The idea that complex systems have a hierarchical modular organization
originates in the early 1960s and has recently attracted fresh support from
quantitative studies of large scale, real-life networks. Here we investigate
the hierarchical modular (or "modules-within-modules") decomposition of human
brain functional networks, measured using functional magnetic resonance imaging
(fMRI) in 18 healthy volunteers under no-task or resting conditions. We used a
customized template to extract networks with more than 1800 regional nodes, and
we applied a fast algorithm to identify nested modular structure at several
hierarchical levels. We used mutual information, 0 < I < 1, to estimate the
similarity of community structure of networks in different subjects, and to
identify the individual network that is most representative of the group.
Results show that human brain functional networks have a hierarchical modular
organization with a fair degree of similarity between subjects, I=0.63. The
largest 5 modules at the highest level of the hierarchy were medial occipital,
lateral occipital, central, parieto-frontal and fronto-temporal systems;
occipital modules demonstrated less sub-modular organization than modules
comprising regions of multimodal association cortex. Connector nodes and hubs,
with a key role in inter-modular connectivity, were also concentrated in
association cortical areas. We conclude that methods are available for
hierarchical modular decomposition of large numbers of high resolution brain
functional networks using computationally expedient algorithms. This could
enable future investigations of Simon's original hypothesis that hierarchy or
near-decomposability of physical symbol systems is a critical design feature
for their fast adaptivity to changing environmental conditions