154 research outputs found

    Vehicle to Vehicle Charging (V2V) Bases on Wireless Power Transfer Technology

    Get PDF
    The slow development of energy storage technology combined with a limited number of plug-in charging stations negatively affects people's desire to purchase pure battery electric vehicles. A new wireless vehicle-to-vehicle charging technology structure is proposed, which can function with plug-in electric vehicles or operate independently. With a limited number of charging stations this technology can be used to increase charging opportunities through vehicle-to-vehicle (V2V) charging. V2V charging requires a number of technical challenges to be overcome, including the angular offset of the wireless power transfer resonant coils. The mutual inductance between two resonant coils is a key parameter for high power and efficient transfer of power. This paper presents the theory of angular offset multi-turn coil design

    Optimum Modelling Of Flux-pipe Resonant Coils For Static And Dynamic Bidirectional Wireless Power Transfer System Applicable To Electric Vehicles

    Get PDF
    Wireless power transfer (WPT) technology enables the transfer of electrical power from the electric grid to the electric vehicles across an airgap using electromagnetic fields with the help of wireless battery chargers. WPT technology addresses most problems associated with the “plug-in” method of charging EVs like vandalization, system power losses, and safety problems due to hanging cables and opened electrical contact in addition to the flexibility of charging electric vehicles while in a static or dynamic mode of operation. Significant research has been undertaken over the years in the development of efficient WPT topologies applicable to electric vehicles. A preliminary review of these revealed that the ferrite core WPT is a promising and efficient method of charging electric vehicles. The charging method is suitable for wireless charging of electric vehicles because of its low cost, high efficiency and high power output. This research proposed the use of the flux-pipe model as a suitable ferrite core, magnetic resonance coupled-based WPT system for the charging of the electric vehicle. The traditional flux-pipe model has some specific benefits which include high coupling coefficient, high misalignment tolerance and high efficiencies under misalignment conditions. However, it has a major drawback of low power output due to the generation of an equal amount of useful and non-useful fluxes. A set of governing equations guiding the performance output of a WPT system was presented. It was identified that the losses in the WPT system can be minimized by reducing the value of the maximum magnetic flux density while the power output and efficiency can be increased by increasing the value of the coupling factor and quality factor. Based on these findings, 3-D finite element modelling was employed for the optimal design and analysis of a typical flux-pipe model for higher coupling strength, high power output and low losses. The magnetic coupling performance of flux-pipe resonant coils was enhanced with an increased number of turns along the core length relative to increasing the width of each coil turns along the coil width. The high power transfer and efficiency was attained by splitting of the coil windings into two in order to reduce intrinsic coil resistances; copper sheet was employed as a shielding material in order to reduce the eddy current losses and finally, an air gap was introduced in the ferrite core in order to reduce the core losses and invariably increased the amount of excitation current required to drive the core into saturation. The proposed optimization methodology results in the creation of two models for application in static and dynamic charging operations respectively. From the simulation results presented, the model designed for static charging operations can transfer up to 11 kW of power across the airgap at a coil-to-coil efficiency of 99.12% while the model design for dynamic charging of electric vehicles can transfer up to 13 kW of power across the airgap at a coil-to-coil efficiency of 98.64% without exceeding the average limit specified for the exposure of human body to electromagnetic fields

    An Efficient Reconfigurable Transmitter with Anti-Offset Performance and High Compatibility for Vehicle-to-Vehicle (V2V) Wireless Charging Systems

    Get PDF
    To solve the interoperability and anti-offset problems in vehicle-to-vehicle (V2V) wireless charging systems, a reconfigurable transmitter is proposed to adapt to unipolar and bipolar coils. By changing the circuit configuration, power transmits efficiently from one EV to the other. The proposed reconfigurable transmitter works in two modes. Moreover, the anti-offset performance of the proposed coil is improved by adding the anti-series windings. The system is verified by simulation to maintain stable output under different offsets, proving its effectiveness in solving the interoperability and offset problems for V2V wireless charging systems

