
Collecting and Analyzing Failure Data of Bluetooth Personal Area Networks

Marcello Cinque1,2, Domenico Cotroneo1 and Stefano Russo1,2

(1) Dipartimento di Informatica e Sistemistica,Università di Napoli Federico II
Via Claudio 21, 80125 Napoli, Italy

(2) Laboratorio ITEM- Consorzio Interuniversitario Nazionale per l’Informatica
Via Diocleziano 328, 80124 Naples, Italy
{macinque, cotroneo, sterusso}@unina.it

Abstract

This work presents a failure data analysis campaign on
Bluetooth Personal Area Networks (PANs) conducted on
two kind of heterogeneous testbeds (working for more than
one year). The obtained results reveal how failures distri-
bution are characterized and suggest how to improve the
dependability of Bluetooth PANs. Specifically, we define the
failure model and we then identify the most effective recov-
ery actions and masking strategies that can be adopted for
each failure. We then integrate the discovered recovery ac-
tions and masking strategies in our testbeds, improving the
availability and the reliability of 3.64% (up to 36.6%) and
202% (referred to the Mean Time To Failure), respectively.

1 Introduction

The wide spread use of mobile computing platforms is
leading to a growing interest of dependability issues. Ex-
amples are health care [2] and aircraft maintenance sys-
tems [16]. Even for mass-market software, such as news
and e-commerce services, where the consequences of indi-
vidual failures are usually not catastrophic, unreliability can
have serious commercial implication for vendors and users.
Although several research studies have been conducted on
the dependability of mobile environments, as discussed in
section 2, none of them attempted to identify system bottle-
necks and to quantify dependability measures by providing

This work has been partially supported by the Italian Ministry for Ed-
ucation, University and Research (MIUR),within the frameworks of the
FIRB Project “Middleware for advanced services over large-scale, wired-
wireless distributed systems (WEB-MINDS)”, and of the PRIN Project
“COMMUTA: Mutant hardware/software components for dynamically re-
configurable distributed systems”. Authors are grateful to Fabio Cornevilli,
Gabriella Carrozza and Giulio Virnicchi for their excellent work on the im-
plementation of the testbed, the integration of the Windows Client, and the
coalescence analysis.

information from field data. These studies can help i) devel-
opers to realize more reliable services, and ii) researchers to
gain insight into the dependability behavior of mobile envi-
ronments, and to design abstract models that can be used
for further analysis. The Bluetooth wireless technology is
nowadays widespread adopted in a variety of portable de-
vices. In particular, the Bluetooth Personal Area Network
(PAN) feature offers IP support over Bluetooth, thus ex-
panding the model of personal communications to provide
connectivity and Internet access to and between heteroge-
neous devices. As demonstrated in recent works, the utiliza-
tion of Bluetooth as a “last meter” access network, repre-
sents an opportunistic and cost-effective way to improve the
connection availability of the wide-spread existing 802.11
networks [13, 15].
In this work a comprehensive failure data analysis campaign
on Bluetooth Personal Area Networks has been conducted.
Results are then used to characterize failures distribution
and to improve the dependability of Bluetooth PANs. In
particular, the novel contribution of this work is twofold.
First, we leverage the dependability level of Bluetooth
PANs. To this purpose, we define a failure model of such
networks, identifying failures and their statistical distribu-
tions. For each observed failure we try to discover its
sources, to identify the most effective recovery action and,
in some cases, we are able to apply error masking strate-
gies by completely eliminating some failures from occur-
ring. We then integrate the discovered recovery actions and
masking strategies in our testbeds, demonstrating that the
availability and the reliability can be improved of 3.64% (up
to 36.6%) and 202% (referred to the Mean Time To Failure),
respectively.
Second, we study failures distribution as Bluetooth chan-
nel utilization changes. In other words, we identify usage
patterns that have to be avoided to develop more robust ap-
plications.
Failure data are gathered from system log files and applica-
tion logs produced by synthetic workloads, which are appli-

cations running on real-world Bluetooth PANs, emulating
the behavior of Bluetooth users using different profiles. The
reason for emulation is twofold: i) it allows to gather a large
amount of data, giving statistical significance to performed
measures; and ii) since the workload operates 24/7, it per-
mits the time to failure (TTF), the time to recover (TTR),
and related attributes, to be measured. We setup two kinds
of heterogeneous testbeds, in two different labs of our de-
partment, where field data are collected and then filtered
The first testbed stimulates Bluetooth channels via com-
pletely random workloads in order to study the Bluetooth
Channel behavior irrespective of the specific networked ap-
plication being used. This let us identify good/bad usage
patterns that should be adopted/avoided to realize more ro-
bust applications. The second one uses more realistic work-
loads of traditional IP-based application (i.e., Web, stream-
ing, and Peer-to-peer), adopting the traffic models as pub-
lished in recent works on this research field. This workload
allows to characterize the dependability of traditional net-
worked applications using Bluetooth PAN as a last-meter
access network. Both testbeds have been working since
one and a half years, collecting more than 300000 failure
data items, and they are composed of Linux/Windows com-
modity PCs and of mobile terminals equipped with different
Linux distributions1.
The rest of the paper is organized as follows. Section 2
briefly presents an overview of the research conducted in
the field of dependability of wireless networks. Section 3
describes the Collection Infrastructure we developed. Sec-
tion 4 describes the failure model of Bluetooth PANs and
put the evidence on the effectiveness of the recovery actions
and error masking strategies. Section 5 demonstrates how
the dependability of Bluetooth PANs can be improved if the
previously identified recovery actions and masking strate-
gies are integrated in the Bluetooth Protocol Stack or in the
application code. Section 6 discusses further results about
failures distribution as a function of several criteria. Sec-
tion 7 concludes the paper with final remarks and directions
of future work.

