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ABSTRACT

In recent years, the interest around “Intelligent Transportation Systems” (ITSs) has rapidly
increased, and they are currently being deployed in commercial, industrial and residential
domains. The Next-Generation Cooperative ITSs (C-ITSs) are expected to bring the paradigm

of Mobility-as-a-Service (MaaS) to a whole new level. A crucial role to this is attributed to “Con-
nected and Autonomous Vehicles” (CAVs), as the focus is steered from being autonomous systems
to becoming cooperative entities. The cooperation between them is mainly enabled by sharing
sensor data and manoeuvring intentions in a Vehicle-to-Everything (V2X) fashion. Thus, an
efficient, reliable and robust communication plane between CAVs and the infrastructure network,
able to accommodate the demanding exchange of sensor data, is of paramount importance.

This thesis presents the author’s work and contributions in the field of connectivity for CAVs
within the scope of an ITS. As connectivity is a broad term, it can be examined from different
perspectives. This thesis focuses on the design of a novel heterogeneous C-ITS framework that
can handle scalable city-wide ITS application data streams. Later, it identifies the various
drawbacks and limitations of the current Radio Access Technologies (RATs), and investigates
ways to overcome them and improve the system performance.

The contributions of this thesis commence with the introduction of a conceptual design of
a city-scale C-ITS implementation. Briefly, this proposed system operates as a heterogeneous
network, maps different application data streams on to different V2X layers, and employs
different RATs to deliver each stream in a V2X manner. Based on this fundamental concept,
various drawbacks are primarily identified on existing simulation models and tools for IEEE
802.11p. Later, the existing limitations are addressed by designing an experimental testbed and
conducting a sizeable experimental campaign. This not only helps with the accurate calibration
of the existing models, but also provides a deep comprehension of how a real-world large-scale
implementation works.

In the later parts of this thesis, the focus is directed towards Millimetre Waves (mmWaves),
as is a competent technology for accommodating significant amounts of exchanged sensor data.
At first,the beamforming problems in mobile environments are identified. They are approached
through an intelligent MAC-layer solution for V2X beam steering. Furthermore, the resource
allocation problem at the highly dynamic network topology of CAVs is investigated, designing a
multi-link association scheme for V2V mmWave communications. Finally, the last research effort
of this thesis, is related to the city-scale positioning of the mmWave Road-Side Units (RSUs),
where an optimal automated procedure within an urban scenario is proposed. The thesis is
concluded with the critical review of the research activities mentioned above as well as some
ideas for future research.
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INTRODUCTION

S ince the beginning of this research activity, Intelligent Transportation Systems (ITSs) have

moved from being a vision of the future, to become one of the most recognised acronyms

in the research community. Dozens of different cities around the world work on, or have

already deployed, frameworks that will alter the experience, the expectations and the mobilities

of passengers and vehicles in an urban environment. Some significant advancements can be

found in cities such as London, Singapore, and Barcelona1. In these cities, the governments and

the National Research Foundations have already introduced state-of-the-art solutions, creating

networks of systems able to manage road traffic, increase road safety and provide various

intelligent transportation services to the citizens.

For this to happen, advances have taken place in a variety of fields, including automotive

engineering, sensor design, automation and machine intelligence, and finally, wireless communi-

cations. The progress in the above fields addressed challenges that ITSs faced in their infancy.

The design, development and deployment of a fully functional ITS is receiving close review.

Nonetheless, it is also a huge market, and companies and corporations invest billions and rush

the development of products with state-of-the-art features having as a goal to dominate this

market.

There is a basic idea behind an ITS. An ITS will improve the safety, the efficiency and ser-

vice, and the traffic situation through the exchange of real-time information. For example, the

exploration of real-time traffic variables on accident patterning could prevent future accidents

by providing the necessary insight to an ITS. Another example could be the urban traffic man-

agement predicting the performance of local roads using real-time public transport information

systems. To achieve that, we require the harmonic combination and cooperation of different

1https://www.intelligenttransport.com/transport-articles/28483/top-five-smart-cities/
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technologies of electronics, communications, computers, control, detection and sensing. One of the

fundamental entities of an ITS will be that of the intelligent driverless vehicle. It will be equipped

with numerous sensors and the information acquired from them will be its eyes and ears on the

road. According to estimations, an autonomous vehicle will generate up to 4 terabytes of data

daily [5, 6]. The vast majority of these data will be exchanged with the surrounding environment

to achieve a reliable service. All the above define the concept of a Connected and Autonomous

Vehicle (CAV), and its connectivity will be the centre of our research activities for this thesis.

The exchange of real-time data was always one of the main challenges for wireless connectivity.

Taking into account the amount of data that needs to be exchanged, we realise that an ultra-

reliable and robust communication framework able to achieve multi-gigabit-per-second data rates

and very low delays is of paramount importance. Our current wireless technologies, spanning

from WiFi to traditional fourth generation (4G) networks, do not have the capacity, speed, and

most importantly, the latency and reliability to enable a truly connected experience. This is the

motivation behind this thesis, i.e. the realisation that the existing communication frameworks

are not adequate to achieve the strict Quality-of-Service (QoS) constraints required for an ITS.

More sophisticated solutions and steps towards the fifth generation (5G) of wireless systems are

required, as well as a cooperation between different wireless technologies to achieve the desired

result.

Before we discuss in more depth about the potential solutions for the existing communication

challenges, it is necessary to define more thoroughly what an ITS and a CAV are, their impacts

on modern society, and explain the role of connectivity for a successful implementation.

1.1 What is an Intelligent Transportation System (ITS)?

There are tens of different definitions for the idea of an Intelligent Transportation System (ITS).

That alone can illuminate its current state. Different aspects are not explicitly designed yet, there

are many open challenges to be addressed, and there is an intense competition from different

industries and universities to create the optimum solution and define the next standard. An

eloquent definition can be found in the Official Journal of the European Union announced in

2010 [7]:

“ITS is the use of technology, communications and information to deliver informed and efficient

mobility and transport. It includes smart motorways, autonomous/driverless and communicating

vehicles, urban and inter-urban traffic management, enforcement of speed limits, transport safety

and security, and improved mobility. ITSs optimise existing infrastructure to make transport

more efficient, rather than to provide additional physical infrastructure with its environmental

dis-benefits and financial costs.”

ITSs, being an evolution of traditional transportation systems, introduce the concept that

both the creator and the recipient of the information generated will be machines. All decisions
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and actions will be a result of either programmable protocols or means of machine learning

and artificial intelligence techniques. Of course, everything is subject to the nature of a specific

application. It should be noted that the definition introduced before does not necessarily imply

exclusive wireless connectivity. Certain aspects of it can be wired, such as the connectivity of the

infrastructure with a Cloud Service. In this thesis, however, we are going to focus on the wireless

aspects of an ITS, as they are the only means of interconnecting a large fleet of self-driving

vehicles and providing fully autonomous capabilities.

The above definition also encapsulates the computing, actuating and sensing capabilities

of the machines within an ITS. They not only have to implement the necessary protocols but

should also interact with the surrounding environment depending on the requirements of each

application. These can include sensing a pedestrian crossing a road, forcing a vehicle to reroute

to avoid a traffic jam, decelerating hard to avoid a crash, sharing patients information with a

nearby hospital, remotely control the traffic lights within a city, and many more. In general,

providing computing, actuating and sensing capabilities to a large number of machines in our

environment, we can build upon the idea of Mark Weiser for ubiquitous computing [8]. By that,

we can utilise smart objects and entities within our ITS that will eventually be able to acquire,

share and process information to serve the user.

As it is evident from the above, ITS is not a new technology or standard. It is instead a result

of complementary technologies in a big number of fields, i.e. sensing, machine learning, cloud

computing, wireless communications, etc. These technologies allow the smart devices to:

• Be uniquely identified: Each vehicle, traffic light, basestation, etc. within an ITS can be

uniquely located, addressed and configured.

• Communicate and Cooperate: The different entities can create interconnected clusters,

better utilise resources and enhance their services.

• Sense and Act: Information is collected from the surrounding environment and is either

transmitted to another device or used.

• Process data: Certain computing capabilities are required for a smart device.

Depending on the application, the entities in an ITS might have a subset or a superset of

these characteristics. Usually, the capabilities are defined subject to cost reduction, without losing

functionality given that the ulterior motive is the enhancement of the road safety.

1.2 Applications and Benefits of Traditional ITSs

ITSs will have social, economic and environmental impacts. Daily, more and more parts of our

transportation network will become networked and part of an ITS. This will change the way

drivers, businesses and governments deal with road transport. The advancements introduced

3
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can improve transportation in several ways. Frameworks are already under development or will

be designed in the near future to exploit the full potential of an ITS.

Some example applications can be seen in Fig. 1.1. Major organisations around the globe

focus on the different aspects of ITSs. For example, ERTICO - ITS EUROPE [9] is a European

public-private partnership of 120 companies and organisations, promoting research activities

and industrial standards for ITS applications. Different projects can be found in this consortium

in the area of connected, automated and cooperative driving, e.g., the project Autopilot [10] that

brings the Internet of Things (IoT) into the automotive world to transform connected vehicles into

a moving IoT ecosystem. Similarly, the platform ADASIS [11] provides a map-enhanced driver

assistance system. In the area of automated freight transport the NewRail team [12] focuses

on freight transport using the national railway system, and the European Truck Platooning

project [13] that uses trucks for the same reason. The project FABRIC [14] focuses on reducing

the emissions of vehicles with sophisticated on-road charging solutions for electric vehicles. The

research activities for the next-generation of ITSs are not limited in Europe. Similar organisations

can be found in America (e.g., ITS-America [15]) and Asia-Japan (e.g., ITS-Japan [16]) with many

different projects focusing on all the aspects of an ITS. Finally, it is worth mentioning the two

projects that the University of Bristol actively contributes to. The first one is VENTURER [17],

which focuses on the users aspects, the required technologies to enable the connectivity of the

autonomous vehicles and how we can achieve a wide-scale adoption of them. As part of this

project, a vehicle was designed and developed introducing a significant number of autonomous

features as well as a communication link with the infrastructure network. The second project is

Flourish [18] that again focuses on the connectivity aspect of CAVs as well as the trust of the

wireless link and data privacy. Both VENTURER and Flourish projects were funded by Innovate

UK, a non-departmental public body operating very close to the Government, having thepurpose

to accelerate UK economic growth by stimulating and supporting business-led innovation.

As we can understand from the above, there are numerous applications within the context of

an ITS. CAVs, being probably the fundamental entities of an ITS get the most attention and many

of the applications designed are related to them. One of the first works in the literature [19] clas-

sified these CAV-related applications into three main categories: safety critical, traffic efficiency

management, and information/entertainment. Even though we can somehow say that there is an

overlap between these categories, generally they focus on the following:

• Active road safety-critical applications: Applications regarding primarily the decrease

of the probability for traffic accidents and collisions due to unsafe speeds and driving, dan-

gerous weather conditions and heavy traffic. Some example applications can be: cooperative

forward collision warning, overtaking vehicle warning, lane change assistance, etc. In

fully networked systems they can also help in preventing the loss of life under emergency

situations. This is the case for emergency vehicles, that can quickly respond to accidents

being informed by real-time traffic monitoring alerts and by updating warning signs and
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Figure 1.1: Potential applications for Intelligent Transportation Systems (ITSs) (source: ETSI).

speed limits - thus quickly and safely navigated to the incident.

• Traffic efficiency management applications: Applications regarding the improvement

of vehicle traffic flow, traffic coordination and assistance, and finally provide access to map

and local information data. For example, we can have adaptive traffic light systems that

control traffic in response to patterns or traffic data collected. Also, a large number of

intersections can work together and change lights in response to traffic conditions rather

than based on a fixed schedule. In [1], this category was further subdivided to reflect better

the different applications that are represented. The classification is: (i) navigation, (ii) road

systems, (iii) speed management, (iv) vehicle control, and (v) driver-related services. A

summary of classes and some potential applications can be found in Table 1.1.

• Infotainment applications: Applications regarding the information and entertainment

that can be obtained from locally based services, such as media downloading and point

of interest notifications. They also provide access to global internet services, many times

related to the traffic efficiency management applications that can improve the commuting

experience (e.g., parking zone management, commuting services, etc.).

More details about the above categories can be found in [1, 20, 21]. We can see a comprehensive
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Table 1.1: Traffic efficiency and management of ITS applications [1].

Application Type Application

Navigation
Traffic Information and Recommended Itinerary
Enhanced Route Guidance and Navigation

Road Systems

Intersection Management
Traffic Management
Electronic Toll Collection
Road Pricing

Speed Management
Regulatory/Contextual Speed Limits
Traffic Light Optimal Speed Advisory

Vehicle Control
Cooperative Adaptive Cruise Control
Cooperative Vehicle-Highway Automation (Platooning)

Driver-related Services
Eco-Driving
Ride Sharing

view of them in Fig. 1.2. From the above categories, we see that there are applications related to

all the aspects of an ITS and CAVs. Some of them will operate in the background of an ITS, such

as parking zone management. This application requires a centralised city-scale implementation

having more relaxed requirements and increased tolerance for errors. However, other applications,

e.g., overtaking vehicle warning, cooperative forward collision warning, require a more haptic-like

approach and they should meet some minimum standards to operate adequately. In this thesis,

we are more interested in that second category of applications.

Overall, with all these potential applications for future ITSs, it is no wonder research activities

in this field are so heated. The smart transportation market will surpass $130bn by 2024,

according to the report published from Global Market Insight, Inc. in 2018 [22]. Regardless of

the application, it is evident that all of them will require to gather and exchange data with the

surrounding environment and with all the different entities of an ITS. The challenges are many

though, and to achieve this hyper-connected ecosystem of devices within an ITS requires many

years of research.

1.3 Autonomous Vehicles, Connectivity and the Next-Gen ITSs

In the previous section, we described some of the most critical applications that can be found

within an ITS. As said, the most critical entity of an ITS is that of a CAV. This definition consists

of two parts. A fully autonomous vehicle is described as “one in which a driver is not necessary,

and everybody is a passenger in it”.

The introduction of autonomous vehicles represents the most significant revolution on our

roads since the advent of the internal combustion engine. The benefits include traffic reduction

and increased traffic predictability, better road safety, new mobility options and social inclusion.
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ITS 

Applications

Safety - critical 

Applications

Transport Efficiency 

Applications

Infotainment 

Applications

1) Speed Management,
2) Cooperative Navigation,
3) Weather Information,
4) Traffic Information, etc.

1) Cooperative Local Services,
2) Internet Services,
3) Online Games,
4) Location of Petrol Stations, 
Hotels, Restaurants and Landmarks,
5) Instant Messaging, etc.

Public Safety
1) Approaching Emergency 
Vehicle Warning,
2) Emergency Vehicle 
Signal Preemption,
3) SOS Services, etc.

Intersection Collision Avoidance
1) Violating Traffic Signal Warning,
2) Violating Stop Signal Warning,
3) Left Turn Assistance,
4) Stop Sign Movement Assistance,
5) Intersection Collision Warning,
6) Pedestrian Cross Warning, etc.

Sign Extension
1) Wrong Way Driver Warning,
2) Curve Speed Warning,
3) Low Bridge Warning,
4) In-vehicle Signalling, etc.

Vehicle Diagnostics and Maintenance
1) Safety Recall Notice,
2) Just-in-time Repair Notification, etc.

Information from Other Vehicles
1) Cooperative forward collision Warning,
2) Vehicle-based Road Condition Warning,
3) Emergency Electronic Brake Light,
4) Lane Change Warning,
5) Blind-spot Warning,
6) Road Condition Warning, 
7) Pre-crash Sensing, etc.

Figure 1.2: Categories of applications related to the Cooperative and Autonomous Vehicles (CAVs).

We will start our discussion from the second part of the above definition, i.e. the autonomy.

Autonomous features introduce a safer driving experience. The majority of accidents occur be-

cause of human errors [23]. On the other hand, computers, given the technological advancements

can easier handle low visibility situations (e.g., fog, night) [24], they cannot be distracted, and

they never get tired. Of course, this is an ongoing research topic, that rapidly progresses the last

years [25, 26]. Vehicle autonomy can be described in six different levels, ranging from a person

manually driving a vehicle without any artificial assistance, to no options being given to the driver

- no steering wheel or control [2]. The description of each level and the involvement of the driver

can be seen in Table 1.2. Currently, many car manufacturers are developing commercial solutions

for Level 2 of autonomous driving. A self-driving vehicle will be equipped with numerous sensors,

each one with its unique attributes and limitations. Based on the technology of the existing

sensors, applications already exist that can improve road safety (adaptive cruise control, lane

keeping technologies, etc.). To meet the requirements for next-generation ITSs, new sensors, such

as LiDARs or camcorders, will be equipped by the vehicles [27]. However, sensors are not always

accurate, they might fail, and all the computer systems are as good as they are programmed.

Recent forecasts estimate that globally the number of people living in urban areas is due

to increase to over 66% by 2050 [28]. In particular, road congestion determines substantial

productivity losses. Consider the simple act of searching for a parking space; this represents
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Table 1.2: The six levels of autonomous driving [2].

Level Autonomy Driver Duties Vehicle Duties

0
No

Automation
Performs all tasks No artificial help

1
Driver

Assistance

Handles all the accelerating,
braking, and monitoring of the

surrounding environment

Assists with some functions, e.g.,
brake at the highway when close to

another vehicle

2
Partial

Automation

Responsible for most
safety-critical functions and

monitoring of the environment

Assist with steering or acceleration
functions and allow the driver to

disengage from some of their tasks

3
Conditional
Automation

Disengage from “safety critical”
functions like braking and

leave it to the machine

Vehicle itself controls all monitoring
of the environment and acts

accordingly

4
High

Automation

Driver enganged for driving
only when conditions are

“unsafe”

Capable of steering, braking,
accelerating, monitoring the vehicle

and the roadway responding to events

5
Complete

Automation

Chooses the destination and
becomes a passenger in the

vehicle later

Driving requires absolutely no human
attention and intervention

around 30% of all road traffic in mid-to-large cities, mainly due to two factors:

• a lack of knowledge - If the drivers were aware of the presence of a traffic jam, they would

try and avoid congested roads by selecting a different route (vehicle rerouting), or they

would choose alternative transportation means (road off-loading);

• a lack of confidence - Drivers are not aware of the location of the next available parking

slot and cannot quickly reach their destinations, wasting time in painstakingly looking for

available spaces and even driving erratically.

Traditional ITSs should allow a user: (i) to plan the journey ahead, and (ii) to react to traffic jams

by rerouting vehicles. It becomes evident that the existing ITS solutions are not adequate. Given

the expected population growth, road congestion and most importantly the road safety need to be

addressed more proactively.

The above leads us to the idea of a Cooperative Intelligent Transportation System (C-ITS).

C-ITSs are expected to bring the paradigm of Mobility-as-a-Service (MaaS) to a whole new

level. A critical factor that will be introduced in a CAV-based MaaS paradigm is represented by

autonomous vehicles that cease to be autonomous systems and become cooperative entities. This is

where the first part of the definition comes in place, i.e. the connectivity. Specifically, cooperation

among autonomous vehicles is enabled by the sharing of sensor data and manoeuvring intentions

in a Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) fashion. This will have two
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benefits. The first one is that MaaS city models based on CAVs have the potential to overcome

the users’ lack of knowledge and confidence employing intelligent route planning systems and

efficient resource allocation strategies for road systems. Most importantly, vehicle cooperation can

significantly increase the road safety protecting us from malfunctioning equipment and providing

a “bird’s-eye view” of the surrounding environment [29].

1.4 Towards fully Autonomous and Connected Vehicles

While the reality of fully autonomous vehicles on our roads is some way off, many connected

vehicles already exist on our roads. Connected vehicle technologies allow vehicles to talk to each

other and the infrastructure around them. Many people will already be familiar with connected

vehicle technologies, such as satellite navigation, telematics, etc. One of the main differences

between these links and the ones that will be required in the future is the demand for data

transmission. For example, a Global Positioning System (GPS) dongle requires the exchange of a

few kilobits of data. However, a Light Detection and Ranging (LiDAR) system can generate more

than ~250 Mbps of raw data and a Full-High Definition (HD) camcorder usually creates more

than ~15 Mbps, even after the compression. These sensors will drastically increase the amount

of raw data generated per vehicle. As a figure of merit, this is expected to be ~1 Gbps [6]. To

achieve fully autonomous navigation and meet the QoS requirements of next-generation C-ITS

applications, will require the utilisation of these generated data, as discussed in Sec. 1.3.

Being inspired by the above, we will now define the different questions that motivated us

for the research activities introduced in this thesis. Of course, the questions that arise are

innumerable. Some of them can be: “How can we secure our vehicular links?”, “How do we process

the data generated?”, “How can we use these data to navigate an autonomous vehicle?”, etc. For

this thesis, we will focus on the following ones.

The first question that arises is: [Q1] – “Do we always need all these data to be exchanged?”.

To answer that we should more carefully consider the potential applications that we introduced

before. Applications such as the weather information exchange, generate meagre data rates that

are tolerant to delays introduced from a wireless link. However, considering a smart emergency

vehicle rerouting application, our vehicle driving in high speed should exchange at least two

different types of data with the surrounding environment, i.e. (i) LiDAR data with the vehicles

in close proximity for a more comprehensive visualisation of the obstacles around it, (ii) traffic

light synchronisation information with various coordination points mounted on buildings or

traffic lights to minimise the overall journey time. Taking these into consideration, we realise

that we require different types of data to be transmitted over various distances and data rates

depending on the application. This leads us to two important conclusions. The first one is the

importance of data scalability. Based on the requirements of each application, we should either

decide if we should transmit raw sensor data or some features extracted from them. Secondly, we
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require a combination of different communication links to exchange the above information. It

is essential to combine different wireless technologies in a system to achieve the requirements

of each application. Therefore, the idea of heterogeneity will be considered for our proposed

solutions.

In addition to the first question, we can ask: [Q2] – “How can we transmit these data?”.

At the moment, the prevailing technology for vehicular communications is the IEEE 802.11p

amendment that is based on the Dedicated Short-Range Communications (DSRC) set of protocols

and standards [30]. The maximum data rate that can be achieved by IEEE 802.11p/DSRC is

27 Mbps. This value is nowhere near the 1 Gbps of sensor data that should be exchanged. To that

extent, new wireless technologies, such as the Millimetre Waves (mmWaves) and 3GPP Long

Term Evolution (LTE) will be considered to achieve these requirements.

Based on that observation we should also ask: [Q3] – “Are the existing technologies mature

enough to meet the strict QoS requirements?”. The current wireless standards, as they stand right

now, lack features that will overcome the highly dynamic environment of a network of moving

CAVs. They require more sophisticated algorithms and protocols to counteract that. As numerous

problems might be addressed, within the context of this thesis, we will focus on the problems of

mmWaves when used for vehicular communications.

Another question that we address is: [Q4] – “Is it feasible to have a city-scale communication

plane for CAVs?”. Having a large scale real-world implementation is a challenging task, that re-

quires a lot of effort, time and resources. Therefore, large-scale city-wide deployments are usually

managed by legislative bodies of cities or Local Government Areas (LGA), big organisations of

industrial companies. However, the knowledge of how a real-world implementation works is of

paramount importance to accurately represent an actual system in theory or simulation models.

Therefore in the context of this thesis, we design our own IEEE 802.11p testbed and conduct

large-scale experimentation. We will use the acquired knowledge to strengthen our provided

solutions for the next research question.

This question is about: [Q5] – “How can we accurately, efficiently and cost-effectively test our

hypothesis and our proposed algorithms?”. To do so, and given the lack of existing autonomous

vehicles as well as the immense cost of using a big fleet of real vehicles for experimentation, we

consider the problems of existing simulation frameworks. We try to overcome them by considering

smart ways of improving their accuracy as well as their simulation time. By that, we can overcome

their existing problems and have a better representation of reality.

1.5 Thesis Outline and Original Contributions

Based on the above research questions, and as the connectivity of autonomous vehicles is a broad

term, our contribution lies mainly in two of the lower layers of the Open Systems Interconnection

model (OSI model) [31], as shown in Fig. 1.3. With red, the reader observes the layers we chose to
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Application (Layer 7)

Presentation (Layer 6)

Session (Layer 5)

Transport (Layer 4)

Network (Layer 3)

Data Link (Layer 2)

Physical (Layer 1)

Figure 1.3: The OSI model is a conceptual model that characterises and standardises the placing
of the communication functions of a telecommunication or computing system without regard
to their underlying internal structure and technology. The model partitions a communication
system into abstraction layers. With red, we specify the layers that we primarily focused our
research activities for this thesis.

focus our scope of this work. Our research methodology starts initially with an overview of the

main requirements for Vehicular Ad-Hoc Networks (VANETs) and the main system components

that can be found in a real-world implementation. Before focusing on our specific directions, we

describe all the related technologies that have been used in the past for vehicular communications,

and why they were not able to achieve the necessary requirements. We later present the ones we

consider more suitable for the future. Building on existing knowledge makes our designs more

robust and applicable, as widely used as possible. However, providing new solutions will be able

to enhance the existing systems and make them suitable for the next-generation of C-ITSs. The

outline of this thesis is as follows:

Chapter 2: This chapter presents the necessary information for the reader to understand our

motivation behind this thesis as well as the contributions and the results of it.

Chapter 3: The thesis contribution begins with this chapter. We present our novel C-ITS frame-

work based on a heterogeneous communication infrastructure and a scalable data design, that

can bring the MaaS paradigm to a whole new level. This architecture enables efficient Vehicle-to-

Everything (V2X), handling scalable data streams and mapping them into different layers and

wireless technologies. We describe why this architecture is important for a C-ITS and the benefits

that we will introduce.

Chapter 4: We proceed by focusing on the base layer of the above architecture, i.e. the IEEE

802.11p technology. In this chapter, we present our real-world implementation of an IEEE 802.11p

testbed and the knowledge we acquired from the large-scale experimentation conducted. We

apply this knowledge to existing simulation frameworks, introducing at first an agile calibration
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CHAPTER 1. INTRODUCTION

method for the INET Framework [32]. We later describe our parallelised design implementation

of the above framework. The above can help us the leverage large-scale city-wide experimentation

efficiently and cost-effectively without the need for real equipment.

Chapter 5: For the rest of the thesis, we focus on the problems related to mmWave technology.

We start by discussing the limitations of the existing beamforming algorithms for mmWaves.

We later introduce a novel Medium Access Control (MAC)-layer beamforming strategy that

can establish gigabit-per-second and ultra-low latency V2I links and adapt to highly dynamic

vehicular network topologies and CAVs mobility patterns.

Chapter 6: This chapter presents a multi-link association scheme for mmWave V2V communica-

tions. Our design manages to utilise the wireless channel better, and prioritises the exchange of

demanding sensor data between CAVs without dominating the rest of the exchanged data. By

that, we can improve the channel utilisation, by taking into account the types of vehicles on the

road, their movements, positions and their propagation characteristics any given time.

Chapter 7: Our final contribution chapter introduces a novel mmWave-RSU placement scheme.

Our strategy is a scalable implementation, able to find the best positions to deploy a mmWave-

RSU in large-scale city-wide scenarios. We do that by taking into account different QoS-constraints

of vehicular applications. Our algorithm is compared to other well-known optimisation algorithms

from the literature, and not only manages to fulfil these constraints but also manages to reduce

the required number of RSUs throughout the city.

Chapter 8: In this chapter, we offer some conclusions and present a critical review of the work

presented in this thesis. Following our research contribution in the field of CAVs, we also discuss

possible future directions for improving the V2X communication links, being either extensions on

our solutions described above, or being independent and new research activities.

A subset of the above has been previously published, or is under submission in conference

proceedings and journal transactions. In Table 1.3, we present an overview of how the research

questions introduced in Sec 1.4, are connected with the remaining chapters of this thesis, and the

related publications. We order the list of publications with respect to the order they appear in

this thesis.
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2
BACKGROUND MATERIAL

In this Chapter, we present background information that a reader should be aware of to fully

understand the motivation behind our work, the methods that are employed, and the results

that we produced. Sec. 2.1 discusses the key characteristics of Vehicular Ad-Hoc Networks,

such as the mobility models and the types of vehicular traffic used, the hardware constraints, the

QoS requirements, etc. Later, Sec. 2.2, elaborates on the VANET system components, such as the

different devices used mounted within a vehicle or at the infrastructure network, and the different

communication domains that can be found in a VANET. Sec. 2.3, discusses the various Radio

Access Technologies (RATs) used for the traditional ITSs, comparing them with the prevailing

technology of IEEE 802.11p/DSRC and describing the advantages and disadvantages of each one

of them. This is followed by Sec. 2.4 that describes the three different RATs that are expected

to be the main solutions for vehicular communications presented their unique capabilities and

drawbacks. Finally, in Sec 2.5, we briefly introduce our motivation for the remaining chapters of

this thesis, describing the necessity for each research task that we conducted and how this can

fulfil our ultimate goal for a next-generation C-ITS framework, able to accommodate different

streams of data and state-of-the-art services, that will bring the CAV-related MaaS to a whole

new level.

2.1 Key Characteristics of VANETs

As we discussed in Sec. 1.1, a C-ITS is a group of advanced vehicular applications incorporating

intelligent functions. These applications, working jointly and efficiently, can achieve innovative

services related to different modes of transport and traffic management. Their outcome can be a

reliable, safe, fast and "smart" use of a transport network.
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CHAPTER 2. BACKGROUND MATERIAL

Before developing a communication framework for a Next-Generation C-ITS service, it is

essential to understand the main characteristics of VANETs. Although some characteristics of

VANET resemble with the ones of Mobile Ad-Hoc Networks (MANETs), many different design

goals need to be considered to achieve a continuous, faultless operation. These characteristics may

differ, depending on the application or the layer of the OSI model they operate within (security,

MAC, routing, etc.), but can be classified as in the following subsections:

2.1.1 Mobility Models and their Effects on the Wireless Channel

A mobility model represents the movement of a mobile vehicle/pedestrian and how the direction,

speed, acceleration and location change over time. Such models are frequently used for simulation

purposes when new communication or navigation techniques are investigated. To that extent,

these models should reflect the real mobility of the vehicles as accurately as possible.

An appropriate model is chosen based on the different factors and attributes of a vehicular

network and its surrounding environment. For example, key factors are the number of lanes in

each direction, the number and position of junctions and traffic lights, obstacles that may cause a

detour for a vehicle or signal attenuation (e.g. buildings, forests, mountains, etc.), the road design

(curvatures, slopes, etc.) and many more. An overview of these key factors and attributes can

be found in [39]. Generally, based on their characteristics, the different mobility models can be

classified into three different categories [40]:

• Highway Mobility Models: High-speed vehicles, limited presence of traffic lights and inter-

sections, with a small number of obstacles, and variable density depending on the different

time and day.

• City/Urban Mobility Models: Low speed, pedestrians interfering with traffic, increased

density, especially in the peak hours, and frequent acceleration/deceleration because of

traffic lights, junctions and obstacles.

• Countryside/Rural Mobility Models: Average speed with low vehicle density and without

much surrounding building

Appropriate models should be chosen based on the type of roads and traffic that should

be investigated for a particular scenario. The unique characteristics of each model affect the

wireless communication channel. For example, a very dense urban scenario will have to deal with

the increased interference and the saturation of the wireless channel. On the other hand, the

increased mobility of a highway scenario can cause significant Doppler spread effects and thus,

reduce the signal quality.

Overall, nodes in VANET scenarios are moving faster compared to traditional ad-hoc net-

works. Typical speeds, depending on the environment, are between 30 kmh−1 to 50 kmh−1 for

a city/urban environment, 50 kmh−1 to 80 kmh−1 for a countryside/rural scenario and between
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90 kmh−1 to 150 kmh−1 for vehicles moving on the highway. When discussing about the tradi-

tional VANETs, we face the spontaneous creation of a wireless network for V2V data exchange.

Therefore, the highly dynamic topology of a VANET, the multipath effect and the unpredictable

wireless channel conditions, lead to intermittent communications between the nodes, especially

due to the wide range of relative speeds between the vehicles. This is one of the main challenges

that should be considered by an ITS application

It is evident that the accuracy of a mobility model is of paramount importance. A mobility

model should not only accurately model the position of the vehicles on the road, but it should

also realistically model their movement and the traffic flow. In [39], an overview of the existing

mobility models is presented and how they can interact with a network simulator. What is more,

a framework is introduced proposing the guidelines and the necessary tools for generating a new

vehicular mobility model. Authors in [41] summarise the most significant simulation models for

wireless signal propagation, DSRC technologies, and vehicular mobility and present the steps

that must be undertaken to fine-tune a mobility model. In the following chapters, we will carefully

choose our mobility models to reflect the reality of interest that we would like to investigate.

2.1.2 Hardware Resource Constraints

VANET nodes and the autonomous vehicles of the future, unlike the MANET or the IoT nodes,

will not have any major resource constraints. CAVs will be most probably electric. Today’s electric

vehicle can drive for more than 360 km without recharging [42] and most certainly can be parked

for months without its battery being completely drained.

Also, the technological advancements in semiconductors and GPUs has drastically increased

available processing power while reducing the size of the chipsets. An example can be given by

NVIDIA [43]. They presented a autonomous car development platform, called Pegasus, that is

a data-centre solution integrating a big number of powerful GPUs. Their system provides an

advanced visualisation software simulating camera, radar, and LiDAR data as inputs, processes

these data, and provides a virtual driving simulation environment. In their website, it is men-

tioned that generates processing power equivalent to “a 100-server data centre in the form-factor

size of a license plate”.

Nevertheless, as we move towards full autonomy, the requirements for battery, storage and

processing power should be further investigated. Especially for the later ones, it is already

discussed that the data either generated or collected from the surrounding environment of an

autonomous vehicle will require a more active approach of processing and storing. Cloud and Fog

computing capabilities are viable solutions for that [44]. For example, fog nodes can be deployed

at the edge of a vehicular network to effectively and efficiently collect, process, organise and store

the data in real-time, reducing the latency in the system.
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2.1.3 Geographical Position, Time Reference and Sensor Data

Many of the applications introduced in Sec 1.2 require the exact position of a CAV as an input.

This position is usually extracted via the Global Positioning System (GPS) coordinates acquired

from a GPS dongle. GPS coordinates though are not always accurate. GPS introduces a position

error with a mean value of ~3 m and a standard deviation of ~1 m [45]. However, the performance

is degraded in urban environments due to the effect of urban street canyons, introduced from the

height of the buildings. This error can increase up to ~20 m [46], and in some extreme cases up to

~100 m, as described in [47], a value that is unacceptable for an autonomous vehicle performing

delicate manoeuvring.

CAVs, except from a GPS dongle, will be equipped with sensors such as magnetometers,

accelerometers and gyroscopes, that can be used to enhance the positioning in conjunction with

the GPS coordinates. This can be done with the help of data fusion algorithms (e.g. Kalman

Filter, Madgwick algorithm, etc.). Sensor data can be processed, enhanced and combined with the

GPS position achieving results with centimetre-accuracy even in urban environments, as shown

in [48, 49].

In [50], an overview of the most well-known data fusion techniques is presented. Authors also

explain the methods that the position information is combined with various sensors. Even though

the combination of the above-mentioned data, can significantly increase the accuracy, it is evident

that these data might not always be available (e.g. when a vehicle is driving inside a tunnel).

Therefore CAVs should be equipped with more sensors such as LiDAR devices or Camcorders

to provide redundancy, especially under Non-Line-of-Sight (NLOS) scenarios with the satellites.

These sensors can be used to create the cartography of the surrounding vehicles with a precise

representation of the road design, the buildings, the surrounding vehicles and obstacles and

the pedestrians, increasing the resolution and the accuracy. The only drawback of that is the

increased generation of data that should be exchanged with the surrounding environment, as

discussed in Sec. 1.4.

In general, sensors equipped by a CAV can be a combination of proprioceptive (related to

the behaviour of the CAV itself, e.g., inertial measurements and engine status) or exteroceptive

(related to the environment outside the CAV, e.g., cameras or proximity sensors) sensors. Fig. 2.1

shows a suite of possible exteroceptive sensors equipped with an autonomous car and their

potential applications and ranges. We will discuss a bit more about the sensors and the data that

they generate in a later chapter.

2.1.4 QoS Requirements of Traditional ITS Applications

QoS constraints can vary significantly between different applications. Differences in factors such

as end-to-end delay, throughput, tolerance in errors or dropped packets, jitter etc. can affect

service and how it is perceived by the end user. All the applications set a minimum value for the

above factors with stringent requirements to achieve acceptable performance. For an efficient
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Figure 2.1: Illustration of possible exteroceptive sensors and their potential applications.

and reliable system, a wide range of QoS requirements needs to be met. We introduced the three

different categories of ITS applications in Sec. 1.2. Briefly, the QoS constraints of each category

are the following [51, 52]:

• Real-Time applications and services for road safety: Requires guaranteed access to the

channel, low end-to-end delay with very low jitter, and low packet error rate.

• Traffic management applications: Guaranteed low latency in the presence of high bandwidth

traffic and control the maximum bandwidth per connection.

• User-oriented/infotainment applications: Require high throughput and increased data

rates, especially for the downlink.

• Data offloading for forensics applications: Require low latency and high throughput for the

uplink to offload data to a Cloud service.

Of course, even though we can group all the services provided above, each application has

some unique requirements that may differ from others. For example, taking some example

applications from the first group (Real-Time applications and services for road safety), we see

that some of them may trigger an event and periodically transmit data for a short period of

time mode, e.g. emergency vehicle warning, slow vehicle warning, etc. Others are designed to

periodically transmit data, e.g. motorcycle warning, vulnerable road user warning, etc. and finally,

others will broadcast a packet at a specific time, e.g. pre-crash warning. Each application will

have its unique QoS constraints, e.g. pre-crash sensing warning requires a latency of < 50ms,
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while an emergency vehicle warning application or an overtaking vehicle warning is more tolerant

to the latency (< 100ms). A comprehensive table of the available safety and non-safety related

applications with their minimum QoS requirements can be found in [53].

2.1.5 QoS Requirements as we Move Towards Full Autonomy

The above QoS constraints are proven to be inadequate as we move towards more sophisticated,

yet more demanding, next-generation C-ITS applications. All the aforementioned applications

are services that inform or warn a vehicle about an event. A C-ITS is an extreme case that the

users’ involvement is merely to indicate a destination. Later, the vehicle is solely responsible for

all the controls. To that extent, we now have to answer the question of what are the requirements

to control and not just inform the vehicles within a C-ITS.

Let us take for example a platooning application of a fleet of autonomous vehicles. Non-

automated platooning vehicles travel with an intervehicle distance of 8 m to 10 m. Current

research activities show that these vehicles will drive with a distance of a few centimetres

between them [54]. An application like that requires < 20ms of end-to-end latency [55]. Another

example can be that of an automated vehicle overtaking. The maximum end-to-end latency,

in that case, should not exceed the 10 ms [56]. Comparing that with the overtaking vehicle

warning requirements that we discussed in Sec 2.1.4 (100 ms), we can see that an automated

manoeuvre requires ten times less delay compared to just the warning. As we move towards more

sophisticated solutions and more automated C-ITSs, we will require more tactile-like delays that

may reach up to 1 ms. Some more example C-ITS applications with their QoS requirements can

be found in [57]. What is more, as we discussed before, the various sensors equipped with a CAV,

generate different amounts of data that should be processed or transmitted. Later in this thesis,

we will present a table with the requirements concerning the data rate for each sensor.

