
Decentralized Information FlowControl for Databases

by

David Andrew Schultz
MS, Electrical Engineering and Computer Science

Massachusetts Institute of Technology, 2007

BA, Computer Science
University of California, Berkeley, 2004

Submitted to the
Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

Massachusetts Institute of Technology

September 2012

©Massachusetts Institute of Technology 2012. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

July 31, 2012

Certified by .
Barbara Liskov

Institute Professor
Thesis Supervisor

Accepted by .
Leslie Kolodziejski

Chair of the Department Graduate Committee

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/10129974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Decentralized Information FlowControl for Databases

by
David Andrew Schultz

Submitted to the Department of Electrical Engineering and Computer Science
on July 31, 2012, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Abstract

Privacy and integrity concerns have been mounting in recent years as sensitive data
such asmedical records, social network records, and corporate and government secrets
are increasingly being stored in online systems. The rate of high-profile breaches has
illustrated that current techniques are inadequate for protecting sensitive information.
Many of these breaches involve databases that handle information for a multitude of
individuals, but databases don’t provide practical tools to protect those individuals
from each other, so that task is relegated to the application.This dissertation describes
a system that improves security in a principled way by extending the database system
and the application platform to support information flow control.

Information flow control has been gaining traction as a practical way to protect
information in the contexts of programming languages and operating systems. Recent
research advocates the decentralizedmodel for information flow control (difc), since
it provides the necessary expressiveness to protect data for many individuals with
varied security concerns.However, despite the fact thatmost applications implicated in
breaches rely on relational databases, there havebeennoprior comprehensive attempts
to extend difc to a database system. This dissertation introduces ifdb, which is a
database management system that supports difc with minimal overhead.

ifdb pioneers the Query by Label model, which provides applications with a
simple way to delineate constraints on the confidentiality and integrity of the data they
obtain from the database.This dissertation also defines new abstractions formanaging
information flows in a database and proposes new ways to address covert channels.
Finally, the ifdb implementation and case studies with real applications demonstrate
that database support for difc improves security, is easy for developers to use, and has
good performance.

Thesis Supervisor: Barbara Liskov
Title: Institute Professor

3

Acknowledgments

Foremost, I would like to thank my advisor, Barbara Liskov, for her encourage-
ment and support throughout my years at mit. I learned a great deal about how
to approach problems in computer systems through working with Barbara. Her
guidance was instrumental in developing good abstractions and a practical model for
information flow control in databases, and her careful review and many suggestions
significantly improved this dissertation.

I would also like to thank my thesis committee for their help in improving this
work. SamMadden suggested developing CarTel as an example of an application
that could be secured effectively with information flow control. He provided the
source code, advice, and data that enabled me to produce an effective evaluation
of my system in chapters 7 and 9. Nickolai Zeldovich offered numerous insightful
comments that helped me make a strong case for information flow control as a basis
for security.

I am grateful to the members of the Programming Methodology Group at
mit for their support as well. I would especially like to thank Dan Ports for his
encouragement, and for many helpful comments and discussions about this work.
Ben Vandiver convinced me early in my dissertation research that database security
is an interesting problem to work on, and he provided me with his Java-based tpc-c
implementation, which I used to benchmark an early prototype of my system.

Eddie Kohler improved this thesis in two ways. First, as the author of Hotcrp,
an application I use as an example in chapter 7, he validated a security flaw I found
and provided pointers on past Hotcrp information leaks to study. Second, he
unknowingly improved the visual appearance of this document by writing the
free lcdf Typetools software package, which supplies the necessary wizardry to
shoehorn modern font technology into the LATEX typesetting system.

AndrewMyers and his research group at Cornell made the lab a livelier place
during their visit to mit, and they also provided useful feedback and advice regard-
ing this work. Andrew shared his keen insights and perspective on decentralized
information flow control. He also taught me how to use noninterference to think
about covert channels, which helped me develop safe semantics for foreign key
constraints.

Additionally, I would like to thankMike Stonebraker and themany others whose
feedback has strengthened this work. I am also indebted to the folks at the mit
library for their valiant efforts to track down articles about some of the early work

4

on information flow control in databases, many of which are out of print.
On a more personal level, I am deeply indebted to God and family for all of their

love and support throughout my life. My parents, Jean and Randy, and my sister
Laura, have always been there for me in good times and bad. Stacy Fahrenthold
helped keep me sane and well-nourished during the final months of my doctoral
work by cooking delicious dinners for me when I had no time. Before those final
months, my friends and mentors in the mit Tae Kwon Do Club pulled me away
frommy computer and kept me in good physical shape. Furthermore, I could not
have done it without all my other friends at and around mit.

5

6

Contents

1 Introduction 15

1.1 The Case for Information Flow Control 17
1.2 Information Flow Control . 18
1.3 IFDB: Secure Data Processing with DIFC 19
1.4 Organization . 21

2 System Architecture 23

2.1 The Information Flow Platform . 23
2.2 Platform Support for the Aeolus Model 24
2.3 Platform Security Assumptions . 26

2.3.1 Covert Channels . 27

3 Information FlowModel 29

3.1 Tags and Labels . 30
3.2 Processing in Aeolus . 30
3.3 Label Changes and Authority . 31
3.4 Defining the Policy . 34
3.5 Support for the Principle of Least Privilege 34
3.6 Boxes, Shared Volatile State, and Files 35

4 Query by Label 37

4.1 The Relational Model . 38

7

4.1.1 Data Representation . 38
4.1.2 Relational Operators . 39
4.1.3 Constraints . 40
4.1.4 Data Independence and Views 41

4.2 Labels in the Database . 42
4.3 Queries . 43

4.3.1 Information Flow in the Relational Model 44
4.3.2 Reads . 45
4.3.3 Explicit Query by Label . 45
4.3.4 Writes . 46
4.3.5 Writing Tuples With Different Labels 48

4.4 Application Code in the DBMS . 50
4.5 Declassifying and Endorsing Views 52

4.5.1 Defining Views Using Authority 52
4.5.2 Discretionary Views . 54
4.5.3 View Updates . 55
4.5.4 Data Independence . 56

4.6 Access Control and Clearance . 58

5 Constraints 61

5.1 Domain Constraints . 62
5.2 Table-Check Constraints . 63

5.2.1 The Problem with Uniqueness Constraints 63
5.2.2 IFDB’s Solution . 64

5.3 Relationship Constraints . 67
5.3.1 The Problems with Referential Constraints 67
5.3.2 IFDB’s Solution . 68
5.3.3 Referential Constraints and Integrity Labels 72

5.4 General Constraints . 74
5.5 Constraints on Labels . 78
5.6 Summary of Contributions . 80

6 Transactions 83

6.1 Label Changes and Aborts . 83
6.2 Conflict Channels . 87

8

7 Case Studies 91

7.1 CarTel . 92
7.1.1 The CarTel Implementation 92
7.1.2 Security Requirements . 93
7.1.3 Securing CarTel With DIFC 94
7.1.4 Bugs Prevented . 96

7.2 HotCRP . 98
7.2.1 TheHotCRP Implementation 99
7.2.2 Security Requirements . 100
7.2.3 Securing HotCRP With DIFC 103
7.2.4 Bugs Prevented . 105

7.3 Discussion . 106
7.3.1 Reducing the Trusted Base 107
7.3.2 Reasoning about Data Security 108
7.3.3 Schema Decomposition . 109
7.3.4 Model Extensions . 109

8 Implementation 113

8.1 The Database Implementation . 113
8.1.1 Query by Label . 114
8.1.2 Stored Authority Closures 116
8.1.3 Declassifying Views . 116
8.1.4 Constraints . 118
8.1.5 Transactions . 119
8.1.6 Information Flow API . 119

8.2 The Authority State . 120
8.3 The Database Interface . 121

8.3.1 The Frontend/Backend Protocol 122
8.3.2 The Client Library . 122

8.4 Clients . 123
8.4.1 The PHP-IF and Python-IF Implementations 123
8.4.2 Extensions to the Aeolus Model 124

8.5 Covert Channels . 125
8.5.1 Timing Channels . 126
8.5.2 Allocation Channels . 126
8.5.3 Conflict Channels . 127

9

8.6 Reducing the Trusted Base . 128

9 Performance 129

9.1 Experimental Setup . 129
9.2 Macrobenchmarks . 130

9.2.1 CarTel Web Portal Performance 130
9.2.2 Sensor Data ProcessingThroughput 134

9.3 The Cost of Labels . 134

10 RelatedWork 139

10.1 Information FlowModels . 139
10.2 Information Flow Systems . 140

10.2.1 Languages . 142
10.2.2 Operating Systems . 144
10.2.3 Databases . 145

10.3 Fine-Grained Access Control for Databases 148
10.4 Constraints and Information Flow Control 149

10.4.1 Polyinstantiation . 149
10.4.2 Referential Integrity . 152

10.5 Secure DBMS Architectures . 153
10.5.1 The Kernelized Approach 153
10.5.2 Trusted Proxies . 154

10.6 Transactions . 155
10.6.1 Abort Channels . 155
10.6.2 Secure Transaction Scheduling 156

10.7 Inference and Statistical Privacy . 157

11 Conclusions 159

11.1 Contributions . 159
11.2 FutureWork . 162

11.2.1 Proofs of Noninterference 162
11.2.2 Extensions to theModel . 163
11.2.3 Extensions to the Implementation 167

A Flow-Safe Scheduling 169

a.1 Transaction Conflicts and Conflict Labels 170

10

a.2 Flow-Safe Scheduling for Snapshot Isolation 171
a.3 Serializable Flow-Safe Scheduling . 174

References 177

11

12

List of Figures

2-1 Components of an ifdb deployment 25
2-2 Interfaces used by ifdb applications 26

3-1 A summary of Aeolus operations 32–33

4-1 Example: table Inpatients . 44
4-2 Semantics of basic sql statements under Query by Label . . . 49
4-3 Data independence in ifdb . 57

5-1 hiv clinic example . 64
5-2 Foreign key example . 70
5-3 A trigger that runs with no additional authority 76
5-4 A trigger that runs as a stored authority closure 77
5-5 An example of constraints on labels 79

6-1 Transaction commit rule example 86
6-2 A conflict channel . 88

7-1 Tables in the original version of CarTel 93
7-2 Tables and labels in CarTel under ifdb 95
7-3 Information flows in CarTel . 97
7-4 Paper review policy implementation in Hotcrp 101
7-5 Tables in the base version of Hotcrp 102
7-6 Tables and labels in Hotcrp under ifdb 104

13

9-1 Request distribution for the CarTel benchmark 131
9-2 CarTel website throughput . 132
9-3 CarTel web request latency on an idle system 133
9-4 dbt-2 throughput . 136

10-1 Comparison of information flow systems 141
10-2 Polyinstantiation in SeaView . 150
10-3 Polyinstantiation in ifdb . 151

a-1 A conflict channel . 170

14

Chapter

1 Introduction

Online applications are becoming increasingly sophisticated, sharing and processing
data for many individuals in increasingly sophisticated ways. As these systems
become more complex, so too do the security problems. Medical systems must
provide clinicians, receptionists, accountants, medical researchers, auditors, insur-
ance processors, and lab technicians with the data they need to get their jobs done,
but the systems must also protect confidential patient data frommisuse [1]. Social
networking websites are under increasing pressure from users to provide better
tools to protect privacy, but the implementation of such constraints has proved
to be error-prone [30]. Each application’s data processing needs are unique, so
responsibility for ensuring data security typically falls on the application. Since
both the applications and the security policies are complex, information leaks and
other security holes abound.

Despite the fact that there has been much work on improving the security of
these applications, for instance, by eliminating potential sql injection attacks [64,
98, 118, 135], data breaches are still common [23, 48, 147]. For example, 470,000
individuals’ medical records were exposed by a recent breach of a large health
insurer [111]. The breach resulted from a vendor adding a new component to the
insurer’s website, but inadvertently omitting the check to ensure that customers
could view only their own records. Unlike sql injection vulnerabilities, which can be
detected automatically or avoided with abstractions such as prepared statements, the
missing check is an error of intent: the buggy insurance application was semantically

15

valid, but did not enforce the intended security policy. Such logic errors are inevitable
as long as people continue to rely upon entire applications to enforce security
policies. This dissertation shows that it is easy to address these types of leaks by
shifting responsibility for controlling the use and release of information into the
platform, trusting only a minimal piece of the application.

Enforcing a security policy in the platform restricts what applications can do, so
for acceptance, it is critical to choose an abstraction that is not overly burdensome.
Systems typically use access control to protect confidential data, and in particular,
modern databases management systems have mechanisms to enforce sophisticated
access control policies [120]. In access control systems, principals are only allowed
to access data for which they are authorized. However, developers often reject
database-enforced access control in favor of less secure alternatives because the
kinds of restrictions that would be needed to protect user data from application
bugs are too inconvenient. In particular, if the database doesn’t trust the application
with sensitive data, many data processing tasks that would be more convenient to
perform in the application must take place in the database instead.

Information flow control (ifc) provides an abstraction that can express many
security policies more conveniently and securely than access control. Rather than
restricting access, the platform tracks flows of sensitive data and prevents data from
being used or released inappropriately. ifc is convenient because it allows sensitive
data to be processed in both the application and the database. It improves security
because it can enforce end-to-end security policies. For example, in a medical
information system, ifc can enforce the policy that themedical records for a patient,
Alice, are never visible to any other patient.The information flow policy need not
say anything about intermediate processing tasks, such as the one that checks Alice’s
medication list for possible drug interactions. In contrast, an access control policy
couldn’t prevent bugs in the drug interaction checker from compromising Alice’s
security, except by carefully reasoning about and sandboxing that module.

This dissertation presents a new approach to database security based on ifc.The
remainder of the introduction shows why approaches to database security based on
access control are inadequate, presents the new approach, and explains the principal
contributions and results.

16

1 . i n t roduct ion

1.1 TheCase for Information FlowControl

Information flow control is a good way to enforce many security policies that cannot
be expressed easily with access control. Access control specifies what resources can
be used, whereas information flow control makes it possible to control how they may
be used.The following examples of security goals in a medical clinic have a natural
interpretation as information flow policies, but would be tedious to achieve with
access control:

— Appointment notifications.A secretarymay, in principle, require access to at least
part of every patient’s record at a clinic, and he also requires the ability to send
email about appointments. However, he should not be able to accidentally or
willfully disclose medical information via email, or to parties not involved in
each respective patient’s care.

— Exam room scheduling.The facilities supervisor for the clinic may need to know
when an examination room is unused so that repairs can be made. Producing
this information requires read access to patients’ appointment schedules, but
the software should not release information about the individual appointments
to the supervisor.

— Third-party data analysis.The clinic hires a data analysis firm to assess the
effectiveness of the clinic’s cost controls.The clinic has a legal obligation to
ensure that the firm does not misuse confidential patient data [1], whereas
the firm does not want to release its proprietary analysis tools to the clinic.
Simultaneous access to both the data and the tools is required, but only the
aggregated analysis results should be released.

Since each example involves data that must be accessed but not released, some form
of sandboxing is needed. Sandboxing the application in an access control system
is difficult: after all, the application must still be able to interact with the database.
Leaks could still occur if data were written to the wrong part of the database, as
happened in a recent incident involving a large hotel chain [115]. Alternatively, the
developer could move the code that processes sensitive data into stored procedures
in the database. In some applications, moving more computation into the database
may be appropriate; in others, however, it is inconvenient, and forcing developers to
build the system in unnatural ways works against the goal of security.

17

1 . 2 . i n format ion f low control

Moreover, moving sensitive processing tasks into stored procedures doesn’t
solve the problem. Even though those procedures might be restricted from commu-
nicating with the outside world, they can still write to the database. In the third-party
data analysis example, for instance, the analysis firm’s software might write patient
data into a table containing public information – where it might later be exposed.
Mitigating that kind of bug with access control requires careful reasoning about the
read and write privileges that must be granted to each code module.This approach
is time-consuming to implement, and hence is not commonly used in practice. Even
if it were, an access control policy that tightly constrains the privileges of each stored
procedure in a large application would be complicated; therefore, the policy itself
could easily be incorrect.

1.2 Information FlowControl

Information flow control (ifc) has been gaining acceptance as a better methodol-
ogy for protecting privacy without unduly restricting access to sensitive data. ifc
addresses the type of problem illustrated in the aforementioned examples by annotat-
ing data records with labels describing their sensitivity. Rather than restricting access,
information flow control systems instead track data as they propagate, and protect
privacy by preventing sensitive data from being released from the system improperly.
In addition to privacy, ifc can also protect integrity; it does so by ensuring that
trusted data cannot be influenced by untrustworthy (that is, low-integrity) sources.
Integrity is discussed in more detail in chapter 3.

ifc was introduced in themid-1970’s [9, 11, 32], but it has not achievedwide-scale
adoption in the private sector. Its lack of popularity is due in part to the fact that the
original systems were based on multi-level security (mls) and mandatory access
control, as advocated by the Orange Book [39]. mls systems use broad labels such
as confidential, secret, and top secret. Furthermore, they enforce centrally administered
security policies; consequently, while these systemsmay be suitable for organizations
with well-defined hierarchies such as militaries, they do not adapt well to settings
where users have diverse security interests.

Most of the recent work in ifc has advocated decentralized information flow
control (difc), introduced byMyers and Liskov [113]. In difc, data classification is
more specific than in the mls model: the system distinguishes the security concerns
of Alice’s medical records from those of Bob’s, for example. Furthermore, policies are

18

1 . i n t roduct ion

discretionary instead of mandatory, meaning that individual principals can specify
the security policies for their own data.

Prior difc research focuses on providing a labeling and flow control policy
framework either at the level of the operating system [85, 86, 152] or at the level of
the programming language environment [21, 94, 112, 113, 125, 150]. However, much of
the data flow within currently deployed systems takes place within a database man-
agement system (dbms), and existing difc approaches do not adequately capture
what happens within the database.These systems either do not address persistence
directly, or they extend the file system to support information flow; however, the
relational model provides a better abstraction for many applications [24].

This thesis fills a gap by bringing the difc model to database systems. It extends
the work on multi-level-secure databases by providing semantics appropriate for
difc, and it complements the work on difc operating systems and programming
languages by providing a persistent, difc-aware relational store.

1.3 IFDB: Secure Data Processing with DIFC

The ifdb system introduced in this dissertation is the first to bring end-to-end infor-
mation flow control to dbms-backed applications. Information from the outside
world enters the platform through applications, which process it and store it in the
database. Subsequently, the data may be processed by other applications, and by
computations within the dbms, such as views, stored procedures, and triggers.The
platform tracks these flows and enforces a uniform security policy throughout the
data’s life cycle. To capture the entire computation history of the data, ifdb works
with application runtime environments that also support information flow control.
Two such environments, php-if and Python-if, were built to interact with ifdb.

ifdb is also the first dbms to use a difc model. Support for difc is important
for many applications, particularly web services, because difc allows users to con-
trol how their information is used.The ifdb architecture is not tied to a particular
programming language or a particular difc model or implementation. However, in
the interests of concreteness, this dissertation describes an ifdb prototype based
on a particular difc model, namely the Aeolus model [17, 18]. The Aeolus model is
described in chapter 3.

As noted at the beginning of this chapter, developers tend not to use security
mechanisms if they are too burdensome. ifdb’s interfaces are designed to be easy to

19

1 . 3 . i f d b : s e cur e data p roce s s i ng w i th d i f c

program.The system works with existing languages, such as sql, php, and Python,
with straightforward extensions to support difc. Adoption of the Aeolus model
also enhances usability; security policies are expressed in terms of delegation and
exercise of authority – concepts programmers are familiar with.

Of course, performance is also crucial to the acceptance of the system. ifdb min-
imizes overhead by tracking information flows on a coarse, per-process granularity
within the application platform (where fine-grained tracking would be expensive)
and fine-grained, per-tuple tracking only within the database.The key observation
in support of this design choice is that the database is the primary shared medium
through which leaks could occur.Therefore, fine-grained tracking within the dbms
is essential for security.

Integrating the difc model into a relational dbms presents several new chal-
lenges. First, declarative queries require a different kind of reasoning than earlier
difc work, which generally relies on file systems as the persistent store: for example,
without appropriate precautions, a query for records about hospital patients who
don’t have cancer can implicitly reveal which patients do have cancer. A second
challenge is that adding difc should not sacrifice data independence, for instance, by
forcing developers to decompose tables based on the sensitivity of the information
they contain.Third, without special consideration, important dbms features such
as transactions and constraints can lead to information leaks via covert channels.
ifdb addresses these challenges as follows:

— It introduces theQuery by Labelmodel (chapter 4), which provides a practical
way to do relational queries while respecting information flow rules.

— It includes new abstractions, declassifying views and endorsing views (section 4.5),
which help to retain data independence. In particular, they ensure that database
designers can refer to and partition their data in a logical way, even if thatmeans
combining information with different security requirements.

— To handle potential covert channels in transactions, ifdb introduces new se-
mantics based on two ideas: transaction commit labels and transaction clearance
(chapter 6). For constraints, ifdb adds DECLASSIFYING and ENDORSING clauses,
and also adopts polyinstantiation (chapter 5).

20

1 . i n t roduct ion

1.4 Organization

This thesis introduces the ifdb architecture and model over the course of five chap-
ters. Chapter 2 presents a brief, high-level overview of the components of the system,
and explains how they interact with one another. It also defines the threat model, and
outlines the security goals for the system. Chapter 3 reviews ifdb’s information flow
model, which is based on an earlier difc system called Aeolus [17, 18]. Chapters 4
to 6 cover the ifdb interface, which is the central contribution of this dissertation.
Chapter 4 explains ifdb’s basic Query by Label model, which extends the relational
model with support for decentralized information flow control. Chapters 5 and 6
describes how ifdb addresses some of the problems with supporting constraints
and transactions, respectively, in an information flow system. (Some additional
topics on transactions and information flow are covered in appendix A.)

Chapter 7 describes two applications, Hotcrp and CarTel, which have been
modified to use ifdb. It recounts the author’s experiences using ifdb with these
applications, and explains how ifdb prevented real security vulnerabilities in these
applications from leaking information.

Chapter 8 details the implementation of ifdb, which uses a modified version of
Postgresql 8.4.10. It also addresses security concerns regarding the implementation,
such as reducing the size of the trusted computing base and mitigating timing
channels. Chapter 9 shows that the implementation performs well for the appli-
cations studied. Microbenchmarks are presented to provide further intuition into
the performance results.

ifdb draws on ideas about information flow control developed over the last four
decades. Chapter 10 reviews the work that influenced ifdb, as well as research that
addresses complementary problems. Finally, chapter 11 concludes this dissertation
with a summary of the major contributions and some ideas for future work on difc
in database systems.

21

22

Chapter

2 System
Architecture

ifdb is a database management system (dbms) with a new security architecture
based on difc.The security architecture ensures that queries, stored procedures,
and other computations running inside the dbms respect a specified information
flow policy. However, most computations extend beyond the dbms; typically, an
application issuesmultiple queries and performs its own computations on the output,
often producing a result for the user.Therefore, ifdb is designed to integrate with
application runtime environments that also support difc. ifdb and the application
runtime work together to ensure that the entire computation respects a common
information flow policy.

This chapter shows what a complete ifdb deployment looks like, and explains
how ifdb interacts with database clients. Since ifdb presumes that the clients
support difc, the trusted computing base (tcb) includes parts of the client plat-
forms as well. Section 2.3 describes the security assumptions and their implications,
including ifdb’s approach to covert channels.

2.1 The Information Flow Platform

An ifdb deployment consists of a single dbms and potentially many database
clients.The clients themselves are applications, which typically communicate with
external users over the network. Commonly, the database clients provide a web
service, and external users interact with it via web browsers.

23

2 . 2 . p l at form sup port for the a eolu s mode l

The dbms and clients are part of a single information flow platform, and they
all support a common difc model. Within the system, the platform tracks the
secrecy and integrity of every data object and every process.The platform enforces
a security policy, which restricts how data may be used: secret data should not be
released inappropriately, and low-integrity data should not be trusted. In particular,
the difc platform confines applications and controls how they can communicate
with external users, who are outside the system and therefore not subject to the
information flow constraints.

The platform also mediates all communication with the dbms, as well as all
communication among applications running within the system.The ifdb dbms
allows connections only from clients operating under the platform. Platform nodes
communicate via extended protocols that transmit label information to allow the
system to track flows.

Figure 2-1 illustrates an ifdb deployment with several clients and external users.
The difc runtime sandboxes applications and interposes on all communication.
The system tracks the secrecy and integrity of data flowing among applications, and
between applications and the database. It also tracks flows that occur inside the
database, for instance, due to the actions of stored procedures, which are considered
to be application code.The dbms and the application servers also communicate
with an authority service.The following section explains the purpose of the authority
service, and introduces two difc runtime environments that support ifdb.

2.2 Platform Support for the AeolusModel

The ifdb architecture is not tied to a particular programming language or a particular
difc model or implementation. However, in the interests of concreteness, the
ifdb prototype is described in the context of a particular difc model, namely
the Aeolus model [17, 18].This section describes the architectural components that
were introduced to support this model, while chapter 3 describes the model itself.

All of the platform nodes, including ifdb, rely on an authority service. Infor-
mation flow policies in Aeolus are based on use of authority. The present ifdb
prototype integrates the authority service into the database.This approach improves
performance because the database has direct access to the information, and the
database clients don’t need to make separate connections to the authority service
and the dbms.

24

2 . s y s t em arch i t e ctur e

IFDB

DIFC runtime

app 1

users

DIFC runtime

app 3app 2

authority
DIFC

stored

platform

procs

service

Figure 2-1: In this ifdb deployment with three applications running on two applica-
tion servers, the dotted line represents the perimeter of the information
flow platform.The shaded components constitute the trusted computing
base for the platform.

The platform includes two runtime environments that support ifdb and the
Aeolusmodel: php-if, an extension of php, andPython-if, an extension of Python.
A Java implementation of Aeolus is also available, but has not yet been integrated
with ifdb.The runtime environments in figure 2-1 could be php-if or Python-if.
php-if and Python-if constrain how the applications they run can communicate,
as described in the preceding section. They also support the Aeolus api and an
interface to the dbms via the ifdb database driver.

Programs – specifically stored procedures – also run within the dbms. Stored
procedures are often used to perform complex data processing tasks on behalf of
applications, so it is important that the security policy apply to stored procedures as
well.Therefore, ifdb implements another version of the Aeolus api as an extension
to sql.Thus, application code running in the database is able tomanage information
flows as well.

25

2 . 3 . p l at form s e cur i t y a s sumpt i on s

application code

Aeolus API IFDB driver

SQL /

Aeolus DB API
outside world

Query by Label

app stored procedures

IFDB

language runtime

Figure 2-2: Applications interact with the outside world via the Aeolus api, and
with the database using ifdb’s Query By Label model.

Figure 2-2 illustrates how applications interact with the platform. All communi-
cation occurs through the Aeolus api and the database driver. Applications issue
queries in sql, with the Aeolus extensions.TheQuery by Label model enforces in-
formation flow restrictions on these queries, as described in chapter 4. Applications
also invoke stored procedures written in a procedural extension to sql, and these
procedures can also use the Aeolus api to make information flow decisions.

2.3 Platform Security Assumptions

ifdb is intended to prevent application bugs from compromising security, but to
do that, the platform itself must be secure. This dissertation defines the trusted
computing base (tcb) for the system as the set of components that must function
correctly to ensure that the specified security policy is enforced.The tcb includes
the information flow platform itself and all the layers below it. Specifically, the
dbms (ifdb) and language runtimes (php-if and Python-if), as well as the
operating systems and hardware on which they run, must be trusted. Much prior
research, some of which is covered in chapter 10, has addressed the problem of
producing secure database systems, language runtimes, and operating systems; ifdb
is complementary to this work, and reducing the trusted base further is a promising
topic for future research.

26

2 . s y s t em arch i t e ctur e

The system design also presumes secure channels [90] among platform nodes.
An attacker should not be able to learn the contents of communications between
nodes, modify messages, or impersonate platform nodes. One way to implement
secure channels is to colocate the database and application servers and connect
them via a trusted switch. However, for wide-area deployments, a cryptographic
implementation of secure channels based on tls is supported as well.

The users and applications are not trusted by the platform; the platform con-
strains applications to follow the security policy, subject to the caveats about covert
channels described in the following section. Of course, users’ data are secure only
insofar as the policy is correctly specified. Section 3.4 explains how to reason about
security policies and application correctness in the ifdb model.

2.3.1 Covert Channels

Although the platform prevents applications from violating the information flow
rules directly, ifc systems are vulnerable to policy violations via covert channels,
which are vectors for unintended information leaks [89]. For instance, a process
might leak partial information about Alice’s password by exhausting a shared re-
source if and only if the first bit of the password is a 1. A collaborating process
can then learn the first bit of Alice’s password by observing that the resource is
unavailable. However, since this is not a normal communication channel, the system
does not track the information flow.

This dissertation’s approach to handling covert channels is inspired by the
field of side-channel cryptanalysis, in which a distinction is drawn between covert
channels in the abstract model and side channels, which are attacks on the imple-
mentation [124]. The model exhibited in this dissertation is intended to be free
of covert channels. In the ifdb implementation, however, the amount of time
operations take to complete is affected by access to shared resources, so inevitably
the implementation will be vulnerable to attacks. Side-channel attacks on database
implementations are a serious problem even without ifc [51], but nevertheless, it is
important to confine these attacks to the implementation. Doing somakes it possible
to apply mitigation techniques, such as quantizing response times, without changing
the semantics of the system. Section 8.5 discusses attacks against the implementation,
and how they can be mitigated.

27

28

Chapter

3 Information Flow
Model

ifdb’s difc model is based on the abstractions introduced by Aeolus [17, 18], a
platform for secure distributed computation.This chapter reviews the Aeolus infor-
mation flowmodel. Chapter 10 describes alternatives to the Aeolus model. Many of
the contributions of this dissertation, including Query by Label, declassifying views,
and transaction commit labels, are applicable to other difc models as well.

difc systems classify data based on two types of concerns: secrecy and integrity.
Secrecy has to do with release: To whom, and under what circumstances, should the
data be sent out? An example of a secrecy requirement is that Bob’s medical records
should not be released to anyone except for Bob and the doctors involved in his care.
Integrity is a statement about trustworthiness: For what purposes should the data
be trusted? For instance, the notion that Bob’s prescriptions should only be filled if
they were written by a doctor is an integrity requirement.

The Aeolus model is an evolution of the decentralized label model introduced
byMyers and Liskov [113].Themodel is based on several key concepts: labels, which
identify the classification of each data object; principals, which represent entities
with security interests, such as users and roles; and an authority structure, which
is instrumental in expressing the information flow policy.The policy is embedded
in the application: decisions about what information should be trusted or released
are made by code running with authority. Aeolus provides abstractions that are
intended to reduce the amount of trust that must be placed in code.The following
pages explain themodel, and figure 3-1 summarizes the essential parts of the interface.

29

3 . 1 . tag s and l a b e l s

3.1 Tags and Labels

Aeolus uses tags to represent classes of sensitive information. A tag is associated
with all of the data that has similar secrecy or integrity restrictions. For example, all
of Bob’s medical records might carry the bob-medical tag, and all of Bob’s financial
records might carry the bob-financial tag. Alice’s records might be similarly labeled
with tags corresponding to Alice. In this way, Alice’s information can be protected
from Bob, and vice versa.

Some computations, such as one that computes statistics over patient records
in a medical clinic, are run over data with many different tags. Aeolus supports
compound tags, which provide convenience and representational efficiency for such
computations by statically grouping tags and treating them as a unit. For example,
the bob-medical tag is a member of the all-patients-medical compound tag.

Each data object and each process has a secrecy label and an integrity label to
identify their respective secrecy and integrity requirements. Each label is a set of
zero or more tags. Aeolus tracks labels as data propagates through the system, and
helps to ensure that derived data are properly labeled. For instance, if Bob’s medical
bill is derived from sources that contain both his financial and medical information,
it should have a secrecy label that includes both the bob-medical and bob-financial
tags.The following section explains how Aeolus enforces this property.

3.2 Processing in Aeolus

Each process and each data object in the systemhas a secrecy label LS and an integrity
label LI. Object labels are immutable; they are specified when the object is created
and cannot be changed later. Process labels, in contrast, change over time to reflect
the secrecy and integrity of the information the process has read.

A single rule governs reads and writes of objects, as well as communication
between processes. Data can flow from source A to destination B if the secrecy tags
of A are a subset of the secrecy tags of B, and the integrity tags of B are a subset of
the integrity tags of A:

Rule 3.1. (Safe Information Flows)

Data can flow from A to B iff A.LS ⊆ B.LS and A.LI ⊇ B.LI.

Rule 3.1 ensures that the label of each object reflects the tags of all the data that
produced it, and the label of each process reflects the tags of all the data that the

30

3 . i n format ion f low mode l

process read. In particular, the secrecy label of the processmust expand to include the
secrecy tags of all the objects the process reads, and the integrity label must shrink to
reflect a lower bound on the trustworthiness of the data the process reads. Processes
are restricted from writing to destinations with lower secrecy or higher integrity
than themselves. In effect, processes are contaminated by what they read, and that
contamination restricts how they can communicate.This notion of restriction leads
to a definition of a partial ordering for a secrecy/integrity label pair:

Definition 3.1. (Label Ordering)

A pair of labels (A.LS , A.LI) is less restrictive than another pair (B.LS , B.LI), written
(A.LS , A.LI) ≺ (B.LS , B.LI), iff A.LS ⊂ B.LS and A.LI ⊃ B.LI

The less-restrictive-than relation1 captures both secrecy and integrity in a single
statement, and is used herein to simplify the presentation. Information can safely
flow from A to B provided that A’s label pair is no more restrictive than B’s label pair,
written (A.LS , A.LI) ≼ (B.LS , B.LI).

The flow rules also restrict the release of information to the outside world,
which of course is not governed by ifc. In Aeolus, external devices such as remote
machines, displays, keyboards, and printers are regarded as having empty secrecy
and integrity labels.Therefore, a processmay not release information to these devices
if it is contaminated by any secrets, and if it reads from an external source, it will
have no integrity.

3.3 Label Changes and Authority

Raising the label pair of a process, making it more restrictive, is always safe from
an information flow perspective. (The notion of clearance, which limits how far a
process can raise its label, can be useful. Clearance is discussed in section 4.6.) With
a higher label pair, the process may be able to read more sensitive information, but
it will be unable to release it. However, since an empty label is required to release
information, there needs to be a way to lower a process label as well; otherwise there
would be no way to get labeled data out of the system!

1.The literature on multi-level security often uses the term dominance to describe the same
concept: more restrictive label pairs strictly dominate less restrictive ones.This dissertation

uses restrictiveness, because it conveys the fact that processes are contaminated by what they
read, and their contamination limits what they can do.

31

3 . 3 . l a b e l change s and au thor i t y

Principals

createPrincipal()→ P. Return a new principal.The caller’s principal
acts for the new principal P.

actsFor(P1, P2). Add an acts-for link from P2 to P1. The caller must act
for P1, and the link must not create a cycle in the acts-for graph.

revokeActsFor(P1, P2). Remove the acts-for link from P2 to P1, if one
exists.The caller must act for P1.

Tags

makeTag()→ t. Return a new tag.The caller’s principal is authoritative
for the new tag t.

makeSubtag(t1) → t2. Return a new tag t2, which is a subtag of
compound tag t1.

grant(t, P1, P2). Add a delegation link for t from P1 to P2. P1 must be
authoritative for t, the caller must act for P1, and the link must not
create a cycle in the delegation graph.

revokeGrant(t, P1, P2). Remove the grant for t from P1 to P2 (if one
exists).The caller must act for P1.

Labels

addSecrecy(t). Add tag t to the secrecy label of the process.

declassify(t). Remove tag t from the secrecy label of the process. If t
is a compound tag, any subtags of t are also removed.The caller must
be authoritative for t.

removeIntegrity(t). Remove tag t from the integrity label of the
process. If t is a compound tag, any subtags of t are also removed.

endorse(t). Add tag t to the integrity label of the process.The caller
must be authoritative for t.

Figure 3-1: A summary of Aeolus operations

32

3 . i n format ion f low mode l

Authority Closures and Reduced Authority Calls

makeClosure(λ, P)→ C. Return a closure that, when invoked, runs
procedure λ with principal P’s authority.The caller must act for P.

C(args.. .)→ r. Invoke closure C. The closure runs with the authority
of P, the principal bound to the closure, but inherits the caller’s
labels. On return, the process labels are merged with the caller’s
original labels: the secrecy labels are unioned, and the integrity labels
are intersected. This ensures that closures can add contamination
(for instance, by reading and returning a secret), but they cannot
inadvertently remove the caller’s contamination.

call(P, λ, args.. .). Call the procedure λ with the given arguments,
running with the (reduced) authority of principal P. The caller must
act for P. The caller’s authority is restored when P returns.

Figure 3-1: A summary of Aeolus operations (continued)

Therefore, Aeolus also provides operations to lower label pairs by removing
secrecy tags and adding integrity tags.The former operation is called declassification
and the latter endorsement. Consider a statistics package that aggregates medical
records and outputs scrubbed data, which presumably does not reveal a significant
amount of personally identifiable information. It is therefore appropriate for the
scrubbed data to have a smaller secrecy label than the source data does.Thus, after
the process runs the statistics package, it should declassify to remove tags from its
secrecy label before writing the aggregate result.

Declassification and endorsement make information leaks possible. Since they
are not safe in general, they are privileged operations. Authority in difc is discre-
tionary; privilege is vested in principals, which represent users and roles. A principal
must have authority for a tag in order to declassify or endorse it.

Each tag has an owning principal, which has authority for the tag. A principal that
has authority for a tag can grant that authority to other principals, and later revoke
that delegation. For example, Bob could delegate authority for the bob-medical tag
to his doctor. A principal P can also allow another principal Q to act for it; this
allows Q to do anything P can do. Acts-for links can be revoked as well. Acts-for
relationships provide a means to implement groups and roles [90].

33

3 . 4 . d e f i n ing the po l i c y

Process label changes are explicit in Aeolus. A process must adjust its label using
the addSecrecy() and removeIntegrity() operations (see figure 3-1) prior to reading a
sensitive object. Similarly, in order to make its label less restrictive, a process must
exercise its authority and call declassify() or endorse(). This approach contrasts
with some earlier information flow systems, such as adept-50 [146], ix [106], and
Asbestos [85], inwhich process labels adjust dynamically to reflect the contamination
of data they have read. Making safe label changes explicit is important because it
prevents an important covert channel. In systems that allow automatic label changes,
the label change itself can convey information about a secret [34, 84]. Requiring
unsafe label changes to be explicit is also important, because if declassification and
endorsement were implicit, programs might exercise their authority and enable
information leaks accidentally.

