15,665 research outputs found

    Anatomical calibration through post-processing of standard motion tests data

    Get PDF
    The inertial measurement unit is popularly used as a wearable and flexible tool for human motion tracking. Sensor-to-body alignment, or anatomical calibration (AC), is fundamental to improve accuracy and reliability. Current AC methods either require extra movements or are limited to specific joints. In this research, the authors propose a novel method to achieve AC from standard motion tests (such as walking, or sit-to-stand), and compare the results with the AC obtained from specially designed movements. The proposed method uses the limited acceleration range on medial-lateral direction, and applies principal component analysis to estimate the sagittal plane, while the vertical direction is estimated from acceleration during quiet stance. The results show a good correlation between the two sets of IMUs placed on frontal/back and lateral sides of head, trunk and lower limbs. Moreover, repeatability and convergence were verified. The AC obtained from sit-to-stand and walking achieved similar results as the movements specifically designed for upper and lower body AC, respectively, except for the feet. Therefore, the experiments without AC performed can be recovered through post-processing on the walking and sit-to-stand data. Moreover, extra movements for AC can be avoided during the experiment and instead achieved through the proposed method

    Computer-assisted access to the kidney

    Full text link
    OBJECTIVES: The aim of this paper is to introduce the principles of computer-assisted access to the kidney. The system provides the surgeon with a pre-operative 3D planning on computed tomography (CT) images. After a rigid registration with space-localized ultrasound (US) data, preoperative planning can be transferred to the intra-operative conditions and an intuitive man-machine interface allows the user to perform a puncture. MATERIAL AND METHODS: Both CT and US images of informed normal volunteer were obtained to perform calculation on the accuracy of registration and punctures were carried out on a kidney phantom to measure the precision of the whole of the system. RESULTS: We carried out millimetric registrations on real data and guidance experiments on a kidney phantom showed encouraging results of 4.7 mm between planned and reached targets. We noticed that the most significant error was related to the needle deflection during the puncture. CONCLUSION: Preliminary results are encouraging. Further work will be undertaken to improve efficiency and accuracy, and to take breathing into account

    Gait analysis methods in rehabilitation

    Get PDF
    Introduction: Brand's four reasons for clinical tests and his analysis of the characteristics of valid biomechanical tests for use in orthopaedics are taken as a basis for determining what methodologies are required for gait analysis in a clinical rehabilitation context. Measurement methods in clinical gait analysis: The state of the art of optical systems capable of measuring the positions of retro-reflective markers placed on the skin is sufficiently advanced that they are probably no longer a significant source of error in clinical gait analysis. Determining the anthropometry of the subject and compensating for soft tissue movement in relation to the under-lying bones are now the principal problems. Techniques for using functional tests to determine joint centres and axes of rotation are starting to be used successfully. Probably the last great challenge for optical systems is in using computational techniques to compensate for soft tissue measurements. In the long term future it is possible that direct imaging of bones and joints in three dimensions (using MRI or fluoroscopy) may replace marker based systems. Methods for interpreting gait analysis data: There is still not an accepted general theory of why we walk the way we do. In the absence of this, many explanations of walking address the mechanisms by which specific movements are achieved by particular muscles. A whole new methodology is developing to determine the functions of individual muscles. This needs further development and validation. A particular requirement is for subject specific models incorporating 3-dimensional imaging data of the musculo-skeletal anatomy with kinematic and kinetic data. Methods for understanding the effects of intervention: Clinical gait analysis is extremely limited if it does not allow clinicians to choose between alternative possible interventions or to predict outcomes. This can be achieved either by rigorously planned clinical trials or using theoretical models. The evidence base is generally poor partly because of the limited number of prospective clinical trials that have been completed and more such studies are essential. Very recent work has started to show the potential of using models of the mechanisms by which people with pathology walk in order to simulate different potential interventions. The development of these models offers considerable promise for new clinical applications of gait analysis

    In vitro assessment of the primary stability of the acetabular component in hip arthroplasty