2 Background and Related Research

Bluetooth. Bluetooth [3], BT in the following, is a
short-range wireless technology operating in the 2.4 GHz
ISM band. The BT system provides both point-to-point
and point-to-multipoint wireless connections. Two or more
units sharing the same channel form a piconet. One BT unit
acts as the master of the piconet, whereas the other unit(s)

1A preliminary version of the work, which only encompassed one
Linux-based testbed, with the random workload running for six months,
was published in [8]. In contrast, this paper considers a more heteroge-
neous testbed, and it is especially centered on a detailed analysis of eigh-
teen months of failure data.

acts as slave(s). Up to seven slaves can be active in the pi-
conet. Multiple piconets with overlapping coverage areas
form a scatternet.
Applications running on BT-enabled devices use a common
set of data-link protocols, the BT core protocols, which are
described in the following.
Baseband: this layer enables the physical RF link between
BT units forming a piconet. It provides two different phys-
ical links, Synchronous Connection-Oriented (SCO) and
Asynchronous Connectionless (ACL). The channel is di-
vided into time slots, each 625 µs in length. A BT ACL
data packet may occupy 1, 3, or 5 consecutive time slots.
Packets consist of a 72-bit access code for piconet identifi-
cation and synchronization, a 18 bit header, and a variable
length payload. The payload consists of three segments: a
payload header, a payload and a Cyclic Redundancy Code
(CRC) for error detection. CRC length is 16 bit, irrespec-
tive of the payload size (i.e., from 1 up to 5 slots). In DMx

packets (where x is the number of consecutive slots, i.e. 1,
3, and 5), the payload is also coded with shortened Ham-
ming code, in order to perform Forward Error Correction
(FEC). DHx packets are instead uncoded. Integrity checks
and retransmissions are performed.
Link Manager Protocol (LMP): the LMP is responsible for
connection establishment between BT devices . It also pro-
vides BT devices with the inquiry/scan procedure.
Logical Link Control and Adaptation Protocol (L2CAP):
this layer provides connection-oriented and connectionless
data services, including multiplexing capabilities, segmen-
tation/reassembly operations, and group abstractions.
Service Discovery Protocol (SDP): using SDP, device in-
formation, services, and characteristics of services can be
retrieved.
The BT specification also defines a Host Controller Inter-
face (HCI), which provides developers with an API to ac-
cess the hardware and to control registers of baseband con-
troller and link manager.
The communication between a BT Host and a Host Con-
troller takes place via either UART or RS232 protocols over
serial channels, such as the Universal Serial Bus (USB).
Recently, the BlueCore Serial Protocol (BCSP) has been
adopted on some devices. It provides a more sophisticated
option than its predecessors. BCSP carries a set of parallel
information flows between the host and the controller, mul-
tiplexing them over a single UART link, and it adds error
checking and retransmission.
In this paper focus is on the use of IP over a BT piconet.The
BT Special Interest Group defined the PAN profile, that
provides support for common networking protocols such as
IPv4 and IPv6. The PAN profile exploits the BT Network
Encapsulation Protocol (BNEP) to encapsulate IP packets
into L2CAP packets and to provide the Ethernet abstrac-
tion. When the PAN profile is used, the master/slave switch

role operation assumes a key role. A PAN User (PANU)
willing to connect to a Network Access Point (NAP) be-
comes the master since it initiates the connection. As soon
as the connection is established at L2CAP level, a switch is
performed, because it is important that the NAP remains the
master of the piconet in order to handle up to seven PANUs.

Related Research. Several studies have been focused
on measurement-based analysis, proposing techniques and
methodologies for studying error logs collected from a va-
riety of distributed systems. An excellent survey of these
methodologies can be found in [14]. Fundamental examples
are studies of Network of Workstations [21], Windows oper-
ating systems [22], and Large-Scale Heterogeneous Server
Environments, such as the one presented in [20]. However,
there has been no prior published work on field failure anal-
ysis on mobile environments. On the other hand, there are
a growing number of works which have been studying de-
pendability issues of wireless infrastructures. A redundant-
based technique has been proposed and evaluated in [7] for
improving the dependability of 802.11 networks. A simi-
lar work has been done in [12], where focus is on WLAN
AP Failures. An interesting study on the reliability of ad-
hoc wireless network is presented in [5]. A discussion
of how the connectivity, coverage and diameter parame-
ters might affect the reliability of the the network has been
conducted. In [19] a dependability analysis of GPRS net-
work is presented, based on modeling approaches. Further-
more, in [17], data collection and processing for a wire-
less telecommunication system have been addressed, and
an analysis of failure and recovery rates is discussed. How-
ever, the failure data are relative to the fixed core entities
(base stations) of a cellular telephone system. Regarding
the BT technology, a collection of user-perceived failure
data has been performed in [10], in order to give a quali-
tative failures characterization of BT-enabled devices. The
work defines a set of different test-cases which have been
applied to a variety of BT-enabled devices. Nevertheless,
as also authors stated, the results are not purely scientific in
that they have no statistical significance.

3 Testbed, Workload, and Collection

Testbed Description. In order to accommodate random
and realistic workloads, two testbeds have been deployed,
whose topology is shown in figure 1. According to the PAN
profile, the master node (Giallo) is configured as a NAP to
accept incoming connections from slaves, running PANU
applications. The workload, called BlueTest, runs on all
the nodes, in particular BlueTest clients on PANUs, and
a BlueTest server on the NAP. Both the actual testbeds
obey to the same hardware and software configurations, i.e.
they are composed of 7 devices, 1 master (the NAP) and 6
slaves (the PANUs). To let results be independent on spe-

cific hardware platforms or operating systems, the testbed
is composed of heterogeneous nodes, ranging from several
commodity PCs, with different hardware configurations and
OSs, to PDAs. Table 1 summarizes technical characteristics
of the adopted machines. Linux machines use the standard
BlueZ stack2, whereas the Windows ones are equipped with
Service Pack 2 and use the BroadCom stack3. Note that we
could not use the native Windows BT Stack because it does
not offer any API for the PAN profile (in Windows XP, IP fa-
cilities over Bluetooth are provided only via point-to-point
RFCOMM4 connection). All the machines are equipped
with Class 2 BT devices, i.e., up to 10 meters communi-
cation range. In order to reduce hardware aging phenom-
ena, the two testbed have been totally replaced by new ones
(having the same configuration), in the middle of the testing
period. The PANUs’ BT antennas have been placed at sev-
eral different distances from the NAP’s antenna (e.g. 0.5m,
5m, and 7m, see figure 1), in order to evaluate the failure
distribution as a function of the distance. Antenna positions
are fixed, hence we collect data about fixed PAN topologies.
However, this is representative of real cases in which PANs
are built among computers on a desk.

