View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DSpace@MIT

Decentralized Information Flow Control for Databases
by
David Andrew Schultz

MS, Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 2007

BA, Computer Science
University of California, Berkeley, 2004

Submitted to the
Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2012
© Massachusetts Institute of Technology 2012. All rights reserved.

AULNOT .« oo
Department of Electrical Engineering and Computer Science
July 31,2012

Certifiedby . ...
Barbara Liskov
Institute Professor
Thesis Supervisor

Acceptedby . ...

Leslie Kolodziejski
Chair of the Department Graduate Committee


https://core.ac.uk/display/10129974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Decentralized Information Flow Control for Databases
by
David Andrew Schultz

Submitted to the Department of Electrical Engineering and Computer Science
on July 31, 2012, in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

Privacy and integrity concerns have been mounting in recent years as sensitive data
such as medical records, social network records, and corporate and government secrets
are increasingly being stored in online systems. The rate of high-profile breaches has
illustrated that current techniques are inadequate for protecting sensitive information.
Many of these breaches involve databases that handle information for a multitude of
individuals, but databases don’t provide practical tools to protect those individuals
from each other, so that task is relegated to the application. This dissertation describes
a system that improves security in a principled way by extending the database system
and the application platform to support information flow control.

Information flow control has been gaining traction as a practical way to protect
information in the contexts of programming languages and operating systems. Recent
research advocates the decentralized model for information flow control (DIFC), since
it provides the necessary expressiveness to protect data for many individuals with
varied security concerns. However, despite the fact that most applications implicated in
breachesrely on relational databases, there have been no prior comprehensive attempts
to extend DIFC to a database system. This dissertation introduces 1FDB, which is a
database management system that supports DIFC with minimal overhead.

IFDB pioneers the Query by Label model, which provides applications with a
simple way to delineate constraints on the confidentiality and integrity of the data they
obtain from the database. This dissertation also defines new abstractions for managing
information flows in a database and proposes new ways to address covert channels.
Finally, the 1IFDB implementation and case studies with real applications demonstrate
that database support for D1FC improves security, is easy for developers to use, and has
good performance.

Thesis Supervisor: Barbara Liskov
Title: Institute Professor
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Chapter

Introduction

Online applications are becoming increasingly sophisticated, sharing and processing
data for many individuals in increasingly sophisticated ways. As these systems
become more complex, so too do the security problems. Medical systems must
provide clinicians, receptionists, accountants, medical researchers, auditors, insur-
ance processors, and lab technicians with the data they need to get their jobs done,
but the systems must also protect confidential patient data from misuse [1]. Social
networking websites are under increasing pressure from users to provide better
tools to protect privacy, but the implementation of such constraints has proved
to be error-prone [30]. Each application’s data processing needs are unique, so
responsibility for ensuring data security typically falls on the application. Since
both the applications and the security policies are complex, information leaks and
other security holes abound.

Despite the fact that there has been much work on improving the security of
these applications, for instance, by eliminating potential QL injection attacks [64,
98, 118, 135], data breaches are still common [23, 48, 147]. For example, 470,000
individuals” medical records were exposed by a recent breach of a large health
insurer [111]. The breach resulted from a vendor adding a new component to the
insurer’s website, but inadvertently omitting the check to ensure that customers
could view only their own records. Unlike s QL injection vulnerabilities, which can be
detected automatically or avoided with abstractions such as prepared statements, the
missing check is an error of intent: the buggy insurance application was semantically
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valid, but did not enforce the intended security policy. Such logic errors are inevitable
as long as people continue to rely upon entire applications to enforce security
policies. This dissertation shows that it is easy to address these types of leaks by
shifting responsibility for controlling the use and release of information into the
platform, trusting only a minimal piece of the application.

Enforcing a security policy in the platform restricts what applications can do, so
for acceptance, it is critical to choose an abstraction that is not overly burdensome.
Systems typically use access control to protect confidential data, and in particular,
modern databases management systems have mechanisms to enforce sophisticated
access control policies [120]. In access control systems, principals are only allowed
to access data for which they are authorized. However, developers often reject
database-enforced access control in favor of less secure alternatives because the
kinds of restrictions that would be needed to protect user data from application
bugs are too inconvenient. In particular, if the database doesn’t trust the application
with sensitive data, many data processing tasks that would be more convenient to
perform in the application must take place in the database instead.

Information flow control (1FC) provides an abstraction that can express many
security policies more conveniently and securely than access control. Rather than
restricting access, the platform tracks flows of sensitive data and prevents data from
being used or released inappropriately. IFC is convenient because it allows sensitive
data to be processed in both the application and the database. It improves security
because it can enforce end-to-end security policies. For example, in a medical
information system, IFC can enforce the policy that the medical records for a patient,
Alice, are never visible to any other patient. The information flow policy need not
say anything about intermediate processing tasks, such as the one that checks Alice’s
medication list for possible drug interactions. In contrast, an access control policy
couldn’t prevent bugs in the drug interaction checker from compromising Alice’s
security, except by carefully reasoning about and sandboxing that module.

This dissertation presents a new approach to database security based on 1rc. The
remainder of the introduction shows why approaches to database security based on
access control are inadequate, presents the new approach, and explains the principal
contributions and results.
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1. INTRODUCTION

1.1 The Case for Information Flow Control

Information flow control is a good way to enforce many security policies that cannot
be expressed easily with access control. Access control specifies what resources can
be used, whereas information flow control makes it possible to control how they may
be used. The following examples of security goals in a medical clinic have a natural
interpretation as information flow policies, but would be tedious to achieve with
access control:

— Appointment notifications. A secretary may, in principle, require access to at least
part of every patient’s record at a clinic, and he also requires the ability to send
email about appointments. However, he should not be able to accidentally or
willfully disclose medical information via email, or to parties not involved in
each respective patient’s care.

— Exam room scheduling. The facilities supervisor for the clinic may need to know
when an examination room is unused so that repairs can be made. Producing
this information requires read access to patients’ appointment schedules, but
the software should not release information about the individual appointments
to the supervisor.

— Third-party data analysis. The clinic hires a data analysis firm to assess the
effectiveness of the clinic’s cost controls. The clinic has a legal obligation to
ensure that the firm does not misuse confidential patient data [1], whereas
the firm does not want to release its proprietary analysis tools to the clinic.
Simultaneous access to both the data and the tools is required, but only the
aggregated analysis results should be released.

Since each example involves data that must be accessed but not released, some form
of sandboxing is needed. Sandboxing the application in an access control system
is difficult: after all, the application must still be able to interact with the database.
Leaks could still occur if data were written to the wrong part of the database, as
happened in a recent incident involving a large hotel chain [115]. Alternatively, the
developer could move the code that processes sensitive data into stored procedures
in the database. In some applications, moving more computation into the database
may be appropriate; in others, however, it is inconvenient, and forcing developers to
build the system in unnatural ways works against the goal of security.

17



1.2. INFORMATION FLOW CONTROL

Moreover, moving sensitive processing tasks into stored procedures doesn’t
solve the problem. Even though those procedures might be restricted from commu-
nicating with the outside world, they can still write to the database. In the third-party
data analysis example, for instance, the analysis firm’s software might write patient
data into a table containing public information — where it might later be exposed.
Mitigating that kind of bug with access control requires careful reasoning about the
read and write privileges that must be granted to each code module. This approach
is time-consuming to implement, and hence is not commonly used in practice. Even
if it were, an access control policy that tightly constrains the privileges of each stored
procedure in a large application would be complicated; therefore, the policy itself
could easily be incorrect.

1.2 Information Flow Control

Information flow control (1FC) has been gaining acceptance as a better methodol-
ogy for protecting privacy without unduly restricting access to sensitive data. IFC
addresses the type of problem illustrated in the aforementioned examples by annotat-
ing data records with labels describing their sensitivity. Rather than restricting access,
information flow control systems instead track data as they propagate, and protect
privacy by preventing sensitive data from being released from the system improperly.
In addition to privacy, IFC can also protect integrity; it does so by ensuring that
trusted data cannot be influenced by untrustworthy (that is, low-integrity) sources.
Integrity is discussed in more detail in chapter 3.

IFC was introduced in the mid-1970%s [9, 11, 32], but it has not achieved wide-scale
adoption in the private sector. Its lack of popularity is due in part to the fact that the
original systems were based on multi-level security (MLs) and mandatory access
control, as advocated by the Orange Book [39]. MLS systems use broad labels such
as confidential, secret, and top secret. Furthermore, they enforce centrally administered
security policies; consequently, while these systems may be suitable for organizations
with well-defined hierarchies such as militaries, they do not adapt well to settings
where users have diverse security interests.

Most of the recent work in 1FC has advocated decentralized information flow
control (D1FC), introduced by Myers and Liskov [113]. In DIFC, data classification is
more specific than in the MLSs model: the system distinguishes the security concerns
of Alice’s medical records from those of Bob’s, for example. Furthermore, policies are
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1. INTRODUCTION

discretionary instead of mandatory, meaning that individual principals can specify
the security policies for their own data.

Prior DIFC research focuses on providing a labeling and flow control policy
framework either at the level of the operating system [8s, 86, 152] or at the level of
the programming language environment [21, 94, 112, 113, 125, 150]. However, much of
the data flow within currently deployed systems takes place within a database man-
agement system (DBMS), and existing DIFC approaches do not adequately capture
what happens within the database. These systems either do not address persistence
directly, or they extend the file system to support information flow; however, the
relational model provides a better abstraction for many applications [24].

This thesis fills a gap by bringing the b1FC model to database systems. It extends
the work on multi-level-secure databases by providing semantics appropriate for
DIFC, and it complements the work on DIFC operating systems and programming
languages by providing a persistent, DIF C-aware relational store.

1.3 IFDB: Secure Data Processing with DIFC

The 1FDB system introduced in this dissertation is the first to bring end-to-end infor-
mation flow control to DBMSs-backed applications. Information from the outside
world enters the platform through applications, which process it and store it in the
database. Subsequently, the data may be processed by other applications, and by
computations within the DBMmS, such as views, stored procedures, and triggers. The
platform tracks these flows and enforces a uniform security policy throughout the
data’s life cycle. To capture the entire computation history of the data, IFDB works
with application runtime environments that also support information flow control.
Two such environments, PHP-IF and Python-1F, were built to interact with IFDB.

IFDB is also the first DBMS to use a DIFC model. Support for DIEC is important
for many applications, particularly web services, because DIFC allows users to con-
trol how their information is used. The 1FDB architecture is not tied to a particular
programming language or a particular DIFC model or implementation. However, in
the interests of concreteness, this dissertation describes an IFDB prototype based
on a particular D1FC model, namely the Aeolus model [17, 18]. The Aeolus model is
described in chapter 3.

As noted at the beginning of this chapter, developers tend not to use security
mechanisms if they are too burdensome. IFDB’s interfaces are designed to be easy to
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1.3. IFDB: SECURE DATA PROCESSING WITH DIFEC

program. The system works with existing languages, such as sQL, PHP, and Python,
with straightforward extensions to support DIFC. Adoption of the Aeolus model
also enhances usability; security policies are expressed in terms of delegation and
exercise of authority — concepts programmers are familiar with.

Of course, performance is also crucial to the acceptance of the system. IFDB min-
imizes overhead by tracking information flows on a coarse, per-process granularity
within the application platform (where fine-grained tracking would be expensive)
and fine-grained, per-tuple tracking only within the database. The key observation
in support of this design choice is that the database is the primary shared medium
through which leaks could occur. Therefore, fine-grained tracking within the pBMS
is essential for security.

Integrating the D1FC model into a relational DBMS presents several new chal-
lenges. First, declarative queries require a different kind of reasoning than earlier
DIFC work, which generally relies on file systems as the persistent store: for example,
without appropriate precautions, a query for records about hospital patients who
don’t have cancer can implicitly reveal which patients do have cancer. A second
challenge is that adding D1FC should not sacrifice data independence, for instance, by
forcing developers to decompose tables based on the sensitivity of the information
they contain. Third, without special consideration, important DBMS features such
as transactions and constraints can lead to information leaks via covert channels.
IFDB addresses these challenges as follows:

— Itintroduces the Query by Label model (chapter 4), which provides a practical
way to do relational queries while respecting information flow rules.

— Itincludes new abstractions, declassifying views and endorsing views (section 4.5),
which help to retain data independence. In particular, they ensure that database
designers can refer to and partition their data in a logical way, even if that means
combining information with different security requirements.

— To handle potential covert channels in transactions, IFDB introduces new se-
mantics based on two ideas: transaction commit labels and transaction clearance
(chapter 6). For constraints, IFDB adds DECLASSIFYING and ENDORSING clauses,
and also adopts polyinstantiation (chapter s).
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1. INTRODUCTION

1.4 Organization

This thesis introduces the 1FDB architecture and model over the course of five chap-
ters. Chapter 2 presents a brief, high-level overview of the components of the system,
and explains how they interact with one another. It also defines the threat model, and
outlines the security goals for the system. Chapter 3 reviews IFDB’s information flow
model, which is based on an earlier DIFC system called Aeolus [17, 18]. Chapters 4
to 6 cover the IFDB interface, which is the central contribution of this dissertation.
Chapter 4 explains IFDB’s basic Query by Label model, which extends the relational
model with support for decentralized information flow control. Chapters 5 and 6
describes how 1FDB addresses some of the problems with supporting constraints
and transactions, respectively, in an information flow system. (Some additional
topics on transactions and information flow are covered in appendix A.)

Chapter 7 describes two applications, HotcrP and CarTel, which have been
modified to use 1IFDB. It recounts the author’s experiences using IFDB with these
applications, and explains how 1FDB prevented real security vulnerabilities in these
applications from leaking information.

Chapter 8 details the implementation of 1FDB, which uses a modified version of
PostgresQL 8.4.10. It also addresses security concerns regarding the implementation,
such as reducing the size of the trusted computing base and mitigating timing
channels. Chapter 9 shows that the implementation performs well for the appli-
cations studied. Microbenchmarks are presented to provide further intuition into
the performance results.

IFDB draws on ideas about information flow control developed over the last four
decades. Chapter 10 reviews the work that influenced 1FD B, as well as research that
addresses complementary problems. Finally, chapter 11 concludes this dissertation
with a summary of the major contributions and some ideas for future work on DIFC
in database systems.
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Chapter

IFDB is a database management system (DBMS) with a new security architecture
based on D1FC. The security architecture ensures that queries, stored procedures,
and other computations running inside the DBMS respect a specified information
flow policy. However, most computations extend beyond the pBMS; typically, an
application issues multiple queries and performs its own computations on the output,
often producing a result for the user. Therefore, IFDB is designed to integrate with
application runtime environments that also support DIFC. IFDB and the application
runtime work together to ensure that the entire computation respects a common
information flow policy.

This chapter shows what a complete 1IFDB deployment looks like, and explains
how 1FDB interacts with database clients. Since IFDB presumes that the clients
support DIFC, the trusted computing base (TCB) includes parts of the client plat-
forms as well. Section 2.3 describes the security assumptions and their implications,
including IFDB’s approach to covert channels.

2.1 The Information Flow Platform

An 1FDB deployment consists of a single DBMSs and potentially many database
clients. The clients themselves are applications, which typically communicate with
external users over the network. Commonly, the database clients provide a web
service, and external users interact with it via web browsers.
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2.2. PLATFORM SUPPORT FOR THE AEOLUS MODEL

The pBMS and clients are part of a single information flow platform, and they
all support a common DIFC model. Within the system, the platform tracks the
secrecy and integrity of every data object and every process. The platform enforces
a security policy, which restricts how data may be used: secret data should not be
released inappropriately, and low-integrity data should not be trusted. In particular,
the DIFC platform confines applications and controls how they can communicate
with external users, who are outside the system and therefore not subject to the
information flow constraints.