2.2 Vehicular Communication Systems

In the previous section, we described the key characteristics and the minimum QoS requirements

for a vehicular communication link. From the above, it is obvious that a VANET is more complex

compared to a MANET. As we mentioned before (Sec. 1.1), traditional ITS should allow a user

to plan the journey ahead and to react to traffic jams by rerouting vehicles. Before discussing

further about that, we should introduce the main components of a VANET system.

2.2.1 Vehicular Communication System Components

Vehicles, regardless of the road characteristics, drive with variable speed and density, leading

to a highly dynamic topology. ITS services are designed to operate in a distributed manner

creating a non-centralised unbounded system. Even though VANET do not operate within a fixed

infrastructure, they consist of three main system components (Fig. 2.2):

20



2.2. VEHICULAR COMMUNICATION SYSTEMS

1. On-Board Units (OBUs): These devices are mounted inside a roaming car and are respon-

sible for reliably exchanging safety and non-safety-critical information with other Road

Side Units (RSUs) or OBUs. They are mainly used for accessing the wireless medium, IP

mobility, geographical routing, etc.

2. Application Units (AUs): They are responsible for using the capabilities of an OBU, such

as the mobility and the network functions. The AU can be a dedicated device for safety

applications or a normal device, such as Rasberry Pi or a laptop, to provide access to the

Internet. The AU is usually connected to the OBU through a wired or wireless connection,

and the difference between them is in most cases logical and can be considered the brain of

the OBU.

3. Road Side Units (RSUs): Fixed device along the side of the road or at central locations in

the road network, such as the intersections. They represent the infrastructural network of

a VANET. Main functions are the: extension of the network by redistributing or forwarding

the information to other RSU or OBU, running safety-critical applications or providing

internet access to the network devices. An RSU may be equipped with various wired or

wireless radio interfaces. These interfaces will be used to provide access to cloud services,

other networks, and connections to other RSUs to extend the communication range of the

ad-hoc network.

More information about these devices can be found in the IEEE 1609.0-2013 - Wireless

Access in Vehicular Environments (WAVE) - Architecture standard [58] and in the Car-2-Car

(C2C) Communication Consortium [59]. Also [21, 60] present a comprehensive description of

these devices and their functions. The above terminology was initially used within the scope of

Dedicated Short Range Communications (DSRC). However, due to the necessity for new RATs

for vehicular communications and for simplification, we will use this terminology for all the

communication technologies that will be referred for the remaining of this thesis.

2.2.2 Vehicular Communication Domains

ITSs require a V2X communication plane. A CAV, which is the main component of a next-

generation ITS should be able to communicate with other self-driving vehicles, the infrastructure

network and the surrounding environment.

Generally, it can be said that there are three different communication scenarios in a VANET.

The first one, where all vehicles communicate via an RSU, creating a centralised network

similar to a WLAN. Secondly, CAVs communicate directly, forming an Ad-Hoc network. Finally,

a hybrid approach, combining both direct and indirect communication between the vehicles.

C2C Communication Consortium categorises the system architecture in three different domains

and [21] summarises them (Fig. 2.2):
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Figure 2.2: VANET architecture and main system components.

1. Intra-Vehicle domain: Communication between OBU and AU. It can be either wired or

wireless as said before and most times the difference is logical.

2. Ad-Hoc domain: For these types of communications, CAVs should be equipped with an OBU

and RSUs should be deployed in the network. In this domain, two different communication

links can be found:

• Vehicle-to-Vehicle (V2V) links: Vehicles using single-hop or multi-hop communications

with other surrounding vehicles. If no direct link can be formed between two CAVs,

a relay node is responsible for forwarding the information towards the destination

vehicle.

• Vehicle-to-Infrastructure (V2I) links: Vehicles communicate with other nodes via an

RSU, to increase their coverage. They can exchange data, share road information,

utilising the infrastructure network as a backbone link and exploiting the ability of

the RSU for intense processing.

3. Infrastructure Domain: RSUs can be connected with the rest of the infrastructure network

or the Internet, allowing OBUs to exchange information with other networks or have access

to cloud/fog computing capabilities. The infrastructure network could be any host such as

the Internet or a server for safety and non-safety vehicular applications.

Except for the vehicles and the RSUs, many more connected entities are added to the

ecosystem of a next-generation C-ITS. These entities can be bicycles, pedestrians, or even the
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power grid, forming new types of communications such as Vehicle-to-Pedestrian (V2P), Vehicle-to-

Grid (V2G), etc. These types of communication have gained significant momentum in recent years,

as more complex next-generation services are being developed daily. All the above communication

links can be expressed within the scope of V2X communications.

Of course, there are many similarities between these communications, but the requirements

are not always the same. For example, a V2P communication link does not require gigabits-

of-data-rate as in a V2V case. This is because only a few short safety-critical messages will

be required to be exchanged in conjunction with data coming from non-safety-critical services.

LiDARs and camcorders mounted on vehicles will most probably be responsible for sensing and

avoiding a walking person. For this thesis, we will focus on the V2V and V2I communication

links as these are the most demanding ones. For the remainder of this thesis, if we use V2X for

simplicity, we will be referring the V2V and V2I links within a C-ITS.

2.3 Dominant RAT for V2X Links within Traditional ITSs

As we discussed in Sec 1.4, the above mentioned demanding QoS requirement cannot be fulfilled

with the use of only one RAT. At the moment, the prevailing technology for vehicular communica-

tions is IEEE 802.11p/DSRC. For years, many researchers tried to use different RATs within an

ITS and enhance the performance of the communication link. Some of these efforts were very

successful, and some of them ended up degrading the performance. For the remainder of this

section, we will at first compare IEEE 802.11p/DSRC with some older RATs that were not finally

able to qualify for vehicular communications. This will be following by a brief introduction of the

three different technologies that we believe are the most suitable ones, the reasons behind that,

and a performance comparison between them.

2.3.1 IEEE 802.11p/DSRC vs Other Technologies

2.3.1.1 IEEE 802.11 amendments vs IEEE 802.11p

IEEE 802.11b was at first one of the optional technologies for vehicular networks. It is based

on Direct Sequence Spread Spectrum (DSSS), introducing a Direct-Sequence Code Division

Multiple Access (DS-CDMA) scheme, reduced multipath fading, etc. In [40], a detailed comparison

between IEEE 802.11p and b can be found comparing both technologies under highway, rural and

urban environments, concluding that IEEE 802.11p, introduces a great improvement in network

throughput and end-to-end delay. IEEE 802.11a was designed and optimised for networks with

low or no mobility. To that extent, is inferior to IEEE 802.11p, where high-mobility effects should

be addressed. Finally, an example comparison between IEEE 802.11p and IEEE 802.11n can be

found in [61]. Authors in this work show that IEEE 802.11p/DSRC manages to achieve less delay

and better packet delivery rate.
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In general 802.11 was designed for local networks. When they are working in ad-hoc mode,

all nodes are assumed to be in a specific range and able to interconnect with each other. Adding a

multi-hop characteristic will introduce significant overhead, and therefore, even though it was

tried to improve these technologies, they were never standardised. One of the main reasons

that IEEE 802.11p/DSRC manages to outperform the rest of the 802.11 amendments is the

Outside the Context of a BSS (OCB) mode. The introduction of OCB mode meant that no

authentication/association is necessary to communicate. The two main parameters related to the

channel that should be configured are the central frequency and the bandwidth, and they has to

be a priori known.

2.3.2 WiMAX vs IEEE 802.11p

IEEE 802.16 standard series introduced an amendment able to work in mobile environments.

This was the IEEE 802.16e amendment, or as is more widely known Mobile WiMAX. WiMAX

supports point-to-multipoint connections as well as mesh topologies. Using Orthogonal Frequency-

Division Multiplexing (OFDM) in the physical layer manages to support very high data rates.

Also, QoS is supported, and longer distances can be achieved compared to the DSRC of IEEE

802.11p. Many researchers compared the performance of both technologies under a vehicular

scenario.

In [62] authors introduced a VANET application and compared the performance to the mean

Throughput and Packet Loss. Their simulator calculated the total time needed for a packet

to be delivered. In [63], simulations were used to evaluate the coverage, average throughput,

and end-to-end delay for different vehicle speeds, traffic data rates, and network deployments.

Both works concluded that WiMAX shows better performance with more extensive networks

concerning the packet delivery rate and reasonable delays. On the other hand, IEEE 802.11p is

better suited for scenarios with a small number of vehicles introducing very low latency, even in

increased speeds. As we mentioned before, the safety-critical applications require very low delays

(< 100ms). These QoS requirements cannot be achieved with WiMAX technology.

2.3.3 Bluetooth vs IEEE 802.11p

Finally, Bluetooth is a wireless standard used for short-range communications. It is easy to be

used and is a very cheap technology. It supports low data rates (1MB/s) that are sufficient for

some vehicular applications. The research community tried to evaluate Bluetooth performance,

and it was concluded that it has several drawbacks due to the piconet structure that is used and

the difficulty in maintaining it. From the specifications of Bluetooth, it can be seen that the range

allows connections up to 10m which is considered very short when compared to the DSRC ranges.

Also, increased latency is introduced in the formation of a new piconet (7 s) or a new scatternet

(45 s) [64] and or when new nodes join an existing piconet [65].
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From all the above it was evident that IEEE 802.11p is a suitable candidate for vehicular

communications and therefore, it became the prevalent technology until now. However, as we

discussed before, IEEE 802.11p cannot always fulfil the demanding requirements of the next-

generation C-ITS applications. A more sophisticated solution is required for that, and the idea

of heterogeneity needs to be introduced in a network. An interesting work [53], shows the

requirements for heterogeneous VANET architectures based on DSRC and cellular networks, in

addition to the challenges and the solutions for these approaches. There are already many works

in the literature that build on top of the concept of heterogeneity to enhance VANETs performance.

For example, authors in [66, 67], designed two beamforming algorithms for connectivity with

high-speed trains based on a heterogeneous DSRC/mmWave network. Another example using

IEEE 802.11p/LTE can be found in [68] where the authors present a novel data traffic steering

algorithm using both technologies.

Generally, the research community started steering its interest towards mmWaves and 3GPP

LTE technologies as alternatives to IEEE 802.11p. As mentioned before, many research activities

build on the idea of heterogeneity combining two of these three technologies. In the next section,

we will present the unique characteristics of each one of them and a comparison between their

performance presenting the pros and cons and their impact on vehicular communications.

2.4 Candidate RATs for V2X Communications within C-ITSs

Currently, the IEEE 802.11p/DSRC [74] and its extension IEEE 802.11px [70], 3GPP’s LTE-

Advanced (LTE-A) Pro [75] with its Cellular-V2X (C-V2X) capabilities [71] and, mmWave fre-

quency systems as described by IEEE 802.11ad [76] and IEEE 802.11ay [77] have emerged

as potential RATs for V2X communications. Table 2.1 summarises the main features and the

additional capabilities provided by all the considered communication solutions.

2.4.1 IEEE 802.11p/DSRC and IEEE 802.11px

IEEE 802.11p/DSRC represents the suite of IEEE 802.11s and IEEE P1609.x standards, de-

scribing a system operating in the frequency range 5.850 GHz to 5.925 GHz, with a decentralised

architecture that supports V2X communications. The IEEE 802.11p standard defines the PHY

and MAC layers. More specifically, on top of the MAC layer, a Carrier Sense Multiple Access with

Collision Avoidance (CSMA/CA) access to the medium, supports different QoS profiles by the En-

hanced Distributed Channel Access (EDCA) protocol. The IEEE 802.11p/DSRC implementation of

the EDCA is inherited from IEEE 802.11e with little modification. With regards to the PHY layer,

the OFDM mechanism is adopted, which allows users to achieve a maximum PHY transmission

rate of 27 Mbps at a speed of 130 kmh−1. However, due to the overhead of the communication

protocols, the actual network throughput achieved is limited to about 15 Mbps [34]. The reserved

75 MHz of the spectrum is divided into seven channels each of 10 MHz bandwidth, where channel
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Dual IEEE 802.11p/DSRC 
transceivers

Road Side Unit

On-Board Unit

Dual IEEE 802.11p/DSRC 
plus IEEE 802.11n (2x2) 

Transceivers

Figure 2.3: Example of low-latency Linux Kernel implementation of IEEE 802.11p/DSRC units
prototyped by the University of Bristol. The figure shows units designed for a road side and an
on-board vehicle deployment.

178 (the Control Channel, CCH) is solely intended for broadcasting safety and mission-critical

messages, and six channels (the Service Channels, SCHs) being used for all other applications.

Due to the adopted MAC contention mechanism, the density of vehicles per area may have

a disruptive impact on the overall end-to-end delay. This is caused by the lack of coordination

among the devices, i.e., the number of packets dropped increases more than linearly with the

vehicle density. As a result, IEEE 802.11p/DSRC tends to be more suitable for transferring low

bitrate data streams in vehicular environments characterised by low-to-medium road density

and vehicle speed. Examples of an IEEE 802.11p/DSRC Road Side Unit (RSU) and On-Board

Unit (OBU) are shown in Fig. 2.3.

IEEE 802.11p/DSRC drawbacks are currently being addressed by an enhanced vehicular

communication standard, denoted as IEEE 802.11px [70]. IEEE 802.11px PHY is built on the

IEEE 802.11ac PHY layer. As such, the Low Density Parity Check (LDPC) codes for channel

coding and the Space Time Block Coding (STBC) increase the performance under noisy channel

transmissions exploiting the different versions of the received signal and combining them in an

optimal way. Packet delivery rate (PDR) is expected to improve by 40% at a transmitter-receiver

distance of 300 m compared to the legacy IEEE 802.11p. Also, Multiple-Input Multiple-Output
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(MIMO) antenna capabilities, the improved OFDM pilot layouts and the introduction of Very High

Throughput (VHT) frame, are expected to enhance the channel capacity of a factor of 10 compared

to the IEEE 802.11p PHY layer. The new IEEE 802.11px/DSRC will adopt the OCB operation of

IEEE 802.11p/DSRC introducing backward compatibility with its predecessor. Despite the IEEE

802.11px being in its early development stages, it is expected to replace the legacy IEEE 802.11p

in the next years. It is worth noting that even though IEEE 802.11px is expected to improve the

system performance compared to its predecessor, still it cannot accommodate the huge amount of

data required by next-generation C-ITS services.

2.4.2 3GPP LTE-Advanced Pro and C-V2X

LTE and its major enhancement, LTE-A Pro, provide broadband capabilities to mobile users for

several years [71]. Furthermore, 5G New Radio (NR) represent the 5G of cellular communications

standards defined by 3GPP to provide high data rate, ubiquitous coverage and global connectivity

for mobile cellular users [78]. Some of the key features provided are the ability to accurately

position using single reference station, operation on frequency bands ≤ 6GHz and ≥ 24GHz,

macro/small cell coverage, etc. Currently, this essential procedures are only accepted in principle,

for this thesis we will focus on LTE-A Pro standard amendments. The air interface can support

Time-Division Duplexing (TDD), Frequency-Division Duplexing (FDD), and Half-Duplex FDD,

as well as scalable channel bandwidths (1.4 MHz - 20 MHz). Furthermore, a maximum of 32

component carriers was aggregated in LTE-A Pro, leading to a maximum aggregated bandwidth

of 640 MHz. Support for Licensed Assist Access (LAA), enhanced LAA and LTE WiFi Aggregation

(LWA) is also added, which means that additional bandwidth can be made available by aggregat-

ing data together from regular LTE bands, the 5GHz LTE-unlicensed spectrum, and common

WiFi networks.

Downlink and uplink access technologies are based on Orthogonal Frequency Division Mul-

tiple Access (OFDMA) and Single Carrier Frequency Division Multiple Access (SC-FDMA),

respectively, thus guaranteeing high flexibility and efficiency in frequency-time resource schedul-

ing. Due to the advanced MIMO capabilities, significant spectral efficiency can be obtained, even

at high mobility speeds and under dynamic propagation environments. Besides, high data rates

are potentially supported, ranging from 300 Mbps and 75 Mbps in the LTE downlink and uplink

respectively, to theoretically 3 Gbps in the case of the LTE-A Pro downlink [79]. Multicast/broad-

cast services are also fully supported employing the evolved Multimedia Broadcast and Multicast

Service (eMBMS) – thus enabling broadcasting of vehicular service messages in cross-traffic

assistance applications [80].

Along with the eMBMS framework, V2V capabilities are built upon an enhanced LTE Direct

mode and allow any network entity to engage to device-to-device (D2D) communications. The C-

V2X operation of LTE-A Pro introduces two new radio interfaces (C-V2X Mode 3 and C-V2X Mode

4). The cellular interface (namely as Uu) that supports V2I links and the PC5 interface, which is
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responsible for the V2V communications. The configuration of the sidelinks (V2V links) depends

on the availability of cellular coverage. When it is present (C-V2X Mode 3), control information

is transmitted to CAVs using the Uu interface and V2V communications is established, i.e. the

cellular network is responsible for allocating the resources. On the other hand (C-V2X Mode

4), vehicles do not require cellular coverage, and autonomously select their radio resources

using a distributed scheduling scheme supported by congestion control mechanisms. Mode 4 is

considered the baseline mode and represents an alternative to 802.11p or dedicated short range

communications. One of the drawbacks we observe, is the need of a basestation for allocating

efficiently the radio resources to each CAV (for C-V2X Mode 3). Secondly, the formation of links

significantly increase the end-to-end latency [81] even for C-V2X Mode 4, that a basestation is

not required. Currently, these procedures are part of the 3GPP Releases 14 and 15.

Due to the flat architecture, applications demanding low-to-medium latency requirements

can be supported without affecting the network scalability. In particular, up to 10 ms end-to-end

delay can be reached over an LTE-A Pro network under low cellular traffic conditions. However,

tactile-like latency requirements (smaller than 10 ms) cannot be fulfilled, especially when the

cellular traffic is increases and latencies of 50 ms to 80 ms are observed. Furthermore, terminals

in idle mode need to re-establish a connection with the base station (additional link establishment

latency of up to 110 ms), thus spending additional time to reach to the connected state. This leads

to severe performance degradation in safety-critical applications [82].

2.4.3 Millimeter Wave Systems - IEEE 802.11ad and IEEE 802.11ay

Systems based on mmWave are expected to play a pivotal role in 5G cellular systems. A mmWave

system operates in the spectrum between 30 GHz and 300 GHz. For what concerns the application

domain of local area networking, the IEEE 802.11ad standard is gaining increased momentum

while being tested for vehicular communications [66, 67, 83, 84]. In this standard, the carrier

frequencies are spread around the 60 GHz, with a channelisation of 2.16 GHz. Four channels

are available for usage, as described in IEEE 802.11ad standard. Also, any mmWave system

imposes the adoption of large antenna arrays to achieve high array gains through beamforming

techniques. The broad array gains, along with large channel bandwidths, allow the system to

achieve high data rates (typically several gigabits-per-second). IEEE 802.11ad ensures data rates

higher than 7 Gbps and an end-to-end latency smaller than 10 ms. IEEE 802.11ay [77] that is

expected to replace IEEE 802.11ad in the next years introduces a channel bonding. 2,3 or 4 of

the available channels can be used together increasing the channel utilisation up to 8.64 GHz.

Because of that and because of the introduced MIMO capabilities, throughput performance is

significantly increased, reaching up to ~100 Gbps.

From the signal propagation perspective, Line-of-Sight (LOS) communications are charac-

terised by path loss exponents smaller than 2.8, while Non-Line-of-Sight (NLOS) communications

may present much higher path loss exponents. In fact, due to their reduced wavelength, mmWave
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systems are susceptible to blockages. For these reasons, typical NLOS path loss exponents span

between 3.8 and 5.6 [79].

As a prospective 5G wireless solution, mmWave systems proved to be a viable alternative to

traditional cellular networks and wireless backhauling systems, while the possibility of using this

technology to support the communications in next-generation ITS systems are being extensively

investigated. In particular, the European Commission is currently considering the possibility of

supporting standardisation activities of ITSs based on mmWave systems to be operated across a

dedicated band spanning between 63 GHz and 64 GHz [83].

With ideal propagation conditions, mmWave systems significantly outperform vehicular

communication systems based on the IEEE 802.11/DSRC and LTE/LTE-A standards. Large

values of penetration loss and errors in the alignment of the antenna beams will have a disruptive

impact on the stability of mmWave links. IEEE 802.11ad is shown to be able to achieve adequate

link quality at distances up to 50 m, while IEEE 802.11ay is expected to achieve distances of up

to 300 m to 500 m. One of the main problems of both standards is the latency introduced by the

legacy beamforming training. It can add latency of up to 20 ms in a system [37], a value that is

not compliant with the strict QoS constraints of an ITS. The introduced latency will be further

investigated in a later chapter.

2.5 A Step Closer to the C-ITS of the Future

In Chapter 1, we described what is an ITS (Sec. 1.1) and its impact on our world (Sec. 1.3).

Later, we presented some of the existing services, gave an insight about the applications of the

future (Sec. 1.2) and introduced the CAV, the key entity of a C-ITS. This was followed by a brief

introduction on the necessity for a reliable and robust communication framework between the

CAVs and the infrastructure network, as well as some questions that will try and answer in

this thesis (Sec. 1.4). In Chapter 2, we discussed the key characteristics of a vehicular network

and a C-ITS (Sec. 2.1) as well as the QoS requirements of the wireless link for the current

and the next-generation systems. Building on top of that, we presented the main architectural

components of a VANET (Sec. 2.2) and talked about the technologies that did not qualify for a

C-ITS (Sec. 2.3) and the potential enabler ones (Sec. 2.4) describing their main drawbacks. In this

section, we will break down the different problems introduced and present some of the existing

research activities to address them and why a further investigation was still required.

2.5.1 Multi-Radio 5G C-ITS Future Architecture Design

The increased demand in data processing and storage requirements of the next-generation C-

ITS services should be addressed by more powerful machines than the ones equipped by an

autonomous vehicle. Also, many services will require access to data from different city regions,

cities, or even from other countries [85]. This implies the necessity for a more centralised network
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architecture design and a cloud computing system architecture. Some example implementation

of Vehicular Cloud architectures can be found in [86, 87]. Both works describe the design of a

Cloud computing service that is suitable for ITS services. However, C-ITS services require also

ultra-low latency to operate. Cloud service data centres can be physically located anywhere in the

world far away from the physical location of a vehicle. The increased number of hops to reach the

destination node can quickly lead to increased latency and thus, service performance degradation.

The solution to this problem is the usage of Fog computing capabilities. Fog services, like the

cloud-based ones, provide computation, storage, and networking resources. Their main difference

though is that they are being hosted in the vicinity of the end users (edge of the network). As

a result, reliable access is provisioned to delay-sensitive mobile applications. Deploying a fog

architecture provides a more reliable service to the end user and is characterised by a low latency,

geographical distribution of devices and mobility for a large number of vehicles [44]. Example Fog

architecture designs for vehicular communications can be found in [44, 88]. Taking into account

the different services provided within a C-ITS, we realise that the use of either a cloud or a fog

architecture is service-centric, making them both finally equally important. From that, we realise

the importance of abstraction in the system and an access control plain that will be responsible

for the allocation of the resources in real-time.

Another critical factor is that the data generated are service-centric as well. We can recall

the examples of the transmission of LiDAR data that requires very high data rates while the

information of the next available parking space has more relax QoS requirements. To account

for the unique features of each application, we require a scalable data architecture. The idea

of scalability in data originates from the video transmissions where a scalable video stream

consists of a base layer and multiple enhancement layers. The base layer allows users to achieve a

primary reconstruction quality, which is gradually improved as soon as the enhancement layers

are successfully received. The same principle trespassed the natural boundaries of multimedia

communications and is being applied to design systems capable of an analogue-like service

degradation [89].

To meet the QoS demands of each unique data stream, we should map them with the different

RATs. Having the access control plain introduced before, we can have the necessary abstraction

and central coordination required to achieve a Software-Defined Networking (SDN)-like approach.

A similar heterogeneous approach can be found in [90] where the authors propose the multi-layer

Cloud-RAN architecture, where the multi-domain resources can be exploited as needed from

vehicle users. Similarly, authors in [91] designed a context-centric heterogeneous system and

evaluated different joint multi-RAT user association and resource allocation strategies.

From the above, we can realise the complexity required to design a reliable and robust C-ITS

network architecture. This motivated us and in Chapter 3 we kick off our research activities with

our proposed multi-RAT 5G architecture for CAVs. Some of the main aspects of a 5G network

are the: (i) use of heterogeneous RATs, operating at different frequencies at the both frequency
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bands of < 6GHz and > 24GHz, (ii) the utilisation of cloud/fog computing capabilities to enhance

the system performance providing a powerful computing infrastructure network very close the

RSU, (iii) small/large cell architectures to extend the service coverage and network capacity, (iv)

beamforming capabilities for directional communications (as in the mmWave standards), etc.

Throughout this thesis, we will target the concept of 5G network more from a system level and

an architecture perspective rather than focusing on targeted specifications (for example 5G NR).

Our solutions build on the ideas introduced in the 5G networks and the fundamental principles

behind them, and could potentially be integrated in an actual 5G system in the future.

For our proposed system, we will be taking into account all the above design paradigms

and propose a system that is not only flexible enough to accommodate different types of next-

generation C-ITS applications but will be able also to meet its demanding QoS requirements.

Similar activities have been presented by ETSI (i.e. ETSI ITS Communication architecture –

ETSI - EN 302 665 standard [92]) and ISO 21217, that describes the Communications Access

for Land Mobiles (CALM) for C-ITS [93]. CALM is a set of standards for C-ITS as described in

ISO 21217 [93]. The idea behind both is that of a “hybrid communications framework”. More

specifically, this implies the utilisation of different wireless technologies in a technology-agnostic

way, in order to achieve the necessary level of abstraction required for C-ITS applications. Simi-

larly, in our approach, we build on the idea of heterogeneity. Both ETSI and CALM architectures

focus more on how to design a universal router able to provide all the required interfaces for the

different technologies. Our novel approach tackles the problem from a system level perspective.

Providing the notion of scalable data dissemination as well as Fog computing capabilities, we can

open new avenues of providing an abstract way of handling the data that will benefit with the

advancements in areas such as Decision Making and AI.

2.5.2 Enabling Large-Scale V2X Communications using the IEEE
802.11p/DSRC Protocol Stack

Having a well-defined system architecture is the first step for a successful deployment. However,

delivering such a complex system, like the one introduced before, is not an easy task. We can

think of that as the well-known model of the System Development Life Cycle (SDLC), that there

are various steps from the preliminary idea and the system analysis until the actual deployment

of the system. Throughout the different steps of this model, we will face different bottlenecks and

drawbacks that we should address. This will be the idea for the remaining chapters of this thesis,

i.e. we will identify different problems within the above system and individually address.

We start with the base layer of our proposed architecture paradigm. CAVs will require an agile

interconnecting framework [94] that provides a constant service and optimal system behaviour.

The optimisation and the enhancement of this framework require experimental evaluation with

real-world trials and computer simulations. In this chapter, we will present our research activities

related to the IEEE 802.11p/DSRC protocol stack. We utilised both simulation models and real-
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world field trials for that. As we will discuss, there is an established connection between them,

that makes both tools equally essential and complementary to each other. Both tools have their

advantages and disadvantages, and when interconnected, we can achieve the best possible results

from both.

More specifically, the simulation tools are approximations of the physical world. They can

easily and inexpensively obtain near-perfect results. For example, different scenarios can be

easily validated, as in [95], where the impact of the different beacon intervals is investigated.

They can also be easily scaled up, as in [96], to simulate larger scenarios. On the other hand,

real-world trials can show the performance in the actual world. This can be done by Commercial

Off-The-Self (COTS) devices [97], or by custom testbeds as in our case. However, many physical

parameters cannot be easily isolated or ignored, and the real-world testbeds are costly and

demanding to be built and managed. In this chapter, we will start our discussions by establishing

a hierarchical framework for the field trials and the simulations. Later, we will describe a way of

calibrating a simulation framework given specific hardware and setup. Our chosen simulation

framework will be OMNeT++ Veins-INET [98] that supports the IEEE 802.11p/DSRC protocol

stack and is well-established for simulating vehicular networking scenarios (for e.g. [95, 96]).

One of the main problems with the simulation models is that very complex real-world systems

are hard to be modelled and require increased resources to be simulated. The experimentation of

very large-scale real-world testbeds is almost impossible to happen, especially in the academic

world that the resources are limited. Therefore, the research community of Parallel Discrete Event

Simulations (PDES) has tried to leverage from the new high-performance computing platforms

in order to decrease the required simulation time (for e.g. [99]) for large-scale experimentation.

However, the current implementations are quite laborious and require the reconfiguration of the

existing scenarios, pushing the researchers to prefer single-threaded old-fashioned evaluation.

We will address that problem, by designing our solution for OMNeT++ Veins-INET that will be

able to operate in a multi-threaded fashion, being though entirely transparent to the end-user.

Nonetheless, CAVs will become a reality in the next years, and they will require an actual

communication framework to exchange their sensor information. Inspired by that, we will close

this chapter by introducing our IEEE 802.11p/DSRC prototyped testbed and evaluating its

performance under an extensive experimental campaign that was carried out at the City of

Bristol, UK. We will present our preliminary results, the drawbacks of our system and ways to

overcome them.

2.5.3 A MmWave MAC-layer Approach for Device-to-Device (D2D) V2X Beam
Steering

Previously, we introduced the idea of integrating mmWave links within a C-ITS to achieve

ultra-low delays and gigabit-per-second throughput performance. However, the propagation

characteristics of mmWaves can lead to performance degradation due to severe shadowing,
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intermittent connectivity and increased Doppler spread [100, 101]). Given these limitations, it

can be considered sceptical that mmWave bands will be viable for cellular systems and vehicular

communications especially across a more extended range and NLOS paths.

Referring to the existing mmWave standards (IEEE 802.11ad and IEEE 802.11ay), the

beamforming antenna training requires a bidirectional frame exchange while operating with

quasi-omnidirectional antenna patterns in a beam-sweeping manner. It is a known problem that

the increased mobility of a vehicle, or a device in general, introduces increased Doppler spread,

thus making the traditional beamforming process to fail [66]. For lower speeds and LOS links,

the Doppler shift can be corrected with frequency offset correction techniques [102]. For higher

speed though, adequate performance still cannot be achieved. Also, the beam-sweeping increases

the delay dramatically. According to [103], the response time required from the chip to change the

phase and the gain of a phased-array antenna is roughly '50 ns, proving that the beamforming

delay is entirely related with the number of frames exchanged.

Adopting mmWaves with C-ITS implies that the increased mobility of CAV will require

frequent beam steering. This will lead to significant in-band overhead. Various approaches tried

to tackle this problem. For example, authors in [104] introduced a new codebook design scheme

able to accelerate the beam training process. Their approach managed to reduce the overhead

and improve the system performance; however, the beam training is still performed in quasi-

omnidirectional mode. Similar examples can be found in [105, 106] where authors proposed novel

algorithms that discover the optimal beam pair and reduce the protocol overhead. Again though,

their training is quasi-omnidirectional. For all the above examples, a system with increased

mobility will still suffer from the Doppler Spread.

Mobile systems require frequent beam steering. This leads to significant in-band overhead.

Leveraging the idea of heterogeneity, zero in-band overhead can be achieved. Authors in [107],

train the antenna beams by passively overhearing frames in the legacy band of 2.4 /5 GHz

and estimating the Angle-of-Arrival (AoA). Though, in dense urban environments, AoA is not

accurately estimated due to the multipath effects. Feedback information from a vehicle, sent over

IEEE 802.11p/DSRC links in the form of CAMs, can be facilitated to overcome that. In [67], a

vehicle transmitting its initial position and speed, provides feedback for the infrastructure-side

beamforming. However, position errors were not taken into account, vehicle speed was constant,

and no complex manoeuvres were considered limiting the utilisation of the algorithm on a

straight-road scenario.

Following the same idea, we designed a MAC-layer algorithm that enhances the V2X beam-

forming for mmWaves. Compared to the previously introduced algorithms, our approach utilises

the scalable data mapped on the different RATs and, fusing the information exchanged via the

CAMs, i.e. the position, the motion, and the velocity of a vehicle, makes it able to enhance the

performance and operate on a broader scale under more complex road networks. Our novel

algorithm will be presented in Chapter 5. Two different algorithms will be presented in this
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chapter. One is related to the position error that will maximise the performance based on the

given position error. The second one will be based on the distance between an RSU and a CAV. To

do so, we derive equations for analysing the position error. Also, and to show the benefit of our

algorithm concerning the end-to-end latency, we derive an analytical model that can calculate

the beamforming latency given the number of antenna beam sectors.

2.5.4 Efficient Multipoint V2V Communication Scheme for 5G MmWave
Hyper-Connected CAVs

MmWave links, even nowadays, due to their increased throughput performance and their propa-

gation characteristics, are usually used for Point-to-Point (P2P) communications and especially

as backhaul solutions when the usage of a wired or optical cable is not an option. Two very

recent publications discussing this potential scenario are the [108, 109]. In both works, authors

discuss the potential of cellular heterogeneous basestation deployment, incorporating mmWaves

and another cellular technology. The idea is that the cellular links will be used to exchange

information with the user while the mmWaves will be used to connect the different basestations

as a mesh network.

MmWave links, given their high directivity and their increased signal attenuation, can be a

potential solution for a crowded mesh network of vehicles as they will provide increased spectrum

reusability, limiting the amount of interference between adjacent cells. Having a more efficient

beamforming algorithm can enhance the V2X link performance as said before and can overcome

the beamwidth drawbacks due to the Doppler shift. We mentioned before that CAVs are estimated

to generate up to 1 Gbps of sensor data, required to achieve their birds-eye view of the road.

MmWaves can achieve multi-gigabit-per-second data rates. For example, IEEE 802.11ad can

achieve up to 6.75 Gbps of data rate under Line-of-Sight (LOS) conditions [84]. Comparing this

value with the previous estimation regarding the sensor data, it is evident that forming P2P

links will lead to under-utilisation of the channel.

Also, emergency CAVs (e-CAVs), compared to regular CAVs (r-CAVs), due to their increased

size and speed introduce more driving risks while performing obstacle avoidance manoeuvres

and advanced trajectory planning [110]. To that extent, they require prioritised connectivity,

without dominating the wireless channel as this may lead to limited access to sensor data for the

remaining r-CAVs.

Taking the above into account, we realise that except for an efficient beamforming algorithm,

it is necessary to have proper resource allocation for the mmWaves links based on various

system parameters. Therefore, in Chapter 6, we will describe a multi-link association scheme for

mmWave V2V communications that will be able to utilise the channel better and prioritise the

exchange of sensor data between the e-CAVs, without though limiting the acquired information

from the r-CAVs. The adoption of mmWaves for V2V vehicular communications is receiving

significant attention in the literature. Some examples are the [67, 111, 112], where the authors
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analyse different parameters of IEEE 802.11ad and mmWave antennas under V2V scenarios.

Researchers also focused on resource allocation schemes for V2V mmWave communications,

e.g. [113–115]. Topics vary from the adoption of different scheduling intervals to achieve low-

latency and high reliability, to the introduction of sophisticated queue models that will store the

generated packets before transmission. However, all the above activities did not take into account

the different types of vehicles within a vehicular network and the different types of data that

are exchanged. This will be our approach to this problem, and we will base our algorithm on a

Matching Theoretic framework [116]. A similar framework can be found in [113], where authors

use a many-to-one Gale-Shapley’s Deferred Acceptance matching algorithm. Trying to balance

the channel state and the queuing state information with the context information generated,

they separate the CAVs into groups of transmitters and receivers. Similarly, [114] presents

another usage of Gale-Shapley’s Deferred Acceptance matching algorithm. The authors take

into account the channel state information and transmission queue state information, but again

their problem is formulated as a many-to-one association problem. In [117], authors designed an

algorithm to share the acquired sensor data in a V2X manner over LTE links [117]. In our work,

we will utilise the Stable Fixtures (SF) matching game [118] and will generalise the problem to

a many-to-many link association scheme. Our goal will be to increase the channel utilisation

taking into account the upper bounds of mmWave channels, the different types of CAVs and their

unique requirements.

2.5.5 Efficient Millimetre-Wave Infrastructure Placement for City-Scale ITS

In the two previous sections, we introduced strategies to enhance the performance of mmWaves

under V2I and V2V scenarios. Especially for the V2I case, the positioning of a RSU is critical.

Correct RSU deployment that meets some QoS standards can significantly enhance the road

safety and efficiency in urban vehicular environments [119]. Especially under dense urban

environments, mmWaves will significantly improve the performance of the small-cell access

networks [120]. As discussed before, and as shown in the literature, mmWave-V2I links have the

potential of enabling gigabit-per-second data rates and ultra-low latency [84].

The communication capability between a RSU and a vehicle is highly dependent on the

number of deployed RSUs and their coverage range. What is more, RSUs are costly to deploy and

maintain. Therefore, compromises between the coverage provided and the deployment costs have

to be made. MmWave RSUs especially, are bounded by their LOS requirements and their strict

propagation characteristics [121]. However, they are a perfect candidate for small-cell vehicular

deployments as they can meet rigid bitrate and latency Quality-of-Service (QoS) constraints

needed by next-generation vehicular applications.

Therefore, it is crucial to deploy a number of RSUs in the most suitable locations, to improve

the overall network performance. Given the variety of urban environments, it is necessary to find

an agile method to obtain the best locations for each street layout and to deploy thousands of
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RSUs throughout a city. In Chapter 7, we will propose a strategy that can automate the RSU

placement process for different urban scenarios, taking into account the unique road and building

layout of an urban environment as well as the strict QoS constraints of vehicular applications.

Within a city, traffic lights are usually placed at road intersections. Also, lamp posts are typically

equally located along the sides of a road. In this chapter, we assume that our RSUs are deployed

on top of lamp posts and traffic lights. Thus, by positioning the RSUs only on the road, we avoid

wall and rooftop blockages and hence, improve the network efficiency. Lately, extensive map

data providing information about the building and road shapes became readily available for the

general public [122]. This allows studies over large-scale scenarios without the need for synthetic

data. To observe the differences between the different street and building layouts, we will present

two scenarios, one from the area of Manhattan (NY, USA), and the second from Paris (FR).

In our approach, we consider two main Key Performance Indicators (KPIs). The first one is

the LOS network coverage achieved after all the chosen RSUs are deployed. The second one is the

Received Signal Strength (RSS) averaged throughout the considered deployment area. A similar

work can be found in [123], where the authors proposed a strategy for placing IEEE 802.11p

RSUs. They considered the delay tolerance of the warning notifications as their optimisation

variable and solved their optimisation problem utilising a Genetic Algorithm (GA). GAs are

commonly used for basestation deployment (e.g. [123–125]) and more information can be found

in [126]. GAs produce a high-quality solution. However, they are computationally expensive, and

they may be stuck in local maxima. On the other hand, Greedy Construction (GC) algorithms,

commonly used again for similar problems, are scalable but never find a good-quality solution.

In this contribution, we will address our problem through a novel approach to find the best

RSU locations by taking into account the propagation characteristics in mmWaves environments.

Then, we will compare our outcomes with solutions obtained by running GA and GC algorithms.

