2,027 research outputs found

    Unravelling the Intrinsic Functional Organization of the Human Lateral Frontal Cortex: A Parcellation Scheme Based on Resting State fMRI

    Get PDF
    Human and nonhuman primates exhibit flexible behavior. Functional, anatomical, and lesion studies indicate that the lateral frontal cortex (LFC) plays a pivotal role in such behavior. LFC consists of distinct subregions exhibiting distinct connectivity patterns that possibly relate to functional specializations. Inference about the border of each subregion in the human brain is performed with the aid of macroscopic landmarks and/or cytoarchitectonic parcellations extrapolated in a stereotaxic system. However, the high interindividual variability, the limited availability of cytoarchitectonic probabilistic maps, and the absence of robust functional localizers render the in vivo delineation and examination of the LFC subregions challenging. In this study, we use resting state fMRI for the in vivo parcellation of the human LFC on a subjectwise and data-driven manner. This approach succeeds in uncovering neuroanatomically realistic subregions, with potential anatomical substrates includingBA46, 44, 45, 9 and related (sub)divisions. Ventral LFC subregions exhibit different functional connectivity (FC), which can account for different contributions in the language domain, while more dorsal adjacent subregions mark a transition to visuospatial/sensorimotor networks. Dorsal LFC subregions participate in known large-scale networks obeying an external/internal information processing dichotomy. Furthermore, we traced ā€œfamiliesā€ of LFC subregions organized along the dorsalā€“ventral and anteriorā€“posterior axis with distinct functional networks also encompassing specialized cingulate divisions. Similarities with the connectivity of macaque candidate homologs were observed, such as the premotor affiliation of presumed BA 46. The current findings partially support dominant LFC models

    Using action understanding to understand the left inferior parietal cortex in the human brain

    Full text link
    Published in final edited form as: Brain Res. 2014 September 25; 1582: 64ā€“76. doi:10.1016/j.brainres.2014.07.035.Humans have a sophisticated knowledge of the actions that can be performed with objects. In an fMRI study we tried to establish whether this depends on areas that are homologous with the inferior parietal cortex (area PFG) in macaque monkeys. Cells have been described in area PFG that discharge differentially depending upon whether the observer sees an object being brought to the mouth or put in a container. In our study the observers saw videos in which the use of different objects was demonstrated in pantomime; and after viewing the videos, the subject had to pick the object that was appropriate to the pantomime. We found a cluster of activated voxels in parietal areas PFop and PFt and this cluster was greater in the left hemisphere than in the right. We suggest a mechanism that could account for this asymmetry, relate our results to handedness and suggest that they shed light on the human syndrome of apraxia. Finally, we suggest that during the evolution of the hominids, this same pantomime mechanism could have been used to ā€˜nameā€™ or request objects.We thank Steve Wise for very detailed comments on a draft of this paper. We thank Rogier Mars for help with identifying the areas that were activated in parietal cortex and for comments on a draft of this paper. Finally, we thank Michael Nahhas for help with the imaging figures. This work was supported in part by the NIH grant RO1NS064100 to LMV. (RO1NS064100 - NIH)Accepted manuscrip

    Distinct connectivity patterns in human medial parietal cortices: Evidence from standardized connectivity map using cortico-cortical evoked potential

    Get PDF
    The medial parietal cortices are components of the default mode network (DMN), which are active in the resting state. The medial parietal cortices include the precuneus and the dorsal posterior cingulate cortex (dPCC). Few studies have mentioned differences in the connectivity in the medial parietal cortices, and these differences have not yet been precisely elucidated. Electrophysiological connectivity is essential for understanding cortical function or functional differences. Since little is known about electrophysiological connections from the medial parietal cortices in humans, we evaluated distinct connectivity patterns in the medial parietal cortices by constructing a standardized connectivity map using cortico-cortical evoked potential (CCEP). This study included nine patients with partial epilepsy or a brain tumor who underwent chronic intracranial electrode placement covering the medial parietal cortices. Single-pulse electrical stimuli were delivered to the medial parietal cortices (38 pairs of electrodes). Responses were standardized using the z-score of the baseline activity, and a response density map was constructed in the Montreal Neurological Institutes (MNI) space. The precuneus tended to connect with the inferior parietal lobule (IPL), the occipital cortex, superior parietal lobule (SPL), and the dorsal premotor area (PMd) (the four most active regions, in descending order), while the dPCC tended to connect to the middle cingulate cortex, SPL, precuneus, and IPL. The connectivity pattern differs significantly between the precuneus and dPCC stimulation (p<0.05). Regarding each part of the medial parietal cortices, the distributions of parts of CCEP responses resembled those of the functional connectivity database. Based on how the dPCC was connected to the medial frontal area, SPL, and IPL, its connectivity pattern could not be explained by DMN alone, but suggested a mixture of DMN and the frontoparietal cognitive network. These findings improve our understanding of the connectivity profile within the medial parietal cortices. The electrophysiological connectivity is the basis of propagation of electrical activities in patients with epilepsy. In addition, it helps us to better understand the epileptic network arising from the medial parietal cortices

