23 research outputs found

    The acquisition of Hyperspectral Digital Surface Models of crops from UAV snapshot cameras

    Get PDF
    This thesis develops a new approach to capture information about agricultural crops by utilizing advances in the field of robotics, sensor technology, computer vision and photogrammetry: Hyperspectral digital surface models (HS DSMs) generated with UAV snapshot cameras are a representation of a surface in 3D space linked with hyperspectral information emitted and reflected by the objects covered by that surface. The overall research aim of this thesis is to evaluate if HS DSMs are suited for supporting a site-specific crop management. Based on six research studies, three research objectives are discussed for this evaluation. Firstly the influences of environmental effects, the sensing system and data processing of the spectral data within HS DSMs are discussed. Secondly, the comparability of HS DSMs to data from other remote sensing methods is investigated and thirdly their potential to support site-specific crop management is evaluated. Most data within this thesis was acquired at a plant experimental-plot experiment in Klein-Altendorf, Germany, with six different barley varieties and two different fertilizer treatments in the growing seasons of 2013 and 2014. In total, 22 measurement campaigns were carried out in the context of this thesis. HS DSMs acquired with the hyperspectral snapshot cameras Cubert UHD 185-Firefly show great potential for practical applications. The combination of UAVs and the UHD allowed data to be captured at a high spatial, spectral and temporal resolution. The spatial resolution allowed detection of small-scale heterogeneities within the plant population. Additionally, with the spectral and 3D information contained in HS DSMs, plant parameters such as chlorophyll, biomass and plant height could be estimated within individual, and across different growing stages. The techniques developed in this thesis therefore offer a significant contribution towards increasing cropping efficiency through the support of site-specific management

    Wheat lodging assessment using multispectral uav data

    Get PDF

    Two decades of digital photogrammetry: Revisiting Chandler’s 1999 paper on “Effective application of automated digital photogrammetry for geomorphological research” – a synthesis

    Get PDF
    This is the author accepted manuscript. The final version is available from SAGE Publications via the DOI in this record.Digital photogrammetry has experienced rapid development regarding the technology involved and its ease of use over the past two decades. We revisit the work of Jim Chandler who in 1999 published a technical communication seeking to familiarise novice users of photogrammetric methods with important theoretical concepts and practical considerations. In doing so, we assess considerations such as camera calibration and the need for photo-control and check points, as they apply to modern software and workflows, in particular for Structure-from-Motion (SfM) photogrammetry. We also highlight the implications of lightweight drones being the new platform of choice for many photogrammetry-based studies in the geosciences. Finally, we present three examples based on our own work, showing the opportunities that SfM photogrammetry offers at different scales and systems: at the micro-scale for monitoring geomorphological change, and at the meso-scale for hydrological modelling and the reconstruction of vegetation canopies. Our examples showcase developments and applications of photogrammetry which go beyond what was considered feasible 20 years ago and indicate future directions that applications may take. Nevertheless, we demonstrate that, in-line with Chandler’s recommendations, the pre-calibration of consumer-grade cameras, instead of relying entirely on self-calibration by software, can yield palpable benefits in micro-scale applications and that measurements of sufficient control points are still central to generating reproducible, high-accuracy products. With the unprecedented ease of use and wide areas of application, scientists applying photogrammetric methods would do well to remember basic considerations and seek methods for the validation of generated products.European Union’s Horizon 2020 researchMarie Skłodowska-CurieUK Department for Environment, Food and Rural Affair

    Análise do ângulo de visada no comportamento espectral de imagens modis em áreas de floresta amazônica e cerrado

