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Abstract 
The rapid growth of the entertainment industry has presented the requirement for more efficient 

development of computerized games. Importantly, the diversity of audiences that participate in 

playing games has called for the development of new technologies that allow games to address 

users with differing levels of skills and preferences. This research presents a systematic study that 

explored the concept of dynamic difficulty using procedural level generation with interactive 

evolutionary computation. Additionally, the design, development and trial of computerized agents 

the play game levels in the place of a human player is detailed. The work presented in this thesis 

provides a solution to the rapid growth of the entertainment industry whilst providing a more 

effective means for developing computerized games. 
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Chapter 1 – Introduction 

1.1 Background to the Study 

The rapid growth of the entertainment industry presents the need to develop entertainment 

technologies that will satisfy a growing market. One such technology is video games, which make up 

a core component of the entertainment industry. Few video games existed in the 1970s with 

computerised games being text-based programs built for specialised platforms. Video games have 

now become a major part of the entertainment industry with an evident effect on popular culture. 

With millions of users worldwide and a recorded 1.61 billion dollar revenue for Australia alone in 

2012 (www.igea.net, 2013), previous annual sales reveal an exponential growth in sales each year. 

The demand for games to satisfy this growing market puts game developers under increasing 

pressure. 

To add to that pressure, the increase in hardware capability over the years allows game developers 

to create larger games featuring ever more high fidelity graphics and complex rule-sets. The 

development of these games requires an increased amount of time and effort, increasing the cost of 

development. Development time and effort for games has reached the stage of hundreds of staff 

working in teams to handle individual development areas, over several years (Bethke, E. 2003).  In 

order for a game company to recoup the increasing cost of development, it is important that the 

game appeal to a large enough market. 

The influence of video games on users and their appeal to their targeted audience has been subject 

to various research. Nakamura, J., & Csikszentmihalyi, M. (2002) introduced the concept of “flow” as 

a mental state in which a person performing an activity is fully immersed. The concept of flow is a 

foundation for today’s research into the effectiveness of video games on players and is commonly 

used to measure “fun”. The fundamental principle of a person being in the flow state is that the 

difficulty of the task is matched to their skills (Hunicke, R., & Chapman, V. 2004). Importantly, as the 

person’s skills improve through practicing the task, the difficulty level should increase accordingly to 

keep them in the flow state (Sinclair, J. 2011). For game developers, this means introducing new and 

more difficult challenges as the game progresses, again adding to the time and cost of development. 

One technique that aims to keep the player in flow whilst seeking to minimise development effort is 

the concept of Dynamic Difficulty Adjustment (DDA). In DDA, rather than the game designers tuning 

the difficulty of elements throughout the game, the elements of the game are automatically 

changed to suit a player’s ability. This results in a game that suits a larger audience. DDA can be as 

simple as adjusting a set of parameters (such as enemy reaction times) in a game that otherwise 

looks the same. However, an important component in maintaining player challenge and interest is 
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the introduction of new and different elements to the game (Hunicke, R., & Chapman, V. 2004). 

Automated techniques to generate these new elements also exist. 

The technique entitled Procedural Content Generation (PCG) involves generating content through 

algorithmic means, enabling computers to generate infinite amounts of varying content. In doing so 

game developers can greatly reduce the time and cost of development processes. Hiring an artist to 

produce a game asset can be avoided through algorithmically generating that game asset. However, 

PCG has seen limited use in game development, particularly as a tool for keeping a player engaged in 

flow as it is more often applied to lower level tasks such as generating particle textures or game 

world landscapes. 

This research evaluates how effective a video game that employs DDA through the use of PCG 

techniques will be on a variety of different players. It uses PCG to generate varying sections of a 

game level at runtime, and to modify characteristics of these sections in order to adjust the difficulty 

of the game. This research will be constrained to the video game genre of 2D platform games as 

their game levels can be built with relative ease yet provide substantial complexity. 