3.4 Defining the Policy

An information flow policy is shaped by controlling the circumstances under which
declassification and endorsement occur.TheAeolus model provides a framework for
enforcing the policy, and for reasoning about security. For instance, if Bob’s medical
records are properly tagged when they are input initially, then the only parts of the
program where they could be leaked are the places where the bob-medical tag (or its
supertag, the all-patients-medical tag) is declassified. Other code does not even need
authority to declassify the tag, even if it is involved in processing Bob’s records.

However, Aeolus merely provides a mechanism and does not dictate what the
policy itself should be. Referring back to the statistics package, an obvious question
is: How do we know that the aggregate results do not reveal a significant amount
of personally identifiable information?This type of question has been well studied,
and section 10.7 surveys some of the work in the area.

3.5 Support for the Principle of Least Privilege

ThePrinciple of Least Privilege [126] is essential for building secure applications,
because it prevents bugs from becoming security failures. It dictates that the applica-
tion should operate using as little privilege as possible.The delegation and acts-for
relationships presented in the preceding section help support the Principal of Least
Privilege by providing a fine-grained way to control the authority vested in each

34

3 . i n format ion f low mode l

principal. However, it is also important to provide abstractions that minimize the
privileges available to each part of the application.

Aeolus provides two mechanisms to support the latter goal. Reduced authority
calls allow an application to invoke a procedure that will run with the authority of
a less-privileged principal than the caller.The caller can specify any principal that
it acts for. Authority closures are procedures that are bound to a specific principal
that the creator acts for when they are created. When they are invoked, they run
with the authority of that principal. They provide a means to associate authority
with a specific privileged action. For example, a CheckPassword closure might read
the password file to authenticate a user, declassify, and release only the outcome
(authentication success or failure). Thus, no other code in the program needs to
have authority to declassify (and potentially leak) information in the password file.

Authority closures can raise the label of the process and then use authority to
lower it again, but they cannot remove contamination from their callers. When
an authority closure call returns, the process labels are merged with the labels the
process had at the start of the call: the secrecy labels are unioned and the integrity
labels are intersected.This merging ensures that the closure cannot be abused to
remove contamination that the caller had previously.

3.6 Boxes, Shared Volatile State, and Files

TheAeolus platform supports several additional abstractions for sharing persistent
and volatile state. Boxes provide a way to encapsulate sensitive information so
that it can be passed through intermediaries without contaminating them. Shared
volatile state provides an efficient way for processes on the same machine to share
information in a way that respects the information flow rules. Aeolus also supports
labels on files and directories, with the appropriate semantics as implied by rule 3.1.

Boxes, shared volatile state, and files are not relevant to the ifdb model, but
the language runtimes that interact with ifdb, such as php-if and Python-if,
could support them. In particular, web services increasingly rely on soft state and
caching mechanisms such as memcached [47] to increase scalability, and Aeolus’
shared volatile state abstractions may prove useful in that context. However, the web
applications studied as examples in chapter 7 use databases, not file systems, as their
backing stores.They do not require inter-process communication or sophisticated
caching mechanisms.

35

36

Chapter

4 Query by Label

Reasoning about flows of sensitive information can be challenging, and the ad
hoc techniques in use today, often based on access control, are error-prone. For
example, it has been alleged that Google violated its own privacy policy when it
introduced its Buzz social networking service.When users of Google’s GMail service
signed up for Buzz, Google used information from their private chats, emails, and
contact lists to generate “follower” lists, whichwere published on their public profiles.
According to an ftc complaint, these lists often contained “individuals against
whom they had obtained restraining orders, abusive ex-husbands, clients of mental
health professionals, [. . .] and recruiters they had emailed regarding job leads.” [45]
Themistake isn’t surprising: the disclosure involved multiple services developed
by different engineering teams, and the Buzz developers likely weren’t aware of the
privacy policy governing the GMail data.

ifdb uses a new query model called Query by Label, which is intended to
prevent similar mistakes in database-backed applications.The core design principle
in Query by Label is that all information releases must be explicit. Specifically, any
unsafe information flows must be accompanied by an explicit use of authority
(declassification or endorsement) to assert that the disclosure is acceptable.

Query by Label integrates the Aeolus difc model described in chapter 3 with
the relational model. Client applications running under an Aeolus-based language
runtime connect to the dbms, and the dbms collaborates with the language runtime
to ensure that the application follows the information flow rules. As described in

37

4 . 1 . t h e r e l at i ona l mode l

the preceding chapter, each process has a secrecy/integrity label pair, which reflects
the contamination of all the sensitive data the process has read thus far.The process
labels are a key part of the Query by Label model; they affect what the process can
read from the database, and what it is allowed to write.

This chapter begins in section 4.1 by reviewing the tenets of the relational model.
Sections 4.2 and 4.3 develop the basic Query by Label model and explains how it
ensures that all unsafe flowsmust be vouched for via declassification or endorsement.
Sections 4.4 and 4.5 introduce new abstractions, stored authority closures and
declassifying views, that make it convenient to vouch for flows. Finally, section 4.6
explains the relationship between the difc-based approach presented in this chapter
and access control.

4.1 TheRelationalModel

The relational model [24, 25] was introduced by Codd in 1970, and is the dominant
logical data model today. It provides a scheme for representing data and a set of
operators to access the data. This section briefly reviews the model to introduce
terminology and syntax, and to discuss some of the properties the model provides,
such as data independence and consistency. Supporting these properties in an
information flow system is more challenging; section 4.5 and chapter 5 explain the
issues and howQuery by Label addresses them.

4.1.1 Data Representation

Data in the relational model are represented as sets of n-tuples, as follows:

Attributes (also known as fields or columns) are atomic units of data over some
domain. For example, bob is an attribute over the domain of names, while
8/23/1923 is an attribute over the domain of dates. Domains may include
a special null value, which is used to indicate information that is missing,
typically because it is unknown or inapplicable.

Tuples, or rows, are ordered collections of attributes. Tuples typically represent
relationships between attributes. For instance, (bob, 8/23/1923) is a tuple that
relates Bob’s name to his date of birth.

38

4 . que ry by l a b e l

Relations are unordered sets of tuples. Each relation has a schema, which defines
a name and domain for each attribute in the relation; all tuples follow the
schema. For example, the schema for a relation containing names and dates of
birth (dobs) could be (name : string, dob : date).

Since relations are intended to be analogous to mathematical sets, they do
not allow duplicate tuples. Additionally, each relation has a primary key, which
is a collection of attributes that uniquely identifies any tuple in the relation. The
analogous concept of tables inmost database systems optionally allows for duplicates,
in which case there may be no primary key. (This is called bag semantics, as opposed
to set semantics.)

4.1.2 Relational Operators

Themodel defines a relational algebra for retrieving data.The algebra consists of a
set of primitive operators, which can be composed to produce complex queries.The
following operators are the most commonly used:

SelectP(R) filters tuples in relation R, producing a new relation that includes
only the tuples matching predicate P. The predicate is boolean expression
evaluated on the attributes of the tuples – for example, age > 18.

ProjectA i1 ,...,A in
(R) extracts attributes Ai1 through Ain from all tuples in relation

R. In the formal model, duplicates are discarded; however, the analogous
operation in ansi sql does not do so by default.

JoinP(R, S) produces a relation consisting of the concatenation of every pair of
tuples in R and S that satisfies predicate P. Typically the predicate specifies
that some attributes in R should be equal to some attributes in S – an equi-join.
For example, suppose that relation R consists of (patient_id, name, dob) tuples
and relation S consists of (patient_id, address) tuples. Then the expression
JoinR.patient_id=S .patient_id(R, S) evaluates to a set of (patient_id, name, dob, ad-
dress) tuples. (The patient_ids in R and S must match, so only one copy of this
field is typically retained.)
In addition to the join operator described above, which is often referred to as an
inner join, there are three varieties of outer joins. LeftOuterJoinP(R, S)
produces the same tuples as JoinP(R, S) plus any additional tuples in R that

39

4 . 1 . t h e r e l at i ona l mode l

have no matching tuples in S. For these tuples, the missing S-attributes are
null. RightOuterJoinP(R, S) is defined analogously, with the roles of
R and S reversed. FullOuterJoinP(R, S) produces the union of all the
tuples in the left and right outer joins.

4.1.3 Constraints

Integrity constraints1 ensure that data in the database are consistent. Constraints
protect against application bugs that might corrupt the database, and they ensure
that applications see results of the expected form.The taxonomy and terminology
presented here differ from Codd’s original formulation.

Domain constraints, or row-check constraints, limit the values tuples may take, inde-
pendently of any other tuples. For example, a domain constraint might specify
that all values in the percentage field be between 0 and 100 inclusive, or that an
employee’s overtime_wage be at least 20% greater than his or her base_wage.
(In Codd’s original model, domain constraints are defined only over individual
attributes, so the latter example would be a different kind of constraint in his
terminology.)
A fundamental constraint in the relational model is entity integrity, which
requires that all attributes that constitute the primary key for a relation be
non-null. This constraint is necessary because of the requirement that the
primary key attributes uniquely identify tuples; hence, none of those attributes
are permitted to be missing.

Table-check constraints define invariants over individual relations. Uniqueness of
primary keys is an example of a table-check constraint.

Relationship constraints control relationships among tuples in different relations.
One type of constraint in this category that is central to the relational model
is referential integrity [29, ch. 4]. A referential integrity constraint enforces
a many-to-one mapping from a referencing relation to a referenced relation.

1. In this context, the word integrity refers to representation invariants that the data should
satisfy. Regrettably, work on ifc uses the same word for a related but distinct concept, as

described in chapter 3. This dissertation uses the term integrity constraint, or simply constraint,
when the former meaning is intended. Clark and Wilson [22] compare the two types of

integrity.

40

4 . que ry by l a b e l

Specifically, a set of columns in the referencing relation constitute a foreign key,
which must match the primary key of some tuple in the referenced relation.2

In an information flow system, constraints that relate data with different labels
are problematic because they can create covert channels. Additionally, it is desirable
to create classification constraints, which restrict the labels themselves. Chapter 5
explores the issue, and presents ifdb’s approach.

4.1.4 Data Independence and Views

Data independence is a key innovation in the relationalmodel. It divorces themanner
in which applications refer to data from the underlying representation of that data.
Thus, changing the representation does not require modifying applications. Physical
data independence protects applications from changes in the physical layout of the
data; for instance, applications can use the same queries regardless of what indexes
are available. Logical data independence permits the administrator to change the
schema, perhaps by partitioning a relation or adding new fields, while maintaining
compatibility with existing applications.

The view abstraction is an important part of the relational model’s support for
logical data independence. A view is a virtual relation, constructed by applying
relational operators to base (physical) relations. An application can access data
through the view, without regard for how the underlying relations are stored and
indexed.This flexibility is often used to optimize the on-disk representation and the
methods used to access the data. Views can be used to provide a restricted picture of
a base relation, which makes them useful for security as well.

An important consideration in adding information flow extensions is ensuring
that security concerns do not sacrifice data independence. Specifically, the manner
in which data are labeled should be insulated from how applications access the data,
and from how the data are stored on disk. Section 4.5 explains howQuery by Label
achieves this goal.

2. Relations may also refer to themselves. For example, a ClassProjects table with primary key
student_idmay have a partner_id field that refers to each student’s project partner in the same
table.

41

4 . 2 . l a b e l s i n the data ba s e

4.2 Labels in theDatabase

ifdb uses labels to track information flows within the database. Labels are attached
to data at the granularity of tuples.The choice of granularity has important implica-
tions for the flexibility and efficiency of the system: why not label fields, tables, or
entire databases? To address that question, this section reviews all four options and
explains why tuple labels are the best choice for ifdb.The choices are presented in
order of granularity, from coarsest to finest.

Per-database labels. As described in section 10.5.1, several systems designed for mil-
itary use store different classes of information in different databases. The
advantage of this approach is that it requires no trust in the dbms. However,
associating a single label pair with an entire database is impractical for difc;
at a minimum, each user would require a separate database, and sharing would
be problematic.

Per-table labels. In this design, each table has a static secrecy/integrity label pair,
which applies to all tuples in the table. As section 10.2.3 explains, this approach
is used by asd_Views [55], while ldv [43] supports a variant: labels on
columns. Like the preceding option, per-table labels do not match application
needs. Database tables typically store data on behalf of many users, and each
usermay have distinct security concerns. Per-table labeling necessitates storing
every user’s data in a separate table, which makes ad hoc queries over many
users’ data tedious.

Per-tuple labels. This is the strategy ifdb employs.The intuitive justification for this
model is that the data in each tuple are related to a single entity, for instance, a
hospital patient. Hence, labels covering entire tuples are appropriate for many
applications. Per-tuple labels represent a good trade-off between the ability
to label data at a fine granularity and the space overhead associated with the
labels. Figure 4-1 in the following section shows an example of labeled tuples.

Per-field labels. Several multi-level secure database systems, such as SeaView [101]
and sintra [50], use per-field labels. However, this strategy adds substantial
overhead, and the semantics are complicated, as explained in section 10.4.1.
Furthermore, ifdb introduces declassifying views (section 4.5), which can be
used to achieve the power of field-level labels.

42

4 . que ry by l a b e l

In ifdb, secrecy and integrity labels for each tuple are stored in columns called
_label and _ilabel, respectively. The leading underscore is intended to reduce the
chances that the name conflicts with existing applications.The columns are hidden
by default to avoid confusing applications that are not expecting them; they are only
included in results of queries if they are requested explicitly.This approach follows
existing practice: for example, the ROWID column in db2 and the OID column in
Postgresql are similarly hidden.

The database schema, which includes the definitions of all the tables, indexes,
and views, is considered public. Any database user can read it, and only the admin-
istrator can write it, so in effect it has an empty secrecy label, and integrity label⊤
(which contains all integrity tags). In contrast, some other database systems, such as
SeaView, support the notion that parts of the schema – specifically, the very existence
of certain tables – can have an associated secrecy level [37]. In a large organization
using a single database, labeling the schema in this way makes it possible to have
secret projects, whose existence is hidden from unauthorized users.

In fact, labeled schemas would not be difficult to implement; ifdb stores the
schema definition in a set of special system tables, whose contents can be labeled.
However, labeling schemas complicates the programming model: if the existence
of certain tables is secret, then the code that generates queries on those tables
must be secret as well.This line of reasoning adds a whole new, largely unexplored,
dimension to difc, which is beyond the scope of this work. Like prior difc work,
ifdb is intended to protect user data frommisuse, not to protect the workings of
the application from programmers who work on it.Therefore, secret projects can
presently be supported only via separate databases and separate applications.

4.3 Queries

In a departure from the standard relational model, the semantics of a statement
under Query by Label depend upon the label pair of the process that issued the
statement. Specifically, the process labels affect which tuples the process is able to
read and write.This section explains the basic model, but first, it motivates the need
for a newmodel by illustrating why standard query semantics are inappropriate for
an information flow system.

43

4 . 3 . qu e r i e s

Inpatients
_label patient_name patient_dob problem condition
{alice_medical} Alice 2/13/1960 cancer good
{bob_medical} Bob 6/26/1978 trauma serious
{cathy_medical} Cathy 4/22/1941 pneumonia critical

Figure 4-1:The Inpatients table is an example of sensitive, labeled tuples stored in a
database. It contains records about hospital inpatients, their problems
on admission, and their general condition.

4.3.1 Information Flow in the RelationalModel

Under the standard model, a query over a table conceptually reads every tuple in the
table, then transforms and filters the results via a series of relational operators, such as
Selects.The fact that tuples are selected by content has important implications for
an information flow system: the set of results returned by a query reveals information
about the content of tuples that were not returned by the query.

For example, suppose the table in figure 4-1 is stored in an sql database for a
medical information system. A _label column that denotes the secrecy of each tuple
has been included as well; integrity labels are omitted for simplicity. Consider the
following query:

SELECT name FROM PatientRecords WHERE problem <> 'cancer'

In standard ansi sql, the query produces the names of patients in a clinic who
do not have cancer, namely, Bob and Cathy. One might think that the secrecy of
the result could be captured by the label {bob_medical, cathy_medical}. However, to
anyone who consults the public patient directory and finds out that Alice is a patient
in the hospital, the results also reveal that Alice has cancer, because her tuple was
excluded.

In fact, under the standard semantics, the correct secrecy label for the cancer
query includes all three patients’ medical tags. More generally, the contamination
associated with a standard sql query would necessarily include the greatest lower
bound of the labels of every tuple in the table!This approach isn’t practical; processes
need a way limit their contamination because, as explained in chapter 3, they will be
unable to communicate with the outside world if they are too contaminated.

44

4 . que ry by l a b e l

4.3.2 Reads

In the Query by Label model, each query has a secrecy/integrity label pair, which
corresponds to the labels of the process that issued the query.Themodel addresses
the problem described in the preceding section by limiting the scope of the query to
a subset of the database containing only the tuples whose labels are less restrictive
than the labels of the query.This restriction is formalized as follows:

Rule 4.1. (Label Confinement)

A query performed by a process P with labels (P.LS , P.LI) is performed on a
subset of the database consisting of all tuples τi with labels (τi .LS , τi .LI) such that
(τi .LS , τi .LI) ≼ (P.LS , P.LI).

For reads, the label confinement rule is simply an instantiation of the safe
information flow rule (rule 3.1) given in section 3.2: A process should not see tuples
whose contamination isn’t covered by its own label. In one sense, the rule merely
reflects the fact that label changes in the Aeolus model are explicit, but in another
sense, the rule is fundamental to systems that query information by content.The
cancer patient example in section 4.3.1 illustrates that it is necessary to limit the scope
of queries in an information flow system.

Referring back to the Inpatients table shown in figure 4-1, consider the example
again in the context of Query by Label:

SELECT name FROM PatientRecords WHERE problem <> 'cancer'

If a process issues this querywith secrecy label {bob_medical} and an empty integrity
label, the results will include only Bob’s records.The result conveys nothing about
the other patients because the process’s view of the database is confined to only
tuples whose labels are a subset of {bob_medical}. Thus, the process label always
reflects the contamination of all the data that might have influenced the process.

4.3.3 Explicit Query by Label

Query by Label limits queries to tuples whose labels are subsets of the process
label. However, processes can specify additional conditions on the label explicitly
by referring to the _label and _ilabel columns. As with all queries, the scope is
limited to tuples with labels nomore restrictive than the process label; any additional
conditions further limit the results. For example, the following sql query selects all
meetings whose secrecy labels contain the programX tag.

45

4 . 3 . qu e r i e s

SELECT * FROM Meetings WHERE _label @> '{programX}'

The @> operator in the query implements the mathematical superset operator ⊇
for labels. Of course, the process that issues the query must have at least the tag
programX in its label, or the query will return no results!

Queries such as this one are not commonly needed. For instance, it would
be simpler to add a meeting_purpose field to the Meetings table and use that to
determine which meetings are about Program X, rather than ascribing additional
meaning (specifically, the purpose of the meeting) to tags in the secrecy label.
However, explicit Query by Label will be revisited in section 5.2, where it is used as a
way to limit the effects of polyinstantiation.

4.3.4 Writes

Writes to the database in Query by Label are more restricted than reads: the label
of the process must match the tuple being written exactly.This requirement stems
from the combination of two separate stipulations:

w1. Tuples a process writes must reflect the contamination of everything the process
has read. Safe information flow (rule 3.1) requires that information can flow
from a source (such as process P) to a destination (such as tuple τ) only if
(P.LS , P.LI) ≼ (τ .LS , τ .LI). In other words, a process cannot write a tuple
with a lower label pair than itself.

w2. Writes should not affect tuples the process is unable to see. Label confinement
(rule 4.1) requires that a statement issued by a process P apply to a subset of
the database consisting of tuples τi such that (τi .LS , τi .LI) ≼ (P.LS , P.LI).
That is, the effect of the statement is limited to tuples with label pairs no higher
than the process labels.

Formally, the conjunction of these requirements gives the following rule for writes:

Rule 4.2. (Write Rule)

A process with labels (P.LS , P.LI) can write a tuple with label (τ .LS , τ .LI) only if
P.LS = τ .LS and P.LI = τ .LI.

In other words, all writes have exactly the label of the process. Traditionally, require-
ment w1 is called the ∗ property, while rule 4.2 is called the strong-∗ property (see
section 10.1).

46

4 . que ry by l a b e l

Since processes see only a subset of the database, it is possible that a write might
violate an integrity constraint, even though it looks okay to the process. For example,
a process might attempt to insert a tuple with the same primary key as an existing
tuple that it is unable to see. Chapter 5 discusses how ifdb addresses this problem.

Anatural question about rule 4.2 is whether it is overly restrictive.The rule comes
from two requirements: w1 and w2. Requirement w1 is a standard prerequisite for
safe information flow, but requirement w2 bears some explanation. After all, w2 is
typically the rule that is applied to reads, not writes. Indeed, prior work that develops
difc semantics for file systems [18, 106, 152] does not impose this restriction. In a
database, however, allowing a process to write a tuple with a more restrictive label
introduces a covert channel: it allows the process to learn about the tuple, which is
more contaminated. Essentially, the problem is that writes in a dbms are never blind;
each write is also a read.

Lifting this restriction by supporting blind writes to the database is conceivable.
However, the resulting semantics are so awkward that the option seems unrealistic.
The following are some of the problems that can arise if processes were allowed to
write tuples they cannot see:

— Allowing processes to write tuples they cannot see can lead to potentially
dangerous confusion. For example, a process might convert Bob’s medical
records to a new format, store them in a separate table, and delete the original
records. However, if Bob has records with more restrictive labels than the
process is allowed to see,3 the process might delete records that have not been
converted.

— Processes would be able to learn howmany tuples (if any) were affected by an
update. For example, consider the following sql statement on the table in
figure 4-1, executed with an empty secrecy label:

UPDATE PatientRecords SET name = 'Alice'
WHERE name = 'Alice' AND problem = 'cancer'

The statement has no effect, but it returns the number of rows updated: one if
Alice has cancer, and zero otherwise. Information flow requirements necessi-
tate suppressing this count. Hence, applications cannot know the effects of
their updates, or whether the updates succeeded at all.

3. In the United States, for instance, mental health records are subject to more stringent secrecy

requirements than other types of medical records. [1]

47

4 . 3 . qu e r i e s

— The requested write might violate an integrity constraint. Mitigating actions
the system might take, such as reporting the error or aborting the current
transaction, are observable to the application; therefore, they also leak infor-
mation about the tuples written. (Integrity constraints are discussed further in
chapter 5.)

— Thewritemight lead to conflicts with concurrent operations running on behalf
of other processes that have different labels.These types of conflicts can also
leak information, as discussed further in chapter 6.

A consequence of the write rule is that the label associated with each tuple
is constant. In fact, the restriction that data labels do not change is even more
fundamental, and is present in other information flow systems as well. Raising the
label of a tuple would remove if from the purview of clients running with the old
label. To those clients, the tuple appears to have been deleted.Therefore, if a client
wants to reclassify a tuple with a different label, it must do so by deleting the tuple
and inserting a new one. Of course, to do this, the process must be able to do two
writes with different labels.The following section explains how processes can write
with different labels by changing their labels.

4.3.5 Writing TuplesWithDifferent Labels

Applications need the ability to write tuples with different labels as part of a single
logical action. For example, a process that creates an account for a doctor in amedical
clinicmight write two tuples: one with the doctor’s contact information, and another
containing his password. Rule 4.2 would seem to prohibit that kind of operation,
since it requires that a process always writes tuples with exactly its own secrecy and
integrity labels.

Given that it is problematic to allow processes to write tuples with labels other
than the current process label, how does a process write tuples with different labels?
The answer is that processes can change their labels as explained in chapter 3. It is
always safe for a process to raise its label, making it more restrictive. Making a label
more restrictive entails adding secrecy tags or removing integrity tags. Furthermore,
if the process has authority for a tag, it can declassify that tag, removing the tag from
the secrecy label, or it can endorse the tag, adding it to the integrity label. Returning
to the example of adding a doctor’s account, an application could simply write the
doctor’s contact information, change its label, and then write the doctor’s password.

48

4 . que ry by l a b e l

TheQuery by Label semantics of sql queries issued by a process with the
label pair (P.LS , P.LI) are summarized below.

SELECT queries operate over a subset of the database containing only the tu-
ples whose labels are less restrictive than the process secrecy/integrity
label pair. Formally, ifD is the set of tuples in the database, then the
result of the query is equivalent to that of a standard sql query on
databaseD′, whereD′ = {τ|τ∈D ∧ (τ .LS , τ .LI) ≼ (P.LS , P.LI)}.
Query by Label does not change the relational algebra, so complex
operations such as joins and aggregate functions have the usual se-
mantics. However, they operate over relations that contain only the
tuples the process is able to see given its labels.

INSERT statements add tuples with exactly the label pair of the process.The
INSERT . . . SELECT form, which inserts tuples that were produced by a
query, also writes the tuples with the secrecy and integrity labels of
the process, even if the source tuples have less restrictive labels.

UPDATE statements affect only tuples with the same label pair as the process.
Tuples with more restrictive labels are not visible to the process and
are ignored. Tuples with less restrictive labels can’t be written by the
process without violating the information flow rules; attempting to
update such tuples is an error.

DELETE statements affect only tuples with the same label pair as the process.
As with UPDATE statements, tuples with more restrictive labels are
unaffected, and attempting to delete tuples with less restrictive labels
is an error.

Nested queries, including the SELECT clause of an INSERT . . . SELECT
query, are handled as implied by the semantics of the basic operations.
Data Definition Language (ddl) commands, which modify the schema,
are restricted to the administrator.The semantics of Transaction Control
Language (tcl) statements are covered in chapter 6.

Figure 4-2: Semantics of basic sql statements under Query by Label

49

4 . 4 . a p p l i cat i on code in the dbm s

Allowing processes to change their labels to write tuples with different labels
actually results in the same information leaks as described previously. However, it
provides a principled way of reasoning about these leaks. Specifically, the Query by
Label model supports the principle articulated in the introduction to this chapter:
unsafe information flows must be accompanied by an explicit exercise of authority.

Presenting a simplemodel to programmers is important because covert channels
are notoriously difficult to reason about [108]. In fact, the rule for writes presented in
this section isn’t the whole story. As chapters 5 and 6 point out, interactions between
ifc and other dbms features, such as constraints and transactions, give rise to new
issues.Thinking about multi-level writes in terms of simple writes and label changes
is key to providing intuitive semantics for these features. Sections 4.4 and 4.5 present
abstractions that provide more convenient ways to do writes, but importantly, these
abstractions can be understood in terms of label changes in the basic model.

4.4 Application Code in the DBMS

In designing a database-backed application, an important consideration is how to
partition the computation between the application and the dbms. Performing
computations in the database system instead of the application has several widely
recognized benefits. For one, it improves performance: less data must be transmitted
between the application and the dbms, and transaction latencies are lower. Also,
performing computations in the dbms via stored procedures improves modularity
and security by providing a narrow, well-defined interface between the application
and the database. A variety of procedural extensions to sql, such as pl/sql [46],
pl/pgsql [56], and sql/psm [3] have been developed to support imperative pro-
gramming in the dbms.

Chapter 3 explains that applications use the Aeolus api (figure 3-1) to manage in-
formation flows. Computations running within the dbms require this ability as well,
so ifdb implements the Aeolus api as a set of primitive stored procedures that can
be invoked within sql statements and stored procedures. Stored procedures start
running with the labels and authority of the process that invoked them. Any label
changes the procedure makes (for instance, adding a secrecy tag or declassifying)
are reflected in the labels of the calling process.

ifdb aims to provide a uniform api, so that the same operations are available in
both sql stored procedures and in the language the application is written in (such

50

4 . que ry by l a b e l

as php-if and Python-if, described in chapter 2). To that end, ifdb also supports
stored authority closures, which extend the authority closures described in section 3.5
to the dbms. Stored authority closures bind special authority to stored procedures.
They are important because they allow application programmers to add functions to
the database that perform operations that would otherwise not be allowed by the
information flow rules.

For example, the programmer might want to use a userlist tag to protect the
list of all usernames registered with the application, so that bugs in the application
do not allow an attacker to see the list. However, the code that registers a new user
account must still be able to check if a given username is already in use. Reporting
whether a requested username is taken represents a small information leak, so ifdb
requires an exercise of authority, namely a declassification, to vouch that this leak is
acceptable.The code can be put in a stored authority closure with the appropriate
authority, as in the following example.The example is written in ifdb’s extended
version of pl/pgsql.

CREATE FUNCTION addUser(uname VARCHAR)
RETURNS VOID PRINCIPAL accountManager AS $$
BEGIN

PERFORM addSecrecy(userlist);
INSERT INTO Users (username) VALUES (uname);
PERFORM declassify(userlist);
EXCEPTION WHEN OTHERS THEN -- catch any exception

PERFORM declassify(userlist);
RAISE; -- re-throw the exception

END;
$$ LANGUAGE plpgsql;

The circled PRINCIPAL accountManager clause identifies the stored procedure as
an authority closure, which runs with the authority of the accountManager principal
when it is invoked.The closure adds the userlist tag to the secrecy label of the client
process, inserts the username into the Users table, and declassifies to remove the tag
it added. (The italicized identifiers accountManager and userlist are placeholders for
the appropriate principal and tag ids. Prior to creating the closure, the administrator
must have previously created the accountManager principal and userlist tag.)

Upon return from an authority closure, the secrecy and integrity labels of the
process aremergedwith the caller’s original labels, as in Aeolus: the secrecy labels are

51

4 . 5 . d e c l a s s i f y i ng and endor s ing v i ews

unioned, and the integrity labels are intersected. Doing this prevents closures from
removing the caller’s contamination, thus preventing confused deputy problems.
For example, it prevents a process that is already contaminated with the userlist tag
from abusing the addUser closure to remove that contamination.

The example also illustrates an important point about exceptions. Suppose the
username is already present in the table and properly labeled. In this case, the INSERT
statement will fail due to a uniqueness constraint violation and the transaction will
abort. When such an error occurs inside an authority closure, ifdb restores the
process principal to that of the caller. However, as in Aeolus, the process labels
retain the contamination of anything the authority closure read, which ensures that
authority closures cannot leak information. (If the labels were restored in the event
of an exception, a closure could leak bit of a secret it has no authority to declassify by
reading the secret and deciding whether to raise an exception based on the value it
read.) In this particular example, the constraint violation is an anticipated possibility,
so the closure catches the exception, uses its authority to declassify the userlist tag,
and re-throws the exception.

4.5 Declassifying and Endorsing Views

The preceding section introduced stored authority closures, which extend the stored
procedure abstraction. However, relational databases typically make use of a dif-
ferent abstraction – views.TheQuery by Label model provides newmechanisms,
declassifying and endorsing views, which extend the view abstraction analogously.
This section describes how declassifying and endorsing views work, and shows that
they are instrumental in preserving data independence.

4.5.1 Defining Views Using Authority

ifdb extends the Aeolus model with declassifying and endorsing views, which are
adaptations of authority closures to the relationalmodel. Instead of binding authority
to code, the authority is bound to the definition of a view, which uses that authority
to declassify or endorse. Declassifying and endorsing views thus provide a means of
expressing downgrading policies [20, 93] as relations; they allow information with
high labels to be accessed with lower labels through the view, after that information
has been appropriately sanitized.

52

4 . que ry by l a b e l

For example, patient privacy regulations in the United States permit hospitals to
publish a directory of inpatients and their general conditions [1]. A hospital could
produce this information with a declassifying view of the Inpatients table (figure 4-1)
as follows, with the new syntax circled:

CREATE VIEW PatientDirectory AS
SELECT patient_name, condition FROM Inpatients
WITH DECLASSIFYING (all_patients_medical);

The view has authority to declassify for any tags specified in the DECLASSIFYING
clause, and the creator of the view must have this authority as well. In this case,
the view has authority for the all_patients_medical compound tag, and it uses its
authority to declassify the patient medical tags in the base relation, which are all
members of this compound tag. Endorsing views work similarly, but for integrity;
for instance, an endorsing view might add an integrity tag to each tuple after passing
it through a sanitization or verification function.

The PatientDirectory view is a simple example because all the tuples visible in
the view have the same label. However, some downgrading policies may require
more expressive power than a DECLASSIFYING or ENDORSING clause can provide.
Suppose the hospital wishes to properly track information flows in the patient billing
application. Billing records and medical records may have different confidentiality
policies; billing records are sent to insurance companies for claim processing, but
medical records are not. A view that extracts medical procedure codes from patient
medical histories to produce bills for those procedures might take a tuple with
secrecy label {alice_medical} and produce a tuple labeled {alice_billing}.Thus, each
patient’s data is declassified (and reclassified) differently. Query by Label supports
this type of view via RELABEL clauses:

CREATE VIEW PatientBills AS
SELECT patient_id, cost(med_procedure) FROM PatientMedProcedures
WITH RELABEL billing_to_medical PRINCIPAL allPatients;

The RELABEL clause names the billing_to_medical relabeling function, which
takes a secrecy/integrity label pair as input and produces a new label pair. The
function is invoked with the labels of the process that is querying the view, and it
produces the appropriate labels for a query on the underlying relation. In this case, if
the secrecy label contains alice_billing, the function adds the associated alice_medical
tag. It must look up the correspondence between the patient billing and medical
tags in a separate table. Conceptually, the contents of the view as seen by a given

53

4 . 5 . d e c l a s s i f y i ng and endor s ing v i ews

process are produced by invoking the relabeling function and updating the process
labels as it specifies, running the query in the view definition, and then restoring the
original labels of the process.

The PRINCIPAL allPatients clause specifies the authority that the view requires to
do its job. In effect, each query over the view involves three steps:

1. Add the patient’s medical tag to the secrecy label of the process, and declas-
sify the patient’s billing tag.The billing_to_medical provides the appropriate
mapping between the labels.

2. Execute the query specified by the view definition, which extracts tuples from
the underlying PatientMedProcedures table.

3. Reverse the first step, adding the patient’s billing tag and removing the patient’s
medical tag from the secrecy label of the process.

Since the view effectively declassifies arbitrary patients’ medical and billing tags, it
uses authority for allPatients – a principal that acts for all patients. Before executing
queries over the view, the dbms checks that this principal has authority for any tags
that the billing_to_medical function requested to change.The creator of the view
must acts for the principal specified in the PRINCIPAL clause.

Relabeling views aremore general than views using DECLASSIFYING and ENDORS-
ING clauses.The PatientDirectory view defined earlier could be defined as a relabeling
view, where the relabel function adds the all_patients_medical tag to the secrecy label
of the process.However, relabeling views are implemented differently, and are subject
to a minor restriction. Specifically, queries that invoke stored procedures that may
have side-effects cannot be run over relabeling views, as explained in section 8.1.3.

4.5.2 Discretionary Views

The examples presented in the preceding section are views that define mandatory
policies that affect all users. Chapter 3 touted discretionary security, where principals
can define the policies for their own data, as a benefit of the Aeolus model.Thus,
individual principals, not just the administrator, should be able to create declassifying
and endorsing views. For example, in a social network, each user could define a view,
vested with his own authority, that determines what personal information about the
user is available to his friends.

54

4 . que ry by l a b e l

However, views are part of the database schema, and as explained in section 4.2,
only the administrator may modify the schema. To allow non-administrators to
create views, each principal is given a private schema, and can create tables in that
schema. Such tables are referred to as schema name . table name, where the schema
name is based on the id of the principal.Thus, the names don’t conflict with views
of other users, or with tables and views in the global schema, which is managed by
the administrator. To ensure that schema modifications themselves cannot be used
to signal sensitive information, a process may only create, modify, or delete a view in
its private schema if the process has an empty secrecy label.

4.5.3 ViewUpdates

Since views contain derived data, insert, update, and delete operations on them are
not always well-defined.The ifdb implementation is based on Postgresql, and as
such, it leverages Postgresql’s solution to the view update problem. Postgresql re-
quires the database programmer to create rewrite rules describing how to transform
inserts, updates and deletes on a view into changes to the underlying tables. For
example, suppose that patient contact and billing information are stored in Contact
and Billing tables, and a ContactBilling view has been defined as an equi-join of the two
tables. An insert into the ContactBilling view could thus be rewritten as two inserts:
one into Contact and the other into Billing. In ifdb, rewrite rules for declassifying
and endorsing views may need to invoke stored authority closures to write base
tuples with different labels than the process. In the ContactBilling example, Contact
tuples might have different classifications than Billing tuples, and thus authority is
needed to change the process label appropriately for each insert.

ifdb also modifies the meaning of the sql standard WITH CHECK OPTION
clause, which is specified in a view definition. The clause normally instructs the
dbms to enforce a correctness condition on insert and update rules: following a
successful modification, the inserted or updated tuple must actually exist in the view.
For example, the option ensures that an attempt to insert a living patient into a view
that selects only dead patients from a table containing all patients is an error. When
the check option is specified in ifdb, ifdb enforces a stronger property, which
constrains the label pair of the tuple: the tuple must exist in the view and be visible
to the process that inserted it.

Views that do not use WITH CHECK OPTION are particularly useful in ifdb.
They provide a convenient way to support updates that transform data with higher

55

4 . 5 . d e c l a s s i f y i ng and endor s ing v i ews

labels than the requesting process. As described in section 4.3.4, all writes to the
database in the Query by Label model are restricted to tuples with exactly the labels
of the process. However, this rule is often too constraining. For example, a common
requirement in password-based authentication systems is that users should not be
able to see their own passwords, but they should be able to change their passwords.
An update rule on the Passwords table that invokes an authority closure provides the
needed power with familiar syntax: users can simply update their own entries in the
Passwords table, even if they lack the ability to see their passwords. As section 4.3.5
explains, writing tuples with higher labels can leak information, so the authority
closure underlying the update rule must exercise appropriate authority to raise the
process labels, perform the write, and declassify. By declassifying, it vouches that
the disclosure (namely, whether the update succeeded) is acceptable.

ansi sql specifies an alternative to rule-based view writes: certain types of
views for which updates have an unambiguous interpretation should automatically
be updatable. Neither Postgresql nor ifdb presently support this feature, but many
commercial database systems do, and support is planned for a future Postgresql
release. In ifdb, these updatable views will require relabeling rules, similar to reads
(see the preceding section).