The platform also mediates all communication with the DBMmsS, as well as all
communication among applications running within the system. The IFDB DBMS
allows connections only from clients operating under the platform. Platform nodes
communicate via extended protocols that transmit label information to allow the
system to track flows.

Figure 2-1 illustrates an IFDB deployment with several clients and external users.
The DIFC runtime sandboxes applications and interposes on all communication.
The system tracks the secrecy and integrity of data flowing among applications, and
between applications and the database. It also tracks flows that occur inside the
database, for instance, due to the actions of stored procedures, which are considered
to be application code. The DBMS and the application servers also communicate
with an authority service. The following section explains the purpose of the authority
service, and introduces two DIFC runtime environments that support IFDB.

2.2 Platform Support for the Aeolus Model

The IFDB architecture is not tied to a particular programming language or a particular
DIFC model or implementation. However, in the interests of concreteness, the
IFDB prototype is described in the context of a particular DIFC model, namely
the Aeolus model [17, 18]. This section describes the architectural components that
were introduced to support this model, while chapter 3 describes the model itself.

All of the platform nodes, including 1FD B, rely on an authority service. Infor-
mation flow policies in Aeolus are based on use of authority. The present IFDB
prototype integrates the authority service into the database. This approach improves
performance because the database has direct access to the information, and the
database clients don’t need to make separate connections to the authority service
and the DBMS.
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Figure 2-1: In this 1IFDB deployment with three applications running on two applica-
tion servers, the dotted line represents the perimeter of the information
flow platform. The shaded components constitute the trusted computing
base for the platform.

The platform includes two runtime environments that support IFDB and the
Aeolus model: PHP-IF, an extension of PHP, and Python-IF, an extension of Python.
A Java implementation of Aeolus is also available, but has not yet been integrated
with IFDB. The runtime environments in figure 2-1 could be PHP-IF or Python-IF.
PHP-IF and Python-IF constrain how the applications they run can communicate,
as described in the preceding section. They also support the Aeolus AP1 and an
interface to the DBMS via the 1FDB database driver.

Programs — specifically stored procedures — also run within the DBMS. Stored
procedures are often used to perform complex data processing tasks on behalf of
applications, so it is important that the security policy apply to stored procedures as
well. Therefore, IFDB implements another version of the Aeolus API as an extension
to sQL. Thus, application code running in the database is able to manage information
flows as well.
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Figure 2-2: Applications interact with the outside world via the Aeolus aP1, and
with the database using IFDB’s Query By Label model.

Figure 2-2 illustrates how applications interact with the platform. All communi-
cation occurs through the Aeolus API and the database driver. Applications issue
queries in SQL, with the Aeolus extensions. The Query by Label model enforces in-
formation flow restrictions on these queries, as described in chapter 4. Applications
also invoke stored procedures written in a procedural extension to sQL, and these
procedures can also use the Aeolus AP1I to make information flow decisions.

2.3 Platform Security Assumptions

IFDB is intended to prevent application bugs from compromising security, but to
do that, the platform itself must be secure. This dissertation defines the trusted
computing base (TCB) for the system as the set of components that must function
correctly to ensure that the specified security policy is enforced. The TCB includes
the information flow platform itself and all the layers below it. Specifically, the
DBMS (IFDB) and language runtimes (PHP-IF and Python-1F), as well as the
operating systems and hardware on which they run, must be trusted. Much prior
research, some of which is covered in chapter 10, has addressed the problem of
producing secure database systems, language runtimes, and operating systems; IFDB
is complementary to this work, and reducing the trusted base further is a promising
topic for future research.
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The system design also presumes secure channels [9o] among platform nodes.
An attacker should not be able to learn the contents of communications between
nodes, modify messages, or impersonate platform nodes. One way to implement
secure channels is to colocate the database and application servers and connect
them via a trusted switch. However, for wide-area deployments, a cryptographic
implementation of secure channels based on TLS is supported as well.

The users and applications are not trusted by the platform; the platform con-
strains applications to follow the security policy, subject to the caveats about covert
channels described in the following section. Of course, users’ data are secure only
insofar as the policy is correctly specified. Section 3.4 explains how to reason about
security policies and application correctness in the IFDB model.

2.3.1 Covert Channels

Although the platform prevents applications from violating the information flow
rules directly, IFC systems are vulnerable to policy violations via covert channels,
which are vectors for unintended information leaks [89]. For instance, a process
might leak partial information about Alice’s password by exhausting a shared re-
source if and only if the first bit of the password is a 1. A collaborating process
can then learn the first bit of Alice’s password by observing that the resource is
unavailable. However, since this is not a normal communication channel, the system
does not track the information flow.

This dissertation’s approach to handling covert channels is inspired by the
field of side-channel cryptanalysis, in which a distinction is drawn between covert
channels in the abstract model and side channels, which are attacks on the imple-
mentation [124]. The model exhibited in this dissertation is intended to be free
of covert channels. In the 1IFDB implementation, however, the amount of time
operations take to complete is affected by access to shared resources, so inevitably
the implementation will be vulnerable to attacks. Side-channel attacks on database
implementations are a serious problem even without 1FC [s1], but nevertheless, it is
important to confine these attacks to the implementation. Doing so makes it possible
to apply mitigation techniques, such as quantizing response times, without changing
the semantics of the system. Section 8.5 discusses attacks against the implementation,
and how they can be mitigated.
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Chapter

Information Flow
Model

IFDB’s DIFC model is based on the abstractions introduced by Aeolus [17, 18], a
platform for secure distributed computation. This chapter reviews the Aeolus infor-
mation flow model. Chapter 10 describes alternatives to the Aeolus model. Many of
the contributions of this dissertation, including Query by Label, declassifying views,
and transaction commit labels, are applicable to other b1FC models as well.

DIFC systems classify data based on two types of concerns: secrecy and integrity.
Secrecy has to do with release: To whom, and under what circumstances, should the
data be sent out? An example of a secrecy requirement is that Bob’s medical records
should not be released to anyone except for Bob and the doctors involved in his care.
Integrity is a statement about trustworthiness: For what purposes should the data
be trusted? For instance, the notion that Bob’s prescriptions should only be filled if
they were written by a doctor is an integrity requirement.

The Aeolus model is an evolution of the decentralized label model introduced
by Myers and Liskov [113]. The model is based on several key concepts: labels, which
identify the classification of each data object; principals, which represent entities
with security interests, such as users and roles; and an authority structure, which
is instrumental in expressing the information flow policy. The policy is embedded
in the application: decisions about what information should be trusted or released
are made by code running with authority. Aeolus provides abstractions that are
intended to reduce the amount of trust that must be placed in code. The following
pages explain the model, and figure 3-1 summarizes the essential parts of the interface.
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3.1 Tagsand Labels

Aeolus uses tags to represent classes of sensitive information. A tag is associated
with all of the data that has similar secrecy or integrity restrictions. For example, all
of Bob’s medical records might carry the bob-medical tag, and all of Bob’s financial
records might carry the bob-financial tag. Alice’s records might be similarly labeled
with tags corresponding to Alice. In this way, Alice’s information can be protected
from Bob, and vice versa.

Some computations, such as one that computes statistics over patient records
in a medical clinic, are run over data with many different tags. Aeolus supports
compound tags, which provide convenience and representational efficiency for such
computations by statically grouping tags and treating them as a unit. For example,
the bob-medical tag is a member of the all-patients-medical compound tag.

Each data object and each process has a secrecy label and an integrity label to
identify their respective secrecy and integrity requirements. Each label is a set of
zero or more tags. Aeolus tracks labels as data propagates through the system, and
helps to ensure that derived data are properly labeled. For instance, if Bob’s medical
bill is derived from sources that contain both his financial and medical information,
it should have a secrecy label that includes both the bob-medical and bob-financial
tags. The following section explains how Aeolus enforces this property.

3.2 Processing in Aeolus

Each process and each data object in the system has a secrecylabel L and an integrity
label L;. Object labels are immutable; they are specified when the object is created
and cannot be changed later. Process labels, in contrast, change over time to reflect
the secrecy and integrity of the information the process has read.

A single rule governs reads and writes of objects, as well as communication
between processes. Data can flow from source A to destination B if the secrecy tags
of A are a subset of the secrecy tags of B, and the integrity tags of B are a subset of
the integrity tags of A:

Rule 3.1. (Safe Information Flows)
Data can flow from Ato Biff A.Ls ¢ B.Lgand A.L; 2 B.L;.

Rule 3.1 ensures that the label of each object reflects the tags of all the data that
produced it, and the label of each process reflects the tags of all the data that the
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process read. In particular, the secrecy label of the process must expand to include the
secrecy tags of all the objects the process reads, and the integrity label must shrink to
reflect alower bound on the trustworthiness of the data the process reads. Processes
are restricted from writing to destinations with lower secrecy or higher integrity
than themselves. In effect, processes are contaminated by what they read, and that
contamination restricts how they can communicate. This notion of restriction leads
to a definition of a partial ordering for a secrecy/integrity label pair:

Definition 3.1. (Label Ordering)
A pair of labels (A.Ls, A.Ly) is less restrictive than another pair (B.Ls, B.L;), written
(A.Ls, AL]) < (B.Ls,B.LI), iﬂA.LS CB.Lg and A.L; > B.L;

The less-restrictive-than relation' captures both secrecy and integrity in a single
statement, and is used herein to simplify the presentation. Information can safely
flow from A to B provided that A’s label pair is no more restrictive than B’s label pair,
written (A.Ls, A.L;) < (B.Ls, B.L;).

The flow rules also restrict the release of information to the outside world,
which of course is not governed by 1Fc. In Aeolus, external devices such as remote
machines, displays, keyboards, and printers are regarded as having empty secrecy
and integrity labels. Therefore, a process may not release information to these devices
if it is contaminated by any secrets, and if it reads from an external source, it will
have no integrity.

3.3 Label Changes and Authority

Raising the label pair of a process, making it more restrictive, is always safe from
an information flow perspective. ('The notion of clearance, which limits how far a
process can raise its label, can be useful. Clearance is discussed in section 4.6.) With
a higher label pair, the process may be able to read more sensitive information, but
it will be unable to release it. However, since an empty label is required to release
information, there needs to be a way to lower a process label as well; otherwise there
would be no way to get labeled data out of the system!

1. The literature on multi-level security often uses the term dominance to describe the same
concept: more restrictive label pairs strictly dominate less restrictive ones. This dissertation
uses restrictiveness, because it conveys the fact that processes are contaminated by what they
read, and their contamination limits what they can do.
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Principals

Tags

createPrincipal() — P. Return a new principal. The caller’s principal
acts for the new principal P.

actsFor(Py, P,). Add an acts-for link from P, to P;. The caller must act
for P;, and the link must not create a cycle in the acts-for graph.

revokeActsFor(P;, P;). Remove the acts-for link from P, to Py, if one
exists. The caller must act for P;.

makeTag() — t. Return a new tag. The caller’s principal is authoritative
for the new tag ¢.

makeSubtag(t;) — f,. Return a new tag t,, which is a subtag of
compound tag t;.

grant(t, P1, P). Add a delegation link for t from P; to P,. P; must be
authoritative for ¢, the caller must act for P;, and the link must not
create a cycle in the delegation graph.

revokeGrant(t, P;, P,). Remove the grant for t from P; to P, (if one
exists). The caller must act for P;.

Labels

addSecrecy(t). Add tag t to the secrecy label of the process.

declassify(t). Remove tag t from the secrecy label of the process. If ¢
is a compound tag, any subtags of t are also removed. The caller must
be authoritative for t.

removelntegrity(f). Remove tag t from the integrity label of the
process. If t is a compound tag, any subtags of t are also removed.

endorse(t). Add tag t to the integrity label of the process. The caller
must be authoritative for ¢.

Figure 3-1: A summary of Aeolus operations
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Authority Closures and Reduced Authority Calls

makeClosure(), P) — C. Return a closure that, when invoked, runs
procedure A with principal P’s authority. The caller must act for P.

C(args...) — r. Invoke closure C. The closure runs with the authority
of P, the principal bound to the closure, but inherits the caller’s
labels. On return, the process labels are merged with the caller’s
original labels: the secrecy labels are unioned, and the integrity labels
are intersected. This ensures that closures can add contamination
(for instance, by reading and returning a secret), but they cannot
inadvertently remove the caller’s contamination.

call(P, A, args...). Call the procedure A with the given arguments,
running with the (reduced) authority of principal P. The caller must
act for P. The caller’s authority is restored when P returns.

Figure 3-1: A summary of Aeolus operations (continued)

Therefore, Aeolus also provides operations to lower label pairs by removing
secrecy tags and adding integrity tags. The former operation is called declassification
and the latter endorsement. Consider a statistics package that aggregates medical
records and outputs scrubbed data, which presumably does not reveal a significant
amount of personally identifiable information. It is therefore appropriate for the
scrubbed data to have a smaller secrecy label than the source data does. Thus, after
the process runs the statistics package, it should declassify to remove tags from its
secrecy label before writing the aggregate result.

Declassification and endorsement make information leaks possible. Since they
are not safe in general, they are privileged operations. Authority in DIFC is discre-
tionary; privilege is vested in principals, which represent users and roles. A principal
must have authority for a tag in order to declassify or endorse it.

Each tag has an owning principal, which has authority for the tag. A principal that
has authority for a tag can grant that authority to other principals, and later revoke
that delegation. For example, Bob could delegate authority for the bob-medical tag
to his doctor. A principal P can also allow another principal Q to act for it; this
allows Q to do anything P can do. Acts-for links can be revoked as well. Acts-for
relationships provide a means to implement groups and roles [90].
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Process label changes are explicit in Aeolus. A process must adjust its label using
the addSecrecy() and removelntegrity() operations (see figure 3-1) prior to reading a
sensitive object. Similarly, in order to make its label less restrictive, a process must
exercise its authority and call declassify() or endorse(). This approach contrasts
with some earlier information flow systems, such as ADEPT-50 [146], IX [106], and
Asbestos [85], in which process labels adjust dynamically to reflect the contamination
of data they have read. Making safe label changes explicit is important because it
prevents an important covert channel. In systems that allow automatic label changes,
the label change itself can convey information about a secret [34, 84]. Requiring
unsafe label changes to be explicit is also important, because if declassification and
endorsement were implicit, programs might exercise their authority and enable
information leaks accidentally.

3.4 Defining the Policy

An information flow policy is shaped by controlling the circumstances under which
declassification and endorsement occur. The Aeolus model provides a framework for
enforcing the policy, and for reasoning about security. For instance, if Bob’s medical
records are properly tagged when they are input initially, then the only parts of the
program where they could be leaked are the places where the bob-medical tag (or its
supertag, the all-patients-medical tag) is declassified. Other code does not even need
authority to declassify the tag, even if it is involved in processing Bob’s records.

However, Aeolus merely provides a mechanism and does not dictate what the
policy itself should be. Referring back to the statistics package, an obvious question
is: How do we know that the aggregate results do not reveal a significant amount
of personally identifiable information? This type of question has been well studied,
and section 10.7 surveys some of the work in the area.

3.5 Support for the Principle of Least Privilege

The Principle of Least Privilege [126] is essential for building secure applications,
because it prevents bugs from becoming security failures. It dictates that the applica-
tion should operate using as little privilege as possible. The delegation and acts-for
relationships presented in the preceding section help support the Principal of Least
Privilege by providing a fine-grained way to control the authority vested in each
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principal. However, it is also important to provide abstractions that minimize the
privileges available to each part of the application.

Aeolus provides two mechanisms to support the latter goal. Reduced authority
calls allow an application to invoke a procedure that will run with the authority of
a less-privileged principal than the caller. The caller can specify any principal that
it acts for. Authority closures are procedures that are bound to a specific principal
that the creator acts for when they are created. When they are invoked, they run
with the authority of that principal. They provide a means to associate authority
with a specific privileged action. For example, a CheckPassword closure might read
the password file to authenticate a user, declassify, and release only the outcome
(authentication success or failure). Thus, no other code in the program needs to
have authority to declassify (and potentially leak) information in the password file.

