9 research outputs found

    Estimation of the polar angle in a 3D infrared indoor positioning system based on a QADA receiver

    Get PDF
    2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 30 September 2019 - 03 October 2019, Pisa, Italy.Three-dimension infrared positioning systems are a must on indoor local positioning systems, where those based on photodetectors are the most typically used in order not to have complex processing algorithms but a fast positioning computation. Most optical positioning systems are characterized by their low cost, low lifetime, and easy integration on the workplace. This work proposes an infrared positioning system based on four infrared LEDs and a QADA receiver. By applying encoding techniques to the infrared transmissions, the points of incidence from those transmitters on the QADA receiver are simultaneously obtained and the polar angle compensated, in order to finally estimate the receiver?s position. The geometrical considerations of the system have been derived, including the polar angle and its behaviour with regard to the receiver?s position, the angle of incidence and the aperture height. The proposal has been successfully validated by simulation and experimental tests, obtaining positioning errors below 10 cm.Ministerio de Economía y CompetitividadAgencia Estatal de Investigació

    The SmartVision Navigation Prototype for Blind Users

    Get PDF
    The goal of the Portuguese project "SmartVision: active vision for the blind" is to develop a small, portable and cheap yet intelligent and reliable system for assisting the blind and visually impaired while navigating autonomously, both in- and outdoor. In this article we present an overview of the prototype, design issues, and its different modules which integrate GPS and Wi-Fi localisation with a GIS, passive RFID tags, and computer vision. The prototype addresses global navigation for going to some destiny, by following known landmarks stored in the GIS in combination with path optimisation, and local navigation with path and obstacle detection just beyond the reach of the white cane. The system does not replace the white cane but complements it, in order to alert the user to looming hazards. In addition, computer vision is used to identify objects on shelves, for example in a pantry or refrigerator. The user-friendly interface consists of a four-button hand-held box, a vibration actuator in the handle of the white cane, and speech synthesis. In the near future, passive RFID tags will be complemented by active tags for marking navigation landmarks, and speech recognition may complement or substitute the vibration actuator

    The SmartVision navigation prototype for the blind

    Get PDF
    The goal of the project "SmartVision: active vision for the blind" is to develop a small and portable but intelligent and reliable system for assisting the blind and visually impaired while navigating autonomously, both outdoor and indoor. In this paper we present an overview of the prototype, design issues, and its different modules which integrate a GIS with GPS, Wi-Fi, RFID tags and computer vision. The prototype addresses global navigation by following known landmarks, local navigation with path tracking and obstacle avoidance, and object recognition. The system does not replace the white cane, but extends it beyond its reach. The user-friendly interface consists of a 4-button hand-held box, a vibration actuator in the handle of the cane, and speech synthesis. A future version may also employ active RFID tags for marking navigation landmarks, and speech recognition may complement speech synthesis

    A Combined Batteryless Radio and WiFi Indoor Positioning for Hospital Nursing

    Get PDF
    This paper proposes a design of an efficient hospital nurse calling system which combines two types of indoor localization systems. The purpose of the first system is to locate patients while the second is to locate nurses equipped with their smart phones. The main goal of developing such system is to decrease the time taking for nurses to provide healthcare for patients. Patients' positioning system is RF based. Indeed, each patient is equipped with a wireless and battery-free call button. When the switch is pressed, a wireless telegram is sent to reference nodes that act like Wireless Sensor Networks (WSN). The positioning of patient is performed using trilateration method with the help of Received Signal Strength Indicator (RSSI) values. Hence, beacons will forward the received signal from patient’s call button to a central receiver module connected to a computer. A dedicated program has been developed to calculate the position of the call button and post it on an online database. On the other hand, the nurses’ localization system is WiFi-based. Nurses' positioning is done by determining the Time of Arrival (ToA) and the Angle of Arrival (AoA) between the mobile phone and the WiFi router. The mobile phone locations are posted to the online database as well. Our program performs a comparison between the nurses' and the patient's coordinates. The nearest nurse gets an alarm. As consequence, a patient gets care from the nearest available nurse in an efficient way and with less time. The proposed system is user-friendly and Internet of Things (IoT) based architecture integrating two heterogeneous localization systems seamlessly