4.5.4 Data Independence

Since data are labeled at the granularity of tuples in ifdb, how is it possible to
handle cases where a single logical entity has attributes that should have different
labels? One solution is to force the database designer to partition the entity into
multiple tuples according to the confidentiality and integrity concerns, but this
approach violates the data independence principle introduced in section 4.1.4. In the
medical system, for example, patients’ billing information and contact information
have distinct labels and security policies. Nevertheless, the data may be accessed
together frequently, such as when generating medical bills. The principle of data
independence dictates that the programmer should be able to refer to the billing and
contact information as separate relations, a single relation, or some combination
thereof, regardless of the underlying representation.

ifdb achieves data independence through a combination of standard views
and declassifying views. If the underlying representation is a single ContactBilling
table, as shown in figure 4-3(a), then the Contact and Billing relations shown in
figure 4-3(b) can be generated as declassifying views that project the appropriate

56

4 . que ry by l a b e l

ContactBilling
_label name address cardnum
{alice_contact, alice_billing} Alice 32 Vassar St 12345678
{bob_contact, bob_billing} Bob 52 Brattle St 90274963
{cathy_contact, cathy_billing} Cathy 497 Boylston St 29349274

(a) Since contact and billing information are frequently accessed together (for example,
when printing a bill), they can be stored in a single table.The labels of these combined
tuples must contain both the contact and billing tags.

Contact
_label name address
{alice_contact} Alice 32 Vassar St
{bob_contact} Bob 52 Brattle St
{cathy_contact} Cathy 497 Boylston St

Billing
_label name cardnum
{alice_billing} Alice 12345678
{bob_billing} Bob 90274963
{cathy_billing} Cathy 29349274

(b) Separate Contact and Billing relations reflect the distinct confidentiality concerns of
contact and billing information.They can be produced as declassifying views of the
ContactBilling base table, or alternatively, ContactBilling can be defined as a view that
joins the Contact and Billing base relations.

ContactBilling
_label name address cardnum
{alice_contact} Alice 32 Vassar St NULL

(c) If ContactBilling is defined as a view using a full outer join, a process with secrecy label
{alice_contact} will see null values for higher-labeled fields, similar to mls database
systems with field-granularity classification.

Figure 4-3: Ordinary and declassifying views make it possible to keep the represen-
tation of data independent from its security requirements.

57

4 . 6 . acce s s control and cl e a r ance

columns. Conversely, if the underlying representation of the data is as two separate
tables, the merged ContactBilling view can be produced as an ordinary view that joins
the two base tables.

If the ContactBilling table is constructed as a view, there are several options.The
view can be constructed as an inner join, in which case a tuple for a patient will not
be visible unless the process label includes both the patient’s billing and contact
tags. Alternatively, the view can be constructed as a full outer join, in which case
processes will simply see null values in place of the fields that its label does not allow
it to see, as illustrated by figure 4-3(c). The latter option can be used to simulate
field-level labels, with semantics similar to the SeaView model [101]. Thus, the use of
row-granularity labels in ifdb is not a significant limitation; finer-grained labeling
can be achieved through views when needed.

4.6 Access Control andClearance

This chapter has introduced the Query by Label model as an effective way to secure
databases using decentralized information flow control. As the introduction argued,
difc has advantages over access control: it uses sandboxing to allow untrusted code
to compute on sensitive data safely, and it enforces end-to-end security policies.

However, this dissertation does not propose to completely supplant access con-
trol. There are some security policies that can be enforced more directly with access
control. Consider the example of the Passwords table introduced in section 4.5.3.
This table has a secrecy policy that says that only the code that authenticates Alice
should be able to read Alice’s password, and an integrity policy that only Alice
should be able to write Alice’s password. Although difc enables more sophisticated
policies that allow untrusted code to compute over the passwords without being
able to release them, untrusted code in fact has no business reading Alice’s password.
Therefore, fine-grained access control is a more fitting way to secure the contents of
the Passwords table. Access control also avoids some of the covert channels that are
problematic in information flow systems.

A particular type of access control called clearancemeshes well with the difc
model. Clearance restricts the maximum secrecy label and the minimum integrity
label a process is allowed to have. For example, if Alice’s password tuple has the
alice_password secrecy tag, then processes that are not cleared to add alice_password
to their labels cannot read Alice’s password. Clearance has been studied in the

58

4 . que ry by l a b e l

Asbestos [141] and HiStar [152] operating systems, and other fine-grained access
control techniques for databases have also been developed (see section 10.3). ifdb
includes the forms of access control built in to Postgresql, including ansi sql
role-based access control and view-based access control; access control based on
clearance would be a useful extension. A limited form of clearance is introduced in
section 6.2 to prevent unsafe flows between conflicting transactions.

59

60

Chapter

5 Constraints

Databases provide means to enforce integrity constraints, which are invariants that
data elements and groups of related data elements must conform to. It is highly
desirable to enforce integrity constraints in the database, since doing so suppresses a
large class of application errors.

Unfortunately, dynamic constraint enforcement raises problems when infor-
mation flow rules prevent processes from being influenced by higher-labeled data.
For example, suppose a medical application running with an empty secrecy label
attempts to insert a tuple for Bob into the Patients table, but an entry with the same
primary key and a higher secrecy label already exists.The two obvious approaches are
raising an error, which leaks information by apprising the application of the existence
of the secret tuple, or allowing the constraint to be violated. Neither alternative is
entirely satisfactory.

Many real-world applications, such as Wikipedia, avoid database-enforced con-
straints due to the expense involved. Followers of that school of thought might
propose abdicating the problem of constraint enforcement to the application. How-
ever, rather than solve the problem, this approach merely shifts responsibility and
increases the likelihood ofmistakes. For instance, suppose that every patient appoint-
ment record in a medical information system has an associated patient visit record
containing medical notes from the visit. Further suppose that nurses should not be
able to view visit records associated with the mental health clinic. Unfortunately,
nurses might be able to infer that a patient has visited the mental health clinic if

61

5 . 1 . d oma in con st r a in t s

he has an appointment record without a visible visit record. The problem exists
regardless of whether the database or the application enforces the natural constraint
between appointments and visit records.

This is an example of the inference problem: it is possible to infer something about
a secret by looking at related data that is less secret.These inferences often involve
unstated assumptions or outside knowledge [102], so it is impossible for ifdb to
anticipate them. However, it is possible to prevent inferences for constraints that are
explicitly stated and enforced in the dbms. ifdb provides a semantics for constraint
enforcement that ensures that constraints do not leak information, except via an
explicit use of authority (declassification or endorsement).This secure-by-default
design provides a framework for making principled decision about how sensitive
information is used, and how it might be exposed.

This chapter discusses ifdb’s approach for handling constraints in the presence
of information flow restrictions. In the relational model, constraints can be broken
down into four categories: domain constraints, which concern individual tuples;
table-check constraints, which relate tuples within a table; relationship constraints,
which relate tuples in different tables; and more general kinds of constraints. The fol-
lowing sections treat each of these categories individually, and section 5.5 introduces
constraints on information flow labels themselves. Refer back to section 4.1.3 for a
summary of how these constraints are interpreted in an ordinary relational database.

5.1 Domain Constraints

The simplest constraints are domain constraints, which restrict the values tuples
may take, independent of any other tuples. Domain constraints don’t introduce any
information flow issues in ifdb.The constraints themselves are part of the database
schema, which is considered public (see section 4.2). Applications can evaluate for
themselves whether particular tuples satisfy domain constraints, and therefore the
dbms doesn’t convey any new information by enforcing the constraint.

However, domain constraints would be problematic if ifdb’s write rule, given
in section 4.3.4, did not prevent applications from updating tuples they cannot see.
For example, suppose there is a constraint that an employee’s overtime_wage be at
least 20% greater than his or her base_wage. An application could learn the salary
of an employee with a high secrecy label by issuing updates and observing which
values of overtime_wage are permitted.

62

5 . con st r a in t s

Domain constraints can also introduce complications in database systems such
as SeaView [101], in which different fields within a tuple can have different labels. For
instance, if a tuple’s base_wage had a more restrictive label than its overtime_wage, it
would be possible to learn the value of the former field by decreasing the latter until
a constraint violation is observed.

5.2 Table-Check Constraints

Table-check constraints relate tuples in a single table.This section focuses on unique-
ness constraints, which are the most common type of table-check constraint, and
the only kind supported directly by the ansi sql standard. Other types of table-
check constraints are uncommon. An example is Postgresql’s exclusion constraints,
which generalize uniqueness constraints to permit specifications such as “No two
salespeople can be assigned to locations within 100 miles of each other.”The issues
that arise with this kind of constraint are analogous to the problems with uniqueness
constraints. Other table-check constraints that don’t follow this pattern can be
handled as described in section 5.4.

5.2.1 The Problemwith Uniqueness Constraints

It is easy to check that a write obeys a constraint when all of the tuples that must
be read to verify satisfaction of the constraint are visible to the process performing
the write. However, a problem arises when the very question of whether the data
conforms to the constraint depends on tuples the process should not see.

The table in figure 5-1 will be used to construct an example of the problem. Integ-
rity labels have been omitted to simplify the presentation. Consider the following
inserts into the table:

1. Insert (Dan, 8/12/1969, 2B) into HIVPatientswith any label.

2. Insert (Alice, 2/1/1960, 2A) into HIVPatientswith secrecy label {alice_medical}.

3. Insert (Alice, 2/1/1960, 2A) into HIVPatientswith secrecy label {}.

The first insert doesn’t violate the constraint because there is no entry for Dan
in the table; hence, it should succeed regardless of the label used.The second insert
violates the constraint because Alice already has an entry in the table. Furthermore,

63

5 . 2 . ta b l e - check con st r a in t s

HIVPatients
_label patient_name patient_dob virus_type
{alice_medical} Alice 2/13/1960 1M
{bob_medical} Bob 6/26/1978 1M
{cathy_medical} Cathy 4/22/1941 1O

Primary key (patient_name, patient_dob)

Figure 5-1: In a medical records system, the HIVPatients table contains specialized
records for patients with hiv.

enforcing the constraint and causing the second insert to fail reveals nothing, because
the conflicting tuple is already visible to the process performing the insert. The
third insert is the problematic one. Like the second insert, it violates the constraint;
however, the process performing the insert has an empty secrecy label, so it isn’t
supposed to see the conflicting tuple, which has a higher secrecy label. Disallowing
the insert would leak the fact that a tuple for Alice already exists. Anyone who knows
Alice’s name and date of birth could thus learn whether she has hiv by attempting
this insert. Since the insert is performed by a process with an empty secrecy label,
the process will be allowed to release the information to the outside world.

Uniqueness constraints pose a related problem for integrity. Processes with low
integrity can insert tuples that subsequently interfere with the operation of processes
with higher integrity.Thus, the high-integrity process could become confused or be
unable to do its job because the uniqueness constraint prevents it from inserting.
Definition 3.1 can be used to capture the secrecy and integrity problems in a single
statement: a problem arises when a process attempts an insert that conflicts with a
tuple with a more restrictive (higher) label pair.

Furthermore, the problem is not limited to just inserts. Updates can cause the
same problems when a unique key value is updated such that it conflicts with the
key of another tuple. To simplify the exposition, update operations are regarded as a
delete of the old tuple followed by an insert of the new tuple.Therefore, the rest of
section 5.2 discusses only inserts.

5.2.2 IFDB’s Solution

ifdb uses polyinstantiation, which permits inserts of tuples that conflict with higher-
labeled tuples. Clients running with lower labels, unaware of the higher-labeled

64

5 . con st r a in t s

tuples, see a consistent view of the database and are unaffected by the higher-labeled
data. Clients running with higher labels, however, will see both tuples, distinguished
only by their labels – a violation of the uniqueness constraint.

The trouble with polyinstantiation is that it can lead to confusion. What does
it mean to have two hiv patients with identical primary keys but different labels?
Much prior work is concerned with the use of polyinstantiation as an important
feature in its own right, and proposes cover stories as one possible answer to this
question. Specifically, the public version of a patient record might be different from
the secret version due to deliberate subterfuge. Polyinstantiation can also be used to
express different subjective opinions about the truth. Section 10.4.1 reviews these
proposals and the complexities they involve.

Although ifdb is capable of supporting these perspectives, this dissertation
advocates a simpler interpretation, whereby polyinstantiated tuples are seen as
mistakes. Since it would leak information to expose the mistakes to clients with
lower labels (that is, by notifying them of the conflict), ifdb instead exposes the
mistakes to the clients with higher labels.

As a result of this philosophy, ifdb only permits polyinstantiation when it is
necessary to avoid covert channels. For example, consider again the third exam-
ple from section 5.2.1: inserting (Alice, 2/1/1960, 2A) into HIVPatients with secrecy
label {}. This insert causes polyinstantiation and results in two entries for Alice:
a correctly labeled one with virus type 1m, and the new one with virus type 2a.
However, if the same insert were performed with the equally bogus secrecy la-
bel {alice_medical, eve_medical}, the result would be an error.There is no need to
polyinstantiate in the latter case because the process running with secrecy label
{alice_medical, eve_medical} is able to see the conflicting tuple, which has secrecy
label {alice_medical}; therefore, apprising the process of its mistake does not reveal
any additional information to it. Unlike ifdb, many prior systems polyinstantiate in
both cases for the sake of cover stories, calling the first example invisible polyinstan-
tiation, and the second visible polyinstantiation [75].

Polyinstantiation means that queries could return multiple records when only
one is expected. Some application code may not be prepared to cope with this
eventuality.Therefore, ifdb has four ways to shield applications from the effects of
polyinstantiation:

1. Label constraints that relate the unique key to the information flow label can
prevent polyinstantiation. Label constraints are described in section 5.5.

65

5 . 2 . ta b l e - check con st r a in t s

2. The information flow labels can be made part of the key.This solution also
prevents polyinstantiation and is applicable when cover stories or multiple
versions of the truth are desired. For example, the Facebook website presently
leaks information about users’ private photos by caching a count of the number
of photos they have in each album; Alice’s employer might be able to see
that Alice has 300 photos in the Partying album, even if the employer is only
authorized to see two of the photos. To solve the problem, the systemmight
store one count for Alice’s public photos and one count for her private photos,
both of which could be updated by triggers. Since storing multiple counts with
different secrecy labels is intentional, the database designer should make the
decision explicit by including the secrecy label in the key.

3. Queries can specify exact secrecy and integrity labels as the selection pred-
icate for any relation. Since polyinstantiated tuples are guaranteed to have
different labels, specifying exact labels guarantees that violation of uniqueness
constraints will not be observed.This technique works well if the application
knows the exact labels the data ought to have; the system returns the desired
tuple and ignores the others, which are presumably the erroneous ones since
they have the wrong labels.

4. To limit the effects of polyinstantiation due to incorrect secrecy labels, ap-
plications can use integrity labels. Integrity labels don’t guarantee that no
polyinstantiation will be observed, but they limit which code and which
principals can cause confusion. For example, a process running with integrity
label {alice_medical} will only observe polyinstantiated tuples if they were
created by processes that used authority to endorse for the alice_medical tag.
Presumably authority for this tag is limited to entities Alice trusts, such as her
doctors, and if they are trustworthy they will apply the correct secrecy label.

The first two approaches are preferable because they actually prevent polyinstan-
tiation rather than hide it. The latter two solutions are useful, however, if the correct
labels aren’t known a priori, or if label constraints are considered too expensive to
enforce. (Generally speaking, label constraints are no more expensive than foreign
key constraints.)

66

5 . con st r a in t s

5.3 Relationship Constraints

Invariants can also be enforced between tables.Themost commonmulti-table prop-
erty in the relational model is referential integrity,1 which enforces a many-to-one
mapping between a referencing relation and a referenced relation. For example, for
each patient visit record in a medical clinic, there should be a corresponding record
with the patient’s basic information, such as name and date of birth. In sql, these
constraints are called foreign key constraints, and they are enforced directly by adding
FOREIGN KEY clauses to table definitions.This section addresses only foreign keys;
ifdb handles other types of constraints with triggers, covered in section 5.4.

5.3.1 The Problems with Referential Constraints

Referential constraints create information channels when the referencing tuple and
the referenced tuple have different labels. This section describes the problem for
secrecy; there are analogous problems for integrity (see section 5.3.3), but they are
not as serious. Suppose tuples in table A are constrained to reference tuples in table
B. There are two problematic cases:

— Inserts. A process with any label can try to insert tuples into A in order to
determine which tuples exist in B. For instance, suppose that in a medical
system, every tuple in the HIVRecords table is constrained to refer to a patient
listed in the HIVPatients table in figure 5-1. A process running with an empty
secrecy label could learn whether a particular patient is in HIVPatients by trying
to insert a tuple for that patient into HIVRecords. The insert will succeed only
if the referenced patient has hiv.
Moreover, the very existence of tuples in A reveals to any readers that the cor-
responding B tuples exist. The leak is established when the tuples are inserted
into A in the first place, so this issue is in fact a consequence of the problem
with inserts. A further concern is one of semantics: even though the constraint
might be enforced over the entire database, processes may encounter dangling
references because their views of the database are restricted.

— Deletes. Suppose that a tuple a in A has a label pair that is more restrictive than
that of a tuple b in B, that is, (a.LS , a.LI) ≻ (b.LS , b.LI). Then a process

1.The use of the word integrity in referential integrity should not be confused with integrity tags.
Also see footnote 1 on page 40.

67

5 . 3 . r e l at i on sh i p con st r a in t s

P with label pair (P.LS , P.LI) = (b.LS , b.LI) could learn that a exists by
trying to delete b. For instance, in the preceding example, the HIVPatients
table itself might refer to another table, PatientContact. If the dbms disallowed
deletion of a patient’s contact information only if he has a referring tuple in
HIVPatients, that provides an effective (albeit destructive) means to determine
which patients have hiv. For instance, a process running with the same label
as Alice’s PatientContact tuple could attempt to delete that tuple, and if the
delete fails due to a constraint violation, the process knows Alice has hiv.

Some multi-level-secure databases have attempted to address these problems by
requiring the referencing and referenced tuples to have identical labels [72, 73, 101,
128].This approach is overly limiting: for example, it disallows the constraint that
each user in a Users table must have a password in the Passwords table (with a more
restrictive label pair).

Other database systems require that the referencing tuples have labels at least
as restrictive as the referenced tuples [13, 138].This restriction solves the problem
with inserts, and it ensures that processes don’t observe any dangling references [52].
As with the preceding proposal, however, it disallows constraints such as the one
requiring each user to have a password. Furthermore, it does not prevent the problem
where deletes leak information.

One could imagine clever ways of handling deletes to avoid the channel. For
instance, sql constraints have an ON DELETE CASCADE option, which automatically
deletes referencing tuples when their referents are removed. However, cascading
deletes can still fail, and thereby leak information.This happens, for instance, when
deleting one of the referencing tuples causes a violation of a different constraint.
More critically, recursive deletes may run afoul of Query by Label’s write rule
(rule 4.2), in which case they will fail anyway.

5.3.2 IFDB’s Solution

ifdb addresses both the insert and delete problems at the time of the insert. When
a process inserts a new referring tuple, it must possess and use appropriate authority
to vouch for the implicit information that may be leaked by the insert, as well as
the information that might be revealed by any subsequent attempt to remove the
referenced tuple.The following rule is enforced:

68

5 . con st r a in t s

Rule 5.1. (Foreign Keys – Secrecy)

To insert a tuple a with secrecy label a.LS , which is constrained to refer to a tuple b
with secrecy label b.LS , the process issuing the commandmust declassify for each
tag in the symmetric difference of the two tuples’ secrecy labels, a.LS ⊖ b.LS .

The symmetric difference of two labels L1 and L2 consists of the union of L1 \L2 (all
the tags in L1 but not L2) and L2 \L1 (all the tags in L2 but not L1). As stated above,
the rule only handles secrecy; integrity is discussed in section 5.3.3. The justification
for the rule comes in two parts:

— The requirement that the process must declassify for b.LS \ a.LS addresses the
problem with inserts described in the preceding section. In effect, the process
must be able to see tuple b (if it exists) in order to verify the constraint, as if
by the following pseudocode:
procedure insertReferencing(a, b):
addSecrecy(b.LS \ a.LS)
read b; abort if no tuple b is visible
declassify(b.LS \ a.LS)
insert(a)

The process effectively becomes contaminated because it must verify that b
exists before inserting a. Thus, it needs to declassify in order to verify the
constraint, and the rule merely makes this operation explicit.

— The requirement that the process must declassify for a.LS \b.LS addresses the
problem with deletes described in the preceding section.The rule recognizes
that deletions expose about information in the referencing table; it ensures that
this is acceptable by requiring the inserter to have authority for all the tags that
must be removed in order for the deleter to learn about these insertions. More
concretely, the insert of ameans that a subsequent attempt to delete bmight
fail and thus leak the existence of a to a process running with secrecy label
b.LS . By declassifying the tags that are in a.LS but not in b.LS , the process
performing the insert vouches that this potential unsafe flow is acceptable.

The affected tags must be identified explicitly in the INSERT statement using
a DECLASSIFYING clause. Figure 5-2 shows two foreign key relationships where
DECLASSIFYING clauses can be used. In figure 5-2(a), public information references

69

5 . 3 . r e l at i on sh i p con st r a in t s

ActiveOrderStatus
_label order_id ready
{} 983462 true
{} 983463 false

Foreign key (order_id)
references PharmacyOrders(id)

PharmacyOrders
_label id patient_name patient_dob medication
{bob_medical} 983462 Bob 6/26/1978 albuterol
{alice_medical} 983463 Alice 2/13/1960 warfarin
{cathy_medical} 983464 Cathy 4/22/1941 capecitabine

Primary key (id)

(a) Public information about the status of active pharmacy orders references the sensitive
order details.

PatientVisits
_label patient_name patient_dob visit_date proc_code
{cathy_medical} Cathy 4/22/1941 1/14/2012 J1700
{alice_medical} Alice 2/13/1960 6/15/2012 G0404
{bob_medical} Bob 6/26/1978 6/16/2012 J1700

Foreign key (proc_code) references ProcedureCodes(code)

ProcedureCodes
_label code cost description
{} G0404 50 electrocardiogram
{} J1700 35 hydrocortisone injection
{} Q0084 120 chemotherapy by infusion
{} V2624 30 polishing artificial eye

Primary key (proc_code)
Source:Healthcare Common Procedure Coding System, Level ii, 2012

(b) Sensitive patient visit records refer to public medical procedure codes.

Figure 5-2:The tables demonstrate two foreign key relationships that don’t reveal
significant information. In ifdb, applications use DECLASSIFYING clauses
to vouch that these relationships are okay. Integrity tags are omitted to
simplify the example.

70

5 . con st r a in t s

sensitive information.The pharmacy maintains a table of active pharmacy orders
that indicates which orders are ready. The entries in the table refer to sensitive
information about the orders themselves via a foreign key. Inserting a new entry into
ActiveOrderStatus doesn’t reveal anything other than the existence of a particular
order number, so the inserting process uses a DECLASSIFYING clause as follows:

INSERT INTO ActiveOrderStatus (order_id, ready)
VALUES (983464, false)
DECLASSIFYING (cathy_medical);

Figure 5-2(b) illustrates a case where sensitive tuples refer to public tuples. A
hospital uses the PatientVisits table to keep track of what medical procedures are
performed on patients. Medical information systems use standardized procedure
codes for billing purposes; information about the cost of each procedure is stored in
a separate ProcedureCodes table. A foreign key constraint enforces the requirement
that each procedure code in the PatientVisits table must refer to a valid code in
the ProcedureCodes table. An attacker who can delete procedure codes can use
the constraint to determine what medical procedures have been performed at the
hospital. However, in a large clinic, this isn’t a serious threat to patient privacy, and
furthermore the ProcedureCodes table can simply be protected frommodification
through the use of access control or integrity tags.Thus, a process inserting a new
patient visit for Cathy uses a DECLASSIFYING clause as follows:

INSERT INTO PatientVisits (patient_name, patient_dob, visit_date, proc_code)
VALUES ('Cathy', '4/22/1941', '6/30/2012', 'Q0084')
DECLASSIFYING (cathy_medical);

DECLASSIFYING clauses are explicit declarations that any information flow chan-
nels created due to an insert of a tuple with a foreign key reference are acceptable.
The process performing the insert must additionally have authority to declassify all
the tags named in the clause.Therefore, the foreign key rule supports ifdb’s goal
that unsafe information flows can only occur through explicit use of authority.

Although section 5.3.1 demonstrates that some foreign key constraints have the
potential to leak significant information, the tables in figure 5-2 show that some
foreign key constraints don’t leak any information that would be useful to an attacker.
Thus, as a matter of convenience, it might be desirable to assert that the constraint is
“harmless,” so that processes don’t require authority to insert. In ifdb, this can be
done by creating a stored authority closure to do the insert and writing a rewrite rule
that transforms insert statements into calls to the closure. ifdb does not provide

71

5 . 3 . r e l at i on sh i p con st r a in t s

a more direct way to express this because it is not completely safe: it violates the
requirement that only processes running with authority for a tag should be able to
leak information protected by that tag. Specifically, a pair of collaborating malicious
processes with no authority could abuse the constraint and the authority of the
closure to leak arbitrary information at a high rate. For instance, one process becomes
contaminated by the alice_password tag and inserts a pharmacy order with id n if the
nth bit of Alice’s password is a 1.The other process runs with an empty secrecy label
and inserts an entry for order n into OrderStatus; it learns the nth bit of the password
based on whether this insert succeeds or not. Nevertheless, “harmless” constraints
might be acceptable in deployments where the goal is merely to protect against bugs,
not malicious code.

Updates can be regarded as a delete followed by an insert, and thus, update
statements also require DECLASSIFYING clauses. However, these clauses are only
required when the update changes a field that is part of a foreign key reference into
another table. Changes to other fields don’t affect the constraint.

5.3.3 Referential Constraints and Integrity Labels

Theproblems with referential constraints and secrecy have analogues for integrity, al-
though the practical consequences of integrity “leaks” are less serious.The problems
are as follows:

— Deletes. If low-integrity processes can create references to high-integrity tuples,
then those processes can interfere with the ability of high-integrity processes
to delete those tuples. For example, suppose that appointment records in a
medical clinic refer to doctor tuples via a foreign key. If Bob is fired from his
job as a doctor at the clinic, he could prevent a high-integrity process from
removing his doctor tuple by creating bogus appointments.

— Inserts. A process with high integrity that inserts a tuple referring to a low-
integrity tuple is exposing itself to possible errors, because the success of the
operation depends on the low-integrity tuple.

The problems can be addressed by extending rule 5.1 to handle both secrecy
and integrity. As with secrecy, the goal is not to prevent the channel, which exists
because the constraint is enforced between tuples with different labels. Rather, the

72

5 . con st r a in t s

goal is to ensure that when unsafe flows do arise, the programmer acknowledges and
properly vouches for them.

Rule 5.2. (Foreign Keys)

To insert a tuple a labeled (a.LS , a.LI), which is constrained to refer to a tuple b
labeled (b.LS , b.LI), the process issuing the command must declassify for each tag
in the symmetric difference of the two tuples’ secrecy labels, a.LS⊖b.LS , and it must
endorse for every tag in the symmetric difference of their integrity labels, a.LI⊖b.LI.

Endorsing for a.LI \b.LI is necessary because the process running with integrity
a.LI needs to read the lower-integrity tuple b in order to verify the constraint; thus,
a lower-integrity process could interfere with the high-integrity process by deleting
b. Endorsing for b.LI \ a.LI handles the case where a low-integrity tuple references
a high-integrity tuple; the process performing the insert must vouch for the fact that
it is interfering with the ability of higher-integrity processes to delete the tuple.

Rule 5.2 demonstrates that this thesis handles secrecy and integrity uniformly.
In both cases, it uses a strong definition, noninterference [57], as a basis for reasoning
about covert channels. In essence, noninterference requires that low-secrecy parts
of the system should not be affected by high-secrecy parts of the system (lest they
learn about high-secrecy data), and high-integrity parts of the system should not
be affected by low-integrity parts of the system. Thus, secrecy and integrity are
considered duals of one another.

Treating secrecy and integrity as duals leads to a clean design that is easy to
explain, because there is only a single set of rules, whichworks for both kinds of labels.
However, from a practical perspective, forcing programmers to add DECLASSIFYING
and ENDORSING clauses to their sql statements and run code with additional
authority comes at a cost. In the case of integrity, it is not clear that this cost is
justifiable. In essence, the problems prevented by rule 5.2 are denial-of-service attacks.
One might be perfectly happy with an integrity rule that allows such attacks, but
prevents problems such as trusted medical applications inadvertently using bogus
medical records that don’t have the proper integrity.Thus, for many applications,
integrity semantics based on less strict notions than noninterference may be more
appropriate [93, 149], and future work might introduce alternative integrity rules for
foreign key constraints in a database. Section 11.2.2 discusses the issue further.

73

5 . 4 . g en e r a l con st r a in t s

5.4 General Constraints

In addition to the constraints discussed so far, there are other types of constraints that
aren’t expressible in standard sql, except via assertions or triggers. Some examples
include the following:

— Equational dependencies define algebraic constraints, possibly over aggregate
values. For example, the sum of all loan amounts may not exceed the bank’s
credit limit.

— Inclusion dependencies are similar to foreign keys, except that the referenced
tuple need not be unique. For example, each prescribed drug must be listed at
least once in the pharmacy catalog – but the catalog may have multiple listings,
each for a different manufacturer or formulation.

— Exclusion constraints generalize uniqueness constraints to support require-
ments such as, “No two salespeople should be within 100 miles of each other.”

Like most database systems, ifdb doesn’t provide any special support for such
constraints. Instead, constraints other than those covered in preceding sections
of this chapter must be enforced by triggers. Triggers in ifdb are simply stored
procedures that are executed in response to specified types of writes (inserts, updates,
or deletes) on a particular table. Triggers may enforce a constraint by aborting; by
modifying the requested operation; or by performing an additional operation, such
as updating a bank balance every time a new deposit or withdrawal tuple is inserted.

It is important to understand the information flow implications of constraints
implemented through triggers. This chapter has developed semantics for two useful
kinds of constraints: uniqueness constraints and foreign keys. Many triggers are
similar to these, and therefore, similar rules may be appropriate. For example, inclu-
sion dependencies are similar to foreign keys, while exclusion constraints resemble
uniqueness constraints. However, there is no general theory about how to handle
the information flows that might arise due to relationships among tuples governed
by arbitrary constraints. Appropriate semantics must be motivated by the type of
constraint and the needs of the application.

Nevertheless, there is a methodology for writing triggers.The database designer
has two choices. One choice is to make the trigger an ordinary stored procedure, in
which case it runs with the authority of the process attempting to modify the table.

74

5 . con st r a in t s

In this case, the trigger can only enforce the constraint with respect to the subset of
the database visible to the process. However, enforcing the constraint will not result
in any unsafe flows because the trigger does not do anything that the caller could
not do itself. The second choice is to make the trigger a stored authority closure, in
which case it can use its authority to enforce the constraint across all tags that it has
authority for. However, by using authority, the trigger could create unsafe flows and
expose information.Therefore, as with any other authority closure, it is important
to consider how that authority might be abused.

Figure 5-3 contains the definition of a checkMedicationExists trigger that demon-
strates the first choice.The trigger procedure does not use any authority, so it cannot
leak any information. It is attached to the PharmacyOrders table in figure 5-2(a), and
it implements half of a foreign key constraint: the procedure checks on insert into
PharmacyOrders that the order refers to a valid medication, which must be visible to
the process. However, it does not check whether writes toMedications (not shown)
invalidate existing pharmacy orders. Triggers like this one are useful: since the trigger
implements a constraint that is weaker than a full foreign key constraint, the inserting
process does not need the same authority as it would if a foreign key constraint had
been used (see section 5.3). Furthermore, this weaker constraint is reasonable if
updates to theMedications table are restricted to trusted processes via integrity tags
or an access control policy.

The trigger shown in figure 5-4 is an example of the second choice – running
a trigger with authority. The trigger enforces the constraint that all tuples in the
UserAccounts table have unique values for the username field. If each account has
a different label, for instance {alice_account} for Alice’s account, this is an unsafe
flow: attempting to insert a new account tuple might leak the fact that a certain
username already exists. Normally ifdb prevents unsafe flows like this one by
using polyinstantiation (section 5.2), but leaking the existence of a username when
another user tries to register the same username is both benign and unavoidable.
By declassifying inside the closure, the programmer acknowledges that this leak is
acceptable. It is easy to reason about what is being leaked:The only action the closure
takes is to succeed or fail based on whether there is an existing account with the
given username.Therefore the procedure can only leak that one bit of information
by declassifying.

Triggers (as well as other types of constraints) can be evaluated at the time of the
action that caused the trigger to fire, or if the action is part of a larger transaction, they
can be deferred until the entire transaction commits. (Chapter 6 covers transactions

75

5 . 4 . g en e r a l con st r a in t s

CREATE FUNCTION checkMedicationExists()
RETURNS trigger AS
$$
BEGIN

PERFORM * FROM Medications WHERE medication = NEW.medication;
IF NOT FOUND THEN

RAISE EXCEPTION 'medication % does not exist', NEW.medication;
END IF;
RETURN NEW;

END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER prescriptionMedicationTrigger
BEFORE INSERT ON PharmacyOrders
FOR EACH ROW EXECUTE PROCEDURE checkMedicationExists();

Figure 5-3:The checkMedicationExists procedure runs as a trigger and ensures that
medications named in new pharmacy orders actually exist in theMedica-
tions table.The procedure does not use any authority, so it cannot cause
any information leaks.

76

5 . con st r a in t s

CREATE FUNCTION checkAccountExists()
RETURNS trigger PRINCIPAL accountAdmin AS
$$
DECLARE

existingAccount VARCHAR;
BEGIN

PERFORM addSecrecy(all_user_accounts);
SELECT * INTO existingAccount FROM UserAccounts

WHERE username = NEW.username;
PERFORM declassify(all_user_accounts);
IF existingAccount IS NOT NULL THEN

RAISE EXCEPTION 'user % already exists', NEW.username;
END IF;
RETURN NEW;

END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER accountUniqueTrigger
BEFORE INSERT ON UserAccounts
FOR EACH ROW EXECUTE PROCEDURE checkAccountExists();

Figure 5-4:The checkAccountExists stored authority closure is invoked as a trig-
ger on each insert into the UserAccounts table. It runs with authority
for the all_user_accounts compound tag, and it uses its authority to
ensure that all user accounts that are properly labeled with subtags of
all_user_accounts have unique usernames. Note that although the trigger
declassifies the all_user_accounts, the semantics for authority closures
ensures that it cannot inadvertently remove any account tags from its
caller’s label (see section 4.4).

77

5 . 5 . con st r a in t s on l a b e l s

in ifdb.) The former option catches errors sooner, but the latter is necessary
in certain situations. For example, if a constraint specifies a one-to-one mapping
between tuples in two tables, checking the constraint after each insert wouldn’t work;
the check must be deferred until after both tuples are inserted. Deferred triggers
require some extra bookkeeping in ifdb: they run with the information flow labels
that the process had at the time of the action that caused the trigger to fire, rather
than the labels of the process at the time the transaction commits.This ensures that
triggers have consistent semantics regardless of whether they are deferred until the
end of the transaction. For example, if a process inserts a tuple and then declassifies,
a trigger that is validating the insert should see the subset of the database that was
visible to the process before it declassified.

5.5 Constraints on Labels

Label constraints, also known as classification constraints, restrict the labels that
tuples are allowed to have.The SeaViewmulti-level secure dbms [101] first intro-
duced the idea as a way “to protect against labeling errors as well as to relieve
the user of the burden of remembering all of the rules for classifying data” [37].
ifdb also supports label constraints, but has a different philosophy about these
constraints. In ifdb, the supposition is that most database interaction happens
through applications, not through human users. Furthermore, these applications are
subject to information flow restrictions as well. (In contrast, human operators are
less amenable to information flow restrictions.)Therefore, label constraints are used
differently, and can in fact be used to eliminate some of the issues identified earlier
in this chapter, such as polyinstantiation.This section lists some of those uses:

— Preventing labeling errors. As in SeaView, label constraints can prevent data
from being labeled incorrectly. Unlike SeaView, ifdb uses the difc model,
so such constraints usually require referring to another table to determine the
appropriate label. For example, figure 5-5 shows how to use foreign keys to
enforce the constraint that patient visit records have the same secrecy label as
the respective patient’s basic medical information. More complex constraints,
such as one that ensures that a tuple must have at least a certain tag in its
secrecy label, can be enforced with triggers. Triggers have two advantages:
they are more general, and they avoid some of the issues with foreign keys
discussed in section 5.3.

78

5 . con st r a in t s

PatientVisits
_label patient_name patient_dob visit_date proc_code
{cathy_medical} Cathy 4/22/1941 1/14/2012 J1700
{alice_medical} Alice 2/13/1960 6/15/2012 G0404
{bob_medical} Bob 6/26/1978 6/16/2012 J1700

Foreign key (_label, patient_name, patient_dob) references Patients

Patients
_label patient_name patient_dob blood_type allergies
{alice_medical} Alice 2/13/1960 O+
{bob_medical} Bob 6/26/1978 A- bees
{cathy_medical} Cathy 4/22/1941 B+

Primary key (_label, patient_name, patient_dob)

Figure 5-5: A foreign key relationship between the PatientVisits table and the Patients
table ensures that patient records are consistently labeled.

A particularly useful constraint that can be enforced with a trigger is that all
patient medical records should be labeled only with tags that are subtags of
the compound tag all_patients_medical. Such a constraint forces all the tags
to be of the right “type,” and ensures that no additional contamination is
present in the labels. With this constraint, it is possible to run a statistical
computation with label {all_patients_medical} that is guaranteed to observe
all patient records.

— Preventing polyinstantiation. Another invariant that should be enforced on the
tables in figure 5-5 is the constraint that there is only one Patients record for
Alice. Polyinstantiation (section 5.2) creates the possibility that two records
might exist with different labels.2 It is possible to prevent polyinstantiation by
requiring that each patient tuple have the correct label. Themapping between
patients and their tags could be stored in another table, say PatientTags, and
checked by a trigger on each insert into Patients. This solution would seem

2. sql requires that the target of a foreign key reference be covered by a uniqueness constraint.

Therefore, the secrecy label has actually been included in the primary key of Patients. Doing
this technically prevents polyinstantiation, but on a semantic level, it is still wrong to have

multiple Patients tuples for the same patient.

79

5 . 6 . s ummary of contr i bu t i on s

to lead to an infinite regress: how does one prevent polyinstantiation in the
PatientTags table? One answer is to constrain all tuples in the table to have
empty secrecy labels. If the table were indexed by an opaque identifier such as
medical record number, this would be a fine solution. Such a table is commonly
needed anyway, so that processes know what tags to add to their labels to read
a particular patient’s records. An alternative is to protect the contents of the
PatientTags table with a tag associated with an authority closure that uses the
information only to verify that patient records are properly labeled.

— Preventing applications from seeing dangling references. Although ifdb enforces
referential integrity constraints, applications may observe apparent violations
of these constraints because they don’t have the proper labels to see the refer-
enced tuple. In some cases, this is deserved. For example, if there is a constraint
that every user has a password, that does not mean that a process that sees
Bob’s contact information ought to be able to read his password without first
raising its label. However, if a label constraint requires the referenced tuple to
have the “correct” labels, then any process with those labels will observe no
violations of referential integrity. Another example is the one in figure 5-5: no
process will ever observe a violation of the foreign key constraint, because the
referring and referenced tuples are constrained to have identical labels.