 

1.2 The purpose of the study 

The aim of this research is to perform a systematic study incorporating Interactive Evolutionary 

Computation (IEC) with PCG and computerized Agents to perform DDA. The current industry 

technique for performing DDA in computerized games is through the modification of simple 

parameters that balance the game. Traditionally, these parameters were simple choices made at the 

start of the game (selecting a difficulty level). Recent research has explored DDA techniques through 

evolutionary computation or computerized agents. Evolutionary computation (EA) involves the 

optimization of a population of individuals, each of which represents a potential solution for the 

specified problem.  EA has been used to evolve optimized solutions for complex problems, when no 

immediate ‘best’ solution is identifiable. Computerized agents (CA) are computer programs that 

autonomously act on behalf of something else. CA’s can be configured to complete tasks that 

require autonomous thinking, such as finding routes in a road map or playing the role of an 

opponent in a game of chess.  

This project will be focused on the evaluation and adjustment of difficulty in video games, 

constrained to 2D platformers, through the evolution and procedural generation of video game 

levels. This research aims to expand upon common practices in the area of DDA for video games 
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through the exploration of using EC with PCG and CA’s. In summary, the purpose of this research can 

be listed as follows: 

1. To investigate techniques for dynamically adjusting the difficulty of game levels. 

2. To produce a system for adapting game level qualities to suit a player’s skills. 

3. To evaluate the effectiveness of the developed approach. 

 

1.3   Research questions 

This research was guided by the question: 

“How can Interactive Evolutionary Computation be used for dynamic difficulty adjustment for 2D 

platformer game levels?” 

To address this question, the following sub-questions will be considered: 

1. Can an Agent that models player characteristics be used to enhance IEC for dynamically 

adjusting game levels? 

2. How can PLG be used to adjust difficulty? 

 

 

1.4   The contributions of the study 

The contributions of this study pertain to how difficulty in games is measured, agent-based 

modelling of a player and the tuning of DDA through agent-based IEC. 

 Performing DDA through the procedural generation of game levels.  

This research has developed and evaluated a new approach in which the difficulty of a game 

level is adjusted through changing its structure and content using procedural level 

generation (PLG). The concept of “game balancing” through DDA in video game is an 

emerging area of research. Current research in this area mainly deals with approaches for 

the adjustment of difficulty in video games involving design principles such as Rhythm-based 

level generation (Jennings-Teats, Smith & Wardrip-Fruin 2010). This research presents a 

novel approach of performing DDA via the following: 

o Capture player characteristics using an agent. 

o Using the agent via IEC and PLG to dynamically adjust the difficulty of the game 

levels presented to the player. 
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Benefits include a model for producing games that can target a larger audience, a reduction 

in video game development costs, the construction of computerized agents to mimic a 

human player and the advancement of research in the field of PCG and DDA. Video game 

development has traditionally involved a manual development process, so the exploration 

into automated game development techniques using procedural level generation, 

interactive evolutionary computation and computerized agents has furthered this field of 

research. 

 Introduction of computerized Agents into an Interactive Evolutionary Process. 

The work presented in this thesis explores the use of agents to mimic a human player and 

complete game levels in their stead. Many researchers including Hasegawa et al. (2013), 

Liaw & Chishyan et al. (2013) and Rawal et.al (2010) have explored EC in games with agents. 

Typically, these approaches use agents to control the difficulty in video games by taking on 

the role of an opponent. In contrast, the approach here constructs agents to encapsulate the 

player characteristics. These agents can be used in a number of ways, including: 

o Use in IEC to complete many levels in a short period of time compared to a human 

player, allowing for more  iterations of the evolutionary algorithm to be run. 

o Subsequent use in game design to provide a model for testing games by automated, 

reproducible means using agents representing players of various skill levels. 

The concept of using agents as proxy for players in IEC for DDA has not been used in 

previous research to the knowledge of this author. 
 

In addition, using agents in the first line of evaluation during game level development can 

produce more effective game environments without requiring the time and effort of human 

play-testing. Evaluation of the same game level multiple times by an individual is subject to 

varying behaviour as the player becomes bored and too familiar with the content. Using a 

computerized agent with human characteristics ensures a consistent level of behaviour 

without variance due to human player fatigue. 

 

 Extending knowledge in the area of DDA. 