Authority closures can raise the label of the process and then use authority to
lower it again, but they cannot remove contamination from their callers. When
an authority closure call returns, the process labels are merged with the labels the
process had at the start of the call: the secrecy labels are unioned and the integrity
labels are intersected. This merging ensures that the closure cannot be abused to
remove contamination that the caller had previously.

3.6 Boxes, Shared Volatile State, and Files

The Aeolus platform supports several additional abstractions for sharing persistent
and volatile state. Boxes provide a way to encapsulate sensitive information so
that it can be passed through intermediaries without contaminating them. Shared
volatile state provides an efficient way for processes on the same machine to share
information in a way that respects the information flow rules. Aeolus also supports
labels on files and directories, with the appropriate semantics as implied by rule 3.1.

Boxes, shared volatile state, and files are not relevant to the 1IFDB model, but
the language runtimes that interact with 1¥DB, such as PHP-IF and Python-IF,
could support them. In particular, web services increasingly rely on soft state and
caching mechanisms such as memcached [47] to increase scalability, and Aeolus’
shared volatile state abstractions may prove useful in that context. However, the web
applications studied as examples in chapter 7 use databases, not file systems, as their
backing stores. They do not require inter-process communication or sophisticated
caching mechanisms.
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Chapter

4 Query by Label

Reasoning about flows of sensitive information can be challenging, and the ad
hoc techniques in use today, often based on access control, are error-prone. For
example, it has been alleged that Google violated its own privacy policy when it
introduced its Buzz social networking service. When users of Google’s GMail service
signed up for Buzz, Google used information from their private chats, emails, and
contact lists to generate “follower” lists, which were published on their public profiles.
According to an FTC complaint, these lists often contained “individuals against
whom they had obtained restraining orders, abusive ex-husbands, clients of mental
health professionals, [...] and recruiters they had emailed regarding job leads.” [45]
The mistake isn’t surprising: the disclosure involved multiple services developed
by different engineering teams, and the Buzz developers likely weren’t aware of the
privacy policy governing the GMail data.

IFDB uses a new query model called Query by Label, which is intended to
prevent similar mistakes in database-backed applications. The core design principle
in Query by Label is that all information releases must be explicit. Specifically, any
unsafe information flows must be accompanied by an explicit use of authority
(declassification or endorsement) to assert that the disclosure is acceptable.

Query by Label integrates the Aeolus D1FC model described in chapter 3 with
the relational model. Client applications running under an Aeolus-based language
runtime connect to the DBMS, and the DBMS collaborates with the language runtime
to ensure that the application follows the information flow rules. As described in
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the preceding chapter, each process has a secrecy/integrity label pair, which reflects
the contamination of all the sensitive data the process has read thus far. The process
labels are a key part of the Query by Label model; they affect what the process can
read from the database, and what it is allowed to write.

This chapter begins in section 4.1 by reviewing the tenets of the relational model.
Sections 4.2 and 4.3 develop the basic Query by Label model and explains how it
ensures that all unsafe flows must be vouched for via declassification or endorsement.
Sections 4.4 and 4.5 introduce new abstractions, stored authority closures and
declassifying views, that make it convenient to vouch for flows. Finally, section 4.6
explains the relationship between the D1Fc-based approach presented in this chapter
and access control.

41 The Relational Model

The relational model [24, 25] was introduced by Codd in 1970, and is the dominant
logical data model today. It provides a scheme for representing data and a set of
operators to access the data. This section briefly reviews the model to introduce
terminology and syntax, and to discuss some of the properties the model provides,
such as data independence and consistency. Supporting these properties in an
information flow system is more challenging; section 4.5 and chapter s explain the
issues and how Query by Label addresses them.

411 Data Representation

Data in the relational model are represented as sets of n-tuples, as follows:

Attributes (also known as fields or columns) are atomic units of data over some
domain. For example, bob is an attribute over the domain of names, while
8/23/1923 is an attribute over the domain of dates. Domains may include
a special null value, which is used to indicate information that is missing,
typically because it is unknown or inapplicable.

Tuples, or rows, are ordered collections of attributes. Tuples typically represent
relationships between attributes. For instance, (bob, 8/23/1923) is a tuple that

relates Bob’s name to his date of birth.
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Relations are unordered sets of tuples. Each relation has a schema, which defines
a name and domain for each attribute in the relation; all tuples follow the
schema. For example, the schema for a relation containing names and dates of
birth (Do Bs) could be (name : string, dob : date).

Since relations are intended to be analogous to mathematical sets, they do
not allow duplicate tuples. Additionally, each relation has a primary key, which
is a collection of attributes that uniquely identifies any tuple in the relation. The
analogous concept of tables in most database systems optionally allows for duplicates,
in which case there may be no primary key. (This is called bag semantics, as opposed
to set semantics.)

4.1.2 Relational Operators

The model defines a relational algebra for retrieving data. The algebra consists of a
set of primitive operators, which can be composed to produce complex queries. The
following operators are the most commonly used:

SELECTp(R) filters tuples in relation R, producing a new relation that includes
only the tuples matching predicate P. The predicate is boolean expression
evaluated on the attributes of the tuples — for example, age > 18.

PROJECT,, . a, (R) extracts attributes A;, through A;, from all tuples in relation
R. In the formal model, duplicates are discarded; however, the analogous
operation in ANSI sQL does not do so by default.

Joinp (R, S) produces a relation consisting of the concatenation of every pair of
tuples in R and S that satisfies predicate P. Typically the predicate specifies
that some attributes in R should be equal to some attributes in S — an equi-join.
For example, suppose that relation R consists of (patient_id, name, dob) tuples
and relation S consists of (patient_id, address) tuples. Then the expression
JOINg atient id=5.patient_ia(Ry S) evaluates to a set of (patient_id, name, dob, ad-
dress) tuples. (The patient_ids in R and S must match, so only one copy of this
field is typically retained.)

In addition to the join operator described above, which is often referred to as an
inner join, there are three varieties of outer joins. LEFTOUTERJOIN,(R, S)
produces the same tuples as JoIN, (R, S) plus any additional tuples in R that
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have no matching tuples in S. For these tuples, the missing S-attributes are
null. RIGHTOUTERJOINp (R, S) is defined analogously, with the roles of
R and S reversed. FULLOUTERJOIN (R, S) produces the union of all the
tuples in the left and right outer joins.

4.1.3 Constraints

Integrity constraints' ensure that data in the database are consistent. Constraints
protect against application bugs that might corrupt the database, and they ensure
that applications see results of the expected form. The taxonomy and terminology
presented here differ from Codd’s original formulation.

Domain constraints, or row-check constraints, limit the values tuples may take, inde-

pendently of any other tuples. For example, a domain constraint might specify
that all values in the percentage field be between o and 100 inclusive, or that an
employee’s overtime_wage be at least 20% greater than his or her base_wage.
(In Codd’s original model, domain constraints are defined only over individual
attributes, so the latter example would be a different kind of constraint in his
terminology.)

A fundamental constraint in the relational model is entity integrity, which
requires that all attributes that constitute the primary key for a relation be
non-null. This constraint is necessary because of the requirement that the
primary key attributes uniquely identify tuples; hence, none of those attributes
are permitted to be missing.

Table-check constraints define invariants over individual relations. Uniqueness of

primary keys is an example of a table-check constraint.

Relationship constraints control relationships among tuples in different relations.

One type of constraint in this category that is central to the relational model
is referential integrity [29, ch. 4]. A referential integrity constraint enforces
a many-to-one mapping from a referencing relation to a referenced relation.

1.

In this context, the word integrity refers to representation invariants that the data should
satisfy. Regrettably, work on 1FC uses the same word for a related but distinct concept, as
described in chapter 3. This dissertation uses the term integrity constraint, or simply constraint,

when the former meaning is intended. Clark and Wilson [22] compare the two types of

integrity.
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Specifically, a set of columns in the referencing relation constitute a foreign key,
which must match the primary key of some tuple in the referenced relation.”

In an information flow system, constraints that relate data with different labels
are problematic because they can create covert channels. Additionally, it is desirable
to create classification constraints, which restrict the labels themselves. Chapter s
explores the issue, and presents IFDB’s approach.

4.1.4 DataIndependence and Views

Data independence is a key innovation in the relational model. It divorces the manner
in which applications refer to data from the underlying representation of that data.
Thus, changing the representation does not require modifying applications. Physical
data independence protects applications from changes in the physical layout of the
data; for instance, applications can use the same queries regardless of what indexes
are available. Logical data independence permits the administrator to change the
schema, perhaps by partitioning a relation or adding new fields, while maintaining
compatibility with existing applications.

The view abstraction is an important part of the relational model’s support for
logical data independence. A view is a virtual relation, constructed by applying
relational operators to base (physical) relations. An application can access data
through the view, without regard for how the underlying relations are stored and
indexed. This flexibility is often used to optimize the on-disk representation and the
methods used to access the data. Views can be used to provide a restricted picture of
a base relation, which makes them useful for security as well.

An important consideration in adding information flow extensions is ensuring
that security concerns do not sacrifice data independence. Specifically, the manner
in which data are labeled should be insulated from how applications access the data,
and from how the data are stored on disk. Section 4.5 explains how Query by Label
achieves this goal.

2. Relations may also refer to themselves. For example, a ClassProjects table with primary key
student_id may have a partner_id field that refers to each student’s project partner in the same
table.
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4.2 Labels in the Database

IFDB uses labels to track information flows within the database. Labels are attached
to data at the granularity of tuples. The choice of granularity has important implica-
tions for the flexibility and efficiency of the system: why not label fields, tables, or
entire databases? To address that question, this section reviews all four options and
explains why tuple labels are the best choice for IFDB. The choices are presented in
order of granularity, from coarsest to finest.

Per-database labels. As described in section 10.5.1, several systems designed for mil-
itary use store different classes of information in different databases. The
advantage of this approach is that it requires no trust in the pBmMs. However,
associating a single label pair with an entire database is impractical for DIFC;
at a minimum, each user would require a separate database, and sharing would
be problematic.

Per-table labels. In this design, each table has a static secrecy/integrity label pair,
which applies to all tuples in the table. As section 10.2.3 explains, this approach
is used by Asp_ Views [55], while LDV [43] supports a variant: labels on
columns. Like the preceding option, per-table labels do not match application
needs. Database tables typically store data on behalf of many users, and each
user may have distinct security concerns. Per-table labeling necessitates storing
every user’s data in a separate table, which makes ad hoc queries over many
users’ data tedious.

Per-tuple labels. This is the strategy IFDB employs. The intuitive justification for this
model is that the data in each tuple are related to a single entity, for instance, a
hospital patient. Hence, labels covering entire tuples are appropriate for many
applications. Per-tuple labels represent a good trade-oft between the ability
to label data at a fine granularity and the space overhead associated with the
labels. Figure 4-1in the following section shows an example of labeled tuples.

Per-field labels. Several multi-level secure database systems, such as SeaView [101]
and SINTRA [50], use per-field labels. However, this strategy adds substantial
overhead, and the semantics are complicated, as explained in section 10.4.1.
Furthermore, 1FDB introduces declassifying views (section 4.5), which can be
used to achieve the power of field-level labels.
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In IFDB, secrecy and integrity labels for each tuple are stored in columns called
_label and _ilabel, respectively. The leading underscore is intended to reduce the
chances that the name conflicts with existing applications. The columns are hidden
by default to avoid confusing applications that are not expecting them; they are only
included in results of queries if they are requested explicitly. This approach follows
existing practice: for example, the ROWID column in DB2 and the OID column in
PostgresQL are similarly hidden.

The database schema, which includes the definitions of all the tables, indexes,
and views, is considered public. Any database user can read it, and only the admin-
istrator can write it, so in effect it has an empty secrecy label, and integrity label T
(which contains all integrity tags). In contrast, some other database systems, such as
SeaView, support the notion that parts of the schema — specifically, the very existence
of certain tables — can have an associated secrecy level [37]. In a large organization
using a single database, labeling the schema in this way makes it possible to have
secret projects, whose existence is hidden from unauthorized users.

In fact, labeled schemas would not be difficult to implement; IFDB stores the
schema definition in a set of special system tables, whose contents can be labeled.
However, labeling schemas complicates the programming model: if the existence
of certain tables is secret, then the code that generates queries on those tables
must be secret as well. This line of reasoning adds a whole new; largely unexplored,
dimension to DIFC, which is beyond the scope of this work. Like prior D1FC work,
IFDB is intended to protect user data from misuse, not to protect the workings of
the application from programmers who work on it. Therefore, secret projects can
presently be supported only via separate databases and separate applications.

4.3 Queries

In a departure from the standard relational model, the semantics of a statement
under Query by Label depend upon the label pair of the process that issued the
statement. Specifically, the process labels affect which tuples the process is able to
read and write. This section explains the basic model, but first, it motivates the need
for a new model by illustrating why standard query semantics are inappropriate for
an information flow system.
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Inpatients
_label patient_name patient_dob problem condition
{alice_medical}  Alice 2/13/1960 cancer good
{bob_medical} Bob 6/26/1978 trauma serious
{cathy_medical} Cathy 4/22/1941 pneumonia critical

Figure 4-1: The Inpatients table is an example of sensitive, labeled tuples stored in a
database. It contains records about hospital inpatients, their problems
on admission, and their general condition.

4.3.1 Information Flow in the Relational Model

Under the standard model, a query over a table conceptually reads every tuple in the
table, then transforms and filters the results via a series of relational operators, such as
SELECTs. The fact that tuples are selected by content has important implications for
an information flow system: the set of results returned by a query reveals information
about the content of tuples that were not returned by the query.

For example, suppose the table in figure 4-11is stored in an sQL database for a
medical information system. A _label column that denotes the secrecy of each tuple
has been included as well; integrity labels are omitted for simplicity. Consider the
following query:

SELECT name FROM PatientRecords WHERE problem <> ‘cancer’

In standard ANSI sQL, the query produces the names of patients in a clinic who
do not have cancer, namely, Bob and Cathy. One might think that the secrecy of
the result could be captured by the label {bob_medical, cathy_medical}. However, to
anyone who consults the public patient directory and finds out that Alice is a patient
in the hospital, the results also reveal that Alice has cancer, because her tuple was
excluded.

In fact, under the standard semantics, the correct secrecy label for the cancer
query includes all three patients’ medical tags. More generally, the contamination
associated with a standard sQL query would necessarily include the greatest lower
bound of the labels of every tuple in the table! This approach isn’t practical; processes
need a way limit their contamination because, as explained in chapter 3, they will be
unable to communicate with the outside world if they are too contaminated.
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4.3.2 Reads

In the Query by Label model, each query has a secrecy/integrity label pair, which
corresponds to the labels of the process that issued the query. The model addresses
the problem described in the preceding section by limiting the scope of the query to
a subset of the database containing only the tuples whose labels are less restrictive
than the labels of the query. This restriction is formalized as follows:

Rule 4.1. (Label Confinement)

A query performed by a process P with labels (P.Lg, P.L;) is performed on a
subset of the database consisting of all tuples 7; with labels (7;.Ls, 7;.L;) such that
(Ti.Ls, ’L'i.LI) < (P.Ls, PLI)

For reads, the label confinement rule is simply an instantiation of the safe
information flow rule (rule 3.1) given in section 3.2: A process should not see tuples
whose contamination isn’t covered by its own label. In one sense, the rule merely
reflects the fact that label changes in the Aeolus model are explicit, but in another
sense, the rule is fundamental to systems that query information by content. The
cancer patient example in section 4.3.1 illustrates that it is necessary to limit the scope
of queries in an information flow system.

