
Logical Methods in Computer Science
Vol. 8 (1:17) 2012, pp. 1–50
www.lmcs-online.org

Submitted Sep. 21, 2011
Published Mar. 2, 2012

TYPING COPYLESS MESSAGE PASSING

VIVIANA BONO AND LUCA PADOVANI

Dipartimento di Informatica, Università degli Studi di Torino, Torino, Italy
e-mail address: {bono,padovani}@di.unito.it

Abstract. We present a calculus that models a form of process interaction based on
copyless message passing, in the style of Singularity OS. The calculus is equipped with a
type system ensuring that well-typed processes are free from memory faults, memory leaks,
and communication errors. The type system is essentially linear, but we show that linearity
alone is inadequate, because it leaves room for scenarios where well-typed processes leak
significant amounts of memory. We address these problems basing the type system upon
an original variant of session types.

1. Introduction

Communicating systems pervade every modern computing environment ranging from light-
weight threads in multi-core architectures to Web services deployed over wide area networks.
Message passing is a widespread communication paradigm adopted in many such systems.
In this paradigm, it is usually the case that a message traveling on a channel is copied
from the source to the destination. This is inevitable in a distributed setting, where the
communicating parties are loosely coupled, but some small-scale systems grant access to
a shared address space. In these cases it is possible to conceive a different communica-
tion paradigm – copyless message passing – where only pointers to messages are copied
from the source to the destination. The Singularity Operating System (Singularity OS for
short) [15, 16] is a notable example of system that adopts the copyless paradigm. In Sin-
gularity OS, processes have access to their own local memory as well as to a region called
exchange heap that is shared by all processes in the system and that is explicitly managed
(objects on the exchange heap are not garbage collected, but are explicitly allocated and
deallocated by processes). Inter-process communication solely occurs by means of message
passing over channels allocated on the exchange heap and messages are themselves pointers
to the exchange heap.

The copyless paradigm has obvious performance advantages, because it may dramat-
ically decrease the overhead caused by copying (possibly large) messages. At the same
time, it fosters the proliferation of subtle programming errors due to the explicit handling

1998 ACM Subject Classification: F.1.2, F.3.3, F.3.1, D.4.4.
Key words and phrases: copyless message passing, concurrency, type theory, subtyping, session types.
This work was partially supported by MIUR (PRIN 2008 DISCO).

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (1:17) 2012

c© V. Bono and L. Padovani
CC© Creative Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/301871518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/about/licenses

2 V. BONO AND L. PADOVANI

of pointers and the sharing of data. For this reason, Singularity processes must respect an
ownership invariant: at any given point in time, each object allocated on the exchange heap
is owned by exactly one process. In addition, inter-process communication is regulated by
so-called channel contracts which specify, for each channel, the sequences of interactions
that are expected to occur. Overall, these features are meant to prevent memory faults
(the access to non-owned/deallocated/uninitialized objects on the exchange heap), memory
leaks (the accumulation of unreachable allocated objects on the exchange heap), and com-
munication errors which could cause the abnormal termination of processes and trigger the
previous kinds of errors.

In this paper we attempt at providing a formal foundation to the copyless paradigm
from a type-theoretic point of view, along the following lines:

• We develop a process calculus that captures the essential features of Singularity OS
and formalizes a substantial fragment of Sing#, the programming language specifically
designed for the development of programs that run in Singularity OS. We provide a formal
characterization of well-behaved systems, those that are free from memory faults, memory
leaks, and communication errors.

• We develop a type system ensuring that well-typed systems are well behaved. The type
system is fundamentally based on the linear usage of pointers and on endpoint types, a
variant of session types [13, 14, 22] tailored to the communication model of Singularity
OS. We provide evidence that session types are a natural and expressive formalization of
channel contracts.

• We show that the combination of linearity and endpoint types is insufficient for preserv-
ing the ownership invariant, but also that endpoint types convey enough information
to tighten the type system so as to guarantee its soundness. This allows us to give an
indirect soundness proof of the current Singularity OS implementation.

The rest of the paper is organized as follows. In Section 2 we take a quick tour of Sing# and
we focus on its peculiar features in the context of Singularity OS that we are going to study
more formally in the subsequent sections. In Section 3 we define syntax and semantics (in
terms of subtyping) of the type language for our type system. We also give a number of
examples showing how to represent the Sing# types and channel contracts encountered in
Section 2 into our type language. Section 4 presents the syntax and reduction semantics
of the process calculus and ends with the formal definition of well-behaved systems. Since
we want to model the copyless paradigm, our calculus includes an explicit representation of
the exchange heap and of the objects allocated therein. Names in the language represent
pointers to the exchange heap rather than abstract communication channels. Section 5
begins showing that a traditionally conceived type system based on linearity and behavioral
types may leave room for violations of the ownership invariant. We then devise a type-
theoretic approach to solve the problem, we present the type rules for the exchange heap
and the process calculus and the soundness results of the type system. In Section 6 we define
algorithms for deciding the subtyping relation and for implementing the type checking
rules presented in the previous section. We relate our work with relevant literature in
Section 7, where we also detail similarities and differences between this paper and two
earlier versions [2, 3] that have appeared in conference and workshop proceedings. We
conclude in Section 8 with a summary of our work. For the sake of readability, proofs
and additional technical material relative to Sections 3, 5, and 6 have been moved into
Appendixes A, B, and C respectively.

TYPING COPYLESS MESSAGE PASSING 3

1 void map<α,β>(imp<Mapper<α,β>:WAIT_ARG> in ExHeap mapper,

2 [Claims] imp<Stream<α>:START> in ExHeap source,

3 [Claims] exp<Stream<β>:START> in ExHeap target) {

4 switch receive {

5 case source.Data(α in ExHeap x):

6 mapper.Arg(x);

7 switch receive {

8 case mapper.Res(β in ExHeap y):

9 target.Data(y);

10 map<α,β>(mapper, source, target);

11 }

12

13 case source.Eos():

14 target.Eos();

15 source.Close();

16 target.Close();

17 }

18 }

Figure 1: An example of Sing# code.

2. A Taste of Sing#

In this section we take a closer look at Sing#, the programming language specifically de-
signed for the development of programs that run in Singularity OS. We do so by means of a
simple, yet rather comprehensive example that shows the main features of the language and
of its type system. In the discussion that follows it is useful to keep in mind that Singularity
channels consist of pairs of related endpoints, called the peers of the channel. Messages sent
over one peer are received from the other peer, and vice versa. Each peer is associated
with a FIFO buffer containing the messages sent to that peer that have not been received
yet. Therefore, communication is asynchronous (send operations are non-blocking) and
process synchronization must be explicitly implemented by means of suitable handshaking
protocols.

The code snippet in Figure 1 defines a polymorphic function map that transforms a
stream of data of type α into a stream of data of type β through a provided mapper.1

The function accepts two type arguments α and β and three proper arguments: a mapper

endpoint that allows communication with a process that performs the actual processing
of data; a source endpoint from which data to be processed is read; a target endpoint
to which processed data is forwarded. For the time being, we postpone the discussion of
the type annotations of these arguments and focus instead on the operational semantics of
the function. We will come back to types shortly, when we discuss static analysis. The
switch receive construct (lines 4–17) is used to receive messages from an endpoint, and
to dispatch the control flow to various cases depending on the kind of message that is
received. Each case block specifies the endpoint from which a message is expected and the

1This function can be thought of as the communication-oriented counterpart of the higher-order, list-
processing map function defined in the standard library of virtually all functional programming languages.

4 V. BONO AND L. PADOVANI

tag of the message. In this example, two kinds of messages can be received from the source

endpoint: either a Data-tagged message (lines 5–11) or a Eos-tagged message (lines 13–16).
A Data-tagged message contains a chunk of data to be processed, which is bound to the local
variable x (line 5). The data is sent in an Arg-tagged message on the mapper endpoint for
processing (line 6), the result is received from the same endpoint as a Res-tagged message,
stored in the local variable y (line 8) and forwarded on the target endpoint as another
outgoing Data-tagged message (line 9). Finally, the map function is invoked recursively so
that further data can be processed (line 10). An Eos-tagged message flags the fact that the
incoming stream of data is finished (line 13). When this happens, the same kind of message
is sent on the target endpoint (line 14) and both the source and the target endpoints
are closed (lines 15 and 16).

We now illustrate the meaning of the type annotations and their relevance with respect
to static analysis. The in ExHeap annotations state that all the names in this example
denote pointers to objects allocated on the exchange heap. Some of these objects (like
those pointed to by source and target) represent communication endpoints, others (those
pointed to by x and y) represent data contained in messages. Static analysis of Sing#

programs aims at providing strong guarantees on the absence of errors deriving from com-
munications and the usage of heap-allocated objects.

Regarding communications, the correctness of this code fragment relies on the assump-
tion that the process(es) using the peer endpoints of mapper, source, and target are able
to deal with the message types as they are received/sent from within map. For instance,
map assumes to receive a Res-tagged message after it has sent an Arg-tagged message on
mapper. It also assumes that only Data-tagged and Eos-tagged messages can be received
from source and sent to target, and that after an Eos-tagged message is received no fur-
ther message can be received from it. No classical type associated with mapper or source or
target is able to capture these temporal dependencies between such different usages of the
same object at different times. The designers of Sing# have consequently devised channel
contracts describing the allowed communication patterns on a given endpoint. Consider,
for example, the polymorphic contracts Mapper<α,β> and Stream<α> below:

contract Mapper<α,β> {

message Arg(α in ExHeap);

message Res(β in ExHeap);

state WAIT_ARG

{ Arg? → SEND_RES; }

state SEND_RES

{ Res! → WAIT_ARG; }

}

contract Stream<α> {

message Data(α in ExHeap);

message Eos();

state START

{ Data! → START;

Eos! → END; }

state END { }

}

A contract is made of a finite set of message specifications and a finite set of states
connected by transitions. Each message specification begins with the message keyword and
is followed by the tag of the message and the type of its arguments. For instance, the
Stream<α> contract defines the Data-tagged message with an argument of type α and the
Eos-tagged message with no arguments. The state of the contract determines the state
in which the endpoint associated with the contract is and this, in turn, determines which
messages can be sent/received. The same contract can have multiple states, each with a pos-
sibly different set of messages that can be sent/received, therefore capturing the behavioral

TYPING COPYLESS MESSAGE PASSING 5

nature of endpoints. In Stream<α> we have a START state from which two kinds of message
can be sent: if a Data-tagged message is sent, the contract remains in the START state; if
a Eos-tagged message is sent, the contract transits to the END state from which no further
transitions are possible. Communication errors are avoided by associating the two peers of
a channel with types that are complementary, in that they specify complementary actions.
This is achieved in Sing# with the exp<C:s> and imp<C:s> type constructors that, given a
contract C and a state s of C, respectively denote the so-called exporting and importing views
of C when in state s. For the sake of hindsight, it is useful to think of the exporting view as of
the type of the provider of the behavior specified in the contract, and of the importing view
as of the type of the consumer of the behavior specified in the contract. On the one hand,
the map function in Figure 1 accepts a mapper argument of type imp<Map<α,β>:WAIT_ARG>

since it consumes the mapping service accessible through the mapper endpoint and a source

argument of type imp<Stream<α>:START> since it consumes the source stream of data
to be processed. On the other hand, the function accepts a target argument of type
exp<Stream<β>:START> since it produces a new stream of data on the target endpoint. In
the code fragment in Figure 1, the endpoint target has type exp<Stream<β>:START> on
line 9, the output of a Data-tagged message is allowed by the exporting view of Stream<β>

in this state, and the new type of target on line 10 is again exp<Stream<β>:START>. Its
type turns to exp<Stream<α>:END> from line 14 to line 15, when the Eos-tagged message
is received. The endpoint mapper has type imp<Mapper<α,β>:WAIT_ARG> on line 6. The
importing view of Mapper<α,β> allows sending a Arg-tagged message in this state, hence
the type of mapper turns to imp<Mapper<α,β>:SEND_RES> in lines 7 and back to type
imp<Mapper<α,β>:WAIT_ARG> from line 8 to line 9.

A major complication of the copyless paradigm derives from the fact that communicated
objects are not copied from the sender to the receiver, but rather pointers to allocated
objects are passed around. This can easily invalidate the ownership invariant if special
attention is not payed to whom is entitled to access which objects. Given these premises,
it is natural to think of a type discipline controlling the ownership of allocated objects,
whereby at any given time every allocated object is owned by one (and only one) process.
Whenever (the pointer to) an allocated object is sent as a message, its ownership is also
transferred from the sender to the receiver. In the example of Figure 1, the function map

becomes the owner of data x in line 5. When x is sent on endpoint mapper, the ownership
of x is transferred from map to whichever process is receiving messages on mapper’s peer
endpoint. Similarly, map acquires the ownership of y on line 8, and ceases it in the subsequent
line. Overall it seems like map is well balanced, in the sense that everything it acquires it
also released. In fact, as mapper, source, and target are also allocated on the exchange
heap, we should care also for map’s arguments. Upon invocation of map, the ownership
of these three arguments transfers from the caller to map, but when map terminates, only
the ownership of mapper returns to the caller, since source and target are closed (and
deallocated) within map on lines 15 and 16. This is the reason why the types of source

and target in the header of map are annotated with a [Claims] clause indicating that map

retains the ownership of these two arguments even after it has returned.
From the previous discussion it would seem plausible to formalize Sing# using a process

calculus equipped with a suitable session type system. Session types capture very well the
sort of protocols described by Sing# contracts and one could hope that, by imposing a linear
usage on entities, the problems regarding the ownership of heap-allocated objects would be
easily solved. In practice, things are a little more involved than this because, somewhat

6 V. BONO AND L. PADOVANI

surprisingly, linearity alone is too weak to guarantee the absence of memory leaks, which
occur when every reference to an heap-allocated object is lost. We devote the rest of this
section to illustrating this issue through a couple of simple examples. Consider the function:

void foo([Claims] imp<C:START> in ExHeap e,

[Claims] exp<C:START> in ExHeap f)

{ e.Arg(f); e.Close(); }

which accepts two endpoints e and f allocated in the exchange heap, sends endpoint f as an
Arg-tagged message on e, and closes e. The [Claims] annotations in the function header
are motivated by the fact that one of the two arguments is sent away in a message, while the
other is properly deallocated within the function. Yet, this function may produce a leak if e

and f are the peer endpoints of the same channel. If this is the case, only the e endpoint is
properly deallocated while every reference to f is lost. Note that the foo function behaves
correctly with respect to the Sing# contract

contract C {

message Arg(exp<C:START> in ExHeap);

state START { Arg? → END; }

state END { }

}

whose only apparent anomaly is the implicit recursion in the type of the argument of the
Arg message, which refers to the contract C being defined. A simple variation of foo and
C, however, is equally dangerous and does not even need this form of implicit recursion:

void bar([Claims] imp<D:START> in ExHeap e,

[Claims] exp<D:START> in ExHeap f)

{ e.Arg<exp<D:START>>(f); e.Close(); }

In this case, the Arg-tagged message is polymorphic (it accepts a linear argument of
any type) and the contract D is defined as:

contract D {

message Arg<α>(α in ExHeap);

state START { Arg? → END; }

state END { }

}

These examples show that, although it makes sense to allow the types exp<C:START>

and exp<D:START> in general, their specific occurrences in the definition of C and in the body
of bar are problematic. We will see why this is the case in Section 5 and we shall devise a
purely type-theoretic framework that avoids these problems. Remarkably, the foo function
is ill typed also in Sing# [8], although the motivations for considering foo dangerous come
from the implementation details of ownership transfer rather than from the memory leaks
that foo can produce (see Section 7 for a more detailed discussion).

TYPING COPYLESS MESSAGE PASSING 7

Table 1: Syntax of types.

Type t ::= q T (qualified endpoint type)

Qualifier q ::= lin (linear)
| un (unrestricted)

Endpoint Type T ::= end (termination)
| α (type variable)
| {!mi〈αi〉(ti).Ti}i∈I (internal choice)
| {?mi〈αi〉(ti).Ti}i∈I (external choice)
| rec α.T (recursive type)

3. Types

We introduce some notation for the type language: we assume an infinite set of type variables
ranged over by α, β, . . . ; we use t, s, . . . to range over types, q to range over qualifiers,
and T , S, . . . to range over endpoint types. The syntax of types and endpoint types is
defined in Table 1. An endpoint type describes the allowed behavior of a process with
respect to a particular endpoint. The process may send messages over the endpoint, receive
messages from the endpoint, and deallocate the endpoint. The endpoint type end denotes an
endpoint on which no input/output operation is possible and that can only be deallocated.
An internal choice {!mi〈αi〉(ti).Ti}i∈I denotes an endpoint on which a process may send any
message with tag mi for i ∈ I. The message has a type parameter αi, which the process
can instantiate with any endpoint type (but we will impose some restrictions in Section 5),
and an argument of type ti. Depending on the tag mi of the message, the endpoint can be
used thereafter according to the endpoint type Ti. In a dual manner, an external choice
{?mi〈αi〉(ti).Ti}i∈I denotes and endpoint from which a process must be ready to receive any
message with tag mi for i ∈ I. Again, αi is the type parameter of the message and ti denotes
the type of the message’s argument. Depending on the tag mi of the received message, the
endpoint is to be used according to Ti. The duality between internal and external choices
regards not only the dual send/receive behaviors of processes obeying these types, but
also the quantification of type parameters in messages, which we can think universally
quantified in internal choices (the sender chooses how to instantiate the type variable)
and existentially quantified in external choices (the receiver does not know the type with
which the type variable has been instantiated). In endpoint types {!mi〈αi〉(ti).Ti}i∈I and
{?mi〈αi〉(ti).Ti}i∈I we assume that mi = mj implies i = j. That is, the tag mi of the message
that is sent or received identifies a unique continuation Ti. Terms rec α.T can be used to
specify recursive behaviors, as usual. The role of type variables α is twofold, depending on
whether they are bound by a recursion rec α.T or by a prefix m〈α〉(t) in a choice: they
either represent recursion points, like α in rec α.!m〈β〉(t).α, or abstracted endpoint types,
like α in !m〈α〉(lin ?m′〈β〉(t).α).end. We will see plenty of examples of both usages in the
following.

Even though the type system focuses on linear objects allocated on the exchange heap,
the type language must be expressive enough to describe Singularity OS entities like system-
wide services or Sing# functions and procedures. For this reason, we distinguish linear
resources from unrestricted ones and, along the lines of [22, 12], we define types as qualified

8 V. BONO AND L. PADOVANI

Table 2: Well-formedness rules for endpoint types.

(WF-End)

∆o;∆i end

(WF-Var)

α ∈ ∆o \ ∆i

∆o;∆i α

(WF-Rec)

∆o, α;∆i \ {α} T

∆o;∆i rec α.T

(WF-Prefix)

† ∈ {!, ?} (∆o ∪ ∆i), αi; ∅ Si
(i∈I)

∆o;∆i, αi Ti
(i∈I)

∆o;∆i †{mi〈αi〉(qi Si).Ti}i∈I

endpoint types. A qualifier is either ‘lin’, denoting a linear endpoint type or ‘un’, denoting
an unrestricted endpoint type. Endpoints with a linear type must be owned by exactly one
process at any given time, whereas endpoints with an unrestricted type can be owned by
several (possibly zero) processes at the same time. Clearly, not every endpoint type can
be qualified as unrestricted, for the type system relies fundamentally on linearity in order
to enforce its properties. In the following we limit the use of the ‘un’ qualifier to endpoint
types of the form rec α.{!mi〈αi〉(ti).α}i∈I , whose main characteristic is that they do not
change over time (each continuation after an output action is α, that is the whole endpoint
type itself). In a sense, they are not behavioral types, which intuitively explains why they
can be safely qualified as unrestricted.