Our approach manages to fulfil the KPIs we considered before and is not only scalable but can also

achieve a reduced number of deployed RSUs for the same area. Similarly to our work, authors

in [127] presented an automated base station placement algorithm for mmWaves. However, they

did not consider any QoS constraints for their optimisation algorithm apart from the LOS coverage

rate. Finally, several works only consider the distance or the propagation characteristics [128,

129], and not the shape of the buildings and the roads. In our case, we will utilise tools from

Computational Geometry (as in [130]), and consider all the above to find the desirable RSU

locations.
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3
MULTI-RADIO 5G C-ITS ARCHITECTURE FOR CONNECTED AND

AUTONOMOUS VEHICLES

3.1 Introduction and Contributions

3.1.1 Introduction

In this chapter, we will introduce a novel C-ITS framework based on a heterogeneous

communication infrastructure, able to bring the MaaS paradigm to a whole new level. Our

framework enables efficient V2X communications among CAVs by i) handling scalable

ITS applications consisting of independent data streams, and mapping onto three different V2X

layers, and ii) employing multiple Radio Access Technologies (RATs) to deliver each data stream,

according to the specific QoS constraints.

Within our system, our ITS interacts with a Decision-Making agent that is responsible for

collecting and fusing different sensor data focusing on the automated driving issues, requiring

immediate decision-making. Later, our ITS Agent is responsible for handling the generated data

streams and allocate the resources with respect to their geographical relevance and the QoS

requirements. We will also incorporate the idea of a Fog Orchestrator and a Fog Computing

Infrastructure in our system, giving us the leverage to use a more powerful machine one-hop

away from an RSU in order to reduce the introduced latency from the processing of the data and

improve the flexibility, manageability and configurability of our system.

We will start our system description with the CAV-based MaaS paradigm introducing three

different C-ITS services that are expected to be of paramount importance (Sec. 3.2). We will also

briefly present the overall picture of our system. Later, in Sec. 3.3, we will describe our Cooperative

Decision-Making Agent very briefly for CAVs and what will be the various interactions with our

ITS Agent, introduced in Sec.3.4. More specifically, in Sec. 3.4.1, we will describe the Service
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Plane, responsible for the service introduced in the Sec. 3.2, and how the different messages

exchanged are associated with these services and the estimated data rate generated. In Sec. 3.4.2,

the Scalable Data Plane are described, responsible for handling and grouping the data streams.

The Access and the Control Plane of our System will be described in Sec. 3.4.3 commenting

about their distinct system components and functionality. Finally, our system description will be

concluded in Sec. 3.4.4, that we will introduce the importance of Fog Computing Infrastructure

and how this can be incorporated with the different RATs.

3.1.2 Contributions

For the work presented in Chapter 3 the author:

• Illustrated the key components of CAVs, identifying the various types of information data

exchanged between vehicles and the infrastructure.

• Decomposed the C-ITS architecture in two different main agents (Cooperative Decision

Making Agent / ITS Agent).

• Described the basic features of the Cooperative Decision Making Agent and analysed the

message types generated from the various equipped sensors, their data rate requirements

and their sharing potential, i.e. what will be the benefit of sharing these information.

• Introduces three example use cases that can be found within a C-ITS paradigm.

• Linked the aforementioned sensor data with the potential RAT technologies to be used

(IEEE 802.11p, LTE, mmWaves) and the C-ITS services introduced before.

• Described the proposed ITS Agent decomposing it into its different components: i) Service

Plane, ii) Scalable Data Plane, iii) Access Plane, iv) Control Plane.

• Introduces the potential for cooperation between the different RATs, linking this work with

the remainder of the thesis.

The contents of this chapter have been accepted for publication in the following Journal:

• EAI Transactions on Industrial Networks and Intelligent Systems 2018 [33].

3.2 Mobility-as-a-Service Paradigm and C-ITS Services

In Chapters 1 and 2, we described that the end-user would access a range of next-generation

transportation services aided by accurate navigation and journey information that is expected to

vastly improve the road safety and overall the users’ travel experience. As discussed, a reliable

communication system is an enabler for cooperative MaaS frameworks and a key component in

next-generation C-ITSs.
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CAVs within this MaaS framework will manoeuvre and plan their trajectory using their

equipped sensors. The trajectory planning can be described either as short-term or long-term.

An example short-term planning movement is the avoidance of an obstacle, e.g., a pedestrian,

that requires a swift reaction time [131]. On the long-term, we find more sophisticated scenarios

(e.g., a CAV intending to park at an empty space beside the next roadblock), and the trajectory

planning requires the exchange of sensor data with the surrounding environment [132]. Both

manoeuvres though will need a Decision-Making agent [133]. This agent, using the acquired data,

is responsible for the decision-making (e.g., changing lane for better positioning on the road [134],

rerouting CAVs due to traffic congestion, etc.).

Each C-ITS service has specific requirements regarding the data that should be acquired and

exchanged. For example, a “collision avoidance by cooperative manoeuvring” application benefits

from the almost instantaneous exchange of high-resolution LiDAR or camcorder data [135].

Considering that a 3D-LiDAR can generate a data stream of several hundreds of megabit-

per-second, both the data rate and latency of communication links are crucial fundamental

performance indicators (KPIs) in delivering a high precision and low-risk maneuver [136]. On

the other hand, information such as the position of the next traffic light or the next parking space

is of less significance, requiring a lower data rate and is more tolerant to communication latency.

The diversity of services within a C-ITS requires meticulous architecture design. Before

introducing our novel system architecture, we will define three example key next-generation

C-ITS services that combine all the above characteristics. We consider these services, as they are

expected to play a pivotal role for a novel C-ITS framework:

• Intelligent Traffic Planning: Future C-ITS traffic planning services are needed to reroute

autonomous vehicles in the event of traffic jams, to coordinate traffic lights for offloading a

congested road, or to provide drivers with essential, up-to-date information. Pedestrians can

also be benefited and enhance their safety. For example, replacing the normal push-button

for signalling and provide a better detection for pedestrians approaching a cross-road, it

can overcome the inattention of a driver.

• Smart Emergency Vehicle Routing: This service is a specialised case paradigm of the

previous one, focusing on the emergency vehicles on the road. It assists them by providing

the best route to reach a destination. Typical critical situations correspond to immediate

medical assistance or disaster emergency management, such as fire alarms, where police

vehicles need to escort the fire trucks promptly. Under these circumstances, the surrounding

vehicles must be informed of the approaching emergency vehicles and rerouted to reduce

the traffic congestion drastically. Furthermore, a traffic light synchronisation system can

minimise the overall journey time. A more complex use case scenario corresponds to a fully

autonomous E-Ambulance system, where vehicles are equipped with health monitoring

devices, such as wearable sensors, able to transmit the collected patient’s data to the

hospital or a control centre before reaching their destinations.
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• Multimodal Commuting - MaaS: This service aims to dynamically and adaptively plan the

route of a road user, combining different transportation systems, depending on start and

end-points. For instance, an intelligent commuting system can notify drivers of available

parking areas, where a shuttle bus service is offered to carry the employees to their work

efficiently.

Based on the unique application requirements and taking into account the diverse features of

each potential RAT, we have designed our system based on a scalable data architecture. The idea of

scalability in data originates from the video transmissions where a scalable video stream consists

of a base layer and multiple enhancement layers. The base layer allows the users to achieve a

primary reconstruction quality, which is gradually improved as soon as the enhancement layers

are successfully received. The same principle trespassed the natural boundaries of multimedia

communications and is being applied to design systems capable of an analogue-like service

degradation [89].

The different data streams in our system are mapped onto different RATs, and the central

coordination takes place in a Software-Defined Networking (SDN)-like approach (Fig. 3.1). The

Decision-Making agent is responsible for the automated driving applications, which require

nearly instantaneous decision-making and reliable communication links. The design of this agent

is outside the scope of this work. A brief introduction to the functionality of a decision-making

agent will be given later in this chapter. The reader can refer for more details to [133].

In Fig. 3.1 we can see the separation of the data and the control plane in our system. This

enables two prominent features. At first, it enables the management capabilities and the dynamic

network resource allocation required by a 5G vehicular communication framework [137]. Deci-

sions are taken with respect to various network KPIs, such as the availability of a RAT or the load

of a communication link. Utilising QoS information for appropriate network resource reservation

is an effective cross-layer approach to achieve guaranteed QoS throughout the entire network.

This is very important for our system due to its unpredictability about the load, the number

of vehicles and the requirements. Later, centralised control over the heterogeneous network

provides a global view and a unified configuration interface. The centralised and automated

management and consistent policy enforcement can help to reduce configuration errors. This will

also help with the design of comprehensive diagnostic and prognosis tools for automated network

maintenance.

In our system, we assume that our network is clustered in different management areas called

as Fog Areas. Each Fog Area is centrally managed by a Fog Orchestrator (FOs) and consists

of a number of multi-RAT RSUs and controls multiple CAVs. The FOs represents the logical

entities encapsulating the core components of our system. These entities are responsible for

taking the automated driving decisions, and mapping the data streams onto the different RATs.

The number of constraints in an FO and its building blocks (e.g., microservices) can be many.

The FO orchestrates them in either a centrally or distributed manner, meaning that the FO can
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Figure 3.1: General overview of the considered system model. The proposed ITS design framework
ensures analogue-like performance degradation communications among CAVs by means of multi-
layer V2X communications over an heterogeneous network infrastructure.

start orchestrating services if necessary, maintaining though its core functionality. This Fog node

ensures the programmability of the system simplifying the deployment of new functionalities,

which rely on a variety of capabilities, locally attached devices, sensors, and actuators. All the

above will ensure the QoS required for a specific service.

Utilising this Fog Computing implementation, our centralised controller will be responsible for

the generation and processing of all the messages. The different radios will be solely responsible

for relaying the message to and from the CAVs. Our envisaged solution still interacts with

a cloud-based city-wide connection, which it interfaces with the Access Controller in the FO

(Fig. 3.1). In particular, the cloud-based service will only be in charge of recording city-scale data,

interconnecting the different Fog areas and enforcing city-scale policies to be put into practice.

The above design paradigm can provide the necessary abstraction for a next-generation C-ITS
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Figure 3.2: Decision-Making Agent architecture.

system. This will give us the leverage to hide the different heterogeneous characteristics of

the various RATs and CAVs and simplify the deployment of a new C-ITS service. This system

architecture can accommodate next-generation applications with strict QoS constraints bringing

us closer to the paradigm of MaaS. In the following sections, we will describe the core network

architecture and system components starting with some insights about the Decision-Making

agent that will be accommodated by our system.

3.3 Cooperative Decision-Making Agent for CAVs

In an attempt to transform CAVs in C-ITS actors, we refer to the architecture shown in Fig. 3.2. In

particular, the proposed CAV design comprises an ITS agent and a Decision-Making agent [133].

As will be presented in Section 3.4, the ITS agent allows each CAV to exchange sensory data and

driving intentions with other CAVs and city-level emergency rooms.

The ITS agent interacts with the Decision-Making agent, which comprises a combination

of proprioceptive (related to the behaviour of the CAV itself, for e.g., inertial measurements

and engine status) and exteroceptive (related to the environment outside the CAV, for e.g.,

cameras or proximity sensors) sensing that begins the control loop structure. Fig. 2.1 shows a

suite of possible exteroceptive sensors for a CAV. The Perception system processes raw sensory

outputs into features describing: (i) the position and movement of the vehicle [138], (ii) the

road geometry [139], and (iii) the kind (for e.g., cars, cyclists or pedestrians) and motion of

moving objects. The Perception system interacts with the Decision system, which takes basic

manoeuvring choices (Discrete action planning) and determines the path to be followed on a

chosen road (Spatial planning and Trajectory planning) [140]. Finally, Control and Actuation

system implements the manoeuvring operations needed to follow the chosen trajectory.

The considered Decision-Making agent focuses on automated driving issues, which require
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immediate decision-making, thus reliable communication systems [136, 141]. For each of the

listed message-based interactions identified in Fig. 3.2, Table 3.1 covers the implications of

sharing the information content of these messages via a communication system.

3.4 Proposed ITS Agent Design for Next-Generation CAVs

This section describes the proposed ITS agent design for next-generation C-ITSs featuring CAVs

through heterogeneous RATs, as shown in Fig. 3.3. As said in Sec. 3.3, our ITS agent interacts

with the Decision-Making agent to achieve the ITS service goals, e.g., implementing long-term

driving manoeuvres (ITS Agent to Decision Making agent signalling), or adapts the service goals

in accordance, e.g., detecting a car accident (Decision Making agent to ITS agent signalling).

The responsible FO for a specific fog area, and most importantly the embedded Decision-Making

agent, can directly access all the generated data within this area. Application data from other

city regions or Fog areas can be accessed via the cloud-services communication links.

In Sec. 2.4, we already described the three different wireless technologies that will be in-

corporated in our system. Since IEEE 802.11p/DSRC access network does not rely on any core

networks, this ensures low latency for V2X communications at the cost of reduced coverage. To

this end, it appears natural to relay safety/mission-critical messages via an IEEE 802.11p/DSRC

network when: (i) they are relevant to surrounding vehicles, (ii) are characterised by low data

rate, and (iii) tolerate a tactile-like end-to-end latency. For instance, this is the case of messages

signalling that a vehicle triggered its emergency braking system. This information is likely to be

relevant only to the immediate surrounding vehicles. On the other hand, if vehicles get involved

in an accident in the middle of an intersection, this can have a disruptive impact on all the traffic

flow across a large area of the city. In that case, it is worth taking advantage of an LTE-A Pro

network to notify the disruption across geographically larger areas. Whereas, the authorities via

the mmWave communication infrastructure can gain access to the vehicle camcorders or LiDARs

to assess the severity of the accident (see Fig. 3.1).

As discussed in Sec. 3.2, the proposed system paradigm is based on the idea of scalable data

dissemination. The data streams admission control and the RAT resource allocation are part

of the ITS agent. For the proposed system architecture one base layer and two enhancement

layers will be considered. For the remainder of this chapter, we will describe the key ITS agent

components and their fundamental operations.

3.4.1 Service Plane

The Service Plane is the place where all the next-generation ITS services and applications are

developed. We can use as examples the C-ITS applications described in Sec. 3.2. The Service Plane

operates regardless of how the data streams will be mapped onto multiple layers, and regardless

of which RAT will be used to transmit each stream. With regard to the above mentioned ITS
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(a) Structure of an ITS agent.
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Figure 3.3: Proposed ITS agent architecture and detail of the proposed Access Plane incorporating
the considered RATs.

applications, Table 3.2 considers some examples of data streams being exchanged, their impact

on the ITS service and the estimated amount of sensor data to be transmitted/received. Of course,

each application can generate more message types than the one presented in Table 3.2, but from

that, we can get an indication about the different requirements of each service and each message

type specifically. As described in Section 3.3, each C-ITS service has its unique requirements with

regard to the sensor data to be exchanged. The above figures of merit prove the necessity for a

scalable data plane design and a flexible system architecture to accommodate these needs.

3.4.2 Scalable Data Plane

In the proposed system design, the Service Plane builds upon a Scalable Data Plane, which is in

charge of:

• Handling data streams from the lower system planes and dispatching them towards the

Service Plane;

• Grouping data streams by their geographical relevance and QoS requirements.

The Scalable Data Plane assumes that each next-generation C-ITS service exchanges scalable

data streams that comprise up to three independent data layers. The data streams mapped onto

the base layer convey messages for Road Safety Applications in a V2X fashion. These messages

are described in SAE J2735 and are called Basic Safety Messages (BSMs), as defined by the

Society of Automotive Engineers (SAE), or CAMs, as defined by the European Telecommunications

Standards Institute (ETSI). The above-mentioned BSMs or CAMs, are being broadcast every

0.1 s and contain core vehicle information, such as vehicle size, GPS location, braking system

status, etc. Along with the other messages, (e.g., Intersection Collision Avoidance, Road Side

Alert, etc. described in SAE J2735), they can allow the proposed C-ITS design to support basic

safety/mission-critical C-ITS functionalities, such as support to navigation, obstacle avoidance,
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Table 3.2: Relevant messages for next-generation ITS Services.

ITS
Services Example Message Types Impact on ITS Services Estimated

Data Rate

Intelligent
Traffic

Planning

City-wide map grids and road shape
reports.

Enabling the
origin-to-destination long-term

journey planning

10 Kbps to
10 Mbps

City-wide knowledge of CAV positions Congestion prevention
10 Kbps to
800 Kbps

Routes and destination in low resolution
Congestion prediction and

high level rerouting
80 Kbps to
800 Kbps

Smart
Emergency

Vehicle
Routing

LiDAR sensor raw data streams
exchanged and processed in real-time

Precise high-mobility
manoeuvres

50 Mbps to
250 Mbps

Accurate representation of the nearby
moving obstacles

Decision making through
accurate object tracking

80 Kbps to
800 Kbps

Trajectory paths with time profiles
Enhanced cooperation between

CAVs improving long-term
manoeuvre smoothness

80 Kbps to
800 Kbps

Multimodal
Commuting

Available parking spaces in close
proximity

Reducing the overall
commuting time

10 Kbps to
10 Mbps

City-wide knowledge of CAV positions
Refinement of the expected

arrival time
10 Kbps to
800 Kbps

Information on road disruptions (for e.g.,
accidents, adverse weather conditions)

Smart CAVs rerouting
30 Kbps to
100 Kbps

traffic light status notification, etc. Given their low data rate, nearly tactile-like latency, and local

relevance, the V2X base layers are transmitted over IEEE 802.11p/DSRC communication links.

The considered next-generation C-ITS applications described in Sec. 3.2, build upon those

above basic ITS functionalities. They are expected to impact on potentially large areas of a city.

The vehicles involved in these services will generate feature streams from their onboard sensors,

which correspond to the V2X first enhancement layer in the proposed ITS design. An example

of a feature stream is given by the 3D bounding box representation of objects surrounding

each vehicle [142]. These data are being processed using sensor data fusion techniques and are

independently generated by each CAV [142]. These highly refined information streams need to be

shared among a large number of vehicles to allow them to take long-term decisions. In particular,

the first enhancement layer requires a communication system providing extensive coverage and

links capable of megabits-per-second, without though the need for tactile-like latencies. Hence,

we refer to LTE-A Pro as the proposed RAT for this layer.

As discussed, the first enhancement layer is the result of sensory data processing carried out

by each vehicle independently. Considering the Smart Emergency Vehicle Routing application, in

the case of large-scale accidents, city-level emergency rooms may find it convenient to gather raw

sensor data from multiple vehicles, combine them and then extract the required features. In fact,
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in the case of LiDAR data, combining raw data acquired from different locations can eliminate

multiple blind spots and lead to a more accurate 3D bounding box object representation [143].

Streams of raw sensory data define the V2I second enhancement layer. Transmitting raw sensory

data requires communication links capable of a gigabit-per-second, which implies the adoption

of the mmWave infrastructure. However, due to the intermittent connectivity level associated

with this technology, no reliability constraints should be associated with the second enhancement

layer.

3.4.3 Access and Control Planes

To guarantee high system adaptability, controllability and flexibility, it is necessary to separate the

Control Plane, responsible for the data stream admission control and the RAT selection, with the

Access Plane, that incorporates all the available RATs. As discussed in Section 3.3, this approach

is mostly adopted in the SDN domain, where decoupling the network functionalities from the

RAT in use enables high system programmability, and abstracts the network infrastructure from

the different services [137].

In our system particularly, the Access Plane encapsulates the three proposed RATs, building

a network operating in a heterogeneous manner, capable of operating under various conditions

and fulfilling various QoS profiles. As shown in Fig. 3.3(b), each of the adopted standards is

characterised by a different protocol stack. The PHY and MAC layer of these standards have

been described in Sec. 2.4. IEEE 802.11p/DSRC and IEEE 802.11ad mmWaves include the typical

Logical Link Control (LLC) layer in charge of flow and error control, whereas LTE-A adopts the

Radio Link Control (RLC), responsible for error detection and recovery, and the Packet Data

Convergence Protocol (PDCP) for packet integrity protection and header compression. At the

Transport and Network layer, IEEE 802.11p/DSRC supports apart from the IP protocol the

Wireless Access in Vehicular Environments family of protocols as well. This is very important as

Short Message Protocol (WSMP), supporting the one-hop broadcast transmission of high priority

and time sensitive data messages.

To achieve the necessary level of abstraction, we consider a Control Plane consisting of

two distinct system components: the Service Engine and the Access Controller. The former

is responsible for classifying the incoming data streams based on the Scalable Data Plane

configuration, while a decision algorithm determines which data stream must be processed.

The Access Controller then chooses the appropriate RAT based on the decisions made by the

Service Engine in accordance with the Scalable Data Plane, as discussed in Section 3.4.2, as well

as taking into account the availability of the chosen technology. Both system components are

integrated within the logical entity of the FO.
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3.4.4 Cooperation between Different RATs

In the previous sections, we described the key components of the proposed multi-radio 5G

architecture paradigm, and we established a connection between the different scalable data

layers and the individual RATs. The abstraction and virtualisation introduced by this design, as

discussed, can pave the way for more reliable ITS applications and services. Building upon the

flexibility provided by this system, we can enhance the performance of each RAT even further

and overall, provide a more robust system.

More specifically, the cooperation between different RATs can be enabled within a fog area.

The FO can utilise the already exchanged ITS application data to fine-tune each radio. For

example, a significant fraction of the Beacon Intervals (BIs) introduced in IEEE 802.11ad is

occupied by the necessary beamforming operations between the devices. In particular, as observed

in [36], about 1/3 of the BI length is to be allocated for beamforming operations. However, by taking

advantage of the CAMs (exchanged via IEEE 801.11p/DSRC), which encapsulate position and

heading information of a CAV, our FO unit can track a vehicle on the road, inform the mmWave

RSU about the estimated position of the vehicle and provide the necessary and pre-calculated

beamforming information. This has the potential of improving the network throughput [36, 37].

By following a similar approach, FOs can contribute to delivering a system with advance

user-authentication functionalities [144]. In fact, users’ credentials can be generated and pro-

cessed by each FOs rather than in a single centralised node. Similarly, FOs can also be used to

implement advanced PHY layer security features, for instance, based on random network coding

strategies [145, 146]. Overall, the Fog computing implementation within our system gives us

the leverage that using small, powerful units within our FO, is possible to virtualise services

one-hop away from an RSU. This will reduce the processing latency in our system, improving

the configurability and the flexibility required for the high demanding next-generation C-ITS

applications.

3.5 Conclusions

In this chapter, we introduced a novel C-ITS multi-RAT architecture, able to enhance the

CAV-related MaaS paradigm. More specifically, our system can accommodate different streams

of data, intelligently allocated the resources of each RAT, and mapping them with respect

to the geographical and QoS constraints. Our framework is designed in an SDN-like fashion

incorporating Fog Computing capabilities as well, to enhance the performance and minimise the

end-to-end latency. The distinct system components, being the Decision-Making Agent and the

ITS Agent, as well as their sub-components, can give us a more unified view of the system and

improve the flexibility, the manageability and the configurability, aspects essential for a C-ITS

framework.

This work is envisioned to play a pivotal role in the design and deployment of the next-
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generation C-ITS frameworks. Of course, one of the main challenges is the difficulty of such

a system to be designed and implemented. This is because the different system components

should be precisely designed, tested and debugged before being integrated, being an effort of

many years of research. Having said that, and keeping all the above in mind we will focus our

research activities on some more specific subsections of this system. These activities will be

introduced in the next four chapters of this thesis, having as a short-term goal to enhance the

performance of some distinct components and an ultimate goal for the future, a complete system

implementation.
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ENABLING LARGE-SCALE V2X COMMUNICATIONS USING THE

IEEE 802.11P/DSRC PROTOCOL STACK

4.1 Introduction and Contributions

4.1.1 Introduction

Chapter 4 will present our efforts to accurately and cost-effectively evaluate a large-scale

V2X communication framework using the IEEE 802.11p/DSRC protocol stack. There

are two ways of evaluating an experimental framework: 1) with simulation studies, 2)

with real-world trials. In this chapter, we will describe the interconnection between these two

methods and why both of them are necessary for accurate performance evaluation. Later, we will

present a calibration procedure, designed for OMNeT++ Veins-INET simulation framework, that

can enhance our performance investigation and bring us closer to a realistic representation of

the reality. However, the more representative of the reality a simulation framework is, the more

computationally expensive it becomes. To that extent, we will describe our solutions for reducing

the required simulation time. To do so, we modified our simulation framework and operated it in

a multi-thread fashion. Even though, parallelised versions of the software already exist, they are

quite laborious and require the reconfiguration of the existing scenarios. Our amendments will

ensure the seamless integration with the existing scenarios and easy reconfiguration to speed up

the execution time.

Except our efforts on accurately and cost-effectively simulate a vehicular networking scenario,

we will also investigate the requirements for an actual real-world deployment. We will start by

describing the features required for an experimental testbed in order to fulfil the demanding

requirements of vehicular communications. Building on that, we will present our efforts on

building an experimental IEEE 802.11p/DSRC testbed. We based our prototyped system on
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open-source firmware and low-cost hardware components, having in mind a cost-efficient large-

scale deployment around the City of Bristol. Later, we will present the evaluation of our testbed

throughout three days of field trials. Our testbed logs all the messages generated and exchanged

in a V2I and V2V fashion. Accessing the logged information, we will discuss our findings and our

experiences from these trials.

More specifically, in Sec. 4.2, we describe the benefits and the limitations of both evaluation

methods and raise the questions answered in the rest of the chapter. Later (Sec. 4.3), we estab-

lish the hierarchical framework between the trials, the simulations and the reality-of-interest,

discussing what the interrelationship between these entities is. We continue with presenting

our designed and developed experimental testbed (Sec. 4.4). In Sec. 4.5 we describe the agile

calibration procedure we followed, to microscopically calibrate our full-stack network simulation.

Furthermore, in Sec. 4.6, we discuss ways of parallelising the above framework, in order to speed

up its execution time and make it a viable option for large-scale experimentation. In Sec. 4.7, we

start our performance evaluation, describing at first the results acquired from our fine-tuned

simulation. Secondly, we present the improvement in the simulation time, achieved by operating

the simulation framework in a parallel fashion. Finally, we introduce the initial performance

investigation of our experimental testbed under a large-scale experimental campaign around

the City of Bristol. Based on the knowledge acquired from the aforementioned field trials, we

later identify the drawbacks that should be addressed in the future. We conclude this chapter in

Sec. 4.8, with a summary of the above some critical thinking about our findings.

4.1.2 Contributions

The contribution of the author for the work presented in Chapter 4 is:

• Established the connection and the hierarchical framework between the trials, the simula-

tions and the reality of interest.

• Actively contributed with the debugging, and the design of the experimental devices

introduced (as part of the VENTURER Project).

• Performed the preliminary evaluation of the experimental testbed using the channel

emulator, designing and conducting both experiments related to that (throughput and video

PSNR evaluations).

• Defined a calibration procedure for Veins-INET simulation framework, taking into account

the different parameters from the real world (as part of the VENTURER Project).

• Designed and implemented the multi-threaded version of Veins-INET.

• Was involved in the experiments related to the agile calibration of Veins-INET.
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• Designed and simulated all the scenarios described in this chapter, for both the calibration

procedure and the parallel implementation (as part of the VENTURER Project).

• Was actively involved in the design and deployment of the testbed presented.

• Was actively involved in the design of the large-scale experimental campaign described (as

part of the Flourish Project).

• Was part of the team that conducted the large-scale experimental campaign around the

City of Bristol (as part of the Flourish Project).

• Designed the website that hosts the dataset of the field trials [147].

A subset of the contributions and the results of this chapter was presented at the conferences:

• IEEE Vehicular Networking Conference 2017 (IEEE VNC 2017) [34].

• International Conference on Ad Hoc Networks and Wireless – AdHoc-Now 2018 [35].

• IEEE Vehicular Networking Conference 2018 (IEEE VNC 2018).

4.2 Interconnection between Trials and Simulations

As we discussed in the previous chapters, the communication framework for CAVs is essential.

The exchanged information can increase the vehicle safety, provide new services, reduce traffic

jams improving the fleet routing, etc. This is one of the main reasons that 75 MHz of the spectrum

have been allocated for DSRC in the frequency band of 5.9 GHz. Performance enhancement in this

frequency band is a hot research topic as CAVs require an agile interconnecting framework [84,

94], able to provide a constant service and optimal system behaviour.

Concerning the performance evaluation of novel algorithms introduced by the research

community, we find that the common tools used are either a combination of theoretical models

and simulations, or real-world field trials. As discussed in Sec. 2.5.2 the simulations are based on

approximations of the physical world, being able though to obtain near-perfect results, quickly

and inexpensively. They provide a high degree of flexibility, making it possible to test different

configurations and isolate specific parameters, in order to examine a system under specific

conditions. One of the main problems of the existing simulation frameworks is their scalability. A

very complex real-world system design is hard to model and requires increased resources to be

simulated, resources that even high-performance computing platforms are not always able to

provide.

On the other hand, real-world trials are based on a “perfect” model. Conducting a real-world

experiment, we can observe the behaviour of a system, under a particular scenario taking into

account all the disruptive or constructive parameters of an environment. These parameters
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are not easily considered within a simulation framework. For the same reasons, conducting

large-scale experiments, we know that the results acquired are an actual representation of

the reality-of-interest. However, the wireless environments, and more specifically the vehicular

networks are very dynamic. Some of the main disadvantages of real-world trials are the inability

to reproduce the results, as the physical parameters are not easily isolated and ignored, the cost,

and the required time.

All the above is the main reason that researchers usually prefer one of the two evaluation

methods. The question that arises though is: “Is it necessary to have an interconnected framework

between the real-world trials and the simulations?”. The short answer to that is: “Yes, it is essential

in order to accurately, time- and cost-effectively evaluate the performance of a novel strategy.”.

To achieve this interrelationship between these two distinct entities, we need to establish the

hierarchical control system between them and find the links between the different subsystems.

Having a hierarchical system representation, we can identify the different interactions between

the various entities, introducing any abstractions when required. By the above, we can achieve

the “accuracy” mentioned in the answer above. We will further discuss this approach in the next

sections, starting from Sec. 4.3.

4.3 Hierarchical Framework: Trials and Simulations

Consider a C-ITS consisting of a number of RSUs and CAVs on a road network. The different

services running on the C-ITS, as well as the safety-critical and the infotainment-related applica-

tions, exchange various kinds of data. For example, safety-critical messages denoted as CAMs

in the ETSI Standards [148] or as WAVE Short Messages (WSMs) in the IETF standards [149],

are broadcast with a frequency of 10 Hz. These messages encapsulate core information about

the vehicles, such as the position, the velocity, the size, etc. Similar safety-related messages,

regarding road hazard warnings (e.g. the DENM within the ETSI Standards [150]) can be trig-

gered any time within the network. The above messages are relatively short (~300-800 B) and

are transmitted using QPSK 1/2 MCS. The above messages require low one-hop end-to-end delay

and high-delivery data rates.

Apart from the above messages, safety-related applications in the future C-ITSs may generate

different kinds of data. Example applications can be the video-assisted overtaking or the traffic

monitoring using road-mounted camcorders. These applications are already tested on CAVs [151]

and require the transmission of video frames via UDP streams. Their main QoS constraints are

the increased data rate and the low jitter. These applications are more forgiving with the BER

performance, due to the new generations higher efficiency video encoders and the adoption of

Forward Error Correction (FEC) techniques. Even the non-safety related applications may have

some strict QoS constraints. For example, a map database or a geolocation information application

downloading via FTP servers requires zero packet-loss but with lenient latency requirements.
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Figure 4.1: The interrelationship between the experiments, the simulations and the real world as
well as the processes that connect them.

Each application, except its unique content-related QoS requirements, behaves differently

under various physical environments. In Sec. 2.1 we described the three different environments

we find in vehicular networks, i.e. urban, suburban, rural, their unique characteristics and the

way they affect a particular network. For instance, an experiment within a city will be affected

by blockages from the buildings, that significantly attenuate the signal. Though urban canyon

behaviours can be introduced, under specific circumstances, wave-guiding the signal. On the

other hand, foliage is the primary form of blockage in rural areas while vehicles tend to move

faster introducing a more noticeable Doppler Shift. Given the above, each environment should

be addressed differently under a simulation scenario. For example, an accurate representation

of the buildings/obstacles within our simulation framework is necessary in order to find the

intersections of the signal with the buildings. Also, a proper channel model configuration will

give us the correct signal attenuation for the above intersections. From all the above, it is evident

that a vehicular network is a complex entity within a C-ITS. To correctly evaluate the network

performance, careful consideration of the different parameters is required as well as a thorough

investigation of the different network characteristics.

4.3.1 Cooperation and Coexistence of Trials and Simulations

Cooperation between simulations and trials is mandatory to enhance the accuracy of a system

performance validation. The exchange of information between them can significantly improve

the results while minimising the required cost and time. Establishing a framework between the

utilised simulation models, the trials conducted and the reality-of-interest, i.e. the part of the real

world (e.g. a city, a neighbourhood or a road) that we are investigating, will help us to understand

the requirements and the limitations of each one better. The interrelationship between these

three entities can be seen in Fig. 4.1.
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The assessment of the simulation accuracy is divided in two phases, i.e. the verification and

the validation [152]. The verification (Fig. 4.1 – a) is the confirmation that a model is correctly

implemented and reflects the real world. This is confirmed by conceptual models – abstractions

of a system that characterise and standardise a network function, e.g. the OSI model (Fig. 4.1 –

b). Verifying a model, the existing errors can be determined and fixed to assure that it matches

specifications and assumptions with respect to the initial concept (Fig. 4.1 – c). Throughout

this chapter, we will not address the model verification for Veins-INET any further. The models

implemented in Veins and INET Frameworks have been thoroughly verified in several works by

the research community, e.g. [153–156], etc.

Apart from the simulation-based evaluation, we can evaluate the performance of a system

using real-world trials. A trial-based evaluation is limited by the engineering constraints (Fig. 4.1

– d). For example, a NIC might support decreased transmission power compared to the standard

specifications, limiting the operational range of a device. What is more, trials suffer from un-

certainties (e.g. the attenuation of the signal with respect to the weather is unpredictable, not

easily measured and environment-dependent) affecting the reliability and the validity of the

experiment. The replicability of the experiment is also a big concern. All roads are not the same,

and the devices have different specifications, so replicating an experiment is difficult. This leads

to incomplete results (Fig. 4.1 – e) as it is impossible to validate all possible combinations.

The validation of a theoretical model assesses the precision of a model when compared with

the behaviour of the real world (Fig. 4.1 – f). The verification of a model usually precedes its

validation. The simulation models are validated using simple experiments and isolating the

external factors that affect the performance. A meaningful representation of the real world can be

achieved by fine-tuning a simulation framework at first (Fig. 4.1 – g). This is done by using inputs

from measured results (e.g. path loss exponent) or applying weights at the output to minimise the

divergence error. A direct comparison between the absolute values of the experimental results is

misleading and should be avoided. The validation process should identify and compare the trends

of the performance for the different experiments (e.g. both the simulated and trial-based results

have a relative degradation when one parameter is changed).

4.3.2 Hierarchical Validation of a Simulation Model

Inconsistencies between the simulated and real-world results can arise for several reasons.

Various examples can be the measurement errors (e.g. noise from the data acquisition methods,

calibration errors, etc.), formulation errors (e.g. incorrect channel models) or even numerical

errors due to the floating point units of a computer (e.g. subtraction of floating points, overflow of

integers, etc.). Overall, we can categorise the errors in two different groups. The random errors

that affect the relative precision of the simulation models, and the systematic errors, that affect

the absolute value of a result. The second group of errors is easily repeatable and therefore

predictable. To that extent, it can quickly be taken into account introducing a counteract that
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will cancel its effect in a system.

The necessary level of accuracy can only be achieved by applying the validation procedure

throughout the entire development process following a hierarchical approach [157]. To do so, we

fragment the bigger problems into smaller entities and solve them individually. By doing that, we

can achieve the required level of accuracy with low complexity. Generally, the trials should test

the essential features of the simulation models, such as the impact of the considered assumptions

or the simplifications. On the other hand, simulations allow incremental validation towards a

“real-world-like” system.

The hierarchical validation, however, is not a one-way process. Problems identified at more

complex systems may be more appropriate to be tackled in smaller scenarios, or the other way

around. It is required to well-define the boundaries and the initial conditions in order to make it

easier to identify the uncertainties later. When the individual errors and the inconsistencies have

been addressed, and the required level of accuracy is achieved, we can proceed to complete system

validation. For that, the unpredictability of various parameters creates the necessity for more

extended and increased number of experiments and simulations to achieve a clear understanding

of the real-world behaviour.

4.4 Experimental Testbed Architecture

The design of real-world ITS solution is a complicated procedure. All the above should be taken

into account throughout the entire design and implementation process. Also, considering the

initial conditions, the boundaries and the trends of the performance is of paramount importance.

When fragmenting the system into smaller entities and isolating the characteristics that disrup-

tively affect the performance, it can be easier to identify the random and the systematic errors.

Identifying them, we can approach an "ideal-like" system. Before using a network simulator to

validate different scenarios, it is necessary to configure it correctly. As said, there is a direct

connection between the real-world trials and the simulations. So, in this section, and before

proceeding with the validation of our simulation framework, we will present a real-world testbed

that we designed, implemented, and deployed around the City of Bristol. This testbed is capable

of providing both V2I and V2V communication links and can be deployed on a large scale. When

designing this testbed, we were interested in the following features:

• Continuous availability for delay-critical applications.

• Full-stack system implementation to support various vehicular applications and dissemina-

tion of scalable data types.

• Centralised coordination via a SDN-like framework.

• Open-source operating system to be easily customisable and compatible with Fog and Cloud

Computing architectures [158].
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Figure 4.2: A general overview of the considered system model. The C-ITS design framework
ensures V2X connectivity and an NFV architecture in the infrastructure domain.

• Dual-operation as RSU and OBU to support both V2I and V2V links.

• Low-cost for large-scale deployments.

• Weatherproof.

In the next section, we will describe our ideal experimental VANET testbed, describing the

different characteristics and features. Finally, in Sec. 4.4.2, we describe the system that we

designed, deployed and implemented in the City of Bristol. This system was utilised for the

experiments that will be described in the remaining of this chapter.

4.4.1 Description of an Ideal System Architecture

Our ideal experimental VANET testbed consists of various devices and entities. Each one will play

a significant role in the operation of our system. An ideal design paradigm is shown in Fig. 4.2,

where the different devices and entities are presented. Our system paradigm, as discussed before

will be consisted of three main entities: the RSUs, the OBUs, and the Fog Orchestrators (FOs).

The RSUs will be responsible for providing V2I connectivity and will be mounted on building

walls and connected to a centralised control plane. The OBUs, installed in the vehicles, will

exchange vehicular application data with surrounding RSUs and OBUs. Finally, the FOs are

devices that can centrally manage different clustered areas, named as Fog Areas. These areas

are ideally within one-hop distance from an RSU to reduce the end-to-end delays.
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The RSUs and the OBUs will form IEEE 802.11p/DSRC links between them, as shown in

Fig. 4.2. Throughout the city, we have coverage and non-coverage regions, where a vehicle can

respectively connect to both the RSUs and the OBUs or just with the surrounding vehicles. We

also assume that our infrastructure network is clustered in different management areas called

Fog Areas. A Fog Area is managed by an FO. All the FOs share a direct wired link with the

different RSUs within the same area. Being one-hop away from all the RSUs, they can be used

to process all the time-critical information received or generated at the infrastructure side and

reduce the end-to-end delay. In our system paradigm, each FO interacts with a cloud-based

service. The cloud-based service will be responsible for recording city-scale data, interconnecting

the different FOs and Fog Areas and pushing city-scale policies in the entire network.