Referring back to the Inpatients table shown in figure 4-1, consider the example
again in the context of Query by Label:

SELECT name FROM PatientRecords WHERE problem <> 'cancer’

If a process issues this query with secrecy label { bob_medical} and an empty integrity
label, the results will include only Bob’s records. The result conveys nothing about
the other patients because the process’s view of the database is confined to only
tuples whose labels are a subset of {bob_medical}. Thus, the process label always
reflects the contamination of all the data that might have influenced the process.

4.3.3 Explicit Query by Label

Query by Label limits queries to tuples whose labels are subsets of the process
label. However, processes can specify additional conditions on the label explicitly
by referring to the _label and _ilabel columns. As with all queries, the scope is
limited to tuples with labels no more restrictive than the process label; any additional
conditions further limit the results. For example, the following sQL query selects all
meetings whose secrecy labels contain the programX tag.
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SELECT * FROM Meetings WHERE _label @> '{programX}'

The @> operator in the query implements the mathematical superset operator 2
for labels. Of course, the process that issues the query must have at least the tag
programX in its label, or the query will return no results!

Queries such as this one are not commonly needed. For instance, it would
be simpler to add a meeting_purpose field to the Meetings table and use that to
determine which meetings are about Program X, rather than ascribing additional
meaning (specifically, the purpose of the meeting) to tags in the secrecy label.
However, explicit Query by Label will be revisited in section 5.2, where it is used as a
way to limit the effects of polyinstantiation.

4.3.4 Writes

Writes to the database in Query by Label are more restricted than reads: the label
of the process must match the tuple being written exactly. This requirement stems
from the combination of two separate stipulations:

wi. Tuples a process writes must reflect the contamination of everything the process
has read. Safe information flow (rule 3.1) requires that information can flow
from a source (such as process P) to a destination (such as tuple 7) only if
(P.Ls,P.L;) < (1.Ls,7.L1). In other words, a process cannot write a tuple
with a lower label pair than itself.

w2. Writes should not affect tuples the process is unable to see. Label confinement
(rule 4.1) requires that a statement issued by a process P apply to a subset of
the database consisting of tuples 7; such that (7;.Ls, 7;.L1) < (P.Ls, P.Ly).
That is, the effect of the statement is limited to tuples with label pairs no higher
than the process labels.

Formally, the conjunction of these requirements gives the following rule for writes:

Rule 4.2. (Write Rule)
A process with labels (P.Lg, P.Ly) can write a tuple with label (7.Lg, 7.L;) only if
P.Lg=1.Lgand P.L;=1.L;.

In other words, all writes have exactly the label of the process. Traditionally, require-
ment w1 is called the % property, while rule 4.2 is called the strong-x property (see
section 10.1).
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Since processes see only a subset of the database, it is possible that a write might
violate an integrity constraint, even though it looks okay to the process. For example,
a process might attempt to insert a tuple with the same primary key as an existing
tuple that it is unable to see. Chapter 5 discusses how 1FDB addresses this problem.

A natural question about rule 4.2 is whether it is overly restrictive. The rule comes
from two requirements: w1 and w2. Requirement w1 is a standard prerequisite for
safe information flow, but requirement w2 bears some explanation. After all, w2 is
typically the rule that is applied to reads, not writes. Indeed, prior work that develops
DIFC semantics for file systems [18, 106, 152] does not impose this restriction. In a
database, however, allowing a process to write a tuple with a more restrictive label
introduces a covert channel: it allows the process to learn about the tuple, which is
more contaminated. Essentially, the problem is that writes in a DBMS are never blind;
each write is also a read.

Lifting this restriction by supporting blind writes to the database is conceivable.
However, the resulting semantics are so awkward that the option seems unrealistic.
The following are some of the problems that can arise if processes were allowed to
write tuples they cannot see:

— Allowing processes to write tuples they cannot see can lead to potentially
dangerous confusion. For example, a process might convert Bob’s medical
records to a new format, store them in a separate table, and delete the original
records. However, if Bob has records with more restrictive labels than the
process is allowed to see,® the process might delete records that have not been
converted.

— Processes would be able to learn how many tuples (if any) were affected by an
update. For example, consider the following sQL statement on the table in
figure 4-1, executed with an empty secrecy label:

UPDATE PatientRecords SET name = 'Alice’
WHERE name = 'Alice’ AND problem = 'cancer’

The statement has no effect, but it returns the number of rows updated: one if
Alice has cancer, and zero otherwise. Information flow requirements necessi-
tate suppressing this count. Hence, applications cannot know the effects of
their updates, or whether the updates succeeded at all.

3. In the United States, for instance, mental health records are subject to more stringent secrecy
requirements than other types of medical records. [1]
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— The requested write might violate an integrity constraint. Mitigating actions
the system might take, such as reporting the error or aborting the current
transaction, are observable to the application; therefore, they also leak infor-
mation about the tuples written. (Integrity constraints are discussed further in
chapter s.)

— The write might lead to conflicts with concurrent operations running on behalf
of other processes that have different labels. These types of conflicts can also
leak information, as discussed further in chapter 6.

A consequence of the write rule is that the label associated with each tuple
is constant. In fact, the restriction that data labels do not change is even more
fundamental, and is present in other information flow systems as well. Raising the
label of a tuple would remove if from the purview of clients running with the old
label. To those clients, the tuple appears to have been deleted. Therefore, if a client
wants to reclassify a tuple with a different label, it must do so by deleting the tuple
and inserting a new one. Of course, to do this, the process must be able to do two
writes with different labels. The following section explains how processes can write
with different labels by changing their labels.

4.3.5 Writing Tuples With Different Labels

Applications need the ability to write tuples with different labels as part of a single
logical action. For example, a process that creates an account for a doctor in a medical
clinic might write two tuples: one with the doctor’s contact information, and another
containing his password. Rule 4.2 would seem to prohibit that kind of operation,
since it requires that a process always writes tuples with exactly its own secrecy and
integrity labels.

Given that it is problematic to allow processes to write tuples with labels other
than the current process label, how does a process write tuples with different labels?
The answer is that processes can change their labels as explained in chapter 3. It is
always safe for a process to raise its label, making it more restrictive. Making a label
more restrictive entails adding secrecy tags or removing integrity tags. Furthermore,
if the process has authority for a tag, it can declassify that tag, removing the tag from
the secrecy label, or it can endorse the tag, adding it to the integrity label. Returning
to the example of adding a doctor’s account, an application could simply write the
doctor’s contact information, change its label, and then write the doctor’s password.
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The Query by Label semantics of sQL queries issued by a process with the
label pair (P.Lg, P.L;) are summarized below.

SELECT queries operate over a subset of the database containing only the tu-
ples whose labels are less restrictive than the process secrecy/integrity
label pair. Formally, if 2D is the set of tuples in the database, then the
result of the query is equivalent to that of a standard sQL query on
database D', where D' = {t|tr€ D A (1.Ls,7.L;) < (P.Ls, P.L;)}.

Query by Label does not change the relational algebra, so complex
operations such as joins and aggregate functions have the usual se-
mantics. However, they operate over relations that contain only the
tuples the process is able to see given its labels.

INSERT statements add tuples with exactly the label pair of the process. The
INSERT ... SELECT form, which inserts tuples that were produced by a
query, also writes the tuples with the secrecy and integrity labels of
the process, even if the source tuples have less restrictive labels.

UPDATE statements affect only tuples with the same label pair as the process.
Tuples with more restrictive labels are not visible to the process and
are ignored. Tuples with less restrictive labels can’t be written by the
process without violating the information flow rules; attempting to
update such tuples is an error.

DELETE statements affect only tuples with the same label pair as the process.
As with UPDATE statements, tuples with more restrictive labels are
unaffected, and attempting to delete tuples with less restrictive labels
is an error.

Nested queries, including the SELECT clause of an INSERT ... SELECT
query, are handled as implied by the semantics of the basic operations.
Data Definition Language (DDL) commands, which modify the schema,
are restricted to the administrator. The semantics of Transaction Control
Language (TCL) statements are covered in chapter 6.

Figure 4-2: Semantics of basic sQL statements under Query by Label
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Allowing processes to change their labels to write tuples with different labels
actually results in the same information leaks as described previously. However, it
provides a principled way of reasoning about these leaks. Specifically, the Query by
Label model supports the principle articulated in the introduction to this chapter:
unsafe information flows must be accompanied by an explicit exercise of authority.

Presenting a simple model to programmers is important because covert channels
are notoriously difficult to reason about [108]. In fact, the rule for writes presented in
this section isn’t the whole story. As chapters 5 and 6 point out, interactions between
1FC and other DBMS features, such as constraints and transactions, give rise to new
issues. Thinking about multi-level writes in terms of simple writes and label changes
is key to providing intuitive semantics for these features. Sections 4.4 and 4.5 present
abstractions that provide more convenient ways to do writes, but importantly, these
abstractions can be understood in terms of label changes in the basic model.

4.4 Application Code in the DBMS

In designing a database-backed application, an important consideration is how to
partition the computation between the application and the pBMS. Performing
computations in the database system instead of the application has several widely
recognized benefits. For one, it improves performance: less data must be transmitted
between the application and the DBMS, and transaction latencies are lower. Also,
performing computations in the DBMS via stored procedures improves modularity
and security by providing a narrow, well-defined interface between the application
and the database. A variety of procedural extensions to sQL, such as PL/SQL [46],
PL/pgsQL [56], and sQL/PsM [3] have been developed to support imperative pro-
gramming in the bBMS.

Chapter 3 explains that applications use the Aeolus API (figure 3-1) to manage in-
formation flows. Computations running within the DBMS require this ability as well,
so IFDB implements the Aeolus API as a set of primitive stored procedures that can
be invoked within sQL statements and stored procedures. Stored procedures start
running with the labels and authority of the process that invoked them. Any label
changes the procedure makes (for instance, adding a secrecy tag or declassifying)
are reflected in the labels of the calling process.

IFDB aims to provide a uniform AP1I, so that the same operations are available in
both sQL stored procedures and in the language the application is written in (such
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as PHP-IF and Python-1F, described in chapter 2). To that end, 1FD B also supports
stored authority closures, which extend the authority closures described in section 3.5
to the DBMS. Stored authority closures bind special authority to stored procedures.
They are important because they allow application programmers to add functions to
the database that perform operations that would otherwise not be allowed by the
information flow rules.

For example, the programmer might want to use a userlist tag to protect the
list of all usernames registered with the application, so that bugs in the application
do not allow an attacker to see the list. However, the code that registers a new user
account must still be able to check if a given username is already in use. Reporting
whether a requested username is taken represents a small information leak, so IFDB
requires an exercise of authority, namely a declassification, to vouch that this leak is
acceptable. The code can be put in a stored authority closure with the appropriate
authority, as in the following example. The example is written in IFDB’s extended
version of PL/pgsQL.

CREATE FUNCTION addUser(uname VARCHAR)
RETURNS VOID(PRINCIPAL accountManager)AS $$
BEGIN

PERFORM addSecrecy(userlist);

INSERT INTO Users (username) VALUES (uname);

PERFORM declassify(userlist);

EXCEPTION WHEN OTHERS THEN -- catch any exception
PERFORM declassify(userlist);
RAISE; -- re-throw the exception

END;
$$ LANGUAGE plpgsql;

The circled PRINCIPAL accountManager clause identifies the stored procedure as
an authority closure, which runs with the authority of the accountManager principal
when it is invoked. The closure adds the userlist tag to the secrecy label of the client
process, inserts the username into the Users table, and declassifies to remove the tag
it added. (The italicized identifiers accountManager and userlist are placeholders for
the appropriate principal and tag 1Ds. Prior to creating the closure, the administrator
must have previously created the accountManager principal and userlist tag.)

Upon return from an authority closure, the secrecy and integrity labels of the
process are merged with the caller’s original labels, as in Aeolus: the secrecylabels are
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unioned, and the integrity labels are intersected. Doing this prevents closures from
removing the caller’s contamination, thus preventing confused deputy problems.
For example, it prevents a process that is already contaminated with the userlist tag
from abusing the addUser closure to remove that contamination.

The example also illustrates an important point about exceptions. Suppose the
username is already present in the table and properly labeled. In this case, the INSERT
statement will fail due to a uniqueness constraint violation and the transaction will
abort. When such an error occurs inside an authority closure, IFDB restores the
process principal to that of the caller. However, as in Aeolus, the process labels
retain the contamination of anything the authority closure read, which ensures that
authority closures cannot leak information. (If the labels were restored in the event
of an exception, a closure could leak bit of a secret it has no authority to declassify by
reading the secret and deciding whether to raise an exception based on the value it
read.) In this particular example, the constraint violation is an anticipated possibility,
so the closure catches the exception, uses its authority to declassify the userlist tag,
and re-throws the exception.

4.5 Declassifying and Endorsing Views

The preceding section introduced stored authority closures, which extend the stored
procedure abstraction. However, relational databases typically make use of a dif-
ferent abstraction — views. The Query by Label model provides new mechanisms,
declassifying and endorsing views, which extend the view abstraction analogously.
This section describes how declassifying and endorsing views work, and shows that
they are instrumental in preserving data independence.

4.51 Defining Views Using Authority

IFDB extends the Aeolus model with declassifying and endorsing views, which are
adaptations of authority closures to the relational model. Instead of binding authority
to code, the authority is bound to the definition of a view, which uses that authority
to declassify or endorse. Declassifying and endorsing views thus provide a means of
expressing downgrading policies [20, 93] as relations; they allow information with
high labels to be accessed with lower labels through the view, after that information
has been appropriately sanitized.
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For example, patient privacy regulations in the United States permit hospitals to
publish a directory of inpatients and their general conditions [1]. A hospital could
produce this information with a declassifying view of the Inpatients table (figure 4-1)
as follows, with the new syntax circled:

CREATE VIEW PatientDirectory AS
SELECT patient_name, condition FROM Inpatients
(WITH DECLASSIFYING (all_patients_medical)}

The view has authority to declassify for any tags specified in the DECLASSIFYING
clause, and the creator of the view must have this authority as well. In this case,
the view has authority for the all_patients_medical compound tag, and it uses its
authority to declassify the patient medical tags in the base relation, which are all
members of this compound tag. Endorsing views work similarly, but for integrity;
for instance, an endorsing view might add an integrity tag to each tuple after passing
it through a sanitization or verification function.

The PatientDirectory view is a simple example because all the tuples visible in
the view have the same label. However, some downgrading policies may require
more expressive power than a DECLASSIFYING or ENDORSING clause can provide.
Suppose the hospital wishes to properly track information flows in the patient billing
application. Billing records and medical records may have different confidentiality
policies; billing records are sent to insurance companies for claim processing, but
medical records are not. A view that extracts medical procedure codes from patient
medical histories to produce bills for those procedures might take a tuple with
secrecy label {alice_medical} and produce a tuple labeled {alice_billing}. Thus, each
patient’s data is declassified (and reclassified) differently. Query by Label supports
this type of view via RELABEL clauses:

CREATE VIEW PatientBills AS
SELECT patient_id, cost(med_procedure) FROM PatientMedProcedures
(WITH RELABEL billing_to_medical PRINCIPAL allPatients}

The RELABEL clause names the billing_to_medical relabeling function, which
takes a secrecy/integrity label pair as input and produces a new label pair. The
function is invoked with the labels of the process that is querying the view, and it
produces the appropriate labels for a query on the underlying relation. In this case, if
the secrecy label contains alice_billing, the function adds the associated alice_medical
tag. It must look up the correspondence between the patient billing and medical
tags in a separate table. Conceptually, the contents of the view as seen by a given
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process are produced by invoking the relabeling function and updating the process
labels as it specifies, running the query in the view definition, and then restoring the
original labels of the process.

The PRINCIPAL allPatients clause specifies the authority that the view requires to
do its job. In effect, each query over the view involves three steps:

1. Add the patient’s medical tag to the secrecy label of the process, and declas-
sify the patient’s billing tag. The billing_to_medical provides the appropriate
mapping between the labels.