Workload Description. The BlueTest workload
(WL) emulates the operations that can be made by a real
BT user utilizing PAN applications. Each BlueTest cy-
cle consists of common BT utilization phases. It first ex-
ecutes an inquiry/scan procedure to discover the other de-
vices in the environment, then it searches the Network Ac-
cess Point (NAP) service via a SDP Search operation. Once
the NAP has been found, the Bluetest client connects to
it (by creating a BNEP channel on top of a L2CAP connec-
tion), switches the role to slave (to let the NAP to be the
master of the piconet), uses the wireless link by transfering
data to its counterpart (the Bluetest server), and finally
it disconnects. Before starting a new cycle, the BlueTest
client waits for a random time, which can be thought as a
user passive off time, modeled according to a Pareto dis-
tribution, coherently to previous work [9]. To add uncer-
tainty to the piconet evolution, each WL cycle is character-
ized by several random variables: i) S, scan flag, if true, an
inquiry/scan operation is performed; ii) SDP , service dis-
covery flag, if true, a SDP search is performed; iii) B, the
Baseband packet type; iv) N , the number of packets to be
sent/received; v) LS /LR, the size of sent/received packets;
and vi) TW , the passive off waiting time.
S and SDP are introduced since real BT applications do
not perform inquiry/scan procedures or SDP searches every
time they run. It is possible to exploit caching of the re-
cently discovered devices or services. For each WL cycle,

2The Official Linux Bluetooth protocol stack, http://www.bluez.org
3Broadcom is a commercial implementation of the BT Stack for Win-

dows, http://www.broadcom.com
4Serial Cable Emulation Protocol

Anycom CC3030BlueZ 2.10P4 1.60GHz/128Mb Giallo
3COM 3CREB96BBlueZ 2.10P3 350Mhz/256Mb Verde

Belkin F8T003BlueZ 2.10Celeron 700Mhz/128Mb Miseno
Digicom PalladioBlueZ 2.10P3 350MHz/256Mb Azzurro
Sitecom CN-500BroadcommP4 1.80Ghz/512Mb Win

on boardBlueZ 2.10StrongARM 206 MHz/64Mb Ipaq H3870

BT HardwareBT StackCPU/RAMHost

Service Pack 2MS Windows XPWin
2.4.19-rmk6-pxa1-hh37Familiar 0.8.1LinuxIpaq H3870

2.4.18-rmk7-pxa3-embedixOpen Zaurus 3.5.2 LinuxZaurus SL-5600

2.4.21-0.13mdkMandrakeLinuxGiallo
2.4.21-0.13mdkMandrakeLinuxVerde

2.6.5-1-386DebianLinuxMiseno
2.6.9-1-667FedoraLinuxAzzurro

on boardBlueZ 2.10XScale 400Mhz/32Mb Zaurus SL-5600

Kernel VersionDistributionO.S.Host

��� �����	�

	� ����������������
��� ���� !�!"�#�$%� & �('%#

)�*,+	-

	� ����������������
��� ���� !�!"�#.$%� & ��',#

/0��1 2��

	� ����������������
��� ���� !�!"�#.$%� & ��',#

34+�5�1654�

	� ����������������
��� ���� ��!"�#.$(� & ��',# 7 � +�8 8 �

9 �(:�; �	<����������
��� ���� ��!"�#4=,��>�? ��>

@0A�A	5�1�1 �

,� ������������4���
�	� ���� ��!"�#�$%� & �(',#

BC� �

	� ������������4���
��� ���� ��!"�#.$%� & ��',#

DFE

DFE

G�E

G�E

H�I G�E

H�I GFE

Figure 1. The topology of both the testbeds, along with the technical details of their machines

values for S and SDP are chosen according to the uniform
distribution, since the lack of publicly available information
about the real utilization pattern of inquiry/scan procedures
and SDP searches for a typical PANU application.
B, N , LS , and LR parameters depend on the channel uti-
lization, as described in the following.

Random WL. It generates totally random values for B,
N , LS , and LR. In particular, B is randomly chosen among
the six BT packet types (i.e. DMx or DHx), according to a
binomial distribution. This helps to ‘stimulate’ the channel
with every packet types. N , LS , and LR are generated fol-
lowing uniform distributions, for the same reasons. More
details on this WL can be found in our previous work [8].

Realistic WL. It generates values for the parameters ac-
cording to the random processes which are used to model
actual Internet traffic [9, 11]. In particular, the choice for
B is left to the BT Stack, whereas N follows power law
distributions (e.g. the Pareto distribution) related to the di-
mension of the resource that have to be transferred. The
parameters of the distributions are set with respect to the ap-
plication being emulated (e.g. Web browsing, file transfer
, e-mail, peer to peer, video and audio streaming). Values
for LS and LR are set according to the actual Protocol Data
Unit commonly adopted for the various transport protocols
over the Internet [11]. Finally, since a user can run more
applications in sequence over the same connection, the WL
runs from 1 up to 20 consecutive cycles over the same con-
nection. Further details on the Realistic WL can be found
in [6].