    Get PDF
    In Europa, più di 700'000 interventi di artroplastica d’anca vengono effettuati annualmente. Il tasso di fallimento della chirurgia è del 2-8 % (a 10 anni). Di questo, più del 50% è dovuto alla mobilizzazione asettica della componente acetabolare (più che ad un fallimento legato alla componente femorale). Lo scopo centrale di questo progetto di tesi è quello di creare un pilot-test per la valutazione in vitro della stabilità primaria di una componente acetabolare commerciale, impiantata in una emipelvi sintetica (senza cemento, attraverso la procedura chirurgica press-fit). La valutazione dei micromovimenti prevede un approccio multiplo, costituito dall’utilizzo della Digital Image Correlation (DIC) e di sensori lineari di spostamento. Per adeguare e migliorare le prestazioni dei due strumenti di misura, lo studio prevede: (1.a) l’ottimizzazione delle misure ottenute dalla correlazione di immagini, (1.b) creare ed effettuare la procedura di calibrazione interna dei sensori di spostamento e l’ottimizzazione delle misure ottenute dai sensori stessi come monitor dell’intero pilot-test. La seconda parte del lavoro si prone di implementare una metodologia affidabile per il calcolo delle roto-traslazioni relative tra coppa e osso. La creazione di un algoritmo dedicato, prevede, quindi, di valutare: (2.a) la migrazione permanente e (2.b) i micromovimenti inducibili dai picchi di carico.L’utilizzo della correlazione di immagini è risultato un gran punto di forza dello studio. Grazie al potere della DIC nell’elaborare spostamenti e deformazioni a tutto campo, senza contatto e in stereofotogrammetria, per la prima volta è stato possibile ottenere informazioni 3D del vettore migrazione della coppa. Inoltre, creando una procedura ottimizzata dell’allineamento del provino sotto la macchina, si sono potute riferire tutte le misure ottenute dal pilot-test, all’Aneterior Pelvic Plane (sistema di riferimento di rilevanza clinica)

    Estimation of muscular forces from SSA smoothed sEMG signals calibrated by inverse dynamics-based physiological static optimization

    Get PDF
    The estimation of muscular forces is useful in several areas such as biomedical or rehabilitation engineering. As muscular forces cannot be measured in vivo non-invasively they must be estimated by using indirect measurements such as surface electromyography (sEMG) signals or by means of inverse dynamic (ID) analyses. This paper proposes an approach to estimate muscular forces based on both of them. The main idea is to tune a gain matrix so as to compute muscular forces from sEMG signals. To do so, a curve fitting process based on least-squares is carried out. The input is the sEMG signal filtered using singular spectrum analysis technique. The output corresponds to the muscular force estimated by the ID analysis of the recorded task, a dumbbell weightlifting. Once the model parameters are tuned, it is possible to obtain an estimation of muscular forces based on sEMG signal. This procedure might be used to predict muscular forces in vivo outside the space limitations of the gait analysis laboratory.Postprint (published version

    Balance Assessment Using a Smartwatch Inertial Measurement Unit with Principal Component Analysis for Anatomical Calibration

    Get PDF
    Balance assessment, or posturography, tracks and prevents health complications for a variety of groups with balance impairment, including the elderly population and patients with traumatic brain injury. Wearables can revolutionize state-of-the-art posturography methods, which have recently shifted focus to clinical validation of strictly positioned inertial measurement units (IMUs) as replacements for force-plate systems. Yet, modern anatomical calibration (i.e., sensor-to-segment alignment) methods have not been utilized in inertial-based posturography studies. Functional calibration methods can replace the need for strict placement of inertial measurement units, which may be tedious or confusing for certain users. In this study, balance-related metrics from a smartwatch IMU were tested against a strictly placed IMU after using a functional calibration method. The smartwatch and strictly placed IMUs were strongly correlated in clinically relevant posturography scores (r = 0.861–0.970, p \u3c 0.001). Additionally, the smartwatch was able to detect significant variance (p \u3c 0.001) between pose-type scores from the mediolateral (ML) acceleration data and anterior-posterior (AP) rotation data. With this calibration method, a large problem with inertial-based posturography has been addressed, and wearable, “at-home” balance-assessment technology is within possibility