    Comparative analysis of Vehicle-to-Vehicle (V2V) power transfer configurations without additional power converters

    Get PDF
    This paper presents a comparative analysis of power transfer configurations towards vehicle-to-vehicle (V2V) battery charging operation without using additional power converters, i.e., using just the on-board battery chargers of two electric vehicles (EVs). Three access interfaces were considered, namely the ac power grid interface, the dc-link interface and the dc battery interface, which allow the establishment of eight V2V configurations. The defined configurations are described and verified through computational simulations. A comparison is performed based on quantitative data, i.e., power transfer efficiency for a given output power range, and qualitative data, i.e., flexibility and safety. According to the obtained results, it can be concluded that each V2V configuration has its pros and cons regarding efficiency, number of possible quadrant operation and need for additional equipment.This work has been supported by FCT –Fundação para a Ciência e Tecnologiawith-in the Project Scope: UID/CEC/00319/2019. This work has been supported by the FCT Project DAIPESEV PTDC/EEI-EEE/30382/2017, and by FCTProject new-ERA4GRIDs PTDC/EEI-EEE/30283/2017. Mr. Tiago J. C. Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by the Portuguese FCT agency

    DEVELOPMENT OF A NOVEL VEHICLE GUIDANCE SYSTEM: VEHICLE RISK MITIGATION AND CONTROL

    Get PDF
    Over a half of fatal vehicular crashes occur due to vehicles leaving their designated travel lane and entering other lanes or leaving the roadway. Lane departure accidents also result in billions of dollars in cost to society. Recent vehicle technology research into driver assistance and vehicle autonomy has developed to assume various driving tasks. However, these systems are do not work for all roads and travel conditions. The purpose of this research study was to begin the development a novel vehicle guidance approach, specifically studying how the vehicle interacts with the system to detect departures and control the vehicle A literature review was conducted, covering topics such as vehicle sensors, control methods, environment recognition, driver assistance methods, vehicle autonomy methods, communication, positioning, and regulations. Researchers identified environment independence, recognition accuracy, computational load, and industry collaboration as areas of need in intelligent transportation. A novel method of vehicle guidance was conceptualized known as the MwRSF Smart Barrier. The vision of this method is to send verified road path data, based AASHTO design and vehicle dynamic aspects, to guide the vehicle. To further development research was done to determine various aspects of vehicle dynamics and trajectory trends can be used to predict departures and control the vehicle. Tire-to-road friction capacity and roll stability were identified as traits that can be prevented with future road path knowledge. Road departure characteristics were mathematically developed. It was shown that lateral departure, orientation error, and curvature error are parametrically linked, and discussion was given for these metrics as the basis for of departure prediction. A three parallel PID controller for modulating vehicle steering inputs to a virtual vehicle to remain on the path was developed. The controller was informed by a matrix of XY road coordinates, road curvature and future road curvature and was able to keep the simulated vehicle to within 1 in of the centerline target path. Recommendations were made for the creation of warning modules, threshold levels, improvements to be applied to vehicle controller, and ultimately full-scale testing. Advisor: Cody S. Stoll

    Innovation in Energy Systems

    Get PDF
    It has been a little over a century since the inception of interconnected networks and little has changed in the way that they are operated. Demand-supply balance methods, protection schemes, business models for electric power companies, and future development considerations have remained the same until very recently. Distributed generators, storage devices, and electric vehicles have become widespread and disrupted century-old bulk generation - bulk transmission operation. Distribution networks are no longer passive networks and now contribute to power generation. Old billing and energy trading schemes cannot accommodate this change and need revision. Furthermore, bidirectional power flow is an unprecedented phenomenon in distribution networks and traditional protection schemes require a thorough fix for proper operation. This book aims to cover new technologies, methods, and approaches developed to meet the needs of this changing field