    Get PDF
    Variations in the acquisition geometry of remote sensing images influence the spectral response of surface targets. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, containing one of the most extensive land surface data collection of the last decade, is profoundly influenced by the acquisition geometry due to its wide view range and high periodicity. The present research aims to evaluate the influence of the angle of view on the spectral behavior of the different MODIS spectral bands and vegetation indices in the Amazon and Cerrado regions. The spectral bands of short-wave infrared and near-infrared showed a high dependence on the angle of acquisition. The areas of the Amazon presented greater interference of the angle of acquisition in comparison with the Cerrado. The application of the NDVI index attenuates the long-term spectral changes.As variações da geometria de aquisição de imagens de sensoriamento remoto influenciam a resposta espectral dos alvos superficiais. O sensor Moderate Resolution Imaging Spectroradiometer (MODIS), contendo uma das maiores coleções de dados de superfície da terra da última década, é profundamente influenciado pela geometria de aquisição devido a sua larga faixa de imageamento e alta periodicidade. A presente pesquisa possui como objetivo avaliar a influência dos ângulos de visada no comportamento espectral das diferentes bandas espectrais MODIS e índices de vegetação nas regiões da Amazônia e do Cerrado. As faixas espectrais do infravermelho de ondas curtas e infravermelho próximo apresentaram alta dependência do ângulo de aquisição. As áreas da Amazônia apresentaram maior interferência do ângulo de aquisição em comparação com o Cerrado. A aplicação do índice NDVI atenua as alterações espectrais a longo prazo

    Using Unmanned Aerial Vehicles in Postfire Vegetation Survey Campaigns through Large and Heterogeneous Areas: Opportunities and Challenges

    Get PDF
    17 p.This study evaluated the opportunities and challenges of using drones to obtain multispectral orthomosaics at ultra-high resolution that could be useful for monitoring large and heterogeneous burned areas. We conducted a survey using an octocopter equipped with a Parrot SEQUOIA multispectral camera in a 3000 ha framework located within the perimeter of a megafire in Spain. We assessed the quality of both the camera raw imagery and the multispectral orthomosaic obtained, as well as the required processing capability. Additionally, we compared the spatial information provided by the drone orthomosaic at ultra-high spatial resolution with another image provided by theWorldView-2 satellite at high spatial resolution. The drone raw imagery presented some anomalies, such as horizontal banding noise and non-homogeneous radiometry. Camera locations showed a lack of synchrony of the single frequency GPS receiver. The georeferencing process based on ground control points achieved an error lower than 30 cm in X-Y and lower than 55 cm in Z. The drone orthomosaic provided more information in terms of spatial variability in heterogeneous burned areas in comparison with theWorldView-2 satellite imagery. The drone orthomosaic could constitute a viable alternative for the evaluation of post-fire vegetation regeneration in large and heterogeneous burned areasS

    Multitemporal assessment of crop parameters using multisensorial flying platforms

    Get PDF
    UAV sensors suitable for precision farming (Sony NEX-5n RGB camera; Canon Powershot modified to infrared sensitivity; MCA6 Tetracam; UAV spectrometer) were compared over differently treated grassland. The high resolution infrared and RGB camera allows spatial analysis of vegetation cover while the UAV spectrometer enables detailed analysis of spectral reflectance at single points. The high spatial and six-band spectral resolution of the MCA6 combines the opportunities of spatial and spectral analysis, but requires huge calibration efforts to acquire reliable data. All investigated systems were able to provide useful information in different distinct research areas of interest in the spatial or spectral domain. The UAV spectrometer was further used to assess multiangular reflectance patterns of wheat. By flying the UAV in a hemispherical path and directing the spectrometer towards the center of this hemisphere, the system acts like a large goniometer. Other than ground based goniometers, this novel method allows huge diameters without any need for infrastructures on the ground. Our experimental results shows good agreement with models and other goniometers, proving the approach valid. UAVs are capable of providing airborne data with a high spatial and temporal resolution due to their flexible and easy use. This was demonstrated in a two year survey. A high resolution RGB camera was flown every week over experimental plots of barley. From the RGB imagery a time series of the barley development was created using the color values. From this analysis we could track differences in the growth of multiple seeding densities and identify events of plant development such as ear pushing. These results lead towards promising practical applications that could be used in breeding for the phenotyping of crop varieties or in the scope of precision farming. With the advent of high endurance UAVs such as airships and the development of better light weight sensors, an exciting future for remote sensing from UAV in agriculture is expected

    A review of hyperspectral image analysis techniques for plant disease detection and identif ication