This chapter has argued that there is a fundamental tension between constraint
enforcement and information flow control: sacrifices in integrity constraint enforce-
ment must be made to avoid covert channels. Supporting examples have shown
that badly behaved processes can abuse constraints to learn sensitive information
protected by those constraints.The insight of this section is that incorporating appro-
priate label constraints to restrict bad behavior can guarantee both data consistency
and freedom from covert channels.

5.6 Summary of Contributions

This section briefly summarizes the contributions of this chapter and highlights how
ifdb differs from prior work. Section 10.4 presents the related work on constraints
in multi-level-secure databases in greater detail.

80

5 . con st r a in t s

The ideas of polyinstantiation and label constraints were introduced in Sea-
View [101]; ifdb’s contributions here are simplifying the semantics of polyinstanti-
ation and advocating a practical methodology for managing polyinstantiation. In
particular, the use of label constraints to prevent polyinstantiation safely is new.

Additionally, ifdb pioneers the idea of using DECLASSIFYING and ENDORSING
clauses to vouch for the information flows created by foreign key constraints. Prior
systems either allowed unsafe flows or disallowed foreign key constraints between
tuples with certain labels. Finally, this chapter develops new semantics and amethod-
ology for using triggers to enforce general of constraints.

81

82

Chapter

6 Transactions

This chapter discusses covert channels that can arise due to support for transactions,
and describes how ifdb eliminates the channels. Transactions can create two types
of channels. The first has to do with the fact that processes can leak information
by choosing to abort transactions, while the second is related to conflicts among
transactions issued by processes with different labels.

An important assumptionmade in this chapter is that dirty reads are not allowed;
transactions may not read uncommitted data from other active transactions. Dirty
reads create the possibility of cascading aborts and unrecoverable schedules [61],
and they complicate the reasoning about information flows. ifdb is based on
Postgresql, which does not allow dirty reads.The problems and solutions presented
in this chapter are not specific to a particular isolation level, however; they apply to
serializability, snapshot isolation, sql’s REPEATABLE READ, and so forth.

6.1 Label Changes and Aborts

It is crucial that processes be able to write tuples with different labels as part of
a single transaction. For example, when a new user signs up for an account on a
website, the user’s contact information tuple may have a different secrecy label from
her password tuple, but both tuples should be added to the database as a single
atomic action. Section 4.3.5 explains that ifdb makes this possible by allowing
processes to change their labels in the middle of a transaction.

83

6 . 1 . l a b e l change s and abort s

A client process can abort a transaction after the process has raised its labels,
however, and this can lead to a covert channel. Specifically, the decision of whether
to commit or abort can leak one bit of information per transaction.The following
code listing, written in pl/pgsql, shows how a process might abuse the channel to
leak some of Alice’s medical information to a collaborator who has an empty secrecy
label.The example makes use of the HIVPatients table from figure 5-1 on page 64.

BEGIN
INSERT INTO Foo VALUES ('Alice has HIV');
PERFORM addSecrecy(alice_medical);
SELECT * FROM HIVPatients WHERE pname='Alice';
IF NOT FOUND THEN

ABORT;
END IF;

COMMIT;

This code begins a transaction and writes the string “Alice has hiv” with an
empty secrecy label. Then it raises the secrecy label of the process and checks
whether Alice actually has hiv.The process is now contaminated, so it is unable
to release the sensitive information it read directly, assuming it has no authority
to declassify the alice_medical tag. However, the process reveals the information
indirectly by committing the transaction if Alice has hiv and aborting otherwise.
The result is that the string “Alice has hiv” is written with an empty secrecy label
if and only if Alice has hiv. Subsequently, another process with an empty secrecy
label could read the string from table Foo and release this sensitive information to
the world. Although the example contains malicious code, the fact that aborts can
occur due to errors raises the prospect that such leaks could also occur through
exploitation of buggy code. In fact, inducing errors to reveal sensitive information is
a well-known attack [110].

One could imagine trying to solve the problem by restricting the circumstances
under which aborts are allowed. Fabric [96] does this, as explained in section 10.6.1.
However, clients can cause transactions to abort in many ways, such as by issuing
invalid operations, attempting to violate integrity constraints, or inducing deadlocks;
preventing all of these in a dynamic system with general transactions is unrealistic.

The intuition for fixing the problem is that the information flow rules should
apply at the commit point, which is when the writes become visible to other transac-
tions. (Dirty reads would invalidate this line of reasoning, but they are not allowed.)

84

6 . t r an s act i on s

ifdb enforces the rule that the commit label, that is, the process label at the commit
point, must be no more restrictive than any tuple in the transaction’s write set. If a
process violates the rule by attempting to commit a transaction with a higher label
than allowed, the result is an error, which causes the transaction to abort. Formally,
the rule is as follows:

Rule 6.1. (Transaction Commit)

LetWT = {τ1, . . . , τn} denote the set of tuples written by a transaction T issued
by process P. P can commit T if ∀τi∈WT: (P.LS , P.LI) ≼ (τi .LS , τi .LI), where
(P.LS , P.LI) is the current label pair of P.

The rule effectively means that transactions running without authority cannot
commit if they becomemore contaminated after performing awrite. In particular, the
transaction in the example cannot leak whether Alice has hiv, because it will always
abort. However, a process that has authority for a tag can add that tag to its label and
subsequently remove it before the end of the transaction in order to write differently
labeled tuples atomically. Such a transaction could expose information, but this is
allowed because it used the proper authority to declassify the tag in question.

Figure 6-1 provides some intuition for why the rule is necessary and sufficient
by showing three transactions that satisfy the rule and three that do not. Most
transactions in practice resemble T1: no label changes occur during the course of the
transaction. Transactions are also allowed to raise their labels prior to performing
any writes, as T2 does. T2 is safe because the same sequence of reads and writes
could have been done by T1. T2 has more restrictive labels than T1 for the first read,
but by rule 4.1, T1 it can read anything that T2 can read.

T3 writes tuples with different labels and is also permitted by the rule. This
transaction roughly captures the motivating example given at the beginning of this
section: adding a new user account involves writing a contact tuple with one label
pair and a password tuple with a different label pair.The process that creates accounts
is trusted to protect the account information it is adding; it declassifies the password
tag to vouch that nothing it did while contaminated with that tag will affect the
outcome of the transaction in a dangerous way. (Of course, the contact and password
information may have incomparable labels, which can’t be represented in the figure;
for instance, the secrecy labelsmight be {alice_contact} and {alice_password}. In this
case, the process must have authority for both tags so that it can reduce its secrecy
label to the greatest lower bound of the two labels, which is {}.)

85

6 . 1 . l a b e l change s and abort s

in
te
gr
ity

se
cr
ec
y

time

R W R W C

R

W R W C

R

W

R W

C

T1 T2 T3

in
te
gr
ity

se
cr
ec
y

time

R

W

R

W

R

W

W

C C

T5 T6

W

R C

T4

Figure 6-1:The timeline shows the labels of six transactions as they perform a series
of reads and writes, and finally attempt to commit. For each transaction,
the dotted line shows the maximum label that the transaction would be
allowed to commit with.

86

6 . t r an s act i on s

T4 has exactly the same form as the HIVPatients example, and T5 is just T4 with
some additional operations. Rule 6.1 does not allow either transaction to commit,
thus preventing them from introducing unsafe flows.The rule also disallows T6, but
this raises an interesting question: is the rule too strict? T6 is like T5, but it does
not perform any reads of higher-labeled tuples.Thus, it would seem that T6 is not
subject to the problem demonstrated by the HIVPatients example. However, the
write T6 performs after it raises its label can still influence its behavior via integrity
constraint violations and concurrency conflicts.Therefore, committing T6 would
still potentially lead to a covert channel.The rule prevents this problem by forcing
T6 to abort regardless.

Concurrency conflicts aren’t a concern just forT6. For instance, supposeT2’s first
write affects the same tuple as T4’s first write. If T4 were to decide whether to stall or
abort on account of the secret it subsequently reads, this might introduce an unsafe
flow if it affects the outcome ofT2.This section has addressed information flow issues
only for independent transactions; the next section explains how ifdb prevents
concurrency conflicts among transactions from introducing covert channels.

6.2 Conflict Channels

Concurrent transactions pose a potential problem because conflicts that involve
transactions with different labels could introduce signaling channels. Without ade-
quate precautions, a transaction with low secrecy might be blocked or aborted due
to the actions of a high-secrecy transaction, or a high-integrity transaction might
similarly be affected by a low-integrity transaction. Clients can keep transactions
open for unbounded amounts of time, so such channels are easy to exploit.

Additionally, contention for shared resources such as memory, disk i/o band-
width, and cpu can introduce timing channels, causing transactions to block tempo-
rarily due to the activity from other clients. Such channels can be mitigated, but this
is an implementation concern.This section considers only covert channels in the
model; in effect it assumes an infinitely fast database. For example, if a high-integrity
transaction cannot commit because its writes conflict with those of a low-integrity
transaction, that is a problem in the model. If the high-integrity transaction is
merely delayed for a bounded amount of time due to i/o contention with the
low-integrity transaction, that is a problem in the implementation. Timing channels
in the implementation are discussed in section 8.5.1.

87

6 . 2 . con f l i c t channe l s

tim
e

Th Tl

read(x{})
write(x{})
addSecrecy(a)
read(sa{a})
abort if sa = 0
wait forever

⋮ read(x{})
write(x{})

Figure 6-2: A conflict between a high-labeled transaction Th and a low-labeled
transaction Tl could potentially introduce a covert channel. Th and Tl
both start with empty labels, and then Th raises its label.The notation
write(x{}) means that the transaction writes tuple x , which has label {}.

Figure 6-2 illustrates a conflict channel. Twoprocesses Ph and Pl start with empty
labels, and Ph starts a transaction Th. Th updates tuple x , then raises its secrecy label
to {a} and reads a secret sa. Since Th wrote a tuple with an empty secrecy label,
rule 6.1 will not allow it to commit with secrecy label {a}. However, depending on
whether sa is zero, Ph either aborts Th or stalls indefinitely. Subsequently, Pl starts
transaction Tl , which also attempts to update x. Thus, Tl conflicts with Th, but only
if sa is nonzero. If the dbms were to abort Tl or force Tl to block until Th finishes,
Pl could learn whether the secret sa is zero.This flow is unsafe, since neither Ph nor
Pl required authority for the tag a. There are two ways to address the problem:

— Transaction Clearance. After a transaction performs a write, the clearance of
the process that issued it is limited until the end of the transaction. Specifically,
the process cannot add secrecy tags or remove integrity tags that it does not
have authority for. This restriction is reasonable because rule 6.1 states that
a transaction is doomed to abort if its label when it tries to commit is more
restrictive than any of the tuples it wrote.1 In the example, this rule prevents
Ph from adding secrecy tag a unless it has authority for that tag.

1. A few kinds of computations are allowed by rule 6.1 but disallowed with transaction clearance.

An example is a process that starts a transaction and adds secrecy tags in a reduced authority

call, leaving it to the higher-authority caller to remove those tags.

88

6 . t r an s act i on s

— Flow-Safe Scheduling.The transaction manager can schedule transactions and
handle transaction conflicts in such a way that conflicts never result in unsafe
flows. For instance, it is safe to abort Th in the preceding example, since Ph’s
label is more restrictive than Pl ’s.

Flow-safe scheduling provides stronger guarantees than transaction clearance.
Specifically, flow-safe scheduling meets the goal that all unsafe flows should be ex-
plicit; it ensures that conflict channels can only introduce unsafe flows of information
protected by a given tag if a process explicitly declassifies or endorses for that tag in
the middle of a transaction. In contrast, transaction clearance allows transactions to
introduce unsafe flows if the process that issued themmerely had authority for the
tag, even if it did not use that authority yet.

However, the transaction clearance approach is simple and ultimately more
practical. Flow-safe schedulers introduce performance penalties, either by severely
limiting concurrency or creating the potential for starvation. Furthermore, conflict
channels are rare, and it’s hard to imagine trusted code inadvertently leaking sig-
nificant information via such channels. Appendix A describes how to do flow-safe
scheduling in ifdb, and explains the drawbacks involved.

89

90

Chapter

7 Case Studies

In evaluating ifdb, there are three important questions to answer: First, does ifdb
provide abstractions that make difc easy to use in real applications? Second, how
well does ifdb improve information security?Third, how well does it perform?This
chapter addresses the first two questions, while chapter 9 addresses the last question.

Two applications, CarTel and Hotcrp, were ported to use ifdb and php-if.
These applications are good candidates because they have rich policies for sharing in-
formation among users. Furthermore, both of them store data in relational databases,
and both are written in php.The conversion effort addressed only confidentiality
concerns, not integrity. Although ifdb was designed as a way to build security
into new database-backed applications, the conversion of these existing applications
required only a modest effort: 4.5% of the CarTel code base and 7% of the Hotcrp
code base were changed. In the latter case, most changes are related to the fact that
Hotcrp was designed for Mysql and made numerous nonstandard assumptions.
Therefore, it had to be modified to work with ifdb, which is based on Postgresql.

Like most web applications, the original versions of CarTel and Hotcrp put
complete trust in all of the application code. Therefore, bugs in any part of the
code had the potential to compromise privacy. In fact, both applications were
vulnerable to several leaks, and converting them to use ifdb fixed these leaks. One
previously unknown bug in Hotcrp leaked the contact information for all the
conference participants, and ifdb prevented the leak. Additionally, two leaks from
older versions of Hotcrp were reintroduced, and ifdb prevented those leaks as

91

7 . 1 . c a rt e l

well. Using ifdb also fixed three types of vulnerabilities in CarTel. Additionally,
much less application code had to be trusted when using ifdb, which made security
easier to reason about.

7.1 CarTel

CarTel [70] is a mobile sensor network that collects location data and other infor-
mation from gps-equipped cars. Users can see maps and statistics about their past
drives through the CarTel website, get real-time traffic information derived from
other users’ drives, and compare their drives with their friends’ drives.

7.1.1 TheCarTel Implementation

The present CarTel implementation is a prototype produced by a research project
studying mobile sensor networks. Vehicle location readings are sent to a central
portal called the track server, where they are stored in a relational database.The track
server is written in Python.

Two interfaces are available to extract data. A streaming database, icedb, sup-
ports continuous queries such as real-time traffic information formobile applications.
A web portal provides users with information about past drives, as well as current
car locations.The focus here is on the web portal, which uses ad hoc privacy controls
enforced by php scripts running on the web server.There are sixty-two such scripts.
Each php script has complete access to all users’ location data, and is trusted to
ensure that data aren’t released inappropriately.This is a common design, but it led
to many security bugs.

Figure 7-1 shows the relevant parts of the schema in CarTel before it was ported
to use ifdb. All user account information, including usernames, contact information,
and passwords, is stored in the Users table. The Friends table stores settings related to
how users have chosen to share their data with others; the concept is discussed in
the following section.The Cars table stores records about each user’s cars, including
the id and the user-assigned name of the car.

The track server inserts raw location data into the Locations table. Triggers and
php code process the location readings and break them into drives, which are stored
in the Drives table.The system considers a car to have started a new drive if the car
has not moved significantly over a five-minute period. To speed up common queries,

92

7 . c a s e s tud i e s

Table Contents

Users usernames, contact information, and passwords
Friends friender-friendee mappings and settings
Cars information about users’ cars
Locations current and historical car locations
LocationsLatest latest location of each car
Drives past drives
LastDrive most recent drive for each car

Figure 7-1:The original CarTel schema contains tables for user account data, friend
relationships, location data, and information about users’ cars. Raw
location readings are inserted into Locations initially, and subsequently
processed into discrete drives.

the LocationsLatest and LastDrive tables track the most recent location and drive
for each car.They are kept up-to-date by triggers in the Locations and Drives tables,
respectively.

CarTel uses primary keys (and hence uniqueness constraints) in the larger tables,
such as the ones that store location data.There are no dbms-enforced foreign key
constraints, but there are a number of implicit constraints; for instance, each location
and each drive refers to a valid car. Additionally, the relationships between some
pairs of tables, such as Locations and CurrentLocation, are maintained by triggers as
discussed previously.

7.1.2 Security Requirements

CarTel is intended to protect users’ privacy: the records for a car should only be
accessible to its owner, but the owner can allow friends to see certain information.
Additionally, real-time traffic computations may use anonymized location data, but
the focus here is on users and their friends.

There are six main types of user data to protect, each with a different security
policy.There are also security policies for other types of information, such as map
data and access logs, but these are not considered in this chapter. The relevant types
of data are:

— Names.The usernames and full names of each user are available to all other
users in order to allow users to designate which other users are their friends.

93

7 . 1 . c a rt e l

— Contact Information. Each user optionally provides an email address and street
address, and this information is not shared with others.

— Passwords. A user’s password should not be released, even to the user.

— Current Locations. A user can see the locations of his cars, and he can designate
“friends” who are allowed to see this information as well.

— Past Drives. Similarly, a user can designate a (possibly different) group of
“friends” who are allowed to compare their past drives with his.

— Cars. Each user and both types of that user’s friends can see the names and
icons associated with that user’s cars.

To allow users to select friends, the list of usernames and their corresponding
real names is public. Additionally, privacy policies for users’ friend lists are not
considered here; friend relationships are considered public knowledge.

7.1.3 Securing CarTelWith DIFC

In the modified version of CarTel, ifdb and php-if work together to enforce the
policies stated in the preceding section. When a user Alice drives to work, the track
server labels location readings from her car with tags she owns and inserts them
into the database. Any web script that reads those entries becomes contaminated
by those tags. Once contaminated, anything it writes back to the database is also
contaminated, and it cannot communicate with the outside world, unless it has
proper authority and declassifies the information.

Tags were introduced to handle the different types of confidential informa-
tion. A single tag, sys:auth, protects all user passwords, and only the CreateUser,
AuthenticateUser, and ChangePassword closures have authority for this tag. Each
user, for instance Alice, has four tags for her data: alice_contact protects her address,
alice_location covers her current location, alice_drives is for her past drives, and
alice_cars is attached to information about her cars.

Labeling tuples properly required several changes.The Users table contained
information governed by different security policies, so it was vertically partitioned
into three tables: UserNames, UserContact, and Passwords. A Users view that joins
the former two tables provides compatibility with existing code. No other schema
changes were required, since the remaining tables were already partitioned according

94

7 . c a s e s tud i e s

Table Secrecy Label Contents

UserNames {} usernames and full names
UserContact {user_contact} user email and street addresses
Passwords {sys:auth} user passwords
User Tags {} secrecy tags for each user
Friends {} friender-friendee mappings
Cars {user_cars} information about users’ cars
Locations {user_drives, user_location} current and historical car locations
LocationsLatest {user_location} latest location of each car
Drives {user_drives} past drives
LastDrive {user_drives} most recent drive for each car

Figure 7-2: CarTel user data are stored in ifdb tables, where each tuple has a
user-specific secrecy label.

to confidentiality needs. Additionally, the track server must attach the appropriate
tags before inserting the tuples into the database. By necessity, the track server is
trusted with all users’ data, and there was no attempt to reduce the amount of trust
required in the track server. However, some changes were needed to ensure that
location readings could be labeled efficiently, as discussed in section 9.2.2.

Figure 7-2 shows the modified schema and the labeling strategy. Tuples in the Lo-
cations table containing location readings for Alice’s cars can be used to compute past
drives, but they also reveal current locations if they are recent enough.Therefore, they
are assigned the label {alice_drives, alice_location}. These tuples are subsequently
processed to produce past drives, stored in the Drives table, and the latest locations
of each of Alice’s cars, stored in LocationsLatest. The past drives are labeled with
{alice_drives}, and the latest locations are labeled {alice_location}.1 Alice can allow
her friend Bob to see one type of information or the other by delegating authority
for alice_drives or alice_location to him; the appropriate delegations are added or
revoked whenever Alice updates her friend settings.

A substantial amount of code in CarTel is involved in transforming raw location
data into drives. Figure 7-3 shows the flows of location data. An sql stored procedure,
driveupdate, runs as a trigger and updates the distance traveled in the drive as new

1.The original CarTel implementation separated Locations from LocationsLatest for performance
reasons.This separation happened to simplify the job of extending CarTel to use difc.

95

7 . 1 . c a rt e l

location readings come in. Separately, the php function load_drives interpolates the
path of a drive.The latter computation is more expensive, so it is done on demand
when Alice’s drives are plotted on the website, and stored to speed up future requests.
Even though driveupdate and load_drives process secret data, ifdb prevents them
from compromising Alice’s privacy. Both procedures read raw location data with
label {alice_drives, alice_location} andwrite driveswith label {alice_drives}.They run
as authority closures with the ability to declassify for the alice_location tag; however,
they cannot declassify for the alice_drives tag.Therefore, once the procedures read
Alice’s location information, they will not be able to release it to the outside world,
and anything they write back to the database will be contaminated. At worst, they
could expose Alice’s current location to her friends who are only supposed to be
allowed to see her past drives.

Some information flows in CarTel don’t involve any declassification, and there-
fore they can occur without any use of authority. An example of such code is the
updatelastdrive trigger, which runs after every insert into the Drives table and updates
the LastDrive table. Similarly, none of the sql and php code involved in computing
distances and interpolating routes needs to be trusted. Most importantly, the ap-
plication does not need to be trusted to produce the right queries, since Query by
Label limits the results it sees.

The account creation, authentication, and session-management code needed
to be largely rewritten to use closures that act for all users. Creating an account
now requires making three tags and inserting four tuples (UserNames, UserContact,
Passwords, and UserTags). In php-if, web scripts run with no authority unless they
first authenticate by calling the AuthenticateUser closure with the user’s username
and password. If the username and password are correct, the closure upgrades the
caller’s authority by invoking php-if’s switchTo primitive, introduced in section 8.4.2.
Additionally, CarTel provides a trusted session-management closure that is invoked
at the start of every script. CarTel session state does not contain any sensitive
information; it only contains the authenticated user’s username, principal, and tags.
The session-management closure switches to the authenticated user’s principal on
every request.

7.1.4 Bugs Prevented

Section 7.1.3 explains how ifdb prevents the code that processes location data from
exposing that data.Thus, using difc improved security in principle, by reducing

96

7 . c a s e s tud i e s

Va
ss
ar
St
re
et

Main
Stre

et

addlocation
IFDB

Locations
{drives, locations}

LatestLocations
{locations}

Drives
{drives}

cars.php drives.php

load_drives

update_latest driveupdate

PHP-IF

updatelastdrive

LastDrive
{drives}

Figure 7-3: Location data in CarTel is processed by database stored procedures and
php code. ifdb prevents bugs in this code from leaking information.

97

7 . 2 . hot cr p

the amount of trusted code. ifdb also improved security in practice by preventing
three security bugs from causing information leaks.

The first two types of bugs were in authentication. Twelve scripts, many of which
were rarely used or intended only for testing, neglected to authenticate the user
making the request. Second, the authentication routine itself also had a bug: when
authentication failed, the script continued as if the user authenticated successfully,
but it generated an http redirect to send the user to the login page. The http
redirect hid the bug from honest users, whose browsers redirected them without
displaying the rest of the page.

The third type of bug related to the “friend” feature. Users are supposed to be
able to see the drives or current locations of their “friends” who have allowed such
sharing. However, while some scripts included logic to select only cars of friends,
three did not. Specifically, users were able to compare their drives with those of
non-friends, see a calendar of the drives for any car given its id, and see the current
location of any car.The third instance of the bug involved old code that was not even
normally used; however, the code could be invoked by a malicious user to produce
the location of any car by passing in the http query string carid=id.

Converting CarTel to use ifdb fixed all of these bugs. Scripts that don’t au-
thenticate run with no authority, and therefore are unable to declassify sensitive
information. If a user attempts to coerce the site into showing the drives for a
non-friend, the script becomes contaminated with a tag it has no authority to
declassify, and therefore it produces no output regardless of what it reads.

It’s tempting to think that the kinds of bugs we found in CarTel are confined
to research prototypes, but this is not the case. For example a bank and a health
plan insurer, both Fortune 500 companies, recently exposed millions of their cus-
tomers’ financial andmedical records due to omitted authentication checks [111, 130].
Themissing authorization checks in CarTel mirror observed privacy holes in the
Facebook website [30].

7.2 HotCRP

Hotcrp [83] is a widely used conference management system. Authors submit
papers, reviewers read them and enter evaluations, and the program committee (pc)
produces decisions for the papers.The program chair orchestrates the process.The
system is intended to handle conflicts of interest so that pc members cannot see

98

7 . c a s e s tud i e s

reviews or decisions for their own papers, or papers of their close colleagues, prior
to decisions being released. A pc member is said to be conflictedwith such papers.

7.2.1 TheHotCRP Implementation

Hotcrp is based on an earlier conference management system called crp, and
its design has evolved significantly since the original system was conceived. Many
new features have been added over the years, often to meet various requirements
and peculiarities of the conferences that have used the system.The implementation
consists of about twenty-four user-visible scripts and twenty-four scripts containing
library routines, for a total of about 25,000 lines of php code. It was designed to
use the Mysql database as its backing store. The code depends on a number of
non-standard behaviors of Mysql, so most database queries required modification
to work with ifdb, which is based on Postgresql.

The security policy is enforced by the Hotcrp scripts, which have access to all
users’ data.The privacy settings are highly configurable.The options available to the
chair include the following:

— Paper authors can be anonymous or not.

— Review authors may be anonymous or not.

— pc members can be allowed access to non-conflicted paper reviews either
before or after they have written their own assigned reviews.

— pc members can see acceptance decisions of non-conflicted papers before
they are released or not.

To complicate the situation further, there are five kinds of roles with distinct priv-
ileges: administrator, chair, pc member, external reviewer, and author. External
reviewers have some of the privileges of pc members, but what they can see and do
is more limited.

These restrictions are implemented through hundreds of php conditionals in
various parts of the code. Hotcrp uses two distinct mechanisms to implement the
security policy:

1. Hotcrp modifies queries based on the conference settings and the role of
the user making the request. For example, a script that allows users to search

99

7 . 2 . hot cr p

through submitted papers adds different joins and selection predicates to the
query depending on whether the user is a pc member, an external reviewer,
or an author.

2. Some parts of the security policy involve filtering in the application.That is, the
application reads sensitive data from the database, but does not show that data
to the user. For example, figure 7-4 shows part of the canViewReview function,
which determines whether a user can see a given review.There are over two
dozen functions like this, and it appears that the Hotcrp author has made
an effort to centralize security decisions by placing these functions in a single
policy module.

Despite the attempts to centralize security decisions in Hotcrp, checks are still
required inmany places; section 7.2.4 describes some information leaks in the system
that resulted frommissing checks. Essentially, these bugs resulted fromHotcrp’s
failure to provide complete mediation [127].The ifdb model can help, since it ensures
that leaks cannot occur except via explicit declassification.Thus, an omission might
result in incorrect behavior, but it should not result in a security bug.

A separate concern is that the security policy itself is inherently complicated and
therefore might be wrong. It is not clear how helpful information flow control could
be at untangling the policy expressed in the canViewReview function in figure 7-4,
for instance. While canViewReview could leak information by returning true in a
case where it should return false, an ifdb authority closure could just as easily leak
information by declassifying inappropriately. Section 7.3.2 argues that difc provides
a better and perhaps less error-prone to reason about security policies. However,
difc does not eliminate inherent complexity in the policies.

Figure 7-5 describes a small part of the Hotcrp schema, which stores infor-
mation about users, papers, and reviews. Other tables contain information such as
review ratings, preferences, and conference settings.The systemmakes extensive use
of indexes that enforce uniqueness constraints, but like CarTel, Hotcrp does not
use foreign key constraints.

7.2.2 Security Requirements

As section 7.2.1 shows, the security policy inHotcrp is complicated. In the prototype
implementation that uses ifdb, difc protects several important types of sensitive
information with interesting policies; information flow policies for the remaining

100

7 . c a s e s tud i e s

function canViewReview($prow, $rrow, &$whyNot = null, $ignoreForceShow = false) {
global $Conf;
// fetch paper
if (!($prow = $this->_fetchPaperRow($prow, $whyNot)))

return false;
// policy
$forceShow = isset($_REQUEST["forceShow"]) && $_REQUEST["forceShow"]

&& !$ignoreForceShow;
$rrowSubmitted = (!$rrow || $rrow->reviewSubmitted > 0);
$pc_seeallrev = ($this->isPC ? $Conf->setting("pc_seeallrev") : 0);
if ($this->privChair && $forceShow)

return true;
if (($prow->timeSubmitted > 0

|| defval($prow, "myReviewType") > 0)
&& (($prow->conflictType >= CONFLICT_AUTHOR

&& $Conf->timeAuthorViewReviews($this->reviewsOutstanding
&& $this->isReviewer)

&& $rrowSubmitted)
|| ($this->privChair && $prow->conflictType == 0)
|| ($this->isPC

&& $prow->conflictType == 0 && $rrowSubmitted
&& $pc_seeallrev > 0
&& ($pc_seeallrev != 3 || !defval($prow, "myReviewType")))

|| (defval($prow, "myReviewType") > 0
&& $prow->conflictType == 0 && $rrowSubmitted
&& (defval($prow, "myReviewSubmitted") > 0

|| defval($prow, "myReviewNeedsSubmit", 1) == 0)
&& ($this->isPC || $Conf->settings["extrev_view"] >= 1))

|| ($rrow && $rrow->paperId == $prow->paperId
&& $this->ownReview($rrow))

|| ($rrow && isset($prow->myReviewId)
&& $prow->myReviewId == $rrow->reviewId)))

return true;
32 lines elided. . .
return false;

}

Figure 7-4:The canViewReview function implements the confidentiality policy for
paper reviews in Hotcrp.

101

7 . 2 . hot cr p

Table Contents

ContactInfo usernames, contact information, and passwords
ContactAddress users’ street addresses
Paper paper names, titles, authors, and acceptance decisions
PaperReview paper reviews

Figure 7-5:The schema in the base version of Hotcrp contains twenty-seven tables.
The focus here is on five kinds of sensitive information, which is stored
in four tables: user contact information (ContactInfo and ContactAddress),
user passwords (ContactInfo), papers (Paper), paper acceptance decisions
(Paper), and paper reviews (PaperReview).

kinds of sensitive information have not yet been developed. To further simplify
the policy, the difc prototype does not support all of the configuration options.
For instance, in the original version of Hotcrp, the conference chair can specify
the circumstances under which pc members can view reviews for non-conflicted
papers: any time, after the member has completed her own reviews for that paper, or
after the member has completed all assigned reviews.The information flow policy
assumes that the third option is intended; the other two options add complexity but
don’t differ in interesting ways.

The goal in converting Hotcrp to use ifdb was to protect four types of infor-
mation: contact information, passwords, paper reviews, and paper decisions.The
intended policies for this information are detailed below. To simplify the exposition,
the descriptions of some of the policies omit some details that are supported in the
implementation. For example, program committee members, the program chair,
and the administrator all have slightly different access permissions for other users’
contact information, but the differences are not apropos to this discussion.

— Contact Information.Users’ contact information, which includes names, affilia-
tions, email addresses, and physical addresses, should only be visible to the
respective users and to program committee members. Additionally, program
committee members’ names and affiliations are available to the general public.

— Passwords. As in CarTel (section 7.1), user passwords are used only for authen-
tication and never revealed.

— Paper Reviews. Program committee members can see reviews for all papers,

102

7 . c a s e s tud i e s

except papers for which there is a registered conflict of interest.The pc mem-
ber must submit all of her assigned reviews before being allowed to see other
reviews. After acceptance decisions are made, the program chair can make all
reviews, including conflicted ones, available to pc members. At that point,
authors can see reviews for their own papers as well.

— Paper Decisions. Program committee members can see the acceptance status of
all non-conflicting papers. Authors can see the acceptance status of their own
papers once decisions are announced.

Hotcrp also supports various anonymity settings for papers and paper reviews.
The policy described above presumes that the conference is configured such that
neither paper submissions nor reviews are blind. Keeping paper and review authors
anonymous would require additional work to protect user identities. In particular, it
would be necessary to partition some tables to keep private the mapping between
papers or reviews and their corresponding authors.

7.2.3 SecuringHotCRPWith DIFC

Each Hotcrp user fills one or more of three roles: author, program committee mem-
ber, or program chair. In ifdb, these roles are represented as the author, pcmember,
and chair principals, respectively. Users act for these principals as appropriate. (Two
additional roles, administrator and external reviewer, are ignored for the purposes of
this discussion.)

Each Hotcrp user, say Cathy, has a tag cathy_contact protecting her contact
information, which is stored in the ContactInfo table. All contact tags are members
of the all_contacts compound tag. Account creation and session management are
handled by closures, in essentially the same way as in CarTel (see section 7.1.3).

To implement the policy that pc members can see user contact information,
the pcmember role has authority to declassify for all_contacts. The PCMembers de-
classifying view implements the policy that the list of program committee members
is publicly available.The view distills the names of pc members from ContactInfo
and uses authority for all_contacts to declassify:

CREATE VIEW PCMembers AS
SELECT firstname, lastname, affiliation FROM ContactInfo

WHERE (roles & ROLE_PC) <> 0
WITH DECLASSIFYING (all_contacts)

103

7 . 2 . hot cr p

Table Secrecy Label Contents

ContactInfo {user_contact} usernames and contact information
ContactAddress {user_contact} users’ street addresses
AuthInfo {sys:auth} user passwords
PCMembers {} pc names and affiliations (view)
Paper {} paper names, titles, and authors
PaperReview {review_n} paper reviews
PaperOutcome {paper_p_outcome} acceptance decisions
ContactPrincipal {} principal ids for each user
PaperReviewTag {} tag for each paper review
PaperOutcomeTag {} tag for each paper decision

Figure 7-6:The confidentiality of Hotcrp contact information, passwords, paper
reviews, and paper decisions is protected with tags. Each paper outcome
and each review has its own tag. Paper authors and other sensitive data
are not protected with difc in the present prototype. Mappings from
usernames to principals, review ids to tags, and papers ids to tags are
also public.

Each review has its own tag, owned by the author of the review.These tags are
members of the all_reviews compound tag, which is owned by the chair role. When
the chair releases the reviews to authors, she runs a function that delegates each
review tag to the appropriate paper authors. Since pc members are allowed to see
non-conflicted reviews after they have completed their assigned reviews, they need
to be given authority for the pertinent review tags as well. The ReviewDone closure
runs with the authority of the chair role every time a review is completed. It checks
whether the pc member who wrote the review has completed all of her assigned
reviews, and if so, it delegates the tags for all non-conflicting reviews to her.

Each paper decision also has its own tag, which is owned by the chair role. When
the chair writes a decision tuple, she also delegates the corresponding tag to all
non-conflicted pc members. When the chair makes decisions public, she delegates
each paper’s decision tag to the paper’s authors.

The labeling scheme is summarized in figure 7-6. Tagging paper decisions and
user passwords required partitioning some tables. Previously, decisions were stored
in the same table as other metadata associated with papers, and passwords were
stored alongwith other user contact information.The decisions weremoved to a new

104

7 . c a s e s tud i e s

PaperOutcome table, and passwords were moved to the AuthInfo table. Passwords
proved to be particularly problematic, as discussed in section 7.3.4.The PaperReview
table didn’t need to be partitioned, but it would have if one of the security goals were
to protect reviewer anonymity with difc. Additional tables were introduced to
store the mappings from users to principals, reviews to tags, and papers to decision
tags, since applications have no way to determine a priori which tags they must add
to their labels.

In retrospect, handling some parts of the security policy through authority
closures and declassifying views instead of through delegating tags would have led
to a simpler and more extensible design. For instance, a drawback of the present
implementation is that when the conference settings change, many delegations need
to be added and revoked. Rather than having a closure delegate all the appropriate
review tags to a pc member whenever she completes her last assigned review, pc
members could access reviews through a closure that first checks whether the
requester has completed her reviews. This proposal is essentially advocating an
access control policy, but as section 4.6 discusses, some security policies can be
expressed more naturally with access control than with information flow control.

7.2.4 Bugs Prevented

A previously unknown privacy leak in Hotcrp was discovered in the process of
modifying the system to use difc.The bug affected the script contacts.php, which
serves two purposes: it shows program committeemembers the contact information
of registered users, and it shows the general public a list of the program committee
members and their affiliations. The logic for these two tasks was confused, so
anyone could request contact information (including name, email address, and street
address) for any registered user with a specially crafted url. ifdb prevented the
bug: when the script read sensitive contact information it was not able to declassify,
it was not allowed to produce any output.

Eddie Kohler, the author of Hotcrp, provided a list of information leaks in
past versions of Hotcrp. Some of these bugs involved tables that had not yet been
protected with difc, but two of them involved paper decisions. To provide further
validation of the approach, these two bugs were reintroduced, and ifdb prevented
both of them from leaking information.

One bug allowed pc members to see decisions for their own papers prematurely.
The bug took advantage of the script that provided the capability to sort papers based

105

7 . 3 . d i s cu s s i on

on various attributes. Although pc members could not see the status for conflicted
papers, they could sort papers by status, with the accepted papers listed first and the
rejected papers last.Thus, they could determine the status of their own papers by
checking whether those papers appeared at the top of the list, among the accepted
papers, or at the bottom of the list, with the rejected papers.

Eddie Kohler found this to be a subtle bug, but with Query by Label, it is hard
to make the mistake that led to the leak. In ifdb, the correct implementation of
the sort feature adds to the process secrecy label only the tags that the process is
allowed to declassify – that is, the tags for paper decisions the pc member isn’t
conflicted with. Query by Label then ensures that the conflicted papers decisions
aren’t visible. (Furthermore, Query by Label protects against the bug regardless of
whether the application tried to read the decisions and perform the sort itself, or
whether the sorting was done in the dbms with an ORDER BY clause.) An incorrect
implementation might add the wrong tags, but then it would lack the authority to
declassify, and therefore it would not be able to release anything.

The second bug allowed non-pc-members to see the decisions for their own
papers prematurely through the search feature.The search tool allowed program
committeemembers to search through all papers, and it (dubiously) allowed authors
to search through papers they had submitted. One available search term was the
paper decision. The ability to search based on paper decision should have been
restricted to the program committee, but it was not. In the ifdb version of Hotcrp,
non-pc-members have no authority for any of the tags protecting the acceptance
decisions until the chair makes results public.Therefore, they are unable to see the
information, despite bugs in the search code.