2. Execute the query specified by the view definition, which extracts tuples from
the underlying PatientMedProcedures table.

3. Reverse the first step, adding the patient’s billing tag and removing the patient’s
medical tag from the secrecy label of the process.

Since the view effectively declassifies arbitrary patients’ medical and billing tags, it
uses authority for allPatients — a principal that acts for all patients. Before executing
queries over the view, the DBMS checks that this principal has authority for any tags
that the billing_to_medical function requested to change. The creator of the view
must acts for the principal specified in the PRINCIPAL clause.

Relabeling views are more general than views using DECLASSIFYING and ENDORS-
ING clauses. The PatientDirectory view defined earlier could be defined as a relabeling
view, where the relabel function adds the all_patients_medical tag to the secrecy label
of the process. However, relabeling views are implemented differently, and are subject
to a minor restriction. Specifically, queries that invoke stored procedures that may
have side-effects cannot be run over relabeling views, as explained in section 8.1.3.

4.5.2 Discretionary Views

The examples presented in the preceding section are views that define mandatory
policies that affect all users. Chapter 3 touted discretionary security, where principals
can define the policies for their own data, as a benefit of the Aeolus model. Thus,
individual principals, not just the administrator, should be able to create declassifying
and endorsing views. For example, in a social network, each user could define a view,
vested with his own authority, that determines what personal information about the
user is available to his friends.
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However, views are part of the database schema, and as explained in section 4.2,
only the administrator may modify the schema. To allow non-administrators to
create views, each principal is given a private schema, and can create tables in that
schema. Such tables are referred to as schema name . table name, where the schema
name is based on the 1D of the principal. Thus, the names don’t conflict with views
of other users, or with tables and views in the global schema, which is managed by
the administrator. To ensure that schema modifications themselves cannot be used
to signal sensitive information, a process may only create, modify, or delete a view in
its private schema if the process has an empty secrecy label.

4.5.3 View Updates

Since views contain derived data, insert, update, and delete operations on them are
not always well-defined. The 1FDB implementation is based on PostgresQL, and as
such, it leverages PostgresQL’s solution to the view update problem. PostgresQL re-
quires the database programmer to create rewrite rules describing how to transform
inserts, updates and deletes on a view into changes to the underlying tables. For
example, suppose that patient contact and billing information are stored in Contact
and Billing tables, and a ContactBilling view has been defined as an equi-join of the two
tables. An insert into the ContactBilling view could thus be rewritten as two inserts:
one into Contact and the other into Billing. In 1FDB, rewrite rules for declassifying
and endorsing views may need to invoke stored authority closures to write base
tuples with different labels than the process. In the ContactBilling example, Contact
tuples might have different classifications than Billing tuples, and thus authority is
needed to change the process label appropriately for each insert.

IFDB also modifies the meaning of the sQr standard WITH CHECK OPTION
clause, which is specified in a view definition. The clause normally instructs the
DBMS to enforce a correctness condition on insert and update rules: following a
successful modification, the inserted or updated tuple must actually exist in the view.
For example, the option ensures that an attempt to insert a living patient into a view
that selects only dead patients from a table containing all patients is an error. When
the check option is specified in IFDB, IFDB enforces a stronger property, which
constrains the label pair of the tuple: the tuple must exist in the view and be visible
to the process that inserted it.

Views that do not use WITH CHECK OPTION are particularly useful in IFDB.
They provide a convenient way to support updates that transform data with higher
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labels than the requesting process. As described in section 4.3.4, all writes to the
database in the Query by Label model are restricted to tuples with exactly the labels
of the process. However, this rule is often too constraining. For example, a common
requirement in password-based authentication systems is that users should not be
able to see their own passwords, but they should be able to change their passwords.
An update rule on the Passwords table that invokes an authority closure provides the
needed power with familiar syntax: users can simply update their own entries in the
Passwords table, even if they lack the ability to see their passwords. As section 4.3.5
explains, writing tuples with higher labels can leak information, so the authority
closure underlying the update rule must exercise appropriate authority to raise the
process labels, perform the write, and declassify. By declassifying, it vouches that
the disclosure (namely, whether the update succeeded) is acceptable.

ANSI SQL specifies an alternative to rule-based view writes: certain types of
views for which updates have an unambiguous interpretation should automatically
be updatable. Neither PostgresQL nor IFDB presently support this feature, but many
commercial database systems do, and support is planned for a future PostgresqQL
release. In IFD B, these updatable views will require relabeling rules, similar to reads
(see the preceding section).

4.5.4 DatalIndependence

Since data are labeled at the granularity of tuples in IFDB, how is it possible to
handle cases where a single logical entity has attributes that should have different
labels? One solution is to force the database designer to partition the entity into
multiple tuples according to the confidentiality and integrity concerns, but this
approach violates the data independence principle introduced in section 4.1.4. In the
medical system, for example, patients’ billing information and contact information
have distinct labels and security policies. Nevertheless, the data may be accessed
together frequently, such as when generating medical bills. The principle of data
independence dictates that the programmer should be able to refer to the billing and
contact information as separate relations, a single relation, or some combination
thereof, regardless of the underlying representation.

IFDB achieves data independence through a combination of standard views
and declassifying views. If the underlying representation is a single ContactBilling
table, as shown in figure 4-3(a), then the Contact and Billing relations shown in
figure 4-3(b) can be generated as declassifying views that project the appropriate
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ContactBilling
{alice_contact, alice_billing} ~ Alice 32 Vassar St 12345678
{bob_contact, bob_billing} Bob 52 Brattle St 90274963
{cathy_contact, cathy_billing} Cathy 497 Boylston St 29349274
(a) Since contact and billing information are frequently accessed together (for example,

when printing a bill), they can be stored in a single table. The labels of these combined
tuples must contain both the contact and billing tags.

Contact Billing
{alice_contact}  Alice 32 Vassar St {alice_billing}  Alice 12345678
{bob_contact} Bob 52 Brattle St {bob_billing} Bob 90274963
{cathy_contact} Cathy 497 Boylston St {cathy_billing} Cathy 29349274

(b) Separate Contact and Billing relations reflect the distinct confidentiality concerns of
contact and billing information. They can be produced as declassifying views of the
ContactBilling base table, or alternatively, ContactBilling can be defined as a view that
joins the Contact and Billing base relations.

ContactBilling

{alice_contact} Alice 32 Vassar St NULL

(c) If ContactBilling is defined as a view using a full outer join, a process with secrecy label
{alice_contact} will see null values for higher-labeled fields, similar to MLs database
systems with field-granularity classification.

Figure 4-3: Ordinary and declassifying views make it possible to keep the represen-
tation of data independent from its security requirements.
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columns. Conversely, if the underlying representation of the data is as two separate
tables, the merged ContactBilling view can be produced as an ordinary view that joins
the two base tables.

If the ContactBilling table is constructed as a view, there are several options. The
view can be constructed as an inner join, in which case a tuple for a patient will not
be visible unless the process label includes both the patient’s billing and contact
tags. Alternatively, the view can be constructed as a full outer join, in which case
processes will simply see null values in place of the fields that its label does not allow
it to see, as illustrated by figure 4-3(c). The latter option can be used to simulate
field-level labels, with semantics similar to the SeaView model [101]. Thus, the use of
row-granularity labels in IFDB is not a significant limitation; finer-grained labeling
can be achieved through views when needed.

4.6 Access Control and Clearance

This chapter has introduced the Query by Label model as an effective way to secure
databases using decentralized information flow control. As the introduction argued,
DIFC has advantages over access control: it uses sandboxing to allow untrusted code
to compute on sensitive data safely, and it enforces end-to-end security policies.

However, this dissertation does not propose to completely supplant access con-
trol. There are some security policies that can be enforced more directly with access
control. Consider the example of the Passwords table introduced in section 4.5.3.
This table has a secrecy policy that says that only the code that authenticates Alice
should be able to read Alice’s password, and an integrity policy that only Alice
should be able to write Alice’s password. Although DIFC enables more sophisticated
policies that allow untrusted code to compute over the passwords without being
able to release them, untrusted code in fact has no business reading Alice’s password.
Therefore, fine-grained access control is a more fitting way to secure the contents of
the Passwords table. Access control also avoids some of the covert channels that are
problematic in information flow systems.

A particular type of access control called clearance meshes well with the DIFC
model. Clearance restricts the maximum secrecy label and the minimum integrity
label a process is allowed to have. For example, if Alice’s password tuple has the
alice_password secrecy tag, then processes that are not cleared to add alice_password
to their labels cannot read Alice’s password. Clearance has been studied in the
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Asbestos [141] and HiStar [152] operating systems, and other fine-grained access
control techniques for databases have also been developed (see section 10.3). IFDB
includes the forms of access control built in to PostgresQx, including ANSI sQL
role-based access control and view-based access control; access control based on
clearance would be a useful extension. A limited form of clearance is introduced in
section 6.2 to prevent unsafe flows between conflicting transactions.
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Chapter

Constraints

Databases provide means to enforce integrity constraints, which are invariants that
data elements and groups of related data elements must conform to. It is highly
desirable to enforce integrity constraints in the database, since doing so suppresses a
large class of application errors.

Unfortunately, dynamic constraint enforcement raises problems when infor-
mation flow rules prevent processes from being influenced by higher-labeled data.
For example, suppose a medical application running with an empty secrecy label
attempts to insert a tuple for Bob into the Patients table, but an entry with the same
primary key and a higher secrecy label already exists. The two obvious approaches are
raising an error, which leaks information by apprising the application of the existence
of the secret tuple, or allowing the constraint to be violated. Neither alternative is
entirely satisfactory.

Many real-world applications, such as Wikipedia, avoid database-enforced con-
straints due to the expense involved. Followers of that school of thought might
propose abdicating the problem of constraint enforcement to the application. How-
ever, rather than solve the problem, this approach merely shifts responsibility and
increases the likelihood of mistakes. For instance, suppose that every patient appoint-
ment record in a medical information system has an associated patient visit record
containing medical notes from the visit. Further suppose that nurses should not be
able to view visit records associated with the mental health clinic. Unfortunately,
nurses might be able to infer that a patient has visited the mental health clinic if
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he has an appointment record without a visible visit record. The problem exists
regardless of whether the database or the application enforces the natural constraint
between appointments and visit records.

This is an example of the inference problem: it is possible to infer something about
a secret by looking at related data that is less secret. These inferences often involve
unstated assumptions or outside knowledge [102], so it is impossible for IFDB to
anticipate them. However, it is possible to prevent inferences for constraints that are
explicitly stated and enforced in the DBMS. IFDB provides a semantics for constraint
enforcement that ensures that constraints do not leak information, except via an
explicit use of authority (declassification or endorsement). This secure-by-default
design provides a framework for making principled decision about how sensitive
information is used, and how it might be exposed.

This chapter discusses IFDB’s approach for handling constraints in the presence
of information flow restrictions. In the relational model, constraints can be broken
down into four categories: domain constraints, which concern individual tuples;
table-check constraints, which relate tuples within a table; relationship constraints,
which relate tuples in different tables; and more general kinds of constraints. The fol-
lowing sections treat each of these categories individually, and section s.5 introduces
constraints on information flow labels themselves. Refer back to section 4.1.3 for a
summary of how these constraints are interpreted in an ordinary relational database.

5.1 Domain Constraints

The simplest constraints are domain constraints, which restrict the values tuples
may take, independent of any other tuples. Domain constraints don’t introduce any
information flow issues in IFDB. The constraints themselves are part of the database
schema, which is considered public (see section 4.2). Applications can evaluate for
themselves whether particular tuples satisfy domain constraints, and therefore the
DBMS doesn’t convey any new information by enforcing the constraint.

However, domain constraints would be problematic if IFDB’s write rule, given
in section 4.3.4, did not prevent applications from updating tuples they cannot see.
For example, suppose there is a constraint that an employee’s overtime_wage be at
least 20% greater than his or her base_wage. An application could learn the salary
of an employee with a high secrecy label by issuing updates and observing which
values of overtime_wage are permitted.
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Domain constraints can also introduce complications in database systems such
as SeaView [101], in which different fields within a tuple can have different labels. For
instance, if a tuple’s base_wage had a more restrictive label than its overtime_wage, it
would be possible to learn the value of the former field by decreasing the latter until
a constraint violation is observed.

5.2 Table-Check Constraints

Table-check constraints relate tuples in a single table. This section focuses on unique-
ness constraints, which are the most common type of table-check constraint, and
the only kind supported directly by the ANsI sQL standard. Other types of table-
check constraints are uncommon. An example is PostgresQL’s exclusion constraints,
which generalize uniqueness constraints to permit specifications such as “No two
salespeople can be assigned to locations within 100 miles of each other.” The issues
that arise with this kind of constraint are analogous to the problems with uniqueness
constraints. Other table-check constraints that don’t follow this pattern can be
handled as described in section 5.4.

5.2.1 The Problem with Uniqueness Constraints

It is easy to check that a write obeys a constraint when all of the tuples that must
be read to verify satisfaction of the constraint are visible to the process performing
the write. However, a problem arises when the very question of whether the data
conforms to the constraint depends on tuples the process should not see.

The table in figure 5-1 will be used to construct an example of the problem. Integ-
rity labels have been omitted to simplify the presentation. Consider the following
inserts into the table:

1. Insert (Dan, 8/12/1969, 2B) into HIVPatients with any label.
2. Insert (Alice, 2/1/1960, 2A) into HIVPatients with secrecy label {alice_medical}.
3. Insert (Alice, 2/1/1960, 2A) into HIVPatients with secrecy label {}.

The first insert doesn’t violate the constraint because there is no entry for Dan
in the table; hence, it should succeed regardless of the label used. The second insert
violates the constraint because Alice already has an entry in the table. Furthermore,
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HIVPatients
_label patient_name patient_dob virus_type
falice_medical}  Alice 2/13/1960 ™
{bob_medical} Bob 6/26/1978 ™
{cathy_medical} Cathy 4/22/1941 10

Primary key (patient_name, patient_dob)

Figure s-1: In a medical records system, the HIVPatients table contains specialized
records for patients with HIV.

enforcing the constraint and causing the second insert to fail reveals nothing, because
the conflicting tuple is already visible to the process performing the insert. The
third insert is the problematic one. Like the second insert, it violates the constraint;
however, the process performing the insert has an empty secrecy label, so it isn’t
supposed to see the conflicting tuple, which has a higher secrecy label. Disallowing
the insert would leak the fact that a tuple for Alice already exists. Anyone who knows
Alice’s name and date of birth could thus learn whether she has H1v by attempting
this insert. Since the insert is performed by a process with an empty secrecy label,
the process will be allowed to release the information to the outside world.

Uniqueness constraints pose a related problem for integrity. Processes with low
integrity can insert tuples that subsequently interfere with the operation of processes
with higher integrity. Thus, the high-integrity process could become confused or be
unable to do its job because the uniqueness constraint prevents it from inserting.
Definition 3.1 can be used to capture the secrecy and integrity problems in a single
statement: a problem arises when a process attempts an insert that conflicts with a
tuple with a more restrictive (higher) label pair.

Furthermore, the problem is not limited to just inserts. Updates can cause the
same problems when a unique key value is updated such that it conflicts with the
key of another tuple. To simplify the exposition, update operations are regarded as a
delete of the old tuple followed by an insert of the new tuple. Therefore, the rest of
section 5.2 discusses only inserts.

5.2.2 IFDB’s Solution

IFDB uses polyinstantiation, which permits inserts of tuples that conflict with higher-
labeled tuples. Clients running with lower labels, unaware of the higher-labeled
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tuples, see a consistent view of the database and are unaffected by the higher-labeled
data. Clients running with higher labels, however, will see both tuples, distinguished
only by their labels — a violation of the uniqueness constraint.