    Development of a mobile technology system to measure shoulder range of motion

    Get PDF
    In patients with shoulder movement impairment, assessing and monitoring shoulder range of motion is important for determining the severity of impairments due to disease or injury and evaluating the effects of interventions. Current clinical methods of goniometry and visual estimation require an experienced user and suffer from low inter-rater reliability. More sophisticated techniques such as optical or electromagnetic motion capture exist but are expensive and restricted to a specialised laboratory environment.;Inertial measurement units (IMU), such as those within smartphones and smartwatches, show promise as tools bridge the gap between laboratory and clinical techniques and accurately measure shoulder range of motion during both clinic assessments and in daily life.;This study aims to develop an Android mobile application for both a smartphone and a smartwatch to assess shoulder range of motion. Initial performance characterisation of the inertial sensing capabilities of both a smartwatch and smartphone running the application was conducted against an industrial inclinometer, free-swinging pendulum and custom-built servo-powered gimbal.;An initial validation study comparing the smartwatch application with a universal goniometer for shoulder ROM assessment was conducted with twenty healthy participants. An impaired condition was simulated by applying kinesiology tape across the participants shoulder girdle. Agreement, intra and inter-day reliability were assessed in both the healthy and impaired states.;Both the phone and watch performed with acceptable accuracy and repeatability during static (within ±1.1°) and dynamic conditions where it was strongly correlated to the pendulum and gimbal data (ICC > 0.9). Both devices could perform accurately within optimal responsiveness range of angular velocities compliant with humerus movement during activities of daily living (frequency response of 377°/s and 358°/s for the phone and watch respectively).;The concurrent agreement between the watch and the goniometer was high in both healthy and impaired states (ICC > 0.8) and between measurement days (ICC > 0.8). The mean absolute difference between the watch and the goniometer were within the accepted minimal clinically important difference for shoulder movement (5.11° to 10.58°).;The results show promise for the use of the developed Android application to be used as a goniometry tool for assessment of shoulder ROM. However, the limits of agreement across all the tests fell out with the acceptable margin and further investigation is required to determine validity. Evaluation of validity in clinical impairment patients is also required to assess the feasibility of the use of the application in clinical practice.In patients with shoulder movement impairment, assessing and monitoring shoulder range of motion is important for determining the severity of impairments due to disease or injury and evaluating the effects of interventions. Current clinical methods of goniometry and visual estimation require an experienced user and suffer from low inter-rater reliability. More sophisticated techniques such as optical or electromagnetic motion capture exist but are expensive and restricted to a specialised laboratory environment.;Inertial measurement units (IMU), such as those within smartphones and smartwatches, show promise as tools bridge the gap between laboratory and clinical techniques and accurately measure shoulder range of motion during both clinic assessments and in daily life.;This study aims to develop an Android mobile application for both a smartphone and a smartwatch to assess shoulder range of motion. Initial performance characterisation of the inertial sensing capabilities of both a smartwatch and smartphone running the application was conducted against an industrial inclinometer, free-swinging pendulum and custom-built servo-powered gimbal.;An initial validation study comparing the smartwatch application with a universal goniometer for shoulder ROM assessment was conducted with twenty healthy participants. An impaired condition was simulated by applying kinesiology tape across the participants shoulder girdle. Agreement, intra and inter-day reliability were assessed in both the healthy and impaired states.;Both the phone and watch performed with acceptable accuracy and repeatability during static (within ±1.1°) and dynamic conditions where it was strongly correlated to the pendulum and gimbal data (ICC > 0.9). Both devices could perform accurately within optimal responsiveness range of angular velocities compliant with humerus movement during activities of daily living (frequency response of 377°/s and 358°/s for the phone and watch respectively).;The concurrent agreement between the watch and the goniometer was high in both healthy and impaired states (ICC > 0.8) and between measurement days (ICC > 0.8). The mean absolute difference between the watch and the goniometer were within the accepted minimal clinically important difference for shoulder movement (5.11° to 10.58°).;The results show promise for the use of the developed Android application to be used as a goniometry tool for assessment of shoulder ROM. However, the limits of agreement across all the tests fell out with the acceptable margin and further investigation is required to determine validity. Evaluation of validity in clinical impairment patients is also required to assess the feasibility of the use of the application in clinical practice

    A novel method of combining blood oxygenation and blood flow sensitive magnetic resonance imaging techniques to measure the cerebral blood flow and oxygen metabolism responses to an unknown neural stimulus.