7.3 Discussion

This section identifies the lessons learned in the process of converting CarTel and
Hotcrp to use ifdb and php-if.TheQuery by Label approach was effective at
preventing information leaks and reducing the amount of trusted code in the appli-
cations. Furthermore, it was easy to identify and implement appropriate labeling
schemes to protect sensitive information. Section 7.3.4 identifies areas where future
extensions to the model might make it even easier to secure programs like CarTel
and Hotcrp with difc.

106

7 . c a s e s tud i e s

7.3.1 Reducing the Trusted Base

The original implementations of CarTel and Hotcrp, like most database-backed
applications today, placed full trust in the application. By enforcing the security
policy in the platform, ifdb reduced the amount of code in CarTel and Hotcrp
that must be trusted to protect sensitive information. Additionally, specifying the
appropriate policy was easier and less error-prone with difc than it would have
been with access control. For example, there was no need to anticipate the fact that
Alice’s drives might flow from the Drives table to the LastDrive table via a trigger;
in the absence of any declassification, anything derived from Alice’s drives will be
protected by the alice_drives tag. Moreover, an access control policy alone couldn’t
prevent bugs in procedures like load_drives from leaking Alice’s current location.
In an access control system, the php code would have to be rewritten as a stored
procedure or sandboxed somehow.

Of course, even with difc, the security policy must be correctly specified.
Programmers express information flow policies programmatically in ifdb, in terms
of use of authority. To ensure that sensitive information is protected, trusted code
must perform three tasks faithfully: it must label information, it must authenticate
users properly to ensure that code runs with the right authority, and it must delegate
and use authority judiciously. Abstractions in ifdb helped to simplify these tasks
for CarTel and Hotcrp and reduce the chance of policy errors as follows:

— Authentication. Applications authenticate users in an application-specific man-
ner. ifdb does not provide any authentication primitives, but it does provide
a fail-safe default. Scripts that do not authenticate through an application-
provided authority closure are executed with no authority.This design choice
nullified the authentication bugs in CarTel.

— Labeling Inputs. Applications must correctly label sensitive information when
it enters the system. However, coming up with appropriate labels in CarTel
and Hotcrp was easy compared to the task of understanding all the ways in
which that data is used. Furthermore, label constraints and triggers can serve
as additional checks that data are labeled correctly. For example, in Hotcrp,
ifdb can enforce the requirement that all reviewsmust be labeledwith subtags
of the all_reviews compound tag.

— Use of Authority.The fact that Query by Label requires label changes to be

107

7 . 3 . d i s cu s s i on

explicit prevents applications from violating the information flow policy inad-
vertently. For instance, the contact list bug inHotcrp allowed amalicious user
to coerce the application into issuing queries for any user’s contact information,
and Query by Label prevented this attack. Additionally, php-if authority
closures, stored authority closures, and declassifying views helped limit the
amount of code that must run with authority.

7.3.2 Reasoning about Data Security

difc provides an effective way to reason about security concerns for the information
stored in the database. Using difc required identifying categories of sensitive data,
such as drives, locations, and contact information, and determining where those
tags should appear in the database. For each query, it was necessary to consider
the label the results ought to have, which is helpful in understanding what kinds of
sensitive data the application is processing. Furthermore, the fact that ifdb makes
declassification explicit drew attention to parts of the program that could potentially
create vulnerabilities.

These observations are subjective and based on the author’s experiences working
with CarTel and Hotcrp. Future work could provide stronger empirical evidence of
the claim that reasoning about security policies through information flows is less
error-prone than other methods. Section 7.2.1 points out that policies in Hotcrp are
particularly complicated, but only a fraction of the full policy was reimplemented in
terms of difc.

A related question is whether the code and information flow policies would
be done differently for an application designed to use ifdb from the beginning.
There is evidence that some parts of the application would likely be different. For
instance, Hotcrp was designed to always fetch a user’s password whenever it loads
that user’s contact information.That design choice is inconvenient in ifdb, since
a process that has read a password would be contaminated by the password label.
Nevertheless, the author’s goal was to base the information flow policies for CarTel
and Hotcrp on first principles to the extent that it was practical, so the policies
would be the same as in a clean-slate design.The essential underlying principle is
that a computation should not read more sensitive information than it needs to do
its job, and the Query by Label model with a well-designed authority structure helps
enforce this.The CarTel and Hotcrp implementations for ifdb generally adhere
to this principle, just like they would if they were implemented from scratch.

108

7 . c a s e s tud i e s

7.3.3 SchemaDecomposition

A few tables in CarTel and Hotcrp had to be vertically partitioned, since they con-
tained different kinds of sensitive data. For instance, passwords in both applications
were stored alongside other user data. However, most data were already stored in
separate tables according to their security concerns, which validates the assertion
articulated in section 4.2 that tuple-granularity labeling is a good choice. In the cases
where partitioning was needed, views consisting of outer joins (see section 4.1.2)
were a useful way to minimize the number of changes to the application.

Outer joins proved to be particularly useful in Hotcrp, which frequently did
many-way joins that included sensitive tuples, then decided later what the user ought
to be able to see. Since many scripts were (dubiously) reading sensitive data that
they would never use, the dilemma was how to ensure that php processes did not
become too contaminated to release anything, ideally without making extensive
changes to the application. It would have been inconvenient to have one kind of
query for the program chair, another for pc members, a third for authors, and a
fourth for external reviewers. Instead, these scripts used outer joins in their queries,
so ifdb simply produced null values in place of the fields that were more sensitive
than the process label.

7.3.4 Model Extensions

The ifdb difc model is straightforward and powerful; most of the security re-
quirements for CarTel and Hotcrp were easy to express. However, some parts of
CarTel and Hotcrp proved to be harder to secure than others, and extensions to
the model could simplify some of those tasks. In particular, the experiences with
these applications motivate three kinds of extensions:

Boxes and Session State

Passwords in Hotcrp proved to be problematic because Hotcrp was designed
to access all user information, even passwords, via Contact objects in php. When
a Contact object is initialized, it loads all of the user’s information, including the
user’s password, from the database. Since php-if does information flow tracking at
process granularity, it was therefore impossible to construct a Contact object without
contaminating the secrecy label of the entire process with the password tag. To solve
the problem, a closure loads the password and places it in an Authenticator object

109

7 . 3 . d i s cu s s i on

before declassifying.The Authenticator stores the password, but provides no way
to access it, except via a checkPasswordmethod that can only be invoked once per
php-if instance.

The Aeolus model, which ifdb is based on as described in chapter 3, includes
an additional abstract data type called a box. A box encapsulates sensitive data;
applications can load and store boxes without becoming contaminated, provided
that they do not “open” the box to access the data. Therefore, boxes solve the
password problem in Hotcrp more directly. Additionally, many web applications
(not including CarTel or Hotcrp) store sensitive data in the web server’s session
state cache. Placing session state objects in appropriately labeled boxes would help
prevent unsafe information flows via session state.

Dynamic Tag Groups

Applications use ifdb’s compound tags (section 3.1) to group related tags and
refer to them as a unit. Compound tags are important for efficiency. For instance,
the CarTel module that produces traffic reports from recent drives would simply
add the all_drives compound tag to its secrecy label, rather than adding thousands
of individuals’ drive tags. Compound tags are static; when a tag is created, the
creator must specify one or more compound tags that the tag belongs to. However,
experiences with Hotcrp have shown that they are static groupings aren’t adequate
for some policies.

Hotcrp allows program committee members to see various information about
papers, such as reviews of those papers, provided that the pc member does not have
a conflict with the paper. Static compound tags cannot capture notions such as, “all
paper tags except the ones for papers Bob is conflicted with.”Thus, some processes,
such as the ones that run searches over papers, require large labels. Furthermore,
these processes must run additional queries to fetch the right set of tags to use.

Dynamic tag groups could make such computations more convenient and
efficient by representing the set of tags for Bob’s non-conflicted papers directly.
Each pc member’s set of non-conflicted papers might be large, and there will be one
such set for each pc member.Therefore, it is important that dynamic tag groups can
be computed on-the-fly. For example, dynamic tag groups might be defined as the
result of a query that produces a set of tags. However, dynamic tag groups introduce
additional information flow issues: what happens when a tag group changes while a
process has that tag group in its label? Nevertheless, it seems important to be able to

110

7 . c a s e s tud i e s

express these kinds of groupings, so working out the appropriate semantics would
be an interesting direction for future work.

Policy Extensions

Most of the unsafe data processing tasks in CarTel and Hotcrp were encapsulated
by authority closures or declassifying views.These abstractions provide extensibility:
a sufficiently authoritative closure or view can implement any required security
policy. However, relying too much on application code to enforce security negates
the benefit of using difc.Mistakes in these views and closures could lead to security
compromises, so more direct support for common policies could improve security
further.

Both CarTel and Hotcrp require temporal security policies, and direct support
for these kinds of policies is a promising direction. CarTel distinguishes past drives
from current car locations, and Hotcrp paper reviews and decisions become avail-
able after certain events have occurred. Presently these policies are implemented
with closures, but some of the policies are complicated. For instance, the closures
that produce Alice’s drives from her location data might inadvertently reveal her
current location if they declassify data for a drive that is still in progress. In fact, the
present implementation is vulnerable to this problem; explicit time limits aren’t
included in the design.There has been some theoretical work on how to express
temporal security policies directly in an access control system [7, 8], but finding a
practical solution for difc is an open problem.

111

112

Chapter

8 Implementation

An ifdb deployment consists of the ifdb database system along with one or more
application environments.The application environments and ifdb work together
to track information flows and control what information can be released from the
system. Additionally, both application code and pl/pgsql stored procedures can
use the Aeolus api (chapter 3) to manipulate the process label and delegate and
revoke authority, as shown in figure 2-2 on page 26.

This chapter begins by describing the prototype implementations of the dbms
and the authority state (sections 8.1 and 8.2), then the interface between the database
and application environments (section 8.3), and finally the application environments
themselves (section 8.4). Section 8.5 covers some of the covert channels that may
arise in the implementation, and how they can be mitigated. Finally, section 8.6
identifies ways to reduce the trusted computing base to protect against security bugs
in the implementation.

8.1 TheDatabase Implementation

The ifdb implementation is based on Postgresql 8.4.10, and relative to Postgresql,
it includes about 6,300 new or modified lines of C code and 250 lines of pl/pgsql
stored procedures. Tuple secrecy and integrity labels are stored along with each
tuple in new, immutable system columns called _label and _ilabel, respectively.The
database systemwas extended in a number of ways to supportQuery by Label, stored

113

8 . 1 . t h e data ba s e im p l ementat ion

procedures, declassifying views, new semantics for constraints and transactions, and
the Aeolus api.

8.1.1 Query by Label

Chapter 4 introduces two basic rules for queries and updates: rule 4.1 (page 45)
states that database queries operate on a subset of the database consisting only of
tuples whose labels are no more restrictive than the labels of the process, while
rule 4.2 (page 46) requires that all tuples written by a process have the label pair of
that process.The ifdb prototype enforces these rules at the point where tuples are
read from or written to tables.This approach avoids extensive modifications to the
modules responsible for planning and executing queries, which are among the most
intricate parts of Postgresql. Furthermore, bugs in those modules (for instance, a
mistake in the query optimizer) are unlikely to cause information leaks, because the
information flow rules are enforced at a lower level.

A tuple is invisible to a process unless its label pair is no more restrictive than
the label pair of the process. When ifdb reads a tuple from a table, it compares
the tuple labels to the process labels, and pretends that the tuple is not there if the
process should not see it. For updates and deletes, new checks were added to throw
an exception if a process attempts to write a tuple with a less restrictive label. (If the
tuple label pair is more restrictive, then the process will not see the tuple when it
determines which tuples to write anyway.) All tuples a process writes are assigned
the label of that process.

Adapting the MVCC Infrastructure

Much of the infrastructure required to limit tuple visibility is already present in Post-
gresql as part of the support for multiversion concurrency control (mvcc) [122].
The fact that this infrastructure already exists greatly reduced the effort required to
implement Query by Label, so this section briefly reviews the implementation of
mvcc in Postgresql and explains how it helped simplify the ifdb prototype.

Multiversion concurrency control isolates transactions by assigning a snapshot
to each transaction when it starts, and ensuring that each transaction sees only ver-
sions of tuples that are present in that snapshot. In particular, queries in a transaction
will not see a tuple that was deleted before the transaction’s snapshot or inserted after
the transaction’s snapshot. An update is treated as a delete of the old tuple followed

114

8 . i m p l ementat ion

by an insert of a new tuple. Deleted tuples are retained as long as they are visible in
the snapshot of any active transaction, but after that they are garbage-collected by a
periodic vacuum operation.

The label checks for reads simply extend the existing tuple visibility checks
that were originally intended to be used for mvcc.Therefore, if the mvcc imple-
mentation is correct, it is highly likely that ifdb properly hides tuples that are too
contaminated to appear in query results. The autovacuum daemon, which runs
periodic vacuum operations to remove dead tuples, is exempt from the label checks;
it sees all tuples.

Indexes and Labels

When Postgresql executes a query, it can access tuples in a table in two ways: table
scans and index scans. Table scans read each tuple in the table sequentially. First
the dbms applies the visibility checks described in the preceding paragraphs, and
then it processes any other selection predicates, including explicit label predicates
(section 4.3.3). Index scans use an index structure, such as a B-tree, to identify tuples
of possible interest.Then those tuples are read from the table, and the same visibility
checks and any remaining predicates are applied.

The ifdb prototype does not provide the necessary index methods to perform
the subset comparisons required for Query by Label. Instead, ifdb always checks
tuple labels when the tuples are read from the table.The lack of such indexes could
introduce performance problems (as well as covert channels) if many tuples match
the query but don’t have the right labels. However, the author’s experiences indicate
that applications are typically not designed in such a way that this is a problem.
Instead, Query by Label is used as a safety net to protect against privacy and integrity
bugs. For instance, a typical query in a medical information systemmight ask for
records about patient Alice, and these queries should use indexes that include Alice’s
name or patient id. After the relevant tuples are looked up via the index, ifdb will
apply the Query by Label rules to ensure that tuples are only returned to the process
if they have appropriate labels. Performance would degrade if instead the application
set its secrecy label to {alice_medical} and requested all patient records, expecting
the database to limit the results to only tuples with secrecy labels {alice_medical} or
{}. However, this seems like a strange way to design an application.

For applications that need explicit label predicates (section 4.3.3) to be fast, ifdb
does allow labels to be indexed in one important special case. Specifically, index

115

8 . 1 . t h e data ba s e im p l ementat ion

methods that enable exact label comparisons are supported. For the more general
subset comparisons required by the Query by Label model, index support could be
added in a future release if a need is demonstrated. Labels are sets, typically with a
small number of elements (rarely more than two), so an inverted index would be
an appropriate data structure. Other data structures for set-valued indexes, such as
rd-trees [66], have been studied; however, they are best suited for larger sets where
the domain of the elements is small. In ifdb, in contrast, the sets are small, while
the number of distinct elements (tags) is very large. Additionally, rd-trees do not
support efficient subset queries.

8.1.2 Stored Authority Closures

There are two types of stored procedures in ifdb: ordinary stored procedures
run with the caller’s authority, while stored authority closures run with bound-in
authority. Stored authority closure invocation is different from ordinary stored
procedure invocation, as described in section 4.4; when an authority closure returns,
the process labels aremergedwith the labels the process had at the start of the closure
call.1

The implementation of authority closures includes syntactic extensions to spec-
ify the principal bound to a closure when it is created, as well as changes to the
Postgresql FunctionManager to handle the principal and label changes that occur
on each closure invocation and return. When a stored authority closure is called,
ifdb saves the current label and principal of the process and executes the body of
the closure. When the function returns, either normally or via an exception, ifdb
restores the previous principal andmerges the current and saved labels in themanner
described in section 4.4.

8.1.3 Declassifying Views

Declassifying views are implemented through stored authority closures, while en-
dorsing views are not yet implemented. A declassifying view is simply a query that
calls a closure to produce the contents of the view.The closure may add secrecy tags
to the process label, read the appropriate base tables, and then declassify. While

1. Postgresql supports an analogue to authority closures for access control, namely, SECURITY
DEFINER stored procedures. However, these procedures cannot execute with less authority
than the principal that created them, and they do not merge labels on return.

116

8 . i m p l ementat ion

simple, a significant disadvantage of this approach is that the Postgresql query
optimizer isn’t able to optimize across procedure call boundaries.This means, for
instance, that a query for Alice’s records in the ContactBilling view (figure 4-3(c) on
page 57) would require a table scan, even if the underlying Contact table has an index
on the name field.

A future implementation might include direct support for the WITH RELABEL
syntax described in section 4.5.The semantics of relabeling views are designed to
make such an implementation practical. Recall that relabeling views transform the
process label; given the label used to query the view, the relabeling function bound
to the view produces a new label that can be used to query the underlying tables and
produce the contents of the view.This means that queries over these views can be
evaluated using the existing Query by Label support, just with a different label. An
alternative semantics would be to transform the labels on the tuples in the base tables
to produce new labels for the corresponding tuples in the view.This approach isn’t
practical to implement; the dbms would have to read all potentially matching base
tuples and potentially pass them through several layers of view definitions before
deciding which ones are visible to the process. In particular, it would have to read
tuples whose secrecy labels have tags that are neither in the process label nor within
the authority of the view to declassify. Code embedded in the view definitions might
leak these tuples, and the fact that the dbms allowed the tuples to be read might
create concurrency conflicts that lead to covert channels.

A more sophisticated implementation of declassifying views that supports the
WITH RELABEL syntax directly would need to take care that the query optimizer does
not introduce information leaks for certain queries. Normally the optimizer has
free license to reorder selections and joins across the view definition. For example,
consider the following query over the PCMembers view defined in section 7.2.3:

SELECT * FROM PCMembers WHERE firstname = 'Alice';

Recall that PCMembers is a declassifying view that selects and declassifies all the
program committee members in the ContactInfo table. If the ContactInfo table has
an index on the firstname field, the optimizer might produce a query plan that first
looks up the users named Alice in the ContactInfo table, then filters out the ones who
are not program committee members. In this case, the optimization is harmless, but
now consider the following query:

SELECT * FROM PCMembers WHERE attack(address) = 0;

117

8 . 1 . t h e data ba s e im p l ementat ion

The attack procedure in this query might similarly be evaluated before the non-pc-
members are filtered out, and thus it gets to read sensitive data (users’ addresses)
that the process should not be able to see. By taking actions such as aborting based
on what it read, it could leak information.This is a problem for view-based access
control as well, and there are various ways to address it. Postgresql 9.1 adds a secu-
rity_barrier option for views that prevents the planner from pushing the evaluation
of functions into a view unless the functions are side-effect free.The present ifdb
implementation of declassifying views is not vulnerable because, as discussed, it
uses a simpler strategy based on stored authority closures.

8.1.4 Constraints

Chapter 5 describes three types of constraints that ifdb handles differently from
ordinary relational database systems: uniqueness constraints, foreign key constraints,
and constraints that are enforced by triggers. In fact, all constraints in Postgresql
are enforced by triggers, but the triggers that implement uniqueness and foreign key
constraints are C procedures that are built into the dbms.

User-defined triggers are simply ordinary stored procedures or stored authority
closures that happen to be invoked in response to writes; they do not need to be
handled as a special case. As explained in section 5.4, however, triggers may be
deferred until the end of the transaction, and deferred triggers, both user-defined
and intrinsic, require special handling. ifdb runs deferred triggers with the labels
the process had at the time of the action that caused the trigger to fire, rather than
the process labels at the time of the commit.

To prevent covert channels due to uniqueness constraints, ifdb uses polyin-
stantiation. Polyinstantiation requires no special support; the triggers that check
for uniqueness constraint violations run with no special authority, and they are
bound by the same information flow rules as application code. If the trigger does
not observe a duplicate tuple given its label but one exists with a higher label,
then polyinstantiation occurs. When polyinstantiation arises in a table, suppos-
edly unique index entries in that table may contain multiple entries identical keys.
However, Postgresql is already prepared to handle that eventuality since it supports
multiversion concurrency control, described in section 8.1.1.

Foreign keys require additional extensions to support DECLASSIFYING and
ENDORSING clauses for insert and update statements. Recall from section 5.3.1 that
in order for a process to add a tuple a that references a tuple b, the process must

118

8 . i m p l ementat ion

explicitly declassify every tag in a.LS ⊖ b.LS by adding a DECLASSIFYING clause to
the statement. When a DECLASSIFYING clause is present in a statement that inserts
or updates a, ifdb checks that the process has authority to declassify for each
tag in the set of tags D specified in the clause. Subsequently, when the constraint
check is carried out, ifdb temporarily changes the process label to a.LS ∪ D, and
attempts to read b.This ensures that b.LS ⊆ a.LS∪D, and therefore b.LS \a.LS ⊆ D.
Additionally, it verifies that b.LS ⊇ a.LS \ D, and thus that a.LS \ b.LS ⊆ D.
Since a.LS \ b.LS ⊆ D and b.LS \ a.LS ⊆ D, it follows that a.LS ⊖ b.LS =
(a.LS \ b.LS) ∪ (b.LS \ a.LS) ⊆ D, which is the property required by the foreign
key rule. ENDORSING clauses would use analogous rules for integrity labels, but they
are not implemented.

8.1.5 Transactions

ifdb must do additional tracking to handle the rule for commits (rule 6.1 in sec-
tion 6.1), which requires that the label pair of a process when it commits a transaction
must be no more restrictive than the labels of each tuple in the transaction’s write
set. Rather than track the write setW explicitly, ifdb maintains the union of the
secrecy labels for tuples inW as each tuple is written. When a commit is requested,
ifdb compares the commit label to this union. Similarly, for integrity labels, ifdb
tracks the intersection of the integrity labels of the tuples inW.

Postgresql supports two forms of partial rollback: save points and subtransac-
tions. When a transaction rolls back to a save point or aborts a subtransaction, some
tuples may be removed from the transaction’s write set. In this case, the union of the
secrecy labels and the intersection of the integrity labels must be reverted as well.
Partial rollbacks are safe: when a transaction commits, only the changes that were
not rolled back become visible to other transactions, so it is only those changes that
are relevant from an information flow perspective.

8.1.6 Information Flow API

In order to allow stored procedures to change the process label and the authority
state, ifdb implements theAeolus api, described in figure 3-1 on pages 32 and 33, as a
set of built-in functions. ifdb also supports a few extensions to the Aeolus api. New
functions are provided for convenience, such as getSecrecyLabel and getPrincipal,
which return the current secrecy label and principal, respectively. Additionally, ifdb

119

8 . 2 . t h e au thor i t y stat e

extends themakeSubtag function to take a set of compound tags instead of a single
compound tag.This change allows tags to be members of multiple compound tags,
should the need arise.

Section 8.1.2 describes the implementation of stored authority closures, which
are similar to Aeolus authority closures. Section 8.1.3 covers another important
enhancement to themodel, declassifying and endorsing views. Both of these features
involve syntactic extensions. An ordinary built-in function handles reduced authority
calls. Applications must specify the stored procedure to call with reduced authority
by giving the name of the procedure as a string, since Postgresql does not support
higher-order functions.

8.2 TheAuthority State

The authority state consists of all of the tags and principals in the system, as well as
the acts-for links and grants among them.The Aeolus platform uses a distinguished
authority server to store the authority state. In contrast, ifdb deployments store
the authority state in the same database as application data, which simplifies and
speeds up the implementation. If the authority state were stored on a separate server,
then creating a principal for a new doctor in a medical clinic and recording contact
information for the doctor would require a distributed transaction, for instance.

Acts-for links and grants are stored in system tables pg_actsfor and pg_grants,
respectively.The tables can only be written through the functions that implement the
Aeolus api. Indexes are used tomake lookups efficient. To check whether a principal
p has authority for a tag t, ifdb searches the authority graph for a path from t’s owner
to p. ifdb does not implement the Aeolus system’s optimization of memoizing
the results of these searches. For the applications studied in chapter 7, paths in the
authority graph tend to be short, and the cost of searching in the graph is small
compared to the total cost of running a database query.The php-if implementation
does include support for memoization, as mentioned in section 8.4.1.

Similarly, compound tags assignments are stored in the pg_compounds system
table. An index provides a fast way to look up a list of compound tags that contain a
given tag. (Typically tags are members of a single compound tag, if any.) Compound
tags require special treatment in two places. First, when a process declassifies a
compound tag, ifdb removes any secrecy tags that are subtags of that tag from
the process label. Second, the subset comparisons that are needed to implement

120

8 . i m p l ementat ion

Query by Label take compound tags into account. In determining whether a label
LA is a subset of label LB, ifdb first compares the labels without checking the
compound tag membership. Any remaining tags in LA that were not found in LB are
then checked against LB’s compound tags.

There are two special cases for compound tags where the behavior that ifdb
implements differs from what one might expect. One is the case where a process
declassifies a tag that is a member of a compound contained in the process label.
Since the compound tag is a placeholder for a set of tags, it is tempting to think that
the resulting process label should contain all subtags of the compound, except for
the one that was declassified. However, that could be a very large set, and ifdb
provides no efficient way to represent it.The second corner case is label comparisons
where one label LB contains all of the subtags of a compound tag in another label LA.
ifdb does not waste time to detect this unusual situation, so it will never conclude
that LA ⊆ LB. Neither of these cases correspond to situations that seem likely to
arise in practice.

The tuples that comprise the authority state are restricted to have empty secrecy
labels, so all Aeolus operations that modify the authority state require that the caller
have an empty secrecy label.This restriction ensures that processes cannot signal
information through modifications to the authority state. In ifdb, even the parts
of the platform that do authority checks are constrained by the information flow
rules, so it would be possible to support secret acts-for links and grants. However,
authority state modifications are rare; they are typically performed when a new user
is added to the system, for instance.Thus, it isn’t clear that it is worth complicating
the semantics to support non-empty secrecy labels on the authority state.

ifdb caches information from the pg_actsfor, pg_grants, and pg_compounds
tables in hash tables to avoid having to go through the normal query processing code
to do authority lookups. It uses the same caching mechanism that Postgresql uses
to cache important, frequently accessed information such as the database schema.
Whenever part of the authority state is updated, ifdb invalidates the corresponding
mappings in the cache.

8.3 TheDatabase Interface

When an administrator sets up an ifdb deployment, she configures the database to
allow only trusted difc runtime environments to connect.These environments

121

8 . 3 . t h e data ba s e i n t e r face

run application processes and track information flows in those applications.They
coordinate changes in the label and authority of the running process with ifdb.
This section describes how the application environments and the database system
interact with one another.

8.3.1 The Frontend/Backend Protocol

The dbms and the application environment both keep local copies of the current
label and principal of each application process. Changes in the label and principal
are communicated by means of the low-level protocol that Postgresql uses to send
queries from the client (the frontend) and retrieve result sets from the dbms (the
backend). ifdb adds a new IFCUpdate protocol message that is sent from the client
environment to the dbms whenever a label change occurs (for instance, when the
application adds a secrecy tag or declassifies), or when the running principal changes,
for instance due to an authority closure call or reduced authority call. IFCUpdate
messages are also sent from ifdb to the client when principal or label changes occur
due to the activity of stored procedures.

Principal and label changes are sent lazily, along with the next command or
result. Thus, multiple changes can be coalesced into a single message, and IFCUpdate
messages are always piggybacked on other messages. To ensure that it is impossible
for the dbms and the client to change the process label without being aware of each
other’s changes, all of the protocol messages ifdb uses are synchronous, and ifdb
assumes that client applications are single-threaded.

8.3.2 TheClient Library

An extended version of Postgresql’s libpq client library provides a simpleC interface
for trusted difc runtime environments, hiding the messy details of the protocol.
Applications call the library to get and set the process labels and current principal.
The library stores the labels and principal locally and sends any updates to the
database along with the next command.

The libpq interface is intended to be called only by parts of the difc imple-
mentation, so it does not perform any permission checks. Instead, those checks
are the responsibility of the caller.This design makes it possible for difc runtime
environments to implement new information-flow abstractions.

122

8 . i m p l ementat ion

8.4 Clients

The php-if and Python-if application platforms are php and Python implementa-
tions of the Aeolus model, which was originally developed for C# and Java [17, 18].
Additionally, they interact with ifdb to implement Query by Label. Since the
emphasis of this dissertation is on the dbms, the client implementations are not
as robust as Aeolus or ifdb; the clients are missing some features and useful
optimizations.

Three other clients were also adapted to work with ifdb.The psql tool provides
a command-line interface to the database, mainly for administrative purposes. It was
extended to allow the administrator to set the label and principal of the psql process
to support debugging and administrative operations.The pg_dump and pg_restore
tools, which make it possible to back up the database, were also enhanced to include
tuple labels in database backups.

8.4.1 The PHP-IF and Python-IF Implementations

The libpq library handles the complexity of the database protocol and label man-
agement, so both php-if and Python-if contain only about 150 new lines of C
code to handle the database interaction.The remaining changes to support ifc are
implemented at a higher level, in php and Python. Each respective implementation
is about 1100 lines of code. Most of the new code supports php and Python versions
of the Aeolus api, including support for authority closures. Calls that change the
authority state are simply translated into sql statements that call the corresponding
ifdb built-in procedures. Procedures that change the process label or principal do
any necessary authority checks, then invoke lower-level libpq routines to make the
necessary changes.

php-if and Python-if also interpose on output, so programs that are too
contaminated can’t release information. In php-if, this is accomplished by using
php’s built-in output buffering support. Output from the application that is intended
for the user is stored in an internal buffer.The php-if runtime registers a callback
that is invoked whenever the buffer is flushed (which happens automatically when
the application terminates). The callback checks whether the process is allowed
to communicate given its current label; if not, the user receives an error indicating
that the process is too contaminated. The Python implementation achieves the
same end result by replacing the sys.stdout stream with a file object that performs

123

8 . 4 . c l i ent s

the appropriate checks.The prototypes do not yet interpose on other library calls
that support i/o, such as the apis for sending email and accessing the file system.
However, this limitation can be addressed in a straightforward way.The necessary
file-system semantics have been explored in Aeolus [18], and Resin [150] considers
information flows via email.

The php-if implementation includes a shared-memory cache that stores mem-
oized results of past authority and compound tag lookups. Additionally, when
an application changes the authority state, for instance by creating a new subtag
or delegation, the mapping is opportunistically stored in the cache. The cache
is shared among all php-if instances on any given web server. It is important
because most processes perform at least one operation that requires authority,
such as a declassification. Caching drastically reduces latency by avoiding extra
round-trips to the database for these common operations. Unlike Aeolus, the php-if
implementation does not have a cache coherence protocol to maintain consistency
across multiple web servers. Since authority state updates are relatively rare, a
straightforward invalidation-based protocol like the one used in Aeolus would be a
practical solution.

Since much of the functionality provided by php-if and Python-if is imple-
mented in php and Python, it is possible that a malicious programmer could subvert
the protection mechanisms. For instance, both php and Python make it possible
(though awkward) to access instance variables of an object that are not intended to be
public. Hence, the present implementations of these clients can only be considered
secure against buggy code, not actively malicious code.

8.4.2 Extensions to the AeolusModel

Typical php scripts are executed sequentially, and they intersperse program output,
including embedded html fragments, with code execution. php-if implements
two extensions to the Aeolus model to account for this model of web programming.
The extensions help simplify the development of applications in php-if.

Automatic Output Declassification

The Aeolus model requires processes to have empty secrecy labels in order to
communicate with the outside world, and therefore processes that have read secret
information must explicitly declassify all the tags in their respective secrecy labels.

124

8 . i m p l ementat ion

However, this requirement is too cumbersome for php programs, where output
and computation are intermixed. In fact, it would be dangerous for processes to
declassify to produce output in the middle of a computation, because a process
might inadvertently write the uncontaminated data back to the database.

The first extension, automatic output declassification, addresses the problem by
allowing a php process to register a set of tags that will be effectively declassified
when the process produces output for the user. In other words, the process secrecy
label does not need to be empty to produce output; it just needs to be a subset
of the registered tags. Tags are registered by calling autoDeclassify, which requires
that the caller have authority for those tags.The capability provided by automatic
output declassification could have been achieved without the new primitive by
having applications create authority closures that declassify and produce output.
However, providing the feature as a primitive allows applications to continue to use
the same output routines as they would if they were ordinary php programs. Other
information flow systems provide similar functionality, for instance, send labels in
Asbestos [85] and gate labels with the ∗ privilege in HiStar [152].

The switchTo Function

The second extension is the switchTo primitive, which applications use to implement
authentication. In Aeolus, authority changes are done via reduced authority calls or
closures. One could imagine writing an application-specific authentication closure
that runs with authority for all users; if a user authenticates successfully, it performs a
reduced authority call to execute the rest of the script with the authority of the user’s
principal.That strategywon’t work formany php scripts without substantial changes,
though, since php scripts are executed sequentially, with much of the computation
typically happening outside the context of any function call. The switchTo function
supports the php programming model by allowing authority closures to grant
authority to their callers. A closure that acts for principal p can call switchTo(p)
to set the top-level principal – that is, the principal that the process has when it is
not running in a closure or reduced authority call – to p.

8.5 Covert Channels

This section discusses potential covert channels that can arise in the implementation.
Similar to prior difc work, ifdb does not close all possible channels, but this

125

8 . 5 . cov e rt channe l s

section does explain the issues involved and identify ways of preventing ormitigating
the channels.

8.5.1 Timing Channels

Timing channels are inevitable in any system that permits different trust domains to
dynamically share resources, and the ifdb implementation is vulnerable to timing
attacks. For example, a contaminated process could try to communicate whether
Alice has hiv by running expensive queries that consume large amounts of resources
if she does, and running no additional queries if she does not. A collaborator with an
empty secrecy label could then notice the amount of time it takes his own queries to
complete, and thus determine with some certainty whether Alice has hiv.

Various techniques have been developed to mitigate the impact of timing chan-
nels [6, 78, 97], for instance, by quantizing response times. ifdb can incorporate
these defenses, but the present prototype does not do so. Instead, this dissertation
takes the position that addressing large-scale leaks and buggy (but well-intentioned)
code is of primary importance, and it leaves questions about the practicality of timing
channel mitigation in databases for future work.

TheQuery by Label implementation in ifdb gives rise to a channel that might
be mitigated in more specialized ways, as opposed to the general techniques studied
in prior work. Suppose a process with an empty label attempts to read an HIVPatients
tuple for Alice (given the HIVPatients table in figure 5-1 on page 64). Since the
process has an empty secrecy label, it will see no results regardless. However, if
the tuple does not exist, then the dbms only needs to read the primary key index,
whereas if it does exist, the dbms must also read the tuple from the table to check
its label.Therefore, the query will take more time if the tuple for Alice exists. A good
mitigation technique is to store labels in the index, so the number of i/o operations
is the same either way.

8.5.2 Allocation Channels

If principals and tags were allocated in a predictable sequence, that sequence might
reveal unintended information, such as the order in which papers were submitted in
Hotcrp. ifdb allocates principal and tag ids from the output of a cryptographic
pseudorandom number generator to avoid this problem.

A more subtle channel involves tuple allocation. Postgresql allocates storage

126

8 . i m p l ementat ion

for tuples from per-relation heap files, so the relative order of tuples within a relation
can be influenced, to a degree, by the sequence of modifications to the relation.This
fact might allow an uncontaminated process to deduce the presence of a high-labeled
tuple, for instance, a tuple for Alice in the HIVPatients table.

The channel can be avoided by ordering tuples returned to the application by any
deterministic function of their values. Of course, if the application already requested
an order with an ORDER BY clause in the query, then no additional sorting is required.
As with timing channels, these channels appear to require a concerted malicious
effort to exploit, so the ifdb prototype does not force query results to be ordered.

8.5.3 Conflict Channels

Section 6.2 describes conflict channels, which convey information due to conflicts
among transactions.The treatment in that section considers data conflicts in the
abstract, and not a specific concurrency control mechanism such as locking, opti-
mistic concurrency control [87], or multiversion concurrency control [122].The rule
presented there avoids conflict channels and is applicable to any of these techniques;
additionally, appendix A describes an alternative strategy that works for snapshot
isolation, but not for serializability.

However, both solutions rely on the assumption that the dbms does not report
false conflicts among transactions. For example, if the dbms uses page-level locks
and a particular page contains both public and secret tuples, then processes might be
able to leak secret information via conflicts for the page lock.The ifdb prototype
uses a snapshot isolation [10] approach with fine-grained write locks and no read
locks, so it doesn’t suffer from false conflicts.

More generally, however, avoiding conflict channels may require restricting
the set of techniques available to the dbms implementor. For example, a common
optimization for lock-based protocols is lock escalation, where many fine-grained
locks are exchanged for a smaller number of coarser-grained locks. However, lock
escalation is mainly used for transactions that read or write many tuples, and it’s
unclear whether it is even a realistic goal to conceal the activities of large transactions
from each other while ensuring serializability. A more easily attainable goal is to
prevent conflict channels for online transaction processing (oltp) workloads, where
transactions are short-lived. Both of the applications studied in chapter 7 fall into
this category.

127

8 . 6 . r e duc ing the tru st ed ba s e

8.6 Reducing the Trusted Base

The dbms itself is a large and complicated piece of software, so there is a potential
concern that it might have bugs that undermine security. Such vulnerabilities appear
to be relatively uncommon in practice. The implementation of ifdb discussed
above adds code to the database, and this code must also be part of the trusted base.
It is possible to avoid much of this added code, at the cost of some performance
degradation, by implementing ifc through query rewriting.

A proof-of-concept rewriter with 1,200 lines of antlr grammar and Java code
was built to explore the idea.The rewriter handles the essence of Query by Label,
but not the full Aeolus api. It modifies table creation commands to add a label field,
and to include the label in primary keys to support polyinstantiation. It transforms
queries to add the appropriate subset comparisons on the labels. The rewriter is
simple and easy to verify, and with this approach, the dbms need only be trusted
insofar as it faithfully executes the subset of sql:1999 accepted by the rewriter.
Section 11.2.3 explains how the proxy approach could be extended to reduce trust in
the dbms even further. Preliminary measurements show that for a benchmark based
on the tpc-c specification with 10 warehouses, performance with the proxy is about
14% lower than with Postgresql, but future work might decrease the overhead.

128

Chapter

9 Performance

Chapter 7 showed that ifdb is easy to use and that it improves security of real
applications.This chapter completes the evaluation by showing that ifdb performs
well. Themain result is a benchmark that shows that CarTel performs about as well
under php-if and ifdb as it did under php and Postgresql. Section 9.2 presents
and analyzes this result.

Additional benchmarks based on tpc-c provide further insight into how infor-
mation flow control affects the scalability of the database specifically.The dominant
costs are simply those associated with reading and writing tuple labels. Section 9.3
confirms this by exploring the relationship between database throughput and the
size of tuple labels.

The application platformmust do extra work to track information flows as well.
Application performance with difc has been widely studied in prior work [18, 85,
86, 125, 150, 152]; this chapter looks at both database and application performance in
macrobenchmarks, but it examines the performance of the dbms more closely.