The trouble with polyinstantiation is that it can lead to confusion. What does
it mean to have two HIV patients with identical primary keys but different labels?
Much prior work is concerned with the use of polyinstantiation as an important
feature in its own right, and proposes cover stories as one possible answer to this
question. Specifically, the public version of a patient record might be different from
the secret version due to deliberate subterfuge. Polyinstantiation can also be used to
express different subjective opinions about the truth. Section 10.4.1 reviews these
proposals and the complexities they involve.

Although 1FDB is capable of supporting these perspectives, this dissertation
advocates a simpler interpretation, whereby polyinstantiated tuples are seen as
mistakes. Since it would leak information to expose the mistakes to clients with
lower labels (that is, by notifying them of the conflict), IFDB instead exposes the
mistakes to the clients with higher labels.

As aresult of this philosophy, IFDB only permits polyinstantiation when it is
necessary to avoid covert channels. For example, consider again the third exam-
ple from section §.2.1: inserting (Alice, 2/1/1960, 2A) into HIVPatients with secrecy
label {}. This insert causes polyinstantiation and results in two entries for Alice:
a correctly labeled one with virus type 1M, and the new one with virus type 2A.
However, if the same insert were performed with the equally bogus secrecy la-
bel {alice_medical, eve_medical}, the result would be an error. There is no need to
polyinstantiate in the latter case because the process running with secrecy label
{alice_medical, eve_medical} is able to see the conflicting tuple, which has secrecy
label {alice_medical}; therefore, apprising the process of its mistake does not reveal
any additional information to it. Unlike IFD B, many prior systems polyinstantiate in
both cases for the sake of cover stories, calling the first example invisible polyinstan-
tiation, and the second visible polyinstantiation [75].

Polyinstantiation means that queries could return multiple records when only
one is expected. Some application code may not be prepared to cope with this
eventuality. Therefore, IFDB has four ways to shield applications from the effects of
polyinstantiation:

1. Label constraints that relate the unique key to the information flow label can
prevent polyinstantiation. Label constraints are described in section s.s.
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2. The information flow labels can be made part of the key. This solution also
prevents polyinstantiation and is applicable when cover stories or multiple
versions of the truth are desired. For example, the Facebook website presently
leaks information about users’ private photos by caching a count of the number
of photos they have in each album; Alice’s employer might be able to see
that Alice has 300 photos in the Partying album, even if the employer is only
authorized to see two of the photos. To solve the problem, the system might
store one count for Alice’s public photos and one count for her private photos,
both of which could be updated by triggers. Since storing multiple counts with
different secrecy labels is intentional, the database designer should make the
decision explicit by including the secrecy label in the key.

3. Queries can specify exact secrecy and integrity labels as the selection pred-
icate for any relation. Since polyinstantiated tuples are guaranteed to have
different labels, specifying exact labels guarantees that violation of uniqueness
constraints will not be observed. This technique works well if the application
knows the exact labels the data ought to have; the system returns the desired
tuple and ignores the others, which are presumably the erroneous ones since
they have the wrong labels.

4. To limit the effects of polyinstantiation due to incorrect secrecy labels, ap-
plications can use integrity labels. Integrity labels don’t guarantee that no
polyinstantiation will be observed, but they limit which code and which
principals can cause confusion. For example, a process running with integrity
label {alice_medical} will only observe polyinstantiated tuples if they were
created by processes that used authority to endorse for the alice_medical tag.
Presumably authority for this tag is limited to entities Alice trusts, such as her
doctors, and if they are trustworthy they will apply the correct secrecy label.

The first two approaches are preferable because they actually prevent polyinstan-
tiation rather than hide it. The latter two solutions are useful, however, if the correct
labels aren’t known a priori, or if label constraints are considered too expensive to
enforce. (Generally speaking, label constraints are no more expensive than foreign
key constraints.)
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5.3 Relationship Constraints

Invariants can also be enforced between tables. The most common multi-table prop-
erty in the relational model is referential integrity,' which enforces a many-to-one
mapping between a referencing relation and a referenced relation. For example, for
each patient visit record in a medical clinic, there should be a corresponding record
with the patient’s basic information, such as name and date of birth. In sQx, these
constraints are called foreign key constraints, and they are enforced directly by adding
FOREIGN KEY clauses to table definitions. This section addresses only foreign keys;
1FDB handles other types of constraints with triggers, covered in section s.4.

5.3.1 The Problems with Referential Constraints

Referential constraints create information channels when the referencing tuple and
the referenced tuple have different labels. This section describes the problem for
secrecy; there are analogous problems for integrity (see section 5.3.3), but they are
not as serious. Suppose tuples in table A are constrained to reference tuples in table
B. There are two problematic cases:

— Inserts. A process with any label can try to insert tuples into A in order to
determine which tuples exist in B. For instance, suppose that in a medical
system, every tuple in the HIVRecords table is constrained to refer to a patient
listed in the HIVPatients table in figure 5-1. A process running with an empty
secrecy label could learn whether a particular patient is in HIVPatients by trying
to insert a tuple for that patient into HIVRecords. The insert will succeed only
if the referenced patient has H1V.

Moreover, the very existence of tuples in A reveals to any readers that the cor-
responding B tuples exist. The leak is established when the tuples are inserted
into A in the first place, so this issue is in fact a consequence of the problem
with inserts. A further concern is one of semantics: even though the constraint
might be enforced over the entire database, processes may encounter dangling
references because their views of the database are restricted.

— Deletes. Suppose that a tuple a in A has a label pair that is more restrictive than
that of a tuple b in B, that is, (a.Ls,a.L;) > (b.Ls,b.L;). Then a process

1. The use of the word integrity in referential integrity should not be confused with integrity tags.
Also see footnote 1 on page 40.
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P with label pair (P.Lg, P.L;) = (b.Ls,b.L;) could learn that a exists by
trying to delete b. For instance, in the preceding example, the HIVPatients
table itself might refer to another table, PatientContact. If the pBMS disallowed
deletion of a patient’s contact information only if he has a referring tuple in
HIVPatients, that provides an effective (albeit destructive) means to determine
which patients have HI1V. For instance, a process running with the same label
as Alice’s PatientContact tuple could attempt to delete that tuple, and if the
delete fails due to a constraint violation, the process knows Alice has H1V.

Some multi-level-secure databases have attempted to address these problems by
requiring the referencing and referenced tuples to have identical labels [72, 73, 101,
128]. This approach is overly limiting: for example, it disallows the constraint that
each user in a Users table must have a password in the Passwords table (with a more
restrictive label pair).

Other database systems require that the referencing tuples have labels at least
as restrictive as the referenced tuples [13, 138]. This restriction solves the problem
with inserts, and it ensures that processes don't observe any dangling references [52].
As with the preceding proposal, however, it disallows constraints such as the one
requiring each user to have a password. Furthermore, it does not prevent the problem
where deletes leak information.

One could imagine clever ways of handling deletes to avoid the channel. For
instance, SQL constraints have an ON DELETE CASCADE option, which automatically
deletes referencing tuples when their referents are removed. However, cascading
deletes can still fail, and thereby leak information. This happens, for instance, when
deleting one of the referencing tuples causes a violation of a different constraint.
More critically, recursive deletes may run afoul of Query by Label’s write rule
(rule 4.2), in which case they will fail anyway.

5.3.2 IFDB’s Solution

IFDB addresses both the insert and delete problems at the time of the insert. When
a process inserts a new referring tuple, it must possess and use appropriate authority
to vouch for the implicit information that may be leaked by the insert, as well as
the information that might be revealed by any subsequent attempt to remove the
referenced tuple. The following rule is enforced:
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Rule s.1. (Foreign Keys — Secrecy)

To insert a tuple a with secrecy label a.Lg, which is constrained to refer to a tuple b
with secrecy label b.Lg, the process issuing the command must declassify for each
tag in the symmetric difference of the two tuples’ secrecy labels, a.Ls © b.Ls.

The symmetric difference of two labels L; and L, consists of the union of L1 \ L, (all
the tagsin L; butnot L, ) and L, \ L (all the tags in L, but not L ). As stated above,
the rule only handles secrecy; integrity is discussed in section §.3.3. The justification
for the rule comes in two parts:

— The requirement that the process must declassify for b.Ls \ a.Ls addresses the
problem with inserts described in the preceding section. In effect, the process
must be able to see tuple b (if it exists) in order to verify the constraint, as if

by the following pseudocode:

procedure insertReferencing(a, b):
addSecrecy(b.Ls \ a.Lg)
read b; abort if no tuple b is visible
declassify(b.Lg \ a.Lg)
insert(a)

The process effectively becomes contaminated because it must verify that b
exists before inserting a. Thus, it needs to declassify in order to verify the
constraint, and the rule merely makes this operation explicit.

— The requirement that the process must declassify for a.Ls \ b.Ls addresses the
problem with deletes described in the preceding section. The rule recognizes
that deletions expose about information in the referencing table; it ensures that
this is acceptable by requiring the inserter to have authority for all the tags that
must be removed in order for the deleter to learn about these insertions. More
concretely, the insert of @ means that a subsequent attempt to delete b might
fail and thus leak the existence of a to a process running with secrecy label
b.Ls. By declassifying the tags that are in a.Ls but not in b.Lg, the process
performing the insert vouches that this potential unsafe flow is acceptable.

The affected tags must be identified explicitly in the INSERT statement using
a DECLASSIFYING clause. Figure s-2 shows two foreign key relationships where
DECLASSIFYING clauses can be used. In figure s-2(a), public information references
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ActiveOrderStatus
{} 983462  true  Foreign key (order_id)
{ 983463 false references PharmacyOrders(id)
E PharmacyOrders
{bob_medical} 983462 Bob 6/26/1978 albuterol
{alice_medical} 983463 Alice 2/13/1960 warfarin
{cathy_medical} 983464 Cathy 4/22/1941 capecitabine
Primary key (id)

(a) Public information about the status of active pharmacy orders references the sensitive
order details.

PatientVisits
{cathy_medical} Cathy 4/22/1941 1/14/2012  J1700
{alice_medical} Alice 2/13/1960 6/15/2012 G0404
{bob_medical} Bob 6/26/1978 6/16/2012 J1700

Foreign key (proc_code) references ProcedureCodes(code) ,"

,>~ " ProcedureCodes

G0404 50 electrocardiogram

{} J1700 35 hydrocortisone injection
{ Q0084 120 chemotherapy by infusion
{ V2624 30 polishing artificial eye

Primary key (proc_code)
Source: Healthcare Common Procedure Coding System, Level 11, 2012

(b) Sensitive patient visit records refer to public medical procedure codes.

Figure 5-2: The tables demonstrate two foreign key relationships that don’t reveal
significant information. In 1IFD B, applications use DECLASSIFYING clauses
to vouch that these relationships are okay. Integrity tags are omitted to
simplify the example.
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sensitive information. The pharmacy maintains a table of active pharmacy orders
that indicates which orders are ready. The entries in the table refer to sensitive
information about the orders themselves via a foreign key. Inserting a new entry into
ActiveOrderStatus doesn’t reveal anything other than the existence of a particular
order number, so the inserting process uses a DECLASSIFYING clause as follows:

INSERT INTO ActiveOrderStatus (order_id, ready)
VALUES (983464, false)
DECLASSIFYING (cathy_medical);

Figure 5-2(b) illustrates a case where sensitive tuples refer to public tuples. A
hospital uses the PatientVisits table to keep track of what medical procedures are
performed on patients. Medical information systems use standardized procedure
codes for billing purposes; information about the cost of each procedure is stored in
a separate ProcedureCodes table. A foreign key constraint enforces the requirement
that each procedure code in the PatientVisits table must refer to a valid code in
the ProcedureCodes table. An attacker who can delete procedure codes can use
the constraint to determine what medical procedures have been performed at the
hospital. However, in a large clinic, this isn’t a serious threat to patient privacy, and
furthermore the ProcedureCodes table can simply be protected from modification
through the use of access control or integrity tags. Thus, a process inserting a new
patient visit for Cathy uses a DECLASSIFYING clause as follows:

INSERT INTO PatientVisits (patient_name, patient_dob, visit_date, proc_code)
VALUES ('Cathy’, '4/22/1941', '6/30/2012", 'Q0084")
DECLASSIFYING (cathy_medical);

DECLASSIFYING clauses are explicit declarations that any information flow chan-
nels created due to an insert of a tuple with a foreign key reference are acceptable.
The process performing the insert must additionally have authority to declassify all
the tags named in the clause. Therefore, the foreign key rule supports IFDB’s goal
that unsafe information flows can only occur through explicit use of authority.

Although section 5.3.1 demonstrates that some foreign key constraints have the
potential to leak significant information, the tables in figure -2 show that some
foreign key constraints don’t leak any information that would be useful to an attacker.
Thus, as a matter of convenience, it might be desirable to assert that the constraint is
“harmless,” so that processes don’t require authority to insert. In 1FD B, this can be
done by creating a stored authority closure to do the insert and writing a rewrite rule
that transforms insert statements into calls to the closure. IFDB does not provide
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a more direct way to express this because it is not completely safe: it violates the
requirement that only processes running with authority for a tag should be able to
leak information protected by that tag. Specifically, a pair of collaborating malicious
processes with no authority could abuse the constraint and the authority of the
closure to leak arbitrary information at a high rate. For instance, one process becomes
contaminated by the alice_password tag and inserts a pharmacy order with id  if the
nth bit of Alice’s password is a 1. The other process runs with an empty secrecy label
and inserts an entry for order » into OrderStatus; it learns the nth bit of the password
based on whether this insert succeeds or not. Nevertheless, “harmless” constraints
might be acceptable in deployments where the goal is merely to protect against bugs,
not malicious code.

Updates can be regarded as a delete followed by an insert, and thus, update
statements also require DECLASSIFYING clauses. However, these clauses are only
required when the update changes a field that is part of a foreign key reference into
another table. Changes to other fields don’t affect the constraint.

5.3.3 Referential Constraints and Integrity Labels

The problems with referential constraints and secrecy have analogues for integrity, al-
though the practical consequences of integrity “leaks” are less serious. The problems
are as follows:

— Deletes. If low-integrity processes can create references to high-integrity tuples,
then those processes can interfere with the ability of high-integrity processes
to delete those tuples. For example, suppose that appointment records in a
medical clinic refer to doctor tuples via a foreign key. If Bob is fired from his
job as a doctor at the clinic, he could prevent a high-integrity process from
removing his doctor tuple by creating bogus appointments.

— Inserts. A process with high integrity that inserts a tuple referring to a low-
integrity tuple is exposing itself to possible errors, because the success of the
operation depends on the low-integrity tuple.

The problems can be addressed by extending rule 5.1 to handle both secrecy
and integrity. As with secrecy, the goal is not to prevent the channel, which exists

because the constraint is enforced between tuples with different labels. Rather, the

72



5. CONSTRAINTS

goal is to ensure that when unsafe flows do arise, the programmer acknowledges and
properly vouches for them.

Rule 5.2. (Foreign Keys)

To insert a tuple a labeled (a.Ls, a.L;), which is constrained to refer to a tuple b
labeled (b.Ls, b.L;), the process issuing the command must declassify for each tag
in the symmetric difference of the two tuples’ secrecy labels, a.Ls©b.Lg, and it must
endorse for every tag in the symmetric difference of their integrity labels, a.L;©b.L;.

Endorsing for a.L;\ b.L; is necessary because the process running with integrity
a.L; needs to read the lower-integrity tuple b in order to verify the constraint; thus,
a lower-integrity process could interfere with the high-integrity process by deleting
b. Endorsing for b.L; \ a.L; handles the case where a low-integrity tuple references
a high-integrity tuple; the process performing the insert must vouch for the fact that
it is interfering with the ability of higher-integrity processes to delete the tuple.

