2,344 research outputs found

    EvoAlloy: An Evolutionary Approach For Analyzing Alloy Specifications

    Get PDF
    Using mathematical notations and logical reasoning, formal methods precisely define a program’s specifications, from which we can instantiate valid instances of a system. With these techniques, we can perform a variety of analysis tasks to verify system dependability and rigorously prove the correctness of system properties. While there exist well-designed automated verification tools including ones considered lightweight, they still lack a strong adoption in practice. The essence of the problem is that when applied to large real world applications, they are not scalable and applicable due to the expense of thorough verification process. In this thesis, I present a new approach and demonstrate how to relax the completeness guarantee without much loss, since soundness is maintained. I have extended a widely applied lightweight analysis, Alloy, with a genetic algorithm. Our new tool, EvoAlloy, works at the level of finite relations generated by Kodkod and evolves the chromosomes based on the feedback including failed constraints. Through a feasibility study, I prove that my approach can successfully find solutions to a set of specifications beyond the scope where traditional Alloy Analyzer fails. While EvoAlloy solves small size problems with longer time, its scalability provided by genetic extension shows its potential to handle larger specifications. My future vision is that when specifications are small I can maintain both soundness and completeness, but when this fails, EvoAlloy can switch to its genetic algorithm. Adviser: Hamid Bagher

    New species of hybrid pull systems

    Get PDF
    production models;control systems;simulation

    Dynamically adjusting game-play in 2D platformers using procedural level generation

    Get PDF
    The rapid growth of the entertainment industry has presented the requirement for more efficient development of computerized games. Importantly, the diversity of audiences that participate in playing games has called for the development of new technologies that allow games to address users with differing levels of skills and preferences. This research presents a systematic study that explored the concept of dynamic difficulty using procedural level generation with interactive evolutionary computation. Additionally, the design, development and trial of computerized agents the play game levels in the place of a human player is detailed. The work presented in this thesis provides a solution to the rapid growth of the entertainment industry whilst providing a more effective means for developing computerized games

    Evolutionary Algorithms with Mixed Strategy

    Get PDF

    Knowledge Migration Strategies for Optimization of Multi-Population Cultural Algorithm

    Get PDF
    Evolutionary Algorithms (EAs) are meta-heuristic algorithms used for optimization of complex problems. Cultural Algorithm (CA) is one of the EA which incorporates knowledge for optimization. CA with multiple population spaces each incorporating culture and genetic evolution to obtain better solutions are known as Multi-Population Cultural Algorithm (MPCA). MPCA allows to introduce a diversity of knowledge in a dynamic and heterogeneous environment. In an MPCA each population represents a solution space. An individual belonging to a given population could migrate from one population to another for the purpose of introducing new knowledge that influences other individuals in the population. In this thesis, we provide different migration strategies which are inspired from game theory model to improve the quality of solutions. Migration among the different population in MPCA can address the problem of knowledge sharing among population spaces. We have introduced five different migration strategies which are related to the field of economics. The principal idea behind incorporating these strategies is to improve the rate of convergence, increase diversity, better exploration of the search space, to avoid premature convergence and to escape from local optima. Strategies are particularly taken from the economics background as it allows the individual and the population to use their knowledge and make a decision whether to cooperate or to defect with other individuals and populations. We have tested the proposed algorithms against CEC 2015 expensive benchmark problems. These problems are a set of 15 functions which includes varied function categories. Results depict that it leads a to better solution when proposed algorithms used for problems with complex nature and higher dimensions. For 10 dimensional problems the proposed strategies have 7 out 15 better results and for 30 dimensional problems we have 12 out of 15 better results when compared to the existing algorithms

    Evolutionary Artificial Neural Network Weight Tuning to Optimize Decision Making for an Abstract Game

    Get PDF
    Abstract strategy games present a deterministic perfect information environment with which to test the strategic capabilities of artificial intelligence systems. With no unknowns or random elements, only the competitors’ performances impact the results. This thesis takes one such game, Lines of Action, and attempts to develop a competitive heuristic. Due to the complexity of Lines of Action, artificial neural networks are utilized to model the relative values of board states. An application, pLoGANN (Parallel Lines of Action with Genetic Algorithm and Neural Networks), is developed to train the weights of this neural network by implementing a genetic algorithm over a distributed environment. While pLoGANN proved to be designed efficiently, it failed to produce a competitive Lines of Action player, shedding light on the difficulty of developing a neural network to model such a large and complex solution space

    Reverse Engineering Financial Markets with Majority and Minority Games Using Genetic Algorithms

    Get PDF
    Using virtual stock markets with artificial interacting software investors, aka agent-based models, we present a method to reverse engineer real-world financial time series. We model financial markets as made of a large number of interacting boundedly rational agents. By optimizing the similarity between the actual data and that generated by the reconstructed virtual stock market, we obtain parameters and strategies, which reveal some of the inner workings of the target stock market. We validate our approach by out-of-sample predictions of directional moves of the Nasdaq Composite Inde
    • …
    corecore