37 research outputs found

    Animal-Computer Interaction (ACI): changing perspective on HCI, participation and sustainability

    Get PDF
    In the spirit of this year’s conference theme ‘changing perspectives’, this paper invites the CHI community to glance at interaction design through the lense of Animal-Computer Interaction (ACI). In particular, I argue that such a perspective could have at least three benefits: strengthening HCI as a discipline; broadening participation in Interaction Design; and supporting CHI’s commitment to sustainability. I make the case that, far from being a niche research area, ACI is directly relevant to and even encompasses HCI. Thus ACI research firmly belongs at CHI

    HABIT: Horse Automated Behaviour Identification Tool: a position paper

    Get PDF
    HABIT (Horse Automated Behaviour Identification Tool) is an Animal Computer Interaction (ACI) project, on the interdisciplinary boundary between equitation science and computer science. HABIT will automate the analysis and recognition of horse-to-horse and horse-to-human behaviours, as observed in unconstrained / ad-hoc video. A horse-to-horse dyad video dataset will be compiled, illustrating exemplar behaviours. Behavioural signatures will be manually identified from video. Next, a system will be developed and trained to recognise these signatures. The tool will then be evaluated, when applied to both horse-to-horse and horse-to-human video clips. In the study of animal behaviour, an ‘ethogram’ is a set of comprehensive descriptions of the characteristic behaviour patterns of a species. HABIT is potentially the first step towards the ‘automated ethogram’. This project provides a welfare-orientated approach to evaluating horse behaviours. When horses are handled, trained or ridden, HABIT will help ensure that these experiences occur within the natural repertoire of equine behaviours. There is also scope to engage and educate the public about horse behaviours; both for general interest and to raise welfare-awareness. Additionally, automation could play an important methodological role in animal-centred design by reducing human biases during the requirements and evaluation processes

    HABIT: Horse Automated Behaviour Identification Tool: a position paper

    Get PDF
    HABIT (Horse Automated Behaviour Identification Tool) is an Animal Computer Interaction (ACI) project, on the interdisciplinary boundary between equitation science and computer science. HABIT will automate the analysis and recognition of horse-to-horse and horse-to-human behaviours, as observed in unconstrained / ad-hoc video. A horse-to-horse dyad video dataset will be compiled, illustrating exemplar behaviours. Behavioural signatures will be manually identified from video. Next, a system will be developed and trained to recognise these signatures. The tool will then be evaluated, when applied to both horse-to-horse and horse-to-human video clips. In the study of animal behaviour, an ‘ethogram’ is a set of comprehensive descriptions of the characteristic behaviour patterns of a species. HABIT is potentially the first step towards the ‘automated ethogram’. This project provides a welfare-orientated approach to evaluating horse behaviours. When horses are handled, trained or ridden, HABIT will help ensure that these experiences occur within the natural repertoire of equine behaviours. There is also scope to engage and educate the public about horse behaviours; both for general interest and to raise welfare-awareness. Additionally, automation could play an important methodological role in animal-centred design by reducing human biases during the requirements and evaluation processes

    Designing Interactive Toys for Elephants

    Get PDF
    This research is investigating the potential for designing digital toys and games as playful cognitive enrichment activities for captive elephants. The new field of Animal Computer Interaction is exploring a range of approaches to the problem of designing user-centred systems for animals and this investigation into devices for elephants aims to directly contribute towards a methodological approach for designing smart and playful enrichment for all species

    Beyond the limits of digital interaction: should animals play with interactive environments?

    Full text link
    Our digital world evolves towards ubiquitous and intuitive scenarios, filled with interconnected and transparent computing devices which ease our daily activities. We have approached this evolution of technology in a strictly human-centric manner. There are, however, plenty of species, among them our pets, which could also profit from these technological advances. A new field in Computer Science, called Animal-Computer Interaction (ACI), aims at filling this technological gap by developing systems and interfaces specifically designed for animals. This paper envisions how ACI could be extended to enhance the most natural animal behavior: play. This work explains how interactive environments could become playful scenarios where animals enjoy, learn and interact with technology, improving their wellbeingThis work is partially funded by the Spanish Ministry of Science and Innovation under the National R&D&I Program within the project CreateWorlds (TIN2010-20488). The work of Patricia Pons is supported by an FPU fellowship from the Spanish Ministry of Education, Culture and Sports (FPU13/03831). It also received support from a postdoctoral fellowship within the VALi+d Program of the Conselleria d’Educació, Cultura I Esport (Generalitat Valenciana) awarded to Alejandro Catalá (APOSTD/2013/013). We also thank the Valencian Society for the Protection of Animals and Plants (SVPAP) for their cooperation.Pons Tomás, P.; Jaén Martínez, FJ.; Catalá Bolós, A. (2015). Beyond the limits of digital interaction: should animals play with interactive environments?. ACM. http://hdl.handle.net/10251/65361