We regard the above system as capable of exchanging any data that may be required for

safety and non-safety critical vehicular applications. We are interested more particularly in

the exchange of CAMs on both V2I and V2V links and UDP data streams for our performance

investigation. More specifically, later in this chapter, we will describe two different experiments

conducted. The first is large-scale experimentation using CAMs, while the second is a smaller-

scale scenario utilising both CAMs and UDP packets. In the next section, we will describe in

greater detail the testbed components that we have already designed and deployed around

the City of Bristol. As our work stands at the moment, the FOs and the Fog areas were not

implemented and are being only part of our ideal system solution. We consider them as a task for

our future research activities. In the next section, we describe in more detail the experimental

testbed that we designed.

4.4.2 Description of our Experimental Setup

For our experimental validation, we prototyped an open-source IEEE 802.11p/DSRC testbed

(Fig. 4.3). Our devices consist of a single-board computer and two wireless cards connected to their

accompanied antennas. More specifically, we used a Mikrotik RB433 single-board computer (CPU

300 MHz, 64 MB RAM, 64 MB storage space, x3 Ethernet slots, x3 MiniPCI slots) [159], acting as

the main processing unit for our devices. As for the NICs, we utilised two IEEE 802.11a wireless

cards for redundancy. The first one was a Mikrotik R52H [160], regarded as a low-power (LP)

NIC and operating at 25 dBm. The second wireless card, being the high-power (HP) transceiver,

is a Mikrotik R5SHPn [161] with 29 dBm maximum transmission power. The wireless interfaces

of the RSUs and the OBUs in our system are accompanied by different antennas as shown in

Figs. 4.3(a) and 4.3(c), one bolted on the RSUs and the second magnetically attached to the roof

of our vehicles. The RSU NICs were connected to a dipole antenna with a gain of 7 dBi and 9 dBi

for the LP and the HP transceivers respectively, while the OBU antennas have a gain of 5 dBi.

Our RSU devices were powered up via Power-over-Ethernet (PoE), while a battery pack was used

for the OBUs to avoid the voltage spikes experienced when using a lighter inverter within the

vehicle. All the device and the key driver characteristics can be found in Table 4.1.
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High Power

transceiver 
Low Power

transceiver 

Road-Side and

On-board Unit

High-gain Antenna

Low-gain Antenna

(a) IEEE 802.11p / DSRC RSU
units.

OBU Devices

Battery Pack

(b) IEEE 802.11p / DSRC OBU units.

OBU Antenna

(c) OBU antenna mounted on the roof of the car.

Figure 4.3: Our experimental testbed. We prototyped both RSUs and OBUs units, equipped them
with different antennas and conducted our experimental trials around the City of Bristol.

A low-latency OpenWRT Linux distribution was used1 as the operating system. The different

Atheros chipsets of each transceiver (AR5414 for the LP and AR9220 for the HP) required the

use of two different Atheros drivers (ath5k for the LP and ath9k for the HP). Both were modified

accordingly to enable IEEE 802.11p compatibility adding the 5.9 GHz band to the regulatory

domain. The Linux kernel modules that we modified have been summarised in Fig. 4.4. The

software modules cfg80211 and nl80211 act as interfaces between the user and kernel space,

1OpenWRT Barrier Breaker Release no. 14.07 - https://openwrt.org/
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Table 4.1: Wireless network interface controller characteristics.

LP-RSU LP-OBU HP-RSU HP-OBU

Model Mikrotik R52H [160] Mikrotik R5SHPn [161]
TX Power 25 dBm 29 dBm

Antenna Gain 7 dBi 5 dBi 9 dBi 5 dBi
Linux Driver ath5k ath9k

Bandwidth 10 MHz
Frequency 5.89 GHz 5.9 GHz

CWmin,CWmax [15,1023]
MCS QPSK 1/2

mac80211 is the general driver framework, and iw is the NIC configuration utility. Furthermore,

cfg80211_ops and ieee80211_ops define the operations and the callbacks between the different

blocks. The Outside the Context of a BSS (OCB) mode was enabled in the MAC layer, allowing

the NICs to operate without being associated with an access point and the iw utility was modified

accordingly to include the new commands for using OCB mode. The values for the contention

windows and the MCSs were chosen to follow the regulation for the ITS-G5 standard specification.

Integration with a GPS dongle via a USB interface was enabled. A beaconing interface was also

developed that generates IEEE 802.11p DSRC CAMs and broadcasts them in the network.

The GPS coordinates, the speed, the heading and the timestamp of the GPS are being

encapsulated within the transmitted CAMs. A logging interface was designed that logs all the

packets generated, transmitted and received. An example of the packets exchanged can be found

in Fig. 4.5. At the TX side, the acquired GPS coordinates are represented as GpsLongitude,

GpsLatitude, being respectively the longitude and latitude values. The InterLongitude and

InterLatitude values are the interpolated values based on the acquired GPS coordinates. The

SeqNum is the sequence number of the packet generated (starting at zero when the device

boots up). The GpsSpeed and InterSpeed are the acquired values from the GPS dongle and the

interpolated value respectively. Finally, the Timestamp is the time that the packet is generated,

given in Unix Epoch format. The rest of the fields are used for debugging purposes only.

At the RX side, the RxMAC is logged at first, which is the MAC address of the device

transmitted the packet. RxLongitude and RxLatitude are the GPS coordinates encapsulated in the

transmitted packet. Finally, the InterLongitude and InterLatitude values represent the current

longitude and latitude of the receiver, acquired from the GPS dongle and interpolated later. The

remaining values are similar to the transmitted packet. The above system is highly customisable,

and in the future, more features extracted from different sensors can be encapsulated in the

exchanged frames to introduce different vehicular applications and expand the cooperative

awareness of a vehicle.

63



CHAPTER 4. ENABLING LARGE-SCALE V2X COMMUNICATIONS USING THE IEEE
802.11P/DSRC PROTOCOL STACK

mac80211

ath9k

ath5k

…

Userspace Kernelspace

cfg80211_ops

ieee80211_ops

nl80211

cfg80211
Utilities - iw, …

Deadline I/O Scheduler
Frame Generation

Soft-MAC

Hardware

HardwareDriver

Figure 4.4: Linux Kernel Modules modified to enable the IEEE 802.11p/DSRC capabilities in our
system.

Figure 4.5: Example of the log file generated at the transmitter and the receiver side.

Figure 4.6: Using a Channel Emulator and two Faraday Cages to isolate the devices from the
surrounding environment, we conducted a “real-world like” preliminary experiment within our
laboratory.

4.4.3 Preliminary Evaluation of the Experimental Testbed

Before deploying the above-described testbed in real-world, we had to thoroughly validate its

performance under a controlled laboratory environment. To do so, we utilised the Anite Channel

Emulator (Fig. 4.6), provided by the Communication, Systems and Networks (CSN) laboratory of

the University of Bristol and performed our test under an emulated V2I scenario. We emulated

two devices, one stationary and one mobile, on one of the main roads from Bristol (Park Street –

Fig. 4.7(a)) and used the device parameters shown in Table 4.1 (using the HP-RSU transceivers)
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(a) The route used with the preliminary experi-
ment using the Channel Emulator.

(b) Throughput results for the devices shown in Fig. 4.3(a).

Figure 4.7: Preliminary results for our prototyped testbed. The synthetic data were generated
using Iperf and the experiment was conducted using a Channel Emulator.

and a different MCS. The MCS used for that particular experiment was 64-QAM with a coding

rate of 3/4. The channel impulse responses needed for the emulator, where acquired using the

Ray Tracing tool of the University of Bristol, and later were processed in a format suitable for

the emulator. In Fig. 4.7(b), the initial throughput results can be found. For this experiment,

we generated a UDP data stream using iPerf traffic generator2 and transmitted that from

the stationary to the moving vehicle. As it can be seen, the maximum theoretical throughput

(measured with the devices in a controlled environment) was roughly about 14.5 Mbps. The

maximum achieved throughput was about 12 Mbps and degrades as the distance is increased. As

expected, the obstacles found and the curvature of the road significantly drop the performance.

The above test proved that the devices could work adequately under urban vehicular scenarios.

Apart from the experiment with the synthetic UDP packets from Iperf, we conducted another

more complex test involving the transmission of a video stream. We did that to ensure the

flawless operation of our devices when components like LiDARs or camcorders are connected

with our testbed, generating traffic that needs to be retransmitted to another device. This can be

very useful for a Netflix-like [162] adaptive video transmission framework (as we described in

Chapter 3). For our scenario, we considered H.264/AVC as our video encoder, as it is the most

widely used from live video streaming providers. Even though SVC performs better compared

to AVC [163], AVC was chosen as the scalable version is not standardised and therefore the

functionality of the existing tools is limited and unreliable. The two devices were placed with

50 m separation between them, on the same road as before (Fig. 4.7(a)) and both devices were

stationary.

2iPerf Traffic Generator - https://iperf.fr
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Figure 4.8: PSNR-Rate curves for the video “Rush Hour” [3].

The functionality of our system was evaluated using “Rush-Hour” video sequence [3]. The

raw video files were chosen to have similar texture characteristics to the ones encounter in an

urban environment (e.g. pedestrians, vehicles, heat distortion, etc.). PSNR was used as a metric

for evaluating the performance of the video. The suitable video bitrates were chosen based on

the Rate-Distortion (RD) curves of the encoded video [164]. An example can be found in Fig. 4.8,

where a video can be perceived as “good” for values of PSNR between 35 dBm to 39 dBm. In

Table 4.2, the results from the initial video experiments can be found.

At first, conducting this experiment, we ensured the flawless operation of our devices. However,

even from these preliminary results, we can observe that the perceived PSNR values are nowhere

near the “good” range for the transmitted video. This strengthens, even more, our idea for scalable

and heterogeneous system architecture, as we described in Chapter 3. The above concludes our

preliminary evaluation and the validation of the performance of our testbed. However, similarly

to the simulation models, the channel emulators are not perfect and need to be adequately

calibrated and configured to produce accurate results. For the remaining of this chapter, our

research efforts will be focused on the simulation frameworks and the real-world trials.

4.5 Fine-Tuning Veins - INET Network Simulator

In the previous sections, we described the interconnection between the trials and the simulations

at first. This was followed by a brief description of an ideal system solution and our actual

system implementation that will be used for our performance investigation. In this section, we

66



4.5. FINE-TUNING VEINS - INET NETWORK SIMULATOR

Table 4.2: PSNR results from the video transmission experiments.

Video
Bitrate Resolution Decoded

Frames Mean PSNR Standard
Deviation

506 Kbps 360p 500/500 12.8 2.01

675 Kbps 480p 500/500 12.93 4

1029 Kbps 720p 500/500 12.93 4

1536 Kbps 1080p 493/500 17.74 2.86

1013 Kbps 360p 500/500 15.35 3.09

1351 Kbps 480p 236/500 14.65 0.95

2058 Kbps 720p 485/500 14.99 5.24

3072 Kbps 1080p 479/500 17.32 1.32

1689 Kbps 360p 500/500 19.91 6.87

2252 Kbps 480p 500/500 14.87 2.39

3430 Kbps 720p 500/500 12.36 3.39

5120 Kbps 1080p 493/500 9.25 9.15

will describe the fine-tuning process of Veins-INET, discuss the performance metrics that we

used, an insight of how the simulator works and what are the differences of the real world. The

calibration of the aforementioned network simulator will take place in two phases. The first step

(Sec. 4.5.1) describes the initial calibration scenario, conducted under “ideal-like” conditions. As

discussed, to achieve high-fidelity results we need to fragment our system into smaller problems

and address each one individually. When all the problems under “ideal-like” conditions have been

addressed, we can later move to a more realistic representation of the real world, introducing the

various channel characteristics and the obstacle loss (Sec. 4.5.2). This phase is finalised with the

integration of a real-device profile within the simulation framework (Sec. 4.5.3).

4.5.1 Initial V2X Calibration Scenario

Consider a scenario with an ideal channel (free-space path loss, no reflections) between two

ideal stationary vehicles (isotropic antennas, zero hardware attenuation). Of course, this is an

ideal and hypothetical scenario and cannot exist in the real world. To approximate this ideal

scenario, we conducted our initial experimental demonstration, for both HP and LP transceivers,

inside an anechoic chamber with dimensions 8.5 m×4.5 m×5 m. The distance between the two

devices was ~6.5 m. One was denoted as an RSU while the second was considered an OBU for

our investigation. We should note, that for this particular experiment, both devices were using

the same antenna model to avoid inconsistencies between the hardware. For the experiment,

we tested the performance of the devices under different MCSs. More specifically, we generated
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a UDP data stream using iPerf traffic generator and a periodic beacon every 100 ms. All the

data were transmitted from the OBU towards the RSU device, and for each scenario, enough

data were being generated to saturate the channel. As known, the network level performance

is affected by the Signal-to-Interference-plus-Noise Ratio (SINR) and the sensitivity levels for

each MCS. The SINR degrades based on the disruptive channel characteristics (e.g. distance

attenuation, multipath, antenna misalignment, etc.) and the imperfection of the devices (e.g.

thermal noise, etc.). Using an anechoic chamber, we conducted the experiments under near-

optimal conditions (SINR greater than the sensitivity level), and therefore the near-optimal

performance was achieved.

The above scenarios were designed in Veins-INET as well. In order to achieve the necessary

level of similarity, we fragmented the design process into smaller steps/problems, that we solved

individually. Initially, we considered the IEEE 802.11p Physical Layer (PHY) frame. It consists of

three fields [165]: 1) the Preamble, 2) the Signal field (SIG), and 3) the Data field. The preamble

marks the beginning of the PHY frame, is responsible for the appropriate antenna selection and

corrects the timing and frequency offsets. This is followed by the SIG field that specifies the frame

rate and length. Finally, the data field consists of the Physical Layer Service Data Unit (PSDU),

that encapsulates the MAC frame, the Physical Layer Convergence Procedure (PLCP) Service,

and a Tail field. The Data field can also be padded with extra bits, so its length is a multiple of

the coded bits in an OFDM symbol. The above fields are transmitted using BPSK 1/2 MCS, and

their lengths can be found in Tab. 4.3.

Veins-INET describes the transmission duration of the Preamble and SIG fields, with a

parameter named as preambleDuration. The length (in bits) of the Data field is characterised as

the headerBitLength (see Fig. 4.9). The PHY bitrates simulated in Veins-INET are defined by the

operational mode used, namely opMode, that was set to “p” in a similar fashion with our devices.

The pair of simulation parameters bitrate and modulation should be manually configured for

each MCS in order to appropriately describe the PHY bitrate. Finally, the channel bandwidth,

the carrierFrequency, the antennaType (ConstantAntennaGain in this case) and the gain, all

describing different aspects of the channel and the devices, should be configured by the user

before any simulation scenarios.

WAVE 1609.4 standard [149] introduced a multi-channel operation, i.e., operating alternately

on the control channel and one of several service channel. For our scenarios, we did not consider

the above in order to identify the maximum performance under saturation conditions. Further-

more, the RTS threshold – defined as rtsThreshold in Veins-INET, was set to a value greater

than the frame size. This ensured that the RTS/CTS procedure was disabled. The MAC layer

backoff times are drawn from a Contention Window (CW) starting from CWmin (cwMinData and

cwMaxData). All the values used for the above can be seen in Tab. 4.3. The values that were

especially chosen for the contention were proven to be optimal for vehicular communications [166].

In the particular case of the ath5k driver, the length of the MAC TX queue size is capped. The
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Table 4.3: Simulation and experimental parameters.

Parameter Value

Experiment/Simulation Time 10 s
Carrier Frequency 5.9 GHz

Bandwidth 10 MHz
MTU 1500 B

UDP Packet Length 8192 B
Beacon Length 500 B

Beacon Interval 100 ms
Preamble Duration 32 µs

SIG Duration 8 µs
PLCP Service Length 16 bit

Tail Length (Data Field) 6 bit
CWmin,CWmax [15,1023]

TX MAC queue size 50
Background Noise N (−110,3) dBm

Connector and Cable Losses 3 dBm

Algorithm 1 Inter-arrival Jitter Algorithm [167]
Require: Inputs: ttsmp, the timestamp of the incoming packet, tarr, the current time.
Ensure: t∗del = 0, the end-to-end delay of the previous packet, tjitter = 0, the variance after the previous packet

while UDP Packets are arriving at the receiver do
tdel = tarr − ttsmp . The end-to-end delay
tdiff = tdel − t∗del . The variance of the inter-arrival time
t∗del = tdel . Store the end-to-end delay for the next iteration
tdiff =

∣∣tdiff
∣∣ . The absolute value of the difference

tjitter += 1/16∗ (
tdiff − tjitter

)
. The inter-arrival variance

end while

same value was considered for our simulations as well – namely maxQueueSize.

Veins-INET uses a transmission interval describing the generation of two consecutive UDP

packets, defined as the sentInterval. To match the same level of the channel utilisation as the

real-world field trial, without having packets discarded from the MAC TX queue, a very precise

value sentInterval value had to be chosen for each MCS. Suitable values were found with a trial

and error method. A summary of all the simulation and experimental parameters can be found

in Tab. 4.3 and Sec. 4.4.2.

The results for the above calibration scenario are shown in Figs. 4.10 and 4.11. The transport

layer throughput and the interarrival jitter [167] were chosen as the most relevant metrics

for this study. The first can describe the amount of information that can be transmitted via a

channel, whereas the second is very important for video-related applications. The rectangle is the

interquartile region (IQR) between the first and third quartile, while the line within represents

the median. The whiskers are the maximum and minimum values and the asterisks show the
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Figure 4.10: Values of throughput obtained from Veins (initial calibration), the HP and LP
transceivers, for different MCSs.

outliers. A value is regarded as an outlier if it outside ±2.7σ (99.3% coverage of the normally

distributed samples).

Fig. 4.10 shows the network throughput measured at the transport layer. As mentioned

in Sec. 4.3.2, a meaningful comparison should focus on the trends. Therefore, the first trend

observed is that some MCSs achieve slightly better simulated performance compared to the

trial ones (e.g. QPSK 3/4), while the rest are almost identical. The median value deviates up to

~0.5 Mbps for the HP transceiver, and up to ~1 Mbps for the LP device. Overall, we observe that

the throughput performance of the LP transceiver is ~5% lower that the HP one; comparing the

median values and following the same trend for all MCSs. This observable difference is related

with the operation of the two different drivers used.

Fig. 4.11 compares the inter-arrival jitter performance. The jitter, as defined in RFC 1889 [167],

is the statistical variance of the inter-arrival time between packets. An algorithmic representation

of the jitter calculation procedure can be found in Alg. 1. Comparing the absolute values of the

results, we see a huge difference between the trials and the simulations. However, focusing again

on the trends in the performance, i.e. the relative variation in the jitter for the different MCSs, it

is shown that all the results follow a similar trend. For lower MCSs, the jitter is increased, but

when the bitrate is increased, both the simulation results and the actual devices perform better.

The jitter values presented from Veins-INET have been multiplied by 56000. We found this value

by trial and error, and we observed that multiplying all the results with the same value, we get

the same orders of magnitude with the ones obtained from the LP and HP transceivers. The

huge difference in the absolute values was somehow expected as our devices are built upon a

single-core CPU, which executes tasks with the same priority according to the Linux Deadline

I/O Scheduler – thus the CPU cannot fetch/push data streams towards the transceivers at a

constant I/O rate. Since in Veins-INET this issue is not present, the simulated and measured

jitter performance may vary significantly.

This concludes our initial Veins-INET calibration effort. Based on the framework introduced

in Sec. 4.3, we fragmented our system into smaller problems, fine-tuned each one individually

and managed to replicate our ideal subsystem in Veins-INET. Regarding the performance, we

achieved similar results with minor deviations between the trials and the simulations. In the

next sections, we will introduce more complex device features and the channel behaviour in order
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Figure 4.11: Values of jitter associated to the UDP stream. Obtained from Veins (initial calibra-
tion), the HP and LP transceivers for different MCSs.

to approach a better representation of the reality.

4.5.2 Moving towards a Realistic Representation of the World

The surrounding environment plays a vital role in the performance of vehicular networks. Each

environment has its own characteristics. Therefore a theoretical analysis is required for the

signal degradation due to the different channels. Firstly, we have the long-term characteristics

where the signal degrades depending on the distance, the atmospheric conditions, the RSU and

OBU positioning, the carrier frequency, etc. Secondly, we have the short-term variations that are

based on the multipath effect from the surrounding objects and the Doppler shift introduced from

the velocity of the vehicle. The channel behaviour within Veins-INET lies beneath the physical

medium model. This model is further split into different submodules as shown in Fig. 4.9.

At first, the propagation model (propagationType) describes the propagation time within the

channel. It can be configured either as constantSpeed where the propagation time is proportional

to the distance travelled or as constantTime where the propagation time is a constant parameter.

For our scenarios, we considered constantSpeed as our chosen model to incorporate the distance

between the devices in our simulations. The analogue signal and its fluctuation is a complex physi-

cal phenomenon which can be modelled in many different ways in Veins-INET. Choosing the right

analogue domain signal representation is the most crucial factor in the trade-off between accuracy

and performance. For our performance investigation, we utilised the DimensionalAnalogModel

that represents the power deviation over both time and frequency.

The long-term signal degradation under a real-world experiment depends on the carrier

frequency, the distance, the positions of the vehicles, etc. In Veins, the simulation parameter

pathLossType describes the path loss model that is responsible for computing the power reduction

based on the travelled distance, the velocity factor, the carrier frequency and the path loss

exponent for each environment. The multipath distortion caused by the surrounding obstacles

and leading to short-term signal degradation is described using the various well-known small-

scale fading models (e.g. Nakagami, Rician, etc.). Within Veins-INET their individual parameters

(K-factor for Rician, shape-factor for Nakagami, etc.) can be accordingly fine-tuned to represent

the real world. An XML file lists all the physical obstacles in the simulated world. This file can be

generated by parsing the building characteristics from a map. For each building, a material type
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exists that is used to calculate the material absorption when a ray is travelling through an object.

The parameter ObstacleLossType specifies the rate of signal degradation for all the objects. In

Sec. 4.6.1, we will further describe the way Veins-INET interprets a building and how it affects

the signal propagation.

4.5.3 Integration of Real Device Profiles in Veins

In the previous section, we configured the parameters related to the signal propagation. The

next step is to integrate the characteristics of each NIC in our simulated scenario. Unfortunately,

COTS devices should frequently be treated as a “black box” as many of their physical level

performance characteristics are unknown and not easily measurable. Therefore, we will base our

simulation parameters on some speculations and assumptions derived from the datasheet of each

considered transceiver.

We start with the attenuation that is introduced from the cables and the connectors in the

system. These are described as the systemLoss in Veins-INET, and their values were measured

within our laboratory. Later, the SINR of each device can fluctuate from random effects such as

the thermal noise, electromagnetic field effects, the cosmic background noise, etc. These effects,

compared to the system loss discussed before, are not predictable and do not come from a specific

source. Therefore, they cannot be isolated. Veins-INET represents this signal variation with a

background noise model (backgroundNoiseType), that we configured for our system using the

backgroundNoise parameter and follows a Normal distribution.

According to the manufacturer datasheet, we have access to the transmission power given at

20 MHz of channel bandwidth, for each MCS. However, the IEEE 802.11p bandwidth is equal to

10 MHz. From the energy-per-symbol-to-noise power spectral density equation it follows that:

(4.1)
Es

N0
= C

N
B
fs

where Es is the energy per symbol, N0 is the noise power, C/N is the carrier-to-noise ratio, B

is the channel bandwidth and finally fs is the symbol rate. In our case, the only non-constant

variable is B. Therefore, for a 10 MHz channel, the Es/N0 ratio is expected to be twice as much

as that measured using a 20 MHz channel. As N0 is measured per unit of bandwidth (per MHz),

it follows that Es is doubled. Finally, knowing the number of bits per symbol of each MCS, we can

infer the maximum transmission power for a 10 MHz channel. These values are summarised in

Tab. 4.4.

As regards the sensitivity of the receiver, from the Minimum Operational Sensitivity (MOS)

relation, we know that:

(4.2) MOS= SINRthr k TαB (NF)
Grx

where SINRthr is the minimum SINR needed to process (not just detect) a signal, NF is the

noise figure, k is Boltzmann’s constant, Tα is the effective noise temperature referred at the input
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Table 4.4: Simulation parameters based on the manufacturer datasheet.

Modulation
TX power RX sensitivity SINRthr [168]

Units
LP HP LP HP 1/2 MCS 3/4 MCS

BPSK 27 28 −93 −93 10 15 dBm

QPSK 26 27 −85 −88 10 15 dBm

16-QAM 25 26 −80 −84 17 17 dBm

64-QAM 24 24 −73 −80 20 25 dBm

of the receiver, and Grx is the isotropic antenna gain. Obviously, SINRthr depends not just on the

NIC but also on the MCS in use. Authors in [168] measured the SINRthr under a V2I scenario

for two different antenna heights. Their lower antenna configuration was very similar to ours, so

their SINRthr results will be utilised for our scenarios. Knowing the SINRthr, the only variable

in (4.2) is B. Therefore, halving B, the MOS is doubled. Finally, the antenna gain values were

taken directly from the manufacturer datasheet. All the values are presented in Tab. 4.4.

4.6 Parallel Implementation of the OMNeT++ INET Framework

In the previous sections, we described a full-stack calibration procedure for Veins-INET frame-

work. Following the above procedure, we can increase the accuracy of our simulator and achieve

real-world-like results. However, the better accuracy always comes at the cost of increased sim-

ulation time. Even for simplified scenarios, when all the above modules and parameters are

fine-tweaked, the simulation time is significantly increased.

The next-generation C-ITSs require more sophisticated and demanding communication

frameworks that usually have to be tested in city-scale scenarios. Designing and deploying an

actual testbed is very demanding and costly and is almost never an option. Therefore, the issue

of running cost-effective city-scale experimentation is often addressed by means of simulation

frameworks. Unfortunately, existing simulation frameworks (i.e., ns-2, INET, etc.) are executed in

a single-thread fashion. Thus, in city-scale scenarios, one minute of simulation can easily result

in hours if not days of computation.

One of the leading solutions to speed up the execution time of a simulation framework is the

use of high-performance parallelised computing platforms. However, the existing implementations

are quite laborious with regard to the time required to configure new scenarios or reconfigure the

existing ones. Also, they do not always assure an improvement in the simulation time [98]. For

these reasons, existing simulation frameworks are mainly operated in a single-thread fashion.

The necessity for city-scale simulation models motivated us to exploit ways of parallelising

Veins-INET framework.

Analysing the way Veins-INET operates, we identified that the most time-demanding opera-
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tion is the actual exchange of the packets. Especially for wireless scenarios, such as in the case of

vehicular communications, packets are being broadcast to many nodes or are being overheard

from the surrounding vehicles causing interference. Furthermore, when a list of obstacles is

introduced in a simulation environment, the complexity and the execution time are remark-

ably increased. For the remaining of this section, we will describe our system analysis and the

proposed solution for the above problem.

4.6.1 Parallelising Veins-INET: System Analysis and Proposed Solution

We identify at first the way Veins-INET interprets obstacles and propagated signals. In a vehicular

scenario, buildings are the main obstacles that can be found in a city. Veins-INET refers to them

as obstacles and parses them within the PhysicalEnvironment namespace. All the obstacles

are listed in an XML file with an attribute type, which defines their shape. Each obstacle is

represented by a set of coordinates, that are regarded as the edges of the building in the 3D

space. Each building is also associated with a specific material that is being used to calculate

the attenuation loss caused by the obstacle. The obstacle loss in Veins-INET is calculated by

two different models, the IdealObstacleLoss and the DielectricObstacleLoss. The first determines

either the signal to be completely blocked, or not attenuated when intersected with a physical

object. The latter computes the power loss based on the material properties, the shape, the

position and the orientation of an obstacle.

INET treats the positions of each vehicle as a point on the simulation canvas and updates

them by using the SUMO traffic generator [169]. The signal propagation is modelled as a line

segment, between point A and point B. The signal attenuation is a function of: 1) the path loss

model, 2) the obstacle loss model from the number of intersections calculated as mentioned

before. Both models are configured by the user. What is really of interest, is the way Veins-INET

calculates the attenuation due to the wall intersections. When a packet is transmitted, INET finds

sequentially and iteratively all the intersections with the obstacles. For the given intersections,

it calculates the obstacle loss using the function visit of the obstacles classes mentioned above.

Considering the above and that IEEE 802.11p operates in broadcast mode, it is evident that the

above process is computationally expensive. In fact, the computation of the attenuation loss has

a computational complexity of O(mn2), where n is the vehicles and m the number of obstacle

intersections. This significantly increases the simulation time in large-scale scenarios.

In order to overcome the aforementioned problem, we developed a multi-thread version of the

PhysicalEnvironment class by modifying the function visitObjects. This function is responsible

for parsing all the obstacles and finding the power attenuation. Also, we modified visit in

DielectricObstacleLoss, to ensure flawless operation. In our version of INET, the number of

threads can be dynamically changed by the user when initialising the simulation scenario.

In city-scale scenario (namely, maps greater than ≥ 2km), vehicles are not expected to

communicate from one side of the city to the other. Despite this, Veins-INET always computes
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the intersection map between each pair of vehicles and their signal attenuation, regardless of the

distance between them. In order to speed up the execution time even further, we integrate the

notion of the transmission radius in the system. As such, we introduced the distanceBoundary

user parameter, within the ScalarAnalogueModel class, under the RadioMedium namespace. For

all the exchanged packets, we find the distance between the two communicating vehicles, and if it

is greater than the given boundary, we regard the packet as non-deliverable. By that, we can avoid

unnecessary calculations in the PhysicalEnvironment model. Of course, the above improvement

can be implemented into other analogue models as well (e.g., DimensionalAnalogModel) but we

chose the scalar one as a proof of concept.

4.7 Performance Evaluation and Macroscopic View

In Sec. 4.4 we described the experimental testbed that we designed and prototyped, presented its

different components and how it operates. We also performed an initial test, in order to ensure

that our testbed is fully functional and can be used for real-world experimentation. In Sec. 4.5,

we described a full-stack calibration procedure for Veins-INET framework. We also addressed

the issues that arise from experimenting in different environments and the way they affect the

system performance. Finally, in Sec. 4.6 we explained the necessity for fast execution times when

using a simulation framework under vehicular scenarios, as well as the demands for larger scale

experimentation. Based on that, we described our system analysis of Veins-INET simulation

framework, and our proposed solution to parallelise it and improve its execution time.

In this section, we proceed by presenting the results related to all the contributions of the

chapter introduced above. More specifically, we start our performance investigation by an ideal-

like scenario within the confined space of our laboratory. By that, we can ensure the flawless

operation of our testbed. Our performance investigation continues by conducting a study for the

performance of a vehicular communication link under three different environments. We conduct

our study using both our calibrated framework and our experimental testbed, and we compare

the differences in the results. Later, we evaluate the simulation time improvement using our

parallelised Veins-INET framework. We conduct this evaluation under a large-scale city-wide

scenario and investigate how the different map sizes and the number of vehicles affects the

simulation complexity. Finally, we deploy our ITS-G5 testbed in the City of Bristol and conduct

large-scale experimentation evaluating both V2V and V2I links, under various conditions (urban,

rural, highway). Our field trials span throughout three days. We use the knowledge acquired from

the trials to evaluate the performance of a real-world ITS-G5 deployment, identify the limitations

and ways to overcome them. From this research activity, we gained an in-depth knowledge of

how a massive city-scale deployment should be approached in the future, and we intend to use

this knowledge to extend the features and coverage of our system further.
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4.7.1 Performance Investigation of an Ideal Scenario

Before we process with the performance investigation of our system in the real world, we start

by evaluating its performance under an ideal scenario. For that, two devices (an RSU and an

OBU) were positioned with three-meter distance separation between them. During this scenario,

both devices were stationary and placed inside our laboratory under a controlled environment.

This distance between them was carefully chosen, based on the equation below. This equation

provides the distance separation for two ideal dipole antennas, in order to operate in the far-field

and avoid near-field effects. This separation is calculated as [170]:

(4.3) Far Field≥ 2 D2

λ

where D is the antenna length and λ is the wavelength. Given the frequency f , we can calculate

the wavelength as λ= c/f , where c is the speed of light. Using f = 5.9GHz and an antenna length

of 20cm (the longest antenna used during these trials), it was calculated that the radiating

near-field distance is ~1.57m. Therefore, placing the devices at three meters apart we can avoid

any effects due to the near field. Of course, no ideal dipole antenna exists in the real world.

Therefore, using a relatively longer distance compared to the one calculated, we can ensure that

these effects will not disrupt the performance of our testbed. More information about the devices

and their configuration can be found in Table 4.4 and Sec. 4.4.2.

Our experiment evaluated the performance of both the HP and the LP transceivers, in

order to check whether the different drivers used could potentially affect the performance. The

performance evaluation was also conducted for several hours (≥ 5h), to stress the devices even

further. From both transceivers and devices, we broadcast a CAM message every 10 ms that

is received at the other side. We start with Fig. 4.12. This figure shows the results for the HP

transceiver. In that particular case, the heatmap shows the packet delivery rate for all the packets

transmitted by the OBU and received at the RSU side. The red dot on the top left corner of the

heatmap is the actual position of the RSU. However, as the experiments were conducted within

the confined space of our laboratory, we observe that the GPS error was significantly increased.

This, however, does not affect our performance investigation as we are particularly interested in

just the packet delivery rate in that case. Furthermore, using the same GPS dongle for both the

NTP servers, we ensured that the GPS error would be consistent between the devices. Therefore,

we will be later able to reconcile the data correctly. As we will see later, when operating these

devices in an outdoor environment (Sec. 4.7.4, the position error is minimised.

Fig. 4.12 shows that the packet delivery rate for this close proximity scenario was almost

100%. Similarly, for the LP transceiver, Fig. 4.13 shows that the packet delivery achieves a similar

performance. The dark blue areas that have a meagre packet delivery rate represent the packets

that were exchanged the first seconds of our experimentation. During that time, GPS error was so

significant that the NTP server was not operating correctly, and therefore the packets exchanged

were not tagged with the correct position. This effect was avoided when conducting large-scale
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Figure 4.12: Ideal heatmap scenario for the HP transceiver. The distance separation between the
devices was three meters.

Figure 4.13: Ideal heatmap scenario for the LP transceiver. The distance separation between the
devices was three meters.

real-world trials as a strong GPS signal was acquired before starting the experimentation. The

above experiments prove that our devices can operate adequately under an ideal like scenario, i.e.

being in close proximity and stationary.

4.7.2 Contribution 1: Comparison between Trials and Simulations

In Sec. 4.5, we described a full-stack calibration procedure for Veins-INET framework. We

also addressed the issues that arise from experimenting in different environments and the

way they affect the system performance. Therefore, we designed and evaluated three different

scenarios – urban, suburban, rural. As in our initial calibration scenario (Sec. 4.5.1), we considered

two stationary devices, one acting as the RSU and the second as the OBU. For both pairs of
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Figure 4.14: The three different scenarios were conducted around the city of Bristol, UK. a) the
urban, b) the suburban, c) the rural scenario.

transceivers (HP and LP), we used the same model of antennas to avoid imperfections. The

antenna gain for the HP scenario was 9 dBi, while for the LP one was 7 dBi. For both devices,

we evaluated their network throughput performance under different distances and MCSs. To do

so, we utilised a UDP stream that saturated the channel, and a periodic beaconing, transmitted

every 100 ms from the OBU to the RSU. The same scenarios were replicated within Veins-INET,

using the parameters from Tabs. 4.3 and 4.4 and the analysis preceded in the previous sections.

Starting with the first scenario, we used an urban road with buildings on both sides (see

Fig. 4.14 – A). Both devices were positioned on the edge of the pavement, close to the road and

were always in LOS. The buildings surrounding our devices cause multipath distortion. However,

being in LOS and conducting the experiment at a relatively short distance, we considered a Rician

fading model as the most suitable one to describe the experiment. Veins-INET was configured

with a K-factor k = 3.36dB and a path loss exponent α= 2.3 [171].

Secondly (see Fig. 4.14 – B), we have a suburban area on a bent and sloppy road with foliage

in between the devices and a few buildings on one side of the road. The devices were in LOS for

the first ~50 m. Later, the RSU was hidden behind the vegetation and the road slope. Following

our system analysis above, we fragmented this scenario in two different subscenarios. At first,

we considered a Rician fading model with k = 2.45dB and α= 2.3 [171]. When the distance was

greater than 50 m, we refer to Rayleigh fading model with α= 2.5.

The third scenario refers to a rural environment (see Fig. 4.14 – C). Both the RSU and OBU

are always in LOS, and no high buildings or other objects were surrounding the devices apart

from some foliage. Therefore, the impact of multipath was minimum. As such, a Rician fading

model was considered, with k = 8dB and α= 2.2 [172]. For this scenario, only the HP transceiver

was used.

During the experiments carried in scenarios A, B and C, the RSU and OBU were fitted on a

tripod at ~1.8 m height. A consistent setup has been simulated in Veins. During both the trials
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and simulations, each performance metric we measured is the result of an average of multiple

experiments. The ARP probe was disabled by manually inserting the addresses of the devices in

their respective ARP tables. For all scenarios, we show the most meaningful results and describe

the performance for the rest in the text.

With regards to the urban scenario, Fig. 4.15 shows the communication throughput that

can be sustained by the OBU as a function of the distance between RSU and OBU, for each

MCSs. The distance separation considered were {12.5,25,37.5,50,67.5,75,87.5,110}m. For lower

modulations (BPSK, QPSK) and all distances, the same trend and performance were seen as

in the calibration process (Fig. 4.10). Again, the difference in the performance between the

transceivers, not observed within Veins, is due to the different drivers used. Increasing the MCS

and the distance separating the devices, even though the median values remain similar to that

shown in Fig. 4.10, the introduced multipath distortion leads to a larger number of outliers. For

16-QAM 1/2 and 3/4, it was seen that as the distance is increased, the SINR drop starts being

observed within Veins-INET for the LP configuration (e.g. 110 m) having a different behaviour

compared to the trials. Finally, for 64-QAM 2/3 and 3/4, the signal received from the LP transceiver

within Veins-INET is significantly attenuated. The performance degradation is about 1 Mbps

compared to the calibration scenario (50 m) reaching up to 3 Mbps at 110 m.

Fig. 4.16 shows the communication throughput measured in the case of the suburban scenario,

for different MCSs and distances {30,60,90,120,200}m. For distances of 30 m and 60 m, we

observe that the results follow the same trend as in the urban case (see Fig. 4.15). In particular,

despite the RSU being hidden behind the the road slope after 50 m, the overall communication

throughput was not severely impacted. For greater distances and the HP scenario, Veins-INET

behaves slightly worse compared to the actual device. However, for the LP scenario, the actual

device achieved less throughput compared to the simulated result. Especially for 64-QAM 2/3

and 3/4 and a distance of 200 m, our LP transceiver achieved zero throughput during the trials

whereas the Veins-INET result is around 3 Mbps and 1.2 Mbps respectively. This is due to the

BER calculation within Veins-INET that is approximated based on a Gaussian error function not

exactly reflecting the reality.

Fig. 4.17 refers to the rural scenario. As before, we considered different distances and MCSs.

The distances considered were {50,100,150,200,300,400,550,700}m. Again, for lower modulation

schemes (BPSK, QPSK), the same trend was observed as before. For higher MCS, Veins-INET

again exhibits a sharp performance degradation when the distance increases. This is clearer at

64-QAM 2/3 and 3/4 where Veins-INET outperforms the trial performance at 550 m as expected

from the trend observed. However, it is significantly worse at 700 m.

