20,570 research outputs found

    Collecting and Analyzing Failure Data of Bluetooth Personal Area Networks

    Get PDF
    This work presents a failure data analysis campaign on Bluetooth Personal Area Networks (PANs) conducted on two kind of heterogeneous testbeds (working for more than one year). The obtained results reveal how failures distribution are characterized and suggest how to improve the dependability of Bluetooth PANs. Specically, we dene the failure model and we then identify the most effective recovery actions and masking strategies that can be adopted for each failure. We then integrate the discovered recovery actions and masking strategies in our testbeds, improving the availability and the reliability of 3.64% (up to 36.6%) and 202% (referred to the Mean Time To Failure), respectively

    On the role of pre and post-processing in environmental data mining

    Get PDF
    The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed

    A Framework for Robust Assessment of Power Grid Stability and Resiliency

    Full text link
    Security assessment of large-scale, strongly nonlinear power grids containing thousands to millions of interacting components is a computationally expensive task. Targeting at reducing the computational cost, this paper introduces a framework for constructing a robust assessment toolbox that can provide mathematically rigorous certificates for the grids' stability in the presence of variations in power injections, and for the grids' ability to withstand a bunch sources of faults. By this toolbox we can "off-line" screen a wide range of contingencies or power injection profiles, without reassessing the system stability on a regular basis. In particular, we formulate and solve two novel robust stability and resiliency assessment problems of power grids subject to the uncertainty in equilibrium points and uncertainty in fault-on dynamics. Furthermore, we bring in the quadratic Lyapunov functions approach to transient stability assessment, offering real-time construction of stability/resiliency certificates and real-time stability assessment. The effectiveness of the proposed techniques is numerically illustrated on a number of IEEE test cases

    Getting the Haves to Come out Behind: Fixing the Distributive Injustices of American Health Care

    Get PDF
    Hyman criticizes an article by Havighurst and Richman regarding the distributive injustices of US health care. Hyman also offers a guide for implementing policy reforms based on the analysis by Havighurst and Richman

    Getting the Haves to Come out Behind: Fixing the Distributive Injustices of American Health Care

    Get PDF
    Hyman criticizes an article by Havighurst and Richman regarding the distributive injustices of US health care. Hyman also offers a guide for implementing policy reforms based on the analysis by Havighurst and Richman

    Development of intelligent protection and automation control systems using fuzzy logic elements

    Get PDF
    In this article, the causes of technological disturbances in electrical systems are considered, and several characteristic disadvantages of the protection and automation of elements of electrical systems are highlighted. The tendency to decrease the reliability of relay protection associated with the transition from analog to digital types of protection is substantiated. Based on the studied examples, the use of fuzzy logic in protections, the expediency of using fuzzy logic elements in protection devices, and the automation of electrical systems to identify types of short circuits are justified. This article analyzes the most common damages and presents the results of modeling an electrical system with transformer coupling, where all types of asymmetric short circuits were initiated. The dynamics of changes in the symmetrical components of short-circuit currents of the forward, reverse, and zero sequences are determined. Rules have been created for the identification of asymmetric types of short circuits. An algorithm of protection and automation operation using fuzzy logic elements has been developed. The proposed algorithm of protection and automation will reduce the time to determine the type of damage and trigger protections
    corecore