Here are some conventions regarding types and endpoint types:

• we sometimes use an infix notation for internal and external choices and write

!m1〈α1〉(t1).T1 ⊕ · · · ⊕ !mn〈αn〉(tn).Tn instead of {!mi〈αi〉(ti).Ti}i∈{1,...,n}

and

?m1〈α1〉(t1).T1 + · · · + ?mn〈αn〉(tn).Tn instead of {?mi〈αi〉(ti).Ti}i∈{1,...,n}

• we omit the type variable specification 〈α〉 when useless (if the type variable occurs
nowhere else) and write, for example, !m(t).T ;

• for the sake of simplicity, we formally study (endpoint) types where messages carry exactly
one type/value argument, but we will be more liberal in the examples;

• we write lin(t) and un(t) to mean that t is respectively linear and unrestricted.

We have standard notions of free and bound type variables for (endpoint) types. The
binders are rec and m〈α〉(t). In particular, rec α.T binds α in T and †m〈α〉(t).T where
† ∈ {!, ?} binds α in t and in T . We will write ftv(T) and btv(T) for the set of free
and bound type variables of T . We require that type variables bound by a recursion rec

must be guarded by a prefix (therefore a non-contractive endpoint type such as rec α.α
is forbidden) and that type variables bound in 〈α〉 as in !m〈α〉(t).T can only occur in t
and within the prefixes of T . We formalize this last requirement as a well-formedness
predicate for types denoted by a judgment ∆o;∆i T and inductively defined by the
axioms and rules in Table 2. The set ∆o contains so-called outer variables (those that can
occur everywhere) while the set ∆i contains so-called inner variables (those that can occur
only within prefixes). Here and in the following we adopt the convention that ∆,∆′ denotes
∆ ∪ ∆

′ when ∆ ∩ ∆
′ = ∅ and is undefined otherwise; we also write ∆, α instead of ∆, {α}.

We say that T is well formed with respect to ∆, written ∆ T , if ∆; ∅ t is derivable.
Well formedness restricts the expressiveness of types, in particular endpoint types such as

TYPING COPYLESS MESSAGE PASSING 9

!m〈α〉(t).α and ?m〈α〉(t).α are not admitted because ill formed. We claim that ill-formed
endpoint types have little practical utility: a process using an endpoint with type !m〈α〉(t).α
knows the type with which α is instantiated while no process is capable of using an endpoint
with type ?m〈α〉(t).α since nothing can be assumed about the endpoint type with which α
is instantiated.

In what follows we consider endpoint types modulo renaming of bound variables and
the law rec α.T = T {rec α.T/α} where T {rec α.T/α} is the capture-avoiding substitution
of rec α.T in place of every free occurrence of α in T . Whenever we want to reason on the
structure of endpoint types, we will use a syntactic equality operator ≡. Therefore we have
rec α.T 6≡ T {rec α.T/α} (recall that T cannot be α for contractivity).

Example 3.1. Consider the contracts Mapper<α,β> and Stream<α> presented in Section 2.
We use the endpoint types

TMapper(α, β) = rec γ.?Arg(lin α).!Res(lin β).γ
TStream(α) = rec γ.(!Data(lin α).γ ⊕ !Eos().end)

to denote the Sing# types exp<Mapper<α,β>:WAIT_ARG> and exp<Stream<α>:START> re-
spectively. Recursion models loops in the contracts and each state of a contract corresponds
to a particular subterm of TMapper(α, β) and TStream(α). For instance, the Sing# type
exp<Mapper<α,β>:SEND_RES> is denoted by the endpoint type !Res(lin β).TMapper(α, β).
The type of message arguments are embedded within the endpoint types, like in session
types but unlike Sing# where they are specified in separate message directives. The lin

qualifiers correspond to the in ExHeap annotations and indicate that these message argu-
ments are linear values.

Observe that both endpoint types are open, as the type variables α and β occur free in
them. We will see how to embed these endpoint types into a properly closed type for map

in Example 3.3. �

Duality is a binary relation between endpoint types that describe complementary ac-
tions. Peer endpoints will be given dual endpoint types, so that processes accessing peer
endpoints will interact without errors: if one of the two processes sends a message of some
kind, the other process is able to receive a message of that kind; if one process has finished
using an endpoint, the other process has finished too.

Definition 3.1 (duality). We say that D is a duality relation if (T, S) ∈ D implies either

• T = S = end, or
• T = {?mi〈αi〉(ti).Ti}i∈I and S = {!mi〈αi〉(ti).Si}i∈I and (Ti, Si) ∈ D for every i ∈ I, or
• T = {!mi〈αi〉(ti).Ti}i∈I and S = {?mi〈αi〉(ti).Si}i∈I and (Ti, Si) ∈ D for every i ∈ I.

We write ⊲⊳ for the largest duality relation and we say that T and S are dual if T ⊲⊳ S.

We will see that every well-formed endpoint type T has a dual – that we denote by
T – which is intuitively obtained from T by swapping ?’s with !’s. The formal defini-
tion of T , however, is complicated by the possible occurrence of recursion variables within
prefixes. As an example, the dual of the endpoint type T = rec α.!m〈β〉(α).end is not
S = rec α.?m〈β〉(α).end but rather rec α.?m〈β〉(T).end. This is because, by unfolding the
recursion in T , we obtain T = !m〈β〉(T).end whose dual, ?m〈β〉(T).end, is clearly different
from S = ?m〈β〉(S).end (duality does not change the type of message arguments).

To provide a syntactic definition of dual endpoint type, we use an inner substitution
operator {{·/·}} such that T {{S/α}} denotes T where every free occurrence of α within the

10 V. BONO AND L. PADOVANI

prefixes of T has been replaced by S. Free occurrences of α that do not occur within a
prefix of T are not substituted. For example, we have (!m〈β〉(α).α){{S/α}} = !m〈β〉(S).α.
Then, the dual of an endpoint type T is defined inductively on the structure of T , thus:

end = end

α = α

rec α.T = rec α.T {{rec α.T/α}}

{!mi〈αi〉(ti).Ti}i∈I = {?mi〈αi〉(ti).Ti}i∈I

{?mi〈αi〉(ti).Ti}i∈I = {!mi〈αi〉(ti).Ti}i∈I

Here are some important facts about well-formed endpoint types and duality:

Proposition 3.1. The following properties hold:

(1) T = T .
(2) ∅ T implies that T ⊲⊳ T and ∅ T .
(3) ∆; {α} T and ∆ S imply ∆ T {S/α}.

(4) ∅; {α} T and ∅ S imply T {S/α} = T {S/α}.

Item (1) states that · is an involution. Item (2) states that T is well formed and
dual of T when T is well formed. Item (3) states the expected property of well-formedness
preservation under substitution of well-formed endpoint types. Finally, item (4) shows that
duality does not affect the inner variables of an endpoint type and that, in fact, duality and
substitution commute.

Example 3.2. In Example 3.1 we have defined the endpoint types TMapper(α, β) and
TStream(α) denoting the exp<Mapper<α,β>:WAIT_ARG> and exp<Stream<α>:START> types
in Sing#. The dual endpoint types of TMapper(α, β) and TStream(α) are

TMapper(α, β) = rec γ.!Arg(lin α).?Res(lin β).γ

TStream(α) = rec γ.(?Data(lin α).γ + ?Eos().end)

and they denote the imp<Mapper<α,β>:WAIT_ARG> and imp<Stream<α>:START> types in
Sing#. �

Example 3.3 (function types). While Sing# is a procedural language, our formalization
is based on a process algebra. Therefore, some Sing# entities like functions and function
types that are not directly representable must be encoded. A function can be encoded as a
process that waits for the arguments and sends the result of the computation. Callers of the
function will therefore send the arguments and receive the result. Following this intuition,
the type

Tmap(α, β) = !Arg(lin TMapper(α, β)).!Arg(lin TStream(α)).!Arg(lin TStream(β)).?Res().end

seems like a good candidate for denoting the type of map in Figure 1. This type allows a
caller of the function to supply (send) three arguments having type TMapper(α, β), TStream(α),
and TStream(β) in this order. The lin qualifiers indicates that all the arguments are linear.
Since map returns nothing, the Res-tagged message does not carry any useful value, but it
models the synchronous semantics of function invocation.

This encoding of the type of map does not distinguish arguments that are claimed by
map from others that are not. The use of the lin qualifier in the encoding is mandated
by the fact that the arguments are allocated in the exchange heap, but in this way the
caller process permanently loses the ownership of the mapper argument, and this is not the

TYPING COPYLESS MESSAGE PASSING 11

intended semantics of map. We can model the temporary ownership transfer as a pair of
linear communications, by letting the (encoded) map function return any argument that is
not claimed. Therefore, we patch the above endpoint type as follows:

Tmap(α, β) = !Arg(lin TMapper(α, β)).[· · ·].?Arg(lin TMapper(α, β)).?Res().end

The endpoint type Tmap(α, β) describes the protocol for one particular invocation of the
map function. A proper encoding of the type of map, which allows for multiple invocations
and avoids interferences between independent invocations, is the following:

tmap = un rec γ.!Invoke〈α, β〉(lin Tmap(α, β)).γ

Prior to invocation, a caller is supposed to create a fresh channel which is used for communi-
cating with the process modeling the function. One endpoint, of type Tmap(α, β), is retained

by the caller, the other one, of type Tmap(α, β), is sent upon invocation to the process mod-
eling map. The recursion in tmap permits multiple invocation of map, and the un qualifier
indicates that map is unrestricted and can be invoked simultaneously and independently by
multiple processes in the system. �

The most common way to increase flexibility of a type system is to introduce a subtyping
relation 6 that establishes an (asymmetric) compatibility between different types: any value
of type t can be safely used where a value of type s is expected when t 6 s. In the flourishing
literature on session types several notions of subtyping have been put forward [10, 9, 5, 22,
20]. We define subtyping in pretty much the same way as in [10, 9].

Definition 3.2 (subtyping). Let ≤ be the least preorder on qualifiers such that un ≤ lin.
We say that S is a coinductive subtyping if:

• (q T, q′ S) ∈ S implies q ≤ q′ and (T, S) ∈ S , and
• (T, S) ∈ S implies either:

(1) T = S = end, or
(2) T = S = α, or
(3) T = {?mi〈αi〉(ti).Ti}i∈I and S = {?mi〈αi〉(si).Si}i∈J with I ⊆ J and (ti, si) ∈ S and

(Ti, Si) ∈ S for every i ∈ I, or
(4) T = {!mi〈αi〉(ti).Ti}i∈I and S = {!mi〈αi〉(si).Si}i∈J with J ⊆ I and (si, ti) ∈ S and

(Ti, Si) ∈ S for every i ∈ J .

We write 6 for the largest coinductive subtyping.

Items (1) and (2) account for reflexivity of subtyping when T and S are both end or
the same type variable; items (3) and (4) are the usual covariant and contravariant rules for
inputs and outputs respectively. Observe that subtyping is always covariant with respect
to the continuations. Two types q1 T and q2 S are related by subtyping if so are T and S
and if q1 is no more stringent than q2. In particular, it is safe to use an unrestricted value
where a linear one is expected.

The reader may verify that subtyping is a pre-order:

Proposition 3.2. 6 is reflexive and transitive.

Proof sketch. The proofs of both properties are easy exercises. In the case of transitivity it
suffices to show that

S
def
= {(t1, t2) | ∃s : t1 6 s & s 6 t2} ∪ {(T1, T2) | ∃S : T1 6 S & S 6 T2}

is a coinductive subtyping.

12 V. BONO AND L. PADOVANI

The following property shows that duality is contravariant with respect to subtyping.
It is a standard property of session type theories, except that in our case it holds only when
the two endpoint types being related have no free type variables occurring at the top level
(outside any prefix), for otherwise their duals are undefined (Proposition 3.1).

Proposition 3.3. Let ∅ T and ∅ S. Then T 6 S if and only if S 6 T .

Example 3.4. In Example 3.3 we have suggested a representation for the function type
s → t as the type Js → tK defined thus:

Js → tK = un rec α.!Invoke(lin ?Arg(s).!Res(t).end).α

It is easy to verify that Js1 → t1K 6 Js2 → t2K if and only if s2 6 s1 and t1 6 t2. That
is, the subtyping relation between encoded function types is consistent with the standard
subtyping between function types, which is contravariant in the domain and covariant in
the co-domain.

Another way to interpret an endpoint having type

rec α.!Invoke(t).α

is as an object with one method Invoke. Sending a Invoke-tagged message on the endpoint
means invoking the method (incidentally, this is the terminology adopted in SmallTalk), and
after the invocation the object is available again with the same interface. We can generalize
the type above to

rec α.{!mi(ti).α}i∈I

for representing objects with multiple methods mi. According to the definition of subtyping
we have

rec α.{!mi(ti).α}i∈I 6 rec α.{!mj(tj).α}j∈J

whenever J ⊆ I, which corresponds the same notion of subtyping used in object-oriented
language (it is safe to use an object offering more methods where one offering fewer methods
is expected). �

4. Syntax and Semantics of Processes

We assume the existence of an infinite set Pointers of linear pointers (or simply pointers)
ranged over by a, b, . . . , of an infinite set Variables of variables ranged over by x, y, . . . , and
of an infinite set of process variables ranged over by X, Y , We define the set Pointers of
unrestricted pointers as Pointers = {a | a ∈ Pointers}. We assume Pointers, Pointers,
and Variables be pairwise disjoint, we let u, v, . . . range over names, which are elements
of Pointers ∪ Pointers ∪ Variables, and we let v, w, . . . range over values, which are
elements of Pointers ∪ Pointers.

Processes, ranged over by P , Q, . . . , are defined by the grammar in Table 3. The
calculus of processes is basically a monadic pi calculus equipped with tag-based message
dispatching and primitives for handling heap-allocated endpoints. The crucial aspect of the
calculus is that names are pointers to the heap and channels are concretely represented as
structures allocated on the heap. Pointers can be either linear or unrestricted: a linear
pointer must be owned by exactly one process at any given point in time; an unrestricted
pointer can be owned by several (possibly zero) processes at any time. In practice the two
kinds of pointers are indistinguishable and range over the same address space, but in the
calculus we decorate unrestricted pointers with a bar to reason formally on the different

TYPING COPYLESS MESSAGE PASSING 13

Table 3: Syntax of processes.

Process P ::= 0 (idle)
| close(u) (close endpoint)
| open(a : T, a : T).P (open linear channel)
| open(a : T).P (open unrestricted channel)
| u!m〈T 〉(u).P (send)
|

∑

i∈I u?mi〈αi〉(xi : ti).Pi (receive)
| P ⊕ P (conditional process)
| P | P (parallel composition)
| X (process variable)
| rec X.P (recursive process)

ownership invariants. The term 0 denotes the idle process that performs no action. The
term open(a : T, b : S).P denotes a process that creates a linear channel, represented as a
pair of endpoints a of type T and b of type S, and continues as P . We will say that b is the
peer endpoint of a and vice-versa. The term open(a : T).P denotes a process that creates
an unrestricted channel, represented as an endpoint a of type T along with an unrestricted
pointer a of type T , and continues as P . The term close(u) denotes a process closing
and deallocating the endpoint u. The term u!m〈T 〉(v).P denotes a process that sends a
message m〈T 〉(v) on the endpoint u and continues as P . The message is made of a tag m

along with its parameter v. The endpoint type T instantiates the type variable in the type
of u. For consistency with the type language we only consider monadic communications
where every message has exactly one type/value parameter. The generalization to polyadic
communications, which we will occasionally use in the examples, does not pose substantial
problems. The term

∑

i∈I u?mi〈αi〉(xi : ti).Pi denotes a process that waits for a message
from the endpoint u. The tag mi of the received message determines the continuation Pi

where the variable xi is instantiated with the parameter of the message. Sometimes we will
write u?m1〈α1〉(x1 : t1).P1 + · · ·+ u?mn〈αn〉(xn : tn).Pn in place of

∑n
i=1 u?mi〈αi〉(xi : ti).Pi.

2

The term P ⊕ Q denotes a process that internally decides whether to behave as P or as Q.
We do not specify the actual condition that determines the decision, as this is irrelevant for
our purposes. To improve readability, in some of the examples we will use a more concrete
syntax. As usual, terms rec X.P and X serve to denote recursive processes, while P | Q
denotes the parallel composition of P and Q.

Table 4 collects the definitions of free names fn(·) and bound names bn(·) for processes.
Beware that a process open(a : T).P implicitly binds a in addition to a in P . In the same
table we also define the sets of free type variables ftv(·) and of bound type variables of a
process. Note that the set of bound type variables only includes those variables occurring in
input prefixes of the process, not the type variables bound within endpoint types occurring
in the process. The construct rec X.P is the only binder for process variables. The sets
of free process variables fpv(·) and of bound process variables bpv(·) are standard. We
identify processes up to renaming of bound names/type variables/process variables and

2We require the endpoint u to be the same in all branches of the receive construct, while switch receive

in Sing# allows waiting for messages coming from different endpoints. This generalization would not affect
our formalization in any substantial way, save for slightly more complicated typing rules.

14 V. BONO AND L. PADOVANI

Table 4: Free and bound names/type variables in processes.

fn(0) = fn(X) = ∅
fn(close(u)) = {u}

fn(open(a : T, b : S).P) = fn(P) \ {a, b}
fn(open(a : T).P) = fn(P) \ {a, a}

fn(u!m〈T 〉(v).P) = {u, v} ∪ fn(P)
fn(

∑

i∈I u?mi〈αi〉(xi : ti).Pi) = {u} ∪
⋃

i∈I(fn(Pi) \ {xi})
fn(P ⊕ Q) = fn(P | Q) = fn(P) ∪ fn(Q)

fn(rec X.P) = fn(P)

bn(0) = bn(close(u)) = bn(X) = ∅
bn(open(a : T, b : S).P) = {a, b} ∪ bn(P)

bn(open(a : T).P) = {a, a} ∪ bn(P)
bn(u!m〈T 〉(v).P) = bn(rec X.P) = bn(P)

bn(
∑

i∈I u?mi〈αi〉(xi : ti).Pi) =
⋃

i∈I({xi} ∪ bn(Pi))
bn(P ⊕ Q) = bn(P | Q) = bn(P) ∪ bn(Q)

ftv(0) = ftv(close(u)) = ftv(X) = ∅
ftv(open(a : T, b : S).P) = ftv(T) ∪ ftv(S) ∪ ftv(P)

ftv(open(a : T).P) = ftv(u!m〈T 〉(v).P) = ftv(T) ∪ ftv(P)
ftv(

∑

i∈I u?mi〈αi〉(xi : ti).Pi) =
⋃

i∈I((ftv(ti) ∪ ftv(Pi)) \ {αi})
ftv(P ⊕ Q) = ftv(P | Q) = ftv(P) ∪ ftv(Q)

ftv(rec X.P) = ftv(P)

btv(0) = btv(close(u)) = btv(X) = ∅
btv(open(a : T, b : S).P) = btv(open(a : T).P) = btv(P)

btv(u!m〈T 〉(v).P) = btv(rec X.P) = btv(P)
btv(

∑

i∈I u?mi〈αi〉(xi : ti).Pi) =
⋃

i∈I({αi} ∪ btv(Pi))
btv(P ⊕ Q) = btv(P | Q) = btv(P) ∪ btv(Q)

let P{v/x}, P{T/α}, and P{Q/X} denote the standard capture-avoiding substitutions of
variables/type variables/process variables with values/endpoint types/processes.

Example 4.1. Let us encode the map function in Figure 1 using the syntax of our process
calculus. As anticipated in Example 3.3, the idea is to represent map as a process that
permanently accepts invocations and handles them. For this reason we need an endpoint,

TYPING COPYLESS MESSAGE PASSING 15

Table 5: Syntax of heaps and queues.