This concludes our performance investigation for the calibrated simulation framework, com-

pared to the real-world field trials. In this section, we summarised our key observations. The

downside of a calibrated simulation framework, even though it performs better and can provide

the required realism and accuracy, is the increased simulation time. In the next section, we will
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Figure 4.15: Values of network throughput for different MCSs, as a function of the distance
between RSU and OBU. Results refer the urban scenario (Fig. 4.14 – A). Each quartet represents
the results for a single position with the order (from left to right): 1) Veins-HP, 2) Trials-HP, 3)
Veins-LP, 4) Trials-LP.

Figure 4.16: Values of network throughput for different MCSs for different MCSs, as a function
of the distance between RSU and OBU. Results refer to the suburban scenario (Fig. 4.14 – B).
Each quartet follows the same order as in Fig. 4.15.

Figure 4.17: Values of network throughput for different MCSs for different MCSs, as a function
of the distance between RSU and OBU. Results refer to the rural scenario (Fig. 4.14 – C). Each
boxplot pair is: 1) Veins-HP, 2) Trials-HP.

describe our evaluation with regard to the execution time for a city-scale scenario.

4.7.3 Contribution 2: Large-Scale City-Wide Simulations

As discussed above (Sec. 4.6), we implemented a multi-threaded version of the Veins-INET

framework. We evaluate the performance of our implementation with two large-scale scenar-

ios in a grid-like fashion. The simulation parameters are as shown in Table 4.5. At first, we

evaluate the execution time as a function of the number of vehicles for a map of size 2km2.

Then, we present the execution time as a function of the map size. We consider six map sizes

{800,1100,1400,1700,2000,2300}m2 and 100 vehicles for each scenario. All scenarios have roads

equally spread horizontally and vertically every 100 m, without traffic lights at the intersections.

Each road is 2-lanes wide. Within each road square, we generated buildings with sides of 950m
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Table 4.5: List of simulation parameters for contribution 2.

Parameter Value Parameter Value

Simulation time 100 s Carrier Frequency 5.9 GHz

TX Power 25 dBm Channel Bandwidth 10 MHz

TX/RX Antenna Gain 9 dBi Message Length 140 B

RX Sensitivity −93 dBm Pathloss Exponent 2.4

Cable/System Loss 3 dB Distance Boundary 1000 m

Transmission Interval 0.1 s

that act as obstacles in our scenarios. Finally, for all scenarios, we generated the vehicle traffic by

using SUMO [169]. For our scenarios, we used synthetic map data to avoid inconsistencies in

different map areas and provide an easily reproducible scenario.

Fig. 4.18 shows the execution time measured as a function of the number of vehicles. Any

multi-threaded execution generates some computational overhead in order to create the threads

and handle the content-switch. To that extent, we compared two different number of threads (4

and 10). Overall, by parallelising the functions mentioned above, our version of INET ensures

reduced computation times. When four threads are used, we observe an improvement of up

to 30%. When ten threads are utilised, the improvement ranges between 10% and 12%. The

increased overhead of the number of threads in the second case is the reason for this difference in

the performance. We observed that the optimum number of threads is scenario dependent and is

related to the average number of intersections between the communicating vehicles (one thread

per intersection).

Fig. 4.19 shows the execution time required, as a function of the map size, for 100 vehicles. The

synthetic maps we generated have a relatively small number of obstacles compared to a real city.

We observe that for small maps (from 800m2 to 1.4km2) the sequential INET achieves slightly

better performance compared to the parallel one. This is caused by the multi-thread overhead.

However, for larger maps, we observe that our multi-thread version of INET outperforms the

sequential one by reducing the computational time of 43%, for a 2.3km2 map. Again, when

we increase the number of threads, the increased overhead leads to increased simulation time

compared to the 4-thread scenario, but still manages to outperform the sequential execution.

Finally what we observe is that for maps ≥ 1.7km2, as the size of the map increases, the execution

time decreases. This is because of the distance boundary that we introduced. For a fixed number

of vehicles that are equally spread on the surface of the map, the distance between them will be

greater when the size of the map is increased. Considering the number of buildings that exist in

a real-world map, and based on our above observations, we expect our multi-threaded version of

the code to enhance the execution time even further.
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Figure 4.18: The execution time, measured as a function of the number of vehicles for the parallel
and the sequential implementation.
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Figure 4.19: The execution time, measured as a function of the map size for the parallel and the
sequential implementation.

4.7.4 Contribution 3: Large-Scale City-Wide Experimentation

Our final contribution of this chapter is related with the large-scale city-wide design and deploy-

ment of our experimental testbed (Sec. 4.4). We will describe our critical observations of this

research activity, investigating the performance of our devices under different environments and

links, identifying the limitations of our system, and finally describing ways to overcome them.

Firstly, we will investigate the Key Performance Indicators (KPIs) from the perspective of the

first car and the RSUs, while the second vehicle acts as an interferer when being within coverage.

Secondly, we will present a V2V scenario.

Three RSUs were deployed at three locations around the City of Bristol, UK (as shown in

Fig 4.20(a)). Hydrogen-RSU was mounted at the height of around ~8 m, on a curvy, narrow road

very close to a blind T-junction. The second one (Helium-RSU) was installed on the wall of a

building next to a straight road with some foliage at the sides at ~5 m. Finally, Lithium-RSU was

placed on the balcony of a tall building (at ~25 m height), next to a wide road, providing the most
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Hydrogen-RSU

Helium-RSU

Lithium-RSU

(a) Both Vehicles within RSU coverage - HP transceiver. (b) Both Vehicles within RSU coverage - LP transceiver.

(c) Only Vehicle 1 within RSU coverage - HP transceiver. (d) Only Vehicle 1 within RSU coverage - LP transceiver.

Figure 4.20: Heatmap results for different V2I scenarios (HP and LP NICs).

LOS coverage compared to the other RSUs. The different locations and buildings were chosen to

evaluate how the position of an RSU can affect the performance of the network.

Two vehicles (as in Fig. 4.3(c)), equipped with one OBU each, were driving randomly around

the city. The second OBU unit shown in Fig. 4.3(b) was there for backup purposes only. All

the devices in our system generated and transmitted a CAM per NIC every 10 ms. Each CAM,

encapsulating the information described in Sec. 4.4.2, was logged at the transmitter and the

receiver side. The log files generated were used later to produce the results that will be described

in the next section. Throughout the three days of field trials, we exchanged ~50 million CAMs.

Some of our results will use a subset of these exchanged messages. Our entire dataset is available

for download in [147]. To the best of our knowledge is one the largest data repositories focused on

V2X communications.

Firstly, we start with the V2I scenario. Fig. 4.20 presents the heatmap results for the PDR

from all CAMs transmitted from an RSU and received at the vehicle side. The results present

the PDR for the vehicle no. 1. Vehicle no. 2 acts as an interferer, as mentioned before, when both

vehicles are within the same RSU coverage range. Finally, the red crosses, show the position of a

vehicle when a CAM broadcast was successfully received at the RSU side.

Figs. 4.20(a) and 4.20(b) show the PDR results when both vehicles were driving within the
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Figure 4.21: Transmission Intervals between two DSRC CAMs.

coverage regions of the RSUs. Figs. 4.20(c) and 4.20(d) show the results when only vehicle no.

1 was within coverage. As described, the DSRC CAMs are being broadcast from all NICs every

10 ms without having any coordination on the channel usage. As shown, there is a significant

PDR difference of 30% between the different scenarios, for both the HP and LP transceivers. The

reasons behind that could be many and should be taken into consideration. At first, we use two

antennas that are not perfectly aligned (as in Sec. 4.7.1). This can degrade the signal performance

up to a level that is not easily decoded by a transceiver. Secondly, this is a prototyped testbed

with COTS devices that are not meant to be operated on a moving vehicle. From the literature,

it is known that vibrations can have a disruptive effect on an antenna [173] and could amplify

the interference effects. What is more, when an antenna is placed on a large metal surface like

the car rooftop, then the rooftop becomes its groundplane. This could potentially increase the

disruptions on the channel as well. The above, including the interference introduced of from

the second vehicle, when acting as an interferer, led to an increased number of frame collisions

and longer MAC-layer contention intervals at the receiver side. These results show the huge

number of factors that needs to be considered when deploying a city-scale vehicular testbed. All

in all, these results can be an initial benchmark for a real-world implementation that can be

later enhanced in order to become from a prototype to an actual real-world system.

The difference can be observed at the RSU side as well. As shown, the heatmap data overlap

with the red crosses in Figs 4.20(c) and 4.20(d), while they do not precisely match the heatmap in

the first two figures. This means that when the interfering vehicle was present, vehicle no. 1 was

not always able to establish a bidirectional communication link with the RSUs.

In Fig. 4.21, we present the frequencies of the transmission interval between two DSRC CAM.

This is an example from Hydrogen-RSU for all CAMs transmitted throughout one day of field

trials. The remaining devices and days produced similar results, therefore will not be presented

in this chapter. As shown, even though the CAM transmission interval was set at 10 ms, our
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Figure 4.22: Awareness Horizon for the V2V Scenario - HP transceiver.

testbed generates frames at a different rate. Most of the frames are generated and exchanged

either every 12 ms or 14 ms. This was expected as our devices are built upon a single-core CPU,

which executes tasks with the same priority according to the Linux Deadline I/O Scheduler. To

that extent, the CPU cannot fetch/push CAMs streams towards the transceivers at a constant I/O

rate. These inconsistencies should be taken into account when designing vehicular applications

with strict latency requirements. Generating and processing the packets at a stronger Fog node

computer, and using the transceivers as the medium to exchange the packets, will significantly

improve the consistency of the transmission rate.

Finally, Fig. 4.22 presents the awareness horizon for the V2V scenario, i.e. the Euclidean

distance between the vehicles when a CAM is received. For this experiment, two vehicles were

driving in opposing directions on a highway section of the road exchanging CAMs every time they

were crossing paths. As shown in Fig. 4.21 most packets are being transmitted every 12 ms or

every 14 ms. Given that the vehicles drive at a constant speed, we can estimate that a similar

number of packets was exchanged at every distance interval. We observe that when the vehicles

are in close proximity, a bigger number of packets is being received compared to longer distances.

When the vehicles are more than 80 m apart, most of the packets are never delivered. Similar

performance can be observed in the rural and urban trials conducted. From the above, we can

observe that using the previously described setup, we can achieve adequate V2V communications

for up to about 80 m. For sensor features exchange at longer distances, a multi-hop communication

using V2V or V2I links is necessary. This section concludes the performance evaluation of all the

contributions presented in this chapter.

4.8 Conclusions

In this chapter, we presented our research activities to accurately and cost-effectively integrate

IEEE 802.11p/DSRC protocol stack in a next-generation C-ITS. Some of the main challenges
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that we addressed were related to the evaluation of large-scale V2X communication scenarios.

As discussed, two tools can be used: 1) computer simulations/theoretical models, and 2) real-

world field trials. Initially, we discussed the advantages and drawbacks of both approaches and

described the necessity for establishing a connection between them. Our activities gave us an

excellent insight of how a network simulator operates, we observed the differences compared

to real-world devices, and that is very difficult to replicate the inconsistencies of the real-world

within a simulated scenario, e.g. the different behaviour of two drivers. Even after our proposed

calibration solution for Veins-INET, we can still observe some noticeable difference that should be

taken into consideration when evaluating a vehicular network. We also observed that introducing

more complex simulation parameters significantly increases the execution time. Our solution

strategy was the implementation of a multi-threaded version of Veins-INET that manages to

improve the simulation time and make large-scale simulations more feasible for the end user.

Finally, as we move towards the deployment of real-world C-ITSs, we focused our research

activities towards a real-world city-scale deployment of an IEEE 802.11p/DSCR communication

system. We based our system on the ITS-G5 and IEEE 802.11p/DSRC standards. Later, we

presented our large-scale field trials, conducted around the City of Bristol. Some of our key

observations are the necessity for more sophisticated MAC-coordination schemes as the co-

existence of various vehicles under the same coverage area generated interference problems.

What is more, our system will be benefited by a Fog-computing service due to the inconsistencies

observed during the generation and the exchange of data. This will also help with the centralised

control of our network, that will considerably enhance the performance. These are considered as

activities for future work.
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A MMWAVE MAC-LAYER APPROACH FOR DEVICE-TO-DEVICE

(D2D) V2X BEAM STEERING

5.1 Introduction and Contributions

5.1.1 Introduction

Chapter 5 is the first chapter related to mmWaves and presents our work regarding a novel

intelligent beamforming algorithm, called Smart Motion Prediction Beam Alignment

(SAMBA), able to efficiently align the V2X mmWave beams. Our algorithm operates under

a heterogeneous DSRC/mmWave network architecture. Using out-of-band sensor information

exchanged via a DSRC link, the RSUs and the CAVs can adapt their beams to compensate for

the increased propagation loss of the mmWaves frequencies being. With a better beam alignment,

they will be able to establish gigabit-per-second and ultra-low latency link between them and

adapt to the highly dynamic vehicular network topologies and CAVs mobility patterns.

In this chapter, we will first present the limitations of the legacy IEEE 802.11ad beamform-

ing strategy (Sec. 5.2). We start by presenting the beamforming technique as described in the

standard and analyse the overhead introduced. Later, in Sec. 5.3, we discuss the challenges of

the traditional beamforming strategy when used within the highly dynamic vehicular network

topology and support our statement with some preliminary results. Sec. 5.4, presents our het-

erogeneous algorithm, describing the model we designed and how it is affected by the different

position errors. Two different optimisation algorithms are introduced in Sec. 5.5 to maximise the

data rate of our system. Two different vehicular scenarios, a simple straight road and a more

complicated large-scale urban road network, are evaluated in Sec 5.6 and the final remarks of

this chapter are presented in Sec. 5.7.

89



CHAPTER 5. A MMWAVE MAC-LAYER APPROACH FOR DEVICE-TO-DEVICE (D2D) V2X
BEAM STEERING

5.1.2 Contributions

For the work presented in Chapter 5 the author:

• Examined the limitations of the legacy beamforming technique used with IEEE 802.11ad

standard.

• Derived equations to analyse the collision probability and the overhead generated during

the legacy beamforming.

• Discussed the challenges and the limitations of IEEE 802.11ad when particularly used

under vehicular communication frameworks using some preliminary results.

• Proposed a new heterogeneous beamforming approach for V2I links that are based on

various motion sensor data acquired from a moving vehicle.

• Analysed the individual error components with respect to the estimated position of the

vehicle.

• Proposed two beamwidth optimisation algorithms to maximise the system performance,

i.e.:

– Optimisation algorithm based on the position error.

– Optimisation algorithm based on the distance between an RSU and a CAV.

• Designed a system level simulator in Matlab and evaluated different urban scenarios to

identify the feasibility of using the proposed algorithms and improve the performance.

The contents of this chapter were originally presented at two conferences:

• IEEE Vehicular Technology Conference (VTC-Fall) 2017 [37].

• International Conference on Antennas, Propagation & RF Technology for Transport and

Autonomous Platforms 2017 [36].

5.2 Traditional IEEE 802.11ad Beamforming Algorithm

IEEE 802.11ad is the dominant standard for mmWave communications [174]. IEEE 802.11ad

introduced a novel network called Personal Basic Service Set (PBSS) where nodes communicate

in an ad-doc-like manner. One of the participating nodes acts as the PBSS Control Point (PCP),

similar to an Access Point (AP), announcing the network and organising the medium access.

A PBSS may consist of up to N ≤ 254 number of Directional Multi-Gigabit (DMG) devices. In

IEEE 802.11ad, the interval between two beacon frames is defined as the Beacon Interval (BI).

During a BI, management and network information is exchanged at first, followed by the data
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transmission. Referring to the standard [174], in this section we are going to describe the different

time intervals that can be found within one BI, concerning the beamforming process.

The BI is subdivided into two different access periods named as Beacon Header Interval

(BHI) and Data Transmission Interval (DTI). These two access periods and a visualisation of the

beamforming process can be seen in Fig. 5.1. At first, BHI facilitates the exchange of management

information and network announcements. The second interval (DTI) is responsible for the data

transmission. BHI is further subdivided into three shorter access periods that are the following:

• Beacon Transmission Interval (BTI): Used for the network announcement and the beam-

forming training.

• Association Beamforming Training (A-BFT): The system antennas are trained and paired

with the PCP/AP.

• Announcement Transmission Interval (ATI): Management information is exchanged with

the associated and beam-trained stations.

The propagation characteristics in the frequency band of 60 GHz result in severe signal

attenuation during quasi-omnidirectional communications. Therefore, the MAC layer of IEEE

802.11ad introduces the concept of “virtual” antenna sectors. These sectors divide the azimuth

plane into a number of equal portions, depending on the type of the device used (e.g. a PCP/AP

will utilise more “virtual” sectors than a handheld device). These “virtual” sectors can be further

subdivided with respect to the minimum beamwidth of the antenna. The above create a two-layer

model representation of the beams and the beamforming process (Fig. 5.1). In such manner, the

beamforming in IEEE 802.11ad is performed in two phases. At first the initial best “virtual”

sectors are chosen and later, the beam alignment is further refined to achieve the best performance

between the two devices. Each phase requires a bidirectional frame exchange to train the “virtual”

antenna sectors.

5.2.1 Two-Phase Beamforming Process for IEEE 802.11ad

Consider a typical vehicular network with one PCP/AP acting as an RSU and a vehicle travelling

on the road. The first training phase, training the first layer of antenna sectors (as shown in

Fig. 5.1), is called Sector Level Sweep (SLS). During this phase, the RSU uses an iterative

sweeping process, transmitting directional frames on each sector. The vehicle, listening quasi-

omnidirectionally, transmits feedback information for each frame received and the best RSU

sector is chosen based on the strongest Signal-to-Noise Ratio (SNR).

Later, during the Beam Refinement Phase (BRP) (second-layer), the antenna of the vehicle is

trained, and the beams are further refined. With the beamwidth being inversely proportional to

the antenna gain, during this phase, a narrower beamwidth is chosen to achieve higher antenna

gain. Also, the beams of both devices are more accurately aligned, choosing finally a pair of

91



CHAPTER 5. A MMWAVE MAC-LAYER APPROACH FOR DEVICE-TO-DEVICE (D2D) V2X
BEAM STEERING

Initiator

Responder

BRPSLS

N number of SSW
frames, SIFS separated

MBIFS MBIFS

TX SSW

RX SSW

SSW-FB

SSW-ACK

SIFS SIFS

BRP-RX

BRP-RX

SIFS

BRP-ACK

BRP-FB
RX BC

S number of BRP
frames, SIFS separated

MBIFS MBIFS

BRP-RX

BRP-RX

BRP-FB

BRP-FB

SIFS

BTI A-BFT
BHI DTI

ATI Data

Beacon Interval

BRP frames with 
training fields

First-Layer Beamforming (“Virtual” Antenna Sectors) Second-Layer Beamforming (Beam Refinement) 

SIFS

MBIFS

SSW-FB

SSW-ACK

Responder 1 Responder 2

Figure 5.1: The Beacon Interval and the two-layer beamforming: An example of two stations
participating in the beamforming process. The frames exchanged, the interframe spacing and the
intervals that each phase requires.

refined beams able to compensate for the channel losses at 60 GHz. In the next section, we are

going to describe in detail the frames exchanged during this two-phase process, and we will try to

derive equations that will calculate the time required for each phase.

5.2.2 Overhead Analysis of the IEEE 802.11ad Beamforming Process

Consider a vehicular network with one RSU and a number of vehicles on the road where all devices

operate with respect to the IEEE 802.11ad standard. According to [103] the beam switching for a

mmWave phased-array antenna is almost instantaneous ('50 ns). Therefore, the IEEE 802.11ad

beamforming training delay is entirely related to the number of frames exchanged. The training

delay will be further analysed later in this section.

Starting with the SLS, it is being executed during BTI and A-BFT in four steps (Fig. 5.1):

1. The initiator, in that case, the RSU, transmits one directional training frame per sector

while the receiving vehicles (responders) listen in quasi-omnidirectional mode.

2. The responders reply with a directional frame throughout all their sectors.

3. Feedback information is transmitted from the initiator within the Sector Sweep Feedback

(SSW-FB) frames.

4. The feedback information is acknowledged by the responders with the Sector Sweep Ac-

knowledges (SSW-ACKs).

When more than one stations exist in the coverage region of PCP/AP, the slotted A-BFT

introduces a contention-based response period taking values from a uniform random distribution

U(4,8) [174]. Allocating one slot per vehicle, more than one devices can respond to the beacon
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sweep reducing the collisions of the RX-SSW frames. The total time required for a SLS period

can be calculated as:

(5.1) TSLS = K ·TTX−SSW +N · (K ·TRX−SSW +TSSW−FB/ACK )+TIFS

where TTX−SSW , TRX−SSW , TSSW−FB and TSSW−ACK are the required time for the different

frames exchanged, K is the number of "virtual" sectors (in this case, the same number was

assumed for all the devices), N is the number of stations around the PCP/AP and TIFS is the

total interframe spacing time and is equal to:

(5.2) TIFS = (N +1)(K −1) ·TSBIFS +3 ·TMBIFS.

where TSBIFS is the Short Beamforming IFS time and is equal to TSBIFS = 1 µs. Finally, TMBIFS

is the Medium Beamforming IFS, equal to TMBIFS = 3 ·TSIFS with TSIFS = 3 µs.

During the BRP phase, multiple configurations can be tested with one frame transmission,

reducing the overhead compared to SLS. BRP can be divided into two subphases. At first, the

best RX antenna sector is found by exchanging BRP frames appending transmit and receive

training fields (TRN-TX/RX) and followed by a feedback frame and an acknowledgement. The

time required is given as follows:

(5.3) TRX = 2 ·TBRP +TBRP−FB +TBRP−ACK +3 ·TSIFS

By the end of the above process, a pair of "virtual" antenna sectors is chosen with respect to the

higher SNR. During the second subphase, called Beam Combining (BC), the beams are further

refined. A set of pairwise antenna weight vector combinations is tested between the two devices as

a directional link between the devices is already established. The time required can be calculated

as:

(5.4) TBC = S ·TBRP +TBRP−FB/ACK +3 ·TMBIFS + (S−1) ·TSIFS

where S is the number of antenna weight vector combinations tested. Finally, the total time

required for the beamforming process is as follows:

(5.5) Tall = TSLS +TRX +TBC +2 ·TSIFS

The time intervals introduced in the previous equations can be calculated as the total number

of bits exchanged for every interval divided by the bitrate used. For example, all the frames

exchanged during the SLS phase, are transmitted with the most resilient MCS - thus at a

very low bitrate (27.5 Mbps). On the other hand, the frames during the BRP phase can be

exchanged with any given MCS used with IEEE 802.11ad. For our work, the faster bitrate

provided (6756.75 Mbps) was chosen, for demonstration purposes only. More information about

the length of each frame exchanged can be found in [174].
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The analysis above is an approximation of the time required for the beamforming process of

N number of vehicles. However, a perfect channel with zero frame loss was considered, and BRP

can be more complicated (e.g. a BRP setup subphase might be required if BRP does not follow

an SSW-ACK). Therefore, the above equations can give a rough approximation of the minimum

time wasted from the beamforming process of IEEE 802.11ad and may not precisely reflect all

the scenarios.

5.2.3 Frame Collision Analysis during the Beamforming Process

Following the overhead analysis in Sec. 5.2.2, in this section we will analyse the collision proba-

bility during the beamforming process of IEEE 802.11ad. As described before the A-BFT interval

is slotted to accommodate the more devices within the coverage region of a PCP/AP.

However, the slotted A-BFT can lead to collisions when two or more vehicles are randomly

assigned the same slot. What is more, the predefined number of slots (≤ 8 slots [174]) is

insufficient for urban scenarios, as more than eight vehicles can convene within an RSU coverage

region. The probability of collision within an A-BFT slot can be defined as follows:

(5.6) Pcol = 1− x! (x−1)!
(x−v)! (x+v−1)!

where x is the number of slots, and v is the number of vehicles. The probability of avoiding a

collision is the ratio of the combinations when only one vehicle is allocated per slot
(x
v
)
, over the

number of vehicles allocated to a number of slots
(x+v−1

v
)
. Pcol is the complement of the above. In

the next section, we are going to present some results with respect to the utilisation of mmWaves

and IEEE 802.11ad with a network of CAVs. We will also discuss the feasibility of using IEEE

802.11ad for vehicular communications and the drawbacks that we identified.

5.3 Challenges of Legacy Beamforming Strategy for Future
ITSs

As described in the standard [174], the BI length is limited to 1000 ms [174]. Concerning the

surrounding environment, the length can be optimised to achieve the best performance. Longer

intervals increase throughput and reduce the management frame transmission. However, the

system becomes intolerant to the delay spread. Misalignments between the TX and RX antennas

can lead to more severe delay spread and consequently degradation in the performance. A

typical BI length for indoor environments (zero or low mobility) is around 100 ms. However, for

moving vehicles more frequent beam switching is required (<30 ms) to avoid severe performance

degradation due to beam misalignments from the increased mobility. In this section, we will

try and identify the limitations of the legacy beamforming technique when used for vehicular

communications.
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Figure 5.2: Example of the average delay introduced every BI from legacy beamforming training.
16 "virtual" antenna sectors were used for both TX and RX antennas, and a different number of
vehicles was considered.

5.3.1 Limitations Concerning the Delay Introduced from Beamforming

As described in Sec 5.2.2, the bidirectional exchange of training frames increases the overhead

delay. The time required for the beamforming is predefined and depends on the network and the

surrounding environment. Thus, shorter BIs will lead to a bigger portion of time being used for

beamforming. An example of the overhead delay can be seen in Fig. 5.2. For this example, we

assumed 16 “virtual” antenna sectors for both the TX and RX sides and a variable number of

vehicles. The results were calculated with respect to the equations derived in Sec. 5.2.2. Assuming

a BI of 30 ms, we see that more than one-third of the BI is misspent for beamforming when the

number of vehicles is increased.

Increasing the overhead in our system will reduce the throughput as well. This behaviour

was observed in Fig 5.3 where the achievable throughput is presented for the aforementioned

scenario and is compared with the theoretical maximum of IEEE 802.11ad (when 64-QAM 13/16

is used). The achievable throughput, in this case, is the data rate that can be achieved averaged

over the BI length after the beamforming process (no other management frame exchange or

inter-frame spacing was considered). The positions of the vehicles were randomly chosen to be

within the coverage range of the RSU, and the averaged throughput was calculated later. As

shown, increasing the number of A-BFT slots reduces the throughput. Introducing more vehicles

in the system will result in even worse performance with more than half of the theoretical

maximum throughput being lost because of the beamforming process.

The strict QoS requirements for the next-generation automotive applications require tactile-

like end-to-end delays (<10 ms) and increased data rates (≥1 Gbps). As shown in Figs. 5.2 and 5.3,

IEEE 802.11ad cannot compensate with these requirements.
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Figure 5.3: Achievable theoretical throughput for a different number of vehicles after the beam-
forming process of IEEE 802.11ad.

5.3.2 Limitations due to the Collisions during the Beamforming Process

In the previous section, we presented some preliminary results when only the beamforming delay

is considered in our system. In this section, we will present the limitations with respect to the

collision probability and why the legacy beamforming technique of IEEE 802.11ad is not suitable

for vehicular communications.

In Fig 5.4, we present the probability of at least one collision to happen during an A-BFT

slot, for a different number of vehicles. For example, lets consider the scenario that we have four

slots and one vehicle occupying each slot. If a fifth vehicle is introduced in the system and as

all the slot are occupied, a collision will occur with probability of 1. Obviously, increasing the

number of vehicles ever further, the collision probability will always be 1. Fig 5.4 shows that the

collision probability dramatically increases during an A-BFT slot as the number of vehicles is

increased - thus, significantly reducing the trained antenna beams. This is because the maximum

number of A-BFT slots is 8, so increasing the number of vehicles within the coverage region of an

RSU will lead to more collisions and consequently less trained antennas. A collision during the

beamforming training will lead to a vehicle that will be idle for a BI (in this case for 30 ms) - thus

reducing the sensor data flow to and from the vehicle and increasing the probability of accidents.

From those above, it is proven that the strict QoS requirements of Next-Generation ITSs,

cannot be fulfilled when using the legacy IEEE 802.11ad beamforming technique. To that extent,

we will introduce a new beamforming approach not relying on the in-band information exchanged.

Achieving overhead-free beamforming, it will make mmWaves a viable solution for future ITSs.

By that, we will be able to fulfil the demanding requirements for increased capacity from the

next-generation vehicular applications and consequently improve the road safety.
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Figure 5.4: Collision probability during one A-BFT for a different number of vehicles.
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DSRC CAM messages are used for smart beamforming. RSUs predict the motion of the vehicle
and its position and align their beams accordingly.

5.4 SAMBA: Heterogeneous DSRC/mmWave Beamforming for
V2I Links

In Secs. 5.2.2 and 5.2.3 we derived equations that helped us calculate the overhead and the

collision probability introduced from the IEEE 802.11ad legacy beamforming technique. Later

(Sections 5.3.1 and 5.3.1) we presented some preliminary results with respect to the aforemen-

tioned analysis. To solve the previously mentioned problems, we propose the Smart Motion

Prediction Beam Alignment (SAMBA) algorithm. Our algorithm operates in a heterogeneous

manner combining DSRC and mmWave RATs. Leveraging from the position, the velocity and

the motion information broadcast over the DSRC links, SAMBA can provide overhead-free beam-

forming, reduce the association delays, minimise the beam misalignments and enhance mmWave

performance. SAMBA operates as shown in Fig. 5.5.

On the infrastructure side, and as shown in Alg. 2, SAMBA algorithm considers a road
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Algorithm 2 SAMBA Algorithm: Infrastructure Side
Require: Vehicles encapsulate position, motion and velocity in CAM messages
Ensure: RSUn has not changed after every update interval.

1: while N number of Vehicles within the network range (N ≥ 1) do
2: if New CAM Message received then
3: Find RSUn for each vehicle . RSUn → Closest RSU
4: if Receivedpos 6= Ppos then
5: Beamforming: Align RSUn beam based on Receivedpos
6: else
7: Predict current position of vehicle Ppos
8: Beamforming: Align RSUn beam based on Ppos
9: end if

10: else
11: repeat every Update Interval . 30 ms
12: Predict current position of vehicle Ppos
13: Beamforming: Align RSUn beam based on Ppos
14: until New CAM message is received
15: end if
16: end while

network with N number of vehicles, where N ≥ 1. The information received from a vehicle is used

to decide whether the vehicle has moved, compared to the previously stored position. With respect

to all the positions, the RSUs decide their serving vehicles, i.e., each vehicle is served by its

closest RSU. When an updated position is received, the serving RSU aligns its beam accordingly.

Later, the RSUs can efficiently track the movement of each vehicle predicting its motion and

position. The update interval for SAMBA was predefined at 30 ms. By that, a comparable BI with

IEEE 802.11ad is used, and increased Doppler shift can be avoided.

On the vehicle side (Alg. 3), the vehicles transmit DSRC CAM Messages to all RSUs in range

encapsulating their velocity, their motion data (based on the vehicle motion dynamics) and their

estimated position. CAM messages are broadcast every 100 ms (DSRC CAM message interval)

and the acquired information is updated periodically. All CAVs, as smart entities of an ITS, can a

priori know the positions of the RSUs. To that extent, each vehicle aligns its beam towards the

closest RSU.

When more than one vehicles are within the coverage region of an RSU, a dynamic channel

time allocation access mechanism is used, that implements a polling based channel access, similar

to the one of IEEE 802.11ad [174]. Using the same mechanism for both approaches, it can be

ensured that the delays introduced by the resource allocation scheme are negligible for our

results.
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Algorithm 3 SAMBA Beamforming Algorithm: Vehicle Side
Require: Vehicle in Range of RSUi, i ∈ {1, ...,n}

1: repeat
2: Transmittedpos ← GPS Coordinates with additive error . This is the Epos
3: Align Beam with RSUi . Based on RSU positions
4: if CAM Message Timer=0 then
5: Transmit CAM Message . Encapsulate Motion, Velocity, Position data
6: Reset Timer to 30 ms
7: end if
8: until Not in Range

5.4.1 Mobility Model and Position Based Beam Alignment

The synchronised flow traffic model [175] can accurately represent an urban scenario. It repre-

sents a continuous traffic flow, with no significant stoppages, where vehicles perform random

manoeuvres (braking/accelerating, changing lanes) and tend to synchronise their movement.

Velocity varies over time and is averaged around a mean value, following a Normal distribution,

i.e., s ∼N(savg,2). Velocity errors can be easily corrected employing data fusion techniques and

were not considered in this model.

The position of the vehicle can be estimated based on acquired position, acquired most

frequently from a GPS dongle. GPS positions introduce an error with a mean value of ~3 m and

standard deviation of ~1 m [45]. Worse performance can be observed in urban environments due

to the urban street canyons effects that are being introduced from the height of the buildings.

As discussed though, increased accuracy can currently be achieved by fusing CAVs sensory

data (e.g. with Kalman filters), being able to achieve centimetre-accuracy even under urban

environments [48].

The estimated position of a vehicle, as said, is affected by this additive error, i.e. Epos =
Rpos+ epos, where Rpos is the real position of a vehicle and log

(
epos

)∼N(µ,σ2
v) is the log-Normal

error. Terms µ and σ are the mean and standard deviation values for non-logarithmized samples

with mean m and variance s and are defined as follows:

(5.7) µ= log
(
m

(
1+ s

m2

)−1/2
)

σs =
√

log
(
1+ s

m2

)
Knowing the estimated position, an RSU can steer its beam towards the vehicle. This can be

achieved by calculating the angle k° (with respect to the reference plane), using the trigonometric

equations for right-angled triangles and the distance of the vehicle from the axis (as in Fig. 5.6(a)).

5.4.2 Vehicle Motion Dynamics and Motion-Prediction

CAV equipped with IMU sensors (e.g. magnetometers, accelerometers, gyroscopes), will be able

to measure the motion changes of a vehicle. The acquired sensory data can be combined using

data fusion algorithms. Their output is the angular velocity of the vehicle, measured as deg°/s, in
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three different axis (yaw ωy, pitch ωp, roll ωr) as shown in Fig. 5.7. Sensory data errors being

within the range of 0.2°−1° [48] does not introduce significant errors in the algorithm. Therefore

they were considered negligible.

Consider a constant angular speed. A vehicle in motion follows the surface of a sphere (when

observed in 3D space). However, a vehicle changes its direction significantly on the vertical

axis, as they are changing their direction on the road plane. The changes in the other two axes

(longitudinal and transverse) are less drastic for a vehicle following a synchronised flow traffic

model. To that extent, in this work, vehicles and RSUs will be considered as 2D objects, positioned

on a plane. In this case, a vehicle follows the perimeter of a circle and its motion can be predicted

based on ωy, Epos, and savg.
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With respect to Fig. 5.6(c), a vehicle moving from A to B, will drive a distance of lÙABpr. The

distance travelled and its angle βpr, can be defined as follows:

(5.8) βpr = mÙAB = 2ωy tpr lÙABpr = s tpr

where tpr is the time elapsed from the latest CAM message and s is the velocity of the vehicle.

Based on the circle properties and using (5.8), the radius of the circle Rpr, and the distance ABpr

between points A and B, are given as follows:

(5.9) Rpr =
lÙABpr

πωy tpr
ABpr = 2Rpr sin

(
ωy tpr

)
Finally, the predicted position Ppos

1 is calculated as:

(5.10) Ppos(x, y)=
Ppos(x)= Epos(x)+ ABpr sin

(
βpr

)
Ppos(y)= Epos(y)+ ABpr cos

(
βpr

)
5.4.3 Relation between position error, beamwidth and velocity

Consider a scenario where a number of RSUs are placed at the side of the road, and one vehicle

performs a movement as in Fig. 5.8. In an ideal scenario with zero position error, the beamforming

algorithm presented can achieve the maximum system performance with no outages (perfect

prediction of the motion). However, GPS devices are imperfect and will lead to outage interval.

The total time that a vehicle travels within the beam (coverage interval) is proportional to the

beamwidth and the velocity and can be expressed as a function of them T(s,θ°) (Fig. 5.6(b)).

Distinct errors will affect the system differently. For any given position error, there will be an

interval that there is an outage. The length of that interval is related to the position error and is

minimised when it is zero. However, zero error cannot be achieved in real-world systems. The

position error, as shown in [45], can be decomposed into (ex, e y) error components (easting and

northing). Each error, with respect to the RSU position, will influence the system differently, as

described in Sec. 5.4.2. For example, in Fig. 5.6(b), the ex will cause a more significant outage

than the e y.

For non-consistent position errors, an analysis of the critical error components is required.

Based on this analysis, severe performance degradations can be prevented by either utilising

different network topologies or developing error correction algorithms. For example, for a given

non-zero error causing misalignments, there is always an optimal non-zero beamwidth with

respect to this error that maximises the system performance [176].

5.4.4 Link Budget Analysis, Antenna Gain and Beamwidth Relationship

To maximise the performance with respect to the beamwidth, an antenna model forming a

relationship between the gain and beamwidth θ° should be derived a first. In this work, an ideal
1The model can be extended to a 3D scenario, by modifying (5.8), (5.9) and (5.10) to fit a spherical object.
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beam is assumed with uniform gain and no sidelobes. This model can be easily replaced with

a better approximation for a specific type of antennas, to achieve more accurate results. The

directivity of an antenna, associated with the beam solid angle ΩA is given as follows [170]:

(5.11) D = 4π
ΩA

For this ideal beam representation, ΩA can be approximated as ΩA ≈ θ1rθ2r where θ1r and

θ2r are the half-power (−3 dB) beamwidths of the elevation and azimuthal polarisation planes

respectively.

The antenna gain G can be given as [170]:

(5.12) G = ηD

where η is the efficiency of the antenna associated with the antenna aperture. For an ideal

antenna, the efficiency is equal to 100%, and the gain becomes equal to the directivity. What is

more, for an ideal beam θ1r = θ2r = θ. So, (5.12) with respect to the beamwidth θ° (measured in

degrees) becomes as:

(5.13) G(θ°)' 4π
θ2°

The received SNR for the above antenna can be expressed as the ratio of the received power

Prx over the noise power Pnoise. The received power is given as follows [177]:

(5.14) Prx (θ°)= Ptx +Gtx (θ°)+Grx (θ°)−PL

where Ptx is the transmitted power and Grx (θ°) and Gtx (θ°) are the antenna gains for the receiver

and the transmitter respectively. Finally, PL is the path-loss component and is defined as:

(5.15) PL = 10n log10 d+S f +Catt + Aatt +Ratt
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where n is the path-loss exponent and d is the distance separation between the RSU and the

vehicle. S f is the random shadowing effect following a log-Normal distribution log
(
S f

)∼N(0,σ2
S f

),

with σ equal to 5.8 [178]. Aatt and Ratt are the average atmospheric and rain attenuation,

respectively. Finally, Catt is a constant, representing the channel attenuation for a LOS link in

an urban environment, measured at 20 m [177]. For this model, a LOS link is always assumed.

The Pnoise can be calculated as:

(5.16) Pnoise = Nfl +10 log10 B+Nfig

where Nfl is the noise floor value, Nfig is the noise figure, and B is the antenna bandwidth. The

antenna gain is associated with the beamwidth as described before. The distance d between the

RSU and the vehicle changes over time. For a given time t, the estimated position of the vehicle

is known, and the distance can be easily calculated. Therefore, the SNR can be expressed as a

function of the beamwidth and the time as follows:

(5.17) SNR(t,θ°)= Prx(t,θ°)
Pnoise

The rest of the variables are always considered as constant for this model.