    Get PDF
    Simultaneous implementation of magnetic resonance imaging methods for Arterial Spin Labeling (ASL) and Blood Oxygenation Level Dependent (BOLD) imaging makes it possible to quantitatively measure the changes in cerebral blood flow (CBF) and cerebral oxygen metabolism (CMRO(2)) that occur in response to neural stimuli. To date, however, the range of neural stimuli amenable to quantitative analysis is limited to those that may be presented in a simple block or event related design such that measurements may be repeated and averaged to improve precision. Here we examined the feasibility of using the relationship between cerebral blood flow and the BOLD signal to improve dynamic estimates of blood flow fluctuations as well as to estimate metabolic-hemodynamic coupling under conditions where a stimulus pattern is unknown. We found that by combining the information contained in simultaneously acquired BOLD and ASL signals through a method we term BOLD Constrained Perfusion (BCP) estimation, we could significantly improve the precision of our estimates of the hemodynamic response to a visual stimulus and, under the conditions of a calibrated BOLD experiment, accurately determine the ratio of the oxygen metabolic response to the hemodynamic response. Importantly we were able to accomplish this without utilizing a priori knowledge of the temporal nature of the neural stimulus, suggesting that BOLD Constrained Perfusion estimation may make it feasible to quantitatively study the cerebral metabolic and hemodynamic responses to more natural stimuli that cannot be easily repeated or averaged

    Ergowear: desenvolvimento de um vestuário inteligente para monitorização postural e biofeedback