9.1 Experimental Setup

The benchmarks described in this chapter were run on a database server with four
Xeon e7310 cpus (16 cores), 8 gb of ram, a raid controller with a 256 mb
battery-backed cache, and three 15,000 rpm sas drives in a raid 5 configuration.
The server ran Linux kernel version 2.6.38.The database system in each test was either

129

9 . 2 . m acrobenchmark s

ifdb or Postgresql 8.4.10 (fromwhich ifdb is derived). Greg Smith’s pgtune utility,
version 0.9.3, adjusted the Postgresql settings for an oltp workload, taking into
account the amount of memory available. Two database parameters were tuned
manually: checkpoints_segments was set to 64 to prevent the database log from
filling up too quickly, andmax_connectionswas set to 1,500 to allow enough clients
to connect simultaneously to achieve peak throughput.

Several web servers were connected to the database via aGigabit Ethernet switch.
Theweb servers were substantially less powerful than the database server: each had a
hyper-threaded 3.06 GHz Pentium 4 cpu and 2 gb of ram.They ran Apache 2.2.15
and either php-if or php 5.3.10. The web servers also used apc 3.1.3p1, which
caches compiled php scripts.This caching is important, since much of the php-if
implementation is written in php, and recompiling it on every script invocation
would incur a large performance hit.

9.2 Macrobenchmarks

A series of benchmarks involving CarTel demonstrate that ifdb has good real-world
performance.The first set of benchmarks, covered in section 9.2.1 are read-intensive.
They involve the CarTel web portal, which allows users to view location data for
their cars and their friends’ cars. Section 9.2.2 presents a write-intensive benchmark
that measures how fast the database can process sensor readings.

9.2.1 CarTelWeb Portal Performance

The benchmark described in this section compares the performance of the new
version of the CarTel website, which runs on ifdb and php-if, to the original
version, which uses Postgresql and php.The database was populated with 18 gb of
real data, consisting of 177 million location readings collected from 409 users over a
27-month period.The location readings are representative of whatmight be observed
in a bigger system over a shorter time period, but clearly a large-scale deployment
would have more users and cars. However, it isn’t clear that this difference is relevant
to the cost of using ifdb. In both small and large deployments, the dbms is likely
to find user and car data for active users in the buffer cache most of the time, since
those data are small and frequently accessed; the vast majority of the disk i/o comes
from accessing past location and drive data.

130

9 . p e r formance

Freq. Request Description

0.50 get_cars.php location updates (ajax)
0.30 cars.php show car locations
0.08 drives.php show drive log
0.08 drives_top.php common driving patterns
0.03 friends.php view and set friends
0.01 edit_account.php edit personal info

Figure 9-1:The CarTel web benchmark uses a distribution of http requests in-
tended tomimic user activity on the real CarTel website.The get_cars.php
script is the most common because it is invoked by asynchronous Java-
Script (ajax) on the client to update the map. In addition to the scripts
listed above, login.php is invoked once at the start of every user session.

The benchmark uses a methodology based on tpc-w [139] to measure the
maximum sustained throughput of the system. Simulated clients each log in as a
random user, make a random sequence of http requests, then end their sessions.
The “think time,” or duration between two http requests from the same client,
ranges from 0 to 70 seconds, following a truncated negative exponential distribution.
The length of each session also follows a truncated negative exponential distribution,
and can be up to about 60 minutes. The vast majority of think times and session
durations are closer to the low end of the range.The actual requests, however, are
tailored to the CarTel workload, rather than the fictitious online catalog system that
tpc-w specifies.

Following the initial login, simulated web clients request pages according to the
distribution in figure 9-1.The distribution is intended to mimic a real workload. To
obtain more consistent performance, the benchmark did not generate requests for
users who had more than five cars.There were four such users, one of which was
a cab company.The load generator adjusted the number of clients to achieve peak
throughput while keeping the 90th percentile response time under three seconds,
which is the criterion used by tpc-w as well.

Figure 9-2 shows the maximum number of web interactions per second (wips)
the web servers and database could sustain subject to the constraint on response
time. With three web servers, performance was limited by the database, which
was disk-bound. Five two-hour trials did not demonstrate a statistically significant

131

9 . 2 . m acrobenchmark s

Web Interactions Per Second

Postgresql + php ifdb + php-if
database-bound 229.3 230.4

web-server-bound 132.0 103.5

Figure 9-2:The table shows the throughput of the CarTel website, with and without
information flow security.The database-bound workload uses three web
servers, and the web-server-bound workload uses just one.

difference between ifdb and Postgresql in this scenario. With one web server,
however, the web server’s cpu was the bottleneck and throughput was 22% lower
with ifdb and php-if.The results demonstrate that, while information flow control
adds some overhead to the web servers, it doesn’t perceptibly affect the scalability of
the database for a real web application.

Nevertheless, these results raise the question of where the overhead in the web
servers comes from. To help answer this question, figure 9-3 reports the http
request latency on an idle system, with a single client issuing requests serially.The
weighted mean increase in response time with ifdb and php-if was 24%. The
highest absolute increase was in drives.php, which had to handle tags for each of the
user’s friends.

The latency difference for each script mainly reflects the additional time required
to look up principal and tag ids, perform label manipulations to read sensitive
data, and check that the process is allowed to release what it read. php-if caches
authority information, so these checks generally don’t require communication with
the database. A separate measurement shows that the additional time required to
load the php-if module, which is largely written in php and must be initialized
at the start of every script, was only 0.2 ms. Results also show that the use of apc
(see section 9.1) is important, since apc caches compiled php code and therefore
avoids the need to recompile the php-if implementation on every script invocation.
Without apc, the increase in startup latency was found to be 8.3 ms.

A better implementation of php-if would have lower overhead.The prototype
is largely written in php itself to save on development time, since the emphasis here
is on the performance of the dbms. Furthermore, the php-if prototype does not
implement optimizations, such as a more sophisticated cache, that are present in the
Aeolus system it is based on.

132

9 . p e r formance

0
10
20
30
40
50
60
70

login.php

drives.php

cars.php

get_cars.php

drives_top.php

edit_account.php

friends.php

H
TT

P
re
sp
on

se
tim

e
(m

s)

PostgreSQL + PHP
IFDB + PHP-IF

Response Time (ms)
Script Postgresql + php ifdb + php-if

login.php 14.1 18.3
drives.php 49.7 57.3
cars.php 13.7 18.2
get_cars.php 14.7 18.2
drives_top.php 22.1 25.3
edit_account.php 14.5 16.8
friends.php 20.7 22.3

Figure 9-3: CarTel web request latency on an idle system was substantially higher in
the version that used php-if.The increased latency explains the drop in
throughput in the web-server-bound experiment in figure 9-2.

133

9 . 3 . t h e co st o f l a b e l s

9.2.2 Sensor Data ProcessingThroughput

CarTel also has a track server component, introduced in in section 7.1.1, that processes
and stores gps location readings.The web server is not involved in this part of the
system. For each reading, a new tuple is inserted into the Locations table, and two
triggers fire, which read from the Cars table and update the Drives and LocationsLatest
tables. In ifdb, these triggers run as authority closures so that they can read Cars and
update Drives and LocationsLatestwithout contaminating the process performing
the insert. Another trigger keeps the LastDrive table updated with information about
the most recent drive for each car; since this trigger only reads and writes drive data,
it did not require any changes. Figure 7-3 on page 97 illustrates these triggers.

The track server issues 200 inserts to the database per transaction, which im-
proves performance, since each transaction is synchronous and incurs a round-trip
message delay. Also, Postgresql 8.4.10 lacks support for group commit, so grouping
writes manually improves dbms throughput. In ifdb, each Locations tuple must
be labeled with the appropriate user’s location tag so that the platform will subse-
quently protect it from improper release. Each incoming location reading may have
a different secrecy label, and it is important for performance that this requirement
does not result in 200 separate insert statements.Therefore, labeling is handled by
the addlocation stored authority closure shown in figure 7-3.The input to the closure
is a sequence of location readings.The closure runs with authority for the all_users
principal; for each location reading, it adds the appropriate user location tag to the
process secrecy label, inserts the tuple, and uses its authority to declassify the tag.

The benchmark replayed real location readings from the 27-month trace to the
database as fast as possible and measured the average throughput. Postgresql was
able to process 2,479 location readings per second, while ifdb processed 2,439.The
1.6% difference reflects the additional bookkeeping associated with properly labeling
the data, as well as the overhead of storing the labels themselves. The following
section explores the impact of the latter source of overhead.

9.3 TheCost of Labels

ifdb must store the label pair for every tuple, and compare the labels to the process
labels on every read and update.This section explores those costs, independent of the
other differences associated with modifying the application to support information
flow control.

134

9 . p e r formance

Intuitively, the cost of labels should be related to the number of tags in the labels,
and also the relative increase in the size of each tuple. Labels are typically small:
Tuples in CarTel and Hotcrp have secrecy labels with 0–2 tags each, and integrity
labels were not used. Computations that combine data with many different tags use
compound tags (section 3.1), which summarize an arbitrary number of related tags
with a single tag.

Nevertheless, to gain a better understanding of the cost of labels, this section
evaluates ifdb’s performance with tuple secrecy labels ranging from zero tags up to
ten tags – more than expected in practice. In each experiment, all of the tuples in
the database and all processes had identical labels.Thus, the label comparisons are
simple and always succeed; however, the dbms still incurs some cost to store and
manipulate the labels.

The dbt-2 benchmark was used to measure performance. It implements the
tpc-c [140] specification, which is a standard way of measuring online transac-
tion processing (oltp) performance.The tpc-c benchmark simulates an order-
processing system for a fictitious wholesale supplier with a number of warehouses.
Simulated users order items by placing New-Order transactions, and each user waits
a random amount of time, called the think time, between requests. Each warehouse
serves a fixed number of users, so tpc-c effectively requires systems that support
larger transaction rates to use more warehouses, and hence larger databases. A
common simplification, however, is to hold the number of warehouses constant and
set the think time to zero; the benchmarks presented here do exactly that.

To better capture the distinction between i/o and computational overhead, the
benchmark was run on an in-memory database with 10 warehouses and an on-disk
database with 150 warehouses. Figure 9-4 reports the results.The transaction rates
are scaled so that performance relative to Postgresql is directly comparable. Within
the range studied, each tag reduces throughput by about 0.6% for the in-memory
workload and 1% for the on-disk workload. Since labels with one tag are the most
common, 1% appears to be a is a conservative estimate of the overhead of managing
labels for real applications in the database.

Much of the overhead comes from i/o and cache pressure. Labels in ifdb
increase the size of each tuple by four bytes per tag, with corresponding implications
for disk bandwidth and the buffer cache. (The label length is stored in a single byte in
the tuple header, which was previously unused for alignment reasons.) For example,
Order_Line tuples, which are responsible for the majority of the i/o in tpc-c, are 89
bytes. Each tag adds 4.5% to the space consumed by an Order_Line tuple, and thereby

135

9 . 3 . t h e co st o f l a b e l s

2400

2500

2600

2700

2800

2900

3000

0 2 4 6 8 10

31000

32000

33000

34000

35000

36000

37000

38000

39000

N
O
TP

M
(o
n-
di
sk

D
B)

N
O
TP

M
(in

-m
em

or
y
D
B)

Tags per Label

PostgreSQL (both axes)
IFDB (disk-bound, left axis)
IFDB (in-memory, right axis)

Figure 9-4:The throughput of dbt-2, measured in New-Order transactions per
minute, drops slightly for each additional tag that is added to tuple labels.
The larger relative drop for the disk-bound database shows that much of
the cost is related to reading, writing, and caching the labels. The results
are scaled so that the relative differences are directly comparable.

136

9 . p e r formance

decreases the number of such tuples that can be stored per page. Tuples and their
are stored in heap pages. Paging statistics indicate that within the range studied, the
database read roughly 3.2% more heap pages per transaction for each additional tag
in the label.This resulted in a smaller drop in overall performance, however, partly
because most oltp queries involve index reads, and ifdb does not store labels in
index pages.

137

138

Chapter

10RelatedWork

ifdb combines techniques developed in several lines of research. Prior work on
information flow control in database systems has looked at a number of problems
that affect ifdb, such as how to handle constraints and transaction scheduling
without introducing covert channels. However, this work is confined to mandatory
security policies that have limited applicability outside ofmilitary systems. Separately,
abstractions for fine-grained information flow control have been developed for
programming languages and operating systems. ifdb builds on these abstractions,
and incorporates prior database work where it is applicable.

This chapter reviews the information flowmodels used by prior database systems
and by ifdb, and describes past systems and how they have influenced ifdb’s design.
Complementary research, such as work on statistical databases, is also covered.This
work is important because it provides programmers with the framework they need
to define appropriate policies for information release; ifdb provides abstractions to
help programmers implement the intended policies securely.

10.1 Information FlowModels

In Bell and LaPadula’s seminal work on information flow control [9], data are labeled
with classification levels (for instance, confidential or top secret) and categories (for
instance, nuclear or counterintelligence). In their parlance, ifdb satisfies the simple
security property (no read up), strong-∗ property (writes only at the current level),

139

1 0 . 2 . i n format ion f low s y st em s

and the weak tranquility principle (level changes are permitted if they are safe, or
if they are made with the proper authority). Biba [11] proposes a set of rules for
integrity, which are the dual of the Bell-LaPadula confidentiality rules. Denning [32]
formalizes the Bell-LaPadula classification levels as a mathematical lattice. ifdb’s
secrecy/integrity label pairs form a lattice as well, ordered by the less-restrictive-than
relation (definition 3.1). The safe information flow rule (rule 3.1) is standard and
comes from this work.

Most subsequent work on database security is based on the aforementioned
models, and it commonly exhibits two notable characteristics, owing to the models’
origins in military systems. First, database systems tend to usemandatory security
policies, which are systemwide policies defined by an administrator. Second, they
are organized around a (typically small) set of levels and categories intended to
apply to broad classes of data. Such systems are referred to herein as following the
centralized model.

In 1997, about two decades after the first models were introduced, Myers and
Liskov [113] introduced the Decentralized Label Model (dlm).The dlm permits
discretionary security policies, wherein individual principals in the system have au-
thority to control the policies for their own data. For example, if Alice and Bob have
different doctors, then their respectivemedical records should have different security
policies. The dlm supports this need, whereas systems based on the centralized
model do not, due to assumptions about centralized policies and a small number of
categories. ifdb is the first database system to incorporate the decentralized model.

10.2 Information Flow Systems

Prior work on mechanisms for information flow control has come from three differ-
ent camps: the database community, the programming language community, and
the operating system community. The approaches in each line of work are often
quite different, and ifdb incorporates ideas from all three.

Figure 10-1 compares a representative set of prior information flow systems.
There are several important points of comparison:

— The choice of model (centralized or difc) is fundamental to the design,
as discussed in section 10.1. Like most of the recent work in programming
languages and operating systems, and unlike past work in databases, ifdb
adopts the difc model.

140

1 0 . r e l at ed work

System Year Environment Model Type Granularity

adept-50 [31] 1969 os centralized dynamic processes
Denning [31] 1975 language centralized dynamic objects
mlds [54] 1986 dbms centralized dynamic tuples
asd_Views [55] 1988 dbms centralized dynamic relations
SeaView [37, 101] 1988 dbms centralized dynamic fields
ldv [43] 1988 dbms centralized dynamic fields
Sybase Secure [138] 1990 dbms centralized dynamic tuples
sintra [50, 105] 1991 dbms centralized dynamic fields
ix [106] 1992 os centralized dynamic processes
Trusted Oracle [13] 1992 dbms centralized dynamic tuples
Trusted Rubix [73] 1992 dbms centralized dynamic tuples
Informix Secure [72] 1992 dbms centralized dynamic tuples
Jif [112, 113] 1997 language difc static objects
Asbestos [85, 141] 2005 os difc dynamic processes
HiStar [152] 2006 os difc dynamic processes
Flume [86] 2007 os difc dynamic processes
difca-j [151] 2007 language assertions dynamic objects
DStar [153] 2008 os difc dynamic processes
Laminar [125] 2009 os/lang difc dynamic objects
Resin [150] 2009 language assertions dynamic bytes
UrWeb [19] 2010 dbms/lang assertions static fields
Aeolus [18] 2012 os/lang difc dynamic processes
ifdb 2012 dbms/lang difc dynamic tuples/processes

Figure 10-1: ifdb’s information flow model is based on recent developments in
programming languages and operating systems. ifdb also borrows ideas,
such as polyinstantiation, from earlier work on trusted databases based
on the centralized model for information flow control.

141

1 0 . 2 . i n format ion f low s y st em s

— Information flow properties can be verified statically or dynamically. Static
approaches improve robustness by catching errors earlier, but they are harder
to program. Static flow analysis is predominantly found in programming
languages, but it can also be applied to operating systems (for instance, channel
contracts in Singularity [71, 134]) and databases (as in UrWeb [19]). ifdb uses
a dynamic approach, but incorporating static analysis techniques is a promising
area of future work.

— Dynamically tracking flows at a fine granularity, such as objects or bytes, is
expensive.Therefore, many prior systems track flows at the level of processes
instead.This dissertation advocates fine-grained, tuple-level tracking in the
dbms and process-level tracking in the clients (php-if or Python-if).

Each line of work – programming languages, operating systems, and databases –
has attempted to address database security using different sets of techniques.The
following sections trace the development of these systems and explain how they
relate to ifdb.

10.2.1 Languages

Denning proposes language semantics based on the centralized model, which she
was the first to formalize [31, 34]. In a system she describes, labels – attached to
objects, memory locations, and the program counter – can be checked at runtime.
She also notes that information flow properties can be checked statically [31, 36], an
idea further developed by Volpano [144] and later realized in Jif.

A renaissance in information flow research accompanied the introduction of
the difc model in Jif [112, 113] (previously known as JFlow). Jif primarily uses static
techniques; it expresses security policies through the type system. It supports limited
kinds of runtime label checks for properties that cannot be verified statically.

Fabric [96] extends Jif to distributed, federated systems. It includes persistent
objects and transactions, but the paper does not address the possibility of covert
channels due to transaction conflicts (section 6.2) or intentional aborts (section 6.1).
Follow-on work [95] explains how referential integrity concerns can be codified in a
type system; it supports weaker notions of referential integrity than ifdb to handle
the possibility that storage nodes might delete objects or disappear entirely.

sif [21] is a specialization of Jif for web applications. The authors wrote two
database-backed applications in sif. They use difc to limit what parts of the

142

1 0 . r e l at ed work

application can communicate with the dbms, but the database itself is treated as a
black box with a uniform label.

Several other languages, like sif, treat database security as a program correctness
problem for the client applications. UrWeb [19], difca-j [151], Resin [150], and an
unimplemented language by Li and Zdancewic [94] are intended to improve web
application security by ensuring that the application conforms to a set of information
flow assertions. UrWeb and the Li-Zdancewic proposal elevate queries to first-class
status in the language and enforce information flow policies statically, whereas
difca-j and Resin work with existing languages and enforce policies dynamically
in the language runtime. Resin also transparently tracks flows through the data-
base via query rewriting; however, the semantics for complex queries, constraints,
transactions, and so forth are not developed.

Resin can prevent sql-injection attacks by enforcing the property that queries
cannot contain low-integrity (that is, unsanitized) data. In contrast, the php-if and
Python-if systems presented in this dissertation use process-level tracking, which
is more efficient, but it can’t provide the same assurances about certain attacks such
as sql injection.

The use of process-level tracking in php-if and Python-if reflects a desire to
provide a simple, usable, high-performance system that is capable of addressing
a wide array of logical errors in applications, such as releasing the wrong user’s
information. sql-injection attacks, while rampant, are in some sense an easier
problem to solve; they can be prevented, for instance, by using prepared statements.
Importantly, however, the database model presented in this dissertation is amenable
to fine-grained information flow tracking in the application, as an alternative to
php-if and Python-if. Instead of using the process label in the Query by Label
model, a fine-grained difc system would use a label that reflects the contamination
of the query and the program counter.The tuples returned by the dbms would also
have that label, reflecting the fact that they were produced in response to the query.

Several avenues of research promise to reduce the performance gap between
fine- and coarse-grained difc, which might make the fine-grained approach in
a system using ifdb more palatable. One approach is to use static analysis to
reduce the number of dynamic checks; there is evidence that the overhead can be
reduced by about 98% [69, 88]. Another is to implement difc with tagged-memory
architectures [28, 136], but this approach requires specialized hardware. In yet an-
other approach, Laminar [125] achieves efficient, fine-grained tracking under the
assumption that most code doesn’t operate on sensitive data, while TaintDroid [44]

143

1 0 . 2 . i n format ion f low s y st em s

provides good performance under the assumption that most cpu time is spent
in trusted native methods. Neither assumption appears to be appropriate for the
applications studied in this dissertation.

10.2.2 Operating Systems

The idea of tracking information flows at the granularity of processes comes from
work in operating systems. Coarse-grained tracking is simple and efficient, because
the information flow system only needs to interpose on flows that cross a process
boundary and only a single label is needed for the entire process.

adept-50 [146] is the first published system to track information flows across
processes and files. adept-50 introduced the high-water mark model: Labels are
adjusted automatically to reflect the information that has flowed into the respective
file or process. Denning [34] notes that this approach leads to covert channels; nev-
ertheless, subsequent systems such as ix [106] and Asbestos [85] are also vulnerable.
To avoid these channels, ifdb and most other recent information flow systems
require label changes to be explicit.

Asbestos [85], HiStar [152], and Flume [86] adopt the difc model. Like Jif, they
support discretionary security, in which principals have the authority to define the
policies for their own data. Unlike Jif, however, these systems use a capability-based
authority structure, rather than a principal hierarchy.

DStar [153], an extension of HiStar, and Aeolus [18] expand the information flow
platform to support distributed computing. ifdb is based directly on the Aeolus
model, which is described in chapter 3. Aeolus differs from the other difc operating
systems in two notable ways. First, since revocation and privilege confinement
are difficult in capability systems [145], Aeolus uses an explicit principal hierarchy,
like Jif. Second, the Aeolus implementation presumes applications are written in
memory-safe languages, such as Java, C#, or php. Therefore, the Aeolus design
includes language features, such as authority closures and shared state, which make
it possible to efficiently confine authority and share sensitive data within a process.
For example, consider the problem of authenticating users of a website without
allowing bugs in the bulk of the application code to compromise users’ passwords.
An application written in Flume can address this problem by communicating via
ipc with a separate, trusted password-checking process. Applications written in
the php-if language introduced in this dissertation simply call a trusted authority
closure to check the password.

144

1 0 . r e l at ed work

These systems primarily use file systems to store persistent data. Several papers
identify information flow control for databases as an area of interest, but do not
develop the concept. The Asbestos [85] operating system includes the ability to
store labeled data in a database; however, complex queries, transactions, and covert
channels are not explored.The authors of HiStar [152] hint at storing labeled data in
a database that has a restricted query model, but do not elaborate.This dissertation
addresses the needs identified in these papers by developing a comprehensive model
for difc in databases.

10.2.3 Databases

Prior work on information flow in databases is limited to the centralized model.
These systems are calledMulti-Level Secure (mls) databases; most of them were
designed to suit military needs, and their models are inspired by the Bell-LaPadula
security rules. ifdb differs philosophically from most mls databases in several
respects:

— ifdb is based on discretionary information flow policies, in which data belong
to principals, who shape the policy for their own data. In contrast, most mls
databases are based on mandatory policies, defined by an administrator, that
constrain all users.

— In order to support discretionary security and allow users to protect their
data from each other, ifdb supports a virtually limitless number of tags. mls
databases are typically designed around the assumption that all data can be
classified into a small number of security levels and categories.

— ifdb uses information flow as part of a broader methodology of using ifc
to build secure software; thus, it includes support for secure programming
through ideas such as declassification and authority closures. Earlier database
work, in contrast, tends to regard access via different classification levels as a
feature to present to users directly. In other words, a user logs in at a particular
level, such as top secret, and manually issues queries against the database.

EarlyModels: 1975–1982

Amajor concern in many of the early systems is how to implement a system with
verifiable security, for instance, by minimizing the size of the trusted computing

145

1 0 . 2 . i n format ion f low s y st em s

base. The points of comparison in this section are the security models, however;
Section 10.5 describes implementation techniques for secure databases.

The first published mls database proposal is the Hinke-Schaefer model [68].
Themodel labels each field with a security level, but several restrictions on labels are
needed. Within a tuple, all of the fields that comprise the primary key for a relation
are required to have the same level to preserve entity integrity (see section 5.1).
Furthermore, other fields are required to have levels at least as high as the level of
the primary key.

The I. P. Sharp model [62] classifies data at the level of entire relations, and
includes support for both secrecy and integrity. Each user can read relations whose
classification is no more restrictive than the user’s current secrecy and integrity
levels. Unlike ifdb, the I. P. Sharp model allows writes to data that the process is not
allowed to see.The authors later observed that to avoid covert channels, the system
could not inform the user whether the write succeeded or not [81]. Section 4.3.5 of
this dissertation argues against allowing these kinds of writes.

Other granularities of labeling were explored as well. Down and Popek [41] pro-
pose a model with field-level classification, while the Naval Surveillance Model [60]
allowed data to be labeled at many levels (fields, tuples, tables, or entire databases).
Neither paper develops the semantics for relational queries.

TheAir Force Summer Study and Subsequent Systems

In the summer of 1982, the us Air Force commissioned a study in Woods Hole,
Massachusetts to make recommendations on the design of mls databases [2]. Many
systems were developed as a result of this study [38, 43, 54, 58, 105, 148].Three of the
most influential systems, trw’s mlds system [54], SeaView [38, 101], and lock
Data Views [43], are described in this section.

The mlds system [54] developed at trw adopts a simplemodel, using row-level
classification like ifdb. Users log in at a given security level, and the system enforces
restrictions similar to ifdb’s rules for reads and writes (rules 4.1 and 4.2); however,
users cannot change their labels or write at any other levels for the duration of
the session. The authors briefly identify several important issues such as polyin-
stantiation (see section 10.4.1), but didn’t develop the concepts; instead, the focus
is on implementation techniques. (trw later developed a second system called
asd_Views [55], which has only one label per relation and used views for security;
hence, it does not require polyinstantiation.)

146

1 0 . r e l at ed work

Polyinstantiation was later formalized by Denning and Lunt [38] as part of
the SeaView project [101]. SeaView supports field-granularity classification as well
as relations whose existence is classified, which leads to several different kinds of
polyinstantiation:

— Fields are polyinstantiated when there are two different values for the field at
different secrecy levels, but with the same primary key.This type of polyin-
stantiation is particularly problematic; it is discussed in depth in section 10.4.

— Tuples are polyinstantiated when the primary keys of two tuples have the same
value but different secrecy levels. (As in the Hinke-Schaefer model [68], all
fields that make up the primary key must have the same secrecy.) ifdb uses
only this kind of polyinstantiation: in ifdb, all fields in a tuple share the same
label pair.

— Relations can be polyinstantiated, so for example, two independent relations
with the same namebut different secrecy levels (and possibly different schemas
as well) can exist. ifdb considers the database schema public and does not
support polyinstantiated relations; see section 4.2.

SeaView also has views, but no declassifying or endorsing views. In fact, like other
systems based on the centralized model, SeaView lacks declassification and endorse-
ment entirely; instead, it supports trusted subjects, which are principals that can
read and write within a range of levels, even in violation of the information flow
rules. ifdb, in contrast, prevents accidental leaks by disallowing these unsafe flows
unless they are explicitly vouched for through an authorized declassification or
endorsement operation.

SeaView also introduces the idea of classification constraints (see section 5.5),
and the concept is pushed further by the lock Data Views (ldv) database sys-
tem [40, 43, 133]. ldv supports classifying data not only at the granularity of fields,
tuples, and relations, but also at the granularity of columns and aggregate types.
For example, it permits policies that specify that all salary fields are secret, or that
(name, salary) pairs are more sensitive than names or salaries alone.

Commercial andOpen-Source Products

Several mls database products were built following the research prototypes of the
late 1980s and early 1990s.These include Sybase Secure sql Server [138], Trusted

147

1 0 . 3 . f i n e - g r a in ed acce s s control for data ba s e s

Oracle [13], Informix-OnLine/Secure [72], and Trusted Rubix [73]. See Burns and
Koh [15] for a comparison of the systems. All of these products use tuple-level
classification and support polyinstantiation, but typically there is an option to disable
polyinstantiation. Except for Trusted Oracle, there is no enforcement of referential
integrity across security levels. These systems aren’t adequate for difc; for instance,
Sybase Secure sql Server supports only 16 levels and 64 categories.They use the
centralized model and are narrowly tailored to the needs of the military. Since they
addressed the needs of a niche market, all of them except for Trusted Rubix were
discontinued after several years.

Newer projects have emerged, which extend the security model, but dispense
with polyinstantiation and allow covert channels instead. Informix-OnLine/Secure
and Trusted Oracle were replaced by Label-Based Access Control [14] and Oracle
Label Security [76], respectively. se-Postgresql [82] adds support for seLinux [99]
mandatory security policies to Postgresql.These systems use extensible per-tuple
security labels and user-defined security policies, which can enforce multi-level
security, access control lists, or other kinds of policies.

Since these systems support such general security policies, parts of ifdb could
have been built on top of one of them – for instance, se-Postgresql. However, the
aims are sufficiently different that starting with an ordinary dbms made more sense.
Achieving reasonable performance in se-Postgresql requires tuples to fit into a
small number of protection domains, while in ifdb tuples can have many different
labels. Also, the Query by Label semantics for integrity constraints and transactions
would need to be implemented by modifying the dbms regardless.

10.3 Fine-Grained Access Control for Databases

In addition to the work on information flow control, there has been research on
databases that protect privacy via fine-grained access control. Since these approaches
are based on access control rather than ifc, they generally do not address problems
with covert channels and updates, nor do they allow for untrusted computations
that run on sensitive data without being able to release it. However, like ifdb, they
do enable database security policies that protect users from each other.

LeFevre et al. [92] built a system that uses query rewriting to enforce an access
control policy written in a policy meta-language. Another technique, authorization
views [123], enhances the well-known idea of enforcing access control through views.

148

1 0 . r e l at ed work

Authorization view definitions can be parameterized on the user, much like Query
by Label restricts queries based on information flow label. Rather than limiting
the results of queries like ifdb does, their system limits the set of legal queries. A
query over a set of base relations and views is legal if it is equivalent to another query
defined only over authorization views.

10.4 Constraints and Information FlowControl

As discussed in chapter 5, uniqueness constraints, referential integrity constraints,
and other types of constraints (handled by triggers in ifdb) can lead to covert
channels.There has not been much work on triggers and information flow, but there
has been research on referential integrity and on polyinstantiation, the approach to
uniqueness constraints that ifdb adopts.

10.4.1 Polyinstantiation

This dissertation regards polyinstantiation as an unfortunate necessity. ifdb uses it
only when necessary to prevent covert channels; polyinstantiation occurs when a
transaction attempts to insert a tuple that conflicts with a tuple it can’t see. Designers
of previous systems have taken a different position, motivated by military needs.
To illustrate their motivation, suppose a spy conducts both unclassified and secret
missions. A user without secret clearance could thus infer that the spy is on a secret
mission if the user is unable to see the mission.Thus, it is argued, there is a need
for cover stories that conceal the existence of the secret mission. However, there is
a lack of agreement about basic issues, such as what real-world meaning different
combinations of polyinstantiated tuples and fields should have [75, 100].

A series of tables in figure 10-2 illustrate some of the inherent complexity in
systems such as SeaView, which support this kind of polyinstantiation at field granu-
larity. Figure 10-2(a) shows the initial state of a SeaView table that lists spies, their
locations, and their missions. It has a public entry for Maxwell Smart, in which
each field is unclassified. Subsequently, if Maxwell Smart receives a secret espionage
mission, SeaView polyinstantiates the tuple, as shown in figure 10-2(b). However, if
he now travels to SanMonique, and this fact is secret, then SeaViewmanufactures
two new tuples, as shown in figure 10-2(c). It’s easy to see that this behavior could
lead to an exponential number of polyinstantiated tuples!

149

1 0 . 4 . con st r a in t s and in format ion f low control

Spies
agent location mission

unclassified Maxwell Smart unclassified Washington unclassified training

(a) A table in SeaView has separate classification levels for each field.

Spies
agent location mission

unclassified Maxwell Smart unclassified Washington unclassified training
unclassified Maxwell Smart unclassified Washington secret espionage

(b) If a user updates Maxwell Smart’s mission to the secret value espionage, SeaView
manufactures a tuple to handle the polyinstantiated field.

Spies
agent location mission

unclassified Maxwell Smart unclassified Washington unclassified training
unclassified Maxwell Smart unclassified Washington secret espionage
unclassified Maxwell Smart secret San Monique unclassified training
unclassified Maxwell Smart secret San Monique secret espionage

(c) If theuser subsequently updatesMaxwell Smart’s location to the secret value SanMonique,
SeaViewmanufactures two additional tuples to encode the possible combinations of
unclassified and secret polyinstantiated fields.

Spies
agent location mission

unclassified Maxwell Smart unclassified Washington unclassified training
unclassified Maxwell Smart unclassified Washington secret espionage
unclassified Maxwell Smart secret San Monique secret espionage

(d) SeaView does not allow tables such as this one. Jajodia and Sandhu [75] argue that it
should be supported.

Figure 10-2:These tables illustrate how field-level polyinstantiation can lead to an
explosion in the number of tuples. In each of the tables shown, the
primary key is agent.

150

1 0 . r e l at ed work

SpyLocations
_label agent location
{} Maxwell Smart Washington

SpyMissions
_label agent mission
{} Maxwell Smart training
{secret} Maxwell Smart espionage

Figure 10-3: ifdb can support a labeling scheme equivalent to the one shown in
figure 10-2(b) by defining Spies as a view: Spies = SpyLocations ×
SpyMissions.

An intuitive justification for SeaView’s choice is that there are just two polyinstan-
tiated fields, location andmission, and the tuples just represent all the combinations
of those fields. This means that Maxwell Smart can only have a single value for a
given field at each classification level. Thus, if his unclassified location changes from
Washington to New York, the first two tuples in figure 10-2(c) inherit the change.

Jajodia and Sandhu [75] argue that tables such as the one shown in figure 10-2(d)
should be allowed. But this proposal raises new questions. What does the table
even mean? If a process later changes Maxwell Smart’s location at the unclassified
level, does the update affect the first tuple, the second, or both? Attempts to address
this problem include BELIEVED BY clauses in the Smith-Winslett model [131] and
data-borrow integrity in the mlr model [128].

Since ifdb supports labeling and polyinstantiation only at the granularity of
tuples, these problems do not arise. However, suppose that it is desirable to give
Maxwell Smart’s location and mission different labels. Section 4.5.4 explains how to
do this by decomposing the table into two tables as shown in figure 10-3. Now Spies
can be defined as a join over the two tables.

Note, however, that this approach has the same problem as SeaView: if a secret
location for Maxwell Smart were inserted into SpyLocations, the resulting Spies view
would include four tuples. In fact, SeaView’s implementation of field-level classifica-
tion uses a similar decomposition internally. As described in section 5.2.2, however,
ifdb regards polyinstantiation as a consequence of mistakes, which are expected to
be rare. In fact, adding a secret location for Maxwell Smart to SpyLocationswould
not be allowed; the process running with the secrecy label {secret} would see the
existing tuple and abort with a primary key constraint violation.

Many mls database systems do support this type of polyinstantiation, where
a process is allowed to insert a tuple that conflicts with a lower-labeled tuple. Two
types of polyinstantiation are recognized:

151

1 0 . 4 . con st r a in t s and in format ion f low control

— Invisible polyinstantiation occurs when a process inserts a tuple that conflicts
with a higher-labeled tuple, which it is not allowed to see.This is the type of
polyinstantiation ifdb supports, and it is needed to avoid covert channels.

— Visible polyinstantiation occurs when a process inserts a tuple that conflicts
with a lower-labeled tuple, which it can see.This type of polyinstantiation does
not prevent any covert channels, and ifdb does not allow it. Prior research
has justified it through the perceived need for cover stories, and through the
idea that a user with a high secrecy level should not be inconvenienced by a
conflicting tuple at a lower level.The latter argument confounds secrecy and
integrity.

Supporting both types of polyinstantiation is equivalent to including the label
in every primary key, and in fact, this is how Trusted Oracle implements it. Sybase
Secure sql Server and Informix-OnLine/Secure make both types of polyinstantia-
tion mandatory. Trusted Rubix has per-table configuration settings to make each
type of polyinstantiation optional.

10.4.2 Referential Integrity

Tuples with different labels that are governed by a referential integrity constraint
can create covert channels. ifdb’s approach to referential integrity, explained in
section 5.3, is to require that tuples with foreign keys are properly vouched for via
declassification or endorsement when they are inserted.Thus, the inserting process
acknowledges the fact that the related tuples reveal information about each other.

ifdb appears to be the first system to take this approach. Most prior work has
focused on the problem of referential ambiguity [91, 128, 129], which is actually a
consequence of polyinstantiation! Approaches to avoiding covert channels due to
referential integrity constraints take two forms:

— SeaView [101], Trusted Rubix [73], Informix-OnLine/Secure [72], and the
mlr model [128] require the referring and referenced tuple to have the same
security level.This approach is too limiting to enforce many reasonable con-
straints. For instance, it does not allow for enforcement of the constraint
that every user has a password, assuming that one table stores user account
information, a separate table stores passwords, and tuples in the two tables
have different labels.

152

1 0 . r e l at ed work

— Trusted Oracle [13] and Sybase Secure sql Server [138] follow a proposal
by Gajnak [52] to require the referring tuple to have the same security level
or higher. Attempting to delete the referenced tuple introduces a channel.
Proposed solutions include ignoring the problem, logging the fact that a leak
occurred, or using access control to restrict deletion. With the last option,
the implicit leak still occurs, but it is limited to authorized users. ifdb did
not adopt such an approach because it violates the principle that all unsafe
information flows should be explicit.

Millen and Lunt [109] develop a model for object-oriented databases that han-
dles referential integrity by drawing a distinction between the classification of an
object and the classification of the existence of the object. Adopting this view in ifdb
might permit some of the referential integrity rules to be relaxed, but having two
kinds of classifications for each tuple complicates the model.

10.5 Secure DBMS Architectures

Since ifdb is implemented as a modified version of the Postgresql dbms, it has a
large trusted computing base (see section 2.3).This approach is common: mlds [54],
asd_Views [55], and virtually all commercial mls databases [13, 72, 73, 138] are built
this way. The size of the tcb is of some concern, however; in fact, twenty-three
vulnerabilities in Postgresql that might lead to data leaks were reported in the
five-year period from 2007 to 2011 [114]. Two major approaches to securing database
systems have been proposed. This section examines each one, and discusses its
applicability to ifdb.