    Antenas setoriais para sistemas de localização em redes de sensores sem fios

    Get PDF
    Doutoramento em Engenharia EletrotécnicaThis work investigates low cost localization systems (LS) based on received signal strength (RSS) and integrated with different types of antennas with main emphasis on sectorial antennas. The last few years have witnessed an outstanding growth in wireless sensor networks (WSN). Among its various possible applications, the localization field became a major area of research. The localization techniques based on RSS are characterized by simplicity and low cost of integration. The integration of LS based on RSS and sectorial antennas (SA) was proven to provide an effective solution for reducing the number of required nodes of the networks and allows the combination of several techniques, such as RSS and angle of arrival (AoA). This PhD thesis focuses on studying techniques, antennas and protocols that best meet the needs of each LS with main focus on low cost systems based on RSS and AoA. Firstly there are studied localization techniques and system that best suit the requirements of the user and the antennas that are most appropriate according to the nature of the signal. In this step it is intended to provide a fundamental understanding of the undertaken work. Then the developed antennas are presented according to the following categories: sectorial and microstrip antennas. Two sectorial antennas are presented: a narrowband antenna operating at 2.4 to 2.5 GHz and a broadband antenna operating at 800MHz-2.4GHz. The low cost printed antennas were designed to operate at 5 GHz, which may be used for vehicular communication. After presenting the various antennas, several prototypes of indoor/outdoor LS are implemented and analyzed. Localization protocols are also proposed, one based on simplicity and low power, and the other on interoperability with different types of antennas and system requirements.O presente trabalho investiga sistemas de localização (SL) de baixo custo baseados na intensidade do sinal (RSS) e integrados com diferentes tipos de antenas com principal destaque para antenas sectoriais. Os últimos anos testemunharam um crescimento surpreendente de redes de sensores sem fios (RSSF), onde entre diversas aplicações possíveis, a localização tornou-se uma das principais áreas de pesquisa. Técnicas baseadas na intensidade do sinal caracterizam-se pela simplicidade e baixo custo de integração. A integração de SL baseados na intensidade do sinal recebido e antenas sectoriais (AS) oferecem uma solução eficaz para reduzir o número de nós necessários e para combinar diversas técnicas de localização. Esta tese de doutoramento foca-se no estudado de técnicas, antenas e protocolos de acordo com os requisitos de cada sistema localização com especial atenção para sistemas de baixo custo baseados na intensidade do sinal e no ângulo de chegada. Inicialmente são estudadas técnicas e SL de acordo com as necessidades do utilizador e as antenas que melhor se enquadram de acordo com a natureza do sinal. Esta etapa tem como objectivo proporcionar a compreensão fundamental do trabalho desenvolvido. Em seguida são apresentadas as antenas desenvolvidas divididas em: antenas sectorias e antenas impressas de baixo custo. Duas antenas sectoriais são apresentadas: uma de banda estreita a operar a 2,4-2,5GHz e outro de banda larga 800MHz-2.4GHz. As antenas impressas foram desenvolvidas para operar a 5 GHz, pelo que podem ser utilizadas para comunicação veicular. Após apresentação das diversas antenas vários protótipos de SL interiores/exteriores são implementados e analisados. Protocolos de localização são também propostos, um baseado na simplicidade e baixo consumo, outro na interoperabilidade com diferentes tipos de antenas e requisitos do sistema

    Angle-based indoor positioning system for open indoor environments

    No full text

    Signal modelling based scalable hybrid Wi-Fi indoor positioning system

    Get PDF
    Location based services (LBS) such as advertising, navigation and social media require a mobile device to be aware of its location anywhere. Global Positioning System (GPS) is accurate outdoors. However, in case of indoor environments, GPS fails to provide a location due to non-line of sight. Even in cases where GPS does manage to get a position fix indoors, it is largely inaccurate due to interference of indoor environment. Wi-Fi based indoor positioning offers best solution indoors, due to wide usage of Wi-Fi for internet access. Wi-Fi based indoor positioning systems are widely based on two techniques, first Lateration which uses distances estimated based on signal properties such as RSS (Received Signal Strength) and second, Fingerprint matching of data collected in offline phase. The accuracy of estimated position using Lateration techniques is lower compared to fingerprinting techniques. However, Fingerprinting techniques require storing a large amount of data and are also computationally intensive. Another drawback of systems based on fingerprinting techniques is that they are not scalable. As the system is scaled up, the database required to be maintained for fingerprinting techniques increases significantly. Lateration techniques also have challenges with coordinate system used in a scaled-up system. This thesis proposes a new scalable positioning system which combines the two techniques and reduces the amount of data to be stored, but also provides accuracy close to fingerprinting techniques. Data collected during the offline/calibration phase is processed by dividing the test area into blocks and then stored for use during online/positioning phase. During positioning phase, processed data is used to identify the block first and then lateration techniques are used to refine the estimated location. The current system reduces the data to be stored by a factor of 20. And the 50th percentile accuracy with this novel system is 4.8m, while fingerprint system accuracy was 2.8m using same data. The significant reduction in database size and lower computational intensity benefits some of the applications like location-based search engines even with slightly lower performance in terms of accuracy
    corecore