    Get PDF
    Plant diseases cause signif icant economic losses in agriculture around the world. Early detection, quantif ication and identif ication of plant diseases are crucial for targeted application of plant protection measures in crop production. Recently, intensive research has been conducted to develop innovative methods for diagnosing plant diseases based on hyperspectral technologies. The analysis of the ref lection spectrum of plant tissue makes it possible to classify healthy and diseased plants, assess the severity of the disease, differentiate the types of pathogens, and identify the symptoms of biotic stresses at early stages, including during the incubation period, when the symptoms are not visible to the human eye. This review describes the basic principles of hyperspectral measurements and different types of available hyperspectral sensors. Possible applications of hyperspectral sensors and platforms on different scales for diseases diagnosis are discussed and evaluated. Hyperspectral analysis is a new subject that combines optical spectroscopy and image analysis methods, which make it possible to simultaneously evaluate both physiological and morphological parameters. The review describes the main steps of the hyperspectral data analysis process: image acquisition and preprocessing; data extraction and processing; modeling and analysis of data. The algorithms and methods applied at each step are mainly summarized. Further, the main areas of application of hyperspectral sensors in the diagnosis of plant diseases are considered, such as detection, differentiation and identif ication of diseases, estimation of disease severity, phenotyping of disease resistance of genotypes. A comprehensive review of scientif ic publications on the diagnosis of plant diseases highlights the benef its of hyperspectral technologies in investigating interactions between plants and pathogens at various measurement scales. Despite the encouraging progress made over the past few decades in monitoring plant diseases based on hyperspectral technologies, some technical problems that make these methods diff icult to apply in practice remain unresolved. The review is concluded with an overview of problems and prospects of using new technologies in agricultural production

    Error budget for geolocation of spectroradiometer point observations from an unmanned aircraft system

    Get PDF
    We investigate footprint geolocation uncertainties of a spectroradiometer mounted on an unmanned aircraft system (UAS). Two microelectromechanical systems-based inertial measurement units (IMUs) and global navigation satellite system (GNSS) receivers were used to determine the footprint location and extent of the spectroradiometer. Errors originating from the on-board GNSS/IMU sensors were propagated through an aerial data georeferencing model, taking into account a range of values for the spectroradiometer field of view (FOV), integration time, UAS flight speed, above ground level (AGL) flying height, and IMU grade. The spectroradiometer under nominal operating conditions (8° FOV, 10 m AGL height, 0.6 s integration time, and 3 m/s flying speed) resulted in footprint extent of 140 cm across-track and 320 cm along-track, and a geolocation uncertainty of 11 cm. Flying height and orientation measurement accuracy had the largest influence on the geolocation uncertainty, whereas the FOV, integration time, and flying speed had the biggest impact on the size of the footprint. Furthermore, with an increase in flying height, the rate of increase in geolocation uncertainty was found highest for a low-grade IMU. To increase the footprint geolocation accuracy, we recommend reducing flying height while increasing the FOV which compensates the footprint area loss and increases the signal strength. The disadvantage of a lower flying height and a larger FOV is a higher sensitivity of the footprint size to changing distance from the target. To assist in matching the footprint size to uncertainty ratio with an appropriate spatial scale, we list the expected ratio for a range of IMU grades, FOVs and AGL heights.Deepak Gautam, Christopher Watson, Arko Lucieer and Zbynĕk Malenovsk

    Angular Dependency of Hyperspectral Measurements over Wheat Characterized by a Novel UAV Based Goniometer

    Get PDF
    In this study we present a hyperspectral flying goniometer system, based on a rotary-wing unmanned aerial vehicle (UAV) equipped with a spectrometer mounted on an active gimbal. We show that this approach may be used to collect multiangular hyperspectral data over vegetated environments. The pointing and positioning accuracy are assessed using structure from motion and vary from σ = 1° to 8° in pointing and σ = 0.7 to 0.8 m in positioning. We use a wheat dataset to investigate the influence of angular effects on the NDVI, TCARI and REIP vegetation indices. Angular effects caused significant variations on the indices: NDVI = 0.83–0.95; TCARI = 0.04–0.116; REIP = 729–735 nm. Our analysis highlights the necessity to consider angular effects in optical sensors when observing vegetation. We compare the measurements of the UAV goniometer to the angular modules of the SCOPE radiative transfer model. Model and measurements are in high accordance (r2 = 0.88) in the infrared region at angles close to nadir; in contrast the comparison show discrepancies at low tilt angles (r2 = 0.25). This study demonstrates that the UAV goniometer is a promising approach for the fast and flexible assessment of angular effects
    corecore