Typically, games employing DDA represent the difficulty of a level using static means, such as 

the number of resources available to the player (Hunicke, R. 2005). In contrast, this study 

extends the knowledge in this area as difficulty is measured using elements associated with 

gameplay. While many combinations of these elements are possible, as a proof of concept 

this study explored four, which are associated with length of player path, time taken to play 

a level, score and challenge. 
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1.5   Definition of terms 

Video Game 
A computerised game played by manipulating images on a video display. 

Game Level 

An area in a game’s virtual world in which the player interacts. 

Evolutionary Computation (EC) 
A general term for describing the use of evolutionary algorithms. 

Interactive Evolutionary Computation (IEC) 
A general term for describing evolutionary computation that uses of human evaluation. 

Procedural Content Generation (PCG) 

Procedural Content Generation refers to content which is generated algorithmically rather than 

manually. 

Dynamic Difficulty Adjustment (DDA) 

Dynamic Difficulty Adjustment is the process by which a video game automatically adjusts difficulty 

based on the player’s ability.  

Procedural Level Generation (PLG) 

Procedural Level Generation is the process of procedurally generating a game level. 

Computerized Agent (CA) 
An autonomous entity which observes and acts upon its environment in order to achieve goals. 

2D Platformer 

A two dimensional video game genre characterised by the player jumping to and from platforms or 

obstacles. 

FPS 
A genre of video games entitled “first person shooter”. 

Flow 

Flow is a physiological state where a person is fully immersed in an activity. 

Machine Learning 

Machine Learning is a form of artificial intelligence concerning the design and development of 

algorithms that evolve behaviours. 

Height map 
A raster image used to store values such as surface elevation data for display in 3D computer 
graphics. 

Game Avatar 
A character in a video game world that the player controls. 

Non-player Character (NPC) 
A character within a video game that is not player-controlled. 
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1.6   Summary 

This chapter has outlined the study conducted in this thesis: the dynamic adjustment of game-play in 

2D platformers. There is a rapid growth in the entertainment industry and the development of 

effective video games requires increasing time and effort. This research presents a means for 

addressing this growth through the development of a DDA system that adapts game levels to 

particular player skills. In doing so games can be produced to suit larger audiences, the time and cost 

of development are reduced and existing knowledge in the area of DDA is expanded. 

This thesis outlines how Interactive Evolutionary Computation can be used to adjust the difficulty of 

2D platformer game levels through the use of computerized agents that mimic the player, the 

procedural generation of game levels and the trial of developed system in a game context. The 

following chapter presents a review of existing and relevant literature of this research. 
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Chapter 2 –Literature Review 
This literature review addresses existing techniques and theories concerning game development. It 

has been organised so as to provide an overview for the current field of study and capture of the 

current state-of-play. Following this is a technical review analysing key approaches to handling DDA 

and PLG. 

2.1   Theories of Fun 
It is difficult to specifically describe the enjoyment that players experience while playing video 

games. Various theories and definitions defining the concept fun have been proposed. In order to 

conduct research into games, it is important to first gain an understanding for how “fun” can be 

assessed and its appeal to a game’s target audience. This following section will identify key concepts 

of fun in games. 

2.1.1   Malone’s Motivational Theory 

The theory of providing motivation and incentive to game players was developed by Malone, T. 

(1981) during a survey of computer game preferences in elementary-school students.  It was 

discovered that Students preferred games that had an explicit goal, most evident in games that kept 

some form of score or competition (Malone, T. 1987). Key preferences arose from intrinsic 

motivations behind an individual’s desire to participate in the said activity, these motivations being 

challenge, curiosity, control and fantasy. Challenge would provide feedback as to their ability 

through engaging with self-esteem. Curiosity describes both the cognitive and sensory means of 

interpreting the activity which provides interest and appeal to the player. Control is the distinct level 

of influence a player has over the game, and Fantasy describes how a game can evoke mental 

images of social situations not actually present such as beating an opponent. Game contexts appeal 

to these motivations providing incentive for people to play them. While other theories looked at 

motivation in regard to challenge and competence or levels of arousal or stimulation, Malone 

provided a taxonomy which groups together and logically addresses intrinsic motivation. 

