11 research outputs found

    Polymorphic Endpoint Types for Copyless Message Passing

    Full text link
    We present PolySing#, a calculus that models process interaction based on copyless message passing, in the style of Singularity OS. We equip the calculus with a type system that accommodates polymorphic endpoint types, which are a variant of polymorphic session types, and we show that well-typed processes are free from faults, leaks, and communication errors. The type system is essentially linear, although linearity alone may leave room for scenarios where well-typed processes leak memory. We identify a condition on endpoint types that prevents these leaks from occurring.Comment: In Proceedings ICE 2011, arXiv:1108.014

    Typing Copyless Message Passing

    Get PDF
    We present a calculus that models a form of process interaction based on copyless message passing, in the style of Singularity OS. The calculus is equipped with a type system ensuring that well-typed processes are free from memory faults, memory leaks, and communication errors. The type system is essentially linear, but we show that linearity alone is inadequate, because it leaves room for scenarios where well-typed processes leak significant amounts of memory. We address these problems basing the type system upon an original variant of session types.Comment: 50 page

    A correct-by-construction model for asynchronously communicating systems

    Get PDF
    The design and verification of distributed software systems is often hindered by their ever-increasing complexity and their asynchronous operational semantics. This article considers choreography specifications for distributed systems to reduce that complexity. We use labelled state-transitions systems as ground model for both choreographies and the corresponding distributed systems. Based on Event-B method, we propose a stepwise correct-by-construction model to build asynchronous distributed systems which a priori realise their choreographies. We rely on a sufficient and necessary realisability condition and we apply several refinement steps w.r.t. that condition to generate the distributed peers. The first refinement returns peer behaviours obtained by synchronous projection. The previously computed system is then refined into its asynchronous version using unbounded FIFO buffers. We prove, thanks to invariant preservation, that a sequence of exchanged messages is preserved at each refinement step. We provide a formalised proof of a realisability algorithm for deterministic choreographies. Besides that, our contribution is twofold: the approach is a priori and the problackposed solution scales up to any number of peers communicating with each other

    Exception Handling for Copyless Messaging

    Get PDF

    Typing Copyless Message Passing

    Full text link
    We present a calculus that models a form of process interaction based on copyless message passing, in the style of Singularity OS. The calculus is equipped with a type system ensuring that well-typed processes are free from faults, leaks, and communication errors. The type system is essentially linear, but we show that linearity alone is inadequate. On the one hand, it is too strict when dealing with heap-allocated objects; on the other hand, it leaves room for scenarios where well-typed processes leak significant amounts of memory. We address these problems using dedicated types for keeping track of dereferenced pointers and by basing the type system upon an original variant of session types

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 29th European Symposium on Programming, ESOP 2020, which was planned to take place in Dublin, Ireland, in April 2020, as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The actual ETAPS 2020 meeting was postponed due to the Corona pandemic. The papers deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Decentralized information flow control for databases

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 177-194).Privacy and integrity concerns have been mounting in recent years as sensitive data such as medical records, social network records, and corporate and government secrets are increasingly being stored in online systems. The rate of high-profile breaches has illustrated that current techniques are inadequate for protecting sensitive information. Many of these breaches involve databases that handle information for a multitude of individuals, but databases don't provide practical tools to protect those individuals from each other, so that task is relegated to the application. This dissertation describes a system that improves security in a principled way by extending the database system and the application platform to support information flow control. Information flow control has been gaining traction as a practical way to protect information in the contexts of programming languages and operating systems. Recent research advocates the decentralized model for information flow control (DIFC), since it provides the necessary expressiveness to protect data for many individuals with varied security concerns.However, despite the fact that most applications implicated in breaches rely on relational databases, there have been no prior comprehensive attempts to extend DIFC to a database system. This dissertation introduces IFDB, which is a database management system that supports DIFC with minimal overhead. IFDB pioneers the Query by Label model, which provides applications with a simple way to delineate constraints on the confidentiality and integrity of the data they obtain from the database. This dissertation also defines new abstractions for managing information flows in a database and proposes new ways to address covert channels. Finally, the IFDB implementation and case studies with real applications demonstrate that database support for DIFC improves security, is easy for developers to use, and has good performance.by David Andrew Schultz.Ph.D

    Tipski sistemi za kontrolu memorije i prava pristupa

    No full text
    Three issues will be elaborated and disussed in the proposed thesis. The first is administration and control of data access rights in networks with XML data, with emphasis on data security. The second is the administration and control of access rights to data in computer networks with RDF data, with emphasis on data privacy. The third is prevention of errors and memory leaks, as well as communication errors, generated by programs written in Sing # language in the presence of exceptions. For all three issues, there will be presented formal models with corresponding type systems and showed the absence of undesired behavior i.e. errors in networks or programs.У тези су разматрана три проблема. Први је администрација и контрола права приступа података у рачунарској мрежи са XML подацима, са нагласком на безбедости посматраних података. Други је администрација и котрола права приступа подацима у рачунарској мрежи са RDF подацима, са нагласком на приватности посматраних података. Трећи је превенција грешака и цурења меморије, као и грешака у комуникацији генерисаним програмима написаних на језику Sing# у којима су присутни изузеци. За сва три проблема биће предложени формални модели и одговарајући типски системи помоћу којих се показује одсуство неповољних понашања тј. грешака у мрежама односно програмима.U tezi su razmatrana tri problema. Prvi je administracija i kontrola prava pristupa podataka u računarskoj mreži sa XML podacima, sa naglaskom na bezbedosti posmatranih podataka. Drugi je administracija i kotrola prava pristupa podacima u računarskoj mreži sa RDF podacima, sa naglaskom na privatnosti posmatranih podataka. Treći je prevencija grešaka i curenja memorije, kao i grešaka u komunikaciji generisanim programima napisanih na jeziku Sing# u kojima su prisutni izuzeci. Za sva tri problema biće predloženi formalni modeli i odgovarajući tipski sistemi pomoću kojih se pokazuje odsustvo nepovoljnih ponašanja tj. grešaka u mrežama odnosno programima
    corecore