Heap µ ::= ∅ (empty)
| a 7→ [a,Q] (endpoint)
| µ, µ (composition)

Queue Q ::= ε (empty)
| m〈T 〉(v) (message)
| Q :: Q (composition)

say c, to which invocation requests are sent and we define the MAP(c) process thus:

MAP(c) = rec X.c?Invoke〈α, β〉(z : lin Tmap(α, β)).(X | BODY(α, β, z))

BODY(α, β, z) = z?Arg(mapper : lin TMapper(α, β)).

z?Arg(source : lin TStream(α)).
z?Arg(target : lin TStream(β)).
rec Y.(source?Data(x : lin α).mapper !Arg(x).

mapper?Res(y : lin β).target !Data(y).Y
+ source?Eos().target !Eos().

z!Arg(mapper).z!Res().
(close(z) | close(source) | close(target)))

The process MAP(c) repeatedly reads Invoke-tagged messages from c. Each message carries
another endpoint z that represents a private session established between the caller and the
callee, whose purpose is to make sure that no interference occurs between independent
invocations of the service. Note that z has type Tmap(α, β), the dual of Tmap(α, β), since it is
the endpoint handed over by the caller from which the callee will receive the arguments and
send the result. The body of the map function is encoded by the BODY(α, β, z) process,
which begins by reading the three arguments mapper , source, and target. Then, the process
enters its main loop where messages are received from source, processed through mapper ,
and finally sent on target. Overall the structure of the process closely follows that of the code
in Figure 1, where the branch operator is used for modeling the switch receive construct.
The only remarkable difference occurs after the input of a Eos-tagged message, where the
mapper argument is returned to the caller so as to model the temporary ownership transfer
that was implicitly indicated by the lack of the [Claims] annotation in map. At this point
the z endpoint serves no other purpose and is closed along with source and target. �

To state the operational semantics of processes we need a formal definition of the
exchange heap (or simply heap), which is given in Table 5. Heaps, ranged over by µ, are
term representations of finite maps from pointers to heap objects: the term ∅ denotes the
empty heap, in which no object is allocated; the term a 7→ [b,Q] denotes a heap made of an
endpoint located at a. The endpoint is a structure containing another pointer b and a queue
Q of messages waiting to be read from a. Heap compositions µ, µ′ are defined only when the
domains of the heaps being composed, which we denote by dom(µ) and dom(µ′), are disjoint.
We assume that heaps are equal up to commutativity and associativity of composition and
that ∅ is neutral for composition. Queues, ranged over by Q, are finite ordered sequences
of messages m1〈T1〉(v1) :: · · · :: mn〈Tn〉(vn), where a message m〈T 〉(v) is identified by its tag
m, the endpoint type T with which its type argument has been instantiated, and its value
argument v. We build queues from the empty queue ε and concatenation of messages by
means of ::. We assume that queues are equal up to associativity of :: and that ε is neutral
for ::. The T component in the enqueued messages must be understood as a technical
annotation that helps reasoning on the formal properties of the model. In particular, it

16 V. BONO AND L. PADOVANI

Table 6: Structural congruence.

(S-Idle)

P | 0 ≡ P

(S-Comm)

P | Q ≡ Q | P

(S-Assoc)

P | (Q | R) ≡ (P | Q) | R

Table 7: Operational semantics of processes.

(R-Open Linear Channel)

(µ; open(a : T, b : S).P) → (µ, a 7→ [b, ε], b 7→ [a, ε]; P)

(R-Open Unrestricted Channel)

(µ; open(a : T).P) → (µ, a 7→ [a, ε]; P)

(R-Choice Left)

(µ; P ⊕ Q) → (µ; P)

(R-Choice Right)

(µ; P ⊕ Q) → (µ; Q)

(R-Send Linear)

(µ, a 7→ [b,Q], b 7→ [a,Q′]; a!m〈T 〉(v).P) → (µ, a 7→ [b,Q], b 7→ [a,Q′ :: m〈T 〉(v)]; P)

(R-Send Unrestricted)

(µ, a 7→ [a,Q]; a!m〈T 〉(v).P) → (µ, a 7→ [a,Q :: m〈T 〉(v)]; P)

(R-Receive)

k ∈ I

(µ, a 7→ [b, mk〈T 〉(v) :: Q];
∑

i∈I a?mi〈αi〉(xi : ti).Pi) → (µ, a 7→ [b,Q]; Pk{T/αk}{v/xk})

(R-Rec)

(µ; rec X.P) → (µ; P{rec X.P/X})

(R-Par)

(µ; P) → (µ′; P ′)

(µ; P | Q) → (µ′; P ′ | Q)

(R-Struct)

P ≡ P ′ (µ; P ′) → (µ′; Q′) Q′ ≡ Q

(µ; P) → (µ′; Q)

does not imply that a practical implementation of the calculus must necessarily provide a
runtime representation of endpoint types.3

We define the operational semantics of processes as the combination of a structural
congruence relation, which equates processes we do not want to distinguish, and a reduction
relation. Structural congruence, denoted by ≡, is the least congruence relation defined by
the axioms in Table 6 and closed under parallel composition. Essentially, the axioms state
that | is commutative, associative, and has 0 as neutral element.

Processes communicate by means of endpoints that are allocated on the heap. Conse-
quently, the reduction relation defines the transitions of systems rather than of processes,
where a system is a pair (µ; P) of a heap µ and a process P . The reduction relation
→ is inductively defined in Table 7; we comment on the rules in the following paragraphs.
Rule (R-Open Linear Channel) creates a new linear channel, which consists of two fresh
endpoints with empty queues and mutually referring to each other. The mutual references
are needed since the messages sent using one of the endpoints will be enqueued into the

3Sing# does require a runtime representation of endpoint types because its expression language is equipped
with a dynamic cast operator.

TYPING COPYLESS MESSAGE PASSING 17

other peer. Rule (R-Open Unrestricted Channel) creates a new unrestricted channel,
which consists of a single endpoint with empty queue. The reference in the endpoint is
initialized with a pointer to itself. This way, by inspecting the b component of an end-
point a 7→ [b,Q] it is possible to understand whether the endpoint belongs to a linear
or to an unrestricted channel, as we respectively have either a 6= b or a = b. This dis-
tinction is necessary in the reductions defining the semantics of outputs, as we will see
shortly. In both (R-Open Linear Channel) and (R-Open Unrestricted Channel)
we implicitly rename bound names to make sure that the newly introduced pointers do not
already occur in dom(µ), for otherwise the heap in the resulting system would be undefined.
Rules (R-Choice Left) and (R-Choice Right) describe the standard reduction of con-
ditional processes. Rules (R-Send Linear) and (R-Send Unrestricted) describe the
output of a message m〈T 〉(v) on the endpoint a of a linear channel and on the endpoint a
of an unrestricted channel, respectively. In the former case, the message is enqueued at the
end of a’s peer endpoint queue. In the latter case, the message is enqueued in the only
available queue. Rule (R-Receive) describes the input of a message from the endpoint a.
The message at the front of a’s queue is removed from the queue, its tag is used for selecting
some branch k ∈ I, and its type and value arguments instantiate the type variable αk and
variable xk. If the queue is not empty and the first message in the queue does not match any
of the tags {mi | i ∈ I}, then no reduction occurs and the process is stuck. Rule (R-Rec)
describes the usual unfolding of a recursive process. Rule (R-Par) closes reductions under
parallel composition. Observe that the heap is treated globally, even when it is only a
sub-process to reduce. Finally, rule (R-Struct) describes reductions modulo structural
congruence. There is no reduction for close(a) processes. In principle, close(a) should
deallocate the endpoint located at a and remove the association for a from the heap. In the
formal model it is technically convenient to treat close(a) processes as persistent because,
in this way, we keep track of the pointers that have been properly deallocated. We will see
that this information is crucial in the definition of well-behaved processes (Definition 4.2).
A process willing to deallocate a pointer a and to continue as P afterwards can be modeled
as close(a) | P . In the following we write ⇒ for the reflexive, transitive closure of → and
we write (µ; P) X→ if there exist no µ′ and P ′ such that (µ; P) → (µ′; P ′).

In this work we characterize well-behaved systems as those that are free from faults,
leaks, and communication errors: a fault is an attempt to use a pointer not corresponding
to an allocated object or to use a pointer in some way which is not allowed by the object
it refers to; a leak is a region of the heap that some process allocates and that becomes
unreachable because no reference to it is directly or indirectly available to the processes in
the system; a communication error occurs if some process receives a message of unexpected
type. We conclude this section formalizing these properties. To do so, we need to define
the reachability of a heap object with respect to a set of root pointers. Intuitively, a process
P may directly reach any object located at some pointer in the set fn(P) (we can think of
the pointers in fn(P) as of the local variables of the process stored on its stack); from these
pointers, the process may reach other heap objects by reading messages from the endpoints
it can reach, and so forth.

Definition 4.1 (reachable pointers). We say that c is reachable from a in µ, notation
c ≺µ a, if a 7→ [b,Q :: m〈T 〉(c) :: Q′] ∈ µ. We write 4µ for the reflexive, transitive closure of
≺µ . Let reach(A, µ) = {c ∈ Pointers | ∃a ∈ A : c 4µ a}.

18 V. BONO AND L. PADOVANI

Observe that reach(A, µ) ⊆ Pointers for every A ⊆ Pointers ∪ Pointers and µ.
Also, according to this definition nothing is reachable from an unrestricted pointer. The
rationale is that we will use reach(·, ·) only to define the ownership invariant, for which the
only pointers that matter are the linear ones. We now define well-behaved systems formally.

Definition 4.2 (well-behaved process). We say that P is well behaved if (∅; P) ⇒ (µ; Q)
implies:

(1) dom(µ) = reach(fn(Q), µ);
(2) Q ≡ P1 | P2 implies reach(fn(P1), µ) ∩ reach(fn(P2), µ) = ∅;
(3) Q ≡ P1 | P2 and (µ; P1) X→ where P1 does not have unguarded parallel compositions

imply either P1 = 0 or P1 = close(a) or P1 =
∑

i∈I a?mi〈αi〉(xi : ti).Pi and, in the last
two cases, a 7→ [b, ε] ∈ µ.

In words, a process P is well behaved if every residual of P reachable from a config-
uration where the heap is empty satisfies a number of conditions. Conditions (1) and (2)
require the absence of faults and leaks. Indeed, condition (1) states that every allocated
pointer in the heap is reachable by one process, and that every reachable pointer corre-
sponds to an object allocated in the heap. Condition (2) states that processes are isolated,
namely that no linear pointer is reachable from two or more distinct processes. Because of
the definition of reachable pointers, though, it may be possible that two or more processes
share the same unrestricted pointer. Since processes of the form close(a) are persistent,
this condition also requires the absence of faults deriving from multiple deallocations of the
same endpoint or from the use of deallocated endpoints. Condition (3) requires the absence
of communication errors, namely that if (µ; Q) is stuck (no reduction is possible), then
it is because every non-terminated process in Q is waiting for a message on an endpoint
having an empty queue. This configuration corresponds to a genuine deadlock where every
process in some set is waiting for a message that is to be sent by another process in the
same set. Condition (3) also ensures the absence of so-called orphan messages: no message
accumulates in the queue of closed endpoints. We only consider initial configurations with
an empty heap for two reasons: first, we take the point of view that initially there are no
allocated objects; second, since we will need a well-typed predicate for heaps and we do not
want to verify heap well-typedness at runtime, we will make sure that the empty heap is
trivially well typed.

We conclude this section with a few examples of ill-behaved processes to illustrate the
sort of errors we aim to avoid with our static type system:

• The process open(a : T, b : S).0 violates condition (1), since it allocates two endpoints a
and b and forgets them, thus generating a leak.

• The process open(a : T, b : S).(close(a) |close(a) |close(b)) violates condition (2), since
it deallocates the same endpoint a twice. This is an example of fault.

• The process open(a : T, b : S).(a!m().close(a) | b?m′().close(b)) violates condition (3),
since it reduces to a parallel composition of subprocesses where one has sent an m-tagged
message, but the other one was expecting an m′-tagged message.

• The process open(a : T, b : S).a!m().b?m().(close(a) | close(b)) violates condition (3),
since it reduces to a stuck process that attempts at sending an m-tagged message using
the unrestricted pointer a, while in fact a is a linear pointer.

TYPING COPYLESS MESSAGE PASSING 19

5. Type System

5.1. Weighing Types. We aim at defining a type system such that well-typed processes
are well behaved. In session type systems, from which we draw inspiration, each action
performed by a process using a certain endpoint must be matched by a corresponding action
in the type associated with the endpoint, and the continuation process after that action must
behave according the continuation in the endpoint type. Following this intuition, the reader
may verify that the process BODY (Example 4.1) uses the endpoint z correctly with respect

to the endpoint type Tmap(α, β) (Example 3.3). Analogous observations can be made for the
other endpoints (mapper , source, target) received from z and subsequently used in BODY.
Linearity makes sure that a process owning an endpoint must use the endpoint (according
to its type), or it must delegate it to another process. Endpoints cannot be simply forgotten
and this is essential in guaranteeing the absence of leaks. In Example 4.1 there is a number
of endpoints involved: c is owned permanently by MAP; z is owned by BODY until an Eos-
tagged message is received, at which point it is deallocated; source and target are acquired
by BODY and deallocated when no longer in use; finally, mapper is acquired by BODY from
the caller and returned to the caller when BODY ends. Overall, MAP is evenly balanced
as far as the ownership of linear endpoints is concerned.

Nonetheless, as we have anticipated in Section 2, there are apparently well-typed pro-
cesses that lead to a violation of the ownership invariant. A first example is the process

P = open(a : T1, b : T2).a!m(b).close(a) (5.1)

where
T1 = !m(lin T2).end and T2 = rec α.?m(lin α).end .

The process P begins by creating two endpoints a and b with dual endpoint types. The
fact that T1 = T2 ensures the absence of communication errors, as each action performed
on one endpoint is matched by a corresponding co-action performed on the corresponding
peer. After its creation, endpoint b is sent over endpoint a. Observe that, according to T1,
the process is entitled to send an m-tagged message with argument of type T2 on a and b
has precisely that type. After the output operation, the process no longer owns endpoint b
and endpoint a is deallocated. Apparently, P behaves correctly while in fact it generates a
leak, as we can see from its reduction:

(∅; P) → (a 7→ [b, ε], b 7→ [a, ε]; a!m(b).close(a)) → (a 7→ [b, ε], b 7→ [a, m(b)]; close(a))

In the final, stable configuration we have reach(fn(close(a)), µ) = reach({a}, µ) =
{a} (recall that b is not reachable from a even though its peer is) while dom(µ) = {a, b}. In
particular, the endpoint b is no longer reachable and this configuration violates condition (1)
of Definition 4.2. Additionally, if there were some mechanism for accessing b (for example,
by peeking into the endpoint located at a) and for reading the message from b’s queue, this
would compromise the typing of b: the endpoint type associated with b is T2, but as we
remove the message from its queue it turns to end. The b in the message, however, would
retain the now obsolete type T2, with potentially catastrophic consequences. A closer look
at the heap in the reduction above reveals that the problem lies in the cycle involving b:
it is as if the b 7→ [a, m(b)] region of the heap needs not be owned by any process because
it “owns itself”. With respect to other type systems for session types, we must tighten our
typing rules and make sure that no cycle involving endpoint queues is created in the heap.
In the process above this problem would not be too hard to detect, as the fact that a and b

20 V. BONO AND L. PADOVANI

are peer endpoints is apparent from the syntax of the process. In general, however, a and b
might have been acquired in previous communications (think of the foo and bar functions
in Section 2, where nothing is known about the arguments e and f save for their type) and
they may not even be peers. For example, the process

open(a : T1, c : T2).open(b : T1, d : T2).a!m(d).b!m(c).(close(a) | close(b))

creates a leak with a cycle of length 2 even though no endpoint is ever sent over its own
peer.

Our approach for attacking the problem stems from the observation that infinite values
(once the leak configuration has been reached the endpoint b above fits well in this category)
usually inhabit recursive types and the endpoint type T2 indeed exhibits an odd form of
recursion, as the recursion variable α occurs within the only prefix of T2. Forbidding this
form of recursion in general, however, would (1) unnecessarily restrict our language and
(2) it would not protect us completely against leaks. Regarding (1), we can argue that
an endpoint type T ′

2 = rec α.!m(α).end (which begins with an output action) would never
allow the creation of cycles in the heap despite its odd recursion. The reason is that, if
we are sending an endpoint b : T ′

2 over a : T ′
2, then the peer of a must have the dual type

T ′
2 = ?m(T ′

2).end (which begins with an input action) and therefore must be different from b.
Regarding (2), consider the following variation of the process P above

Q = open(a : S1, b : S2).a!m〈S2〉(b).close(a) (5.2)

where
S1 = !m〈α〉(lin α).end and S2 = ?m〈α〉(lin α).end .

Once again, S1 and S2 are dual endpoint types and process Q behaves correctly with
respect to them. Notice that neither S1 nor S2 is recursive, and yet Q yields the same kind
of leak that we have observed in the reduction of P .

What do T2 and S2 have in common that T ′
2 and S1 do not and that makes them

dangerous? First of all, both T2 and S2 begin with an input action so they denote endpoints
in a receive state, and only endpoints in a receive state can have a non-empty queue. Second,
the type of the arguments in T2 and S2 may denote other endpoints with a non-empty queue:
in T2 this is evident as the type of the argument is T2 itself; in S2 the type of the argument
is the existentially quantified type variable α, which can be instantiated with any endpoint
type and, in particular, with an endpoint type beginning with an input action. If we think of
the chain of pointers originating from the queue of an endpoint, we see that both T2 and S2

allow for chains of arbitrary length and the leak originates when this chain becomes in fact
infinite, meaning that a cycle has formed in the heap. Our idea to avoid these cycles uses
the fact that it is possible to compute, for each endpoint type, a value in the set N ∪ {∞},
that we call weight, representing the upper bound of the length of any chain of pointers
originating from the queue of the endpoints it denotes. A weight equal to ∞ means that
there is no such upper bound. Then, the idea is to restrict the type system so that:

Only endpoints having a finite-weight type can be sent as messages.

A major issue in defining the weight of types is how to deal with type variables. If type
variables can be instantiated with arbitrary endpoint types, hence with endpoint types
having arbitrary weight, the weight of type variables cannot be estimated to be finite. At
the same time, assigning an infinite weight to every type variable can be overly restrictive.

TYPING COPYLESS MESSAGE PASSING 21

To see why, consider the following fragment of the MAP process defined in Example 4.1:

[· · ·].source?Data(x : lin α).mapper !Arg(x).[· · ·]

The process performs an output operation mapper !Arg(x) which, according to our idea,
would be allowed only if the type of argument x had a finite weight. It turns out that x
has type lin α and is bound by the preceding input action source?Data(x : lin α). If we
estimate the weight to α to be infinite, a simple process like MAP would be rejected by
our type system. By looking at the process more carefully one realizes that, since x has
been received from a message, its actual type must be finite-weight, for otherwise the sender
(the process using source’s peer endpoint) would have been rejected by the type system. In
general, since type variables denote values that can only be passed around and these must
have a finite-weight type, it makes sense to impose a further restriction:

Only finite-weight endpoint types can instantiate type variables.

Then, in computing the weight of a type, we should treat its free and bound type variables
differently: free type variables are placeholders for a finite-weight endpoint type and are
given a finite weight; bound type variables are yet to be instantiated with some unknown
endpoint type of arbitrary weight and therefore their weight cannot be estimated to be
finite. We will thus define the weight ‖t‖∆ of a type t with respect to a set ∆ of free type
variables:

Definition 5.1 (type weight). We say that W is a coinductive weight bound if (∆, T, n) ∈ W

implies either:

• T = end, or
• T = α ∈ ∆, or
• T = {!mi〈αi〉(ti).Ti}i∈I , or
• T = {?mi〈αi〉(qi Si).Ti}i∈I and n > 0 and αi 6∈ ∆ and (∆, Si, n−1) ∈ W and (∆, Ti, n) ∈ W

for every i ∈ I.

We write ∆ ⊢ T :: n if (∆, T, n) ∈ W for some coinductive weight bound W . The weight of
an endpoint type T with respect to ∆, denoted by ‖T ‖∆, is defined by ‖T ‖∆ = min{n ∈ N |
∆ ⊢ T :: n} where we let min ∅ = ∞. We simply write ‖T ‖ in place of ‖T ‖∅ and we extend
weights to types so that ‖q T ‖ = ‖T ‖. When comparing weights we extend the usual total
orders < and ≤ over natural numbers so that n < ∞ for every n ∈ N and ∞ ≤ ∞.