Failure Data Sources and Collection Methodology.
Failures might manifest during the normal WL execution.
When a failure occurs, the workload is instrumented to reg-
ister a failure report, as will be detailed later. Two levels of
failure data are produced, as in the following.
User Level Failures or High Level Data: failure reports
about the failure as it manifests to a real user, using a PANU
device. The report also contains details about the BT node

status during the failure (e.g. the WL type, the packet type,
the number of sent/received packets);
System Level Failures or Low Level Data: failure data regis-
tered by system software on the OS system log file, includ-
ing BT APIs and OS drivers.
System Level Failures can be seen as errors for User Level
Failures. In other terms, when a User Level Failure mani-
fests, one or more System Level Failures are registered in
the same period of time. This helps to understand causes
behind the high level manifestation. Failure data on each
BT node is collected by a LogAnalyzer daemon, and is
sent to a central repository, where data are then analyzed by
means of a statistical analysis software. We used the SAS
analyzer suite5.
On each BT node, both User Level and System Level fail-
ure data is stored in two files: the Test Log file, which con-
tains User Level failures reports, and the System Log file,
containing all the error information registered by the appli-
cations and system daemons running on the BT host ma-
chine. The LogAnalyzer periodically i) extracts failure
data from both the logs, ii) filters them, and iii) sends them
to the repository. Filtering is used to send only significant
data to the repository. At the time of writing, both testbeds
have been running for more than one year, from June 2004
to November 2005, with 356551 failure data items being
collected. In particular, there were 20854 User Level fail-
ure reports from Test Logs and 335697 System level failure
entries from System Logs. The most of the failures (the
84%) comes from the random workload (see section 6).

4 Key Findings

Bluetooth PAN Failure Model. Failures are classified
by analyzing their spontaneous manifestation, as recorded

5SAS is an integrated software platform for business intelligence which
includes several tools for statistical analysis; it is produced by SAS Insti-
tute Inc., http://www.sas.com

OS,
Drivers
related

Hotplug
timeout

The Hardware Abstraction Layer
(HAL) daemon times out waiting an
hotplug event.

BCSP Out of order or missing BCSP
packets.

The packet is received correctly,
but the data content is corrupted.Data mismatch

An expected packet is lost, since a
timeout (set to 30 secs) expires.Packet loss

Data
Transfer

The request succeeds, but the
command completes abnormally.

Switch role
command failed

The USB device does not accept
new addresses to communicate with
the BT hardware.

USB

The switch role request does not
reach the master.

Switch role
request failed

Failed to add a connection, can’t
locate module bnep0, bnep occupied

BNEPThe IP socket cannot bind the
Bluetooh BNEP interface.

Bind failed

The device fails to establish the
L2CAP connection with the NAP.Connect failed

Connect

Connection with the SDP server
refused or timed out, AP unavailable
or not implementing the required
service, even if it implements it.

SDP

The SDP Search procedure
terminates abnormally.

SDP Search
failed

The SDP procedure does not find
the NAP, even if it is present.

NAP not found

Command for unknown connection
handle, timeout in the transmission of
the command to the BT firmware.

HCI

BT Stack
related

The inquiry procedure terminates
abnormally.

Inquiry/Scan
failed

SDP
Search

Unexpected start or continuation
frames received. L2CAPThe PANU fails to establish the

PAN connection with the NAP.
PAN connect

failed

TypeType Observed errorsLocationPhenomenologyGroup
System Level FailuresUser Level Failures

Bluetooth PAN Failure Model

Table 1. Bluetooth PAN Failure Model

HCI command for invalid handle

HCI command timeout

Connect failed

Coalescence window

1. Time-based
merging

2. Tupling 3. Relationship
evidences

finding HCI-Connect evidence

Test
Log

System
Log 2. Sensitivity Analysis Coalescence window (s.)

N
um

be
r o

f T
up

le
s

(%
)

330 seconds,
chosen value

Coalescence window tuning

knee

Merged
file

Coalesced
file

Figure 2. The “merge and coalesce” scheme adopted to pinpoint error-failure relationships.

in our Test and System logs. The failure model described
here is general, in the sense that it considers all failure re-
ports and events gathered from both testbeds and all the ma-
chines. Failure manifestations are workload independent,
i.e., the same failure types have been observed, regardless
of the workload being run. Differences are in the failure
rates, as will be detailed in section 6.
Table 1 gives an overall picture of the Bluetooth PAN fail-
ure model. This considers two levels of failures, user and
system level, according to the collection methodology pre-
viously described. The reported failure types are the re-
sult of an accurate classification of the collected user fail-
ures’ reports. Failure messages related to the same failure
have been classified into one failure type. This gives the
model simplicity and understandability6. Left-side columns
in table 1 describe user level failures, whereas right-side
columns are dedicated to system level failures. User level
failures can be grouped into three classes, in accordance
with the utilization phase in which they manifest, i.e.,
searching for devices and services, connecting, and trans-
ferring data. Each group contains one or more failure types.

6Unclassified user level failures can be found on the web site of the
project: http://www.mobilab.unina.it/BTDepend.htm.

For each failure type, a brief description of its phenomenol-
ogy is given in the table. Unexpectedly, failures during data
transfer (‘Data Transfer’ group) encompass packet losses
and data corruption, despite Baseband’s error control mech-
anisms, such as CRCs, and FEC schemes. However, as
discussed in previous work [18], the weakness of integrity
checks is the assumption of having memoryless channels
with uncorrelated errors from bit to bit. In our case, corre-
lated errors (e.g. bursts) can occur due to the nature of the
wireless media, affected by multi-path fading and electro-
magnetic interferences.
System level failures are grouped with respect to their loca-
tion, i.e., BT software stack and OS/Drivers. Failure types
have been defined according to the component which sig-
naled the failure. For each failure type, a brief description
is given.
To gain more insights into error-failure relationship, we re-
late User Level with System Level failures. Due to the huge
amount of data, this operation cannot be performed manu-
ally. Hence, we define a novel “merge and coalesce” semi-
automatic scheme, whose steps are summarized in figure 2.
First, for each node a log file is produced by merging its
Test Log and System Log files, on a time-based crite-

User Level Failures
From NAP

3.9

4.4

3.6

4.9

NAP

2.5

2.4

1.8

2.3

NAP NAP

0.7

33.9

0.8

19.4

38.6

0.5

5.7

0.1

0.2

0.1

TOT

2.6

2

3.6

1.5

9.1

NAPNAPNAP locallocallocallocallocallocallocal

8.991.1Sw role request failed

32.10.917.215.40.921.82.7Packet loss

Data mismatch

21.11.111.48.5749.91Total

2.7

1

USB

18.8

3.5

BNEP

35.5

HOTPLUG

20.26118.8Nap not found

2050.920SDP search failed

5.285.1Connect failed

96.5PAN connect failed

55.5Bind failed

49.78.210.90.9Sw role command failed

Inquiry/scan failed

BCSPSDPHCIL2CAP

System Level Failures

Table 2. Error-Failure Relationship: System Failures are regarded as errors for User Failures.