Rule 5.2 demonstrates that this thesis handles secrecy and integrity uniformly.
In both cases, it uses a strong definition, noninterference [57], as a basis for reasoning
about covert channels. In essence, noninterference requires that low-secrecy parts
of the system should not be affected by high-secrecy parts of the system (lest they
learn about high-secrecy data), and high-integrity parts of the system should not
be affected by low-integrity parts of the system. Thus, secrecy and integrity are
considered duals of one another.

Treating secrecy and integrity as duals leads to a clean design that is easy to
explain, because there is only a single set of rules, which works for both kinds of labels.
However, from a practical perspective, forcing programmers to add DECLASSIFYING
and ENDORSING clauses to their sQL statements and run code with additional
authority comes at a cost. In the case of integrity, it is not clear that this cost is
justifiable. In essence, the problems prevented by rule .2 are denial-of-service attacks.
One might be perfectly happy with an integrity rule that allows such attacks, but
prevents problems such as trusted medical applications inadvertently using bogus
medical records that don’t have the proper integrity. Thus, for many applications,
integrity semantics based on less strict notions than noninterference may be more
appropriate [93, 149], and future work might introduce alternative integrity rules for
foreign key constraints in a database. Section 11.2.2 discusses the issue further.
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5.4 General Constraints

In addition to the constraints discussed so far, there are other types of constraints that
aren’t expressible in standard sQL, except via assertions or triggers. Some examples
include the following:

— Equational dependencies define algebraic constraints, possibly over aggregate
values. For example, the sum of all loan amounts may not exceed the bank’s
credit limit.

— Inclusion dependencies are similar to foreign keys, except that the referenced
tuple need not be unique. For example, each prescribed drug must be listed at
least once in the pharmacy catalog — but the catalog may have multiple listings,
each for a different manufacturer or formulation.

— Exclusion constraints generalize uniqueness constraints to support require-
ments such as, “No two salespeople should be within 100 miles of each other”

Like most database systems, IFDB doesn’t provide any special support for such
constraints. Instead, constraints other than those covered in preceding sections
of this chapter must be enforced by triggers. Triggers in IFDB are simply stored
procedures that are executed in response to specified types of writes (inserts, updates,
or deletes) on a particular table. Triggers may enforce a constraint by aborting; by
modifying the requested operation; or by performing an additional operation, such
as updating a bank balance every time a new deposit or withdrawal tuple is inserted.

It is important to understand the information flow implications of constraints
implemented through triggers. This chapter has developed semantics for two useful
kinds of constraints: uniqueness constraints and foreign keys. Many triggers are
similar to these, and therefore, similar rules may be appropriate. For example, inclu-
sion dependencies are similar to foreign keys, while exclusion constraints resemble
uniqueness constraints. However, there is no general theory about how to handle
the information flows that might arise due to relationships among tuples governed
by arbitrary constraints. Appropriate semantics must be motivated by the type of
constraint and the needs of the application.

Nevertheless, there is a methodology for writing triggers. The database designer
has two choices. One choice is to make the trigger an ordinary stored procedure, in
which case it runs with the authority of the process attempting to modify the table.
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In this case, the trigger can only enforce the constraint with respect to the subset of
the database visible to the process. However, enforcing the constraint will not result
in any unsafe flows because the trigger does not do anything that the caller could
not do itself. The second choice is to make the trigger a stored authority closure, in
which case it can use its authority to enforce the constraint across all tags that it has
authority for. However, by using authority, the trigger could create unsafe flows and
expose information. Therefore, as with any other authority closure, it is important
to consider how that authority might be abused.

Figure s-3 contains the definition of a checkMedicationExists trigger that demon-
strates the first choice. The trigger procedure does not use any authority, so it cannot
leak any information. It is attached to the PharmacyOrders table in figure 5-2(a), and
it implements half of a foreign key constraint: the procedure checks on insert into
PharmacyOrders that the order refers to a valid medication, which must be visible to
the process. However, it does not check whether writes to Medications (not shown)
invalidate existing pharmacy orders. Triggers like this one are useful: since the trigger
implements a constraint that is weaker than a full foreign key constraint, the inserting
process does not need the same authority as it would if a foreign key constraint had
been used (see section s.3). Furthermore, this weaker constraint is reasonable if
updates to the Medications table are restricted to trusted processes via integrity tags
or an access control policy.

The trigger shown in figure 5-4 is an example of the second choice — running
a trigger with authority. The trigger enforces the constraint that all tuples in the
UserAccounts table have unique values for the username field. If each account has
a different label, for instance {alice_account} for Alice’s account, this is an unsafe
flow: attempting to insert a new account tuple might leak the fact that a certain
username already exists. Normally 1FDB prevents unsafe flows like this one by
using polyinstantiation (section s.2), but leaking the existence of a username when
another user tries to register the same username is both benign and unavoidable.
By declassifying inside the closure, the programmer acknowledges that this leak is
acceptable. It is easy to reason about what is being leaked: The only action the closure
takes is to succeed or fail based on whether there is an existing account with the
given username. Therefore the procedure can only leak that one bit of information
by declassifying.

Triggers (as well as other types of constraints) can be evaluated at the time of the
action that caused the trigger to fire, or if the action is part of a larger transaction, they
can be deferred until the entire transaction commits. (Chapter 6 covers transactions
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CREATE FUNCTION checkMedicationExists()
RETURNS trigger AS

$$
BEGIN
PERFORM * FROM Medications WHERE medication = NEW.medication;
IF NOT FOUND THEN
RAISE EXCEPTION 'medication % does not exist’, NEW.medication;
END IF;
RETURN NEW;
END;

$$ LANGUAGE plpgsql;

CREATE TRIGGER prescriptionMedicationTrigger
BEFORE INSERT ON PharmacyOrders
FOR EACH ROW EXECUTE PROCEDURE checkMedicationExists();

Figure 5-3: The checkMedicationExists procedure runs as a trigger and ensures that
medications named in new pharmacy orders actually exist in the Medica-
tions table. The procedure does not use any authority, so it cannot cause
any information leaks.
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CREATE FUNCTION checkAccountExists()
RETURNS trigger PRINCIPAL accountAdmin AS
$$
DECLARE
existingAccount VARCHAR;
BEGIN
PERFORM addSecrecy(all_user_accounts);
SELECT * INTO existingAccount FROM UserAccounts
WHERE username = NEW.username;
PERFORM declassify(all_user_accounts);
IF existingAccount IS NOT NULL THEN
RAISE EXCEPTION 'user % already exists', NEW.username;
END IF;
RETURN NEW;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER accountUniqueTrigger
BEFORE INSERT ON UserAccounts
FOR EACH ROW EXECUTE PROCEDURE checkAccountExists();

Figure 5-4: The checkAccountExists stored authority closure is invoked as a trig-
ger on each insert into the UserAccounts table. It runs with authority
for the all_user_accounts compound tag, and it uses its authority to
ensure that all user accounts that are properly labeled with subtags of
all_user_accounts have unique usernames. Note that although the trigger
declassifies the all_user_accounts, the semantics for authority closures
ensures that it cannot inadvertently remove any account tags from its
caller’s label (see section 4.4).
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in 1FDB.) The former option catches errors sooner, but the latter is necessary
in certain situations. For example, if a constraint specifies a one-to-one mapping
between tuples in two tables, checking the constraint after each insert wouldn’t work;
the check must be deferred until after both tuples are inserted. Deferred triggers
require some extra bookkeeping in IFDB: they run with the information flow labels
that the process had at the time of the action that caused the trigger to fire, rather
than the labels of the process at the time the transaction commits. This ensures that
triggers have consistent semantics regardless of whether they are deferred until the
end of the transaction. For example, if a process inserts a tuple and then declassifies,
a trigger that is validating the insert should see the subset of the database that was
visible to the process before it declassified.

5.5 Constraints on Labels

Label constraints, also known as classification constraints, restrict the labels that
tuples are allowed to have. The SeaView multi-level secure DBMS [101] first intro-
duced the idea as a way “to protect against labeling errors as well as to relieve
the user of the burden of remembering all of the rules for classifying data” [37].
IFDB also supports label constraints, but has a different philosophy about these
constraints. In IFDB, the supposition is that most database interaction happens
through applications, not through human users. Furthermore, these applications are
subject to information flow restrictions as well. (In contrast, human operators are
less amenable to information flow restrictions.) Therefore, label constraints are used
differently, and can in fact be used to eliminate some of the issues identified earlier
in this chapter, such as polyinstantiation. This section lists some of those uses:

— Preventing labeling errors. As in SeaView, label constraints can prevent data
from being labeled incorrectly. Unlike SeaView, IFDB uses the DIFC model,
so such constraints usually require referring to another table to determine the
appropriate label. For example, figure 5-5 shows how to use foreign keys to
enforce the constraint that patient visit records have the same secrecy label as
the respective patient’s basic medical information. More complex constraints,
such as one that ensures that a tuple must have at least a certain tag in its
secrecy label, can be enforced with triggers. Triggers have two advantages:
they are more general, and they avoid some of the issues with foreign keys
discussed in section §.3.
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PatientVisits
{cathy_medical} Cathy 4/22/1941 1/14/2012  J1700
{alice_medical} Alice 2/13/1960 6/15/2012 G0404
{bob_medical}  Bob 6/26/1978 6/16/2012 J1700

Foreign key (_label, patient_name, patient_dob) references Patients

Patients
{alice_medical} Alice 2/13/1960 O+
{bob_medical} Bob 6/26/1978 A- bees
{cathy_medical} Cathy 4/22/1941 B+

Primary key (_label, patient_name, patient_dob)

Figure 5-5: A foreign key relationship between the PatientVisits table and the Patients
table ensures that patient records are consistently labeled.

A particularly useful constraint that can be enforced with a trigger is that all
patient medical records should be labeled only with tags that are subtags of
the compound tag all_patients_medical. Such a constraint forces all the tags
to be of the right “type,” and ensures that no additional contamination is
present in the labels. With this constraint, it is possible to run a statistical
computation with label {all_patients_medical} that is guaranteed to observe
all patient records.

— Preventing polyinstantiation. Another invariant that should be enforced on the
tables in figure s-5 is the constraint that there is only one Patients record for
Alice. Polyinstantiation (section 5.2) creates the possibility that two records
might exist with different labels.> It is possible to prevent polyinstantiation by
requiring that each patient tuple have the correct label. The mapping between
patients and their tags could be stored in another table, say PatientTags, and
checked by a trigger on each insert into Patients. This solution would seem

2. sQL requires that the target of a foreign key reference be covered by a uniqueness constraint.
Therefore, the secrecy label has actually been included in the primary key of Patients. Doing
this technically prevents polyinstantiation, but on a semantic level, it is still wrong to have
multiple Patients tuples for the same patient.
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to lead to an infinite regress: how does one prevent polyinstantiation in the
PatientTags table? One answer is to constrain all tuples in the table to have
empty secrecy labels. If the table were indexed by an opaque identifier such as
medical record number, this would be a fine solution. Such a table is commonly
needed anyway, so that processes know what tags to add to their labels to read
a particular patient’s records. An alternative is to protect the contents of the
PatientTags table with a tag associated with an authority closure that uses the
information only to verify that patient records are properly labeled.

— Preventing applications from seeing dangling references. Although IFDB enforces
referential integrity constraints, applications may observe apparent violations
of these constraints because they don’t have the proper labels to see the refer-
enced tuple. In some cases, this is deserved. For example, if there is a constraint
that every user has a password, that does not mean that a process that sees
Bob’s contact information ought to be able to read his password without first
raising its label. However, if a label constraint requires the referenced tuple to
have the “correct” labels, then any process with those labels will observe no
violations of referential integrity. Another example is the one in figure s-5: no
process will ever observe a violation of the foreign key constraint, because the
referring and referenced tuples are constrained to have identical labels.

This chapter has argued that there is a fundamental tension between constraint
enforcement and information flow control: sacrifices in integrity constraint enforce-
ment must be made to avoid covert channels. Supporting examples have shown
that badly behaved processes can abuse constraints to learn sensitive information
protected by those constraints. The insight of this section is that incorporating appro-
priate label constraints to restrict bad behavior can guarantee both data consistency
and freedom from covert channels.

5.6 Summary of Contributions

This section briefly summarizes the contributions of this chapter and highlights how
1FDB differs from prior work. Section 10.4 presents the related work on constraints
in multi-level-secure databases in greater detail.
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The ideas of polyinstantiation and label constraints were introduced in Sea-
View [101]; IFDB’s contributions here are simplifying the semantics of polyinstanti-
ation and advocating a practical methodology for managing polyinstantiation. In
particular, the use of label constraints to prevent polyinstantiation safely is new.

Additionally, IFDB pioneers the idea of using DECLASSIFYING and ENDORSING
clauses to vouch for the information flows created by foreign key constraints. Prior
systems either allowed unsafe flows or disallowed foreign key constraints between
tuples with certain labels. Finally, this chapter develops new semantics and a method-
ology for using triggers to enforce general of constraints.
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Transactions

This chapter discusses covert channels that can arise due to support for transactions,
and describes how 1IFDB eliminates the channels. Transactions can create two types
of channels. The first has to do with the fact that processes can leak information
by choosing to abort transactions, while the second is related to conflicts among
transactions issued by processes with different labels.

An important assumption made in this chapter is that dirty reads are not allowed;
transactions may not read uncommitted data from other active transactions. Dirty
reads create the possibility of cascading aborts and unrecoverable schedules [61],
and they complicate the reasoning about information flows. IFDB is based on
PostgresQw, which does not allow dirty reads. The problems and solutions presented
in this chapter are not specific to a particular isolation level, however; they apply to
serializability, snapshot isolation, sQL’s REPEATABLE READ, and so forth.

6.1 Label Changes and Aborts

It is crucial that processes be able to write tuples with different labels as part of
a single transaction. For example, when a new user signs up for an account on a
website, the user’s contact information tuple may have a different secrecy label from
her password tuple, but both tuples should be added to the database as a single
atomic action. Section 4.3.5 explains that IFDB makes this possible by allowing
processes to change their labels in the middle of a transaction.
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A client process can abort a transaction after the process has raised its labels,
however, and this can lead to a covert channel. Specifically, the decision of whether
to commit or abort can leak one bit of information per transaction. The following
code listing, written in PL/pgsQL, shows how a process might abuse the channel to
leak some of Alice’s medical information to a collaborator who has an empty secrecy
label. The example makes use of the HIVPatients table from figure s-1 on page 64.

BEGIN
INSERT INTO Foo VALUES ('Alice has HIV");
PERFORM addSecrecy(alice_medical);
SELECT * FROM HIVPatients WHERE pname="Alice’;
IF NOT FOUND THEN
ABORT;
END IF;
COMMIT;

This code begins a transaction and writes the string “Alice has H1v” with an
empty secrecy label. Then it raises the secrecy label of the process and checks
whether Alice actually has H1v. The process is now contaminated, so it is unable
to release the sensitive information it read directly, assuming it has no authority
to declassify the alice_medical tag. However, the process reveals the information
indirectly by committing the transaction if Alice has H1v and aborting otherwise.
The result is that the string “Alice has HIV” is written with an empty secrecy label
if and only if Alice has HIV. Subsequently, another process with an empty secrecy
label could read the string from table Foo and release this sensitive information to
the world. Although the example contains malicious code, the fact that aborts can
occur due to errors raises the prospect that such leaks could also occur through
exploitation of buggy code. In fact, inducing errors to reveal sensitive information is
a well-known attack [110].

One could imagine trying to solve the problem by restricting the circumstances
under which aborts are allowed. Fabric [96] does this, as explained in section 10.6.1.
However, clients can cause transactions to abort in many ways, such as by issuing
invalid operations, attempting to violate integrity constraints, or inducing deadlocks;
preventing all of these in a dynamic system with general transactions is unrealistic.