The weight of t is defined as the least of its weight bounds, or ∞ if there is no such
weight bound. A few weights are straightforward to compute, for example we have ‖end‖ =
‖{!mi〈αi〉(ti).Ti}i∈I‖ = 0. Indeed, the queues of endpoints with type end and those in a
send state are empty and therefore the chains of pointers originating from them has zero
length. A type variable α can have a finite or infinite weight depending on whether it
occurs free or bound. So we have ‖α‖{α} = 0 and ‖α‖ = ∞. Note that ‖α‖{α} = 0
although α may be actually instantiated with a type that has a strictly positive, but finite
weight. Endpoint types in a receive state have a strictly positive weight. For instance we
have ‖?m(end).end‖ = 1 and ‖?m(?m(end).end).end‖ = 2. If we go back to the examples of
endpoint types that we used to motivate this discussion, we have ‖T ′

2‖ = ‖S1‖ = 0 and
‖T2‖ = ‖S2‖ = ∞, from which we deduce that endpoints with type T ′

2 or S1 are safe to be
sent as messages, while endpoints with type T2 or S2 are not.

Before we move on to illustrating the type system, we must discuss one last issue that
has to do with subtyping. Any type system with subtyping normally allows to use a value

22 V. BONO AND L. PADOVANI

having type t where a value having type s with t 6 s is expected. For example, in the MAP
process we have silently made the assumption that the value x received with the Data-
tagged message had exactly the (finite-weight) type with which α has been instantiated
while in fact x might have a smaller type. Therefore, the restrictions we have designed
work provided that, if t 6 s and s is finite-weight, then t is finite-weight as well. This
is indeed the case, and in fact we can express an even stronger correspondence between
weights and subtyping:

Proposition 5.1. t 6 s implies ‖t‖∆ ≤ ‖s‖∆.

Proof. It is easy to show that W = {(∆, T, n) | ∃S : ∆ ⊢ T 6 S & ∆ ⊢ S :: n} ∪ {(∆, t, n) |
∃s : ∆ ⊢ t 6 s & ∆ ⊢ s :: n} is a coinductive weight bound.

5.2. Typing the Heap. The heap plays a primary role because inter-process communi-
cation utterly relies on heap-allocated structures; also, most properties of well-behaved
processes are direct consequences of related properties of the heap. Therefore, just as we
will check well typedness of a process P with respect to a type environment that associates
the pointers occurring in P with the corresponding types, we will also need to check that
the heap is consistent with respect to the same environment. This leads to a notion of well-
typed heap that we develop in this section. The mere fact that we have this notion does
not mean that we need to type-check the heap at runtime, because well-typed processes
will only create well-typed heaps and the empty heap will be trivially well typed. We shall
express well-typedness of a heap µ with respect to a pair Γ0; Γ of type environments where Γ

contains the type of unrestricted pointers and the type of the roots of µ (the pointers that
are not referenced by any other structure allocated on the heap), while Γ0 contains the type
of the pointers to allocated structures that are reachable from the roots of µ.

Among the properties that a well-typed heap must enjoy is the complementarity be-
tween the endpoint types associated with peer endpoints. This notion of complementarity
does not coincide with duality because of the communication model that we have adopted,
which is asynchronous: since messages can accumulate in the queue of an endpoint before
they are received, the types of peer endpoints can be misaligned. The two peers are guar-
anteed to have dual types only when both their queues are empty. In general, we need to
compute the actual endpoint type of an endpoint by taking into account the messages in
its queue. To this end we introduce a tail(·, ·) function for endpoint types such that

tail(T, m〈S〉(s)) = T ′

indicates that a message with tag m, type argument S, and argument of type s can be
received from an endpoint with type T which can be used according to type T ′ thereafter.
The function is defined by the rule:

k ∈ I s 6 tk{S/αk}

tail({?mi〈αi〉(ti).Ti}i∈I , mk〈S〉(s)) = Tk{S/αk}

Note that tail(T, m〈S〉(s)) is undefined when T = end or T is an internal choice.
This is consistent with the observation that it is not possible to receive messages from
endpoints having these types. We extend tail(·, ·) to possibly empty sequences of message
specifications thus:

tail(T, ε) = T
tail(T, m1〈S1〉(s1) · · · mn〈Sn〉(sn)) = tail(tail(T, m1〈S1〉(s1)), m2〈S2〉(s2) · · · mn〈Sn〉(sn))

TYPING COPYLESS MESSAGE PASSING 23

We now have all the notions to express the well-typedness of a heap µ with respect to
a pair Γ0; Γ of type environments. A type environment is a finite map Γ = {ui : qi Ti}i∈I

from names to types. We adopt the following notation regarding type environments:

• We write dom(Γ) for the domain of Γ , namely the set {ui | i ∈ I};
• we write Γ , Γ ′ for the union of Γ and Γ

′ when dom(Γ) ∩ dom(Γ ′) = ∅;
• we write q(Γ) if q = qi for every i ∈ I and we say that Γ is linear if lin(Γ) and unrestricted

if un(Γ);
• we define the q-restriction of Γ as Γ |q = {ui : q Ti | i ∈ I & qi = q};
• finally, we write Γ ⊢ u : t if Γ(u) = t.

Definition 5.2 (well-typed heap). Let lin(Γ0) and dom(Γ0)∩dom(Γ) = ∅ where every endpoint
type in Γ0, Γ is well formed. We write Γ0; Γ ⊢ µ if all of the following conditions hold:

(1) For every a 7→ [b,Q] ∈ µ we have b 7→ [a,Q′] ∈ µ and either a = b or Q = ε or Q′ = ε.
(2) For every a 7→ [b, ε] ∈ µ and b 7→ [a, m1〈S1〉(v1) :: · · · :: mn〈Sn〉(vn)] ∈ µ with a 6= b we

have
T = tail(S, m1〈S1〉(s1) · · · mn〈Sn〉(sn))

where Γ0, Γ ⊢ a : lin T and Γ0, Γ ⊢ b : lin S and Γ0, Γ ⊢ vi : si and max{‖Si‖, ‖si‖} < ∞
for 1 ≤ i ≤ n.

(3) For every a 7→ [a, m1〈S1〉(v1) :: · · · :: mn〈Sn〉(vn)] ∈ µ we have

T = tail(S, m1〈S1〉(s1) · · · mn〈Sn〉(sn))

where Γ0, Γ ⊢ a : un T and Γ0, Γ ⊢ a : lin S and Γ0, Γ ⊢ vi : si and max{‖Si‖, ‖si‖} < ∞
for 1 ≤ i ≤ n.

(4) dom(µ) = dom(Γ0, Γ |lin) = reach(dom(Γ), µ);
(5) reach({a}, µ) ∩ reach({b}, µ) = ∅ for every a, b ∈ dom(Γ) with a 6= b.

Condition (1) requires that in a well-typed heap every endpoint comes along with its
peer and that at least one of the queues of peer endpoints be empty. This invariant is ensured
by duality, since a well-typed process cannot send messages on an endpoint until it has read
all the pending messages from the corresponding queue. Condition (2) requires that the end-
point types of peer endpoints are dual. More precisely, for every endpoint a with an empty
queue, the dual T of its type coincides with the residual tail(S, m1〈S1〉(s1) · · · mn〈Sn〉(sn))
of the peer’s type S. Additionally, every Si and si has finite weight. Condition (3) is sim-
ilar to condition (2), but deals with unrestricted endpoints. The only difference is that a
has no peer endpoint, and the (unrestricted) dual endpoint type is associated instead with
a. Condition (4) states that the type environment Γ0, Γ must specify a type for all of the
allocated objects in the heap and, in addition, every object (located at) a in the heap must
be reachable from a root b ∈ dom(Γ). Finally, condition (5) requires the uniqueness of the
root for every allocated object. Overall, since the roots will be distributed linearly to the
processes of the system, conditions (4) and (5) guarantee the ownership invariant, namely
that every allocated object belongs to one and only one process.

5.3. Typing Processes. First of all we define an operation on type environments to add
new associations:

Γ + u : t =

Γ if Γ ⊢ u : t and un(t)

Γ , u : t if u 6∈ dom(Γ)

undefined otherwise

24 V. BONO AND L. PADOVANI

Table 8: Typing rules for processes.

(T-Idle)

un(Γ)

Σ;∆; Γ ⊢ 0

(T-Close)

un(Γ)

Σ;∆; Γ , u : lin end ⊢ close(u)

(T-Open Linear Channel)

∆ T Σ;∆; Γ , a : lin T, b : lin T ⊢ P

Σ;∆; Γ ⊢ open(a : T, b : T).P

(T-Open Unrestricted Channel)

∆ T Σ;∆; Γ , a : lin T, a : un T ⊢ P

Σ;∆; Γ ⊢ open(a : T).P

(T-Send)

∆ S
k ∈ I s 6 tk{S/αk} max{‖S‖∆, ‖s‖∆} < ∞ Σ;∆; Γ , u : q Tk{S/αk} ⊢ P

Σ;∆; (Γ , u : q {!mi〈αi〉(ti).Ti}i∈I) + v : s ⊢ u!mk〈S〉(v).P

(T-Receive)

∆ ti
(i∈I) si 6 ti

(i∈I)
Σ;∆, αi; Γ , u : lin Ti, xi : ti ⊢ Pi

(i∈I)

Σ;∆; Γ , u : lin {?mi〈αi〉(si).Ti}i∈I ⊢
∑

i∈I∪J u?mi〈αi〉(xi : ti).Pi

(T-Choice)

Σ;∆; Γ ⊢ P Σ;∆; Γ ⊢ Q

Σ;∆; Γ ⊢ P ⊕ Q

(T-Par)

Σ;∆; Γ1 ⊢ P Σ;∆; Γ2 ⊢ Q

Σ;∆; Γ1 + Γ2 ⊢ P | Q

(T-Rec)

Σ, {X 7→ (∆; Γ)};∆; Γ ⊢ P dom(Γ |lin) ⊆ fn(P)

Σ;∆; Γ ⊢ rec X.P

(T-Var)

un(Γ ′)

Σ, {X 7→ (∆; Γ)};∆,∆′; Γ , Γ ′ ⊢ X

In plain words, an association u : t where t is linear can be added to Γ only if u does
not already occur in Γ . An association u : t where t is unrestricted can be added to Γ in
two cases: either u does not occur in Γ , in which case the association is simply added, or
the same association already occurs in Γ , in which case the operation has no effect on the
environment. In all the other cases the result is undefined. We generalize + to pairs of
arbitrary environments Γ + Γ

′ in the natural way.
The typing rules for processes are inductively defined in Table 8. Judgments have the

form Σ;∆; Γ ⊢ P and state that process P is well typed under the specified environments.
The additional environment Σ is a map from process variables to pairs (∆; Γ) and is used
for typing recursive processes. We describe the typing rules in the following paragraphs:

• Rule (T-Idle) states that the idle process is well typed in every unrestricted type envi-
ronment. Since we impose a correspondence between the free names of a process and the
roots of the heap, this rule states that the terminated process has no leaks.

• Rule (T-Close) states that a process close(u) is well typed provided that u corresponds
to an endpoint with type end, on which no further interaction is possible. Also, the
remaining type environment must be unrestricted.

• Rule (T-Open Linear Channel) deals with the creation of a new linear channel, which
is visible in the continuation process as two peer endpoints typed by dual endpoint types.

TYPING COPYLESS MESSAGE PASSING 25

The premise ∆ T requires T to be well formed with respect to the type variables in ∆.
In addition, the rule implicitly requires that no type variable, not even those in ∆, can
occur at the top level in T , for otherwise its dual T would be undefined.

• Rule (T-Open Unrestricted Channel) deals with the creation of a new unrestricted
channel, which is accessible in the continuation process by means of two names: a is the
linear pointer used for receiving messages while a is the unrestricted pointer used for send-
ing messages. Note that T is qualified by ‘un’, therefore it must be T = {!mi〈αi〉(ti).T }i∈I

and T = {?mi〈αi〉(ti).T }i∈I .
• Rule (T-Send) states that a process u!m〈S〉(v).P is well typed if u (which can be either

linear or unrestricted according to q) is associated with an endpoint type T that permits
the output of m-tagged messages (second premise). The endpoint type S instantiates the
type argument of the message, while the type of the argument v must be a subtype of the
expected type in the endpoint type where α has been instantiated with S (third premise).
Both S and s must be finite-weight (fourth premise). Since the peer of u must be able to
accept a message with an argument of type s, its weight will be strictly larger than that
of s. This is to make sure that the the output operation does not create any cycle in the
heap. Observe that the weights of S and s are computed with respect to the environment
∆, containing all the free type variables that can possibly occur in S and s. Finally, the
continuation P must be well typed in a suitable type environment where the endpoint u
is typed according to a properly instantiated continuation of T (fifth premise). Beware
of the use of + in the type environments of the rule: if s is linear, then v is no longer
accessible in the continuation P ; if s is unrestricted, then v may or may not be available
in P depending on whether P uses v again or not. Note also that every endpoint type
occurring in the process is verified to be well formed with respect to ∆ (first premise).

• Rule (T-Receive) deals with inputs: a process waiting for a message from an endpoint
u : q T is well typed if it can deal with at least all of the message tags in the topmost
inputs of T . The continuation processes may use the endpoint u according to the endpoint
type Ti and can access the message argument xi. The context ∆ is enriched with the type
variable αi denoting the fact that Pi does not know the exact type with which αi has been
instantiated. Like for the previous typing rule, there is an explicit premise demanding
well-formedness of the types occurring in the process.

• Rules (T-Choice) and (T-Par) are standard. In the latter, the type environment is split
into two environments to type the processes being composed. According to the definition
of +, Γ1 and Γ2 can only share associations with unrestricted types and, if they do, the
associations in Γ1 and in Γ2 for the same name must be equal.

• Rule (T-Rec) is a nearly standard rule for recursive processes, except for the premise
dom(Γ |lin) ⊆ fn(P) that enforces a weak form of contractivity in processes. It states
that rec X.P is well typed under Γ only if P actually uses the linear names in dom(Γ).
Normally, divergent processes such as rec X.X are well typed in every type environment.
If this were the case, however, the process open(a : T, b : T).rec X.X, which leaks a and
b, would be well typed.

• We conclude with the familiar rule (T-Var) that deals with recursion variables. The rule
takes into account the possibility that new type variables and (unrestricted) associations
have accumulated in ∆ and Γ since the binding of X.

Systems (µ; P) are well typed if so are their components:

Definition 5.3 (well-typed system). We write Γ0; Γ ⊢ (µ; P) if Γ0; Γ ⊢ µ and Γ ⊢ P .

26 V. BONO AND L. PADOVANI

Let us present the two main results about our framework: well-typedness is preserved by
reduction, and well-typed processes are well behaved. Subject reduction takes into account
the possibility that types in the environment may change as the process reduces, which is
common in behavioral type theories.

Theorem 5.1 (subject reduction). Let Γ0; Γ ⊢ (µ; P) and (µ; P) → (µ′; P ′). Then Γ
′
0; Γ ′ ⊢

(µ′; P ′) for some Γ
′
0 and Γ

′.

Theorem 5.2 (safety). Let ⊢ P . Then P is well behaved.

5.4. Examples. We conclude this section with a few extended examples: the first one is
meant to show a typing derivation; the second one presents a scenario in which it would
be natural to send around endpoints with infinite weight, and shows a safe workaround to
circumvent the finite-weight restriction; the last example demonstrates the expressiveness
of our calculus in modeling some advanced features of Sing#, namely the ability to safely
share linear pointers between several processes.

Example 5.1 (forwarder). We illustrate a type derivation for a simple forwarder process
that receives two endpoints with dual types and forwards the stream of m-tagged messages
coming from the first endpoint to the second one. We have at least two ways to implement
the forwarder, depending on whether the stream is homogeneous (all the m-tagged messages
carry an argument of the same type) or heterogeneous (different m-tagged messages may
carry arguments of possibly different types). Considering the latter possibility we have:

FWD(a) = a?Src(x : lin T).a?Dest(y : lin T).
(close(a) | rec X.x?m〈α〉(z : lin α).y!m〈α〉(z).X)

where
T = rec β.?m〈α〉(lin α).β .

Below we show the derivation proving that FWD is well typed. To keep the derivation’s
size manageable, we elide some subprocesses with [· · ·] and we define Γ = x : lin T, y : lin T .

(T-Close)
a : lin end ⊢ close(a)

(T-Var)
{X 7→ (∅; Γ)}; α; Γ ⊢ X

(T-Send)
{X 7→ (∅; Γ)}; α; Γ , z : lin α ⊢ y!m〈α〉(z).X

(T-Receive)
{X 7→ (∅; Γ)}; ∅; Γ ⊢ x?m〈α〉(z : lin α).[· · ·]

(T-Rec)
x : lin T, y : lin T ⊢ rec X.[· · ·]

(T-Par)
a : lin end, x : lin T, y : lin T ⊢ close(a) | rec X.[· · ·]

(T-Receive)
a : lin ?Dest(lin T).end, x : lin T ⊢ a?Dest(y : lin T).[· · ·]

(T-Receive)
a : lin ?Src(lin T).?Dest(lin T).end ⊢ FWD(a)

Observe that, by the time rule (T-Var) is applied for the process variable X, a type variable
α has accumulated into the bound type variables context which was empty when X was
introduced in (T-Rec). Therefore, it is essential for rule (T-Var) to discharge extra type
variables in the bound type variable context for declaring this process well typed. �

Example 5.2 (linear lists). In most of the examples we have presented so far the type of
services begins with an output action, suggesting that it is the consumers of these services
that play the first move and invoke them by sending a message. There are cases, in particular
with the modeling of datatypes, where it is more natural to adopt the dual point of view,

TYPING COPYLESS MESSAGE PASSING 27

in which the reception of a message indicates the consumption of the data type. In this
example we represent a linear list as an endpoint from which one of two kinds of messages
can be received: a Nil-tagged message indicates that the list is empty; a Cons-tagged
message indicates that the list has at least one element, and the parameters of the message
are the head of the list and its tail, which is itself a list. Reading a message from the
endpoint corresponds to deconstructing the list and the tag-based dispatching of messages
implements pattern matching. Along these lines, the type of lists with elements of type α
would be encoded as the endpoint type

List(α) = rec β.(?Nil().end + ?Cons(lin α, lin β).end)

Note that, just as this type denotes lists of arbitrary length, the encoding of lists in
terms of messages within endpoints may yield chains of pointers of arbitrary length because
of the recursion of β through an input prefix. As a consequence we have ‖List(α)‖{α} =
∞, meaning that our type system would reject any output operation sending a list over
an endpoint. Incidentally, since a non-empty list is encoded as a Cons-tagged message
containing another list, the finite-weight restriction on the type of message arguments would
in fact prevent the construction of any non-trivial list, rendering the type List(α) useless.

It is possible to fix this by requiring the consumers of the list to signal the imminent
deconstruction via a “prompt” message. This corresponds to defining

List(α) = rec β.!Prompt().(?Nil().end + ?Cons(lin α, lin β).end)

The insertion of an output action between the binding of β and its occurrence among
the arguments of Cons nullifies the weight of List(α), that is ‖List(α)‖{α} = 0. To see
why this is sufficient for preventing the creation of cycles in the heap consider a process

b!Cons(x, a).P

where we assume that a : List(α) and b : !Nil().end ⊕ !Cons(lin α, List(α))). The intention
here is to yield a leak like the one generated by the process in (5.1). Note however that the
peer endpoint of b must have already been used for sending the Prompt-tagged message,
while a has type List(α) and therefore no Prompt-tagged message has been sent on a yet.
We conclude that a cannot be b’s peer.

As an example of list-manipulating function we can now define the polymorphic consing
service on channel c, that creates a list from a head and a tail, thus:

CONS(c) = rec X.c?Invoke〈α〉(x : lin T).
x?Arg(y : lin α).x?Arg(z : lin List(α)).

open(a : List(α), b : List(α)).
(b?Prompt().b!Cons(y, z).close(b) | x!res(a).X)

where
T = ?Arg(lin α).?Arg(lin List(α)).!Res(lin List(α)).end

The interested reader can verify that

c : rec β.?Invoke〈α〉(lin T).β ⊢ CONS(c)

is derivable. �

Example 5.3. Development of the Singularity OS prototype has suggested that there
are many scenarios in which the ownership invariant, requiring that a given object – an
endpoint – can be owned exclusively by one sole process at any given time, easily leads
to convoluted code. For this reason, Sing# provides a TCell<α> class that permits the

28 V. BONO AND L. PADOVANI

Table 9: Modeling of a shared mutable cell.