2.1.2  Csikszentmihalyi’s Flow Theory 

The concept of flow was introduced by Csikszentmihalyi where he found that people engaging in 

activities that they enjoy, enter a state of immersion and focused concentration (Nakamura, J., & 

Csikszentmihalyi, M. 2002). People who found enjoyment in particular activities illustrate how an 

organised set of challenges and a corresponding set of skills resulted in an optimal experience. Chen, 

J. (2007) noted that the description of the flow experience is identical to what players experience 

when in games, losing track of time and external pressure, along with other interests. He noted that 

it was important to match challenge with competence. If the challenge of a game was too little, 

players would get bored, If too high then players would get frustrated (Figure 2). Additionally, a 
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player may also learn the game, so it is important to progressively increasing the difficulty through-

out a game to maintain a flow state (W IJsselsteijn, et al. 2007). Flow has become a popular 

technique for assessing “fun” in games, with developers tailoring their games in a way that promotes 

flow in order to provide players with an optimal experience; however measuring challenge and 

competence in order to provide flow is not an easy task. 

 
Figure 1. A visual graph of flow (Extracted from http://www.nuhs.edu/christian/2011/7/6/flow/) 

 

Kiili, K. 2008 provided an experiential gaming model for game developers to measure flow in their 

games through assessing emergent characteristics of the flow state in players. The model was 

proposed to describe the learning processes in a game, support the development of engaging 

educational games and describe the game design process at an abstract level. Through focusing on 

flow experience in the game model, a flow state could be measured from key characteristics of the 

player during game-play such as concentration, time distortion, autoelic experience, loss of self-

consciousness and sense of control. Alternatively key consequences of flow could be observed after 

game-play such as exploratory behaviour and active learning. 

 

Gilleade, K & Dix, A. 2004 looked at measuring physical frustration as a means of designing adaptive 

video games. Through recognising frustration in games, desired changes could be identified and 

corrected, especially in an adaptive game context where it could compensate for the player’s skills. 

Research found that measuring affective feedback from the player through physiological measures 

such as blood pressure or heart rate was deemed corruptible when used in a traditional gaming 

environment. Instead, measuring frustration through the input device (mouse, keyboard) and the 

game itself (game progress) was a better solution. Additionally, data recorded from a player could 
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vary based on the individual’s background. This research notes the importance in addressing 

external factors of a games environment, presenting the need for further research into affective 

games in order to accurately measure frustration. 

2.1.3   Ralph Koster’s theory of Fun 

Koster, R. 2003 presented an approach to producing fun in a game’s context through elements 

promoting cognition such as learning patterns, exploration and mastery of challenges. These 

elements can be tailored to suit the explorer, socialiser, killer or achiever player personality types 

(Bartle, R. 1996). Fun was described as being a reward for learning. Presenting players with patterns 

and challenges to learn and master promotes fun in games. However once a pattern is learnt, the 

game is no longer fun. So to keep interest in a game, the player must be constantly learning and 

experiencing new challenges. 

2.2   Dynamic Difficulty Adjustment 
In order to appeal to a specific audience, a video game is commonly tailored to the skill level of that 

audience. “A ‘hardcore’ game requiring quick reflexes and great mechanical skill may frustrate a 

casual gamer; inversely, a casual game may be too easy and bore a more experienced player.” 

(Kuang, A. 2012). However this process becomes tedious as each individual component of a game 

must be designed to support the desired difficulty. In some cases, components of a game level will 

not correspond with the desired difficulty and hinder the player experience. 

Dynamic Difficulty Adjustment (DDA) was introduced to address the issue of automatically adapting 

a game’s difficulty level to a certain player’s skill-sets. The basis of this methodology corresponds 

with Flow theory (Csikszentmihalyi, M. 2002) by matching a games difficulty to an individual player’s 

skillset resulting in an optimal experience. Tremblay, J., Bouchard, B., & Bouzouane, A. (2010, April) 

notes that DDA is a system that changes game mechanics without the player’s knowledge. In doing 

so, a player’s experience is uninterrupted leading to a greater state of immersion.  