5.4.5 Sensitivity Analysis for Individual Error Components

The instantaneous channel capacity for a given beamwidth and time can be calculated from the

Shannon-Hartley theorem as follows:

(5.18) C(t,θ°)= B log2(1+SNR(t,θ°))

With regard to the prediction model introduced in Sec. 5.4.2, the beam is steered when the

vehicles reach the edge of the beam. The interval between two beam realignments is the time

between ti (the system switches to the ith beam) and ti+1 (the beam is realigned). For each ti, a

position Pi exists being the real position of the vehicle (Fig. 5.8).

Consider the same scenario as before (Sec. 5.4.3). Even though the vehicle performs a curved

movement (Fig. 5.8), in the long-term tends to fend off the starting point, oscillating with respect

to the x-axis. Given that only the position error exists (other sensors feedback ideal values), the

real movement of the vehicle will be identical with the one predicted but shifted on the two axis.

To that extent, the movement within the time interval [ti, ti+1] is assumed to be a straight line. In

contemplation to that, the data rate for a given θ° and a time interval [ti, ti+1] can be calculated

as:

(5.19) D i(t,θ°)=
∫ ti+1

ti

B · log2(1+SNR(t))dt

However, due to the position error, the beamforming timing will be imperfect leading to

outages. The two error components Pe
(
ex, e y

)
for an estimated position Epos (t) at a given time t,
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be calculated as follows:

(5.20) Pe
(
ex, e y

)
(t)=

ex (t)= Ex (t)−Rx (t)

e y (t)= E y (t)−Ry (t)

where (Rx (t),Ry (t)) are the two components of the real position Rpos (t) of the vehicle and

(Ex (t),E y (t)) is the acquired estimated position given by the GPS. Both errors can be divided

in two cases: 1) when ex ≥ 0 and ex < 0 and 2) when e y ≥ 0 and e y < 0. For example, if

ex (t) > 0 ⇒ Ex (t) > Rx (t), meaning that the beam steering will be delayed creating an outage.

Therefore, the moment of the ith beam alignment is given as:

(5.21) t̂i =
√

((Pix −P0x)+ ex)2 + ((Pi y −P0y)+ e y)2

s

where P0 is the initial position of the vehicle (as shown in Fig. 5.8). Based on the above, the

data rate (5.19) should be calculated for the portion on the interval that the beam is aligned, i.e.

[t̂i, t̂i+1]. The above is valid only when there is at least a very short interval where there is no

outage. In the case of total misalignment, the data rate is equal to zero.

Assuming that the error components are not so severe to cause total misalignment, their

impact on the system performance can be analysed. Differential sensitivity analysis [179] was

used, meaning that the sensitivity coefficient U for a particular independent variable is calculated

from the partial derivative of the dependent variable with respect to the independent variable.

For a predefined beamwidth θ° and denoting one of the errors as constant, the relationship of the

individual uncertainty component with the channel capacity for the ith beam can be calculated

as follows:

(5.22) Ui(e∗)= ∂D i(t|e∗,θ°)
∂e

= ∂

∂e

∫ t̂i+1

t̂i

B log2(1+SNR(t))dt

The formula of the channel capacity within the integral in (5.19) has an anti-derivative. To

that extend, and denoting it as c(t), can be calculated using the fundamental theorem of calculus:

(5.23) D i(t|e∗)=
∫ t̂i+1

t̂i

c(t)dt = C(t̂i+1)−C(t̂i)

Now, using the chain rule for the partial derivative of the sensitivity coefficient (5.22) we have:

(5.24) Ui(e∗)= ∂D i(t|e∗)
∂e

= C′(t̂i+1)
∂(t̂i+1)
∂e

−C(t̂i)
∂(t̂i)
∂e

The above equations can be numerically evaluated by calculating the sensitivity coefficient

for both the error components ex and e y. Analysing the individual errors before developing a new

ITS can significantly enhance the system performance. The impact of systematic errors can be

confined to maximise the performance. This can be done in many ways. For example, changing

the position of the infrastructure RSU devices, a system will easier compensate for these errors.
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Another solution is the development of correction algorithms able to tackle specific errors. For

this work, a 2D representation was used for our system. GPS northing and easting error will not

have significant differences in a real-world system. However, the same analysis can be applied

to a 3D system as well, where the errors between the azimuth and the elevation plane have

significant differences [45].

5.5 Beamwidth Optimisation Algorithms

As described in Sec. 5.4.5, the two ways of compensating with a systematic position error is either

physically changing the RSU positions to minimise it, or by developing correction algorithms.

Nevertheless, reducing the influence of the position error will increase the system performance.

However, any existing error will always lead to an outage. For an a priory known error, in this

section we will describe two different optimisation algorithms that were proposed and evaluated,

and discuss their benefits in the overall system performance.

5.5.1 Beamwidth Optimisation based on the Position Error

The position error Pe described before is a random variable. For our system, we are interested

in maximising the data rate, i.e. argmax
θ°

D i(t,θ°|Pe) at any given time t and beamwidth θ° with

respect to the position error. For the long-term average value, the maximum data rate can be

given as the expectation of the data rate denoting that it is averaging over Pe:

(5.25) θ̂°= argmax
θ°

EPe [D i(t,θ°)]

Pe is decomposed in ex and e y as described in Sec. 5.4.5 and (5.20), which are both continuous

random variables. Therefore, EPe [·] is a positive linear function and the equation 5.25 can be

rewritten as:

(5.26) θ̂°= argmax
θ°

Eex [D i(t,θ°)]+argmax
θ°

Ee y[D i(t,θ°)]

Denoting f (ex) and f (e y) as the probability distribution functions for ex and e y respectively,

the two expected values can be calculated as:

(5.27) Eex [D i(t,θ°)]=
∫ ∞

−∞
D i(t,θ°) f (ex) dex

(5.28) Ee y[D i(t,θ°)]=
∫ ∞

−∞
D i(t,θ°) f (e y) de y

However, the above equations should be limited to consider only the interval that there is no

outage. Therefore, to accurately calculate the expected value of the data rate over the Pe, the

limits should be updated accordingly.
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Total misalignment happens when the magnitude of the Pe is greater than the distance

from one edge of the beam to the other. In the time domain, this can be expressed as t̂i > ti+1 ⇔∥∥P̂i
∥∥/s > ‖Pi+1‖/s for ex < 0 and e y ≥ 0 and ti > t̂i+1 ⇔ ‖Pi‖/s > ∥∥�Pi+1

∥∥/s for ex ≥ 0 and e y < 0.

From the above it can be calculated that the total misalignment conditions are:

(5.29) ex =
ex > Pi +Pi+1, for ex ≥ 0

ex < Pi+1 −Pi, for ex < 0

(5.30) e y =
e y > Pi +Pi+1, for e y < 0

e y < Pi+1 −Pi, for e y ≥ 0

So, using the above limits we have:

Eex [D i (t,θ°)]=
∫ Pi+Pi+1

0
D i (t,θ°|ex ≥ 0) f (ex) dex

+
∫ 0

Pi+1−Pi

D i (t,θ°|xe < 0) f (ex) dex

(5.31)

Ee y [D i (t,θ°)]=
∫ Pi+1−Pi

0
D i

(
t,θ°|e y ≥ 0

)
f
(
e y

)
de y

+
∫ 0

Pi+Pi+1

D i
(
t,θ°|e y < 0

)
f
(
e y

)
de y

(5.32)

The above equations can be numerically evaluated, and the optimum beamwidth can be found

for a given position error. In Sec. 5.6, we will present a numerical example based on the equations

above to prove the validity of our model.

5.5.2 Beamwidth Optimisation Concerning the Distance from a CAV

Consider a scenario where a vehicle travels on a road, approaching the RSU from a distance,

passing by and fending off until it is outside of the coverage region. It is observed that the

beam covers a much broader area at its edge. A wider beam implies a wider beamwidth and

consequently low antenna gains and SNR. To that extent, narrower beams away from the RSU

and increased beamwidth as the vehicle gets closer, will provide an optimal solution and maximise

the performance.

As SAMBA relies on the position information, the error introduced will lead to misalignments

for very narrow beams. From geometry, it is known that the incentre is the centre of the triangular

area and is equally spaced from the beam edges. To that extent, adapting θ accordingly, the

vehicle can be positioned at the centre of the beam.

Centring the vehicle with respect to the beam edges will maximise the data rate and minimise

the misalignments compensating with the random errors. To do so, the incentre point is assumed

to be Ipos and din is the distance of this point from the RSU. To maximise the data rate, the
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Table 5.1: List of simulation parameters for SAMBA V2I scenarios.

Parameter Value

Carrier Frequency fc 60 GHz

Bandwidth B 2.16 GHz

Path-Loss Exponent n 2.66 [180]

Atmospheric Attenuation Aatt 15 dBkm−1

Rain Attenuation Ratt 25 dBkm−1 (in the UK)

Channel Attenuation Catt 70 dB [177]

Transmission power Ptx 10 dBm

Noise Figure Nfig 6 dB

Noise Floor Nfl −174 dBm

Road Block Length rb 40 m

BI IEEE 802.11ad 30 ms

DSRC beacon interval 100 ms

Position update interval 1000 ms

highest MCS should be considered for our model, i.e., the sensitivity threshold Smax of the highest

MCS (in our model we consider 64-QAM 13/16 for our maximum sensitivity threshold) is higher

than the perceived SNR. The above can be mathematically expressed as follows:

θ̂ = argmax
θ

{
Di (din, θi )

}
(5.33a)

subject to Smax ≥ γi, ∀i ∈ {1, ..., N}(5.33b)

θi > 0, ∀i ∈ {1, ..., N}(5.33c)

where θ̂ is the adapted beamwidth, Di is the data rate of the chosen MCS at the distance din, γi is

the given SNR for the position Ipos and, finally, N is the number of required beam realignments.

5.6 Performance Evaluation

We proceed to examine two different scenarios which model a vehicle driving in an urban

environment. For the first scenario, we will investigate the performance of our system for a

vehicle moving in a straight line, and we will present some numerical results for the equations

above in Sec 5.5.1. Later, we will investigate a larger scale urban scenario with a more significant

number of vehicles driving in a Manhattan-Grid-like urban environment.
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Figure 5.9: Differential sensitivity analysis for the affect of individual position error components
and different beamwidths. The average position error for this example was 3 m.

5.6.1 Scenario 1: Simplified Approach - Straight Road

For the first scenario, we consider a vehicle that travels on a straight road following a linear

motion. An RSU is mounted at the side of the road. The RSU will try and align its beams with the

moving vehicle. At the closest point, the vehicle was ~18 m apart from the RSU (the moment that

the vehicle moves perpendicular to the RSU). The distance travelled is one road block rb and the

vehicle travels at a constant speed of 14 ms−1. All the simulation parameters are summarised in

Table 5.1.

At first, we present the results of the differential sensitivity analysis for the individual error

components with respect to the different beamwidths. As discussed in Secs. 5.4.5 and 5.5.1, we

described that the individual position error components affect the performance of our system

differently. The results can be seen in Fig. 5.9, were the two different components (error on the

x-axis and error on the y-axis) were considered, and the average achievable channel capacity

was evaluated and compared with the theoretical maximum value. For our scenario, when each

error takes random values, the other one is considered as constant. With respect to Sec. 5.4.5,

each error can take either positive or negative values as shown in Figs. 5.6(b) and 5.8 and it

has a mean absolute distance from the real position. Therefore, the averaged constant error

considered equals to zero for each case. For the random error, a mean value of 3 m was considered

for our demonstration. As it is observed in Fig. 5.9, even though both errors have the same

magnitude, the error on the x-axis influences more the system performance than the one on the

y-axis. Analysing an a priory known position error for a specific road and knowing the effect of

each component is very important for the initial planning of an ITS. With better design, will be

able to compensate with different kind of errors, achieving better performance and enhancing the

road safety.

Finally, Fig. 5.10 presents the average channel capacity and the optimum beamwidth for each

error. The results are compared with the ideal case, where the estimated position matches the
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Figure 5.10: Optimum beamwidth values for different position errors compared to the maximum
system capacity (given when using the real position).

Table 5.2: MCSs and SNR threshold used for the simulation results.

MCS Modulation Coding
Rate Data Rate Lmargin

Threshold Sensitivity

MCS1 π/2-BPSK 1/2 27.5 Mbps 8 dB −78 dB

MCS2 π/2-BPSK 1/2 385 Mbps 18 dB −68 dB

MCS3 SQPSK 5/8 866.25 Mbps 22 dB −64 dB

MCS4 QPSK 1/2 1386 Mbps 23 dB −63 dB

MCS5 16-QAM 3/4 4158 Mbps 32 dB −54 dB

MCS6 64-QAM 5/8 5197.5 Mbps 35 dB −51 dB

MCS7 64-QAM 13/16 6756.75 Mbps 39 dB −47 dB

real one, i.e. zero-error exists. A mean error of 3 m was considered for this scenario. As shown,

when θ° tends to zero, even the smallest error can cause a total misalignment - thus, degrading

the performance. On the other hand, when θ° is large, the SNR is decreased leading to lower

channel capacity. An optimum beamwidth exists that is different for each position error, which

maximises the average channel capacity and is shown as a circle for each case. To that extent,

the system can be fine-tuned for a given error to achieve the maximum performance.

5.6.2 Scenario 2: Large Scale Evaluation - Manhattan Grid

For our second scenario, we consider a larger scale urban scenario to test the performance of

our algorithm. As shown in Fig. 5.2, IEEE 802.11ad performance degrades significantly as the

number of vehicles is increased. SAMBA, as an algorithm with zero in-band overhead, is expected

to outperform IEEE 802.11ad for a large number of vehicles. To that extent, SAMBA performance
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RSU beams

Vehicle
Beams

Figure 5.11: System level simulation scenario: Vehicles drive within a Manhattan Grid-like
road network, and the system performance is evaluated. The darker beam area represents the
coverage region blocked by the buildings.

will be evaluated under various scenarios (different number of vehicles, velocities and position

errors) and will be compared with the legacy beamforming technique.

For our evaluation, we utilised a 200 m×200 m sized Manhattan Grid road network, as in

Fig. 5.11, consisting of five horizontal and vertical roads. Each road is 12.8 m wide (4 lanes of

3.2 m each) and has two lanes per direction. The RSUs are positioned at the top-right corner of

each building block as shown in Fig. 5.11. Our design is a 2D implementation, so we assume that

the RSUs are mounted at the same height as the vehicles but are always in LOS. The distance

between two RSUs on the same road is ~48 m. The above RSU positions and dimensions were

chosen to achieve 100% coverage of the road network (no blind spots) to evaluate our system

under a controlled environment, i.e. the vehicles are always within coverage, and we avoid the

blockages from the buildings. The motion of the vehicle is random as described in Sec. 5.4.1 and

is limited within the road boundaries. A seamless handover was assumed between the RSUs.

The vehicle position error is between 1-3 m, following a more conservative approach compared to

the centimetre accuracy presented before (Sec. 5.4.1). RSUs positions are a priori known, so no

position errors are introduced for them. Finally, when the beamwidth adaptation introduced in

Sec. 5.5.2 was not considered, the beamwidth was set to 15°. Finally, the CAM Delivery Ratio

(CAM-DR) is set to 1 (no loss). The rest of the simulation parameters can be found in Tab. 5.1.

At first, the average data rate of SAMBA compared to the legacy beamforming technique was

evaluated, for a different number of vehicles and position errors. The data rate is calculated for

this scenario as the averaged MCS data rate with respect to the achieved SNR (Table. 5.2) from

all BIs. For SAMBA, two different scenarios were evaluated, i.e. with and without the beamwidth

adaptation introduced in Sec. 5.5.2. As shown in Fig. 5.12, SAMBA can notably improve the

system performance as it minimises the beamforming overhead. As expected, increasing the
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Figure 5.12: Average data rate per vehicle for a different number of vehicles and position errors.
The average speed used for this scenario was 14 ms−1.

position accuracy improves the performance. For a position error of 3 m, without beamwidth

adaptation and a very sparse network (≤ 10 vehicles), both techniques have similar performance.

However, when the vehicle density is increased, the number of collisions during A-BFT interval

is increased as well (as shown in Fig. 5.4), significantly degrading the performance of the legacy

beamforming strategy. On the other hand, SAMBA can recompense with the increased density as

the beam alignment is based on out-of-band feedback information.

As shown, the increased number of vehicles reduces the average data rate achieved per

vehicle. Another intriguing observation can be seen in Fig. 5.13 where the overall network

throughput performance is presented. It is observed that SAMBA significantly outperforms the

IEEE 802.11ad legacy procedure. When the number of vehicles is increased (>50) it is shown that

a bottleneck is created in the available resources of the network. As the collisions during A-BFT

interval limit IEEE 802.11ad performance. For ultra-dense scenarios (e.g., 200 vehicles) IEEE

802.11ad is even slightly degrade. On the other hand, SAMBA can exploit the network resources

a lot better achieving almost seven times more data exchange rate. This is very important within

a CAV network as the sensory data exchanged are of paramount importance for the navigation

and the routing of the vehicles.

In Figs. 5.12 and 5.13 we presented the results for different vehicular scenarios. Observing

the results and taking the physiology of the beams and the behaviour of the vehicles into account

(approach an RSU from a distance, pass by it and fend off again), we can conclude that a dynamic

beam adaptation can enhance the data rate. Therefore, the beamwidth adaptation introduced

before when used with SAMBA motion prediction algorithm manages to improve the performance

even further. This is because vehicles are centred within the beams; our algorithm can later easier

compensate with the increased position error (e.g., 3 m), maximising the SNR and consequently

the data rate.

In Fig. 5.14, SAMBA is evaluated with respect to the DSRC CAM-DR. The feedback informa-
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Figure 5.14: Average data rate per vehicle as a function of the beacon delivery ratio and the
velocity. The position error was set to 1 m.

tion within the DSRC CAMs is the core of our system making it is obvious that the performance

degrades when CAM-DR is decreased. However, even with significant CAM loss (≥ 50%) (Fig. 5.14),

SAMBA manages to achieve the required gigabit-per-second performance for future ITS services.

This is because vehicles do not change their direction so often and so when observed macroscop-

ically, they tend to move in a straight line making our algorithm tolerant to the microscopic

beacon drop interval. Finally, when the vehicle density is increased, the performance tends to

become worse. This is because the number of misalignments is increased and therefore more

network resources are wasted. The macroscopic analysis that the vehicle moves in a straight line

when observed for a longer period can be combined with the sensitivity analysis we introduced in

Sec. 5.5.1. Better placement of the RSUs (e.g. instead of the corner of the buildings to be mounted

on a traffic light above the road) can enhance more the performance. A combined scenario like

the one mentioned before will be evaluated in future work.

Finally, evaluating SAMBA performance with respect to the velocity (Fig. 5.15), it was shown
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Figure 5.15: Achieved average data rate (one vehicle) for SAMBA algorithm in contrast with the
legacy beamforming strategy for different velocities.

that even though the performance slightly decreases as the velocity is increased, SAMBA can

compensate well with the increased mobility. Overall, SAMBA achieved improved system perfor-

mance compared to IEEE 802.11ad. Particularly, reducing the position error will significantly

improve the system performance. All in all, SAMBA was proven capable of replacing the legacy

BF technique under urban vehicular scenarios.

5.7 Conclusions

In this chapter, we presented the first step in our work towards the design of heterogeneous

intelligent beam steering framework that will be used for mmWaves links for future ITSs. The

proposed strategy can achieve overhead-free beamforming exploiting the sensor information

broadcast over DSRC links. Based on an agile motion prediction algorithm, we can predict the

movement of the vehicle and adapt the antenna beams accordingly. The results showed that

SAMBA outperforms the legacy beamforming technique with respect to the average data rate and

overall network throughput performance while being tolerant to the position errors introduced.

Introducing two different beamwidth optimisation algorithms, we managed to enhance the

performance even further and provide an all-around model for different scenarios and conditions.

As such, SAMBA is a viable solution for the mmWaves beamforming training of the next-

generation ITSs. With the experience acquired in this chapter, we will proceed to the next chapter

that we will introduce a V2V mmWaves association scheme.
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EFFICIENT MAC-LAYER BEAM STEERING FOR V2V MMWAVES

COMMUNICATIONS

6.1 Introduction and Contributions

6.1.1 Introduction

Chapter 6 presents a multi-link association scheme for mmWave V2V communications, able

to utilise the channel better and prioritise the exchange of sensor data between different

types of CAVs. In this chapter, we formulate a novel many-to-many link association

scheme able to maximise the channel utilisation by taking into account the achievable data rate

of mmWave channels, the different types of CAVs and their movement and their position on the

road.

As mentioned before, CAVs are expected to generate up to 1 Gbps of sensor data [79]. Consid-

ering an urban scenario, where CAVs are in close proximity, IEEE 802.11ad mmWaves protocol

can achieve up to 6.75 Gbps of data rate under LOS conditions [84]. Comparing this value with

the previously estimated sensor data generation, it is evident that forming point-to-point links

will lead to under-utilisation of the channel. What is more, the trajectory of a vehicle not executing

emergency manoeuvres (e.g., avoiding a pedestrian), tends to follow a well-defined path [181].

However, a vehicle under emergency conditions will perform more complicated manoeuvres, like

the obstacle avoidance and advanced trajectory planning [110]. The increased vehicle mobil-

ity and manoeuvrability imply that prioritised and faster access to more sensor data will be

mandatory, due to its increased speed and size (e.g. in case of an emergency vehicle).

In this work, we will consider two different types of vehicles, i.e. emergency CAVs (e-CAVs)

and regular CAVs (r-CAVs). The algorithm we present prioritises the sensor data towards the

e-CAVs without though limiting the acquired information of the r-CAVs and dominating the
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channel. We formulate our association policy as a distributed constraint optimisation problem,

where the information required will be exchanged via DSRC links in a heterogeneous manner. To

solve our problem, we use the Stable Fixtures (SF) matching theoretic game [118] and formulate

a more generalised many-to-many link association scheme that forms bidirectional links taking

into account the unique characteristics of each CAV.

This chapter is organised as follows. In Sec. 6.2 we present our system model. We will

describe our matching game, introducing the requirements for our algorithm and the concept

of the matching capacity with respect to the association policy. Sec. 6.3 describes our problem

formulation, the distributed V2V SF matching game, broken down into two phases, and the

definitions and criteria for a stable matching. In Sec. 6.4, we describe our simulation setup

and present our performance investigation based on the algorithm mentioned above. Finally,

this chapter is concluded in Sec. 6.5 where we summarise our findings and the validity of our

algorithm.

6.1.2 Contributions

The contribution of the author for Chapter 6 is the following:

• Derived the equations for the matching capacity.

• Identified the requirements for the proposed heterogeneous system and the different

variables that constitute the utility function for the system evaluation.

• Derived the equations for the problem formulation, and the maximisation problem intro-

duced.

• Designed a two-phase algorithm based on the framework of Matching Theory that can solve

the above-mentioned problem, explaining the different definitions for the matching pairs

and their stability.

• Introduced the stability criteria for the Matching game and V2V scenarios.

• Designed and implemented a system level simulator in Matlab, that takes as an input the

routes of the vehicles for a given urban scenario and the variables initialised by the user

and solves the formulated problem for different scenarios.

• Presented the performance of the algorithm above for a number of different scenarios, using

the introduced simulator, and critically discussed the results.

The contents of this chapter were presented at the conference:

• IEEE International Conference on Communications (ICC) 2018 [38].
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6.2 System Model

Consider an urban vehicular scenario where mmWaves links are established between moving

vehicles in a V2V manner. Let V, {1, . . . ,V } denote the set of CAVs in the system. As described

above, CAVs are of two different types: e-CAVs, denoted as E, {1, . . . ,E} and r-CAVs, denoted as

R, {1, . . . ,R} with E,R⊆V, E∪R=V, and E∩R=;.

Links are half-duplex, interconnecting two CAVs for a timeslot with duration Ts. Let A j be the

number of CAVs linked with CAV i within a Ts. The formed links are the pairs
∑

i∈V
[
(i, j) : j ∈ A j

]
.

We assume that a scheduling algorithm shares the available time between all the pairs in equal

transmission slots T with a duration of {Tt : Ts mod Tt = 0}.

6.2.1 MmWave Link Budget analysis

Our link budget equations were previously defined in Sec 5.4.4. However, the analysis that will be

presented in Chapter 6 requires a different notation, as we need to introduce the concept of time

and the set of vehicles (i, j) that form a link. As discussed before, IEEE 802.11ad standard [174]

defines a sensitivity threshold KMCS for each MCS. The different thresholds can be found in

Table 5.2. For a link (i, j) between two CAVs at time t ∈Tt and a given SINR, an appropriate MCS

can be chosen based on SINRi, j ≥ KMCS. The chosen MCS indicates the maximum achievable

throughput rmax
i, j (t) for this communication link.

The SINRi, j is time dependent and is defined as the ratio between the received power Prx
i, j

over the noise power Pn plus the interference I(t)=∑
k∈V,k 6= j Ik, j(t), i.e.:

(6.1) SINRi, j(t)=
Prx

i, j(t)

Pn +I(t)

From the above equation, we define Prx
i, j as [177]:

(6.2) Prx
i, j(t)= Ptx +Grx

i, j(t)+Gtx
i, j(t)−PL i, j(t)

where Ptx is the transmission power, Gtx
i, j and Grx

i, j are the TX and RX antenna gains, and PL is

the path-loss component.

The ideal antenna beams are modelled with a gain defined as Gα
i, j, with α ∈ {tx, rx}, and zero

sidelobes. Gα
i, j is a function of the half-power beamwidth θ (−3 dB), is equal for both polarisation

planes and is given as [170]:

(6.3) Gα
i, j(t)' 4π/θ2

i, j(t), for
∣∣ϑi, j(t)

∣∣≤ θi, j(t)/2

where ϑi, j(t) is the misplacement error that leads to misalignments. In this work, we assumed

perfect beam alignment all the time. The PL is calculated as:

(6.4) PL i, j(t)= 10n log10 di, j(t)+Catt
i, j (t)+Sf(t)
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Figure 6.1: A snapshot of our system at time t, generated from the SF matching game using all
the utility functions U. Links are formed (dotted lines) or not (lines crossed by an “X”) according
to our maximisation problem. The capacity for this example was equal to 3.

where n is the path-loss exponent and di, j is the distance between vehicles i and j. Catt
i, j is the

channel attenuation with regard to the distance di, j at time t, given by the rain and atmospheric

attenuation and the channel attenuation factor Hatt for a mmWave LOS link at 60 GHz in urban

environments [177], i.e. Catt
i, j (t)= 40di, j(t)/1000+Hatt. Finally, Sf represents the shadow fading

of the channel following a log-Normal distribution log(Sf)∼N(0,σ2
S f

) with σ= 5.8 [178]. Finally,

the noise term Pn can be calculated as in (5.16).

With remark to the link budget analysis mentioned above, the average data rate of the vehicle

i for all the links
∑

i∈V
[
(i, j) : j ∈ A j

]
is given in (6.5). As in Chapter 5, we take into account the

sensitivity threshold and find the maximum theoretical data rate from the chosen MCS. That is

the theoretical data rate achieved at the physical layer of IEEE 802.11ad. The equation describing

the above is the following:

(6.5) Ci(t)= 1
T

∑
j∈A j

rmax
i, j (t)

6.2.2 Matching Capacity for the Association Policy

In this system a CAV i can be potentially linked with all CAVs at its 360° azimuth plain. The

connections can be established under some specific conditions that will be described later in

Sec. 6.2.3. At time t, CAV i is associated with A j vehicles, of which Ae are e-CAVs and Ar are

r-CAVs with Ar, Ae ∈N∗, Ar, Ae ⊆V and A j = Ar + Ae.

A j can be affected by the number of vehicles in LOS. In fact, the high radio frequency of

mmWaves significantly affects the received signal strength, and even small obstacles (e.g. another

CAV) can behave as impenetrable blockages. To that extent, our formulated problem considers as

potential CAVs for the association all the vehicles that are in LOS with our target i. For example,

in Fig. 6.1 CAV no. 1 cannot be paired with CAV no. 2, as their link, is blocked by a building.

118



6.2. SYSTEM MODEL

The matching capacity ci ∈ N∗ is defined as the maximum number of CAVs that i can be

associated with. Two factors limit the capacity. Firstly, the maximum number of links that each

CAV can establish (predefined at the beginning of each scenario). Secondly, is capped with regard

to the exchanged data within a timeslot, i.e. Ci(t) ≤ rmax
i, j (t), ∀i, j ∈ V. CAV no. 4, for example,

cannot be linked with CAV no. 5 (Fig. 6.1) as its matching capacity was reached (connected to

three CAVs with higher priority).

6.2.3 Requirements for the System Evaluation

Cooperative manoeuvring on the road can be achieved by sharing the generated sensor data with

the surrounding CAVs. The amount of sensor data generated depends on the resolution and the

number of equipped sensors, the surrounding environment and the preprocessing that might take

place before the transmission and is different for each vehicle. This amount can be quantified as

g ∈ {1, . . . ,G}, where g is measured in data transfer rate units.

The main idea behind our systems is that a CAV, evaluating the importance and utility of a

nearby vehicle can decide whether it wants to connect with that or not. This potentially formed

link (i, j), can be quantified with a utility function ui, j(·) ∈ [0,1] and is based on the opposing

vehicles topologies and movement, the generated sensor information, and finally, their types of

vehicle.

Our system operates in a heterogeneous manner (DSRC/mmWaves), and the information

required for the utility function are encapsulated within the DSRC CAM messages (as in [37]).

Observing macroscopically our system, we can say that within a timeslot Tsi , the generated data

g will not be very different compared to Tsi−1 . Therefore, the generated data g is estimated from

each CAV for the next scheduling period and accompanied with t the information mentioned

above, before being broadcast on the network. Using this heterogeneous architecture, we leverage

from the increased coverage of the DSRC technology ensuring that vehicles with close proximity

will receive the same information. Also, the reduced signal loss minimises the error rate in

the CAM reception at close distances. When the information from the surrounding vehicles is

received, all CAVs can independently run their SF matching game. The utilities for all CAVs are

represented as U= {
ui, j|i, j ∈V}

. The variables constituting the above utility function are the

following:

6.2.3.1 Type of Vehicle

The first variable considered is the type of vehicles denoted as τi. As discussed in Sec. 6.1.1,

it is essential to prioritise links with vehicles with increased mobility performing more com-

plex manoeuvres. Therefore, for τi we have τi ∈ {e−CAVi,r−CAVi : e−CAVi = 1,r−CAVi = 0.5}.

Therefore, our model prefers the emergency vehicles compared to the regular ones as shown.
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6.2.3.2 Regional Sensor Data Generated

The density qi is defined as the number of CAVs q ∈ {1, . . . ,K} with K ⊆V within a circular radius

R ∈N∗. qi is affected by the urban topology (e.g., buildings cover a large surface area that vehicles

cannot use) and the road characteristics (e.g., more road lanes imply that more CAVs can be

positioned within R). In Fig. 6.1, the dotted circle centred around CAV no. 3, represents its sensor

region R. Targeting a road section with increased density implies that we can achieve a better

link utilisation and access more sensor data. Also, using a smaller radius, implies that our target

CAV will be associated with vehicles within close proximity. This will enhance the perceived

SINR in our system. The regional data generated for CAV i can be given as Q i = g i +∑
j=1,...,qi g j.

This value is later normalized with respect to the maximum regional data generated per timeslot,

i.e. Q∗
i (t)= Q i(t)

max(Q(t)) ∈ [0,1].

6.2.3.3 Vehicle Direction and Distance

We assume that a CAV is more interested in sensor data coming from CAVs with coinciding routes.

This is important because vehicles can collect more sensor information for an unknown road

section. However, the utility of the information degrades with respect to the distance. To that

extent, in order to take into account both variables we use the normalized weighted arithmetic

mean as below:

(6.6) e i, j = w1
R−di, j

R
+w2

π−φi, j
n

π
∈ [0,1]

where φi, j
n is the normalized angle difference between the two vehicle directions and w1 and w2

are the weight factors. w1 and w2 are calculated as: w1 = R−di, j/R
R−di, j/R+π−φi, j

n /π
and w2 = π−φi, j

n /π
R−di, j/R+π−φi, j

n /π
. A

value ≈ 1 determines a coinciding movement and very close distance between two vehicles.

For all the above quantifying parameters, a utility function can be written as ui, j(
{
τ j,Q j, e i, j

}
) ∈

[0,1], evaluating the link (i, j) between two vehicles. More specifically, the more valuable a CAV

is, the more important is the connection with that. The utility function is given as:

(6.7) ui, j(t)= τ j Q j(t) e i, j(t)
r i, j(t)

rmax
i, j (t)

∈ [0,1]

6.3 Matching Game and Problem Formulation

6.3.1 Problem Definition

The communication links that can potentially be established between all vehicles at time t ∈ Ts

are defined with a matrix M(t) = (
mi, j

) ∈ Rx×y, x, y ≤ V. The binary value mi, j represents the

existence of a link between vehicles i and j, having the following values:

(6.8) mi, j(t)=
1, if link (i, j) is established for (t, t+Tt]

0, otherwise
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Each CAV can be simultaneously matched with less or equal than c j ∈ N∗ vehicles, being

either e-CAVs or r-CAVs. This value depends on the matching capacity of each vehicle as described

in Sec. 6.2.2 and 6.2.3.2. Let V j ⊆V be the number of CAVs paired with i at time t. The previously

introduced utility function should be redefined as:

(6.9) Xi(M(t))≡Xi

({
τ j,Q j, e i, j

}
j∈V j(t)

)
∈ [0,1]

representing the utility functions of all the vehicles that can be potentially paired with i. The

problem can be formulated as the maximisation of (6.9) in order to find the best links between all

CAVs at time t:

Maximise
M(t)

∑
i∈Vi(t)

Xi(M(t))(6.10a)

subject to:
∑

j∈V j(t)
mi, j(t)≤ c j ,∀ j ∈V(t)(6.10b)

j in LOS with i ,∀ j ∈V j(t)(6.10c)

j within R ,∀ j ∈V j(t)(6.10d)

mi, j(t) ∈ (0,1] ,∀i, j ∈Vi(t)×V j(t)(6.10e)

mi, j(t)= 0 ,∀i = j(6.10f)

where the above constraints are the number of CAVs that can be associated with the target i and

the range of values for the utility function in (6.9).

6.3.2 Distributed Stable Fixtures (SF) Matching Game

The problem formulated in (6.10) is a multigraph problem that is at least NP-complete. Our

objective was to develop a mechanism able to run independently on each CAV in a real-time

manner and find the best available links with respect to the CAVs utilities. To solve the for-

mulated problem using a reasonable amount of resources we utilised an SF matching game

that has a complexity of O(m) [118]. Using this framework, we developed a strategy able to

run independently on each CAV and establish the V2V links with the highest utility until the

capacity is reached. In the next sections, we will describe the basic definitions of the SF game

with respect to our problem formulation in Sec. 6.3.1 and the two-phase operation required for

the link establishment.

6.3.3 Definitions for the Distributed SF Matching Game

A matching game is defined by a set of vehicles V(t)= {v1,v2, . . . ,vn} where n is the number of all

CAVs. We denote
∑

i, j∈V(t) (i, j) as the number of potential links that will be evaluated within this

matching game. Also, we denote m as a matching pair. We assume a strict preference relation

for CAV i between vehicles
(
j, j′

)
with j 6= j′ and denote it by �i that is complete, reflexive and
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transitive. For the two potential matches M(t) and M′(t) we have mi(t) = j and m′
i(t) = j′. The

above implies that:

(6.11) ( j,M(t))�i
(
j′,M′(t)

) ⇐⇒ ui, j(t)> ui, j′(t)

meaning that i prefers j over j′ due to its higher utility. Intuitively, a stable matching refers to a

solution where no players have the intention to change their preferences (switch preference for a

higher prioritised CAV). With regard to the links formed, we present two definitions that will

result in a pairwise and groupwise stability in our system.

Definition 1: A link (i, j) is pairwise stable if and only if both i and j decide to associate with

each other.

This implies that there is a mutual approval from both vehicles and there are no blocking pairs.

For example, for CAVs i, j,k ∈V(t) and i 6= j 6= k, we have
(
ui, j(t)> ui,k(t)

)
and

(
u j,i(t)> u j,k(t)

)
,∀k ∈

V(t). Comparing the utilities and using (6.11), we have that �i and � j are complete and reflexive.

Finally, as this also works for ∀k ∈V(t), the preference relations are transitive as well.

Definition 2: A link (i, j) is group-wise stable if and only if it is not blocked by any coalition

of vehicles S ⊆V.

For a many-to-many matching game, the stability concept should focus not only on the blocking

pairs between vehicles but also on the blocking groups involved in the matching game. If we

consider a sequence of pairwise stable links mi = {m1,m2, . . . ,mn}, n ∈V that form a cluster of

vehicles with pairwise stability, there should be no other vehicle or cluster of vehicles in the

network that will block any of the above links. The mathematical framework behind the above

definitions and a more in-depth can be found in [182].

If all the links are pairwise and group-wise stable at time t, we can ensure that SF will agree

on a stable match. There is always a chance that a link does not meet these requirements. For

example, in Fig. 6.1, CAVs no. 6 and 7 formed a link at first. However, during the execution of

the algorithm, it was discovered that CAV no. 6 prefers to be linked with two other vehicles. In

that case, the rejected link is removed from the matching game as it will be described in the next

section.

6.3.4 Stability Criteria of SF Matching Game for V2V links

The general idea of the SF matching game is that each participating CAV starts with a fixed

capacity (defined as the matching capacity ci before) and builds its preference list P of potential

CAVs to be matched with. We denote as di =min(ci, |Pi|) the degree for each CAV i where |Pi| is

the length of its preference list. We should note that the degree of a player is a property of the

problem instance; it does not change its value in the course of the algorithm. Each Pi is classified

as short (|Pi| < di) or long (|Pi| > di). SF executes in two phases, reducing the length of P during

each phase and concluding with the final matches. This is subject to two stability criteria:
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1.
∑

i di is not odd. This sum is double the size of a stable matching as it counts every matched

pair exactly twice, so if it is odd will imply that there is no pairwise and groupwise stability

(as discussed in Sec. 6.3.3).

2. None of the preference lists Pi becomes short during the execution of SF algorithm, i.e.

|Pi|≮ di,∀i ∈V. If any list is short, then this implies the elimination rotation was unsuc-

cessful (more details about that will be given later) thus the algorithm reports the instance

as unsolvable.

In both cases, i.e.
∑

i di becomes odd or ∃i.|Pi| < di, i ∈V, the instance is reported as unsolvable.

6.3.5 The two Phases of the SF Matching Game

Right now, we will describe the two phases of the SF matching algorithm. Algorithm 4 presents

these two phases with a pseudocode format as well.

Phase 1: During this phase, a sequence of bids takes place from one vehicle to the others.