MKCELL(a) = a?Invoke〈α〉(x : lin !Res(un TTCell(α)).end).
open(c : TTCell(α)).open(buffer : TBuffer(α)).
open(acquire : TAcquire(α)).open(release : TRelease(α)).
x!Res(c).(EMPTY(α, c) | close(x) | MKCELL(a))

EMPTY(α, c) = c?Invoke(x : lin T).
(x?Acquire().acquire!In(x).EMPTY(α, c)
+ x?Release().x!Ok().x?Arg(y : lin α).

if empty(acquire) then (buffer !In(y) | close(x) | FULL(α, c))
else acquire?In(z : lin !Res(lin α).end).z!Res(y).

(close(x) | close(z) | EMPTY(α, c)))
FULL(α, c) = c?Invoke(x : lin T).

(x?Acquire().buffer?In(y : lin α).x!Res(y).
if empty(release) then (close(x) | EMPTY(α, c))

else release?In(z : lin !Ok().?Res(lin α).end).
z!Ok().z?Arg(y : lin α).buffer !In(y).
(close(x) | close(z) | FULL(α, c)))

+ x?Release().release!In(x).FULL(α, c))

T (α) = ?Acquire().!Res(lin α).end + ?Release().!Ok().?Arg(lin α).end

TTCell(α) = rec β.?Invoke(lin T (α)).β
TBuffer(α) = rec β.?In(lin α).β

TAcquire(α) = rec β.?In(lin !Res(lin α).end).β
TRelease(α) = rec β.?In(lin !Ok().?Res(lin α).end).β

unrestricted sharing of exchange heap pointers at the expense of some runtime checks. In
practice, an instance of TCell<α> acts like a 1-place buffer for a linear pointer of type α and
can be shared non-linearly among different processes. A process willing to use the pointer
must explicitly acquire it, while a process that has finished using the pointer must release
it. The internal implementation of TCell<α> makes sure that, once the pointer has been
acquired, all subsequent acquisition requests will be blocked until a release is performed.
The interface of TCell<α> is as follows:

class TCell<α> {

TCell([Claims] α in ExHeap);

α in ExHeap Acquire();

void Release([Claims] α in ExHeap);

}

Table 9 presents an implementation of the Sing# class TCell<α> in our process calculus.
For readability, we have defined the MKCELL(a) process in terms of (mutually) recursive
equations that can be folded into a proper term as by [7]. Below we describe the process
from a bird’s eye point of view and expect the reader to fill in the missing details.

MKCELL(a) waits for invocations on endpoint a. Each invocation creates a new cell
represented as a linear endpoint c (retained by the implementation) and an unrestricted
pointer c (that can be shared by the users of the cell). The cell consists of three unrestricted

TYPING COPYLESS MESSAGE PASSING 29

endpoints: buffer is the actual buffer that contains the pointer to be shared, while acquire
and release are used to enqueue pending requests for acquisition and release of the cell
content. The implementation ensures that buffer always contains at most one message (of
type α), that acquire can have pending requests only when buffer is empty, and that release
can have pending requests only when buffer is full. Users of the cell send invocation requests
on endpoint c. When the cell is empty, any acquisition request is enqueued into acquire
while a release request checks whether there are pending acquisition requests by means of
the empty(acquire) primitive: if there is no pending request, the released pointer y is stored
within buffer and the cell becomes full; if there are pending requests, the first one (z) is
dequeued and served, and the cell stays empty. When the cell is full, any release request
is enqueued into release while the first acquisition request is served immediately. Then,
the cell may become empty or stay full depending on whether there are pending release
requests.

One aspect of this particular implementation which is highlighted by the endpoint type
T (α) is the handling of multiple release requests. In principle, it could be reasonable for
the Release-tagged message to carry an argument of type α, the pointer being released.
However, if this were the case a process releasing a pointer would immediately transfer
the ownership of the pointer to the cell, even in case the cell is in a full state. This
is because communication is asynchronous and send operations are non-blocking, so the
message with the pointer would be enqueued into release, which is permanently owned by
the cell, regardless of whether the cell is already full. In our modeling, the Release-tagged
message carries no argument, its only purpose being to signal the intention for a process to
release a pointer. If the cell is empty, then the cell answers the requester with an Ok-tagged
message, and only at that point the pointer (and its ownership) is transferred from the
requester to the cell with an Arg-tagged message. If however the cell is full when the release
request is made, the Ok-tagged message is deferred and the requester remains the formal
owner of the pointer being released until the cell becomes empty again. �

6. Algorithms

In this section we define algorithms for deciding subtyping and for computing the weight of
(endpoint) types. We also argue how the typing rules in Table 8 can be easily turned into
a type checking algorithm using a technique explained elsewhere.

6.1. Subtyping. The algorithm for deciding the subtyping relation T 6 S is more easily
formulated if we make a few assumptions on the variables occurring in T and S. The reason
is that 6 (Definition 3.2) implicitly uses alpha renaming in order to match the bound type
variables occurring in one endpoint type with the bound type variables occurring in the
other endpoint type. However, termination of the subtyping algorithm can be guaranteed
only if we perform these renamings in a rather controlled way, and the assumptions we are
going to make are aimed at this.

Definition 6.1 (independent endpoint types). We say that T and S are independent if:

(1) ftv(T) ∩ btv(T) = ∅;
(2) ftv(S) ∩ btv(S) = ∅;
(3) no type variable in T or in S is bound more than once;
(4) btv(T) ∩ btv(S) = ∅.

30 V. BONO AND L. PADOVANI

Table 10: Algorithmic subtyping rules.

(S-Var)

S ⊢m α 6a α

(S-End)

S ⊢m end 6a end

(S-Axiom)

(T, S) ∈ S

S ⊢m T 6a S

(S-Rec Left)

S ∪ {(rec α.T, S)} ⊢m T {rec α.T/α} 6a S

S ⊢m rec α.T 6a S

(S-Rec Right)

S ∪ {(T, rec α.S)} ⊢m T 6a S{rec α.S/α}

S ⊢m T 6a rec α.S

(S-Type)

q ≤ q′
S ⊢m T 6a S

S ⊢m q T 6a q′ S

(S-Input)

S
′ = S ∪ {(T, S)} I ⊆ J S

′ ⊢m ti{m(αi, βi)/αi} 6a si{m(αi, βi)/βi}
(i∈I)

S
′ ⊢m Ti{m(αi, βi)/αi} 6a Si{m(αi, βi)/βi}

(i∈I)

S ⊢m T ≡ {?mi〈αi〉(ti).Ti}i∈I 6a {?mj〈βj〉(sj).Sj}j∈J ≡ S

(S-Output)

S
′ = S ∪ {(T, S)} J ⊆ I S

′ ⊢m sj{m(αj , βj)/βj} 6a tj{m(αj , βj)/αj} (j∈J)

S
′ ⊢m Tj{m(αj , βj)/αj} 6a Sj{m(αj , βj)/βj} (j∈J)

S ⊢m T ≡ {!mi〈αi〉(ti).Ti}i∈I 6a {!mj〈βj〉(sj).Sj}j∈J ≡ S

Informally, conditions (1–3) state that T and S obey the so-called Barendregt conven-
tion for type variables, by stating that free and bound type variables are disjoint and that
every type variable is bound at most once. Condition (4) makes sure that there is no shared
bound type variable between T and S.

We will restrict the subtyping algorithm to independent endpoint types. This is bear-
able as every pair of endpoint types can be easily rewritten into an equivalent pair of
independent endpoint types:

Proposition 6.1. For every T and S there exist independent T ′ and S′ such that T = T ′

and S = S′.

Proof sketch. A structural induction on T followed by a structural induction on S, in both
cases renaming bound variables with fresh ones.

The subtyping algorithm is defined using the rules in Table 10, thus:

Definition 6.2 (subtyping algorithm). Let T and S be independent endpoint types. Let
m be a map from unordered pairs of type variables to type variables such that m(α, β) 6∈
ftv(T) ∪ btv(T) ∪ ftv(S) ∪ btv(S) for every α ∈ btv(T) and β ∈ btv(S). We write
⊢m T 6a S if and only if ∅ ⊢m T 6a S is derivable with the axioms and rules in Table 10,
where we give rule (S-Axiom) the highest priority, followed by rule (S-Rec Left), followed
by rule (S-Rec Right), followed by all the remaining rules which are syntax-directed.4

4The relative priority of rules (S-Rec Left) and (S-Rec Right) is irrelevant since they are confluent.

TYPING COPYLESS MESSAGE PASSING 31

The algorithm derives judgments of the form S ⊢m T 6a S, where S is a memoization
context that records pairs of endpoint types that are assumed to be related by subtyp-
ing. The map m is used for unifying consistently the bound type variables of the endpoint
types being related. The same (unordered) pair of bound type variables (α, β) is always
unified to the same fresh type variable m(α, β), which is essential for guaranteeing that the
memoization context S does not grow unwieldy. The fact that we work with unordered
pairs simply means that m(α, β) = m(β, α) for every α ∈ btv(T) and β ∈ btv(S). The
axioms and rules in Table 10 are mostly unremarkable, since they closely mimic the coin-
ductive definition of subtyping (Definition 3.2), therefore we only comment on the peculiar
features of this deduction system: Axiom (S-Axiom) allows one to immediately deduce
S ⊢m T 6a S whenever the pair (T, S) occurs in S . This prevents the algorithm to loop
forever when comparing recursive endpoint types. A pair (T, S) is added to S whenever a
constructor is crossed, which happens in rules (S-Rec Left), (S-Rec Right), (S-Input),
and (S-Output). Rules (S-Rec Left) and (S-Rec Right) unfold recursive endpoint
types in order to expose their outermost proper constructor (an internal/external choice
or end). Contractivity of endpoint types guarantees that a finite number of applications of
these rules is always enough to achieve this exposure. In Definition 3.2 recursive endpoint
types are not treated explicitly since equality ‘=’ is defined modulo folding/unfolding of
recursions. Rules (S-Input) and (S-Output) deal with inputs and outputs. Note that the
pairs of endpoint types being compared in the conclusions of the rules have distinct sets
{αi}i∈I and {βj}j∈J of bound type variables that are unified in the premises by means of
the map m.

The following result establishes the correctness and completeness of the subtyping al-
gorithm with respect to 6 for independent endpoint types.

Theorem 6.1 (correctness and completeness). Let T0 and S0 be independent endpoint types
and m be a map as by Definition 6.2. Then ⊢m T0 6a S0 if and only if T0 6 S0.

Example 6.1. Consider the endpoint types

T ≡ rec α.!a〈α1〉(!b〈α2〉(α2).α1).α
S ≡ rec β.!a〈β1〉(!b〈β2〉(β2).β1 ⊕ !c〈β3〉(β3).end).β

and observe that they are independent. The following derivation, together with Theo-
rem 6.1, shows that T 6 S:

(S-Var)
S3 ⊢m γ2 6a γ2

(S-Var)
S3 ⊢m γ1 6a γ1 (S-Output)

S2 ⊢m !b〈β2〉(β2).γ1 ⊕ !c〈β3〉(β3).end 6a !b〈α2〉(α2).γ1
(S-Axiom)

S2 ⊢m T 6a S
(S-Output)

S1 ⊢m !a〈α1〉(!b〈α2〉(α2).α1).T 6a !a〈β1〉(!b〈β2〉(β2).β1 ⊕ !c〈β3〉(β3).end).S
(S-Rec Right)

{(T, S)} ⊢m !a〈α1〉(!b〈α2〉(α2).α1).T 6a S
(S-Rec Left)

∅ ⊢m T 6a S
where we have used the abbreviations:

• γ1 = m(α1, β1) and γ2 = m(α2, β2);
• S1 = {(T, S), (!a〈α1〉(!b〈α2〉(α2).α1).T, S)};
• S2 = S1 ∪ {(!a〈α1〉(!b〈α2〉(α2).α1).T, !a〈β1〉(!b〈β2〉(β2).β1 ⊕ !c〈β3〉(β3).end).S)};
• S3 = S2 ∪ {(!b〈β2〉(β2).γ1 ⊕ !c〈β3〉(β3).end, !b〈α2〉(α2).γ1)}. �

32 V. BONO AND L. PADOVANI

6.2. Type Weight. We now address the computation of the weight of an (endpoint) type,
which is the least of its weight bounds or ∞ if it has no weight bound. Unlike the definition
of weight bound (Definition 5.1), the algorithm avoids unfoldings of recursive endpoint types
in order to terminate. This imposes a refinement in the strategy we use for weighing type
variables. Recall that, according to Definition 5.1, when determining ‖T ‖∆0

type variables
are weighed either 0 or ∞ according to whether they occur in the context ∆0 or in btv(T)
when they are bound in an input or output prefix. If we avoid unfoldings of recursions, we
must also deal with type variables that are bound by recursive terms rec α.T . The idea is
that these variables must be weighed differently, depending on whether they occur within
an input prefix of T or not. For this reason, we use another context ∆ that contains the
subset of type variables bound by a recursive term and that can be weighed 0.

Ultimately, we define a function W(∆0,∆, T) by induction on the structure of T , thus:

W(∆0,∆, end) = 0

W(∆0,∆, α) =

{

0 if α ∈ ∆0 ∪ ∆

∞ otherwise

W(∆0,∆, rec α.T) = W(∆0,∆ ∪ {α}, T)
W(∆0,∆, {!mi〈αi〉(ti).Ti}i∈I) = 0
W(∆0,∆, {?mi〈αi〉(ti).Ti}i∈I) = max{1 + W(∆0, ∅, ti), W(∆0,∆ \ {αi}, Ti)}i∈I

W(∆0,∆, q T) = W(∆0,∆, T)

The first and fourth equations give a null weight to end and endpoint types in a send
state, as expected. The third equation weighs a recursive term rec α.T by weighing the
body T and recording the fact that α can be given a null weight, as long as α does not occur
in a prefix of T . The second equation weighs a type variable α: if α occurs in ∆0 ∪ ∆, then
it means that either α occurs free in the original endpoint type being weighed and therefore
must be given a null weight, or α is bound in a recursive term rec α.S but it does not occur
within an input prefix of S; if α does not occur in ∆0 ∪ ∆, then it means that either α was
bound in an prefix of an endpoint type in send/receive state, or it was bound in a recursive
term rec α.S and it occurs within an input prefix of S. The fifth equation determines the
weight of an endpoint type in receive state. The rule essentially mimics the corresponding
condition of Definition 5.1, but notice that when weighing the types ti in the prefixes the
context ∆ is emptied, since if any of the type variables in it is encountered, then it must
be given an infinite weight. The last equation simply determines the weight of a qualified
endpoint type to be the weight of the endpoint type itself.

We work out a few simple examples to help clarifying the algorithm:

• W(∅, ∅, ?m〈α〉(end).end) = max{1 + W(∅, ∅, end), W(∅, ∅, end)} = 1;
• W(∅, ∅, ?m〈α〉(α).end) = max{1 + W(∅, ∅, α), W(∅, ∅, end)} = ∞;
• W(∅, ∅, rec α.?m(α).end) = W(∅, {α}, ?m(α).end) = max{1 + W(∅, ∅, α), W(∅, {α}, end)} = ∞;
• W(∅, ∅, rec α.?m(end).α) = W(∅, {α}, ?m(end).α) = max{1 + W(∅, ∅, end), W(∅, {α}, α)} = 1.

In the last example, note that the type variable α that virtually represents the recursive
term rec α.T is weighed 0 even though the whole term turns out to have weight 1. The
idea is that the proper weight of the whole term will be computed anyway according to
the structure of the term in which α occurs, and therefore we can safely approximate the
weight of α to 0. This property of the algorithm, which is also one of the key ingredients
for proving its correctness, can be formalized as the fact that the weight of a recursive term
and of its unfolding are the same:

TYPING COPYLESS MESSAGE PASSING 33

Proposition 6.2. W(∆0, ∅, rec α.T) = W(∆0, ∅, T {rec α.T/α}).

We conclude with the formal statement saying that the algorithm for computing weights
is correct. Its termination is guaranteed as it works by structural induction over finite terms.

Theorem 6.2. ‖T ‖∆ = W(∆, ∅, T).

6.3. Type Checking. In Sections 6.1 and 6.2 we have already presented algorithms for
deciding whether two (endpoint) types are related by subtyping and for computing the
weight of (endpoint) types. Therefore, there is just one aspect left that makes the type
checking rules in Table 8 non-algorithmic, which is the decomposition of the type environ-
ment Γ into Γ1 + Γ2 when attempting to derive the judgment Σ;∆; Γ ⊢ P | Q by means of
rule (T-Par). The idea is to look at the free names of P and Q that have linear types
in Γ and to split Γ in such a way that dom(Γ1|lin) ⊆ fn(P) and dom(Γ2|lin) ⊆ fn(Q) and
dom(Γ1|un) = dom(Γ2|un) = dom(Γ |un). Clearly, if P and Q share a free name that has a linear
type in Γ there is no way to derive the judgment Σ;∆; Γ ⊢ P |Q. We omit a formal definition
of this splitting since it can be worked out precisely as explained in [10].

7. Related work

Singularity OS. Copyless message passing is one of the key features adopted by the Sin-
gularity OS [15] to compensate the overhead of communication-based interactions between
isolated processes. Communication safety is enforced by checking processes against channel
contracts that are deterministic, autonomous, and synchronizing [21, 24]. A contract is
deterministic if there cannot be two transitions that differ only for the target state, au-
tonomous if every two transitions departing from the same state are either two sends or
two receives, and synchronizing if every loop that goes through a final state has at least one
input and one output action. As argued in [8], session types can model channel contracts
quite well because they always correspond by construction to contracts that are determin-
istic and autonomous. Session types like those adopted in this work have just one final
state end and therefore are trivially synchronizing, but this implies that we are unable to
model contracts where a final state has outgoing transitions. This is not an intrinsic limit
of session types (it is possible to extend session types with more general “final states” as
shown in [5]) and plausibly this restriction is quite natural in practice (for example, all the
channel contracts in the source code of Singularity OS have final states without outgoing
transitions).

Interestingly, already in [8] it was observed that special attention must be deserved to
the type of endpoints that are sent as messages to avoid inconsistencies. In Singularity OS,
endpoints (as well as any other memory block) allocated in the exchange heap are explicitly
tagged with the identifier of their owner process, and when a block changes owner (because
its pointer is sent in a message) it is the sender’s responsibility to update the tag with the
identifier of the receiver process. If this update is not performed atomically (and it cannot
be, for efficiency reasons) the following can happen: a process sends a message m on an
endpoint a whose peer b is owned by some process P1; the sender therefore tags m with
P1; simultaneously, P1 sends b away to some other process P2; message m is now formally
owned by P1, while in fact it is enqueued in an endpoint that is owned by P2. The authors
of [8] argue that this inconsistency is avoided if only endpoint in a “send state” (those whose

34 V. BONO AND L. PADOVANI

type begins with an internal choice) can be sent as messages. The reason is that, if b is in a
“send state”, then a, which must have a dual type, is in a “receive state”, and therefore it is
not possible to send message m on it. In this respect, our work shows that the “send state”
restriction has deeper motivations that go beyond the implementation details of ownership
transfer, it gives formal evidence that the restriction devised in [8] is indeed safe, because
endpoints in a “send state” always have a null weight, and it shows how to handle a more
expressive type system with polymorphic endpoint types.

Early Type-Theoretic Formalizations of Singularity OS. This work improves pre-
vious formalizations of Singularity OS presented in [2, 3]. The main differences regard
polymorphic and unrestricted endpoint types and the modeling of Sing#’s expose.

