ZHENg, W., a n d F ed k iw , R. A novel algorithm for incompressible
flow using only a coarse grid projection. A CM Trans. Graph. 2 9 ,4 (July 2010),
114:1-114:9.

[40] LoNg, B., a n d R e i n h a r d , E. Real-time fluid simulation using discrete
sine/cosine transforms. In Proc. of the symposium on Interactive 3D graphics
and games (2009), 99-106.

64

[41] L o o s , B. J., A n t a n i , L., M i t c h e l l , K., N o w r o u z e z a h r a i , D., J a r o s z , W., a n d
S l o a n , P.-P. Modular radiance transfer. A CM Trans. Graph. 30, 6 (Dec. 2011),
178:1-178:10.

[42] L o s a s s o , F., S h i n a r , T., S e l l e , A., a n d F ed k iw , R. Multiple interacting liquids.
A C M Trans. Graph. 25, 3 (2006), 812-819.

[43] L o s a s s o , F., T a l t o n , J., K w a t r a , N., a n d F e d k iw , R. Two-way coupled sph
and particle level set fluid simulation. In IEEE TVCG (2008), vol. 14.

[44] L u m le y , J. The structure of inhomogeneous turbulent flows. Atmospheric
turbulence and radio wave propagation (1967), 166178.

[45] L u m le y , J. Stochastic tools in turbulence. Applied mathematics and mechanics.
Academic Press, 1970.

[46] M a c k l i n , M., a n d MUl l e r , M. Position based fluids. A C M Trans. Graph. 32,
4 (July 2013), 104:1-104:12.

[47] M c A d a m s , A., A., S., W a r d , K., SifAKis, E., a n d T e r a n , J. Detail preserving
continuum simulation of straight hair. A C M Transactions on Graphics
(SIGGRAPH Proceedings) 28(3) (2009).

[48] MU l l e r , M., C h a r y p a r , D., a n d G r o s s , M. Particle-based fluid simulation
for interactive applications. In The Proceedings of the Symposium on Computer
Animation (2003), 154-159.

[49] MU l l e r , M., K e i s e r , R., N e a l e n , A., P a u ly , M., G r o s s , M., a n d A l e x a ,
M. Point based animation of elastic, plastic and melting objects. In The
Proceedings of the Symposium on Computer Animation (2004), 141-151.

[50] N a r a i n , R., G o l a s , A., C u r t i s , S., a n d L i n , M. Aggregate dynamics for
dense crowd simulation. In SIGGRAPH Asia '09 (2009), vol. 28,122:1-122:8.

[51] N a r a i n , R., G o l a s , A., a n d L i n , M. C. Free-flowing granular materials
with two-way solid coupling. A C M Transactions on Graphics (Proceedings of
Siggraph Asia 2010) (2010).

[52] O 'B r i e n , J. F., B a r g t e i l , A. W., a n d H o d g in s , J. K. Graphical modeling and
animation of ductile fracture. A C M Trans. Graph. 21, 3 (2002), 291-294.

[53] P a r k , S. I., a n d K im , M. J. Vortex fluid for gaseous phenomena. In Proc. of
the A C M SIGGRAPH/Eurographics symposium on Computer animation (2005),
261-270.

[54] P a u ly , M., K e i s e r , R., A d a m s , B., D u t r E ; , P., G r o s s , M., a n d G u ib a s , L. J.
Meshless animation of fracturing solids. A C M Trans. Graph. 24, 3 (2005),
957-964.

[55] P f a f f , T., T h u e re y , N., a n d G r o s s , M. Lagrangian vortex sheets for animating
fluids. A C M Trans. Graph. 3 1 ,4 (July 2012), 112:1-112:8.

65

[56] PfAff, T., T h u e re y , N., S e l l e , A., a n d G r o s s , M. Synthetic turbulence using
artificial boundary layers. A CM Trans. Graph. 2 8 ,5 (Dec. 2009), 121:1-121:10.