    Animal-Computer Interaction: the emergence of a discipline

    Get PDF
    In this editorial to the IJHCS Special Issue on Animal-Computer Interaction (ACI), we provide an overview of the state-of-the-art in this emerging field, outlining the main scientific interests of its developing community, in a broader cultural context of evolving human-animal relations. We summarise the core aims proposed for the development of ACI as a discipline, discussing the challenges these pose and how ACI researchers are trying to address them. We then introduce the contributions to the Special Issue, showing how they illustrate some of the key issues that characterise the current state-of-the-art in ACI, and finally reflect on how the journey ahead towards developing an ACI discipline could be undertaken

    Canine-centered interface design: supporting the work of diabetes alert dogs

    Get PDF
    Many people with Diabetes live with the continuous threat of hypoglycaemic attacks and the danger of going into coma. Diabetic Alert Dogs are trained to detect the onset of an attack before the human handler they are paired with deteriorates, giving them time to take action. We investigated requirements for designing an alert system allowing dogs to remotely call for help when their human falls unconscious before being able to react to an alert. Through a multispecies ethnographic approach we focus on teasing out the requirements for a physical canine user interface, involving both dogs, their handlers and trainers in the design. We discuss tensions between the requirements for the canine and the human users, argue the need for increased sensitivity towards the needs of individual dogs that goes beyond breed specific physical characteristics and reflect on how we can move from designing for dogs to designing with dogs

    Developing a depth-based tracking systems for interactive playful environments with animals