Polymorphic endpoint types increase the flexibility of the type system and are one of
the features of Singularity OS, in the form of polymorphic contracts, documented in the
design note dedicated to channels [18]. The most interesting aspect of polymorphic endpoint
types is their interaction with the ownership invariant (see the example (5.2)) and with the
computation of type weights. Polymorphism was not considered in [2], and in [3] we have
introduced a bounded form of polymorphism, along the lines of [9], but we did not impose
any constraint on the instantiation of type variables without bound which were all estimated
to have infinite weight. This proved to be quite restrictive (a simple forwarder process like
the one in Example 5.1 would be ill-typed). The crucial observation of the present type
system is that type variables denote “abstract” values that can only be passed around. So,
just as values that are passed around must have a finite-weight type, it makes sense to
impose the same restriction when instantiating type variables. For the sake of simplicity,
in the present work we have dropped type bounds for type variables. This allowed us to
define the subtyping algorithm as a relatively simple extension of the standard subtyping
algorithm for session types [10]. It should be possible to work out a subtyping algorithm
for bounded, polymorphic, recursive endpoint types, possibly adapting related algorithms
defined for functional types [17, 6], although the details might be quite involved.

In [2, 3] only linear endpoint types were considered. However, as pointed out by some
referees, a purely linear type system is quite selective on the sort of constructs that can
be effectively modeled with the calculus. For this reason, in the present version we have
introduced unrestricted endpoint types in addition to linear ones, with the understanding
that other kinds of unrestricted data types (such as the primitive types of boolean or integer
values) can be accommodated just as easily. We have shown that unrestricted endpoint types
can be used for representing the type of non-linear resources such as permanent services
and functions and we have also been able to implement the TCell type constructor of Sing#

(Example 5.3). Interestingly, the introduction of unrestricted endpoint types required very
little change to the process language (only a different open primitive) and no change at all
to the heap model.

The remaining major difference between [2] and this work is the lack of any expose

primitive in the process calculus, which is used in the Sing# compiler to keep track of
memory ownership. To illustrate the construct, consider the code fragment

expose (a) {

b.Arg(*a);

*a = new[ExHeap] T();

}

TYPING COPYLESS MESSAGE PASSING 35

which dereferences a cell a and sends its content on endpoint b. After the b.Arg(*a)

operation the process no longer owns *a but it still owns a. Therefore, the ownership
invariant could be easily violated if the process were allowed to access *a again. To prevent
this, the Sing# compiler allows (linear) pointer dereferentiation only within expose blocks.
The expose (a) block temporarily transfers the ownership of *a from a to the process
exposing a and is well-typed if the process still owns *a at the end of block. In this example,
the only way to regain ownership of *a is to assign it with the pointer to another object
that the process owns. In [2] we showed that all we need to capture the static semantics
of expose blocks is to distinguish cells with type ∗t (whose content, of type t, is owned
by the cell) from cells with type ∗• (whose content is owned directly by the process). At
the beginning of the expose block, the type of a turns from ∗t to ∗•; within the block it is
possible to (linearly) use *a; at the end of the block, *a is assigned with the pointer to a
newly allocated object that the process owns, thus turning a’s type from ∗• back to some
∗s. In other words, cell types (and other object types) are simple behavioral types that can
be easily modeled in terms of polymorphic endpoint types. In [3] we have shown that the
endpoint type

CellT = rec α.(!Set〈β〉(lin β).?Get(lin β).α ⊕ !Free().end)

corresponds to the open cell type ∗• that allows for setting a cell with a value of arbitrary
type and for freeing the cell. Once the cell has been set, its type turns to some

?Get(t).CellT

corresponding to the cell type ∗t that only allows for retrieving its content. The cell itself
can be easily modeled as a process that behaves according to CellT, as shown in [3].

As a final note, in [2] we have shown how to accommodate the possibility of closing
endpoints “in advance” (when their type is different from end), since this feature is available
in Sing#. Overall, it seems like the issues it poses exclusively concern the implementation
details rather than the peculiar characteristics of the formal model. Consequently, we have
decided to drop this feature in the present paper.

Type Weight. Other works [8, 11] introduce apparently similar, finite-size restrictions on
session types. In these cases, the size estimates the maximum number of enqueued messages
in an endpoint and it is used for efficient, static allocation of endpoints with finite-size type.
Our weights are unrelated to the size of queues and concern the length of chains of pointers
involving queues. For example, in [11] the session type T = rec α.?m(lin α).end has size
1 (there can be at most one message of type lin T in the queue of an endpoint with type
T) and the session type S = rec α.?m(lin end).α has size ∞ (there can be any number of
messages, each of type lin end, in the queue of an endpoint with type S). In our theory
we have just the opposite, that is ‖T ‖ = ∞ and ‖S‖ = 1. Despite these differences, the
workaround we have used to bound the weight of endpoint types (Example 5.2) can also be
used to bound the size of session types as well, as pointed out in [11].

Logic-Based Analysis. A radically different approach for the static analysis of Singularity
processes is given by [24, 25], where the authors develop a proof system based on a variant
of separation logic [19]. The proof system permits the derivation of Hoare triples of the form
{A} P {B} where P is a program and A and B are logical formulas describing the state of
the heap before and after the execution of P . A judgment {emp} P {emp} indicates that

36 V. BONO AND L. PADOVANI

if P is executed in the empty heap (the pre-condition emp), then it leaks no memory (the
post-condition emp). However, leaks in [24] manifest themselves only when both endpoints
of any channel have been closed. In particular, it is possible to prove that the function foo

in Section 2 is safe, although it may indeed leak some memory. This problem has been
subsequently recognized and solved in [23]. Roughly, the solution consists in forbidding
the output of a message unless it is possible to prove (in the logic) that the queue that is
going to host the message is reachable from the content of the message itself. In principle
this condition is optimal, in the sense that it should permit every safe output. However,
it relies on the knowledge of the identity of endpoints, that is a very precise information
that is not always available. For this reason, [23] also proposes an approximation of this
condition, consisting in tagging endpoints of a channel with distinct roles (basically, what
are called importing and exporting views in Singularity). Then, an endpoint can be safely
sent as a message only if its role matches the one of the endpoint on which it is sent. This
solution is incomparable to the one we advocate – restricting the output to endpoints with
finite-weight type – suggesting that it may be possible to work out a combination of the
two. In any case, neither [24] nor [23] take into account polymorphism.

Global Progress. There exist a few works on session types [1, 5] that guarantee a global
progress property for well-typed systems where the basic idea is to impose an order on
channels to prevent circular dependencies that could lead to a deadlock. Not surprisingly,
the critical processes such as (5.1) that we rule out thanks to the finite-weight restriction on
the type of messages are ill typed in these works. It turns out that a faithful encoding of (5.1)
into the models proposed in these works is impossible, because the open(·, ·) primitive we
adopt (and that mimics the corresponding primitive operation in Singularity OS) creates
both endpoints of a channel within the same process, while the session initiation primitives
in [1, 5] associate the fresh endpoints of a newly opened session to different processes running
in parallel. This invariant – that the same process cannot own more than one endpoint of
the same channel – is preserved in well-typed processes because of a severe restriction:
whenever an endpoint c is received, the continuation process cannot use any endpoint other
than c and the one from which c was received.

8. Conclusions

We have defined the static analysis for a calculus where processes communicate through
the exchange of pointers. Verified processes are guaranteed to be free from memory faults,
they do not leak memory, and do not fail on input actions. Our type system has been
inspired by session type theories. The basic idea of session types, and of behavioral types
in general, is that operating on a (linearly used) value may change its type, and thus the
capabilities of that value thereafter. Endpoint types express the capabilities of endpoints,
in terms of the type of messages that can be sent or received and in which order. We have
shown that, in the copyless message passing paradigm, linearity alone is not enough for
preventing memory leaks, but also that endpoint types convey enough information – their
weight – to devise a manageable type system that detects potentially dangerous processes:
it is enough to restrict send operations so that only endpoint with a finite-weight type can be
sent as messages and only finite-weight endpoint types can instantiate type variables. This
restriction can be circumvented in a fairly easy and general way at the cost of a few extra
communications, still preserving all the nice properties of the type system (Example 5.2).

TYPING COPYLESS MESSAGE PASSING 37

We claim that our calculus provides a fairly comprehensive formalization of the peculiar
features of Sing#, among which are the explicit memory management of the exchange heap,
the controlled ownership of memory allocated on the exchange heap, and channel contracts.
We have also shown how to accommodate some advanced features of the Sing# type sys-
tem, namely (the lack of) [Claims] annotations, the TCell type constructor that allows
for the sharing of linear pointers, and polymorphic channel contracts. In prior work [3] we
had already shown how polymorphic endpoint types permit the encoding of expose blocks
for accessing linear pointers stored within other objects allocated on the exchange heap.
Interestingly, previous studies on Singularity channel contracts [8] had already introduced
a restriction on send operations so that only endpoints in a send-state, those whose type
begins with an internal choice, can be safely sent as messages. There the restriction was mo-
tivated by the implementation of ownership transfer in Singularity, where it is the sender’s
responsibility to explicitly tag sent messages with their new owner. We have shown that
there are more reasons for being careful about which endpoints can be sent as messages
and that the send-state restriction is a sound approximation of our finite-weight restriction,
because endpoints in a send-state always have a null weight.

On a more technical side, we have also developed a decidable theory of polymorphic,
recursive behavioral types. Our theory is incomparable with that developed in [9]: we
handle recursive behavioral types, whereas [9] only considers finite ones; polymorphism
in [9] is bounded, while it is unrestricted in our case. The subtyping relation that takes
into account both recursive behaviors and bounds is in fact quite straightforward to define
(see [3]), but its decision algorithm appears to be quite challenging. As observed in [9],
bounded polymorphic session types share many properties with the type language in system
F<: [4], and subtyping algorithms for extensions of F<: with recursive types are well known
for their complexity [17, 6]. We leave the decision algorithm for subtyping of behavioral
types with recursion and bounded polymorphism as future work.

Acknowledgments. We are grateful to Lorenzo Bettini for discussions on the notion of mem-
ory leak, to Nobuko Yoshida for comments on an early version of this paper, and to the
anonymous referees for the detailed and useful reviews.

References

[1] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini, and
Nobuko Yoshida. Global Progress in Dynamically Interleaved Multiparty Sessions. In Proceedings of

CONCUR’08, LNCS 5201, pages 418–433. Springer, 2008.
[2] Viviana Bono, Chiara Messa, and Luca Padovani. Typing Copyless Message Passing. In Proceedings of

ESOP’11, LNCS 6602, pages 57–76. Springer, 2011.
[3] Viviana Bono and Luca Padovani. Polymorphic Endpoint Types for Copyless Message Passing. In

Proceedings of ICE’11, volume EPTCS 59, pages 52–67, 2011.
[4] Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. An Extension of System F with

Subtyping. Information and Computation, 109(1/2):4–56, 1994.
[5] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Luca Padovani. Foundations

of Session Types. In Proceedings of PPDP’09, pages 219–230. ACM, 2009.
[6] Dario Colazzo and Giorgio Ghelli. Subtyping, Recursion, and Parametric Polymorphism in Kernel Fun.

Information and Computation, 198(2):71–147, 2005.
[7] Bruno Courcelle. Fundamental Properties of Infinite Trees. Theoretical Computer Science, 25:95–169,

1983.

38 V. BONO AND L. PADOVANI

[8] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt, James R. Larus, and
Steven Levi. Language Support for Fast and Reliable Message-based Communication in Singularity OS.
In Proceedings of EuroSys’06, pages 177–190. ACM, 2006.

[9] Simon Gay. Bounded Polymorphism in Session Types. Mathematical Structures in Computer Science,
18(5):895–930, 2008.

[10] Simon Gay and Malcolm Hole. Subtyping for Session Types in the π-calculus. Acta Informatica, 42(2-
3):191–225, 2005.

[11] Simon Gay and Vasco T. Vasconcelos. Linear Type Theory for Asynchronous Session Types. Journal

of Functional Programming, 20(01):19–50, 2010.
[12] Marco Giunti and Vasco Thudichum Vasconcelos. A Linear Account of Session Types in the Pi Calculus.

In Proceedings of CONCUR’10, volume LNCS 6269, pages 432–446, 2010.
[13] Kohei Honda. Types for Dyadic Interaction. In Proceedings of CONCUR’93, LNCS 715, pages 509–523.

Springer, 1993.
[14] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language Primitives and Type Disciplines

for Structured Communication-based Programming. In Proceedings of ESOP’98, LNCS 1381, pages
122–138. Springer, 1998.

[15] Galen Hunt, James Larus, Mart́ın Abadi, Mark Aiken, Paul Barham, Manuel Fähndrich, Chris Haw-
blitzel, Orion Hodson, Steven Levi, Nick Murphy, Bjarne Steensgaard, David Tarditi, Ted Wobber,
and Brian Zill. An Overview of the Singularity Project. Technical Report MSR-TR-2005-135, Microsoft
Research, 2005.

[16] Galen C. Hunt and James R. Larus. Singularity: Rethinking the Software Stack. SIGOPS Operating

Systems Review, 41:37–49, April 2007.
[17] Alan Jeffrey. A Symbolic Labelled Transition System for Coinductive Subtyping of Fµ≤ Types. In

Proceedings of LICS’01, pages 323–333. IEEE, 2001.
[18] Microsoft. Singularity Design Note 5: Channel Contracts. Technical report, Microsoft Research, 2004.

Available at http://www.codeplex.com/singularity.
[19] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about programs that alter

data structures. In Proceedings of CSL’01, LNCS 2142, pages 1–19. Springer, 2001.
[20] Luca Padovani. Session Types at the Mirror. In Proceedings of ICE’09, volume EPTCS 12, pages 71–86,

2009.
[21] Zachary Stengel and Tevfik Bultan. Analyzing Singularity Channel Contracts. In Proceedings of IS-

STA’09, pages 13–24. ACM, 2009.
[22] Vasco Thudichum Vasconcelos. Fundamentals of Session Types. In Proceedings of SFM’09, volume

LNCS 5569, pages 158–186. Springer, 2009.
[23] Jules Villard. Heaps and Hops. PhD thesis, Laboratoire Spécification et Vérification, ENS Cachan,

France, 2011.

[24] Jules Villard, Étienne Lozes, and Cristiano Calcagno. Proving Copyless Message Passing. In Proceedings

of APLAS’09, LNCS 5904, pages 194–209. Springer, 2009.
[25] Jules Villard, Étienne Lozes, and Cristiano Calcagno. Tracking Heaps That Hop with Heap-Hop. In

Proceedings of TACAS’10, LNCS 6015, pages 275–279. Springer, 2010.

Appendix A. Supplement to Section 3

Proposition A.1 (Proposition 3.1). The following properties hold:

(1) T = T .
(2) ∅ T implies that T ⊲⊳ T and ∅ T .
(3) ∆; {α} T and ∆ S imply ∆ T {S/α}.

(4) ∅; {α} T and ∅ S imply T {S/α} = T {S/α}.

http://www.codeplex.com/singularity

TYPING COPYLESS MESSAGE PASSING 39

Proof sketch. Item (1) is proved by induction on T . The only interesting case is when

T ≡ rec α.S. Then, by definition of dual, we have T ≡ rec α.S{{T/α}} and now:

T ≡ rec α.S{{T/α}}{{T /α}} (by definition of dual)

= rec α.S{{T/α}} (by definition of inner substitution)

= rec α.(S{{T/α}}) (because inner substitution and dual commute)
= rec α.(S{{T/α}}) (by induction hypothesis)
= rec α.S ≡ T (by folding the recursion)

Item (2) relies on the fact that duality and unfolding commute. Indeed we have (*)

rec α.T ≡ rec α.T {{rec α.T/α}} and now:

T {rec α.T/α} = T {{rec α.T/α}}{rec α.T/α} (def. of inner substitution)

= T {{rec α.T/α}}{rec α.T /α} (by def. of dual)

= T {{rec α.T/α}}{rec α.T {{rec α.T/α}}/α} (by (*))

= rec α.T {{rec α.T/α}} (by folding the recursion)
≡ rec α.T (by (*))

In proving items (2–4) it is also needed the fact that ∆ T implies ftv(T) ⊆ ∆ and
these free type variables can only occur within prefixes of T . We let the reader fill in the
remaining details.

Proposition A.2 (Proposition 3.3). Let ∅ T and ∅ S. Then T 6 S if and only if
S 6 T .

Proof. It is enough to show that

S
def
= 6 ∪ {(S, T) | T 6 S & ∅;∆ T & ∅;∆ S}

is a coinductive subtyping. Suppose (S, T) ∈ S where (1) T 6 S and (2) ∅;∆ T and
∅;∆ ⊢ S. We reason by cases on the shape of T and S:

• (T = S = end) We conclude immediately since end = end.
• (T = S = α) This case is impossible because of the hypothesis (2).
• (T = {?mi〈αi〉(ti).Ti}i∈I and S = {?mj〈αj〉(sj).Sj}j∈J) Then T = {!mi〈αi〉(ti).Ti}i∈I and

S = {!mi〈αi〉(si).Si}i∈J . From (1) we deduce I ⊆ J and ti 6 sj and Ti 6 Si for every
i ∈ I. From (2) we deduce ∅;∆, αi Ti and ∅;∆, αi Si. By definition of S we conclude
(Si, Ti) ∈ S for every i ∈ I.

• (T = {!mi〈αi〉(ti).Ti}i∈I and S = {!mj〈αj〉(sj).Sj}j∈J) Dual of the previous case.

Appendix B. Supplement to Section 5

Before addressing subject reduction and soundness we prove a series of auxiliary results.
The first one states an expected property of endpoint types, namely that the weight ‖T ‖{α}

where we take the free occurrences of α to have null weight remains finite if we replace
the same occurrences of α with an arbitrary, but finite-weight endpoint type S (recall that
T {S/α} is a capture-avoiding substitution).

Proposition B.1. Let max{‖T ‖{α}, ‖S‖} < ∞. Then ‖T {S/α}‖ < ∞.

40 V. BONO AND L. PADOVANI

Proof. We show that {α} ⊢ T :: m and S :: n imply T {S/α} :: m + n. It is enough to show
that

W
def
= {(∅, T ′{S/α}, m + n) | ∃m ∈ N : {α} ⊢ T ′ :: m}

is a coinductive weight bound. Observe that T ′′ :: n implies (∅, T ′′, n) ∈ W . Let (∅, T ′′, k) ∈
W . Then there exist T ′ and m such that T ′′ = T ′{S/α} and k = m+n and (*) {α} ⊢ T ′ :: m.
We reason by cases on T ′ assuming, without loss of generality, that ({α} ∪ ftv(S)) ∩
btv(T ′) = ∅:

• (T ′ = end) Trivial.
• (T ′ = α) Then T ′{S/α} = S and from the hypothesis S :: n we conclude S :: m + n.
• (T ′ = β 6= α) This case is impossible for it contradicts (*).
• (T ′ = {!mi〈αi〉(ti).Ti}i∈I) Trivial.
• (T ′ = {?mi〈αi〉(qi Si).Ti}i∈I) From (*) we deduce m > 0 and {α} ⊢ Si :: m − 1 and

{α} ⊢ Ti :: m for every i ∈ I. By definition of W we conclude (∅, Si{S/α}, (m−1)+n) ∈ W

and (∅, Ti{S/α}, m + n) ∈ W for every i ∈ I.

Type variable instantiation does not affect the subtyping relation:

Proposition B.2. The following properties hold:

(1) T1 6 T2 implies T1{S/α} 6 T2{S/α};
(2) t1 6 t2 implies t1{S/α} 6 t2{S/α}.

Proof sketch. Follows from the fact that a free type variable α can only be related to itself.
The details are left as an technical exercise.

We now turn to a series of standard auxiliary results of type preservation under struc-
tural congruence and various forms of substitutions.

Lemma B.1. Let Γ ⊢ P and P ≡ Q. Then Γ ⊢ Q.

Proof. By case analysis on the derivation of P ≡ Q.

Lemma B.2 (type substitution). If Σ;∆, α; Γ ⊢ P and ∅ S and ‖S‖ < ∞, then
Σ;∆; Γ{S/α} ⊢ P{S/α}.

Proof sketch. Straightforward induction on the derivation of Σ;∆, α; Γ ⊢ P , using Proposi-
tions B.1 and B.2 wherever necessary.