These bids are used to construct a set S that is an initial list of the potential matching pairs

as well as to identify and delete pairs that cannot belong in a stable matching. For the pair(
vi,v j

)
, v j is a target for the vi, and vi is a bidder for the v j. The target set for vi is denoted as

A i =
{
v j :

(
vi,v j

) ∈ S
}

and the bidder set as Bi =
{
v j :

(
v j,vi

) ∈ S
}
. We also denote as ai = |A i| and

bi = |Bi| the length of each set. Each vi, bids for its most favourable target and adds the pair(
v j,vi

)
in S (line 3). Keep in mind that the pairs in S are ordered so

(
vi,v j

)
is different than(

v j,vi
)
. Then v j checks whether it has exceeded its B j capacity, i.e. b j ≥ c j (line 4). If so, it deletes

all vehicles within P j that are worse than the c jth rank (lines 5-11). The bidding continues as

long as ai < min(ci, |Pi|) ,∀vi ∈ V. The outcome of Phase 1 is a reduced Pi for each vi and an

increased set S of potential matching pairs.

Phase 2: The two stability criteria defined in Sec. 6.3.4 are checked throughout the execution.

If any becomes true, then the instance is reported as unsolvable (lines 14 and 20). During this

phase, we search for possible rotations that can further reduce the length of Pi lists. As a rotation

is defined a sequence of ordered pairs ρ = ((
vi0 ,v j0

)
,
(
vi1 ,v j1

)
, . . . ,

(
vir−1 ,v jr−1

))
. To find ρ, we start

with a CAV having a long P. For each k ∈ [0, r−1] we denote vik = vl( jk) and v jk+1 = v f( ik). This

means that vik is v jk ’s worst bidder, v jk+1 is vik ’s next target and the pair
(
vik ,v jk

)
is in ρ. The

process stops when a CAV has been visited twice. For each
(
vi,v j

)
within ρ, this pair is removed

(line 19) from S and is replaced with the next favourable pair for vi, found from its Pi list

(line 23). The rotation process stops when a preference list becomes short, i.e., there is no stable

matching, or when no further possible rotations exist, i.e. a stable matching was found. More

details about the SF matching algorithm, such as the mathematical proofs and lemmas, as well

as the complexity analysis of the algorithm can be found in [118].
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Algorithm 4 SF Matching Game Algorithm
Phase 1:
1: while ai <min

(
ci , |Pi |

)
do . ∀i ∈V

2: Take v j , the first vehicle in Pi , but not in A i
3: S = S∪{

(vi ,v j)
}

. Starting with S as an empty set
4: if b j ≥ c j then
5: Find vk . c jth ranked bidder for v j
6: repeat for each preferred vehicle vl over vk in P j
7: if (vl ,v j) ∈ S then
8: S = S \

{
(vl ,v j)

}
.

9: Remove pair (vl ,v j) from P
10: end if
11: until All vl removed from P j
12: end if
13: end while
Phase 2:
14: if

∑
i di is odd then

15: No stable matching exists
16: else
17: while |Pi |≮ di do . ∀i ∈V
18: Find a possible rotation ρ pair (vi ,v j) . Start with a long Pi
19: For ρ, remove vi and v j from preference lists
20: if any Pi becomes short then . i.e. |Pi | < di
21: No stable matching exists
22: else
23: S = S \

{
(vi ,v j)

}
24: end if
25: end while
26: Return M= S . Stable Matching M

27: end if

6.4 Performance Evaluation

In the previous section, we presented our model for our multi-link association scheme for V2V

mmWave communications. In this section, we will evaluate our system performance with respect

to the average data exchanged and the link utilisation. For our evaluation framework, we designed

and developed a system level simulator in Matlab, that takes into account the vehicle traces and

the maps generated from SUMO traffic generator [169]. The effects of the coverage radius as well

as the beamwidth were investigated to have a more broad idea of the performance of our system.

More details about the simulation framework and the results can be found in the next sections.

6.4.1 Simulation Framework

As a road network, we used a Manhattan Grid-like map (100 m×100 m) consisting of three

horizontal and perpendicular roads with zero traffic lights. The reason that we chose this road

networks is the increased probability of traffic jams generated from the unsupervised four-way

intersections. Each road consists of four-lanes (two lanes per direction), and each lane is 3.2 m-

wide. Using the SUMO traffic generator [169], we generated realistic vehicle traces for both the

e-CAVs and r-CAVs. e-CAVs were generated with a probability of 15%. A vehicle being of type
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Figure 6.2: CDF for the link utilisation for all CAVs, and for different matching capacities and
beamwidths. The radius is equal to R = 20m.

e-CAV implies that will move twice as fast compared to an r-CAV, will be impatient, i.e., will

make manoeuvres to overtake other vehicles and will be willing to impede other vehicles with

higher priority on the road (e.g., crossing an intersection without using the right-of-way rule). For

our channel model [177], we used the same simulation parameters as in Chapter 5. A summary

of all the parameters can be found in Table 5.1 firstly introduced in Chapter 5.

Each r-CAV randomly selected the amount of sensor data it generates from g ∈ {0.25,0.5,0.75,1}

(in Gbps per timeslot). All e-CAVs constantly generated 1 Gbps of sensor data. The different

radius used are R ∈ {20m,30m,40m}. Two different beamwidths were used (θ = 5° and θ = 15°),

to investigate the effect of the different antenna beamwidths on our system. Finally, 20 CAVs

were used for our scenario. This density was carefully chosen in order to generate a small traffic

jam within our network in order to exploit the increased number of links that each CAV can form.

6.4.2 Simulation Results

At first, we evaluated the link utilisation (per timeslot) for our system, defined as the amount

of data exchanged, over the maximum data rate rmax. The results can be found in Fig. 6.2. The

radius used was R = 20m and different results are presented for the two different beamwidths.

As shown, increasing the capacity, significantly increases the link utilisation as well. This is

because a CAV, being able to form multiple links, tends to better utilise its channel compared

to the baseline case where ci = 1, i.e., only point-to-point links are formed. As discussed before

this is due to the estimation that vehicles will not always transmit the maximum amount of data

required to saturate the channel. Observing the different beamwidth results, we can see that

there no significant difference, having the case of θ = 15° being slightly better compared to the

θ = 5° scenario.

However, using a bigger radius (R = 40m), the results significantly change as shown in
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Figure 6.3: CDF for the link utilisation for all CAVs, and for different matching capacities and
beamwidths. The radius is equal to R = 40m.

Fig. 6.3. Again, we observe that the link utilisation increases as the matching capacity is

increased. However, we notice that there is a big difference comparing the results for the two

beamwidths. Using a narrow beamwidth, we increase the antenna gain and consequently our

data rate. However, a greater data rate implies that this factor will dominate our utility function.

So a CAV will prefer surrounding vehicles providing increased channel data rate, i.e., the closest

ones, as the SINR is a function of the distance, and not the ones with the more sensor data to

offer.

On the other hand, a wider beamwidth increases the link utilisation compared to the narrower

case. A wider beamwidth implies that the increased data rate will not dominate our model and

vehicles with more sensor information available will compete for the association. This increased

offer of data increases the utilisation of our channel and improves our system performance.

Taking into account the observations of Chapter 5, we can say that a wider beamwidth will make

our system more tolerable to beam misalignment problems. This is very important, especially

for e-CAVs where beam misalignments might lead to lost or delayed sensor information thus,

delays in their manoeuvres. We showed that the optimum values for the beamwidth are between

θ ∈ [17,21,24] (depending on the different errors) so the beamwidth we used was very close to

these values.

Comparing Figs. 6.2 and 6.3, it is worth noting that increasing R, the dissimilarity of the link

utilisation increases as well. This is because the increased number of vehicles within R leads to

more blocking pairs and less stable matches. For R = 30m, the results are similar to the above

cases lying between the two cases mentioned earlier. These results can be seen in Fig. 6.4.

Fig. 6.5 presents the average data exchanged (sent and received) for each CAV within a

timeslot. As expected, increasing the matching capacity will improve our system performance

compared to the baseline point-to-point links. Later, comparing the exchanged data between the
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Figure 6.4: CDF for the link utilisation for all CAVs, and for different matching capacities and
beamwidths. The radius is equal to R = 30m.
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Figure 6.5: Average data exchanged per timeslot for each CAV (either for all CAVs or individually
each e-CAV). The beamwidth is θ = 15°.

e-CAVs individually and all the vehicles in the system, we observe that our approach prioritises

the traffic towards e-CAVs as intended. Starting with ci = 1, e-CAVs exchange roughly the same

amount of data as the remaining vehicles. However, when the capacity is increased, the average

exchanged data with e-CAVs becomes greater compared to the remaining vehicles. It is worth

noting though that the average performance throughout the network remains almost constant

even though the increased capacity leads to a reduced number of stable matches and therefore,

less association time. Finally, we observed better performance for R = 40m and for ci = 2 and

ci = 3, whereas when ci = 4, the maximum achieved data exchanged was observed when R = 20m.

This is because the increased matching capacity and radius reduce the number of stable matches,

consequently changing the performance of our system.
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Figure 6.6: Average access to sensor data per timeslot for each CAV (either for all CAVs or
individually for each e-CAV). The beamwidth is θ = 15°.

Similarly, in Fig. 6.6, the average access to regional sensor data via the paired CAVs is

presented. Again e-CAVs have access to more data compared to r-CAVs (~4.2 Gbps to ~5.5 Gbps

for ci = 4 and R = 20m). This value is almost doubled for R = 40m (~4.6 Gbps to ~7.4 Gbps). The

above will have a direct impact in the manoeuvrability of e-CAVs as they will have access to

more sensor data. Also, and as shown, our system does not limit the sensor data access to the

remaining CAVs. The performance when θ = 5° is similar to the aforementioned ones (Figs. 6.5

and 6.6).

6.4.3 Complexity and Stability Analysis of Stable Fixture Matching Game

In the previous sections, we described our approach for a V2V association scheme using the

Stable Fixture matching game. As described in [118] this is an algorithm with complexity of O(m).

From the computational complexity theory, as introduced in Computer Science, we know that

O(m) implies that the complexity of an algorithm will grow linearly and in direct proportion to

the size of the input data set. In that particular case, the input data set is the number of vehicles

involved in the game. Also, this will be the worst-case scenario; that means that when a break

criterion is introduced the estimated execution time decreases. This is the case of Phase 2 of our

algorithm. When the two stability criteria are not met the execution of the algorithm will stop,

and the system resources will be freed for other processes.

Given the inability of the vehicles to form NLOS links due to the propagation characteristics

of mmWaves, and the relatively short range that the signal can still be decoded, the formulated

links will be within a short radius around a given vehicle. This implies that the starting initial

input of vehicles participating in the matching game will be small. Of course, the number of
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vehicles is related to the road layout, the number of lanes and the speed of vehicles. Generally, we

can say that the worst-case scenario for moving vehicles, is the scenario that the target vehicle is

in the middle of an intersection being exposed to vehicles coming from all the different directions.

For simpler scenarios (e.g., a straight road) the number of potential vehicles to participate in the

game is limited to the ones that are in front of behind our target vehicle.

For an SF matching game, that is an algorithm with linear complexity as described before,

having a small input data set means that the required execution time will be short as well.

To demonstrate the time required for finding a solution, we designed a simple example on our

Matlab simulator. The scenario is a cross-junction (the worst-case scenario as discussed before),

with two lanes per direction (four lanes per road). A vehicle was positioned at the centre of the

intersection, in order to have LOS with all four roads surrounding it. To generate the traffic

density, we took the upper limit before a “breakdown” occurs and causes a severe traffic jam.

This limit is 67 vehicles per mile per lane [183]. Given that a vehicle will be interested in being

connected to a vehicle that is in close proximity (≤ 40m) and assuming that the vehicles are

equally spread on the road, we calculated the number of CAVs surrounding our target vehicle,

i.e., ~27 vehicles. That means that 28 vehicles participate in our matching game.

In order to calculate the execution time, we utilised timeit function from Matlab. The timeit

function calls a specified function multiple times and returns the median of the measurements.

The system utilised was a PC with specifications: Intel i7 3.7 GHz, 16 GB RAM, Ubuntu 18.04

LTS, Matlab 2017b. For the above scenario, the returned average was 11 ms. Of course, this is the

upper bound for the worst-case scenario and it is system-dependent. The execution time depends

on the processing power of the given system. Also, Matlab does not operate very fast when an

algorithm is designed with nested loops as in our case. It is expected that if this algorithm is

designed in a real-world system using a faster programming language (e.g., C++), will operate a

lot faster. All in all, the above observations prove that our algorithm could potentially be utilised

for a real-world system design.

In terms of the stability analysis, the two main factors that affect the stability ratio is the size

of the input data set and the requested matching capacity per vehicle. For both factors, the bigger

the value the more decreased the stability ratio will be. An example can be found in [117], where

the authors calculated the stable matching ratio for a constant value of matching capacity and

different number of vehicles as an input, under an LTE-V2X scenario. Similarly, we calculated

the stable matching ratio for the above-mentioned scenario (the cross-shaped intersection) for a

matching capacity of 4 and different number of vehicles. The results can be seen in Table 6.1 and

show the stable matching ratio achieved from all vehicles participating in the game. As shown,

as the number of vehicles participating in the game is increased, the number of stable matches

is decreased, never though going below 87.1%. As described in [118], there are algorithms that

lead to the notions of weak stability, strong stability and super-stability relaxing the stable or

unstable nature of the SF matching game [184, 185]. These could potentially be incorporated in
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Table 6.1: Stable matching ratio as a function of the number of vehicles.

Vehicles Number 5 10 15 20 27

Ratio 98.2% 96.7% 92.5% 89.9% 87.1%

the system in the future, to enhance the further performance.

6.5 Conclusions

Following Chapter 5, in this chapter we presented a novel association scheme for V2V mmWave

links. As described above, our system operates in a heterogeneous manner and can enhance

the cooperative autonomous driving for the next-generation CAVs. We formulated a utility

function based on the information encapsulated within DSRC CAMs. Based on the outcome of our

formulation, we prioritise the generated sensor data towards the higher priority CAVs, without

though limiting the network access to the rest of the vehicles. We solved our formulated problem

using a tool from the Matching Theory field, called Stable Fixtures matching game. When played

between the vehicles, the outcome is a list of multipoint-to-multipoint links that combined can

increase the network throughput and the channel utilisation for all CAVs. The performance of

our system was compared with the traditional point-to-point link association scheme that is

usually used for mmWave communications. The performance of our system was evaluated using

realistic mobility traces to approach a real-world-like implementation. Utilising the approach

mentioned above, e-CAVs at first and the remaining CAVs later, are expected to have enhanced

access to valuable sensor data from their surrounding environment enhancing their cooperated

manoeuvrability and consequently the road safety.
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7
EFFICIENT MILLIMETRE-WAVE INFRASTRUCTURE PLACEMENT

FOR CITY-SCALE ITS

7.1 Introduction and Contributions

7.1.1 Introduction

In this chapter we address the problem of the efficient mmWave-RSU placement within an

urban environment. As discussed before, especially in dense urban environments, mmWaves-

RSUs will significantly improve the performance of the small-cell access networks [120], as

they can enable gigabit-per-second data rates and ultra-low latency for V2I links. RSUs are costly

to deploy and maintain. Therefore the desirable number of positions and their location should be

carefully chosen. Choosing the suitable locations is vital to improving the network performance,

and an efficient and agile method is required, that can operate under different scenarios and

environments.

For the remaining of this chapter, we will present our strategy that can automate the mmWave-

RSU placement. We take into account the unique road and building layout as well as the LOS

requirements and the strict propagation characteristics of the mmWaves technology. To find

the best positions, we will incorporate the QoS constraints of vehicular applications within our

problem formulation, considering two KPIs that need to be fulfilled. The first one is the LOS

network coverage achieved after all RSUs are deployed and the second one is the RSS averaged

throughout the considered deployment area. The rest of the chapter is organised as follows.

In Sec. 7.2 we describe our system model and how we identify the candidate RSU positions.

In Sec. 7.3 we formulate our optimisation problem and outline our proposed strategy. Sec. 7.4

summarises our performance investigation where we compare the aforementioned deployment

strategies. Finally, Sec. 7.5 summarises our findings.
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7.1.2 Contributions

The contribution of the author for Chapter 7 is the following:

• Designed a scalable system that is able, given a city-map, to identify the potential RSU

locations, based on Computational Geometry.

• Developed a model that can find the best mmWave-RSU locations given an initial set of

positions.

• Identified the QoS requirements needed for a city-scale implementation and integrated

them within the given problem and the proposed algorithm.

• Developed a simulator in Matlab, implementing the above system, that can automate the

RSU selection process.

• Simulated in Matlab the different scenarios, comparing the above algorithm with an

implementation of a Genetic Algorithm (GC) and a Greedy Construction (GC) algorithm

and examined the numerical results.

The contents of this chapter were submitted for publication at the conference:

• IEEE Vehicular Networking Conference (VNC) 2018.

7.2 System Model

We consider an urban city map M with dimensions
[
Mx,My

]
, measured in meters. Let C ,

{1, . . . ,C} denote the candidate RSU positions, with all being within the boundaries of M. For

all the above positions we denote as D, {1, . . . ,D} the positions chosen to deploy an RSU, and

R, {1, . . . ,R} the rejected ones. We have that D⊆C, R⊆C, D∪R=C, and D∩R=; hold.

Our RSU placement algorithm works in two steps:

1. At first, we identify all locations C to deploy an RSU employing tools from Computational

Geometry.

2. Then, we choose a subset D⊆C in order to maximise the outdoor coverage and the RSS for

the entire map.

In our system model, we assume that all the RSUs are mounted at the height of a lamp post

or a traffic light. By that, we avoid most of the low-level obstacles (e.g., kiosks, vehicles, trees,

etc.). For simplicity, we consider a 2D network planning. Finally, we refer to OpenStreetMap [186]

to obtain our city maps.

The problem of identifying C can be approached by using tools from Computational Geometry.

Similarly to [130], we introduce the notions of Simple Polygon (SP) and Polygon With Holes (PWH)
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Figure 7.1: Example of how adjacent buildings (left), are concatenated to a single polygon (centre)
at first, and the inside holes are removed (right), using the union polygon operation [4]. By that,
we can decrease the execution time of our simulation.

in our system, describing the buildings and the roads, respectively. For the buildings, we process

the map data acquired to generate an SP for each city block. Similarly, the road data are parsed

to generate a PWH representing the roads in our system. All the SPs are used to determine if a

link is in LOS or not.

7.2.1 Identifying Potential RSU Locations

An SP is considered a flat shape consisting of straight, non-intersecting line segments, that, when

joined pair-wise, they form a closed path. In our system, all buildings E, {1, . . . ,E} are considered

as SPs, with the sides of the buildings being the sides of the SPs. Given a city map, many SPs

have adjacent sides, being part of the same city block Bi. These buildings can be concatenated

using the polygon union operation [4] to decrease the execution time. Concatenating all the

adjacent SPs, we usually end up having a hole in the middle (e.g. a courtyard). Removing the

inner holes of all city blocks and representing the entire city block as an SP, we are given a

new set of SP B, {1, . . . ,B} that can use to find the LOS coverage rate. An example of the above

operation can be seen in Fig. 7.1.

On the other hand, PWH is a polygon with an irregular shape that contains one or more holes

or cutouts in it. As mentioned before, we assume that the RSUs will be placed either on lamp

posts or traffic lights. OpenStreetMap data represent the road as a solid line. However, having

access to the metadata of each road with, we can later accurately calculate the different polygons

representing each road. Each polygon is later concatenated with the others, having finally a

concave PWH that will be used for the RSU placement.

Knowing the generated SPs and PWHs, we can identify C for a given map. Our algorithm

searches along the sides of PWHs for sharp edges and long straight sections. The edges, being

the corner of two roads, are usually the best positions for an RSU, as they can maximise the LOS

coverage (as shown in [127]). We also consider the length of a road. A road qualifies as long when

the distance between two intersections is greater than a given threshold RSUt. For any long road,

we consider more possible positions, equally spaced between the two intersections. The number

of these positions is given as the ceiling function from the division of the length l i of the road i,
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over the given threshold, i.e. dl i/RSUte. Combining both lists, C is found.

7.3 Problem Formulation and Solution

Given C, the objective is to find D⊆C to maximise the network coverage and achieve a minimum

RSS throughout the network. The LOS coverage rate is modelled by equally spacing Z, {1, . . . , Z}

grid points on the map with equal weights. Each point represents a squared tile having the same

RSS throughout its surface. Using a tile-like approach with relatively small tiles, we can decrease

the processing power required without having a significant loss of accuracy.

We determine D by taking into account two different constraints. For a given Z, we consider a

set of N reference points, with N⊆Z, being the grid points on top of the road polygons. We define

the binary variable γn, to denote the state of a reference point n at location (x, y) as follows:

(7.1) γn(x, y)=
1, if n is covered by at least one RSU

0, otherwise

Our first constraint imposes that all at least |N| tiles are in LOS with at least a RSU, i.e.:

(7.2)
|N|∑
n=1

γn(x, y)≥ τ |N|

where τ ∈ [0,1], is a tolerance factor that can relax the constraint.

We say that Ptx and Gtx are the transmission power and antenna gain of each RSU. Also,

LLOS(d) signifies our propagation loss at a distance d. Given the above, we can calculate the RSS

for each tile as RSS(d) = Ptx +Gtx −LLOS(d), with LLOS = 10n log10(d)+Catt. For all D, there

is a number of tiles K i that surrounds it. Each tile can be served by more than one RSU. We

define as maxi∈{1,...,τ |N|} {KRSS
i } the highest received RSS from all RSUs that serve this tile. The

interference between the deployed RSUs is not taken into account. For the entire covered area,

we sort all tiles with respect to their received RSS value, we take the first τ |N| and denote them

as RSSmax
i,k . Our second constraint ensures that a target number of tiles has an average RSS that

is greater than or equal to a threshold RSSth:

(7.3)
|D|∑
i=1

τ |N|∑
k=1

RSSmax
i,k ≥ RSSth

7.3.1 Problem Formulation

Let eC be the vector that defines the state of each RSU i in C. We have:

(7.4) e i =
1, if i is deployed

0, if i is not deployed
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Figure 7.2: Example of 12 RSUs chosen for Manhattan by our strategy with their corresponding
RSS. The street geometry affects the perceived RSS.

In order to find the best RSU locations, our problem is formulated as the minimisation of

(7.4). More specifically, we have:

Minimise
e1,...,eC

|C|∑
i=1

e i(7.5a)

subject to:
|N|∑
n=1

γn(x, y)≥ τ |N|(7.5b)

|D|∑
i=1

τ |N|∑
k=1

RSSmax
i,k ≥ RSSth ,∀i ∈D(7.5c)

e i ∈ [0,1] ,∀i ∈C(7.5d)

RSSmax
i,k for k in LOS ,∀i ∈D(7.5e)

where the above are the constraints described in (7.2) and (7.3). Also, the RSS is calculated for

all tiles being in LOS with a RSU, i.e. a SP does not block the link. An example solution for a

small urban area can be seen in Fig. 7.2. In this particular example, we can observe the effect of

the street geometry on the RSS.

7.3.2 Proposed Algorithm

To solve (7.5a)-(7.5e), we propose a novel algorithm to calculate the list D. A city-scale RSU

placement problem can be computationally expensive. So, we designed our algorithm to operate

in three phases, to minimise the execution time. Our algorithm (Alg. 5) works are as follows:

Phase 1: We start by calculating the number of tiles k
′
i required to achieve a mean RSS value

greater than or equal to RSSth for all C. Later, we iteratively add to D the RSU with the most
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Algorithm 5 Agile RSU Placement
Output: Return lists with RSUs: D and R

Phase 1:
1: Calculate the tiles k

′
i required to achieve the RSSth for each C

2: while Constraint (7.5b) not met do
3: Find served tiles in the system and remove from lists k

′
i .

4: Find RSU i with the longest k
′
i list and add it in D.

5: end while
Phase 2: – Skip if (7.5b) and (7.5c) are met.
6: while Constraint (7.5c) is not met do
7: for all RSUs in C 6∈D do
8: Calculate number of non-covered tiles that they can serve.
9: end for

10: if Non-covered tiles on map then . i.e., (7.5b) is not maximised
11: Find RSU i that covers the most non-covered tiles.
12: Add i in list of chosen RSUs D.
13: else
14: for all RSUs in C 6∈D do
15: Calculate the potential mean RSS if RSU is chosen.
16: end for
17: Find RSU i that maximises the mean RSS for the system.
18: Add i in list of chosen RSUs D.
19: end if
20: end while
Phase 3:
21: repeat
22: for all RSUs i in D do
23: Find k in C 6∈D that improves constraints (7.5b) and (7.5c).
24: Replace i with k.
25: end for
26: until D cannot be improved more . i.e., no more swaps can be done

non-served tiles within RSSth found before, until constraint (7.5b) is met. Thus, we ensure a

sufficient amount of coverage in our system in a fast greedy-addition-like fashion. If (7.5c) is also

fulfilled, we proceed to Phase 3. If not, we continue with Phase 2.

Phase 2: We add more RSUs in the system until both constraints are met. We identify the non-

covered areas of the map and prioritise our RSU placement towards them, as this can increase

our system performance. Then, we find the areas that are not adequately served by the existing

RSUs, and we add RSUs that can fulfil (7.5c). When both constraints are fulfilled, we have two

admissible lists D and R and we proceed to the next phase.

Phase 3: From the above two phases, we may not always achieve an ideal solution for D. This

happens especially when the requirements for a specific scenario are more relaxed (e.g. a low

coverage rate is required). To improve the performance at this point, and we search in R if it

exists an RSU that can improve (7.5b) or (7.5c). If so, we replace these two. We iterate, until no

other RSUs can be swapped, meaning that we have our final D.
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Table 7.1: List of map areas used and simulation parameters.

Urban Area Manhattan, NY, USA Paris, FR
Centre −73.9841°W ,40.75545°N 2.33235°W ,48.875°N

Number of Maps 2×2 2×2
Map Size

[
Mx,My

]
1 km × 1 km 1 km × 1 km

Area of Interest 900 m × 900 m 900 m × 900 m
Grid-Tile Size 4m×4m 4m×4m

Parameter Symbol Value
Transmission power Ptx 10 dBm

TX Antenna Gain Gtx 15 dBi
Path-Loss Exponent n 2.66

Channel Attenuation Catt 70 dB
Distance Threshold RSUt 100 m

7.4 Simulation Results

Our strategy is compared against a GC and a GA approach. GC is scalable, but it cannot fulfil the

required KPIs, as it does not take into account the RSS threshold. The second one is notoriously

computationally expensive but generates high-quality solutions. We test all the algorithms in two

urban areas from Manhattan (New York, USA) and Paris (FR). An average road lane is 2.9 m to

4.6 m wide. Therefore, we considered a grid with a side equal to 4 m, so each tile covers roughly

the width of a road lane. The considered areas and the simulation parameters are summarised in

Table 7.1.

Each area is 4km2 and divided into four equal sections. Each section is considered as an

independent map in our simulation with dimensions
[
Mx,My

]
and a surface of 1km2. The centre

coordinates given in Table 7.1 present the point that the edges of all four sections meet. For

each section, we consider an area of interest of 810m2, to avoid border effects. Four different

tolerance parameters are considered, namely, τ ∈ {0.85,0.90,0.95,0.99}), with 90% being an

average coverage rate, while 99% being the extreme case. Also, four RSS thresholds are considered,

namely, RSSth ∈ {Inf,−90,−84,−79}. The first value signifies the case where no RSS threshold is

considered. The last one was chosen based on the sensitivity threshold of IEEE 802.11ad, i.e., the

minimum RSS (without considering the RX antenna gain) to achieve one-gigabit-per-second data

rate.

In Fig. 7.3, we present the RSS results per-tile for Manhattan and τ= 0.99. We observe that

GC always produces similar results, comparable with our scheme (when the RSS constraint is

disregarded). That is because GC cannot take into account the RSS threshold. Obviously, as the

RSSth is taken into consideration, we observe that both our algorithm and GA perform better than
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Figure 7.3: The empirical CDF of the RSS for the map of Manhattan. A tolerance τ= 0.99 and
three different RSSth were used for this scenario.

Figure 7.4: The empirical CDF of the RSS for the map of Paris. A tolerance τ= 0.90 and three
different RSSth were used for this scenario.

GC. In particular, our strategy achieved a city-wide mean RSS of −83.6 dBm and −78.9 dBm, while

GA achieved −84.3 dBm and −79.2 dBm for RSSth =−84dBm and RSSth =−79dBm, respectively.

Similarly, Fig. 7.4 presents the RSS results for Paris and τ = 0.90. Again, GC algorithm

behaves as before, having similar performance for all thresholds and being comparable with

our algorithm when RSSth is not taken into account. However, the main difference compared

to the Manhattan results is the performance difference between our algorithm and GA. We

observed that, even with relaxed parameters GA always finds an extreme solution (mean RSS of

−78.8 dBm and −78.5 dBm for RSSth =−84dBm and RSSth =−79dBm respectively), while our

algorithm behaves as before (mean RSS of −86.2 dBm and −80.8 dBm). This is because of the

highly irregular building shapes of Paris, compared to the grid-like shape of Manhattan, making
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Figure 7.5: The number of RSUs (Manhattan), given by all algorithms, for all different tolerance
parameters. The RSSth is equal to −84 dBm.
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Figure 7.6: The number of RSUs (city of Paris), given by all algorithms, for all different tolerance
parameters. The RSSth is equal to −90 dBm.

it very difficult for GA to find the best RSU positions in the city and always getting stuck to a local

maximum. For both cities, all the algorithms behave similarly for other tolerance parameters

and will not be presented here due to the limited space.

In Figs. 7.5 and 7.6, we present the number of RSUs required to fulfil the QoS constraints

required, for all τ. Fig. 7.5 refers to the Manhattan scenario, for RSSth =−84dBm. Once more,

GC utilises fewer RSUs, but it does not take into account the RSSth. Comparing the number of

RSUs obtained with the proposed approach and with GA, we observe that our scheme ensures

a reduction of up to 50% in the number of RSUs compared to GA. From Figs. 7.3 and 7.5, we

observe that our algorithm achieves comparable results, fulfilling the QoS requirements with

a smaller number of RSUs. Moving on to Fig. 7.6, the difference between the number of RSUs

and the two algorithms is greater, having GA solving our optimisation problem with almost eight

times as many RSUs. Again, as before, this is because of the irregularity of the building and road
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shapes.

7.5 Conclusions

In this chapter, we propose an agile and efficient strategy for city-wide mmWave-RSU placement.

We present a scalable algorithm, able to compute high-quality RSU deployment on a map. In

doing so, the proposed strategy takes into account two KPIs for vehicular communications – the

coverage rate and the RSS threshold. Our approach is compared to the GC and GA strategies. GC

is fast and scalable, but it cannot satisfy the above mentioned KPIs, while GA is computationally

expensive. We showed that our strategy meets target coverage constraints with a smaller number

of RSUs, making it a suitable solution for large-scale experimentation.
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8
CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

The work in this thesis was motivated by the need to build an agile communication

framework, able to accommodate the exchange of sensor data and manoeuvring intentions

within a next-generation C-ITS and the forthcoming autonomous vehicles. CAVs, becoming

cooperative entities, require the exchange of sensor data with stringent QoS constraints, such as

multi-gigabit-per-second data rate and ultra-low end-to-end latency. Therefore, an efficient, highly

reliable and robust communication plane is of paramount importance. While existing technologies

have been preliminarily employed around the globe to accommodate vehicular applications data

in their infancy, we identified the need for more sophisticated solutions to meet the strict QoS

requirements of the future. Our work focused on the design of a novel heterogeneous C-ITS

framework able to handle scalable city-wide ITS application data streams. Having in mind

the necessity for large-scale deployment we experimented using both real-world field trials and

simulation models for sizeable scenarios. We tackled different drawbacks of our envisioned system,

evaluating at first the performance of the existing solutions and proposing novel algorithms to

overcome the current problems. More specifically, the thesis main contributions per chapter are

as follows:

• Chapter 3: We presented our envisioned C-ITS multi-RAT architecture that will enhance

the CAV-related MaaS paradigm. Our system components, i.e. the Decision-Making Agent,

the ITS Agent and their sub-components can provide the necessary flexibility, manageability

and configurability required for a C-ITS framework. Incorporating an SDN-like design

with Fog and Cloud computing capabilities, we can not only enable the central system

coordination of a city-scale implementation, but also intelligently allocate the existing

resources, accommodate different data streams, and fulfil the demanding QoS constraints.

We envision our paradigm to play a pivotal role in the next-generation C-ITSs. However, we
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understand the complexity of the above-mentioned system and the time and effort required

for a city-scale deployment. This difficulty arises from the need to precisely design, test

and integrate the different system components before they harmonically cooperate as a

whole. With that in mind, for the remaining contribution chapters, we focused on various

subsystems of our framework, delving specifically into IEEE 802.11p/DSRC and mmWave

wireless technologies. For the above, we identify existing problems and propose solutions to

overcome them.

• Chapter 4: IEEE 802.11p/DSRC is with no doubt a technology that has been evaluated and

enhanced with numerous ways from the research community in the past years. Though, we

identified that most research activities are either based on inaccurate simulation models

or test the performance of small testbeds, usually within the control environment of a

laboratory. An algorithm, to move from the experimental phase to becoming a standard

and be used in the real world, needs a more precise evaluation approach. In this chapter,

we described at first how OMNeT++ Veins-INET could be microscopically calibrated to

represent the reality better. We based our calibrations on a number of control outdoor

experiments within different environments and shown that especially for longer distances,

the existing simulation models are inaccurate. We also described the steps to incorporate

different device profiles into an existing simulation framework and the benefits from that.

Later, we discussed the necessity for large-scale performance evaluation of the vehicular

communication framework. However, a city-scale evaluation significantly increases the

computational complexity, making the evaluation almost prohibitive with the existing

software and hardware tools. Especially, for a full-stack simulation framework like OM-

NeT++ Veins-INET, the complexity is of O(mn2). To overcome this problem, we proposed

our multi-threaded version of OMNeT++ Veins-INET that is able almost to halve the

required simulation time. By that, it becomes more feasible to evaluate the performance

of larger city-wide scenarios. To take that one step further, we designed and deployed a

city-scale ITS-G5 network around the City of Bristol, based on the current standards. We

also conducted some preliminary real-world large-scale field trials using two vehicles and

three RSUs. Some key findings from our experimental campaign are the need for more

sophisticated MAC-layer schemes as well as the benefits of a Fog-computing infrastructure.

The above research activities gave us an excellent insight into how a network simulator

operates and how it can be enhanced. We also gained valuable experience in the area of

large-scale deployments and how to design an experimental testbed. Of course, our design

is not perfect. We identified the various drawbacks and described them in this chapter, and

we intend to fix them in the future. We also came up with promising ideas, that will not

only enhance our system but will be able to get us one step closer to making CAVs part of

our everyday life.
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• Chapter 5: This chapter presented the first step towards the integration of the different

technologies we discussed in Chapter 3 and accommodate the needs for a C-ITS. Our

work is based on a heterogeneous intelligent beam steering algorithm for mmWaves. Our

strategy uses out-of-band information and a motion prediction algorithm to steer the beams

accordingly. We also present an overhead analysis of the IEEE 802.11ad beamforming

process in order to strengthen the benefits of our novel design. More specifically, our

performance investigation shows that our overhead-free algorithm outperforms the legacy

beamforming technique both concerning the average data rate and the overall network

throughput performance. Introducing two beamforming algorithms, we provided an all-

around model for different scenarios and conditions.

Our proposed solution could still be optimised in a variety of ways. For example, we

conducted a preliminary analysis of position error, its relation with the RSU position

on the road and how it affects the network throughput performance. This can be further

investigated in the future and come up with more optimisation algorithms based on different

scenarios. Furthermore, access to real mmWave devices will benefit our research activities

as we will be able to evaluate our algorithms in the real world.

• Chapter 6: This chapter presented a novel association scheme for V2V mmWave multipoint-

to-multipoint links that prioritises traffic towards emergency vehicles, without though

dictating the channel and degrading the service for the regular vehicles. We build on top of

our heterogeneous system utilising both IEEE 802.11p/DSRC and mmWaves technologies,

described in the previous chapter. Our formulated utility function is based on the infor-

mation encapsulated within DSRC CAMs. The physical constraints always limit the link

capacity. Also, mmWaves are usually point-to-point links. However, using out-of-band infor-

mation, we can easier form multipoint-to-multipoint links and later, allocate the resources

better and enhance the exchange of valuable sensor data between the vehicles. This will

enhance the cooperated manoeuvrability of CAVs and consequently the road safety.

However, our approach assumes perfect CAM message delivery rate. The integration of

a real-world CAM delivery behaviour will make our system a better representation of

the reality. Furthermore, we always considered ideal beam alignment. Introducing the

beamforming concept in the future will help us investigate how our system behaves under

various environments and conditions. Finally, the effect of the physical size of the vehicles

and their different profiles was not examined, as well as and their blockage effect, and this

is considered a useful extension for the future.

• Chapter 7: The final chapter of this thesis proposed an agile and efficient strategy for city-

wide mmWave-RSU placement. We designed a scalable algorithm, that takes into account

the coverage rate and the RSS threshold for vehicular communications, and computes a

high-quality RSU deployment on a city map. We compared our algorithm with Greedy
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Construction and a Genetic Algorithm. Our performance evaluation showed that even

though the first one is scalable and fast, it cannot satisfy the above KPIs, while the later, is

not easily scalable and not suitable for all environments. Our strategy, outperforming both

GC and GA, and meets the given constraints with a smaller number of RSUs. This makes

it a suitable solution for large-scale experimentation.

However, our algorithm only considered the link quality when one vehicle should be served.

Using realistic mobility traces, we intend to evaluate the performance when more than one

vehicles should be served from one RSU and extend our algorithm to meet the increased

QoS requirements. Furthermore, a Cell Switch-Off (CSO) approach on top of our placement

algorithm can benefit our system. By that, we can adapt the number of enabled devices

based on the system requirements and the number of CAVs that should be served on each

road. The policies from a system like that can be applied in an SDN-like fashion.

All the above contributions are viable solutions for a next-generation C-ITS as they meet the

strict QoS constraints of vehicular applications. As said before, C-ITSs and CAVs are still in their

infancy, and we discussed future research directions that will enhance their performance. All

things considered, the author believes that the above contributions can bring us one step closer

to the cooperated manoeuvring between CAVs, inching towards using them in our everyday life

and having as an ultimate goal to provide safer means of transport for everybody.

8.1 Future Research Directions

The previous section presented a critical review of the main contribution of this thesis. Different

aspects of the connectivity within the context of a C-ITS were investigated, such as the integration

of the existing wireless technologies in a vehicular communication framework and how their

performance can be enhanced, multi-RAT architecture designs accommodating scalable sensor

data, calibration of the existing experimental tools in order to achieve a more meaningful

performance evaluation, real-world trials to perceive the performance of a city-scale testbed

under various conditions, etc. However, even though the above topics were investigated, the

connectivity of self-driving vehicles is still in its infancy, it is an ongoing area of research, and it

is by no means complete. In this chapter, we will discuss the directions that the author believes

could lead to fruitful research topics in the future.

8.1.1 Enhanced V2X mmWave Beam Steering

Chapter 5 presented a novel beamforming algorithm for mmWave-V2X communications, named

as SAMBA. Our algorithm can align the mmWave beams using out-of-band sensor information

exchanged via a DSRC link, reducing the beam training overhead and time required, while

increasing the data-rate. SAMBA was evaluated under a dense urban environment for V2I links.
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In the future, the performance of our algorithm under a V2V scenario could be evaluated. As

discussed in Chapter 5, the performance is affected by the relative difference in the direction of

the two vehicles. Given the differences between the azimuth (both northing and easting) and

the elevation plane, it is expected to see significant differences under various scenarios. Solving

the above problem performance degradation under a V2V scenario will probably require more

sophisticated algorithms for the motion prediction of the vehicles.