    Intrinsic functional clustering of ventral premotor F5 in the macaque brain

    Get PDF
    Ā© 2020 Neurophysiological and anatomical data suggest the existence of several functionally distinct regions in the lower arcuate sulcus and adjacent postarcuate convexity of the macaque monkey. Ventral premotor F5c lies on the postarcuate convexity and consists of a dorsal hand-related and ventral mouth-related field. The posterior bank of the lower arcuate contains two additional premotor F5 subfields at different anterior-posterior levels, F5a and F5p. Anterior to F5a, area 44 has been described as a dysgranular zone occupying the deepest part of the fundus of the inferior arcuate. Finally, area GrFO occupies the most rostral portion of the fundus and posterior bank of inferior arcuate and extends ventrally onto the frontal operculum. Recently, data-driven exploratory approaches using resting-state fMRI data have been suggested as a promising non-invasive method for examining the functional organization of the primate brain. Here, we examined to what extent partitioning schemes derived from data-driven clustering analysis of resting-state fMRI data correspond with the proposed organization of the fundus and posterior bank of the macaque arcuate sulcus, as suggested by invasive architectonical, connectional and functional investigations. Using a hierarchical clustering analysis, we could retrieve clusters corresponding to the dorsal and ventral portions of F5c on the postarcuate convexity, F5a and F5p at different antero-posterior locations on the posterior bank of the lower arcuate, area 44 in the fundus, as well as part of area GrFO in the most anterior portion of the fundus. Additionally, each of these clusters displayed distinct whole-brain functional connectivity, in line with previous anatomical tracer and seed-based functional connectivity investigations of F5/44 subdivisions. Overall, our data suggests that hierarchical clustering analysis of resting-state fMRI data can retrieve a fine-grained level of cortical organization that resembles detailed parcellation schemes derived from invasive functional and anatomical investigations

    Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates

    Get PDF
    Significance A longstanding controversy in neuroscience pertains to differences in human prefrontal cortex (PFC) compared with other primate species; specifically, is human PFC disproportionately large? Distinctively human behavioral capacities related to higher cognition and affect presumably arose from evolutionary modifications since humans and great apes diverged from a common ancestor about 6ā€“8 Mya. Accurate determination of regional differences in the amount of cortical gray and subcortical white matter content in humans, great apes, and Old World monkeys can further our understanding of the link between structure and function of the human brain. Using tissue volume analyses, we show a disproportionately large amount of gray and white matter corresponding to PFC in humans compared with nonhuman primates.</jats:p

    Hierarchical Information-Based Clustering for Connectivity-Based Cortex Parcellation

    Get PDF
    One of the most promising avenues for compiling connectivity data originates from the notion that individual brain regions maintain individual connectivity profiles; the functional repertoire of a cortical area (ā€œthe functional fingerprintā€) is closely related to its anatomical connections (ā€œthe connectional fingerprintā€) and, hence, a segregated cortical area may be characterized by a highly coherent connectivity pattern. Diffusion tractography can be used to identify borders between such cortical areas. Each cortical area is defined based upon a unique probabilistic tractogram and such a tractogram is representative of a group of tractograms, thereby forming the cortical area. The underlying methodology is called connectivity-based cortex parcellation and requires clustering or grouping of similar diffusion tractograms. Despite the relative success of this technique in producing anatomically sensible results, existing clustering techniques in the context of connectivity-based parcellation typically depend on several non-trivial assumptions. In this paper, we embody an unsupervised hierarchical information-based framework to clustering probabilistic tractograms that avoids many drawbacks offered by previous methods. Cortex parcellation of the inferior frontal gyrus together with the precentral gyrus demonstrates a proof of concept of the proposed method: The automatic parcellation reveals cortical subunits consistent with cytoarchitectonic maps and previous studies including connectivity-based parcellation. Further insight into the hierarchically modular architecture of cortical subunits is given by revealing coarser cortical structures that differentiate between primary as well as premotoric areas and those associated with pre-frontal areas

    Corticostriatal connectivity fingerprints:Probability maps based on resting-state functional connectivity

    Get PDF
    Over the last decade, structure-function relationships have begun to encompass networks of brain areas rather than individual structures. For example, corticostriatal circuits have been associated with sensorimotor, limbic, and cognitive information processing, and damage to these circuits has been shown to produce unique behavioral outcomes in Autism, Parkinson's Disease, Schizophrenia and healthy ageing. However, it remains an open question how abnormal or absent connectivity can be detected at the individual level. Here, we provide a method for clustering gross morphological structures into subregions with unique functional connectivity fingerprints, and generate network probability maps usable as a baseline to compare individual cases against. We used connectivity metrics derived from resting-state fMRI (Nā€‰=ā€‰100), in conjunction with hierarchical clustering methods, to parcellate the striatum into functionally distinct clusters. We identified three highly reproducible striatal subregions, across both hemispheres and in an independent replication dataset (Nā€‰=ā€‰100) (dice-similarity values 0.40-1.00). Each striatal seed region resulted in a highly reproducible distinct connectivity fingerprint: the putamen showed predominant connectivity with cortical and cerebellar sensorimotor and language processing areas; the ventromedial striatum cluster had a distinct limbic connectivity pattern; the caudate showed predominant connectivity with the thalamus, frontal and occipital areas, and the cerebellum. Our corticostriatal probability maps agree with existing connectivity data in humans and non-human primates, and showed a high degree of replication. We believe that these maps offer an efficient tool to further advance hypothesis driven research and provide important guidance when investigating deviant connectivity in neurological patient populations suffering from e.g., stroke or cerebral palsy. Hum Brain Mapp 38:1478-1491, 2017. Ā© 2016 Wiley Periodicals, Inc.status: publishe

    Hierarchical modularity in human brain functional networks

    Get PDF
    The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or "modules-within-modules") decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI) in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at the highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and fronto-temporal systems; occipital modules demonstrated less sub-modular organization than modules comprising regions of multimodal association cortex. Connector nodes and hubs, with a key role in inter-modular connectivity, were also concentrated in association cortical areas. We conclude that methods are available for hierarchical modular decomposition of large numbers of high resolution brain functional networks using computationally expedient algorithms. This could enable future investigations of Simon's original hypothesis that hierarchy or near-decomposability of physical symbol systems is a critical design feature for their fast adaptivity to changing environmental conditions
    • ā€¦
    corecore