67,815 research outputs found

    BL-MNE: Emerging Heterogeneous Social Network Embedding through Broad Learning with Aligned Autoencoder

    Full text link
    Network embedding aims at projecting the network data into a low-dimensional feature space, where the nodes are represented as a unique feature vector and network structure can be effectively preserved. In recent years, more and more online application service sites can be represented as massive and complex networks, which are extremely challenging for traditional machine learning algorithms to deal with. Effective embedding of the complex network data into low-dimension feature representation can both save data storage space and enable traditional machine learning algorithms applicable to handle the network data. Network embedding performance will degrade greatly if the networks are of a sparse structure, like the emerging networks with few connections. In this paper, we propose to learn the embedding representation for a target emerging network based on the broad learning setting, where the emerging network is aligned with other external mature networks at the same time. To solve the problem, a new embedding framework, namely "Deep alIgned autoencoder based eMbEdding" (DIME), is introduced in this paper. DIME handles the diverse link and attribute in a unified analytic based on broad learning, and introduces the multiple aligned attributed heterogeneous social network concept to model the network structure. A set of meta paths are introduced in the paper, which define various kinds of connections among users via the heterogeneous link and attribute information. The closeness among users in the networks are defined as the meta proximity scores, which will be fed into DIME to learn the embedding vectors of users in the emerging network. Extensive experiments have been done on real-world aligned social networks, which have demonstrated the effectiveness of DIME in learning the emerging network embedding vectors.Comment: 10 pages, 9 figures, 4 tables. Full paper is accepted by ICDM 2017, In: Proceedings of the 2017 IEEE International Conference on Data Mining

    Two-Stage Metric Learning

    Get PDF
    In this paper, we present a novel two-stage metric learning algorithm. We first map each learning instance to a probability distribution by computing its similarities to a set of fixed anchor points. Then, we define the distance in the input data space as the Fisher information distance on the associated statistical manifold. This induces in the input data space a new family of distance metric with unique properties. Unlike kernelized metric learning, we do not require the similarity measure to be positive semi-definite. Moreover, it can also be interpreted as a local metric learning algorithm with well defined distance approximation. We evaluate its performance on a number of datasets. It outperforms significantly other metric learning methods and SVM.Comment: Accepted for publication in ICML 201

    Unsupervised Learning of Semantic Audio Representations

    Full text link
    Even in the absence of any explicit semantic annotation, vast collections of audio recordings provide valuable information for learning the categorical structure of sounds. We consider several class-agnostic semantic constraints that apply to unlabeled nonspeech audio: (i) noise and translations in time do not change the underlying sound category, (ii) a mixture of two sound events inherits the categories of the constituents, and (iii) the categories of events in close temporal proximity are likely to be the same or related. Without labels to ground them, these constraints are incompatible with classification loss functions. However, they may still be leveraged to identify geometric inequalities needed for triplet loss-based training of convolutional neural networks. The result is low-dimensional embeddings of the input spectrograms that recover 41% and 84% of the performance of their fully-supervised counterparts when applied to downstream query-by-example sound retrieval and sound event classification tasks, respectively. Moreover, in limited-supervision settings, our unsupervised embeddings double the state-of-the-art classification performance.Comment: Submitted to ICASSP 201

    Eco-innovation opportunities in the waste management sector in Scotland

    Get PDF
    Creating more circular economies that retain and recirculate the value of resources within an economy is gaining significant attention, with the concept of industrial symbiosis assisting businesses to reduce resource leakage from local economies. An eco-industrial park applies industrial symbiosis on the scale of an industrial park and may incorporate additional features such as shared infrastructure and services that assist in reducing environmental impacts and improving resource efficiency. This paper provides an overview of the application of the industrial symbiosis concept in Scotland and presents findings of the ACE Eco-Partnerships project, which attempted to identify and develop opportunities for industrial symbiosis in the Tayside and Fife region of Scotland, particularly on the scale of eco-industrial parks. The paper provides reflection on some of the barriers to eco-industrial park development, with specific reference to “retrofitting” industrial symbiosis onto existing industrial parks versus developing new eco-industrial parks