    Mobile 5G millimeter-wave multi-antenna systems

    Get PDF
    In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Universitat Politècnica de Catalunya's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.Tesi en modalitat de compendi de publicacionsMassive antenna architectures and millimeter-wave bands appear on the horizon as the enabling technologies of future broadband wireless links, promising unprecedented spectral efficiency and data rates. In the recently launched fifth generation of mobile communications, millimetric bands are already introduced but their widespread deployment still presents several feasibility issues. In particular, high-mobility environments represent the most challenging scenario when dealing with directive patterns, which are essential for the adequate reception of signals at those bands. Vehicular communications are expected to exploit the full potential of future generations due to the massive number of connected users and stringent requirements in terms of reliability, latency, and throughput while moving at high speeds. This thesis proposes two solutions to completely take advantage of multi-antenna systems in those cases: beamwidth adaptation of cellular stations when tracking vehicular users based on positioning and Doppler information and a tailored radiation diagram from a panel-based system of antennas mounted on the vehicle. Apart from cellular base stations and vehicles, a third entity that cannot be forgotten in future mobile communications are pedestrians. Past generations were developed around the figure of human users and, now, they must still be able to seamlessly connect with any other user of the network and exploit the new capabilities promised by 5G. The use of millimeter-waves is already been considered by handset manufacturers but the impact of the user (and the interaction with the phone) is drastically changed. The last part of this thesis is devoted to the study of human user dynamics and how they influence the achievable coverage with different distributed antenna systems on the phone.Les arquitectures massives d'antenes i les bandes mil·limètriques apareixen a l'horitzó com les tecnologies que impulsaran els futurs enllaços sense fils amb gran ample de banda i prometen una eficiència espectral i velocitat de transmissió sense precedents. A la recent cinquena generació de comunicacions mòbils, les bandes mil·limètriques ja en són una part constitutiva però el seu desplegament encara presenta certes dificultats. En concret, els entorns d'alta mobilitat representen el major repte quan es fan servir diagrames de radiació directius, els quals són essencials per una correcta recepció del senyal en aquestes bandes. S'espera que les comunicacions vehiculars delimitin les capacitats de les xarxes en futures generacions degut al gran nombre d'usuaris simultanis i els requeriments estrictes en termes de fiabilitat, retard i flux de dades mentre es mouen a grans velocitats. Aquesta tesi proposa dues solucions per tal d'explotar al màxim els sistemes de múltiples antenes en tals casos: un ample de feix adaptatiu de les estacions bases quan estiguin fent el seguiment d'un vehicle usuari basat en informació de la posició i el Doppler i el disseny d'un diagrama de radiació adequat al costat del vehicle basat en una estructura de múltiples panells muntats a l'estructura del mateix. A més de les estacions base i els vehicles, un tercer element que no pot ser obviat en aquests escenaris són els vianants. Les generacions anteriors van ser desenvolupades al voltant de la figura d'usuaris humans i ara han de seguir tenint la capacitat de connexió ininterrumpuda amb la resta d'usuaris i explotar les capacitats de 5G. L'ús de frequències mil·limètriques també es té en compte en la fabricació de telèfons mòbils però l'impacte de l'usuari és completament diferent. La última part de la tesis tracta l'estudi de les dinàmiques de l'usuari humà i com influeixen en la cobertura amb diferent sistemes distribuïts d'antenes.Postprint (published version

    Innovation in Energy Systems

    Get PDF
    It has been a little over a century since the inception of interconnected networks and little has changed in the way that they are operated. Demand-supply balance methods, protection schemes, business models for electric power companies, and future development considerations have remained the same until very recently. Distributed generators, storage devices, and electric vehicles have become widespread and disrupted century-old bulk generation - bulk transmission operation. Distribution networks are no longer passive networks and now contribute to power generation. Old billing and energy trading schemes cannot accommodate this change and need revision. Furthermore, bidirectional power flow is an unprecedented phenomenon in distribution networks and traditional protection schemes require a thorough fix for proper operation. This book aims to cover new technologies, methods, and approaches developed to meet the needs of this changing field
    corecore