10.5.1 TheKernelized Approach

One approach is to rely on lower-level protections, such as those provided by the
operating system, to ensure data security. Hinke and Schaefer [68] first proposed
this idea, which is referred to as the Hinke-Schaefer (or kernelized) architecture. In
their design, each relation is partitioned vertically and horizontally into fragments
so that all the information in each fragment has the same security level, and the
fragments are then stored in separate Multics files.The underlying operating system
then enforces the information flow rules.

153

1 0 . 5 . s e cur e dbm s a rch i t e ctur e s

Subsequently, systems such as SeaView [101] and the os-mac version of Trusted
Oracle [13, 143] were built on this idea. sintra [49, 50] uses a variant of this
approach. Instead of enforcing isolation via a trusted operating system, sintra uses
physically separated database systems connected via a trusted switch. Each security
level has a database, which contains all of the data for that level and below.

These architectures are plagued by poor performance [53, 67], and concurrency
control for them is challenging [105]. difc systems such as ifdb use many different
labels rather than a small set of security levels, which would exacerbate the problem.
For instance, in a medical information system, the patient records table would need
to be split into a separate file for each patient.Therefore, relying on a difc operating
system for security does not seem like a practical solution.

10.5.2 Trusted Proxies

An alternative approach is to rely on a trusted proxy to mediate all communication
with the database and ensure that the security policy is followed.The proxy is simpler
than the dbms, and therefore easier to verify. But how does the proxy ensure that
the database is doing the right thing?

One answer is the integrity-lock architecture, which was proposed indepen-
dently by Graubart [58] and Denning [35], and subsequently implemented [59]. The
idea is to have the proxy compute a message authentication code (mac) over each
datum and its label before storing it in the database. The mac cryptographically
binds the datum to the label, so the dbms can’t change the label without the proxy
noticing. Later, when the same datum is read from the database, the proxy verifies
the mac and checks that the label satisfies the information flow rules for the query
before returning the results to the application.

Another technique is to encrypt the data before storing it in the database. Until
recently, it was not known how to query encrypted data efficiently, and substantial
client-side processing was required [63]. However, advances in homomorphic en-
cryption have made it possible to securely compute on encrypted data on the server.
Cryptdb [119] uses a trusted proxy to encrypt data, and executes most common
types of queries using homomorphic encryption, with about 20% overhead. A
notable advantage of this technique is that it does not assume that all communication
with the database goes through the proxy. A disadvantage is that the dbms still learns
some information about the encrypted data, which is necessary in order to execute
certain types of queries efficiently.

154

1 0 . r e l at ed work

Neither the integrity-lock architecture nor encryption ensure integrity of re-
sults.This is a particularly bad problem for the integrity-lock approach because a
malicious dbms could leak data indirectly through bogus responses. For instance,
in responding to a query with an empty (public) secrecy label, the database might
use secret data to decide which public tuples to return. Byzantine-fault-tolerant
replication [142] addresses this problem by using multiple databases and trusting
the result only if a quorum of them agree.

A proof-of-concept proxy for Query by Label has been built, and is described
in section 8.6. Future work could include a complete proxy-based implementation,
combined with encryption or Byzantine-fault-tolerant replication, to provide secu-
rity with minimal trust in the dbms. Section 11.2.3 explains how an implementation
based on replication might work.

10.6 Transactions

This dissertation has identified two covert channels related to transactions. First,
section 6.1 notes that aborting a transaction can be used to signal secret information.
Second, sections 6.2 and 8.5.3 explain how conflicts among concurrent transactions
can also lead to unsafe flows.This section covers prior work on these topics.

10.6.1 Abort Channels

The only prior system to address abort channels is Fabric [96], which handles
the problem differently from ifdb. Whereas ifdb requires that a process have
a sufficiently uncontaminated label in order to commit a transaction, Fabric enforces
an analogous restriction at all the points where a transactionmight abort. Specifically,
a Fabric transaction cannot abort while the label of the process is higher than at the
start of the transaction.

Fabric is based on the Jif language, so it uses static analysis to determine all the
points where an abort might occur. These points include any explicit abort state-
ments, as well as any code that might throw an unchecked exception. Unfortunately,
due to fundamental limitations of static analysis, such points are pervasive [80]:
dereferencing an object creates the potential for a null-pointer exception, and access-
ing an array may lead to an array-bounds exception, for instance. In fact, any read or
write of an object that can be accessed by another transaction could cause an abort

155

1 0 . 6 . t r an s act i on s

due to a concurrency conflict, so it’s not clear how transactions restricted by Fabric’s
rule could get any useful work done while running with a higher label than it started
with. ifdb avoids these problems, as well as the requirement of statically analyzing
transactions in advance, by restricting commits instead of aborts.

10.6.2 Secure Transaction Scheduling

Section 6.2 describes how ifdb ensures that transaction conflicts do not introduce
signaling channels, and appendix A describes an alternative for snapshot isolation.
This problem has been studied extensively in the context of mls database systems,
but none of the prior systems allow processes to change labels in the middle of a
transaction.

The first system to address the problem is the os-mac version of Trusted
Oracle. In Trusted Oracle, read/write transactions use strict two-phase locking for
writes at their own security level, and a variant of multiversion timestamp ordering
(mvto) [122] to read data at their own level and lower [103, 143]. mvto provides
snapshot isolation [10], which is weaker than serializability; the ifdb prototype
provides only snapshot isolation as well, although the ifdb model supports seri-
alizability. Trusted Oracle and a number of subsequent proposals [4, 74, 116] use a
restricted model where all of the writes for a transaction must have the same label.

Keefe and Tsai [79] present a transaction scheduler that provides serializability.
Their approach also restricts transactions to have a single label, but transactions are
allowed to do blind writes of higher-labeled data.The algorithm is also based on
mvto, modified so that the read timestamp assigned to a transaction precedes the
timestamps of any concurrent transactions at lower levels. Unfortunately, in their
protocol, long-lived transactions at low levels can cause higher-level transactions
to run far in the past, and can cause starvation. Trusted Rubix appears to use their
algorithm, or a related one, but provides the option of relaxed consistency to avoid
these problems. In ifdb, there is an additional problem, though: If a client executes a
transaction, raises its label, and executes another transaction, the second transaction
might be serialized before the first. While this behavior doesn’t violate serializability,
it does violate sequential consistency and may lead to confusion.

ifdb allows processes to change their labels in the middle of a transaction, so
that tuples with different labels can bewritten atomically, as described in section 4.3.5.
ifdb’s transaction clearance approach described in section 6.2 is a simple and
practical way to prevent label changes from introducing unauthorized channels.

156

1 0 . r e l at ed work

However, appendix A presents alternative semantics based on flow-safe scheduling,
for which conflicts are more problematic. Since transactions can conflict with any
other transaction within the range of labels they have written at, flow-safe scheduling
sometimes requires them to be aborted.These aborts can lead to starvation. Prior
work has looked at this problem and proposed various solutions, such as reduced
atomicity guarantees [12], accepting some covert channels [104], or assuming one-
shot transactions that can be analyzed in advance [132]. In addition, schedulers that
provide various forms of relaxed consistency to avoid the starvation problem have
been proposed [74, 103, 117]. Other work has studied the problem in a context where
all the data with a given label is stored in its own database [5, 26, 77, 105], but as
explained in section 10.5.1, these architectures aren’t amenable to difc.There has
also been work on secure two-phase commit protocols [121].

While this work addresses conflicts among transactions that access the same
data, it does not address timing channels that may arise as a result of contention
for other shared resources, such as the disk, memory, and cpu. Timing channels
cannot be avoided entirely, except by preallocating these resources and forbidding
dynamic sharing across security domains – an impractical limitation. However,
timing channels can be mitigated [6, 78, 97], for example, by quantizing response
times of queries.

10.7 Inference and Statistical Privacy

Many systems that process data with different secrecy labels are vulnerable to the
inference problem: It is possible to learn something about secret data by looking at
less secret data. For example, the issues with foreign keys covered in section 5.3 are
instances of the inference problem. In systems based on access control, and in mls
database systems that have trusted subjects, it is easy to create inference channels
inadvertently.The Query by Label model, however, ensures that if data are correctly
labeled in the first place, the only way to create such a channel is through explicit use
of authority (that is, declassification or endorsement).

Declassification and endorsement provide a simpleway to reason about channels
that might leak information. However, the programmer must still make decisions
about what releases are safe.Therefore, it is important to have a framework for un-
derstanding howmuch information is being released, for instance, by “anonymized”
records and statistics. Statistical databases and anonymization have been widely

157

1 0 . 7 . i n f e r ence and stat i s t i ca l p r i vac y

studied [33, 102, 137]. Recently, the introduction of Differential Privacy [42] has put
the field on strong theoretical grounds. Unfortunately, there is a tradeoff between the
amount of information that is released and the probability that an attacker can infer
sensitive information. Several classes of queries that protect differential privacy have
been studied [16, 65]. Furthermore, techniques have been developed to bound the
information leaked over the course of many queries [107]; future research challenges
include incorporating such systems into ifdb, and generalizing the types of queries
that are possible. Section 11.2.2 suggests some specific directions.

158

Chapter

11 Conclusions

This dissertation has presented ifdb, the first system to provide security for data-
bases by using decentralized information flow control (difc). ifdb fills an unmet
need by extending the recent difc work that has been done in the context of operat-
ing systems and programming languages to support persistence through relational
databases. It also incorporates some techniques frommulti-level secure databases,
such as label constraints and polyinstantiation; however, it substantially extends that
work with new abstractions for secure information flow, a decentralized information
flowmodel, support for foreign key constraints, the ability to change labels in the
middle of a transaction, and techniques for avoiding a variety of covert channels.This
chapter summarizes themain contributions of this thesis and identifies opportunities
for future work.

11.1 Contributions

This thesis has advanced several arguments in support of the claim that difc is a
good way to secure databases containing sensitive data. The main advantages of
using the ifdb model are:

— Flexibility. Since ifdb tracks information flows between the application and
the database, it makes it possible to perform computations on sensitive data in
both the database and the application, without the need to trust the code. In

159

1 1 . 1 . c ontr i bu t i on s

contrast, database access control systems cannot control how information is
used once it has been read by an application.

— End-to-end security. Information flow policies label sensitive data when they
enter the system and control what can be released. Much of the code involved
in intermediate processing of the data does not need to be trusted, and having
less trusted code improves security.

— Simplified reasoning about security. Reasoning about data privacy has been a
continual challenge; privacy requirements can be complex, and often revealing
one piece of information reveals something more sensitive by implication.
ifdb’s principle of explicit release helps programmers understand the implica-
tions of their actions by requiring each action that has the potential to leak
information to be explicitly vouched for through declassification.

— Decentralized policies.Unlike the earlier work on multi-level-secure database
systems, ifdb supports the difc model.Thus, it is suitable for systems with
many different users, where it is important to protect each user’s data from
other users. It also allows sharing and discretionary security, so each user can
define a policy for her own data.

In difc systems, processes are contaminated by what they read, and the in-
formation flow policy restricts what they can do based on their contamination.
ifdb introduces the Query by Label model as a practical way for database-backed
applications to control their contamination. Additionally, ifdb adopts the Aeolus
information flowmodel, which includes a number of abstractions to help processes
manage information flows and authority.This work extends the model to handle
computations in the database by adding new abstractions, such as declassifying
views, endorsing views, and stored authority closures. Furthermore, ifdb provides
a uniform api on the application side and the database side, so developers can put
computations in the applications or in the dbms – whichever is most appropriate
for the task at hand.

Past work on ifc in database systems has argued that it is necessary to allow
different fields within a tuple to have different information flow labels, but these
fine-grained labels come at significant expense. This dissertation has shown that
tuple-level labels are sufficient when combined with declassifying and endorsing
views.These kinds of viewsmake it possible to achieve data independence for labeled

160

1 1 . conclu s i on s

tuples, which ensures that programmers are not forced to arrange data according to
security concerns.

Another contribution of this dissertation is the development of appropriate
semantics for constraints to ensure that they do not create a means to circumvent
the information flow policy via covert channels. For uniqueness constraints, ifdb
adopts a simplified version of the polyinstantiation concept from SeaView [101].
Since polyinstantiation is regarded as an unfortunate necessity, chapter 5 also intro-
duces a way to use label constraints to avoid polyinstantiation. ifdb also introduces
DECLASSIFYING and ENDORSING clauses to manage information disclosures via
foreign key constraints involving tuples with different labels. For other types of
constraints, section 5.4 develops a methodology for understanding the information
flows that can happen through the actions of user-defined triggers.

Transactions are another important dbms feature that introduce new challenges
in information flow systems, for two reasons. First, applications can choose to abort
their transactions after reading secret information, whichmay leak information about
the secret. Second, conflicts among transactions at different secrecy levels can lead
to covert channels. Prior work has sidestepped this problem, either by restricting
what may be written in a single transaction [4, 13, 74, 116] or by providing weaker
semantics, such as blind writes [79]. In chapter 6, this dissertation introduces new
ways of addressing the problems; additionally, section 8.5.3 describes the impact of
ifc on the implementation of concurrency control in the dbms, and appendix A
introduces alternative semantics that are appropriate for snapshot isolation.

Chapters 7 and 9 demonstrate that ifdb is practical by evaluating a prototype im-
plementation, along with a new difc application environment, php-if. Chapter 7
shows that ifdb is easy for developers to use, and that it improves the security of real
applications. Two applications were studied, both of which have complex security
policies, and both of which had security bugs. It was possible to convert them in a
straightforward way by defining a few kinds of principals, tags, and authorizations;
making decisions about how tuples of various tables should be labeled; and then
defining some authority closures to enforce policies not directly captured by the
labels. The result in both studies was an implementation that prevented a number of
security bugs. In each case there was a limited amount of code that affected security;
only this code needs to be verified to ensure that the policies are implemented
properly. Chapter 9 completes the evaluation by showing that ifdb’s performance
for real workloads is nearly as good as in the original Postgresql implementation,
upon which the ifdb prototype is based.

161

1 1 . 2 . f u tur e work

11.2 FutureWork

ifdb is the first work to add decentralized information flow control to a relational
database system, and as such, it opens up new possibilities for future research on
difc for databases.There are three areas that appear to have interesting prospects.
First, theoretical work could formalize the information flowmodel and prove that it
is correct. Second, some applications could be simplified through extensions to the
model.Third, the ifdb implementation could be refined to improve its security and
performance.

11.2.1 Proofs of Noninterference

The semantics of ifdb are carefully constructed to prevent direct and indirect
information leaks, and this dissertation has explained informally why the model is
correct. A greater degree of assurance could be achieved by formally modeling the
system and constructing proofs of correctness. Noninterference [57] is a commonly
accepted definition of what it means to be free from covert channels, so proofs of
noninterference for the model would be a good contribution.

A process P1 is noninterfering with another process P2 if the execution of P2 is
unaffected by P1. In other words, P2 should behave the same as if P1 did not exist.
For information flow systems, noninterference is typically used to establish that a
process with a high label pair is noninterfering with any lower-labeled process.1This
definition precludes the possibility that the high process could leak something to
the low process via a covert channel.

In the context of ifdb, processes communicate via the database. (The Aeolus
model allows direct communication as well, but that is a separate concern.)The goal
is to prove that high-labeled processes do not affect lower-labeled processes through
their interactions with the dbms. It is useful to think of the database as having two
parts: a high part and a low part.Then the proof can be broken down into the task of
establishing the following two properties:

1. A high process does not affect the low part of the database.

1. In general, there are many processes with many different labels, but it suffices to think of

noninterfering pairs of processes, one of which is the “high” process and the other the “low”

process. The proof can then be extended to arbitrary mixes of processes via induction. Also,

if two processes have incomparable labels, such as {alice_medical} and {bob_medical}, then
they should both be noninterfering with each other.

162

1 1 . conclu s i on s

2. The results seen by a low process depend only on the low part of the database.
Furthermore, the effect of the low process on the low part of the database is
the same regardless of the contents of the high part of the database.

To handle concurrency conflicts, it is important that the formal model specify
how high transactions could affect lower transactions through the concurrency
control mechanism. Additionally, declassification complicates matters because by
its very nature, it allows violations of noninterference in a controlled way. Li and
Zdancewic [93] describe one way to model declassification.

Thinking about information channels in terms of the high and low processes in-
teracting with different parts of the database was helpful in developing the semantics
for constraints and transactions. Formal noninterference proofs might offer further
insights and provide additional assurance that the semantics are correct.

11.2.2 Extensions to theModel

ifdb presents a simple but powerful model for applications, and the case studies
presented in chapter 7 demonstrate that the label model and abstractions such as
authority closures and declassifying views provide all the expressive power appli-
cations need. In fact, any security policy can be expressed through an authority
closure. However, extensions to the model could increase convenience and security
for certain types of applications by allowing them to express certain information
flow policies more directly.This section describes some extensions that seem useful.

Weaker Confinement Rules for Integrity

Section 11.2.1 explains that ifdb’s information flowmodel uses noninterference as a
basis for reasoning about covert channels. Noninterference is a strong definition,
which disallows all possible ways that a process with a high label might communicate
with a process with a lower label. A weaker requirement would make some of ifdb’s
rules less restrictive, which would be more convenient for application developers,
and in some cases, reduce the amount of trust that must be placed in code.

Chapter 5 illustrates that permitting additional channels could lead to harmful
leaks for secrecy, but for integrity labels, the consequences are less harmful. For
constraints and transactions, for instance, using traditional database techniques
instead of the rules described in chapters 5 and 6 would allow low-integrity processes

163

1 1 . 2 . f u tur e work

to launch denial-of-service attacks against high-integrity processes. However, low-
integrity processes could not corrupt high-integrity processes with low-integrity
data. Convenience and reduced trust are the rewards for accepting the possibility
of denial-of-service attacks: processes would no longer need to use authority to
vouch for inserts every time an inserted tuple refers to a higher-integrity tuple via a
foreign-key constraint.

In fact, although ifdb provides uniform and strict rules by default, it does allow
programmers to create weaker rules. Programmers must implement these weaker
rules themselves – for instance, by making a rewrite rule that converts inserts into a
table into a call to an authority closure that handles the necessary endorsements.
Implementing such rules and closures could be tedious, however, so it would be
more convenient to have a more direct mechanism. More experience with integrity
is needed in order to identify common patterns, so that they can be simplified with
the right abstractions.

Abstractions for Data-Parallel Computation

ifdb makes it possible to produce derived data on-the-fly through the use of triggers.
However, some processing needs are better served through batch jobs – for instance,
producing monthly patient bills from medical records. A challenge with these
batch jobs is how to process information with a variety of different labels while
still ensuring secure information flow.When producing patient medical bills, for
instance, it is important that Alice’s medical records do not wind up in Bob’s bill.

One could imagine handling this kind of computation in the database with a
query such as the following:

INSERT INTO PatientBilling
SELECT compute_bill(patient_name, array_agg(proc_code))

FROM PatientVisits
WHERE date_trunc('month', visit_date) = lastmonth
GROUP BY patient_name

This query groups all of the patient visit records for a givenmonth and sends them to
the compute_bill stored procedure, which computes the bill for the patient. However,
the process would need to run with the all_patients_medical tag in its secrecy label
in order to read all the patient records in a single query, and thus each billing record
would be contaminated with the all_patients_medical tag. Of course, there are ways
around this limitation, such as having the compute_bill procedure run with high

164

1 1 . conclu s i on s

authority so that it can declassify all_patients_medical and insert the billing tuple
with the correct label. Nevertheless, it would be more straightforward if there were
a way to arrange so that each invocation of compute_bill ran with the labels of the
corresponding patient tuples, rather than secrecy label {all_patients_medical}.

It would also be useful to have a mechanism to perform processing such as the
medical-to-billing computation in the application. In the Query by Label model,
such computations require more contamination than they ought to: The query
results have a single label pair, which is the label pair of the process when it issued the
query. To achieve good performance, it is imperative that the process fetch multiple
patients’ records in a single query, but this means that the process secrecy label must
be {all_patients_medical}. Ideally, the system would support an iterator abstraction
that makes it possible to iterate over query results, processing each tuple with only
the contamination associated with that tuple.

The challenge in supporting these kinds of extensions is that they can lead to
covert channels. For instance, any errors that occur in producing a single patient’s bill
cause the entire bill computation transaction to fail, and other patients will notice
the failure when they do not receive their bills. New abstractions might solve the
problem by splitting the computation into multiple transactions or recording the
failures in a log instead of aborting.

Integration with Fine-Grained DIFC Systems

Coarse-grained difc systems like Aeolus, upon which ifdb is based, use a single
label to track the contamination of an entire process.The advantage of this approach
is that it has good performance without requiring static analysis. However, if a single
process handles many patients’ medical records at the same time, the system will not
be able to track flows of Alice’s medical data and Bob’s medical data independently.
For web applications such as the CarTel and Hotcrp applications discussed in
chapter 7, this isn’t a problematic limitation, since web applications typically process
data on behalf of a single user at a time.

However, data-parallel tasks such as the ones described in the preceding section
might benefit from an information flow system that tracks flows at the granularity of
bytes or objects [112, 113, 125, 150, 151]. Therefore, it is worthwhile to investigate how
Query by Label can be adapted to work with these systems.

165

1 1 . 2 . f u tur e work

Dynamic Tag Groups

Section 7.3.4 discusses how experiences with Hotcrp motivated the need for dy-
namic tag groups. Dynamic tag groups extend compound tags by providing efficient
ways to refer to sets such as the set of all paper review tags that program-committee
member Bob is not conflicted with. However, dynamic tag groups can also create
new information channels, because changes in the tag group affect the contamination
of processes and tuples that already exist. Therefore, additional research is needed to
work out appropriate semantics for dynamic tag groups.

Abstractions for Statistical Databases

Declassification is a tool that allows programmers to express information flow
policies, but the onus is still on the programmer to determine when a particular
release of information is appropriate. In many cases, such as releasing Alice’s medical
record’s to Alice’s doctor, it is quite clear that the release should be allowed. However,
for statistical information, the answer is less clear. Does the average age of all the
hiv patients in the clinic reveal too much sensitive information about the patients?
If the clinic is very small or the query is asked frequently enough, it might.

There is a rich theory on quantifying the impact of releasing statistical data, as
outlined in section 10.7, and there are many techniques for minimizing the informa-
tion leaked.The question is whether new abstractions would make it easier to ensure
that declassified statistical data does not leak too much information. For example,
declassifying views that produce statistical data might require the ability to limit the
rate of queries or the total number of queries over the view, so that an attacker cannot
learn too much information by querying the view repeatedly. Additionally, statistical
queries need to be constrained so that they are always executed over a sufficiently
large population, so that little personally identifiable information is revealed; thus, it
is important to provide a mechanism to enforce such constraints. Other extensions
thatmight be useful for statistical computations include aggregation constraints [133],
which specify that a combination of values has a higher secrecy label than the union
of the labels of the individual values, and aggregate operators that support statistical
techniques for protecting privacy, such as data swapping [27].

166

1 1 . conclu s i on s

11.2.3 Extensions to the Implementation

Chapter 9 shows that the ifdb prototype performs quite well. Therefore, with the
exception of possibly adding support for indexes containing labels (see section 8.1.1),
compelling extensions to the model aim to improve security.This section proposes
two such extensions.

Reducing the Trusted Base

ifdb has a large trusted computing base, so there is a real concern that bugs in the
dbms could compromise security. Typically the database is behind a firewall, and
the applications are the weakest link in security. Nevertheless, it is important that
the database system be trustworthy as well. As section 10.5 explains, there has been
some work on database architectures with better security. However, many of the
proposals, such as storing differently labeled data in different files, are not practical
in a difc system.

One practical technique to reduce the amount of trust in the dbms is to use
a trusted proxy and Byzantine-fault-tolerant replication [142].The proxy receives
queries from applications and forwards them to several independent database sys-
tems.The database systems are not connected to the Internet and can communicate
only via the proxy.The proxy is responsible for verifying that the responses returned
to applications are correct according to the Query by Label model. Unfortunately,
the verifier can’t just look at the labels of the tuples to determine if the results are okay,
because a buggy database might return public tuples, but decide which public tuples
to return based on secret data. Instead, the proxy accepts a response if a majority of
the databases agree.Thus, if there are three databases, an attacker would have to find
a similar bug in two of them (or in the proxy, which is simple and presumably more
likely to be correct) in order to break the system.

To avoid correlated failures, three different databases could be used: for instance,
Postgresql,Oracle, andMysql. Since it would be prohibitive to add support for the
ifdb model to three different database implementations, the model could instead
be implemented in the proxy via query rewriting. A preliminary query-rewriting
implementation of Query by Label is described in section 8.6.

167

1 1 . 2 . f u tur e work

Covert Channels in the Implementation

The ifdb model is designed to prevent covert channels in the abstract model. How-
ever, section 8.5.1 points out that the prototype implementation is still vulnerable to
timing channels. Timing channels rely on the fact that some queries can be answered
faster than others, so techniques for mitigating timing channels must delay some
responses to limit the amount of sensitive information that could be revealed by
timing.This increase in query latency has an impact on performance, and further
studies would be needed to assess the real-world performance impact of timing
attack mitigation.

168

Appendix

A Flow-Safe
Scheduling

Section 6.2 discusses how ifdb handles conflict channels, which might allow pro-
cesses to signal information to each other via concurrency conflicts in transactions.
It is important that ifdb does not allow these channels to create unsafe information
flows. Section 6.2 proposes two ways to do this: transaction clearance and flow-safe
scheduling.This appendix reviews the problem and explains the flow-safe scheduling
approach.

Flow-safe scheduling has advantages compared to using transaction clearance.
First, it does not add any additional rules that the application must follow. Second, it
maintains the desirable property that all unsafe flows be vouched for with an explicit
use of authority.The alternative solution using transaction clearance allows unsafe
flows that involve implicit use of authority, as section 6.2 explains.

However, flow-safe scheduling also has a disadvantage: it is not possible to
implement it in a practical way while ensuring serializability.This downside is not
a problem for the ifdb prototype, which is based on Postgresql 8.4.10, because
the highest level of isolation that Postgresql 8.4.10 supports is snapshot isolation.
(More recently, Postgresql 9.1 added support for serializability.) Appendix a.1
reviews the conflict-channel problem and defines the goal. Appendix a.2 explains
how to do flow-safe scheduling for snapshot isolation, and appendix a.3 shows
why flow-safe scheduling is not practical for any concurrency control scheme that
provides serializability and general transactions.

169

a . 1 . t r an s act i on conf l i c t s and conf l i c t l a b e l s

tim
e

Th Tl

read(x{})
write(x{})
addSecrecy(a)
read(sa{a})
abort if sa = 0
wait forever

⋮ read(x{})
write(x{})

Figure a-1: A conflict between a high-labeled transaction Th and a low-labeled
transaction Tl could potentially introduce a covert channel. Th and Tl
both start with empty labels, and then Th raises its label.The notation
write(x{}) means that the transaction writes tuple x , which has label {}.

a.1 Transaction Conflicts andConflict Labels

Recall the example first introduced in chapter 6, reproduced in figure a-1, that
illustrates how transaction conflicts could be used to signal secret information in
violation of the information flow rules. A process running with an empty label starts
a transaction Th and reads and writes a public tuple x. Then the process raises its
label and reads a secret. It decides to abort the transaction or wait forever based on
the value that it read. Subsequently, another process with an empty label starts a
transaction Tl and tries to read and write x. However, Tl will conflict with Th if Th
did not abort. If the dbms causes Tl to abort or block due to the conflict, the process
that issued Tl will learn something about the secret, even though it is running with
an empty label.

Based on the example, a first attempt at a general principle for conflict-channel
prevention might be that a transaction Tl should not have to block or abort as a
result of the actions of another transaction Th unless Th’s labels are less restrictive
than or equal to Tl ’s. However, a slightly weaker definition is needed because pro-
cesses that declassify and endorse within transactions might have conflicts due to
operations they executed prior to declassifying or endorsing. For example, suppose
a process writes a tuple with label {alice_medical} and declassifies in the middle of
a transaction, so that its new label is {}. Until the transaction ends, it may still be

170

a . f low- s a f e s chedul ing

affected by conflicts with other transactions with label {alice_medical} because it
wrote a tuple with that label. Since the process just used authority to declassify for
alice_medical, the fact that itmay subsequently learn one bit of information protected
by alice_medical due to a conflict isn’t considered significant.

Conflict labels help formalize the idea, taking declassification and endorsement
into account.The secrecy conflict-label of a transaction T, written T .LC

S , is the union
of the associated client’s current secrecy label and the set of tags the client has
declassified since starting the transaction. Similarly, the integrity conflict-label of
a transaction T, written T .LC

I , is the intersection of the client’s current integrity
label and the set of tags the client has endorsed since starting the transaction. Note
that the conflict-label pair of a transaction is always at least as restrictive as its
current label pair, and the conflict label can never be lowered.The goal of preventing
conflict channels can be expressed through the following property, which says that a
transaction Th should not interfere with a transaction Tl unless the label pair of the
process that issued Th is less restrictive than Tl ’s conflict-label pair.

Property a.1. (Transaction Conflicts)

Suppose transaction Tl has conflict-label pair (Tl .LC
S ,Tl .LC

I). Let (Th .LS ,Th .LI)
denote the commit labels of another transaction Th, if Th has committed, and
the current label pair of the process that issued Th otherwise. If (Th .LS ,Th .LI) ⋠
(Tl .LC

S ,Tl .LC
I), then Th must be noninterfering with Tl .

The statement that Th is noninterfering with Tl means that in any schedule
of concurrent transactions, Tl will behave identically regardless of whether Th is
included in the schedule or not. Informally, behaving identically means returning
the same results to the client and having the same effect on the database. Goguen
andMeseguer [57] introduce and formally define noninterference, and Keefe and
Tsai [79] adapt the meaning for transactions specifically.

a.2 Flow-Safe Scheduling for Snapshot Isolation

How can a dbms satisfy property a.1? To answer this question, it is necessary to
look at how conflicts between transactions arise, and how database systems resolve
them. In general, transactions such as Th and Tl from the preceding example can
have three types of conflicts:

171

a . 2 . f l ow- s a f e s chedul ing for sna p shot i s o l at i on

— Read-write conflict. A conflict occurs because Th reads x and Tl subsequently
writes x.

— Write-read conflict. Th and Tl conflict because Th writes x and Tl subsequently
reads x.

— Write-write conflict. A write-write conflict occurs when Th and Tl both write x .

Each conflict between committed transactions represents an edge in a directed graph
called the conflict graph. An edge from T1 to T2means that T2must appear to happen
after T1, either because T2 wrote a new version of x after T1 observed the old version
(a read-write conflict), because T2 observed a value that T1 wrote (a write-read
conflict), or because T1 and T2 both wrote the same tuple and T2 wrote it second (a
write-write conflict).The job of the transaction scheduler is to prevent cycles in the
conflict graph, since a cycle would mean that neither T1 nor T2 could be ordered
before the other.

There are a three kinds of concurrency control strategies. Pessimistic techniques
have transactions acquire locks on data they read and write, so that subsequent
transactions will block if they attempt conflicting operations. Optimistic techniques
allow the conflicts to occur, but abort any transactions that would produce cycles
in the conflict graph. Multiversion techniques keep multiple versions of data; thus,
a write-read conflict between Th and Tl can be avoided by having Tl read the old
version of x, before Th’s write.

The general idea in flow-safe scheduling is to either prevent cycles in the conflict
graph that involve transactions with different labels, or to resolve conflicts by abort-
ing the transaction with the higher label pair. Prior work described in section 10.6.2
takes the former approach: it uses multiversion concurrency control to ensure that
there is never an edge from a low-labeled transaction to a concurrent high-labeled
transaction. However, the technique does not work if processes are allowed to
change labels in the middle of a transaction. This appendix proposes to use the
latter approach to achieve flow-safe scheduling for snapshot isolation.

In snapshot isolation, each transaction executes all of its reads with respect to a
consistent snapshot of the database. Snapshot isolation is weaker than serializability.
The only types of conflicts that cause the scheduler to abort or block a transaction
are write-write conflicts. In ifdb, if transaction Tl writes a tuple, and this operation
conflicts with an earlier write to the tuple by transaction Th, then one of three things
is true:

172

a . f low- s a f e s chedul ing

1. Th is committed.Then by rule 6.1 (page 85), the process that committed Th
must have had a label no more restrictive than the current label of Tl ’s process.

2. Th is still active, and the processes that issued Th and Tl have the same labels.

3. Th is still active, and the processes that issued Th and Tl do not have the same
labels.Then Th’s process must have had Tl ’s labels previously, since it wrote a
tuple with those labels; however, it subsequently changed its labels.

In the first case where Th is already committed, it is okay (and necessary) to
abort Tl . The other process doomed Tl to abort when it committed Th, but it did so
with a lower or equal label, so the flow created by the abort is safe. In the second
case, it does not matter from an ifc perspective what the scheduler does: Th and Tl
have the same labels, so blocking or aborting one of them does not create any unsafe
flows.Therefore, the scheduler should do whatever leads to the best performance in
this case – most likely blocking Tl until Th can commit.

In the third case, a new technique must be applied. Since Th once had Tl ’s label
pair, and since transaction conflict labels can never be lowered,Tl ’s label pair must be
less restrictive thanTh’s conflict label.Therefore,Th can be aborted without violating
property a.1.This fact provides the necessary intuition to write a rule for flow-safe
scheduling for snapshot isolation:

Rule a.1. (Flow-Safe Scheduling for Snapshot Isolation)

If a transaction Tl attempts to write a tuple that was previously written by a concur-
rent transaction Th, and if the processes issuing these transactions do not have the
same labels, then Th must be aborted so that Tl can proceed.

The rule handles the problem illustrated in figure a-1: the higher-labeled transac-
tion Th in the example will always be immediately aborted, so its behavior does not
leak information to the lower-labeled transaction Tl . In a different example where
the first process to write x lowers its label instead of raising it, rule a.1 also specifies
that the earlier transaction be aborted. However, one could argue for aborting either
transaction in that case.

Since a transaction that raises its label after writing a value x will always be
aborted if a concurrent transaction writes x, starvation is possible. However, the
problem only arises for processes that change their labels in the middle of a transac-
tion in order to write tuples with different labels.

173

a . 3 . s e r i a l i z a b l e f low- s a f e s chedul ing

a.3 Serializable Flow-Safe Scheduling

Snapshot isolation is a weaker isolation model than serializability, so it would be
desirable to support serializability as well. However, this appendix shows that prop-
erty a.1 can’t be guaranteed efficiently in a system with general transactions, the
Aeolus model, and serializability.

Consider the following schedule of two transactions, T1 and T2. T1 and T2 both
start with empty secrecy labels, and they write x and y, respectively.Then T1 adds
tag a to its secrecy label, while T2 adds tag b. Next, T1 reads a secret with label {a},
while T2 reads a secret with label {b}.

tim
e

T1 T2

write(x{})
write(y{})

addSecrecy(a)
addsecrecy(b)

read(sa{a})
read(sb{b})

Note that T1 and T2 don’t have any reads or writes in common.Therefore, any
reasonable scheduler would allow both transactions to run concurrently up to the
point illustrated in the diagram. However, suppose that T1 now tries to read y if the
first bit of sa is a 1 and T2 tries to read x if the first bit of sb is a 1. If both reads occur,
then the resulting schedule isn’t serializable: T1 can’t precede T2 in the serial order
because T2 sees the old value of x, which doesn’t include T1’s write, and T2 can’t
come before T1 for an analogous reason.

Furthermore, aborting T1 leaks the first bit of sb to the process that issued T1,
while aborting T2 leaks the first bit of sa to the process that issued T2. A serializable
scheduler would need to abort one transaction or the other, so it would be forced to
accept the unsafe flow. Even some hypothetical scheduler that allowed dirty reads
couldn’t solve the problem. For instance, the scheduler might allow T2 to see T1’s
uncommitted write to x, which allows T2 to be ordered after T1. However, allowing
dirty reads introduces a new problem: if T1 aborts, then T2 must abort as well, and
this conveys information from T1 to T2.

Therefore, any solution to the unsafe flow problemmust either limit concurrency
(in particular, it must disallow the example illustrated above), or it must restrict

174

a . f low- s a f e s chedul ing

the transaction model. For instance, a policy that says that no two concurrent
transactions may write any data with the same labels would work, but it severely
limits concurrency. Similarly, a limited transaction model where the scheduler is
allowed to analyze entire transactions in advance could lead to a solution, but this
requires a different, more limited interface between applications and the database.

It was the observation of this problem that motivated the decision to use trans-
action clearance instead of flow-safe scheduling in section 6.2. Although the ifdb
prototype is based on snapshot isolation and appendix a.2 shows that flow-safe
scheduling is possible for snapshot isolation, semantics that fundamentally do not
work for serializability are undesirable.

175

176

References

[1] Health insurance portability and accountability act (hipaa) of 1996. us public
law no. 104–191. hr 3103, 104th Congress.

[2] Air Force Studies Board, Committee onMultilevel DataManagement Security.
Multilevel Data Management Security. National Academy Press, Washington,
dc, usa, March 1983.

[3] American National Standards Institute. Information Technology – Database
Languages – sql. Number iso/iec 9075-4:2011. New York, ny, usa,
December 2011.

[4] Paul Ammann, Frank Jaeckle, and Sushil Jajodia. A two snapshot algorithm for
concurrency control in multi-level secure databases. In Proceedings of the 1992
ieee Symposium on Security and Privacy (Oakland’92), pages 204–215, Oakland,
ca, usa, May 1992. ieee Computer Society.

[5] Paul Ammann, Sushil Jajodia, and Phyllis Frankl. Globally consistent event
ordering in one-directional distributed environments. ieee Transactions on
Parallel and Distributed Systems, 7(6):665–670, June 1996.

[6] Aslan Askarov, Danfeng Zhang, and Andrew Myers. Predictive black-box
mitigation of timing channels. In 17th acm Conference on Computer and
Communications Security (ccs’10), pages 297–307, Chicago, il, usa, October
2010. acm.

177

[7] Adam Barth, AnupamDatta, JohnMitchell, and Helen Nissenbaum. Privacy
and contextual integrity: Framework and applications. In Proceedings of the
2006 ieee Symposium on Security and Privacy (Oakland’06), pages 184–198,
Oakland, ca, usa, May 2006. ieee Computer Society.

[8] David Basin, Felix Klaedtke, and Samuel Müller. Monitoring security policies
withmetric first-order temporal logic. In Proceedings of the 15th acm Symposium
on Access Control Models and Technologies (sacmat’10), pages 23–34, Pittsburgh,
pa, usa, June 2010. acm.