    Assessing equity of service delivery: a comparative analysis of measures of accessibility to public services

    Get PDF

    Experiments in terabyte searching, genomic retrieval and novelty detection for TREC 2004

    Get PDF
    In TREC2004, Dublin City University took part in three tracks, Terabyte (in collaboration with University College Dublin), Genomic and Novelty. In this paper we will discuss each track separately and present separate conclusions from this work. In addition, we present a general description of a text retrieval engine that we have developed in the last year to support our experiments into large scale, distributed information retrieval, which underlies all of the track experiments described in this document

    The effects of belongingness on the Simultaneous Lightness Contrast: A virtual reality study

    Get PDF
    Simultaneous Lightness Contrast (SLC) is the phenomenon whereby a grey patch on a dark background appears lighter than an equal patch on a light background. Interestingly, the lightness difference between these patches undergoes substantial augmentation when the two backgrounds are patterned, thereby forming the articulated-SLC display. There are two main interpretations of these phenomena: The midlevel interpretation maintains that the visual system groups the luminance within a set of contiguous frameworks, whilst the high-level one claims that the visual system splits the luminance into separate overlapping layers corresponding to separate physical contributions. This research aimed to test these two interpretations by systematically manipulating the viewing distance and the horizontal distance between the backgrounds of both the articulated and plain SLC displays. An immersive 3D Virtual Reality system was employed to reproduce identical alignment and distances, as well as isolating participants from interfering luminance. Results showed that reducing the viewing distance resulted in increased contrast in both the plain- and articulated-SLC displays and that, increasing the horizontal distance between the backgrounds resulted in decreased contrast in the articulated condition but increased contrast in the plain condition. These results suggest that a comprehensive lightness theory should combine the two interpretations

    Monitoring the Status of Alaska Fishing Communities, 1980-2010

    Get PDF
    Commercial fishing provides social and economic benefits for hundreds of communities across Alaska, with dozens of species being harvested commercially. The state's fisheries are complex, with the species mix, vessels and gear, environmental conditions, and socioeconomic circumstances varying widely from one part of the state to another. And while the majority of Alaska's fisheries continue to be successfully managed for sustainable harvests, fishing communities face a number of challenges, including changing market conditions, volatile catches and stock dynamics, changes in fishery regulations, redistribution of access rights, and climate change.North Pacific Research Board

    Robust Localization from Incomplete Local Information

    Get PDF
    We consider the problem of localizing wireless devices in an ad-hoc network embedded in a d-dimensional Euclidean space. Obtaining a good estimation of where wireless devices are located is crucial in wireless network applications including environment monitoring, geographic routing and topology control. When the positions of the devices are unknown and only local distance information is given, we need to infer the positions from these local distance measurements. This problem is particularly challenging when we only have access to measurements that have limited accuracy and are incomplete. We consider the extreme case of this limitation on the available information, namely only the connectivity information is available, i.e., we only know whether a pair of nodes is within a fixed detection range of each other or not, and no information is known about how far apart they are. Further, to account for detection failures, we assume that even if a pair of devices is within the detection range, it fails to detect the presence of one another with some probability and this probability of failure depends on how far apart those devices are. Given this limited information, we investigate the performance of a centralized positioning algorithm MDS-MAP introduced by Shang et al., and a distributed positioning algorithm, introduced by Savarese et al., called HOP-TERRAIN. In particular, for a network consisting of n devices positioned randomly, we provide a bound on the resulting error for both algorithms. We show that the error is bounded, decreasing at a rate that is proportional to R/Rc, where Rc is the critical detection range when the resulting random network starts to be connected, and R is the detection range of each device.Comment: 40 pages, 13 figure
    • 

    corecore