ria (entries are ordered according to their timestamps). Sec-
ond, the merged file is analyzed using the tupling coales-
cence scheme [4], i.e., if two or more events are clustered
in time, they are grouped into a tuple, according to a coa-
lescence window. The window size has been determined by
conducting a sensitivity analysis, as shown in the plot in fig-
ure 2. The number of obtained tuples (reported as percent-
age of entries on the vertical axis) is plotted as a function
of the window size. A critical “knee” is highlighted in the
plot. Choosing a point on the curve before the knee causes
the number of tuples to drastically increase, thus generating
truncations, i.e., events related to the same error are grouped
into more than one tuple. On the other hand, choosing a
point after the knee generates collapses because events re-
lated to different errors are grouped into the same tuple, due
to the decrease of the number of tuples. For these reasons,
a window size equals to 330 seconds, that is, exactly at the
beginning of the knee, is chosen. Third, the error-failure
relationship is inferred by analyzing tuples’ contents. For
instance, if a tuple contains both a Connect failed high level
message, and HCI low level messages, an evidence of a
HCI-connect relationship is found. Counting all the HCI-
connect evidences gives a mean to weight the relationship.
Table 2 illustrates the results obtained by applying the men-
tioned approach. The interpretation of the table is simple:
the greater is the percentage reported in a cell, the stronger
is the relationship between the user level failure (on the row)
and the system level failure (on the column). Percentages
on each row sum to 100 (except from the “tot” column),
so as to have a clear indication of user level failure causes.
The “total” and “tot” report the total percentages, e.g., the
49.9% of the user failures are due to HCI system failures.
In order to discover error propagation phenomena from the
NAP to PANUs, the user level data have also been related
with the NAP’s system log file (i.e., the server), with the

same “merge and coalesce” approach. Hence, for each sys-
tem level failure column, the table reports the figures ob-
tained by relating the Test log with both the local system
log and the NAP system log, for each machine. The table
contains very useful information about the error-failure re-
lationship, and NAP-PANU propagation phenomena. For
example, failures during the L2CAP connection (row Con-
nect failed in the table) are mostly due to timeout problems
in the HCI module, either from the local machine or from
the NAP. This occurs when a connection request (or accept)
is issued on a busy device. PAN connection failures are in-
stead frequently related to failures reported by the SDP dae-
mon (the 96.5% of the cases). Interestingly, we observed
that exactly the 96.5% of PAN connect failures manifests
when the SDP Search is not performed by the workload
(in other terms, when the SDP flag is false). This is a
clear indication that avoiding caching and performing the
SDP search before a PAN connection is a good practice to
reduce PAN connect failures occurrence. One more inter-
esting relationship is between “Switch role request failed”
and command transmission timeouts signaled by the HCI
module (the 91.1% of switch role request failures). This
suggests that increasing the timeout in the API helps to re-
duce the switcth role request failure occurrence. For some
failures, such as “Inquiry/Scan failed”, no relationships has
been found. Table 2 also permits to define masking strate-
gies, as detailed in next sub-section.

Error Masking Strategies. Error masking strategies
have been defined for the following user level failures.
Bind failed: it is mostly related to problems in the host
OS hotplug interface or to errors when invoking HCI com-
mands (see table 2). Our investigation on source code on
BT Kernel modules has led to the following considerations.
The creation process of an IP network interface over BT
requires: i) a time interval (TC) for the creation of the

L2CAP connection; and ii) a time interval (TH) needed by
the BT stack to build the BNEP virtual network interface
over L2CAP, and by the OS hotplug interface to configure
the interface. The problem is that the Pan Connect API is
not synchronous with TC and TH , hence, a “bind failed”
failure occurs whenever the application attempts to bind a
socket on the supposed existing BNEP interface before TC

and TH . In particular, if the bind request is issued before
TC , a HCI command failure (i.e., command for invalid han-
dle) occurs, because the L2CAP connection is not present.
If the request is instead issued after TC but before TH , a
failure occurs, either because the interface is not present or
it does not have been configured yet by the hotplug mecha-
nism. To prevent the failure from occurring, it is sufficient
to wait for TC and TH to elapse. TC elapses as soon as
the L2CAP connection has a valid handle. This check can
be easily added in the PAN connection API. As for TH , the
OS hotplug interface can be instrumented so as to notify the
application as soon as the BNEP interface is up and config-
ured.
Switch role command failed and NAP not found: the switch
role failure is often related to out of order packets failures
signaled by the BCSP module (49.7% of the cases, see ta-
ble 2). Also, it especially manifests on PDAs (see sec-
tion 6), since they adopt BSCP. The failure can also be
related to many other causes, such as unexpected L2CAP
frames (0.9% local, 4.4% on the NAP), HCI command for
invalid handle (10.9% local, 2.4% on the NAP), and occu-
pied BNEP device(18.8% local). This multitude of transient
causes does not isolate the symptoms of the failure, and it
does not allow to define precise maskings. Therefore we
tried to simply repeat the command when it fails. We ex-
perienced that repeating the action up to 2 times (with 1
second wait between a retry and the successive) is enough
to let the underneath transient cause disappear, and hence to
make the command success. The same considerations apply
to the case of NAP not found.

SW Implemented Recovery Actions. As soon as a fail-
ure is detected7, several Software Implemented Recovery
Actions (SIRAs) are attempted in cascade. This approach
allows to pinpoint, for each failure, the most effective re-
covery action, that is, the one that fixes the problem with a
high probability. Note that this is the only viable approach,
since we do not have any a priori knowledge about the best
recovery to perform each time. Upon failure detection, the
following recovery actions are triggered subsequently, i.e.,
when the i-th action does not succeed, the (i + 1)-th action
is performed.
1. IP socket reset: the socket is destroyed and then rebuilt;

7Failure detection is performed by simply checking the return state of
each BT or IP API that is invoked by the WL. Examples are the indication
that a PAN connection cannot be created, or a timeout when waiting for an
expected packet.