[9] David Bell and Leonard LaPadula. Secure computer system: Unified exposi-
tion andMultics interpretation. Technical Report esd-tr-75-306, Electronic
Systems Division, United States Air Force, Bedford, ma, usa, March 1976.

[10] Hal Berenson, Phil Bernstein, Jim Gray, JimMelton, Elizabeth O’Neil, and
Patrick O’Neil. A critique of ansi sql isolation levels. In Proceedings of the
1995 acm sigmod International Conference on Management of Data (sigmod’95),
pages 1–10, San Jose, ca, usa, May 1995. acm.

[11] Kenneth Biba. Integrity considerations for secure computer systems. Techni-
cal Report esd-tr-76-372, Electronic Systems Division, United States Air
Force, Bedford, ma, usa, April 1977.

[12] Barbara Blaustein, Sushil Jajodia, Catherine McCollum, and LouAnna Notar-
giacomo. A model of atomicity for multilevel transactions. In Proceedings of
the 1993 ieee Symposium on Security and Privacy (Oakland’93), pages 120–134,
Oakland, ca, usa, May 1993. ieee Computer Society.

[13] Steven Bobrowski, Maria Pratt, and Timothy Smith. Oracle7 Server Application
Developer’s Guide, Release 7.3. Oracle Corporation, Redwood City, ca, usa,
February 1996.

[14] Rebecca Bond, Kevin See, CarmenWong, and Yuk-KuenChan. Understanding
db2 9 Security, chapter 6. ibm Press, Indianopolis, in, usa, 1st edition,
December 2006.

[15] Rae Burns and Yi-Fang Koh. A comparison of multilevel structured query
language (sql) implementations. In Proceedings of the 12th Annual Computer

178

r e f e r ence s

Security Applications Conference, pages 192–202, SanDiego, ca, usa, December
1996. ieee Computer Society.

[16] Rui Chen, NomanMohammed, Benjamin Fung, Bipin Desai, and Li Xiong.
Publishing set-valued data via differential privacy. Proceedings of the vldb
Endowment, 4(11):1087–1098, August 2011.

[17] Winnie Cheng. Information Flow for Secure Distributed Applications. PhD,
Massachusetts Institute of Technology, Cambridge, ma, August 2009. Also
available as technical report mit-csail-tr-2009-040.

[18] Winnie Cheng, Dan Ports, David Schultz, Victoria Popic, Aaron Blankstein,
James Cowling, Dorothy Curtis, Liuba Shrira, and Barbara Liskov. Abstrac-
tions for usable information flow control in Aeolus. In Proceedings of the 2012
usenix Annual Technical Conference (usenix’12), Boston, ma, usa, June 2012.
usenix Association.

[19] AdamChlipala. Static checking of dynamically-varying security policies in
database-backed applications. In Proceedings of the 9th usenix Symposium
on Operating Systems Design and Implementation (osdi’10), pages 105–118,
Vancouver, bc, Canada, October 2010. usenix Association.

[20] Stephen Chong and AndrewMyers. Security policies for downgrading. In
11th acm Conference on Computer and Communications Security (ccs’04), pages
198–209, Washington, dc, usa, October 2004. acm.

[21] Stephen Chong, Krishnaprasad Vikram, and AndrewMyers. sif: Enforcing
confidentiality and integrity in web applications. In Proceedings of the 16th
usenix Security Symposium (Security’07), pages 1–16, Boston, ma, usa, August
2007. usenix Association.

[22] David Clark and David Wilson. A comparison of commercial and military
computer security policies. In Proceedings of the 1987 ieee Symposium on
Security and Privacy (Oakland’87), pages 184–194, Oakland, ca, usa, April
1987. ieee Computer Society.

[23] Privacy Rights Clearinghouse. Chronology of data breaches: Security breaches
2005–present. http://www.privacyrights.org/data-breach.

179

http://www.privacyrights.org/data-breach

[24] Edgar Codd. A relational model of data for large shared data banks. Communi-
cations of the acm, 13(6):377–387, June 1970.

[25] Edgar Codd. The relational model for database management: Version 2. Addison-
Wesley Longman, Boston, ma, usa, 1990.

[26] Oliver Costich. Transaction processing using an untrusted scheduler in a
multilevel database with replicated architecture. InDatabase Security, v: Status
and Prospects: Results of the ifip wg 11.3 Workshop on Database Security (dbsec
1991), pages 173–190, Shepherdstown, wv, usa, November 1991.

[27] Tore Dalenius and Steven Reiss. Data-swapping: A technique for disclosure
control. Journal of Statistical Planning and Inference, 6(1):73–85, 1982.

[28] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Raksha: A flexible
information flow architecture for software security. In Proceedings of the 34th
Annual International Symposium on Computer Architecture (isca’07), pages
482–493, San Diego, ca, usa, June 2007. acm.

[29] Christopher Date. Relational Database: Selected Writings. Addison-Wesley,
1986.

[30] Bernhard Debatin, Jennette Lovejoy, Ann-Kathrin Horn, and Brittany Hughes.
Facebook and online privacy: Attitudes, behaviors, and unintended conse-
quences. Journal of Computer-Mediated Communication, 15(1):83–108, Novem-
ber 2009.

[31] Dorothy Denning. Secure Information Flow in Computer Systems. PhD, Purdue
University, West Lafayette, in, May 1975.

[32] DorothyDenning. A latticemodel of secure information flow. Communications
of the acm, 19(5):236–243, May 1976.

[33] Dorothy Denning. Secure statistical databases with random sample queries.
acm Transactions on Database Systems, 5(3):291–315, September 1980.

[34] Dorothy Denning. Cryptography and Data Security, chapter 5: Information
Flow Controls. Addison-Wesley, Boston, ma, usa, 1982.

180

r e f e r ence s

[35] Dorothy Denning. Cryptographic checksums for multilevel database security.
In Proceedings of the 1984 ieee Symposium on Security and Privacy (Oakland’84),
pages 52–61, Oakland, ca, usa, April 1984. ieee Computer Society.

[36] Dorothy Denning and Peter Denning. Certification of programs for secure
information flow. Communications of the acm, 20(7):504–513, July 1977.

[37] DorothyDenning andTeresa Lunt.TheSeaView securitymodel. InProceedings
of the 1988 ieee Symposium on Security and Privacy (Oakland’88), pages 218–233,
Oakland, ca, usa, April 1988. ieee Computer Society.

[38] Dorothy Denning, Teresa Lunt, Roger Schell, Mark Heckman, andWilliam
Shockley. A multilevel relational data model. In Proceedings of the 1987 ieee
Symposium on Security and Privacy (Oakland’87), pages 220–234, Oakland, ca,
usa, April 1987. ieee Computer Society.

[39] Department of Defense Trusted Computer System Evaluation Criteria. Depart-
ment of Defense, December 1985. dod 5200.28-std (the Orange Book).

[40] Blair Dillaway and J. Thomas Haigh. A practical design for a multilevel
secure database management system. In A Collection of Technical Papers:
aiaa/asis/dodci 2nd Aerospace Computer Security Conference, pages 44–57,
McLean, va, usa, December 1986. aiaa.

[41] Deborah Downs and Gerald Popek. A kernel design for a secure data base
management system. In Proceedings of the 3rd International Conference on Very
Large Data Bases (vldb 1977), pages 507–514, Tokyo, Japan, October 1977. ieee
Computer Society and acm.

[42] Cynthia Dwork. Differential privacy: A survey of results. In Proceedings of the
5th InternationalConference onTheory andApplications ofModels of Computation
(tamc 2008), pages 1–19, Xi’an, China, April 2008. Springer.

[43] Patricia Dwyer, Emmanuel Onuegbe, Paul Stachour, and BhavaniThuraising-
ham. Query processing in ldv: A secure database system. In Proceedings
of the 4th Aerospace Computer Security Applications Conference, pages 118–124,
Orlando, fl, usa, December 1988. ieee Computer Society.

181

[44] William Enck, Peter Gilbert, Byung-Gon Chun, Landon Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol Sheth. TaintDroid: An information-flow track-
ing system for realtime privacy monitoring on smartphones. In Proceedings
of the 9th usenix Symposium on Operating Systems Design and Implementation
(osdi’10), pages 393–408, Vancouver, bc, Canada, October 2010. usenix
Association.

[45] Federal Trade Commission. In the matter of Google, Inc. ftc Docket No.
c-4336, October 2011.

[46] Steven Feuerstein and Bill Pribyl. Oracle pl/sql Programming. Oracle
Corporation, Redwood City, ca, usa, 3rd edition, September 2002.

[47] Brad Fitzpatrick. Distributed caching with memcached. Linux Journal, 124,
August 2004.

[48] Open Security Foundation. DataLossDB. http://datalossdb.org/.

[49] Judith Froscher and Catherine Meadows. Achieving a trusted database
management system using parallelism. In Database Security, ii: Status and
Prospects: Results of the ifip wg 11.3 Workshop on Database Security (dbsec
1988), pages 151–160, Kingston, on, Canada, October 1988. Elsevier Science
Publishers.

[50] Judith Froscher, Myong Kang, John McDermott, Oliver Costich, and Carl
Landwehr. A practical approach to high assurancemultilevel secure computing
service. In Proceedings of the 10th Annual Computer Security Applications
Conference, pages 2–11, Orlando, fl, usa, December 1994. ieee Computer
Society.

[51] Ariel Futoransky, Damián Saura, and Ariel Waissbein. The nd2db attack:
Database content extraction using timing attacks on the indexing algorithms.
In Proceedings of the First usenixWorkshop on Offensive Technologies (woot),
Boston, ma, usa, August 2007. usenix Association.

[52] George Gajnak. Some results from the entity/relationship multilevel secure
dbms project. InProceedings of the 4thAerospaceComputer SecurityApplications
Conference, pages 66–71, Orlando, fl, usa, December 1988. ieee Computer
Society.

182

http://datalossdb.org/

r e f e r ence s

[53] Moses Garuba. Performance study of a cots distributed dbms adapted for
multilevel security. Technical Report rhul-ma-2004-2, Royal Holloway,
University of London, Egham, Surrey, uk, July 2004.

[54] Cristi Garvey and Philip Papaccio. Multilevel data store design. In ACollection
of Technical Papers: aiaa/asis/dodci 2nd Aerospace Computer Security
Conference, pages 58–64, McLean, va, usa, December 1986. aiaa.

[55] Cristi Garvey and Amy Wu. asd_Views. In Proceedings of the 1988 ieee
Symposium on Security and Privacy (Oakland’88), pages 85–95, Oakland, ca,
usa, April 1988. ieee Computer Society.

[56] Postgresql Global Development Group. Postgresql 9.1 Documentation,
September 2011. http://www.postgresql.org/docs/9.1/static/.

[57] Joseph Goguen and José Meseguer. Security policies and security models. In
Proceedings of the 1982 ieee Symposium on Security and Privacy (Oakland’82),
pages 11–20, Oakland, ca, usa, April 1982. ieee Computer Society.

[58] Richard Graubart. The integrity-lock approach to secure database manage-
ment. In Proceedings of the 1984 ieee Symposium on Security and Privacy
(Oakland’84), pages 62–74, Oakland, ca, usa, April 1984. ieee Computer
Society.

[59] Richard Graubart and Kevin Duffy. Design overview for retrofitting integrity-
lock architecture onto a commercial dbms. In Proceedings of the 1985 ieee
Symposium on Security and Privacy (Oakland’85), pages 147–159, Oakland, ca,
usa, April 1985. ieee Computer Society.

[60] Richard Graubart and John Woodward. A preliminary naval surveillance
dbms security model. In Proceedings of the 1982 ieee Symposium on Security
and Privacy (Oakland’82), pages 21–37, Oakland, ca, usa, April 1982. ieee
Computer Society.

[61] JimGray, Raymond Lorie, Gianfranco Putzolu, and Irving Traiger. Granularity
of locks and degrees of consistency in a shared data base. In Proceedings of the
ifip Working Conference on Modelling in Data Base Management Systems, pages
365–394, Freudenstadt, Germany, January 1976. North-Holland.

183

http://www.postgresql.org/docs/9.1/static/

[62] Michael Grohn. A model of a protected data management system. Technical
Report esd-tr-76-289, Electronic SystemsDivision, United States Air Force,
Bedford, ma, usa, June 1976.

[63] Hakan Hacıgümüş, Bala Iyer, Chen Li, and SharadMehrotra. Executing sql
over encrypted data in the database-service-provider model. In Proceedings
of the 2002 acm sigmod International Conference on Management of Data
(sigmod’02), pages 216–227, Madison, wi, usa, June 2002. acm.

[64] WilliamHalfond and Alessandro Orso. Amnesia: Analysis and monitoring
for neutralizing sql-injection attacks. In Proceedings of the ieee and acm
International Conference on Automated Software Engineering (ase 2005), pages
174–183, Long Beach, ca, November 2005.

[65] Michael Hay, Vibhor Rastogi, GeromeMiklau, and Dan Suciu. Boosting the
accuracy of differentially private histograms through consistency. Proceedings
of the vldb Endowment, 3(1–2):1021–1032, September 2010.

[66] Joseph Hellerstein and Avi Pfeffer. The RD-Tree: An index structure for sets.
Technical Report 1252, University ofWisconsin,Madison, wi, usa, November
1994.

[67] Thomas Hinke. Secure database management system: Architectural analysis.
InACollection of Technical Papers: aiaa/asis/dodci 2ndAerospaceComputer
Security Conference, pages 65–72, McLean, va, usa, December 1986. aiaa.

[68] Thomas Hinke and Marvin Schaefer. Secure data management system.
Technical Report radc-tr-75-266, Rome Air Development Center, United
States Air Force, Rome, ny, usa, November 1975.

[69] Yao-WenHuang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee,
and Sy-Yen Kuo. Securing web application code by static analysis and runtime
protection. In Proceedings of the 13th International World Wide Web Conference
(www’04), pages 40–52, New York, ny, May 2004. acm.

[70] Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen, Michel Goraczko,
Allen Miu, Eugene Shih, Hari Balakrishnan, and Samuel Madden. CarTel:
A distributed mobile sensor computing system. In Proceedings of the 4th

184

r e f e r ence s

International Conference on Embedded Network Sensor Systems (SenSys’06),
pages 125–138, Boulder, co, usa, November 2006. acm.

[71] Galen Hunt and James Larus. Singularity: Rethinking the software stack. acm
sigops Operating Systems Review, 41(2):37–49, April 2007.

[72] Informix Software Inc. Informix-OnLine/Secure Security Features Guide. Menlo
Park, ca, usa, April 1993.

[73] Infosystems Technology, Inc. Trusted rubix Version 6 Trusted Facility Manual.
Gaithersburg, md, usa, 7th edition, 2011.

[74] Sushil Jajodia and Vajayalakshmi Atluri. Alternative correctness criteria
for concurrent execution of transactions in multilevel secure databases. In
Proceedings of the 1992 ieee Symposium on Security and Privacy (Oakland’92),
pages 216–224, Oakland, ca, usa, May 1992. ieee Computer Society.

[75] Sushil Jajodia and Ravi Sandhu. Polyinstantiation integrity in multilevel
relations. In Proceedings of the 1990 ieee Symposium on Security and Privacy
(Oakland’90), pages 104–115, Oakland, ca, usa, May 1990. ieee Computer
Society.

[76] Sumit Jeloka. Oracle Label Security Administrator’s Guide, 11g Release 2. Oracle
Corporation, 2009.

[77] Iwen Kang andThomas Keefe. On transaction processing for multilevel secure
replicated databases. InProceedings of the 2ndEuropean SymposiumOnResearch
In Computer Security (esorics 1992), volume 648 of Lecture Notes in Computer
Science, pages 329–347. Springer, Tolouse, France, November 1992.

[78] Paul Karger and JohnWray. Storage channels in disk arm optimization. In
Proceedings of the 1991 ieee Symposium on Security and Privacy (Oakland’91),
pages 52–61, Oakland, ca, usa, May 1991. ieee Computer Society.

[79] Thomas Keefe and Wei-Tek Tsai. Multiversion concurrency control for
multilevel secure database systems. In Proceedings of the 1990 ieee Symposium
on Security and Privacy (Oakland’90), pages 369–383, Oakland, ca, usa, May
1990. ieee Computer Society.

185

[80] Dave King, Boniface Hicks, Michael Hicks, and Trent Jaeger. Implicit flows:
Can’t live with ’em, can’t live without ’em. In Proceedings of the International
Conference on Information Systems Security (iciss), volume 5352 of Lecture Notes
in Computer Science, pages 56–70, Hyderabad, India, December 2008. Springer.

[81] Gillian Kirkby and Michael Grohn. The reference monitor technique for
security in data base management systems. ieee Data Base Engineering Bulletin,
1(2):8–16, June 1977.

[82] KaiGai Kohei. se-Postgresql online documentation. http://wiki.postgresql.
org/wiki/SEPostgreSQL.

[83] Eddie Kohler. Hot crap! In Proceedings of the Workshop on Organizing
Workshops, Conferences, and Symposia for Computer Systems (wowcs’08), San
Francisco, ca, usa, April 2008. usenix Association.

[84] Maxwell Krohn. Information Flow Control for Secure Web Sites. PhD,
Massachusetts Institute of Technology, Cambridge, ma, usa, September
2008.

[85] Maxwell Krohn, Petros Efstathopoulos, Cliff Frey, Frans Kaashoek, Eddie
Kohler, David Mazières, Robert Morris, Michelle Osborne, Steve VanDeBog-
art, and David Ziegler. Make least privilege a right (not a privilege). In 10th
Workshop on Hot Topics in Operating Systems (hotos x), Santa Fe, nm, usa,
June 2005. usenix Association.

[86] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans
Kaashoek, Eddie Kohler, and Robert Morris. Information flow control for
standard os abstractions. InProceedings of the 21st acmSymposiumonOperating
Systems Principles (sosp’07), pages 321–334, Stevenson, wa, usa, October 2007.
acm.

[87] Hsiang-Tsung Kung and John Robinson. On optimistic methods for con-
currency control. acm Transactions on Database Systems, 6(2):213–226, June
1981.

[88] Monica Lam, Michael Martin, Benjamin Livshits, and JohnWhaley. Securing
web applications with static and dynamic information flow tracking. In

186

http://wiki.postgresql.org/wiki/SEPostgreSQL
http://wiki.postgresql.org/wiki/SEPostgreSQL

r e f e r ence s

Proceedings of the 2008 acm sigplan Symposium on Partial Evaluation and
Semantics-Based ProgramManipulation (pepm ’08), pages 3–12, San Francisco,
ca, usa, January 2008. acm.

[89] Butler Lampson. A note on the confinement problem. Communications of the
acm, 16(10):613–615, October 1973.

[90] Butler Lampson, Martín Abadi, Michael Burrows, and EdwardWobber. Au-
thentication in distributed systems:Theory and practice. acm Transactions on
Computer Systems, 10(4):265–310, November 1992.

[91] Sang-Won Lee, Yong-Han Kim, and Hyoung-Joo Kim. The semantics of an
extended referential integrity for a multilevel secure relational data model.
Data and Knowledge Engineering, 48(1):129–152, 2004.

[92] Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ramakrishnan,
Yirong Xu, and David DeWitt. Limiting disclosure in hippocratic databases. In
Proceedings of the 30th International Conference on Very Large Data Bases (vldb
2004), pages 108–119, Toronto, Canada, September 2004. Morgan Kaufmann.

[93] Peng Li and Steve Zdancewic. Downgrading policies and relaxed noninterfer-
ence. In Proceedings of the 32nd acm sigplan-sigact Symposium on Principles
of Programming Languages (popl’05), pages 158–170, Long Beach, ca, usa,
January 2005. acm.

[94] Peng Li and Steve Zdancewic. Practical information-flow control in web-based
information systems. In Proceedings of the 18th ieee Computer Security
Foundations Workshop, pages 2–15, Aix-en-Provence, France, June 2005. ieee
Computer Society.

[95] Jed Liu and AndrewMyers. Defining and enforcing referential security. In
submission, April 2012.

[96] Jed Liu, Michael George, Krishnaprasad Vikram, Xin Qi, Lucas Waye, and
AndrewMyers. Fabric: A platform for secure distributed computation and
storage. In Proceedings of the 22nd acm Symposium on Operating Systems
Principles (sosp’09), pages 321–334, Big Sky, mt, usa, October 2009. acm.

187

[97] Yali Liu, Dipak Ghosal, Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen
Schulz, and Stefan Katzenbeisser. Hide and seek in time: Robust covert timing
channels. In Proceedings of the 14th European Symposium On Research In
Computer Security (esorics 2009), volume 5789 of Lecture Notes in Computer
Science, pages 120–135, Saint-Malo, France, September 2009. Springer.

[98] V. Benjamin Livshits and Monica Lam. Finding security vulnerabilities
in Java applications with static analysis. In Proceedings of the 14th usenix
Security Symposium (Security’05), Baltimore, md, usa, August 2005. usenix
Association.

[99] Peter Loscocco and Stephen Smalley. Integrating flexible support for security
policies into the Linux operating system. In Proceedings of the freenix Track:
2001 usenix Annual Technical Conference, pages 29–42, Boston, ma, usa, June
2001. usenix Association.

[100] Teresa Lunt. Security in database systems: A research perspective. Computers
and Security, 11(1):41–56, March 1992.

[101] Teresa Lunt, Dorothy Denning, Roger Schell, Mark Heckman, andWilliam
Shockley. The SeaView security model. ieee Transactions on Software
Engineering, 16(6):593–607, June 1990.

[102] AshwinMachanavajjhala, Daniel Kifer, Johannes Gehrke, andMuthuramakr-
ishnan Venkitasubramaniam. ℓ-diversity: Privacy beyond k-anonymity. acm
Transactions on Knowledge Discovery from Data, 1(1), March 2007.

[103] WilliamMaimone and Ira Greenberg. Single-level multiversion schedulers for
multilevel secure database systems. In Proceedings of the 6th Annual Computer
Security Applications Conference, pages 137–147, Tucson, az, usa, December
1990. ieee Computer Society.

[104] Amit Mathur and Thomas Keefe. The concurrency control and recovery
problem for multilevel update transactions in mls systems. In Proceedings of
the Workshop on Computer Security Foundations vi, pages 10–23, June 1993.

[105] JohnMcDermott, Sushil Jajodia, and Ravi Sandhu. A single-level scheduler
for the replicated architecture for multilevel-secure databases. In Proceedings

188

r e f e r ence s

of the 7th Annual Computer Security Applications Conference, pages 2–11, San
Antonio, tx, usa, December 1991. ieee Computer Society.

[106] Douglas McIlroy and James Reeds. Multilevel security in the unix tradition.
Software: Practice and Experience, 22(8), August 1992.

[107] Frank McSherry. Privacy integrated queries: An extensible platform for
privacy-preserving data analysis. In Proceedings of the 35th acm sigmod
International Conference on Management of Data (sigmod’09), pages 19–30,
Providence, ri, usa, June 2009. acm.

[108] Jonathan Millen. 20 years of covert channel modeling and analysis. In
Proceedings of the 1999 ieee Symposium on Security and Privacy (Oakland’99),
pages 113–114, Oakland, ca, usa, May 1999. ieee Computer Society.

[109] Jonathan Millen and Teresa Lunt. Security for object-oriented database
systems. In Proceedings of the 1992 ieee Symposium on Security and Privacy
(Oakland’92), pages 260–272, Oakland, ca, usa, May 1992. ieee Computer
Society.

[110] mitre Corporation. Information exposure through an error message.
cwe-209, May 2012. http://cwe.mitre.org/data/definitions/209.html.

[111] TomMurphy. Security glitch exposes WellPoint customers’ financial, medical
data. usa Today, June 29, 2010. http://www.usatoday.com/money/industries/
health/2010-06-29-wellpoint-data-breach_N.htm.

[112] Andrew Myers. JFlow: Practical mostly-static information flow control.
In Proceedings of the 26th acm sigplan-sigact Symposium on Principles of
Programming Languages (popl’06), pages 228–241, San Antonio, tx, usa,
January 1999. acm.

[113] AndrewMyers and Barbara Liskov. A decentralized model for information
flow control. In Proceedings of the 16th acm Symposium on Operating Systems
Principles (sosp’97), pages 129–142, Saint Malo, France, October 1997. acm.

[114] National Institute of Standards and Technology. National vulnerability
database. http://nvd.nist.gov/.

189

http://cwe.mitre.org/data/definitions/209.html
http://www.usatoday.com/money/industries/health/2010-06-29-wellpoint-data-breach_N.htm
http://www.usatoday.com/money/industries/health/2010-06-29-wellpoint-data-breach_N.htm
http://nvd.nist.gov/

[115] Patrick Pacious. Re: Incident notification. Choice Hotels International
compulsory data breach notification to the State of California’s Office of
the Attorney General. https://oag.ca.gov/system/files/Choice%20Individual%
20Notification%20(Master)_0.pdf, April 2012.

[116] Shankar Pal. A locking protocol for multilevel secure databases using two
committed versions. In Proceedings of the 10th Annual Conference on Computer
Assurance (compass ’95), pages 197–210, Gaithersburg, md, usa, June 1995.

[117] Chanjung Park, Seog Park, and Sang Son. Multiversion locking protocol with
freezing for secure real-time database systems. ieee Transactions on Knowledge
and Data Engineering, 14(5):1141–1154, October 2002.

[118] Tadeusz Pietraszek and Chris Vanden Berghe. Defending against injection
attacks through context-sensitive string evaluation. In Proceedings of the 8th
International Symposium on Recent Advances in Intrusion Detection (raid’05),
pages 124–145, Seattle, wa, usa, September 2005. Springer.

[119] Raluca Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
Cryptdb: Protecting confidentiality with encrypted query processing. In
Proceedings of the 23rd acm Symposium onOperating Systems Principles (sosp’11),
pages 85–100, Cascais, Portugal, October 2011. acm.

[120] Chandramouli Ramaswamy and Ravi Sandhu. Role based access control
features in commercial database management systems. In 21st National
Information Systems Security Conference, Arlington, va, usa, October 1998.
National Institute of Standards and Technology.

[121] Indrajit Ray, Elisa Bertino, Sushil Jajodia, and Luigi Mancini. An advanced
commit protocol for mls distributed database systems. In 3rd acm Conference
on Computer and Communications Security (ccs’96), pages 119–128, New Delhi,
India, March 1996. acm.

[122] David Reed. Naming and Synchronization in a Decentralized Computer System.
PhD,Massachusetts Institute of Technology, Cambridge, ma, usa, September
1978. Available from http://dspace.mit.edu/handle/1721.1/16279.

[123] Shariq Rizvi, Alberto Mendelzon, Sundararajarao Sudarshan, and Prasan Roy.
Extending query rewriting techniques for fine-grained access control. In

190

https://oag.ca.gov/system/files/Choice%20Individual%20Notification%20(Master)_0.pdf
https://oag.ca.gov/system/files/Choice%20Individual%20Notification%20(Master)_0.pdf
http://dspace.mit.edu/handle/1721.1/16279

r e f e r ence s

Proceedings of the 2004 acm sigmod International Conference on Management of
Data (sigmod’04), pages 551–562, Paris, France, June 2004. acm.

[124] Pankaj Rohatgi. Side-channel attacks. InHandbook of Information Security,
volume 3, pages 241–260. Wiley, 2005.

[125] Indrajit Roy, Donald Porter, Michael Bond, KathrynMcKinley, and Emmett
Witchel. Laminar: Practical fine-grained decentralized information flow
control. In Proceedings of the 2009 acm sigplan Conference on Programming
Language Design and Implementation (pldi’09), pages 63–74, Dublin, Ireland,
June 2009. acm.

[126] Jerome Saltzer. Protection and the control of information sharing inMultics.
In Proceedings of the 4th acm Symposium on Operating Systems Principles
(sosp’73), pages 10–24, Yorktown Heights, ny, usa, October 1973. acm.

[127] Jerome Saltzer and Michael Schroeder. The protection of information in
computer systems. In Proceedings of the ieee, volume 63, pages 1278–1308,
Piscataway, nj, usa, September 1975. ieee.

[128] Ravi Sandhu and Fang Chen. The multilevel relational (mlr) data model.
acm Transactions on Information and System Security, 1(1):93–132, November
1998.

[129] Ravi Sandhu and Sushil Jajodia. Referential integrity in multilevel secure
databases. In Proceedings of the 16th nist-ncsc National Computer Security
Conference, pages 39–52, Baltimore, md, usa, September 1993.

[130] Nelson Schwartz and Eric Dash. Thieves found Citigroup site an easy entry.
TheNew York Times, June 13, 2011. URL https://www.nytimes.com/2011/06/14/
technology/14security.html.

[131] Kenneth Smith andMarianneWinslett. Entity modeling in the mls relational
model. In Proceedings of the 18th International Conference on Very Large Data
Bases (vldb 1992), pages 199–210, Vancouver, Canada, August 1992. Morgan
Kaufmann.

[132] Kenneth Smith, Barbara Blaustein, Sushil Jajodia, andLouAnnaNotargiacomo.
Correctness criteria for multilevel secure transactions. ieee Transactions on
Knowledge and Data Engineering, 8:32–45, 1996.

191

https://www.nytimes.com/2011/06/14/technology/14security.html
https://www.nytimes.com/2011/06/14/technology/14security.html

[133] Paul Stachour andBhavaniThuraisingham. Design of ldv: Amultilevel secure
relational database management system. ieee Transactions on Knowledge and
Data Engineering, 2(2):190–209, June 1990.

[134] Zachary Stengel and Tevfik Bultan. Analyzing Singularity channel contracts.
In Proceedings of the 18th International Symposium on Software Testing and
Analysis (issta ’09), pages 13–24, Chicago, il, usa, July 2009. acm.

[135] Zhendong Su and Gary Wassermann. The essence of command injection
attacks in web applications. In Proceedings of the 33rd acm sigplan-sigact
Symposium on Principles of Programming Languages (popl’06), pages 372–382,
Charleston, sc, usa, January 2006. acm.

[136] G. Edward Suh, Jae Lee, David Zhang, and Srinivas Devadas. Secure program
execution via dynamic information flow tracking. In Proceedings of the 11th
International Conference on Architectural Support for Programming Languages
and Operating Systems (asplos), pages 85–96, Boston, ma, usa, October 2004.
acm.

[137] Latanya Sweeney. k-anonymity: A model for protecting privacy. International
Journal of Uncertainty, Fuzziness, and Knowledge-Based Systems, 10(5):557–570,
October 2002.

[138] Sybase, Inc. Final Evaluation Report: sql Server Version 11.0.6 and Secure sql
Server Version 11.0.6, chapter 5: Security Architecture. National Computer
Security Center, Ft. Meade, md, usa, March 1997.

[139] Transaction Processing Performance Council. tpc Benchmark W (Web
Commerce) Specification, revision 1.8. San Jose, ca, usa, February 2002.

[140] Transaction Processing Performance Council. tpc Benchmark C, revision 5.9.
San Jose, ca, usa, June 2007.

[141] Steve Vandebogart, Petros Efstathopoulos, Eddie Kohler, Maxwell Krohn,
Cliff Frey, David Ziegler, Frans Kaashoek, Robert Morris, and David Mazières.
Labels and event processes in the Asbestos operating system. acmTransactions
on Computer Systems, 25(4), December 2007.

192

r e f e r ence s

[142] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, and SamMadden. Tolerat-
ing Byzantine faults in database systems using commit barrier scheduling. In
Proceedings of the 21st acm Symposium onOperating Systems Principles (sosp’07),
pages 59–72, Stevenson, wa, usa, October 2007. acm.

[143] Linda Vetter, Gordon Smith, and Teresa Lunt. tcb subsets:The next step. In
Proceedings of the 5th Annual Computer Security Applications Conference, pages
216–221, Tucson, az, usa, December 1989. ieee Computer Society.

[144] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system
for secure flow analysis. Journal of Computer Security, 4(2–3):167–187, January
1996.

[145] Dan Wallach, Dirk Balfanz, Drew Dean, and Edward Felten. Extensible
security architectures for Java. In Proceedings of the 16th acm Symposium
on Operating Systems Principles (sosp’97), pages 116–128, Saint Malo, France,
October 1997. acm.

[146] Clark Weissman. Security controls in the adept-50 time-sharing system. In
Proceedings of the Fall Joint Computer Conference (afips ’69), pages 119–133, Las
Vegas, nv, usa, November 1969. afips Press.

[147] Suzanne Widup. The Leaking Vault: Five Years of Data Breaches. Digital
Forensics Association, July 2010. http://www.digitalforensicsassociation.org/
storage/The_Leaking_Vault-Five_Years_of_Data_Breaches.pdf.

[148] SimonWiseman. Using sword for the military airlift command example
database. In Database Security, vi: Status and Prospects: Results of the ifip
wg 11.3 Workshop on Database Security (dbsec 1992), pages 73–88, Vancouver,
bc, Canada, August 1992. Elsevier Science Publishers.

[149] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for
automatically enforcing privacy policies. In Proceedings of the 39th acm
sigplan-sigact Symposium on Principles of Programming Languages (popl’12),
pages 85–96, Philadelphia, pa, usa, January 2012. acm.

[150] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Im-
proving application security with data flow assertions. In Proceedings of the

193

http://www.digitalforensicsassociation.org/storage/The_Leaking_Vault-Five_Years_of_Data_Breaches.pdf
http://www.digitalforensicsassociation.org/storage/The_Leaking_Vault-Five_Years_of_Data_Breaches.pdf

22nd acm Symposium on Operating Systems Principles (sosp’09), pages 291–304,
Big Sky, mt, usa, October 2009. acm.

[151] Sachiko Yoshihama, Takeo Yoshizawa, Yuji Watanabe, Michiharu Kudoh, and
Kazuko Oyanagi. Dynamic information flow control architecture for web
applications. In Proceedings of the 12th European Symposium On Research In
Computer Security (esorics 2007), volume 4734 of Lecture Notes in Computer
Science, pages 267–282, Dresden, Germany, September 2007. Springer.

[152] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and DavidMazières.
Making information flow explicit in HiStar. In Proceedings of the 7th usenix
Symposium on Operating Systems Design and Implementation (osdi’06), pages
263–278, Seattle, wa, usa, November 2006. usenix Association.

[153] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing
distributed systems with information flow control. In Proceedings of the 5th
usenix Symposium on Networked Systems Design and Implementation (nsdi’08),
pages 293–308, San Francisco, ca, usa, April 2008. usenix Association.

194

	Abstract
	Contents
	List of Figures
	1 Introduction
	1.1 The Case for Information Flow Control
	1.2 Information Flow Control
	1.3 IFDB: Secure Data Processing with DIFC
	1.4 Organization

	2 System Architecture
	2.1 The Information Flow Platform
	2.2 Platform Support for the Aeolus Model
	2.3 Platform Security Assumptions
	2.3.1 Covert Channels

	3 Information Flow Model
	3.1 Tags and Labels
	3.2 Processing in Aeolus
	3.3 Label Changes and Authority
	3.4 Defining the Policy
	3.5 Support for the Principle of Least Privilege
	3.6 Boxes, Shared Volatile State, and Files

	4 Query by Label
	4.1 The Relational Model
	4.1.1 Data Representation
	4.1.2 Relational Operators
	4.1.3 Constraints
	4.1.4 Data Independence and Views

	4.2 Labels in the Database
	4.3 Queries
	4.3.1 Information Flow in the Relational Model
	4.3.2 Reads
	4.3.3 Explicit Query by Label
	4.3.4 Writes
	4.3.5 Writing Tuples With Different Labels

	4.4 Application Code in the DBMS
	4.5 Declassifying and Endorsing Views
	4.5.1 Defining Views Using Authority
	4.5.2 Discretionary Views
	4.5.3 View Updates
	4.5.4 Data Independence

	4.6 Access Control and Clearance

	5 Constraints
	5.1 Domain Constraints
	5.2 Table-Check Constraints
	5.2.1 The Problem with Uniqueness Constraints
	5.2.2 IFDB's Solution

	5.3 Relationship Constraints
	5.3.1 The Problems with Referential Constraints
	5.3.2 IFDB's Solution
	5.3.3 Referential Constraints and Integrity Labels

	5.4 General Constraints
	5.5 Constraints on Labels
	5.6 Summary of Contributions

	6 Transactions
	6.1 Label Changes and Aborts
	6.2 Conflict Channels

	7 Case Studies
	7.1 CarTel
	7.1.1 The CarTel Implementation
	7.1.2 Security Requirements
	7.1.3 Securing CarTel With DIFC
	7.1.4 Bugs Prevented

	7.2 HotCRP
	7.2.1 The HotCRP Implementation
	7.2.2 Security Requirements
	7.2.3 Securing HotCRP With DIFC
	7.2.4 Bugs Prevented

	7.3 Discussion
	7.3.1 Reducing the Trusted Base
	7.3.2 Reasoning about Data Security
	7.3.3 Schema Decomposition
	7.3.4 Model Extensions

	8 Implementation
	8.1 The Database Implementation
	8.1.1 Query by Label
	8.1.2 Stored Authority Closures
	8.1.3 Declassifying Views
	8.1.4 Constraints
	8.1.5 Transactions
	8.1.6 Information Flow API

	8.2 The Authority State
	8.3 The Database Interface
	8.3.1 The Frontend/Backend Protocol
	8.3.2 The Client Library

	8.4 Clients
	8.4.1 The PHP-IF and Python-IF Implementations
	8.4.2 Extensions to the Aeolus Model

	8.5 Covert Channels
	8.5.1 Timing Channels
	8.5.2 Allocation Channels
	8.5.3 Conflict Channels

	8.6 Reducing the Trusted Base

	9 Performance
	9.1 Experimental Setup
	9.2 Macrobenchmarks
	9.2.1 CarTel Web Portal Performance
	9.2.2 Sensor Data Processing Throughput

	9.3 The Cost of Labels

	10 Related Work
	10.1 Information Flow Models
	10.2 Information Flow Systems
	10.2.1 Languages
	10.2.2 Operating Systems
	10.2.3 Databases

	10.3 Fine-Grained Access Control for Databases
	10.4 Constraints and Information Flow Control
	10.4.1 Polyinstantiation
	10.4.2 Referential Integrity

	10.5 Secure DBMS Architectures
	10.5.1 The Kernelized Approach
	10.5.2 Trusted Proxies

	10.6 Transactions
	10.6.1 Abort Channels
	10.6.2 Secure Transaction Scheduling

	10.7 Inference and Statistical Privacy

	11 Conclusions
	11.1 Contributions
	11.2 Future Work
	11.2.1 Proofs of Noninterference
	11.2.2 Extensions to the Model
	11.2.3 Extensions to the Implementation

	A Flow-Safe Scheduling
	A.1 Transaction Conflicts and Conflict Labels
	A.2 Flow-Safe Scheduling for Snapshot Isolation
	A.3 Serializable Flow-Safe Scheduling

	References