Lemma B.3 (value substitution). If Σ;∆; Γ , x : t ⊢ P and Γ + v : s is defined and well
formed and s 6 t, then Σ;∆; Γ + v : s ⊢ P{v/x}.

Proof. By induction on the derivation of Σ;∆; Γ , x : t ⊢ P and by cases on the last rule
applied. We only show the proof of the (T-Send) case, the others being simpler or trivial.
In the (T-Send) case we have:

• P = u!m〈S〉(v).P ′;
• Γ , x : t = (Γ ′′, u : q {!mi〈αi〉(ti).Ti}i∈I) + v : s′′;
• Σ;∆; Γ ′′, u : q Tk{S/αk} ⊢ P ′.

We can assume x ∈ dom(Γ ′′) ∪ {u} for otherwise x 6∈ fn(P ′) and there is nothing left to
prove. Let Γ

′′, u : q Tk{S/αk} = Γ
′, x : t′ for some Γ

′ and t′. In order to apply the induction
hypothesis and deduce Σ;∆; Γ ′ + v : s′ ⊢ P ′{v/x}, we must find s′ such that (a) s′ 6 t′ and
(b) Γ

′ + v : s′ is defined and well formed. Observe that the type of x, t′, may change from
the conclusion to the premise of the rule if x = u. We distinguish the following sub-cases:

TYPING COPYLESS MESSAGE PASSING 41

• (v 6= u, u 6= x) For (a), we deduce t′ = t and we conclude by taking s′ = s. For (b), then
either v 6∈ dom(Γ ′′) or un(Γ ′′(v)). In both cases we conclude that Γ

′ + v : s′ is defined and
well formed.

• (v 6= u, u = x) For (a), we deduce t = q {!mi〈αi〉(ti).Ti}i∈I . From s 6 t, we deduce
s = q′ {!mi〈αi〉(si).Si}i∈I∪J and q′ ≤ q and Si 6 Ti for i ∈ I. By Proposition B.2(1) we
obtain Sk{S/αk} 6 Tk{S/αk} and we conclude by taking s′ = Sk{S/αk}. For (b) we can
reason as for the previous case.

• (v = u) Since u ∈ dom(Γ), then s = Γ(u) and q = un. Since the un qualifier can only be
applied to invariant types, it must be the case that Tk{S/αk} = s. We conclude (a) by
taking s′ = s and (b) follows immediately.

Lemma B.4 (weakening). If Σ;∆; Γ ⊢ P and un(Γ ′), then Σ,Σ′;∆,∆′; Γ , Γ ′ ⊢ P .

Proof. Straightforward induction on the derivation of Σ;∆; Γ ⊢ P .

Lemma B.5 (process substitution). Let (1) Σ, {X 7→ (∆; Γ)};∆; Γ ⊢ Q. Then (2) Σ, {X 7→
(∆; Γ)},Σ′;∆′; Γ ′ ⊢ P implies Σ,Σ′;∆′; Γ ′ ⊢ P{rec X.Q/X}.

Proof. By induction on P . Whenever we encounter some bound name/type variable/process
variable in P we assume, without loss of generality, that it does not occur free in Q:

• (P = 0) Then P{rec X.Q/X} = 0. From (2) and (T-Idle) we deduce un(Γ ′). We
conclude with an application of (T-Idle).

• (P = X) Then P{rec X.Q/X} = rec X.Q. From (2) and (T-Var) we deduce:
− ∆

′ = ∆,∆′′;
− Γ

′ = Γ , Γ ′′;
− un(Γ ′′).
From (1) and Lemma B.4 we obtain Σ, {X 7→ (∆; Γ)},Σ′;∆′; Γ ′ ⊢ Q. We conclude with
an application of (T-Rec).

• (P = Y 6= X) Then P{rec X.Q/X} = Y and we conclude immediately from (T-Var).
• (P = close(u)) Then P{rec X.Q/X} = close(u) and we conclude immediately from

(T-Close).
• (P = P1 ⊕ P2) Then P{rec X.Q/X} = P1{rec X.Q/X} ⊕ P2{rec X.Q/X}. From (2)

and (T-Choice) we deduce:
− Σ, {X 7→ (∆; Γ)},Σ′;∆′; Γ ′ ⊢ Pi for i = 1, 2.

By induction hypothesis we obtain:
− Σ,Σ′;∆′; Γ ′ ⊢ Pi{rec X.Q/X} for i = 1, 2.

We conclude with an application of (T-Choice).
• (P = P1 | P2) Then P{rec X.Q/X} = P1{rec X.Q/X} | P2{rec X.Q/X}. From (2) and

(T-Par) we deduce
− Γ

′ = Γ1 + Γ2 and
− Σ, {X 7→ (∆; Γ)},Σ′;∆′; Γi ⊢ Pi for i = 1, 2.

By induction hypothesis:
− Σ,Σ′;∆′; Γi ⊢ Pi{rec X.Q/X}.

We conclude with an application of (T-Par).
• (P = open(a : T, b : S).P ′) Then P{rec X.Q/X} = open(a : T, b : S).(P ′{rec X.Q/X}).

From (2) and (T-Open Linear Channel) we deduce:
− ∆

′ T ;
− Σ, {X 7→ (∆; Γ)},Σ′;∆′; Γ ′, a : lin T, b : lin S ⊢ P ′;
− S = T .

42 V. BONO AND L. PADOVANI

By induction hypothesis:
− Σ,Σ′;∆′; Γ ′, a : lin T, b : lin S ⊢ P ′{rec X.Q/X}.

We conclude with an application of (T-Open Linear Channel).
• (P = open(a : T).P ′) Similar to the previous case.
• (P =

∑

i∈I u?mi〈αi〉(xi : si).Pi) Then

P{rec X.Q/X} =
∑

i∈I

u?mi〈αi〉(xi : ti).(Pi{rec X.Q/X}).

From (2) and (T-Receive) we deduce:
− Γ

′ = Γ
′′, u : lin {?mi〈αi〉(si).Ti}i∈J ;

− J ⊆ I;
− si 6 ti for every i ∈ J ;
− Σ, {X 7→ (∆; Γ)},Σ′;∆′, αi; Γ

′, u : lin Ti, xi : ti ⊢ Pi for every i ∈ J .
By induction hypothesis:

− Σ,Σ′;∆′, αi; Γ
′, u : lin Ti, xi : ti ⊢ Pi{rec X.Q/X} for i ∈ J .

We conclude with an application of (T-Receive).
• (P = u!m〈S〉(v).P ′) Then P{rec X.Q/X} = u!m〈S〉(v).(P ′{rec X.Q/X}). From (2) and

(T-Send) we deduce:
− Γ

′ = (Γ ′′, u : q {!mi〈αi〉(ti).Ti}i∈I) + v : s;
− ∆

′ S;
− m = mk for some k ∈ I;
− s 6 tk{S/αk};
− max{‖S‖∆, ‖s‖∆} < ∞;
− Σ, {X 7→ (∆; Γ)},Σ′;∆′; Γ ′′, u : q Tk{S/αk} ⊢ P ′.

By induction hypothesis:
− Σ,Σ′;∆′; Γ ′′, u : lin T ′{S/α} ⊢ P ′{rec X.Q/X}.

We conclude with an application of (T-Send).
• (P = rec Y.P ′) Then P{rec X.Q/X} = rec Y.(P ′{rec X.Q/X}). From (2) and

(T-Rec) we deduce:
− Σ, {X 7→ (∆; Γ), Y 7→ (∆′; Γ ′)},Σ′;∆′; Γ ′ ⊢ P ′;
− (t2) dom(Γ ′|lin) ⊆ fn(P ′).

By induction hypothesis:
− Σ, {Y 7→ (∆′; Γ ′)},Σ′;∆′; Γ ′ ⊢ P ′{rec X.Q/X};

From (t2) and by definition of process substitution:
− dom(Γ ′|lin) ⊆ fn(P ′) ⊆ fn(P ′{rec X.Q/X}).

We conclude with an application of (T-Rec).

The following lemma serves as a slight generalization of subject reduction (Theorem 5.1).
Note that the last condition Γ |un ⊆ Γ

′|un implies that unrestricted values can only accumulate
(they are never removed from the type environment) and furthermore their type does not
change over time.

Lemma B.6. Let (1) Γ0; ΓR, Γ ⊢ µ where lin(ΓR) and (2) Γ ⊢ P and (µ; P) → (µ′; P ′). Then
Γ

′
0; ΓR, Γ ′ ⊢ µ′ and Γ

′ ⊢ P ′ for some Γ
′
0 and Γ

′ such that Γ |un ⊆ Γ
′|un.

Proof. By induction on the derivation of (µ; P) → (µ′; P ′) and by cases on the last rule
applied.

• (R-Open Linear Channel) In this case:
− P = open(a : T, b : S).P ′;

TYPING COPYLESS MESSAGE PASSING 43

− µ′ = µ, a 7→ [b, ε], b 7→ [a, ε].
From the hypothesis (2) and rule (T-Open Linear Channel) we obtain:
− ∅ T ;
− S = T ;
− Γ , a : lin T, b : lin T ⊢ P ′.
From Proposition 3.1(1) we deduce:
− ∅ S.
We conclude by taking Γ

′
0 = Γ0 and Γ

′ = Γ , a : lin T, b : lin T . The proof that Γ ′
0; ΓR, Γ ′ ⊢ µ′

is trivial and Γ |un = Γ
′|un.

• (R-Open Unrestricted Channel) Similar to the previous case, except that a fresh
unrestricted pointer is added to Γ

′.
• (R-Choice Left/Right) Trivial.
• (R-Send Linear) In this case:

− P = a!m〈S〉(v).P ′;
− µ = µ′′, a 7→ [b,Q], b 7→ [a,Q′];
− µ′ = µ′′, a 7→ [b,Q], b 7→ [a,Q′ :: m〈S〉(v)].
From the hypothesis (2) and rule (T-Send) we obtain:
− (t1) Γ = (Γ ′′, a : lin {!mi〈αi〉(ti).Ti}i∈I) + v : s;
− ∅ S;
− m = mk for some k ∈ I;
− s 6 tk{S/αk};
− ‖S‖ < ∞ and ‖s‖ < ∞;
− Γ

′′, a : Tk{S/αk} ⊢ P ′.
Let Γ

′
0 = Γ0 + (v : s)|lin and Γ

′ = (Γ ′′, a : lin Tk{S/αk}) + (v : s)|un. Since Γ |un = Γ
′|un we

only have to show that Γ
′
0; ΓR, Γ ′ ⊢ µ′.

We prove the items of Definition 5.2 in order.
(1) We only need to show that Q is empty. Suppose by contradiction that this is not

the case. Then the endpoint type associated with a before the reduction occurs must
begin with an external choice, which contradicts (t1).

(2) Let Q′ = m1〈T1〉(v1) :: · · · :: mn〈Tn〉(vn). From hypothesis (1) and (t1) we deduce
Γ0, ΓR, Γ ⊢ b : lin Tb and Γ0, ΓR, Γ ⊢ vi : si where

{?mi〈αi〉(ti).Ti}i∈I = {!mi〈αi〉(ti).Ti}i∈I = tail(Tb, m1〈T1〉(s1) · · · mn〈Tn〉(sn))

and by Proposition 3.1(3) we conclude

Tk{S/αk} = Tk{S/αk} = tail(Tb, m1〈T1〉(s1) · · · mn〈Tn〉(sn)m〈S〉(s)) .

(3) Immediate from hypothesis (1).
(4) From hypothesis (1) we have dom(µ) = dom(Γ0, ΓR, Γ |lin) and for every a′ ∈ dom(µ)

there exists b′ ∈ dom(ΓR, Γ) such that a′ 4µ b′. Clearly dom(µ′) = dom(Γ ′
0, ΓR, Γ ′|lin)

since dom(µ′) = dom(µ) and dom(Γ ′
0) ∪ dom(Γ ′) = dom(Γ0) ∪ dom(Γ). Let b 4µ b0 and

ΓR, Γ ⊢ b0 : T0 and assume v ∈ Pointers. We have v ≺µ′ b 4µ′ b0, namely v 4µ′ b0.
Now

‖s‖ < ‖tail(Tb, m1〈T1〉(s1) · · · mn〈Tn〉(sn))‖ ≤ ‖Tb‖ ≤ ‖T0‖

therefore v 6= b0. We conclude b0 ∈ dom(ΓR, Γ ′).
(5) Immediate from hypothesis (1).

• (R-Send Unrestricted) In this case:
− P = a!m〈S〉(v).P ′;

44 V. BONO AND L. PADOVANI

− µ = µ′′, a 7→ [a,Q];
− µ′ = µ′′, a 7→ [a,Q :: m〈S〉(v)].
From the hypothesis (2) and rule (T-Send) we obtain:
− (t1) Γ = (Γ ′′, a : un T) + v : s where T = {!mi〈αi〉(ti).T }i∈I ;
− ∅ S;
− m = mk for some k ∈ I;
− s 6 tk{S/αk};
− ‖S‖ < ∞ and ‖s‖ < ∞;
− Γ

′′, a : un T ⊢ Q.
Let Γ

′
0 = Γ0 + (v : s)|lin and Γ

′ = (Γ ′′, a : un T) + (v : s)|un. Since Γ |un = Γ
′|un we only have

to show that Γ
′
0; ΓR, Γ ′ ⊢ µ′.

We prove the items of Definition 5.2 in order.
(1) Trivial since no queue of linear endpoint was affected by the reduction.
(2) Ditto.
(3) Let Q = m1〈T1〉(v1) :: · · · :: mn〈Tn〉(vn) and Γ0, ΓR, Γ ⊢ a : lin Ta and Γ0, ΓR, Γ ⊢ vi : si.

We deduce

{?mi〈αi〉(ti).T }i∈I = {!mi〈αi〉(ti).T }i∈I = tail(Ta, m1〈T1〉(s1) · · · mn〈Tn〉(sn))

and we conclude

T = tail(Ta, m1〈T1〉(s1) · · · mn〈Tn〉(sn)m〈S〉(s)) .

(4) Analogous to the case (R-Send Linear) with Ta in place of Tb.
(5) Immediate from hypothesis (1).

• (R-Receive) In this case:
− P =

∑

i∈I a?mi〈αi〉(xi : ti).Pi;
− µ = µ′′, a 7→ [b, m〈S〉(v) :: Q] where Q = m1〈S1〉(v1) :: · · · :: mn〈Sn〉(vn);
− m = mk for some k ∈ I;
− P ′ = Pk{S/αk}{v/xk};
− µ′ = µ′′, a 7→ [b,Q].
From the hypothesis (2) and rule (T-Receive) we obtain:
− Γ = Γ

′′, a : lin {?mi〈αi〉(si).Ti}i∈J with J ⊆ I;
− sk 6 tk;
− (t3) αk; Γ ′′, a : lin Tk, xk : tk ⊢ Pk

Let Γ0, ΓR, Γ ⊢ v : s. From hypothesis (1) and Proposition B.2 we obtain:
− (c1) ∅ S and ‖S‖ < ∞;
− (c2) s 6 sk{S/αk} 6 tk{S/αk}.
From hypothesis (1) we also deduce that:
− (f1) if un(s), then v ∈ dom(Γ) and Γ ⊢ v : s, because all the unrestricted values are in

Γ ;
− (f2) if lin(s), then v 6∈ dom(Γ), because v ≺µ a and therefore it must be v ∈ dom(Γ0)

(process isolation prevents a from being reachable from any pointer in dom(ΓR, Γ) and
different from a).

From (t3), (c1), and Lemma B.2 we have:
− (t3’) Γ

′′{S/αk}, a : q Tk{S/αk}, xk : tk{S/αk} ⊢ Pk{S/αk}.
From (f1) and (f2) we deduce that Γ0 = Γ

′
0, (v : s)|lin for some Γ

′
0. Take Γ

′ = (Γ ′′, a :
q Tk{S/αk})+v : s and observe that Γ ′ is well defined by (f1) and (f2) and also Γ |un ⊆ Γ

′|un

by construction of Γ ′. From (t3’), (c2), and Lemma B.3 we conclude:

TYPING COPYLESS MESSAGE PASSING 45

− Γ
′ ⊢ Pk{S/αk}{v/xk}

We have to show Γ
′
0, ΓR, Γ ′ ⊢ µ′ and we prove the items of Definition 5.2 in order.

(1) If a = b there is nothing to prove. Suppose a 6= b. Since the queue associated with
a is not empty in µ, the queue associated with its peer endpoint b must be empty.
The reduction does not change the queue associated with b, therefore condition (1)
of Definition 5.2 is satisfied.

(2) Suppose a 6= b for otherwise there is nothing to prove. From hypothesis (1) we deduce
Γ0, ΓR, Γ ⊢ b : lin Tb and

Tb = tail({?mi〈αi〉(si).Ti}i∈J , m〈S〉(s)m1〈S1〉(s′
1) · · · mn〈Sn〉(s′

n))
= tail(Tk{S/αk}, m1〈S1〉(s′

1) · · · mn〈Sn〉(s′
n))

where Γ0, ΓR, Γ ⊢ vi : s′
i for 1 ≤ i ≤ n.

(3) Similar to the previous item, where a = b.
(4) Straightforward by definition of Γ ′

0 and Γ
′.

(5) Immediate from hypothesis (1).
• (R-Par) In this case:

− P = P1 | P2;
− (µ; P1) → (µ′; P ′

1);
− P ′ = P ′

1 | P2.
From the hypothesis (2) and rule (T-Par) we obtain:
− Γ = Γ1 + Γ2;
− Γi ⊢ Pi for i ∈ {1, 2}.
In particular, from Lemma B.4 we have:
− (Γ0; ΓR, Γ2|lin, Γ1) + Γ2|un ⊢ µ;
− Γ1 + Γ2|un ⊢ P1.
By induction hypothesis we deduce that there exist Γ

′
0 and Γ

′
1 such that:

− (Γ1 + Γ2|un)|un = (Γ1 + Γ2)|un ⊆ Γ
′
1|un;

− Γ
′
0; ΓR, Γ2|lin, Γ ′

1 ⊢ µ′;
− Γ

′
1 ⊢ P ′

1.
Now Γ2|lin, Γ ′

1 = Γ2|lin, (Γ ′
1 + Γ2|un) = Γ

′
1 + Γ2. Therefore, from rule (T-Par) we obtain

Γ
′
1 + Γ2 ⊢ P ′. We conclude by taking Γ

′ = Γ
′
1 + Γ2.

• (R-Rec) In this case:
− P = rec X.Q;
− P ′ = Q{P/X};
− µ′ = µ.
From the hypothesis (2) and rule (T-Rec) we obtain:
− (t3) {X 7→ (∅; Γ)}; ∅; Γ ⊢ Q;
− dom(Γ |lin) ⊆ fn(Q).
From (t3) and Lemma B.5 we obtain:
− Γ ⊢ P ′.
We conclude by taking Γ

′
0 = Γ0 and Γ

′ = Γ .
• (R-Struct) Follows from Lemma B.1 and induction.

We conclude with the proofs of subject reduction and soundness.

Theorem B.1 (Theorem 5.1). Let Γ0; Γ ⊢ (µ; P) and (µ; P) → (µ′; P ′). Then Γ
′
0; Γ ′ ⊢

(µ′; P ′) for some Γ
′
0 and Γ

′.

Proof. Follows from Lemma B.6 by taking ΓR = ∅.

46 V. BONO AND L. PADOVANI

Proposition B.3. Let Γ ⊢ P . Then fn(P) ⊆ dom(Γ) and dom(Γ |lin) ⊆ fn(P).

Proof. From the hypothesis Γ ⊢ P we deduce that P is closed with respect to process
variables. The results follows by a straightforward induction on the derivation of Γ ⊢ P and
by cases on the last rule applied, where the case for (T-Var) is impossible by hypothesis
and (T-Rec) is a base case when proving the second inclusion.

Theorem B.2 (Theorem 5.2). Let ⊢ P . Then P is well behaved.