0.7

1.1

0.4

0.3

3.1

M
ultiple sys
reboot

0.5

0.2

1.2

1.8

0.1

3.9

35.5

M
ultiple

app restart

28.4

33.1

4.9

11.3

30

5.4

55.8

3.9

30
A

pplication
restart

17.5

7.2

28.4

63.7

5.5

46.4

0.5

40.1
B

T conne-
ction

reset

2

5.9

0.1
IP

 socket
reset

SIRAs

TOT

0.7

33.9

0.8

19.4

38.6

0.5

5.7

0.1

0.2

0.1

17.348.2Sw role request failed

26.725.8Packet loss

Data mismatch

1238.9Total

30.861.4Nap not found

20.139.8SDP search failed

25.614.9Connect failed

12.535.7PAN connect failed

1.762.4Bind failed

2.420.4Sw role command failed

34.5Inquiry/scan failed

S
ystem

reboot

B
T stack
resetUser Level Failures

Table 3. User failures-SIRA relationship.

2. BT connection reset: the L2CAP and PAN connections
are closed and established again;
3. BT stack reset: the BT stack variables and data are
cleaned up, by restoring the initial states;
4. Application restart: the BlueTest is automatically
closed and restarted;
5. Multiple application restart: up to 3 application restart
are attempted, consecutively;
6. System reboot: the entire system is rebooted;
7. Multiple system reboot: up to 5 system reboot are at-
tempted.
Note that the defined SIRAs have also been performed in
order to keep the testbed up. The given recovery actions
are ordered according to their increasing costs, in terms of
the recovery time. The more attempts have to be done for a
failure, the more the failure is severe: if action j was suc-
cessful, we can say the failure has a severity j. This gives
us an indication for failure severity.

Table 3 highlights the relationship between user level
failures and recovery actions. Data is relative to all the ma-
chines and come from both testbeds, and does not take into
account masking strategies. Each number in a cell repre-
sents the percentage of success of the recovery action (on
the column) with respect to the given user level failure (on
the row). Therefore, the figures give an indication of the ef-
fectiveness of each SIRA for each failure (which is an esti-
mation of the probability that a certain recovery action goes
through). Similarly to table 2, numbers on each row sum to
100, in order to have a simple indication of which are the
effective SIRAs for each user failure. For example, a “NAP
not found” is most probably recovered by resetting the BT
stack (in the 61.4% of the cases). Hence, this should be
the first action to be attempted when the failure is detected.
The table also allows to calculate failure severity. For in-

stance, the “Connect failure” is one of the most severe, since
it is often recovered by expensive SIRAs (the 84.6% of the
cases from “Application restart” up to “Multiple system re-
boot”). Finally, failure-recovery relationship provides fur-
ther understanding of failure causes. As an example, packet
losses recovered by an IP socket reset (the 5.9% of packet
losses) may be due to interferences over the wireless me-
dia. It is indeed not necessary to reestablish the L2CAP and
PAN connections. The rest of the packet losses are instead
likely due to a broken link, since they at least require the
connection to be reestabilished. For “data mismatch” fail-
ures, no recoveries are defined. Data mismatch is not real-
istically recoverable, since a real application only relies on
integrity mechanisms furnished by the communication pro-
tocols, and cannot know the actual instance of data being
transferred.

5 Dependability Improvement

From collected data, and from results of the previous
section, it is possible to estimate the dependability im-
provement which can be obtained by integrating software
implemented recovery actions and error masking strategies
into the testbeds. To this aim, we consider two typical
usage scenarios: i) each time that a failure occurs, a
typical user performs the reboot of the terminal (PC or a
PDA); ii) the user performs the following recovery actions,
subsequently, ii.1) he/she tries to restart the application,
and ii.2)in the case that the application fails again, he/she
reboots the terminal. For both scenarios we are able to
evaluate Mean TTF and TTR values (MTTF and MTTR),
since we can calculate the average recovery time for reboot
and for the application restart from the collected data. In
order to obtain upper bound measures, we assume that the
‘user thinking time’ is zero, i.e. we do not encompass it
in the TTR value. Finally, we compare the two scenarios
with the enhanced facilities that we implemented in the
workload, i.e. software implemented recovery actions and
error masking. Results are summarized in table 4.
As for the coverage, we refer to failure mode coverage as

defined in [1](failure assumptions coverage). The testbed
with the automated recovery actions gives a coverage of
58.4%, i.e. it is able to recover 58.4% of failures without
rebooting the system or restarting the application (as a
typical user would have done). In the fourth column of the
table we reported results taking also into account the error
masking strategies, which gives a coverage of 73.61%.
This, in our opinion, represents a good result for the
effectiveness of fault tolerance techniques we have found
from the analysis of gathered data. As far as the availability
is concerned, results show that the software implemented
recovery actions and the error masking strategies actually
improved the availability of BT PANs, starting from 0.688

2210210MINTTR (s.)

7366736673667366MAXTTR (s.)

128.1799.4112.64263.71DEV_STDTTR (s.)

19111111MINTTF (s.)

117893117893117893117893MAXTTF (s.)

5311.72997.362984.122833.05DEV_STDTTF (s.)

58000% Masking

73.61**58.400% Coverage

0.940.923< 0.907< 0.688Availability*

120.8470.9485.1285.92MTTR (s.)

1905.05845.54831.38630.56MTTF (s.)