    Get PDF
    Dissertação de mestrado em Engenharia Biomédica (especialização em Eletrónica Médica)Atualmente, as Lesões Musculoesqueléticas Relacionadas com o Trabalho (LMERT) são considera das o ”problema relacionado com o trabalho mais prevalente”na União Europeia, levando a um custo estimado de cerca de 240 biliões de euros. Em casos mais severos, estes distúrbios podem causar danos vitalícios à saúde do trabalhador, reduzindo a sua qualidade de vida. De facto, LMERTs são con sideradas a principal causa da reforma precoce dos trabalhadores. Foi reportado que os segmentos da parte superior do corpo são mais suceptíveis ao desenvolvimento de LMERTs. Para mitigar a prevalência de LMERTs, ergonomistas maioritariamente aplicam métodos de avaliação observacionais, que são alta mente dependentes da experiência do analista, e apresentam baixa objetividade e repetibilidade. Desta maneira, esforços têm sido feitos para desenvolver ferramentas de avaliação ergonómica baseadas na instrumentação, para compensar essas limitações. Além disso, com a ascensão do conceito da indústria 5.0, o trabalhador humano volta a ser o foco principal na indústria, juntamente com o robô colaborativo. No entanto, para alcançar uma relação verdadeiramente colaborativa e simbiótica entre o trabalhador e o robô, este último precisa de reconhecer as intenções do trabalhador. Para superar este obstáculo, sis temas de captura de movimento podem ser integrados nesta estrutura, fornecendo dados de movimento ao robô colaborativo. Esta dissertação visa a melhoria de um sistema de captura de movimento autónomo, da parte supe rior do corpo, de abordagem inercial que servirá, não apenas para monitorizar a postura do trabalhador, mas também avaliar a ergonomia do usuário e fornecer consciencialização postural ao usuário, por meio de motores de biofeedback. Além disso, o sistema foi já idealizado tendo em mente a sua integração numa estrutura colaborativa humano-robô. Para atingir estes objetivos, foi aplicada uma metodologia de design centrado no utilizador, começando pela análise do Estado da Arte, a avaliação das limitações do sistema anterior, a definição dos requisitos do sistema, o desenvolvimento da peça de vestuário, arquite tura do hardware e arquitetura do software do sistema. Por fim, o sistema foi validado para verificar se estava em conformidade com os requisitos especificados. O sistema é composto por 9 Unidades de Medição Inercial (UMI), posicionados na parte inferior e superior das costas, cabeça, braços, antebraços e mãos. Também foi integrado um sistema de atuação, para biofeedback postural, composto por 6 motores vibrotáteis, localizados na região lombar e próximo do pescoço, cotovelos e pulsos. O sistema é alimentado por uma powerbank e todos os dados adquiridos são enviados para uma estação de processamento, via WiFi (User Datagram Protocol (UDP)), garantindo autonomia. O sistema tem integrado um filtro de fusão Complementar Extendido e uma sequência de calibração Sensor-para-Segmento estática, de maneira a aumentar a precisão da estimativa dos ângulos das articulações. Além disso, o sistema é capaz de amostrar os dados angulares a 240 Hz, enquanto que o sistema anterior era capaz de amostrar no máximo a 100 Hz, melhorando a resolução da aquisição dos dados. O sistema foi validado em termos de hardware e usabilidade. Os testes de hardware abordaram a caracterização da autonomia, frequência de amostragem, robustez mecânica e desempenho da comuni cação sem fio do sistema, em diversos contextos, e também para verificar se estes estão em conformidade com os requisitos técnicos previamente definidos, que foi o caso. Adicionalmente, as especificações da nova versão do sistema foram comparadas com a anterior, onde se observou uma melhoria direta signifi cativa, como por exemplo, maior frequência de amostragem, menor perda de pacote, menor consumo de corrente, entre outras, e com sistemas comerciais de referência (XSens Link). Testes de usabilidade foram realizados com 9 participantes que realizaram vários movimentos uniarticulares e complexos. Após os testes, os usuários responderam a um questionário baseado na Escala de Usabilidade do Sistema (EUS). O sistema foi bem aceite pelos os usuários, em termos de estética e conforto, em geral, comprovando um elevado nível de vestibilidade.Nowadays, Work-Related Musculoskeletal Disorders (WRMSDs) are considered the ”most prevalent work-related problem” in the European Union (EU), leading to an estimated cost of about 240 billion EUR. In more severe cases, these disorders can cause life-long impairments to the workers’ health, reducing their quality of life. In fact, WRMSDs are the main cause for the workers’ early retirement. It was reported that the upper body segments of the worker are more susceptible to the development of WRMSDs. To mitigate the prevalence of WRMSD, ergonomists mostly apply observational assessment methods, which are highly dependant on the analyst’s expertise, have low objectivity and repeatability. Therefore, efforts have been made to develop instrumented-based ergonomic assessment tools, to compensate for these limitations. Moreover, with the rise of the 5.0 industry concept, the human worker is once again the main focus in the industry, along with the Collaborative Robot (cobot). However, to achieve a truly collaborative relation between the worker and the cobot, the latter needs to know the worker’s intentions. To surpass this obstacle, Motion Capture (MoCap) systems can be integrated in this framework, providing motion data to the cobot. This dissertation aims at the improvement of a stand-alone, upper-body, inertial, MoCap system, that will serve to not only monitor the worker’s posture, but also to assess the user’s ergonomics and provide posture awareness to the user, through biofeedback motors. Furthermore, it was also designed to integrate a human-robot collaborative framework. To achieve this, a user-centred design methodology was applied, starting with analyzing the State of Art (SOA), assessing the limitations of the previous system, defining the system’s requirements, developing the garment, hardware architecture and software architecture of the system. Lastly, the system was validated to ascertain if it is in conformity with the specified requirements. The developed system is composed of 9 Inertial Measurement Units (IMUs), placed on the lower and upper back, head, upper arms, forearms and hands. An actuation system was also integrated, for postural biofeedback, and it is comprised of 6 vibrotactile motors, located in the lower back, and in close proximity to the neck, elbows and wrists. The system is powered by a powerbank and all of the acquired data is sent to a main station, via WiFi (UDP), granting a standalone characteristic. The system integrates an Extended Complementary Filter (ECF) and a static Sensor-to-Segment (STS) calibration sequence to increase the joint angle estimation accuracy. Furthermore, the system is able to sample the angular data at 240 Hz, while the previous system was able to sample it at a maximum 100 Hz, improving the resolution of the data acquisition. The system was validated in terms of hardware and usability. The hardware tests addressed the char acterization of the system’s autonomy, sampling frequency, mechanical robustness and wireless commu nication performance in different contexts, and ascertain if they comply with the technical requirements, which was the case. Moreover, the specifications of the new version were compared with the previous one, where a significant direct improvement was observed, such as, higher sampling frequency, lower packet loss, lower current consumption, among others, and with a commercial system of reference (XSens Link). Usability tests were carried out with 9 participants who performed several uni-joint and complex motions. After testing, users answered a questionnaire based on the System Usability Scale (SUS). The system was very well accepted by the participants, regarding aesthetics and overall comfort, proving to have a high level of wearability
    corecore