Furthermore, in our algorithm, we did not consider multiple vehicles being connected with

the same RSU within the same BI. Our algorithm assumes that an RSU is always connected to its

closest vehicle. Introducing a real-world-like system, where multiple vehicles will be served from

one RSU within one BI (using a resource allocation algorithm, as in Chapter 6), will introduce

the problem of blockage from the nearby vehicles. This is an exciting problem for investigation

and a step closer to a real-world implementation. Also, our system will be benefited by a 3D

representation model. As it stands right now, a 2D system was considered. However, in the

real-world-like system, the elevation angle should be taken into account as well.

8.1.2 Improving V2X Multipoint-to-Multipoint Association Policy

Chapter 6 described our novel algorithm for a multipoint-to-multipoint link establishment

for V2V communications. Our work can be further extended and approach a real-world-like

implementation by taking into account all the transmission and alignment delays introduced

from the mmWaves links. More specifically, a theoretical analysis can be performed, to accurately

calculate the alignment time penalties under different scenarios and number of vehicles. This

can be later combined with our introduced motion prediction algorithm in Chapter 5, to have a

more accurate representation of the alignment delays and the position of the vehicle every BI.

What is more, our resource allocation strategy did not take into account a queuing model

and the buffering of the various packets. Upon arrival to a certain queue, a packet can be either

transmitted or dropped if expired. The time a packet spent in the queue contributes to the overall

delay discussed before. If a link between two vehicles is active, but the channel conditions are not

good enough to deliver all the pending packets, and a new traffic arrival event is initiated, all

the old packets will be dropped from the queue. Using this assumption, newer traffic could be

prioritised and ensure minimum-delay communication for the demanding next-generation C-ITS

applications. Similar activities can be found in [114, 187].

8.1.3 Enhanced Models for better Representation of the Reality

Throughout this thesis, and for all the chapters related to mmWaves, we utilised a generalised

shadow fading model to represent our variation of the signal attenuation. Furthermore, we did

not consider the impact of the interference in our performance evaluation. Finally, all the above-

presented works did not consider NLOS communication scenarios. As it was proven in [188], the

wall reflections at the frequency band of 60 GHz can affect the perceived signal, when being in
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close proximity to a wall. As it was shown, the first reflection can constructively or disruptively

affect the signal. Especially under a dense urban scenario, it is expected that the reflections from

a building or the surrounding vehicles, will probably reach the target device.

The author of this thesis believes that utilising more accurate propagation models based on

real-world measurements and a model to calculate the impact of the interference, will provide

a better representation of the reality for all our proposed solutions. Of course, an approach

like that will increase the time required for the performance evaluation as it will increase the

computational complexity, as discussed in Chapter 4. To that extent, a careful selection of the

appropriate models is required in order to compensate between the required accuracy and the

computational complexity.

8.1.4 Improvements in IEEE 802.11p/DSRC Testbed - Centrally Managing a
Fog Area

In Chapter 4 we described our efforts in designing an agile calibration method for IEEE 802.11p

and Veins-INET simulation framework, we presented our research activities on parallelising

the framework mentioned above and discussed our preliminary results using our experimental

testbed for a real-world experimental campaign. One of our key observations was that the

legacy IEEE 802.11p/DSRC standard lacks a sophisticated MAC-coordination scheme and the

co-existence of various vehicles can cause significant interference problems. This is an ongoing

area of research for several years (e.g. [189, 190]), however to the best of our knowledge all these

proposed solutions have not been tested on a real-world environment. Using an experimental

testbed as the one we designed, it will be a great activity to investigate the performance of

existing or newly designed algorithms further and perceive their real-world behaviour.

Furthermore, we identified the necessity for a Fog-computing infrastructure and the re-

quirement for clustering a big area into smaller Fog Areas and centrally managing each one

of them using an FO. A system-level architecture that distributes computing, storage, control

and networking functions closer to the users along a cloud-to-thing continuum is of paramount

importance and can significantly enhance the performance of our system. Open-source Fog im-

plementations already exist (e.g. Fog05, OpenFog, OpenVolcano) that can be integrated with an

existing platform and provide fog-computing capabilities. What is more, the problems identified,

related to the synchronisation of the devices and the inconsistencies observed during the gen-

eration and the exchange of data, could be tackled in the future. It will also be interesting to

investigate the Received Signal Strength Indication (RSSI) of the received packets. This will

give a better insight into how such devices operate under the different scenarios and distances.

Finally, a cybersecurity framework will benefit the above system. Digital certificates can be used,

i.e. a Certificate Revocation List (CRL) and a public key infrastructure, as it described in X.509

Standard [191], in order to encrypt our wireless links (as in [144]). A very interesting topic of

research is the investigation of the overhead generated and how it affects the performance of a
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vehicular network.

8.1.5 Performance Bench-marking for LTE-A/LTE-A Pro Networks

The research activities in this thesis mainly focused on IEEE 802.11p and mmWaves wireless

technologies. In Chapters 2 and 3, we briefly described the operation of LTE-A and LTE-A Pro

and how it can be integrated with vehicular communications. We also introduced some use-cases

that an LTE link will be required for a next-generation C-ITS. However, we did not investigate

the performance of the links mentioned above under vehicular environments. This can be an

exciting area of research for the future. Similar research activities can be found in the literature.

For example, and similarly to the activity introduced in Sec.4.4.3, the authors in [192] compared

the handover performance of a V2I LTE-A link under real-world field trials and a virtual-driving

emulated scenario. Their work described how an emulation framework could be used to evaluate

the performance of a real-world testbed and similarly, various other aspects of the network

performance of an LTE-A or LTE-A Pro link can be investigated.

As we discussed before, the LTE-A and LTE-A Pro support high data-rates and low-to-medium

latency, due to their flat network architecture. However, the strict tactile-like latency require-

ments, smaller than 10 ms, cannot be fulfilled in the presence of higher cellular traffic load. What

is more, the additional latency of 110 ms, introduced when establishing a link for the first time

can lead to severe performance degradation for safety-critical applications. The above problems

are topics of ongoing research. For example, authors in [193] described a new D2D discovery

scheme, offloading part of the D2D discovery load from the cellular network, which reduces the

consumption of valuable resources in the LTE-A network. They also conducted a performance

investigation related to the end-to-end delay benefits of their algorithm. Similarly, [194] described

a novel adaptive scheduling scheme that can reduce the end-to-end delay while increasing the

user satisfaction. Finally, authors in [195] described an adaptive resource allocation scheme that

can improve the throughput performance under dense vehicular environments. Overall, the open

questions related to the integration of LTE-A within a C-ITS are endless, and it is considered a

fascinating area of research for the future.

8.1.6 Implementing SAMBA and our Association Policy algorithm on an
Experimental Testbed

Various resource allocation and beam alignment algorithms found in the literature can impact the

performance of a C-ITS; however most of them are not implemented in a widely adopted fashion.

Experimental mmWave devices already exist at the frequency band of 60 GHz. Some example

start-up companies providing this equipment are the Blu Wireless Technologies, Peraso, Nitero,

etc. Also, similar solutions can be found in large companies and organisations like Qualcomm,

Huawei, and Samsung.
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Designing and implementing the algorithms described in Chapters 5 and 6 in a real-world

system will help us further evaluate their performance and identify potential drawbacks. This

will also be a significant step forward for large-scale adoption of 5G WiGig solutions in our

everyday life and the next step for an actual C-ITS.

8.1.7 Active Jammers, Link Security and Various Malicious Attacks

As we discussed in the previous chapters, the flawless operation of an autonomous vehicle relies

on its highly reliable communication framework, the small number of lost packets, the high data

rates and the low-latency. One crucial question that was left unexplored is the effect of an active

attacker and how it can disrupt the various services of a C-ITS. Similar activities can be found

in [196]. Even though various simulation models exist that can evaluate the performance of a

device under an attack, we showed in Chapter 4, that these simulation models are not always

accurate and cannot reflect the reality.

Having an operational IEEE 802.11p/DSRC system, a future activity can be the implemen-

tation of a jammer (as in [196]) and test various malicious attacks. For example, earlier in

this chapter, we discussed the potential of designing a cybersecurity framework on top of an

experimental system and evaluate its performance. A complementary research activity can be

an investigation of how a Man-in-the-Middle (MitM) attack can generate revoked certificates in

the network by eavesdropping the packets exchanged. Also, the Denial-of-Service (DoS) or the

Distributed DoS (DDoS) attacks can affect the system by flooding the channel and disrupting

various services related to a C-ITS. The above attacks can be investigated at different layers of

the OSI model and evaluate how a real-world system behaves under them at first, and potential

ways to overcome them.
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MMWAVE-V2X MATLAB SIMULATION FRAMEWORK

This Appendix describes the simulation frameworks designed and developed in MATLAB

in order to evaluate the algorithms presented in Chapters 5, 6 and 7. Two different

simulation frameworks were designed. The first one is a discrete time system level

simulator that is capable of parsing the mobility traces of the vehicles, the maps generated, and

calculates the different metrics presented in Chapters 5 and 6. The second one is a system level

simulation framework having as an input a map and generating the optimal RSU positions,

as described in Chapter 7. Both frameworks take as an input various simulation parameters,

predefined by the user before the simulation and outputs the different figures presented in the

previous chapters. In this Appendix, we will briefly describe the main functionality of these

frameworks, analyse the statistical accuracy of the results generated, and briefly mention the

external functions utilised to achieve the necessary functionality.

A.1 MmWave-V2X Simulation – SAMBA

Starting with the first framework, in Fig. A.1 the reader can see all the implemented functions.

Each subfolder is a separate class, and their unique features will be briefly described in the next

sections. At the end of this section, the reader can find the MATLAB code of the primary function

of the simulator as a reference for the steps followed.

Before we proceed with the core functionality of the simulation, the external functions and

libraries used were:

• Function calculating whether a point is inside a polygon or not1.

1https://uk.mathworks.com/matlabcentral/fileexchange/10391-inpoly-a-fast-points-in-polygon-test
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Figure A.1: The different functions implemented for the MATLAB MmWave-V2X simulation
framework.

• Function for finding the line segment intersections, when given an array of lines2.

• Function to control the log output verbosity level – this was just for debugging purposes

only3.

• Function that converts an XML file into a MATLAB structure for easy access to the data.4

The execution of the simulation framework starts by calling simSettingsSAMBA that loads

all the simulation parameters needed. Example parameters are the file paths for the map and

mobility trace files, the maximum theoretical data rates of the different MCSs, constants used

for calculating the propagation loss (e.g. speed of light, pathloss exponent, etc.), the matching

capacity requested by the user and many more.

Later, an existing map is loaded and converted into a MATLAB structure (i.e. loadNetwork

function) or a new one is created using the given simulation parameters (i.e. mapCreate function).

The supported map formats are either a downloaded map from Open Street Map [186], given

in .osm format, or a network file from SUMO traffic generator [169], given as a .net file. This

2https://uk.mathworks.com/matlabcentral/fileexchange/27205-fast-line-segment-intersection
3https://uk.mathworks.com/matlabcentral/fileexchange/42909-log-output-verbosity-control
4https://uk.mathworks.com/matlabcentral/fileexchange/28518-xml2struct
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is followed by importing the mobility traces of the vehicles calling loadVehicles function. These

traces should be generated using SUMO beforehand and exported in a geolocation format. They

should also be saved in the appropriate folders (i.e. the folder called mobilityFiles).

For the V2I scenarios, rsuCreate function finds the upper-right corners of a road-block and

places an RSU on each corner. More details about that can be found in Chapter 5. This function

works well when we have grid-like maps, and we require a fully covered road layout without

the increased complexity of solving an optimisation problem. Later, we will further describe the

simulation framework designed to find the optimal RSU positions. Furthermore, if the number

of vehicles provided by the trace file is larger than the requested number from the user, the

imported traces are post-processed within our simulator, and the exceeding vehicles are discarded.

This helps us to quickly test scenarios with a different number of vehicles without the need

of generating new mobility traces and maps every time. Finally, the beamwidth adaptation

introduced in Chapter 5 is enabled or disabled by the user. When it is enabled, the different

beams are pre-calculated given the link budget equations (having an idealised triangular shape),

in order to minimise the execution time.

When the initial configuration of the simulator is completed, we start by simulating the

different scenarios. We can configure the simulator to run for different position errors and for a

given number of times in a Monte Carlo fashion. The entire simulation time (real-world time)

is split into equal timeslots. The length of each timeslot is predefined by the user based on the

required granularity of the results. On each step, our simulator computes all the data required

for the entire simulation time before going to the next step. This was very important, as, by

designing our simulator in such fashion, we managed to exploit MATLAB capabilities for matrix

multiplications and vectorised data arrays. By that, we significantly decreased the execution time

minimising the nested loops and being able to run in parallel the different processes. To speed

up the execution time even further, our simulation framework is capable of running in parallel

different system configurations in order to exploit the multi-core CPUs found today. Finally, we

kept in mind to design a framework that easily readable and modifiable by the user.

Each scenario is initiated by calculating the perceived vehicle positions (calcGPSPos function).

This depends on the given position error and the position update interval, specified by the user.

The position error is chosen from a random distribution and added on the real-world traces

loaded from SUMO. This can create more realistic vehicle traces taking into account the GPS

errors of the real world. Later, all the DSRC beacons are generated and exchanged for the V2I

links (beaconV2I function). Their packet delivery ratio, as well as the transmission interval, are

predefined by the user. The packets are dropped based on a uniform random distribution. As

discussed in Chapter 6, based on the different types of vehicles, they generate a different amount

of sensor data per timeslot. This feature is implemented using the genTraffic function that is part

of the matching game implementation. Again, as before a uniform random distribution is utilised

to choose the amount of data generated per vehicle and per timeslot.
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The function called as vehicleDensity is responsible for calculating the number of vehicles

within a region – this notion was introduced in Chapter 6. This is based on the radius provided

by the user, and this region is always circle-shaped. As before, function beaconV2V calculates the

generated and exchanged DSRC beacons for the V2V links, based on the simulation parameters

specified by the user. Knowing the number of received beacons, we can later run our algorithm

for the motion prediction of a vehicle (functions predictMovement and predictMovementV2V).

This motion prediction is calculated for all beacons exchanged (both V2I and V2V links). For our

system design described in Chapter 5 only the V2I implementation was utilised.

The following functions are all related to the Stable Fixture matching game described above.

We start with findLOSLinks that finds all the LOS links between vehicles for all the timeslots and

the given road layout. We later calculate, based on the estimated positions, the closest vehicles

that have a LOS link with a target vehicle. Given all the vehicle motion dynamics, we then

calculate all the variables constituting our utility function. We start with the timeliness, related

to the vehicle direction and distance. Later, we estimate the regional data exchanged between

vehicles, using the regionalData function, based on the above-given data, and the matching

capacity for each vehicle (setMatchingCapacity). Having all the above, we can later run our fitness

function (fitnessFunction) for all the given data and start the matching game using matchGame.

This function returns the matching set of vehicles that is our final solution. Using this solution

and the function linkUtilisation we can calculate the results shown in Chapter 6.

The above matching game for V2V links is followed by the beamwidth adaptation algorithms

introduced in Chapter 5. Given the predicted vehicle’s position and motion, we can calculate the

shape of the new beams using updateBeamsSAMBA. This function aligns the beams for all the

V2I links. In our simulation framework, the beams have a triangular shape as discussed before.

The same feature was implemented for the V2V links as well, using the function alignBeamsV2V

but was not used for generated the results of this thesis. For all the above links we later have

the performance investigation of the different proposed algorithms. The functions responsible

for that are meanDataRateV2I, perfEvaluation, and perfEvaluationV2V. Finally, an animation

environment was designed for demonstration and debug purposes (functions printAnimate and

printAnimateDebug) and is called at the end of each configuration, if the higher level of verbosity

was chosen by the user. All the simulation results are later saved in a .mat file to be easily

accessible in the future. By that, the execution of our simulation framework is concluded.

A.1.1 Statistical Analysis of Simulation Frameworks

All the presented performance metrics in Chapters 5 and 6 are values estimated employing

multiple Monte Carlo iterations. To this end, this section will briefly describe the validity of the

simulation models.

In the next figures, each error bar identifies a binomial proportion confidence interval,
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Figure A.2: The signal attenuation as a function of the distance.

approximated by means of a normal approximation and is defined as in [197]:

(A.1)

p̂− z

√
p̂(1− p̂)

n
p̂+ z

√
p̂(1− p̂)

n


where p̂ is the estimated probability value, n is the number of Monte Carlo iterations and z is

the (1−0.5 · e)-th quantile, for 0≤ e ≤ 1. In the updated version of the manuscript, we refer to the

(1−0.5 ·0.05)-th quantile, i.e., we refer to the confidence intervals of 95%.

At first, in Fig. A.2 we present the signal attenuation as a function of the distance. The

link budget analysis, the way the antenna gain was calculated, and the relationship with the

beamwidth can be found in Secs. 5.4.4 and 6.2.1. The signal attenuation presented is derived by

n = 1000 Monte Carlo simulations and using the simulation parameters found in Table 5.1. The

beamwidth θo was set to θ = 15°. The figure shows the mean value calculated per distance as well

as the confidence intervals. The statistical error shown originates from the random nature of the

shadow fading S f , introduced in the mmWave channels. As described in Chapter 5, S f follows a

log-Normal distribution log
(
S f

)∼N(0,σ2
S f

), with σ equal to 5.8 [178].

The same error is introduced in the packet delivery rate and consequently in the averaged

data rate as well. Using the same large scale evaluation scenario described in Sec. 5.6.2, we

generated the confidence intervals of 95% for different velocities and position errors. The results

can be found in Fig. A.3. As in Fig. A.2, 1000 Monte Carlo simulations were used to generate

this result. This figure presents the average data rate of one vehicle in contrast with the legacy

beamforming strategy. Again, as shown the shadow fading introduced in our algorithm introduces

a variation in the perceived performance. From both figures, we see that the random nature of

signal attenuation slightly changes the results per iteration. However, using a large number of

Monte Carlo iterations, like the one used in our performance investigation in Chapters 5 and 6,

and averaging the results later, we can have a thorough and valid system investigation.
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Figure A.3: Achieved average data rate (one vehicle) for SAMBA algorithm in contrast with
the legacy beamforming strategy for different velocities. The confidence intervals of 95% are
presented for each data rate.

MATLAB Code - runSimSAMBA.m

1 % RUNSIMSAMBA Runs the simulation .
2 % Loads the set t ings from simSettingsSAMBA .m and runs the simulator .
3 %
4 % Usage : runSimSAMBA
5 %
6 % Copyright ( c ) 2017−2018, Ioannis Mavromatis
7 % email : ioan . mavromatis@bristol . ac . uk
8
9 c l f ; c l c ; c lear ; c l ose a l l ;

10
11 simSettingsSAMBA ; % Load a l l the simulation set t ings from the f i l e .
12
13 %% Parse SUMO map from network f i l e and create boundary box
14 SUMOMap = loadFi les . loadNetwork ( inputFileMap ) ; % Load the map from the SUMO network f i l e
15 map = maps . mapCreate (map) ; % keep i t for future reference
16
17 %% Parse SUMO mobil ity model and construct the RSUs on the road
18 [ vehiclesArray , vehicleStruct , numTimesteps , numVehiclesPerTimestep , numVehicles ] = loadFi les . loadVehicles ( inputFile ,

SUMOMap. bBoxForVehicles , numVehicles , startTime ) ;
19 rsuStruct = parsing . rsuCreate (SUMOMap, linkBudget , vehic leStruct ) ;
20
21 for nodeIndex = 1: vehic leStruct . numNodes
22 vehic leStruct . vehNode ( nodeIndex ) .V_TIME = vehic leStruct . vehNode ( nodeIndex ) .V_TIME − numOfVeh ;
23 vehic leStruct . vehNode ( nodeIndex ) .V_TIME = round ( vehic leStruct . vehNode ( nodeIndex ) .V_TIME, 3 ) ;
24 end
25
26 vehiclesArray .TIMESTEP = vehiclesArray .TIMESTEP − numOfVeh ;
27 vehiclesArray .TIMESTEP = round ( vehiclesArray .TIMESTEP, 3 ) ;
28
29 %% Run the u t i l i t y function for beamwidth Adaptation or i n i t i a l i s e an empty array i f beamwidth adaptation i s not

enabled .
30 i f beamWidthAdaptation
31 beamAdapt = parsing . beamWidthAdapt ( linkBudget ) ;
32 f p r i n t f ( ’The Beamwidth adaptation i s enabled .\n ’ ) ;
33 e lse
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34 beamAdapt = [ ] ;
35 f p r i n t f ( ’The Beamwidth adaptation i s disabled .\n ’ ) ;
36 end
37
38 %% Run Simulation − Dif ferent errors , no . o f I terat ions
39 for posError = 1:1
40 % For para l l e l processing to optimise the running time ,
41 % change the loop below to " parfor "
42 for i t e ra t i on = 1:1
43
44 vehicleStructTmp = vehic leStruct ;
45 rsuStructTmp = rsuStruct ;
46 f p r i n t f ( ’SAMBA: Pos . Error . : %d , PDRratio : %d , I terat ion : %d\n ’ , posError , PDRratio , i t e ra t i on ) ;
47
48 %% Estimate the GPS pos i t ion based on the given error
49 [ vehicleStructTmp ] = gps . calcGPSPos ( vehicleStructTmp , posError , gpsUpdateInterval ) ;
50
51 %% Create and transmit the DSRC beacons
52 [ vehicleStructTmp ] = beacons . beaconV2I ( vehicleStructTmp , vehiclesArray , beaconInterval , PDRratio ) ;
53
54 %% Generate the network t r a f f i c f or each vehic le ( per t imeslot )
55 [ vehicleStructTmp ] = matchingGame . genTraff ic ( vehicleStructTmp , genData ) ;
56
57 %% Vehicle Density
58 [ c loseVehicles , distanceCloseVeh , timeIndicesVeh , indicesVehTimeslot ] = parsing . vehicleDensity (

vehicleStructTmp , densityRadius ) ;
59
60 %% Beacons between vehic les (V2V) are generated and exchanged
61 [ vehicleStructTmp ] = beacons . beaconV2V ( vehicleStructTmp , beaconInterval , PDRratio ) ;
62
63 %% Based on beacons and GPS posit ion , predict the movement of the vehic le
64 [ vehicleStructTmp , rsuStructTmp ] = movementPrediction . predictMovement ( vehicleStructTmp , rsuStructTmp ) ;
65 [ vehicleStructTmp ] = movementPrediction . predictMovementV2V ( vehicleStructTmp , beaconInterval ,

gpsUpdateInterval ) ;
66
67 %% LOS links between vehic les based on the beacon information
68 [ predictedMovement , linksLOS , vehCombs ] = losLinks . findLOSLinks ( vehicleStructTmp ,map,SUMOMap,

closeVehicles , distanceCloseVeh , 1 ) ;
69 [ closestVehiclesLOSLinks , linksLOStimestamps , distanceVehicles ] = losLinks . c losestVehic le ( linksLOS ,

vehicleStructTmp , closeVehicles , distanceCloseVeh , vehCombs ) ;
70
71 %% Timeliness / Direction Comparison
72 [ vehicleStructTmp ] = matchingGame . t imeliness ( vehicleStructTmp ) ;
73
74 %% Regional Data Generated for each vehic le
75 [ vehicleStructTmp ] = matchingGame . regionalData ( vehicleStructTmp , c loseVehic les ) ;
76
77 %% Matching Game for a l l Vehicle
78 [ matchingCapacity ] = matchingGame . setMatchingCapacity ( matchingCapacity , vehicleStructTmp ) ;
79 [ u t i l i t y , calcDataRate ] = matchingGame . f itnessFunction ( vehicleStructTmp , linksLOS , closeVehicles ,

distanceCloseVeh , linkBudget , MCS, utilFuncMode , densityRadius ) ;
80 [ matchingSet , matchingSetProcessed ] = matchingGame . matchGame( matchingCapacity , u t i l i t y ) ;
81
82 % Results o f the Matching Game
83 [ l inkUti l , dataRate , regDataAccess , emerVehLUtil , emerVehDataRate , regDataAccessEmer ] = matchingGame .

l inkUt i l i sa t i on ( vehicleStructTmp , calcDataRate , matchingSetProcessed ) ;
84 l inkUt i lA l l ( i terat ion , : ) = l inkUti l ;
85 emerVehLUtilAll ( i terat ion , : ) = emerVehLUtil ;
86 linkUtilAllData ( i terat ion , : ) = dataRate ;
87 emerVehLUtilAllData ( i terat ion , : ) = emerVehDataRate ;
88 regDataAccessAll ( i terat ion , : ) = regDataAccess ;
89 regDataAccessEmerAll ( i terat ion , : ) = regDataAccessEmer ;
90 %% Realign the beams
91 [ vehicleStructTmp , rsuStructTmp ] = beamAlign .updateBeamsSAMBA( vehicleStructTmp , rsuStructTmp , linkBudget ,

beamAdapt ) ;
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92 [ beamsV2V, predictPosMatrix , closestVehiclesLOSLinks ] = beamAlign . alignBeamsV2V ( predictedMovement ,
closestVehiclesLOSLinks , linksLOStimestamps , linkBudget , vehicleStructTmp ) ;

93
94 %% Evaluate the system performance
95 [ vehicleStructTmp ] = performance . perfEvaluation ( vehicleStructTmp , rsuStructTmp , linkBudget , MCS, 0) ;
96 [ networkThroughputV2V { i t e ra t i on } ] = performance . perfEvaluationV2V (beamsV2V, distanceVehicles ,

vehicleStructTmp , closestVehiclesLOSLinks , linksLOStimestamps , linkBudget , MCS, 0) ;
97
98 netThroughputPerIterV2I ( i t e ra t i on ) = performance . meanDataRateV2I ( vehicleStructTmp ) ;
99 netThroughputPerIterV2V ( i t e ra t i on ) = mean( networkThroughputV2V { i t e ra t i on } ) ;

100
101 animate . printAnimate ( vehicleStructTmp , rsuStructTmp ,SUMOMap, beamsV2V, predictPosMatrix ) ;
102 animate . printAnimateDebug ( vehicleStructTmp , rsuStructTmp ,SUMOMap, beamsV2V, predictPosMatrix ,2100) ;
103 end
104 meanNetThroughputV2I ( posError ) = mean( netThroughputPerIterV2I ) /1000000000;
105 meanNetThroughputV2V ( posError ) = mean( netThroughputPerIterV2V ) /1000000000;
106
107 end
108
109 l inkUt i lA l l ( l inkUti lAl l >1) =1;
110 l inkUt i lA l l ( isnan ( l inkUt i lA l l ) ) =0;
111 meanLinkUtil = mean( l inkUti lAl l , 1 ) ;
112
113 % Print the Results
114 for posEr =1: posError
115 f p r i n t f ( ’Mean Network Throughput for pos . error %d : 1) V2I − %d , 2) V2V − %d\n ’ , posEr , meanNetThroughputV2I (

posEr ) , meanNetThroughputV2V ( posEr ) )
116 end
117
118 % Save the workspace in a MAT f i l e .
119 [~ , nameVehicles , ~] = f i l e p a r t s ( inputFile ) ;
120 filenameMAT = [ ’ resul ts / samba_mCap_ ’ num2str ( matchingCapacity ( 1 ) ) ’ _dRad_ ’ num2str ( densityRadius ) ’ _uFunc_ ’

num2str ( utilFuncMode ) ’ _ ’ nameVehicles ’ . mat ’ ] ;
121 save ( filenameMAT )

A.2 RSU MmWave-Placement Simulation Framework

This section will briefly describe the functionality of the second simulation framework designed

and implemented. Again, as before this framework was designed in MATLAB. In Fig. A.4

the reader can see all the implemented functions. This framework was used to evaluate the

performance of our proposed algorithm, described in Chapter 7, and compare it against two more

optimisation algorithms. Again, at the end of this section, the reader can find the MATLAB code

of the main function of the simulator as a reference for the steps followed. Before we proceed with

the core functionality, we will present the external functions and libraries used. Some of them

were presented in Sec A.1. The rest are:

• Function that converts latitude and longitude coordinates into UTM (WGS84)5.

• Fecursive function implementing Douglas-Peucker simplification algorithm – used to sim-

plify the map layout6.

• Function that calculates the Hausdorff Distance between two points7.

5https://uk.mathworks.com/matlabcentral/fileexchange/10915-deg2utm
6https://uk.mathworks.com/matlabcentral/fileexchange/21132-line-simplification
7https://uk.mathworks.com/matlabcentral/fileexchange/27905-hausdorff-distance
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• The MATLAB geometrical toolbox library for 2D/3D geometric computing8.

• Library containing all the functions for working with OpenStreetMap XML Data files9.

This simulator was designed in order to be able to provide the necessary granularity to

the user. Using a small map and a large tile size, the user can easily and quickly test a new

feature implemented. Increasing the map size and decreasing the tile size, the precision can be

enhanced and provide a more real-world like solution. As before the user executes the main file

(runSimulator.m) that initiates the simulation. Again, different parameters are predefined in

the simSettings file (e.g., tile size, map size, distance threshold, RSS threshold, etc.). Later, the

resources for different modules of the simulation framework are preallocated in the system using

setupSimulator function. When the setup is over, the main part of the simulator is executed,

responsible for finding the optimum positions for the RSUs using three different algorithms.

That starts by loading the map file. As before, the map could be either an OpenStreetMap file

or a SUMO network file. Later, based on the configuration parameters, the different map regions,

as well as the tiles of the map, are calculated (breakMapSmallerTiles function). Furthermore, the

potential RSU positions (function potentialRSUPositions) are found based on the imported map.

As described in Chapter 7 the potential positions are the corners or the roads at first and are

equally spread on long roads. The given map is later divided into tiles and map regions using the

function mapTiles. Based on all the above, we can later start our performance evaluation.

At first we find all the tiles that are within the requested area of interest (functions withinMap

and tilesWithinEdge). As described, this is done to avoid the boundary effects. For all the potential

RSU positions, we find the tiles that have LOS with each position and calculate their RSS

(function losMapTiles). Having all the above information we can later solve our optimisation

problem. Three different functions were designed for each optimisation algorithm introduced,

i.e. gaSolver, autoOptimisation, and greedyAddition. These functions find the best positions to

deploy a mmWave RSU basestation as described in Chapter 7. The simulation concludes with the

generation of all the result figures and the heatmaps as well as saving the simulation variables

for future reference.

MATLAB Code - runSimulator.m

1 % RUNSIMULATOR Runs the simulation .
2 % Loads the set t ings from simSettings .m and runs the simulator .
3 %
4 % Usage : runSimulation
5 %
6 % Copyright ( c ) 2017−2018, Ioannis Mavromatis
7 % email : ioan . mavromatis@bristol . ac . uk
8
9 c l c ; c l f ; c lear ; c lear global ; c l ose a l l ;

10

8https://github.com/mattools/matGeom
9https://uk.mathworks.com/matlabcentral/fileexchange/35819-openstreetmap-functions
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Figure A.4: The different functions implemented for the MATLAB RSU MmWave-Placement
simulation framework.

11 f p r i n t f ( ’V2X MmWave Simulator for City−Scale Simulations\n ’ ) ;
12 f p r i n t f ( ’ Automated Road−Side Unit Placement for City−Scale Maps\n ’ ) ;
13 f p r i n t f ( ’ Copyright ( c ) 2017−2018, Ioannis Mavromatis\n ’ ) ;
14 f p r i n t f ( ’ email : ioan . mavromatis@bristol . ac . uk\n\n ’ ) ;
15
16 % Load the simulation set t ings ( f or further explanation see simSettings .m)
17 simSettings ;
18
19 % Add the d i f f e r e n t modules of the simulator to MATLAB path
20 setupSimulator ( simulator ) ;
21
22 % Main function ( for further explanation see runMain .m)
23 runMain (map, RSU, linkBudget , simulator ) ;

MATLAB Code - runMain.m

1 function runMain (map, RSU, linkBudget , simulator )
2 %RUNMAIN This i s the main function of RSU mmWave placement simulation framework
3
4 % Copyright ( c ) 2017−2018, Ioannis Mavromatis
5 % email : ioan . mavromatis@bristol . ac . uk
6
7 % Parse the map the f i l e
8 outputMap = loadMap (map, simulator ) ;
9

10 i f isempty ( outputMap )
11 f p r i n t f ( ’No network f i l e was loaded ! ’ )
12 return ;
13 end
14
15 [ ~ , nameMap, ~ ] = f i l e p a r t s (map. mapFile ) ;
16 outputMap = breakMapSmallerTiles ( outputMap ,map) ;
17 potRSUPos = potentialRSUPositions ( outputMap ,RSU, simulator ) ;
18
19 [ mapTileIncentres , outputMap ] = mapTiles ( outputMap ,map, simulator ) ;
20
21 i f simulator . verboseLevel == 2
22 mapPrint ( outputMap )
23 alpha ( 0 . 5 )
24 hold on
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25 end
26 [ toRun , ~ ] = s ize ( outputMap .mapToRunX) ;
27
28 pathLos = [ ’ . / mobi l i tyFi les / prepFiles / losRSSTiles / ’ nameMap ’ _ ’ num2str (map. t i l e S i z e ) ] ;
29 i f ex i s t ( [ pathLos ’ . mat ’ ] , ’ f i l e ’ )
30 load ( [ pathLos ’ . mat ’ ] , ’−mat ’ )
31 end
32 i f ex i s t ( ’ losTi leIDs ’ , ’ var ’ )
33 dontRun = 0;
34 else
35 dontRun = 1;
36 end
37
38 for i = 1 : toRun
39 [ mapTileIncentresTmp { i } ,potRSUPosTmp{ i } , t i l e IDs { i } ] = withinMap ( outputMap , mapTileIncentres , potRSUPos , i ) ;
40 [ mapTileWithinEdge { i } , tileWithinEdgeIDs { i } ] = tilesWithinEdge ( mapTileIncentresTmp { i } , outputMap ,map,

simulator , i ) ;
41 [ losTi leIDs { i } , r ssTi le { i } , losTileIDsWithinNoiseFloor { i } , perTileBSIDs { i } , perTileRSS { i } ] = losMapTiles

( outputMap , mapTileIncentresTmp { i } ,potRSUPosTmp{ i } ,RSU, linkBudget , simulator ) ;
42
43 [ choseRSUposGA{ i } , tilesCoveredGA { i } , tilesCoveredGAIDs { i } , highestRSSGA { i } ] = . . .
44 gaSolver (RSU, potRSUPosTmp{ i } , losTi leIDs { i } , r ssTi le { i } , tileWithinEdgeIDs { i } ) ;
45 [ choseRSUposOpt { i } , tilesCoveredOpt { i } , tilesCoveredOptIDs { i } , highestRSSOpt { i } ] = . . .
46 autoOptimisation (RSU, potRSUPosTmp{ i } , losTi leIDs { i } , r ssTi le { i } , tileWithinEdgeIDs { i } , simulator ) ;
47 [ chosenRSUposGC{ i } , tilesCoveredGC { i } , tilesCoveredGCIDs { i } , highestRSSGC { i } ] = . . .
48 greedyAddition (potRSUPosTmp{ i } , losTi leIDs { i } ,RSU, rssTi le { i } , tileWithinEdgeIDs { i } , simulator ) ;
49
50 i f simulator . verboseLevel == 2
51 plot (potRSUPosTmp{ i } ( choseRSUposOpt { i } , 2 ) ,potRSUPosTmp{ i } ( choseRSUposOpt { i } , 1 ) , ’ yo ’ , ’ MarkerSize ’ ,10) ;
52 hold on
53 end
54 end
55
56 [ potRSUPosAll , chosenRSUposOptAll , chosenRSUposRndAll , chosenRSUposGCAll , . . .
57 tilesCoveredOptIDsAll , tilesCoveredGCIDsAll , tilesCoveredRndIDsAll , . . .
58 losTi lesIDsAll , rssTi leAl l , tileWithinEdgeIDsAll , mapTileIncentresAll , . . .
59 mapTilesIDsToCheck , highestRSSOptAll , highestRSSGCAll , highestRSSRndAll , . . .
60 highestRSSGAAll , tilesCoveredGAIDsAll , chosenRSUposGAAll ] . . .
61 = concatenateVars ( toRun , mapTileIncentresTmp , . . .
62 potRSUPosTmp, choseRSUposGA , choseRSUposOpt , chosenRSUposGC , chosenRSUposRnd , . . .
63 tilesCoveredGAIDs , tilesCoveredOptIDs , tilesCoveredGCIDs , tilesCoveredRndIDs , . . .
64 losTileIDs , rssTi le , tileWithinEdgeIDs , t i leIDs , mapTileIncentres , . . .
65 highestRSSOpt , highestRSSGC , highestRSSRnd , highestRSSGA ) ;
66
67 %% Plot a l l the resul ts
68 [ servingRSUsGC , servingRSUsRand , servingRSUsOpt , statsGC , . . .
69 statsNormGC , statsRand , statsNormRand , statsOpt , statsNormOpt ] = . . .
70 interferingRSUs ( perTileBSIDs , tileWithinEdgeIDs , chosenRSUposGC , chosenRSUposRnd , choseRSUposOpt , simulator ) ;
71
72 rssCDFcurves ( highestRSSGCAll , highestRSSRndAll , highestRSSOptAll , simulator )
73
74 %% Plot a l l the maps with the deployed basestations
75 i f ( simulator . verboseLevel >= 1)
76 h = f indob j ( ’ type ’ , ’ f igure ’ ) ; % Get the number of f igures open for resul ts
77
78 %% Greedy Addition Algorithm Plot
79 h( length (h) +1) = f igure ( length (h) +1) ;
80 heatmapPrint ( outputMap , mapTileIncentres , mapTilesIDsToCheck ,map, tilesCoveredGCIDsAll , highestRSSGCAll ,

tileWithinEdgeIDsAll , chosenRSUposGCAll , potRSUPosAll ) ;
81 t i t l e ( " Greedy Addition " ) ;
82
83 %% Random Algorithm Plot
84 h( length (h) +1) = f igure ( length (h) +1) ;
85 heatmapPrint ( outputMap , mapTileIncentres , mapTilesIDsToCheck ,map, tilesCoveredRndIDsAll , highestRSSRndAll ,

tileWithinEdgeIDsAll , chosenRSUposRndAll , potRSUPosAll ) ;

159



APPENDIX A. MMWAVE-V2X MATLAB SIMULATION FRAMEWORK

86 t i t l e ( "Random Placement " ) ;
87
88 %% Optimised Algorithm Plot
89 h( length (h) +1) = f igure ( length (h) +1) ;
90 heatmapPrint ( outputMap , mapTileIncentres , mapTilesIDsToCheck ,map, tilesCoveredOptIDsAll , highestRSSOptAll ,

tileWithinEdgeIDsAll , chosenRSUposOptAll , potRSUPosAll ) ;
91 t i t l e ( " Optimised Placement " ) ;
92 end
93
94 %% Save Results
95 path = [ ’ . / resu l ts / ’ nameMap ] ;
96 save ( path , ’−regexp ’ , ’ ^ ( ? ! ( h ) $ ) . ’ ) ;
97 save ( [ pathLos ’ . mat ’ ] , ’−mat ’ , ’ losTi leIDs ’ , ’ r ssTi le ’ )
98 savef ig (h , [ ’ . / resu l ts / ’ nameMap ’ _ f igures . f i g ’ ] )
99

100 end
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