SIRAs and
masking

With only
SIRAs

App restart
and Reboot

Only
Reboot

*= MTTF/(MTTF+MTTR)
** = 58% (masking) + 15.61% (coverage of the remaining failures)

Table 4. Dependability Improvement

(scenario 1) and 0.907 (scenario 2), which are the upper
bound measured values of BT PAN availability, to 0.923
and 0.94, with an improvement of 3.64% (relative to
scenario 2), up to 36.6% (relative to scenario 1). The
error masking strategies influence the MTTF estimation,
which varied from 630 s. to 1905 s. This results in an
actual reliability improvement of 202%. It should be noted
that, even using SIRAs and masking, the MTTF values
are low, i.e., each 30 minutes on average a node in the
piconet fails. Since our measurements are based on a 24/7
experiment, this represents a major reliability issue in all
those scenarios in which piconets are permanently deployed
and used continuosly, such as, wireless remote control
systems for robots, and aircraft maintenance systems. In
these critical scenarios, extensive fault tolerance techniques
shoud be adopted, such as, using redundand, overlapped
piconets, other than SIRAs and masking. Finally, as for
the maintainability, the MTTR decreases from 285.92 s. to
70.94, thanks to SIRAs. It results instead slightly longer
(120.84 s.) in the case with both SIRAs and masking, since
the remaining, unmasked failures (the 42% of the failure)
are generally severe, and require costly recovery actions.

6 Failure Distributions

Figure 3a shows how packet losses distribute with re-
spect to the Baseband packet type. Data are from the ran-
dom WL. Results evidence that, from a dependability point
of view, it is better to use multi-slot packets. Another sug-
gestion is to prefer DHx packets to DMx ones. Both phe-
nomena have the following explanation. Retransmissions at
the Baseband level are allowed up to a certain limit at which
the current payload is dropped and the next payload is con-
sidered [3]. Hence, more packets are dropped in the case of

Baseband’s Packet Type
Number of sent packets before the loss

Percentage of “Packet loss” failures Percentage of “Packet loss” failures

a) b)

Percentage of “Packet loss” failures

Networked Application
c)

Figure 3. “Packet loss” failure distribution as a function of a) the packet type, b) the number of sent packets before the loss, and
c) the used networked application

strict error control (i.e., DMx and single slot packets), due
to more retransmissions.
A further finding is to keep an already open connection up,
instead of closing it as soon as no more data has to be sent.
To justify this claim, we demonstrate that i) connections
which are short in length fail more; by length we mean the
number of packets sent before that the failure occurs, and
ii) leaving a connection up and unused (i.e., idle connection)
does not cause more failures to occur. To answer point i), an
experiment has been performed with a special version of the
random WL. The experiment has been run for two months
on two machines (Verde and Win). This WL has N fixed
to 10000 packets, and both LR and LS fixed to 1691 bytes
(that is, the BNEP MTU). These parameters are fixed in or-
der to not introduce indetermination when estimating the
failing connection length. Results are shown in figure 3b,
where packet loss failures distribution is reported as a func-
tion of the number of sent packets prior to the failure. They
demonstrate that it is more frequent for a connection to fail
when it is young. This is likely due to latent errors of the
connection setup process, such as the corruption of the BT
stack data structures. To answer point ii), we looked at the
data from the realistic WL, which runs up to 20 consecutive
cycles on the same connection, keeping the connection idle
for a time TW between two cycles. We discovered that the
average TW obtained considering only idle times preceding
a failed cycle (27.3 s.) is almost equal to the average TW

when considering only idle times before failures-free cycles
(26.9 s.)8. This is an evidence that idle connections do not
cause more failures to occur.
The previous claim is also supported by looking at the dif-
ference between our WLs: the Random WL creates and
destroys connections frequently, whereas the realistic WL
exploits the established connections more. As a result, the
former generates more failures (84%) than the latter (16%).

8The measure discards the idle times relative to consecutive cycles on
different connections. We recall that the TW follows a Pareto distribution
with a shape parameter equal to 1.5, in coherence with previous work [9].

Percentage of failures

User Level Failures

Figure 4. User failures-nodes relationship

Figure 3c shows the “Packet loss” distribution as a function
of the networked application that was run by the WL during
the failure. Data is relative to the Realistic WL testbed. Re-
sults pinpoint Peer to Peer (P2P) and Streaming applications
as the most critical for BT PANs. They are indeed character-
ized by long sessions with continuous data transfer, which
overload the channel and stress its time-based synchroniza-
tion mechanism. At a first glance, this may surprise, since
P2P protocols are TCP-based. However, the most of the
packet losses are due to broken BT links, which cause the
TCP end-to-end channel to brake as well. Streaming causes
less failures than P2P due to its isochronous nature, which
better fits the BT time-based nature. Less failures are expe-
rienced with Web, Mail, and File Transfer Protocol (FTP)
applications, which are characterized by intermittent trans-
fers. This indicates that Bluetooth ACL channels are less
failure prone when used in an intermittent manner.

Figure 4a depicts the frequency distribution of the most
significant user level failures as a function of the host, when
no masking strategies are applied. Giallo is not present,
since the NAP only records system level data. Results are
obtained only from the Realistic WL, thus the failure rates
are different to those shown in table 2. It should be noted
that bind failures only appeared on Azzurro and Win. On
Azzurro, that runs a Fedora Core distribution, the problem
remained even after upgrading the hardware to a Pentium 4

1.8 GHz with 512 Gb RAM. The problem is hence probably
due to the new version of the Hardware Abstraction Layer
(HAL), firstly deployed on fedora core distributions, and
responsible for the hotplug mechanism. “Switch role com-
mand” failures are frequent on PDAs, due to the complexity
introduced by the BCSP. Finally, it is interesting to notice
that the failure distribution is not significantly influenced by
the distance between the BT antennas. From data relative
to the Realistic WL we measured that the 33.33%, 37.14%,
and 29.63% of failures occur with a distance 0.5 m, 5 m,
and 7 m, respectively. Bind failures are not taken into ac-
count in the count. They would have biased the measure,
since they only manifest on two hosts.