The intuition for fixing the problem is that the information flow rules should
apply at the commit point, which is when the writes become visible to other transac-
tions. (Dirty reads would invalidate this line of reasoning, but they are not allowed.)
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IFDB enforces the rule that the commit label, that is, the process label at the commit
point, must be no more restrictive than any tuple in the transaction’s write set. If a
process violates the rule by attempting to commit a transaction with a higher label
than allowed, the result is an error, which causes the transaction to abort. Formally,
the rule is as follows:

Rule 6.1. (Transaction Commit)

Let Wr = {11,...,7,} denote the set of tuples written by a transaction T issued
by process P. P can commit T if Vz;€ Wr: (P.Ls, P.L;) < (t;.Ls, 7;.L1), where
(P.Ls, P.Ly) is the current label pair of P.

The rule effectively means that transactions running without authority cannot
commit if they become more contaminated after performing a write. In particular, the
transaction in the example cannot leak whether Alice has H1V, because it will always
abort. However, a process that has authority for a tag can add that tag to its label and
subsequently remove it before the end of the transaction in order to write differently
labeled tuples atomically. Such a transaction could expose information, but this is
allowed because it used the proper authority to declassify the tag in question.

Figure 6-1 provides some intuition for why the rule is necessary and sufficient
by showing three transactions that satisfy the rule and three that do not. Most
transactions in practice resemble T;: no label changes occur during the course of the
transaction. Transactions are also allowed to raise their labels prior to performing
any writes, as T, does. T) is safe because the same sequence of reads and writes
could have been done by T;. T has more restrictive labels than T} for the first read,
but by rule 4.1, T} it can read anything that T can read.

T; writes tuples with different labels and is also permitted by the rule. This
transaction roughly captures the motivating example given at the beginning of this
section: adding a new user account involves writing a contact tuple with one label
pair and a password tuple with a different label pair. The process that creates accounts
is trusted to protect the account information it is adding; it declassifies the password
tag to vouch that nothing it did while contaminated with that tag will affect the
outcome of the transaction in a dangerous way. (Of course, the contact and password
information may have incomparable labels, which can’t be represented in the figure;
for instance, the secrecy labels might be {alice_contact} and {alice_password}. In this
case, the process must have authority for both tags so that it can reduce its secrecy
label to the greatest lower bound of the two labels, which is {}.)
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Figure 6-1: The timeline shows the labels of six transactions as they perform a series
of reads and writes, and finally attempt to commit. For each transaction,
the dotted line shows the maximum label that the transaction would be

allowed to commit with.
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T} has exactly the same form as the HIVPatients example, and T is just T4 with
some additional operations. Rule 6.1 does not allow either transaction to commit,
thus preventing them from introducing unsafe flows. The rule also disallows T§, but
this raises an interesting question: is the rule too strict? T is like Ts, but it does
not perform any reads of higher-labeled tuples. Thus, it would seem that T§ is not
subject to the problem demonstrated by the HIVPatients example. However, the
write T performs after it raises its label can still influence its behavior via integrity
constraint violations and concurrency conflicts. Therefore, committing T would
still potentially lead to a covert channel. The rule prevents this problem by forcing
T to abort regardless.

Concurrency conflicts aren’t a concern just for Tg. For instance, suppose T3 s first
write affects the same tuple as T}’s first write. If T were to decide whether to stall or
abort on account of the secret it subsequently reads, this might introduce an unsafe
flow if it affects the outcome of T. This section has addressed information flow issues
only for independent transactions; the next section explains how IFDB prevents
concurrency conflicts among transactions from introducing covert channels.

6.2 Conflict Channels

Concurrent transactions pose a potential problem because conflicts that involve
transactions with different labels could introduce signaling channels. Without ade-
quate precautions, a transaction with low secrecy might be blocked or aborted due
to the actions of a high-secrecy transaction, or a high-integrity transaction might
similarly be affected by a low-integrity transaction. Clients can keep transactions
open for unbounded amounts of time, so such channels are easy to exploit.

Additionally, contention for shared resources such as memory, disk 1/0 band-
width, and cPU can introduce timing channels, causing transactions to block tempo-
rarily due to the activity from other clients. Such channels can be mitigated, but this
is an implementation concern. This section considers only covert channels in the
model; in effect it assumes an infinitely fast database. For example, if a high-integrity
transaction cannot commit because its writes conflict with those of a low-integrity
transaction, that is a problem in the model. If the high-integrity transaction is
merely delayed for a bounded amount of time due to 1/0 contention with the
low-integrity transaction, that is a problem in the implementation. Timing channels
in the implementation are discussed in section 8.5.1.
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Ty T

read(x{})
write(x{})

£ addSecrecy(a)
= read(s,{a})
abortifs, =0

wait forever

read(x{})
write(x{})

Figure 6-2: A conflict between a high-labeled transaction T}, and a low-labeled
transaction T} could potentially introduce a covert channel. T}, and T}
both start with empty labels, and then Tj, raises its label. The notation
write(x{}) means that the transaction writes tuple x, which has label {}.

Figure 6-2 illustrates a conflict channel. Two processes Pj, and P, start with empty
labels, and Py, starts a transaction Tj,. T}, updates tuple x, then raises its secrecy label
to {a} and reads a secret s,. Since T}, wrote a tuple with an empty secrecy label,
rule 6.1 will not allow it to commit with secrecy label {a}. However, depending on
whether s, is zero, P, either aborts T}, or stalls indefinitely. Subsequently, P; starts
transaction Tj, which also attempts to update x. Thus, T; conflicts with T}, but only
if s, is nonzero. If the DBMS were to abort T; or force T; to block until T}, finishes,
P; could learn whether the secret s, is zero. This flow is unsafe, since neither P, nor
P required authority for the tag a. There are two ways to address the problem:

— Transaction Clearance. After a transaction performs a write, the clearance of
the process that issued it is limited until the end of the transaction. Specifically,
the process cannot add secrecy tags or remove integrity tags that it does not
have authority for. This restriction is reasonable because rule 6.1 states that
a transaction is doomed to abort if its label when it tries to commit is more
restrictive than any of the tuples it wrote.! In the example, this rule prevents
Py, from adding secrecy tag a unless it has authority for that tag.

1. A few kinds of computations are allowed by rule 6.1 but disallowed with transaction clearance.
An example is a process that starts a transaction and adds secrecy tags in a reduced authority
call, leaving it to the higher-authority caller to remove those tags.
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— Flow-Safe Scheduling. The transaction manager can schedule transactions and
handle transaction conflicts in such a way that conflicts never result in unsafe
flows. For instance, it is safe to abort T}, in the preceding example, since Pj,’s
label is more restrictive than P;’s.

Flow-safe scheduling provides stronger guarantees than transaction clearance.
Specifically, flow-safe scheduling meets the goal that all unsafe flows should be ex-
plicit; it ensures that conflict channels can only introduce unsafe flows of information
protected by a given tag if a process explicitly declassifies or endorses for that tag in
the middle of a transaction. In contrast, transaction clearance allows transactions to
introduce unsafe flows if the process that issued them merely had authority for the
tag, even if it did not use that authority yet.

However, the transaction clearance approach is simple and ultimately more
practical. Flow-safe schedulers introduce performance penalties, either by severely
limiting concurrency or creating the potential for starvation. Furthermore, conflict
channels are rare, and it’s hard to imagine trusted code inadvertently leaking sig-
nificant information via such channels. Appendix A describes how to do flow-safe
scheduling in 1FD B, and explains the drawbacks involved.
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Chapter

7 Case Studies

In evaluating IFDB, there are three important questions to answer: First, does IFDB
provide abstractions that make DIFC easy to use in real applications? Second, how
well does IFDB improve information security? Third, how well does it perform? This
chapter addresses the first two questions, while chapter g addresses the last question.

Two applications, CarTel and HotCRrP, were ported to use IFDB and PHP-IF.
These applications are good candidates because they have rich policies for sharing in-
formation among users. Furthermore, both of them store data in relational databases,
and both are written in PHP. The conversion effort addressed only confidentiality
concerns, not integrity. Although 1FDB was designed as a way to build security
into new database-backed applications, the conversion of these existing applications
required only a modest effort: 4.5% of the CarTel code base and 7% of the Hotcrp
code base were changed. In the latter case, most changes are related to the fact that
HotcRrp was designed for MysQL and made numerous nonstandard assumptions.
Therefore, it had to be modified to work with 1FD B, which is based on PostgresQqL.

Like most web applications, the original versions of CarTel and Hotcrp put
complete trust in all of the application code. Therefore, bugs in any part of the
code had the potential to compromise privacy. In fact, both applications were
vulnerable to several leaks, and converting them to use IFDB fixed these leaks. One
previously unknown bug in HotcRrpP leaked the contact information for all the
conference participants, and 1FDB prevented the leak. Additionally, two leaks from
older versions of HotCRP were reintroduced, and 1FDB prevented those leaks as
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well. Using 1FDB also fixed three types of vulnerabilities in CarTel. Additionally,
much less application code had to be trusted when using 1FDB, which made security
easier to reason about.

71 CarTel

CarTel [70] is a mobile sensor network that collects location data and other infor-
mation from GPs-equipped cars. Users can see maps and statistics about their past
drives through the CarTel website, get real-time traffic information derived from
other users’ drives, and compare their drives with their friends’ drives.

7.1 The CarTel Implementation

The present CarTel implementation is a prototype produced by a research project
studying mobile sensor networks. Vehicle location readings are sent to a central
portal called the track server, where they are stored in a relational database. The track
server is written in Python.

Two interfaces are available to extract data. A streaming database, ICEDB, sup-
ports continuous queries such as real-time traffic information for mobile applications.
A web portal provides users with information about past drives, as well as current
car locations. The focus here is on the web portal, which uses ad hoc privacy controls
enforced by PHP scripts running on the web server. There are sixty-two such scripts.
Each pHP script has complete access to all users’ location data, and is trusted to
ensure that data aren’t released inappropriately. This is a common design, but it led
to many security bugs.

Figure 7-1 shows the relevant parts of the schema in CarTel before it was ported
to use IFDB. All user account information, including usernames, contact information,
and passwords, is stored in the Users table. The Friends table stores settings related to
how users have chosen to share their data with others; the concept is discussed in
the following section. The Cars table stores records about each user’s cars, including
the 1D and the user-assigned name of the car.

The track server inserts raw location data into the Locations table. Triggers and
PHP code process the location readings and break them into drives, which are stored
in the Drives table. The system considers a car to have started a new drive if the car
has not moved significantly over a five-minute period. To speed up common queries,
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Table Contents

Users usernames, contact information, and passwords
Friends friender-friendee mappings and settings

Cars information about users’ cars

Locations current and historical car locations
LocationsLatest latest location of each car

Drives past drives

LastDrive most recent drive for each car

Figure 7-1: The original CarTel schema contains tables for user account data, friend
relationships, location data, and information about users’ cars. Raw
location readings are inserted into Locations initially, and subsequently
processed into discrete drives.

the LocationsLatest and LastDrive tables track the most recent location and drive
for each car. They are kept up-to-date by triggers in the Locations and Drives tables,
respectively.

CarTel uses primary keys (and hence uniqueness constraints) in the larger tables,
such as the ones that store location data. There are no DBMSs-enforced foreign key
constraints, but there are a number of implicit constraints; for instance, each location
and each drive refers to a valid car. Additionally, the relationships between some
pairs of tables, such as Locations and CurrentLocation, are maintained by triggers as
discussed previously.

7.1.2  Security Requirements

CarTel is intended to protect users’ privacy: the records for a car should only be
accessible to its owner, but the owner can allow friends to see certain information.
Additionally, real-time traffic computations may use anonymized location data, but
the focus here is on users and their friends.

There are six main types of user data to protect, each with a different security
policy. There are also security policies for other types of information, such as map
data and access logs, but these are not considered in this chapter. The relevant types
of data are:

— Names. The usernames and full names of each user are available to all other
users in order to allow users to designate which other users are their friends.
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— Contact Information. Each user optionally provides an email address and street
address, and this information is not shared with others.

— Passwords. A user’s password should not be released, even to the user.

— Current Locations. A user can see the locations of his cars, and he can designate
“friends” who are allowed to see this information as well.

— Past Drives. Similarly, a user can designate a (possibly different) group of
“friends” who are allowed to compare their past drives with his.

— Cars. Each user and both types of that user’s friends can see the names and
icons associated with that user’s cars.

To allow users to select friends, the list of usernames and their corresponding
real names is public. Additionally, privacy policies for users’ friend lists are not
considered here; friend relationships are considered public knowledge.

7.3 Securing CarTel With DIFC

In the modified version of CarTel, IFDB and PHP-IF work together to enforce the
policies stated in the preceding section. When a user Alice drives to work, the track
server labels location readings from her car with tags she owns and inserts them
into the database. Any web script that reads those entries becomes contaminated
by those tags. Once contaminated, anything it writes back to the database is also
contaminated, and it cannot communicate with the outside world, unless it has
proper authority and declassifies the information.

Tags were introduced to handle the different types of confidential informa-
tion. A single tag, sys:auth, protects all user passwords, and only the CreateUser,
AuthenticateUser, and ChangePassword closures have authority for this tag. Each
user, for instance Alice, has four tags for her data: alice_contact protects her address,
alice_location covers her current location, alice_drives is for her past drives, and
alice_cars is attached to information about her cars.

Labeling tuples properly required several changes. The Users table contained
information governed by different security policies, so it was vertically partitioned
into three tables: UserNames, UserContact, and Passwords. A Users view that joins
the former two tables provides compatibility with existing code. No other schema
changes were required, since the remaining tables were already partitioned according
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Table Secrecy Label Contents

UserNames {3} usernames and full names
UserContact {user_contact} user email and street addresses
Passwords {sys:auth} user passwords

User Tags {3} secrecy tags for each user
Friends {3} friender-friendee mappings
Cars {user_cars} information about users’ cars
Locations {user_drives, user_location} current and historical car locations
LocationsLatest {user_location} latest location of each car
Drives {user_drives} past drives

LastDrive {user_drives} most recent drive for each car

Figure 7-2: CarTel user data are stored in 1IFDB tables, where each tuple has a
user-specific secrecy label.

to confidentiality needs. Additionally, the track server must attach the appropriate
tags before inserting the tuples into the database. By necessity, the track server is
trusted with all users’ data, and there was no attempt to reduce the amount of trust
required in the track server. However, some changes were needed to ensure that
location readings could be labeled efficiently, as discussed in section 9.2.2.

Figure 7-2 shows the modified schema and the labeling strategy. Tuples in the Lo-
cations table containing location readings for Alice’s cars can be used to compute past
drives, but they also reveal current locations if they are recent enough. Therefore, they
are assigned the label {alice_drives, alice_location}. These tuples are subsequently
processed to produce past drives, stored in the Drives table, and the latest locations
of each of Alice’s cars, stored in LocationsLatest. The past drives are labeled with
{alice_drives}, and the latest locations are labeled {alice_location}.! Alice can allow
her friend Bob to see one type of information or the other by delegating authority
for alice_drives or alice_location to him; the appropriate delegations are added or
revoked whenever Alice updates her friend settings.

A substantial amount of code in CarTel is involved in transforming raw location
data into drives. Figure 7-3 shows the flows of location data. An sQL stored procedure,
driveupdate, runs as a trigger and updates the distance traveled in the drive as new

1. The original CarTel implementation separated Locations from LocationsLatest for performance
reasons. This separation happened to simplify the job of extending CarTel to use DIFC.
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location readings come in. Separately, the PHP function load_drives interpolates the
path of a drive. The latter computation is more expensive, so it is done on demand
when Alice’s drives are plotted on the website, and stored to speed up future requests.
Even though driveupdate and load_drives process secret data, IFDB prevents them
from compromising Alice’s privacy. Both procedures read raw location data with
label {alice_drives, alice_location} and write drives with label {alice_drives}. They run
as authority closures with the ability to declass<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>