[57] R a v e e n d r a n , K., WojTAN, C., a n d T u r k , G. Hybrid smoothed particle
hydrodynamics. In Proceedings of the 2011 A C M SIGGRAPH/Eurographics
Symposium on Computer Animation (New York, NY, USA, 2011), SCA '11,
ACM, 33-42.

[58] R u il o v a , A. Creating realistic cg honey. In SIGGRAPH '07: A CM SIGGRAPH
2007 posters (New York, NY, USA, 2007), ACM, 58.

[59] SAffMAN, P. Vortex Dynamics. Cambridge University Press, 1995.

[60] S c h e c h t e r , H., a n d B r i d s o n , R. Ghost sph for animating water. A C M
Transactions on Graphics (Proceedings of SIGGRAPH 2012) 3 1 ,4 (2012).

[61] S im o , J., a n d H u g h e s , T. Computational Inelasticity. Springer-Verlag, 1998.

[62] S i r o v i c h , L., a n d of A p p lie d M a t h e m a t i c s , B. U. D. Turbulence and the
Dynamics of Coherent Structures. Quarterly of applied mathematics. Brown
University, Division of Applied Mathematics, 1987.

[63] S o l e n t h a l e r , B., a n d P a j a r o l a , R. Predictive-corrective incompressible sph.
In A C M SIGGRAPH 2009 papers (2009), 40:1-40:6.

[64] S o l e n t h a l e r , B., S c h lA fLi, J., a n d P a j a r o l a , R. A unified particle model for
fluid-solid interactions. Journal of Visualization and Computer Animation 1 8 ,1
(2007), 69-82.

[65] S ta m , J. Stable fluids. In The Proceedings of A CM SIGGRAPH (1999), 121-128.

[66] S t a n t o n , M., S h e n g , Y., W i c k e , M., P e r a z z i , F., Y u e n , A., N a r a s i m h a n , S.,
a n d T r e u i l l e , A. Non-polynomial galerkin projection on deforming meshes.
A C M Trans. Graph. 3 2 ,4 (July 2013), 86:1-86:14.

[67] T e r z o p o u l o s , D., a n d F l e i s c h e r , K. Modeling inelastic deformation:
Viscoelasticity, plasticity, fracture. In The Proceedings of A C M SIGGRAPH
(1988), 269-278.

[68] T o s e l l i , A., a n d W i d l u n d , O. Domain Decomposition Methods - Algorithms
and Theory. Springer, 2004.

[69] T r e u i l l e , A., L e w is , A., a n d P o p o v iC , Z. Model reduction for real-time
fluids. A C M Trans. Graph. 25, 3 (July 2006), 826-834.

[70] W i c k e , M., R i t c h i e , D., K l i n g n e r , B. M., B u r k e , S., S h e w c h u k , J. R., a n d
O 'B r i e n , J. F. Dynamic local remeshing for elastoplastic simulation. A C M
Transactions on Graphics 29, 4 (July 2010), 49:1-11. Proceedings of ACM
SIGGRAPH 2010, Los Angles, CA.

66

[71] W ic k e , M., S t a n t o n , M., a n d T r e u i l l e , A. Modular bases for fluid dynamics.
A C M Trans. Graph. 28, 3 (July 2009), 39:1-39:8.

[72] W i l l i a m s , B. Fluid surface reconstruction from particles. Master's thesis,
University of British Columbia, 2008.

[73] WojTAN, C., a n d T u r k , G. Fast viscoelastic behavior with thin features.
A C M Trans. Graph. 27, 3 (2008), 1-8.

[74] Y u , J., WojTAN, C., T u r k , G., a n d Y ap , C. Explicit mesh surfaces for particle
based fluids. EUROGRAPHICS 2012 30 (2012), 41-48.

[75] Z h o u , Y., L u n , Z., KALogERAKis, E., a n d WANg, R. Implicit Integration for
Particle-based Simulation of Elasto-Plastic Solids. Computer Graphics Forum
32, 7 (2013), 215-223.

[76] Z h u , Y., a n d B r i d s o n , R. Animating sand as a fluid. In A C M SIGGRAPH
2005 papers (New York, NY, USA, 2005), SIGGRAPH '05, ACM.