7 Conclusions and Future Work

This paper presented a field failure data analysis of Blue-
tooth PANs. Presented results have shown how failure data
provide helpful insights to design fault tolerance means for
operational systems. Respectively, up to 36,6% and 202%
availability and reliabilty improvements have been demon-
strated, by defining and using SIRAs and error masking
strategies. Several lessons have also been learned about
preferable usage patterns, from a dependability perspec-
tive. Examples are to avoid caching by performing the SDP
search before the PAN connection, to adopt multi-slot, DHx

packets, to use long lived connections, and to increase the
timeout in the switch role API. The insights are gained from
the definition of a failure model for BT PANs, completed
with error-failure relationships, that researches can use to
design abstract models useful for further analysis or synthe-
sis. At time of this writing we are carrying out an enhanced
version of the Linux BlueZ BT protocol stack, which in-
cludes all the findings we gathered from the analysis, and
that developers can use for building more robust BT appli-
cations.

References

[1] A.Avizienis, J. Laprie, B.Randell, and C. Landwehr. Basic Concepts
and Taxonomy of Dependable and Secure Computing. IEEE Trans.
on Dependable and Secure Computing, 1(1):11–33, January-March
2004.

[2] J. E. Bardram. Applications of context-aware computing in hospital
work-examples and design principles. Proc. of the 19th ACM Sym-
posium on Applied Computing (SAC 2004), March 2004.

[3] Bluetooth SIG. Specification of the Bluetooth System - core and pro-
files v. 1.1, 2001.

[4] M. F. Buckley and D. P. Siewiorek. A comparative analysis of event
tupling schemes. proc. of The 26th IEEE International Conference
on Fault-Tolerant Computer Systems (FTCS ’96), June 1996.

[5] S. Cabuk, N.Mahlotra, L. Lin, S. Bagchi, and N. Shroff. Analysis and
evaluation of topological and application characteristics of unreliable
mobile wireless ad-hoc network. proc. of 10th IEEE Pacific Rim
International Symposium on Dependable Computing, 2004.

[6] G. Carrozza, M. Cinque, F. Cornevilli, D. Cotroneo, C. Pirro, and
S. Russo. Architecting a Realistic Workload for Bluetooth PANs
Stressing. TR-WEBMINDS-58, University of Naples Federico II,
web-minds.consorzio-cini.it, November 2005.

[7] D. Chen, S. Garg, C. Kintala, and K. S. Trivedi. Dependability En-
hancement for IEEE 802.11 with Redundancy Techniques. proc. of
IEEE 2003 International Conference on Dependable Systems and
Networks (DSN ’03), June 2003.

[8] M. Cinque, F. Cornevilli, D. Cotroneo, and S. Russo. An Auto-
mated Distributed Infrastructure for Collecting Bluetooth Field Fail-
ure Data. Proc. of the 8th IEEE International Symposium on Object-
oriented Real-time distributed Computing (ISORC 2005), May 2005.

[9] M. E. Crovella and A. Bestavros. Self-similarity in World Wide Web
traffic: evidence and possible causes. Proc. of the 1996 ACM SIG-
METRICS international conference on Measurement and modeling
of computer systems, 1996.

[10] M. E. D. D. Deavours and J. E. Dawkins. User-perceived inter-
operability of bluetooth devices. Technical report, The University
of Kansas 2335 Irving Hill Road,Lawrence, KS 66045-7612, June
2004.

[11] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll,
R. Rockell, T. Seely, and S. Diot. Packet-level Traffic Measurements
from the Sprint IP Backbone. IEEE Network, 17(6):6–16, December
2003.

[12] R. Gandhi. Tolerance to access-point failures in dependable wireless
lan. Proc. of the 9th Int. Workshop on Object-Oriented Real-Time
dependable Systems (WORDS’03), June 2003.

[13] M. Gerla, P. Johanssona, R. Kapoor, and F. Vatalaro. Bluetooth: ”last
meter” technology for nomadic wireless internetting. Proc. of 12 th
Tyrhennian Int. Workshop on Digital Communications, 2000.

[14] R. K. Iyer, Z. Kalbarczyk, and M. Kalyanakrishnam. Measurement-
based analysis of networked system availability. Performance Eval-
uation Origins and Directions, Ed. G. Haring, Ch. Lindemann, M.
Reiser, Lecture Notes in Computer Science, Springer Verlag, 1999.

[15] P. Johansson, R. Kapoor, M. Kazantzidis, and M. Gerla. Personal
Area Networks: Bluetooth or IEEE 802.11? International Journal
of Wireless Information Networks Special Issue on Mobile Ad Hoc
Networks, April 2002.

[16] M. Lampe, M. Strassner, and E. Fleisch. A Ubiquitous Computing
Environment for Aircraft Maintenance. Proc. of the 19th ACM Sym-
posium on Applied Computing (SAC 2004), March 2004.

[17] S. M. Matz, L. G. Votta, and M. Malkawi. Analysis of failure re-
covery rates in a wireless telecommunication system. proc. of the
2002 International Conference on Dependable Systems and Net-
works (DSN’02), 2002.

[18] M. Paulitsch, J. Morris, B. Hall, K. Driscoll, E. Latronico, and
P. Koopman. Coverage and the Use of Cyclic Redundancy Codes in
Ultra-Dependable Systems. Proc. of the IEEE International Confer-
ence on Dependable Systems and Networks (DSN 2005), June 2005.

[19] S. Porcarelli, F. D. Giandomenico, A. Bondavalli, M. Barbera, and
I. Mura. Service-level availability estimation of gprs. IEEE Trans-
actions on Mobile Computing, 2(3), July-September 2003.

[20] R. K. Sahoo, A. Sivasubramaniam, M. S. Squillante, and Y. Zhang.
Failure data analysis of a large-scale heterogeneous server environ-
ment. proc. of the 2004 International Conference on Dependable
Systems and Networks (DSN’04), June 2004.

[21] A. Thakur and R. K. Iyer. Analyze-now - an environment for collec-
tion and analysis of failures in a networked of workstations. IEEE
Transactions on Reliability, 45(4):560–570, 1996.

[22] J. Xu, Z. Kalbarczyc, and R. K. Iyer. Networked Windows NT Sys-
tem Field Data Analysis. proc.of IEEE Pacific Rim International
Symposium on Dependable Computing, December 1999.