Proof. Consider a derivation (∅; P) ⇒ (µ; Q). From Theorem 5.1 we deduce (*) Γ0; Γ ⊢
(µ; Q) for some Γ0 and Γ . We prove conditions (1–3) of Definition 4.2 in order:

(1) Using Proposition B.3, Definition 4.1, and Definition 5.2 we have reach(fn(Q), µ) ⊆
reach(dom(Γ), µ) = dom(µ) and dom(µ) = reach(dom(Γ), µ) = reach(dom(Γ |lin), µ) ⊆
reach(fn(Q), µ).

(2) Suppose Q ≡ P1 | P2. By Lemma B.1 we deduce Γ ⊢ P1 | P2, namely there exist Γ1

and Γ2 such that Γ = Γ1 + Γ2 and Γi ⊢ Pi. From the definition of Γ1 + Γ2 we deduce
dom(Γ1|lin) ∩ dom(Γ2|lin) = ∅. From Proposition B.3 we have fn(Pi) ⊆ dom(Γi) for i ∈
{1, 2}. From (*) we conclude reach(fn(P1), µ)∩reach(fn(P2), µ) ⊆ reach(dom(Γ1), µ)∩
reach(dom(Γ2), µ) = reach(dom(Γ1|lin), µ) ∩ reach(dom(Γ2|lin), µ) = ∅.

(3) Suppose Q ≡ P ′ | Q′ where P ′ has no unguarded parallel composition and (µ; Q) X→.
Then P ′ contains no unfolded recursion, choice, open, output prefix that is not guarded
by an input prefix, for all these processes reduce. In the case of output prefixes, one uses
Γ0; Γ ⊢ µ to deduce that either (R-Send Linear) or (R-Send Unrestricted) can be
applied. Suppose P ′ 6= 0. Then either P ′ = close(a) or P ′ =

∑

i∈I a?mi〈αi〉(xi : ti).Pi.
Suppose by contradiction that the queue associated with a is not empty, namely that
a 7→ [b, m〈S〉(v) :: Q] ∈ µ. From the hypothesis Γ ⊢ µ we deduce that the endpoint type
associated with a cannot be end, and therefore P ′ 6= close(a). From the hypothesis
Γ ⊢ Q and rule (T-Receive) we deduce Γ ⊢ a : lin {?mi〈αi〉(si).Ti}i∈J and J ⊆ I. From
the hypothesis Γ ⊢ µ we deduce m = mk for some k ∈ J , namely (µ; P ′) →, which is
absurd.

Appendix C. Supplement to Section 6

C.1. Subtyping. In order to prove correctness and completeness of the subtyping algo-
rithm (Definition 6.2) with respect to the subtyping relation (Definition 3.2) we need a few
more concepts. The first one is that of trees of an endpoint type T , which is the set of
all subtrees of T where recursive terms have been infinitely unfolded. We build this set
inductively, as follows:

Definition C.1 (endpoint type trees). We write trees(T) for the least set such that:

• T ∈ trees(T);
• rec α.S ∈ trees(T) implies S{rec α.S/α} ∈ trees(T);
• {†mi〈αi〉(qi Si).Ti}i∈I ∈ trees(T) where † ∈ {?, !} implies Si ∈ trees(T) and Ti ∈

trees(T) for every i ∈ I.

Observe that trees(T) is finite for every T , because the infinite unfolding of an endpoint
type is a regular tree [7]. Also, every free type variable in S ∈ trees(T) is either free in T
or it is bound by a prefix of T . In particular, it cannot be bound by a recursion.

TYPING COPYLESS MESSAGE PASSING 47

The next concept we need is that of instance of an endpoint type subtree. The idea is
to generate the set of all instances of the (trees of the) endpoint types that the subtyping
algorithm visits, and to make sure that this set is finite. Looking at the rules in Table 10 we
see that only type variables that are bound in a prefix m〈α〉(t) are ever instantiated. Also,
each variable α in one of the endpoint types can be instantiated with m(α, β) where β is
some type variable of the other endpoint type. These considerations lead to the following
definition of endpoint type instances:

Definition C.2 (endpoint type instances). Let m be a map as by Definition 6.2. We define
instances(m, T, S) as the smallest set such that:

• if T ′ ∈ trees(T) and {α1, . . . , αn} = ftv(T ′) ∩ btv(T) and {β1, . . . , βn} ⊆ btv(S), then
T ′{m(α1, β1)/α1} · · · {m(αn, βn)/αn} ∈ instances(m, T, S);

• if S′ ∈ trees(S) and {β1, . . . , βn} = ftv(S′) ∩ btv(S) and {α1, . . . , αn} ⊆ btv(T), then
S′{m(β1, α1)/β1} · · · {m(βn, αn)/βn} ∈ instances(m, T, S).

Observe that T, S ∈ instances(m, T, S) and that instances(m, T, S) is finite, since it
contains finitely many instantiations of finitely many subtrees of T and S.

Proposition C.1. Every endpoint type occurring in the derivation of ∅ ⊢m T 6a S is in
instances(T, S).

Proof sketch. A simple induction on the derivation of ∅ ⊢m T 6a S.

Lemma C.1. Let ∅ ⊢m T 6a S and {(T, S)} ⊢m T ′ 6a S′. Then ∅ ⊢m T ′ 6a S′.

Proof sketch. A simple induction on the proof of {(T, S)} ⊢m T ′ 6a S′ where every applica-
tion of rule (S-Axiom) for the pair (T, S) is replaced by a copy of the proof of ∅ ⊢m T 6a S.

Theorem C.1 (Theorem 6.1). Let T0 and S0 be independent endpoint types and m be a
map as by Definition 6.2. Then ⊢m T0 6a S0 if and only if T0 6 S0.

Proof. (⇒) It is enough to show that

S
def
= {(T, S) | ∅ ⊢m T 6a S & T, S ∈ instances(m, T0, S0)}

∪ {(q T, q′ S) | q ≤ q′ & T, S ∈ instances(m, T0, S0) & ∅ ⊢m T 6a S}

is a coinductive subtyping. Let (q T, q′ S) ∈ S . Then q ≤ q′ and ∅ ⊢m T 6a S. By
definition of S we conclude (T, S) ∈ S .

Let (T, S) ∈ S . Then (J) ∅ ⊢m T 6a S. We reason by induction on the num-
ber of topmost applications of rules (S-Rec Left) and (S-Rec Right) (which must be
finite because of contractivity of endpoint types) and by cases on the first (bottom-up)
rule different from (S-Rec Left) and (S-Rec Right) applied for deriving (J), observing
that is cannot be (S-Axiom) for the context is initially empty and rules (S-Rec Left)
and (S-Rec Right) only add pairs of endpoint types where at least one of them begins
with a recursion:

• (S-Rec Left) Then T ≡ rec α.T ′ and {(T, S)} ⊢m T ′{T/α} 6a S. From (J) and
Lemma C.1 we derive ∅ ⊢m T ′{T/α} 6a S. By induction hypothesis we derive T ′{T/α} 6

S and we conclude by observing that T = T ′{T/α}.
• (S-Rec Right) Symmetric of the previous case.
• (S-Var) Then T ≡ S ≡ α and there is nothing left to prove.
• (S-End) Then T ≡ S ≡ end and there is nothing left to prove.

48 V. BONO AND L. PADOVANI

• (S-Input) Then T ≡ {?mi〈αi〉(ti).Ti}i∈I and S ≡ {?mj〈βj〉(sj).Sj}j∈I∪J . Let γi =
m(αi, βi) for i ∈ I. From (S-Input) we deduce:
− {(T, S)} ⊢m ti{γi/αi} 6a si{γi/βi} for every i ∈ I;
− {(T, S)} ⊢m Ti{γi/αi} 6a Si{γi/βi} for every i ∈ I.
From Lemma C.1 we derive:
− ∅ ⊢m ti{γi/αi} 6a si{γi/βi} for every i ∈ I;
− ∅ ⊢m Ti{γi/αi} 6a Si{γi/βi} for every i ∈ I.
By definition of S we know that T, S ∈ instances(m, T0, S0). For every i ∈ I, we can
deduce that γi 6∈ ftv(ti) ∪ ftv(Ti) ∪ ftv(si) ∪ ftv(Si), because γi can only substitute the
free occurrences of αi and of βi and:
− αi is bound in the i-th branch of T and does not occur in S;
− βi is bound in the i-th branch of S and does not occur in T .
Therefore, by alpha conversion we obtain:
− T = {?mi〈γi〉(ti{γi/αi}).Ti{γi/αi}}i∈I ;
− S = {?mj〈γi〉(si{γi/βi}).Si{γi/βi}}i∈I + {?mj〈βj〉(sj).Sj}j∈J\I .
We conclude (si{γi/βi}, ti{γi/βi}) ∈ S and (Si{γi/βi}, Ti{γi/βi}) ∈ S by definition of
S .

• (S-Output) Analogous to the previous case.

(⇐) We prove that T, S ∈ instances(m, T0, S0) and T 6 S imply S ⊢m T 6a S by
induction on instances(m, T, S)\S . In the base case we have (T, S) ∈ S and we conclude
with an application of (T-Axiom). For the inductive case we reason by case analysis on
the structure of T and S, knowing that T 6 S:

• (T ≡ S ≡ α) We conclude with an application of (S-Var).
• (T ≡ S ≡ end) We conclude with an application of (S-End).
• (T ≡ rec α.T ′) Since T = T ′{T/α} we have T ′{T/α} 6 S. By induction hypothesis we

know that S ∪ {(T, S)} ⊢m T ′{T/α} 6a S is derivable. We conclude with an application
of (S-Rec Left).

• (S ≡ rec α.S′) Symmetric of the previous case.
• (T ≡ {?mi〈αi〉(qi T ′

i).Ti}i∈I and S ≡ {?mj〈βj〉(q′
i S′

j).Sj}j∈J and I ⊆ J) From the hy-

pothesis T 6 S we know that for every i ∈ I there exists γi such that qi ≤ q′
i and

T ′
i {γi/αi} 6 S′

i{γi/βi} and Ti{γi/αi} 6 Si{γi/βi}. Since T, S ∈ instances(m, T0, S0)
we know that δi = m(αi, βi) 6∈ ftv(T ′

i) ∪ ftv(Ti) ∪ ftv(S′
i) ∪ ftv(Si). We deduce

T ′
i {δi/αi} 6 S′

i{δi/βi} and Ti{δi/αi} 6 Si{δi/βi} for every i ∈ I. By induction hypoth-
esis we derive that S ∪ {(T, S)} ⊢m T ′

i 6a S′
i and S ∪ {(T, S)} ⊢m Ti 6a Si are derivable

for every i ∈ I. Also, S ∪ {(T, S)} ⊢m qi T ′
i 6a q′

i S′
i is derivable with an application of

(S-Type) for every i ∈ I. We conclude S ⊢m T 6a S with an application of (S-Input).
• (T ≡ {!mi〈αi〉(ti).Ti}i∈I and S ≡ {!mj〈βj〉(sj).Sj}j∈J and J ⊆ I) Analogous to the previ-

ous case.

C.2. Type Weight. We begin by proving that the weight algorithm is unaffected by fold-
ings/unfoldings of recursive terms.

Proposition C.2 (Proposition 6.2). W(∆0, ∅, rec α.T) = W(∆0, ∅, T {rec α.T/α}).

Proof. Let W(∆0, ∅, rec α.T) = w. We prove a more general statement, namely that for
every S and ∆ such that W(∆0,∆, S) ≤ w and btv(S) ∩ ftv(T) = ∅ we have:

(1) α ∈ ∆ implies W(∆0,∆, S) ≤ W(∆0,∆ \ {α}, S{rec α.T/α}) ≤ max{w, W(∆0,∆, S)};

TYPING COPYLESS MESSAGE PASSING 49

(2) α 6∈ ∆ implies W(∆0,∆, S) = W(∆0,∆ \ {α}, S{rec α.T/α}).

The statement then follows from (1) by taking S = T and ∆ = {α} and noting that
W(∆0, ∅, rec α.T) = W(∆0, {α}, T) by definition of algorithmic weight. We proceed by in-
duction on S assuming, without loss of generality, that ({α} ∪ ftv(T)) ∩ btv(S) = ∅:

• (S ≡ end or S ≡ {!mi〈αi〉(ti)Ti}i∈I) Clear as W(∆0,∆, S) = W(∆0,∆\{α}, S{rec α.T/α}) =
0.

• (S ≡ α) We have W(∆0,∆ \ {α}, S{rec α.T/α}) = W(∆0,∆ \ {α}, rec α.T) = w therefore
we conclude:
(1) W(∆0,∆, S) = 0 ≤ w = W(∆0,∆ \ {α}, S{rec α.T/α}) = max{w, W(∆0,∆, S)};
(2) W(∆0,∆, S) = ∞ = w = W(∆0,∆ \ {α}, S{rec α.T/α}).

• (S ≡ β 6= α) Trivial since W(∆0,∆, S) = W(∆0,∆ \ {α}, S{rec α.T/α}).
• (S ≡ rec β.S′) By induction hypothesis we deduce:

(1) α ∈ ∆ implies

W(∆0,∆∪{β}, S′) ≤ W(∆0, (∆∪{β})\{α}, S′{rec α.T/α}) ≤ max{w, W(∆0,∆∪{β}, S′)};

(2) α 6∈ ∆ implies W(∆0,∆ ∪ {β}, S′) = W(∆0, (∆ ∪ {β}) \ {α}, S′{rec α.T/α}).
We conclude by definition of algorithmic weight, since:
− W(∆0,∆, S) = W(∆0,∆, rec β.S′) = W(∆0,∆ ∪ {β}, S′), and
− W(∆0,∆ \ {α}, S{rec α.T/α}) = W(∆0,∆ \ {α}, (rec β.S′){rec α.T/α}) = W(∆0,∆ \

{α}, rec β.(S′{rec α.T/α})) = W(∆0, (∆ ∪ {β}) \ {α}, S′{rec α.T/α}).
• (S ≡ {?mi〈αi〉(ti).Ti}i∈I) By induction hypothesis on ti and Ti for i ∈ I we deduce:

(1) W(∆0, ∅, ti) = W(∆0, ∅, ti{rec α.T/α});
(2) α ∈ ∆ implies

W(∆0,∆ \ {αi}, Ti) ≤ W(∆0,∆ \ {αi, α}, Ti{rec α.T/α}) ≤ max{w, W(∆0,∆ \ {αi}, Ti)};

(3) α 6∈ ∆ implies W(∆0,∆ \ {αi}, Ti) = W(∆0,∆ \ {αi, α}, Ti{rec α.T/α}).
If α ∈ ∆ we conclude:

W(∆0,∆, S) = max{1 + W(∆0, ∅, ti), W(∆0,∆ \ {αi}, Ti)}i∈I

= max{1 + W(∆0, ∅, ti{rec α.T/α}), W(∆0,∆ \ {αi}, Ti)}i∈I

≤ max{1 + W(∆0, ∅, ti{rec α.T/α}), W(∆0,∆ \ {αi, α}, Ti{rec α.T/α})}i∈I

= W(∆0,∆ \ {α}, S{rec α.T/α})
≤ max{1 + W(∆0, ∅, ti{rec α.T/α}), w, W(∆0 ,∆ \ {αi}, Ti)}i∈I

= max{1 + W(∆0, ∅, ti), w, W(∆0,∆ \ {αi}, Ti)}i∈I

= max{w, W(∆0,∆, S)}

If α 6∈ ∆ we conclude:

W(∆0,∆, S) = max{1 + W(∆0, ∅, ti), W(∆0,∆ \ {αi}, Ti)}i∈I

= max{1 + W(∆0, ∅, ti{rec α.T/α}), W(∆0,∆ \ {αi, α}, Ti{rec α.T/α})}i∈I

= W(∆0,∆ \ {α}, S{rec α.T/α}) .

The next lemma states that, if the weight algorithm determines a weight n for some endpoint
type T , then n is a weight bound for T .

Lemma C.2. If W(∆, ∅, T) = n ∈ N, then ∆ ⊢ T :: n.

Proof. It is enough to show that

W
def
= {(∆, T, n) | W(∆, ∅, T) ≤ n ∈ N}

50 V. BONO AND L. PADOVANI

is a coinductive weight bound. Let (∆, T, n) ∈ W . Then (h) W(∆, ∅, T) ≤ n ∈ N. Without
loss of generality we may assume that T does not begin with a recursion. If this were not
the case, by contractivity of endpoint types we have T = T ′ where T ′ does not begin with
a recursion. Now, by Proposition 6.2 we deduce W(∆, ∅, T ′) = W(∆, ∅, T) = n and therefore
(∆, T ′, n) ∈ W by definition of W .

We reason by cases on T :

• (T ≡ end or T ≡ {!mi〈αi〉(ti).Ti}i∈I) There is nothing to prove.
• (T ≡ α) From (h) we deduce α ∈ ∆ and there nothing left to prove.
• (T ≡ {?mi〈αi〉(qi Si).Ti}i∈I) Then 0 < W(∆, ∅, T) ≤ n. From (h) we deduce W(∆, ∅, Si) ≤

n−1 and W(∆, ∅, Ti) ≤ n for every i ∈ I. We conclude (∆, Si, n−1) ∈ W and (∆, Ti, n) ∈ W

for every i ∈ I.

The last auxiliary result proves that the weight algorithm computes the least upper weight
bound for an endpoint type. We use σ to range over arbitrary substitutions of endpoint
types in place of type variables, we write T σ for T where the substitutions in σ have been
applied, and dom(σ) for the domain of σ (the set of type variables that are instantiated).

Lemma C.3. If ∆ ⊢ T σ :: n, then W(∆, dom(σ), T) ≤ n.

Proof. By induction on T :

• (T ≡ end or T ≡ {!mi〈αi〉(ti).Ti}i∈I) Easy since W(∆, dom(σ), T) = 0.
• (T ≡ α) From the hypothesis ∆ ⊢ T σ :: n we deduce α ∈ ∆ ∪ dom(σ). By definition of

algorithmic weight we conclude W(∆, dom(σ), T) = 0.
• (T ≡ rec α.S) Let σ′ = (σ\α), {α 7→ T } where σ\α is the restriction of σ to dom(σ)\{α}.

We have ∆ ⊢ Sσ′ :: n. By induction hypothesis we deduce W(∆, dom(σ) ∪ {α}, S) ≤ n. By
definition of algorithmic weight we conclude W(∆, dom(σ), T) = W(∆, dom(σ), rec α.S) =
W(∆, dom(σ) ∪ {α}, S) ≤ n.

• (T ≡ {?mi〈αi〉(qi Si).Ti}i∈I) For every i ∈ I let σi = σ \ {αi}. From the hypothesis
∆ ⊢ T σ :: n we deduce ∆ ⊢ Siσi :: n − 1 and ∆ ⊢ Tiσi :: n for every i ∈ I. By induction
hypothesis we deduce W(∆, dom(σi), Si) ≤ n − 1 and W(∆, dom(σi), Ti) ≤ n. We conclude
W(∆, dom(σ), T) ≤ n by definition of algorithmic weight.

Correctness of the weight algorithm is simply a combination of the two previous lemmas.

Theorem C.2 (Theorem 6.2). ‖T ‖∆ = W(∆, ∅, T).

Proof. From Lemma C.2 we deduce ‖T ‖∆ = min{n ∈ N | ∆ ⊢ T :: n} ≤ W(∆, ∅, T). From
Lemma C.3, by taking σ = ∅ (the empty substitution), we conclude W(∆, ∅, T) ≤ ‖T ‖∆.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. A Taste of Sing#
	3. Types
	4. Syntax and Semantics of Processes
	5. Type System
	5.1. Weighing Types
	5.2. Typing the Heap
	5.3. Typing Processes
	5.4. Examples

	6. Algorithms
	6.1. Subtyping
	6.2. Type Weight
	6.3. Type Checking

	7. Related work
	Singularity OS
	Early Type-Theoretic Formalizations of Singularity OS
	Type Weight
	Logic-Based Analysis
	Global Progress

	8. Conclusions
	References
	Appendix A. Supplement to Section ??
	Appendix B. Supplement to Section ??
	Appendix C. Supplement to Section ??
	C.1. Subtyping
	C.2. Type Weight