    Full text link
    © ACM 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM. Proceedings of the 12th International Conference on Advances in Computer Entertainment Technology (p. 59). http://dx.doi.org/10.1145/2832932.2837007.[EN] Digital games for animals within Animal Computer Interaction are usually single-device oriented, however richer interactions could be delivered by considering multimodal environments and expanding the number of technological elements involved. In these playful ecosystems, animals could be either alone or accompanied by human beings, but in both cases the system should react properly to the interactions of all the players, creating more engaging and natural games. Technologically-mediated playful scenarios for animals will therefore require contextual information about the game participants, such as their location or body posture, in order to suitably adapt the system reactions. This paper presents a depth-based tracking system for cats capable of detecting their location, body posture and field of view. The proposed system could also be extended to locate and detect human gestures and track small robots, becoming a promising component in the creation of intelligent interspecies playful environments.Work supported by the Spanish Ministry of Economy and Competitiveness and funded by the EDRF-FEDER (TIN2014-60077-R). The work of Patricia Pons has been supported by a national grant from the Spanish MECD (FPU13/03831). Alejandro Catalá also received support from a VALi+d fellowship from the GVA (APOSTD/2013/013). Special thanks to our cat participants, their owners, and our feline caretakers and therapistsPons Tomás, P.; Jaén Martínez, FJ.; Catalá Bolós, A. (2015). Developing a depth-based tracking systems for interactive playful environments with animals. ACM. https://doi.org/10.1145/2832932.2837007SJan Bednarik and David Herman. 2015. Human gesture recognition using top view depth data obtained from Kinect sensor.Excel. - Student Conf. Innov. Technol. Sci. IT, 1--8.Hrvoje Benko, Andrew D. Wilson, Federico Zannier, and Hrvoje Benko. 2014. Dyadic projected spatial augmented reality.Proc. 27th Annu. ACM Symp. User interface Softw. Technol. - UIST '14, 645--655.Alper Bozkurt, David L Roberts, Barbara L Sherman, et al. 2014. Toward Cyber-Enhanced Working Dogs for Search and Rescue.IEEE Intell. Syst. 29, 6, 32--39.Rita Brugarolas, Robert T. Loftin, Pu Yang, David L. Roberts, Barbara Sherman, and Alper Bozkurt. 2013. Behavior recognition based on machine learning algorithms for a wireless canine machine interface.2013 IEEE Int. Conf. Body Sens. Networks, 1--5.Adrian David Cheok, Roger Thomas K C Tan, R. L. Peiris, et al. 2011. Metazoa Ludens: Mixed-Reality Interaction and Play for Small Pets and Humans.IEEE Trans. Syst. Man, Cybern. - Part A Syst. Humans41, 5, 876--891.Amanda Hodgson, Natalie Kelly, and David Peel. 2013. Unmanned aerial vehicles (UAVs) for surveying Marine Fauna: A dugong case study.PLoS One8, 11, 1--15.Gang Hu, Derek Reilly, Mohammed Alnusayri, Ben Swinden, and Qigang Gao. 2014. DT-DT: Top-down Human Activity Analysis for Interactive Surface Applications.Proc. Ninth ACM Int. Conf. Interact. Tabletops Surfaces - ITS '14, 167--176.Brett R Jones, Hrvoje Benko, Eyal Ofek, and Andrew D. Wilson. 2013. IllumiRoom: Peripheral Projected Illusions for Interactive Experiences.Proc. SIGCHI Conf. Hum. Factors Comput. Syst. - CHI '13, 869--878.Brett Jones, Lior Shapira, Rajinder Sodhi, et al. 2014. RoomAlive: magical experiences enabled by scalable, adaptive projector-camera units.Proc. 27th Annu. ACM Symp. User Interface Softw. Technol. - UIST '14, 637--644.Cassim Ladha, Nils Hammerla, Emma Hughes, Patrick Olivier, and Thomas Ploetz. 2013. Dog's Life: Wearable Activity Recognition for Dogs.Proc. 2013 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput. - UbiComp'13, 415.Shang Ping Lee, Adrian David Cheok, Teh Keng Soon James, et al. 2006. A mobile pet wearable computer and mixed reality system for human--poultry interaction through the internet.Pers. Ubiquitous Comput. 10, 5, 301--317.Clara Mancini, Janet van der Linden, Jon Bryan, and Andrew Stuart. 2012. Exploring interspecies sensemaking: Dog Tracking Semiotics and Multispecies Ethnography.Proc. 2012 ACM Conf. Ubiquitous Comput. - UbiComp '12, 143--152.Clara Mancini. 2011. Animal-computer interaction: a manifesto.Mag. Interact. 18, 4, 69--73.Clara Mancini. 2013. Animal-computer interaction (ACI): changing perspective on HCI, participation and sustainability.CHI '13 Ext. Abstr. Hum. Factors Comput. Syst., 2227--2236.Steve North, Carol Hall, Amanda Roshier, and Clara Mancini. 2015. HABIT: Horse Automated Behaviour Identification Tool -- A Position Paper.Proc. Br. Hum. Comput. Interact. Conf. - Anim. Comput. Interact. Work., 1--4.Mikko Paldanius, Tuula Kärkkäinen, Kaisa Väänänen-Vainio-Mattila, Oskar Juhlin, and Jonna Häkkilä. 2011. Communication technology for human-dog interaction: exploration of dog owners' experiences and expectations.Proc. SIGCHI Conf. Hum. Factors Comput. Syst., 2641--2650.Patricia Pons, Javier Jaen, and Alejandro Catala. Multimodality and Interest Grabbing: Are Cats Ready for the Game?Submitt. to Int. J. Human-Computer Stud. Spec. Issue Anim. Comput. Interact. (under Rev).Patricia Pons, Javier Jaen, and Alejandro Catala. 2014. Animal Ludens: Building Intelligent Playful Environments for Animals.Proc. 2014 Work. Adv. Comput. Entertain. Conf. - ACE '14 Work., 1--6.Patricia Pons, Javier Jaen, and Alejandro Catala. 2015. Envisioning Future Playful Interactive Environments for Animals. InMore Playful User Interfaces, Anton Nijholt (ed.). Springer, 121--150.Rui Trindade, Micaela Sousa, Cristina Hart, Nádia Vieira, Roberto Rodrigues, and João França. 2015. Purrfect Crime.Proc. 33rd Annu. ACM Conf. Ext. Abstr. Hum. Factors Comput. Syst. - CHI EA '15, 93--96.Jessica van Vonderen. 2015. Drones with heat-tracking cameras used to monitor koala population. Retrieved July 1, 2015 from http://www.abc.net.au/news/2015-02-24/drones-to-help-threatened-species-koalas-qut/6256558Alexandra Weilenmann and Oskar Juhlin. 2011. Understanding people and animals: the use of a positioning system in ordinary human-canine interaction.Proc. 2011 Annu. Conf. Hum. factors Comput. Syst. - CHI '11, 2631--2640.Chadwick A. Wingrave, J. Rose, Todd Langston, and Joseph J. Jr. LaViola. 2010. Early explorations of CAT: canine amusement and training.CHI '10 Ext. Abstr. Hum. Factors Comput. Syst., 2661--2669.Kyoko Yonezawa, Takashi Miyaki, and Jun Rekimoto. 2009. Cat@Log: sensing device attachable to pet cats for supporting human-pet interaction.Proc. Int. Conf. Adv. Comput. Enterntainment Technol. - ACE '09, 149--156.2013. ZOO Boomer balls. Retrieved July 1, 2015 from https://www.youtube.com/watch?v=Od_Lm8U5W4
    corecore