The fundamental principle of any DDA system is based on two approximation techniques. The first is 

a feedback mechanism that measures how well the player is doing in the game. The second 

mechanism is a technique to adjust the difficulty of the game itself. The difference between these 

two factors is a measurement of current difficulty. From this measurement, the difficulty mechanism 

can adjust some element of the game to make the player experience easier or harder. An example of 

this would be to adjust the challenge of a game to maintain a flow state (figure 2). However to 

perform DDA, an effective means for measuring difficulty must be used as well as an effective means 

for changing the difficulty. 
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Figure 2. Adjustment of challenge to maintain the Flow state. 

 

2.2.1   Difficulty Estimation 

Before the difficulty of a game can be adjusted, some measurement must be made to determine the 

current state of difficulty a player is experiencing. This measurement of difficulty is usually some 

form of feedback from the player. Two methods to derive such feedback are to measure player 

progression in completing a game or to assess the current physical state of the player during a game. 

 Liu, C. et al. (2009) conducted an experiment to control DDA with difficulty measured from the 

affective physical state of a player in real-time. The approach looked at measuring the player’s 

physiological state via several indicators such as heart rate, blood volume and temperature. A game 

of Pong was used with three phases of difficulty. Several forms of machine learning were 

experimented with, resulting in Regression Trees (RT) as being the most efficient at processing data 

on the player’s physiological state. During a playtest phase, the physiological state of players was 

measured during gameplay and used to train RTs. The difficulty phase of the computer opponent 

was selected based off the player’s affective feedback. Such an approach allowed measurement of 

the difficulty experienced by individual players. However a downside was the requirement to setup 

physical components to provide feedback, an impractical approach for use in a commercial context. 

Yidan, Z., H. Suoju, et al. (2010) explored the possibility of optimizing a players satisfaction through 

using DDA with Artificial Neural Networks (ANN). UCT (upper-confidence-bounds applied to trees) 

machine learning was combined with an ANN to adjust the difficulty of AI opponents in a game of 

Dead-End. Difficulty was measured through recording the win/loss of several game sessions against 

a human player while using various levels of UCT-intelligence for opponents. The simulation time 

and win-rate was then analysed with an ANN. The player was then provided with particular UCT 
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intelligence that best suited their skill set. The technique of using an ANN to predict the difficulty of 

game opponents had not been done before. A downside of this technique was that the game Dead-

End is turn-based, giving the ANN and UCT time to compute. In a demanding real-time context, such 

a technique would be considerably harder to use. The upside to this technique however, is the 

independence between the game domain and DDA technique. Through assessing elements of a 

game session instead of the actual game-play itself means that this technique could be applied to 

games with complicated rule-sets. Another critical advantage of this technique was this technique 

could accurately assess the difficulty level required for specific players. 

2.2.1   Difficulty Adjustment 

After an effective measurement for difficulty has been derived, the DDA algorithm adjusts the 

difficulty of a game to compensate in the desired manner. This is usually performed through a 

means of machine learning where a predicted change of difficulty is proposed, and then a 

modification of game elements that suits the proposed change is made. A commonly adjusted 

element of video games is that of the game environment which bears a direct relation to a player’s 

immersion and game intuition (Sweetser, P., & Wiles, J. 2005). A game environment consists of the 

game world, levels, creatures and objects. Through modification of elements within a game 

environment, the difficulty of the game itself can be adjusted. 

Hunicke, R. (2005) developed the tool Hamlet for handling DDA in the first person shooter (FPS) 

genre. Hamlet would measure player progress through a human-designed level in the FPS game 

Half-Life. “With the right algorithms, it is possible to adjust everything from a game’s narrative 

structure, to the physical layout of maps or levels, while the game is being played.” (Hunicke, R. 

2005). Difficulty was measured based off how quickly the player overcame obstacles and what 

resources they had available. In this case, resources were ammunition for weapons, health and 

armour. Hamlet’s approach to adjusting the game difficulty involved selectively placing resources or 

challenges in sections of the game level in-front of, but out of sight of the player. Although Hamlet’s 

approach to DDA proved successful, its portability to other games or genres was questionable. The 

tool relied on several critical assumptions that game mechanics found in the FPS genre existed in 

other genres. 

Various approaches to modifying game environments for DDA have been attempted although a 

unified approach is still missing (Missura, O., & Gärtner, T. 2009), due to the multitude of game 

genres available. 
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2.3   The 2D platformer genre 
Producing an effective game environment is critical to the game development process, and due to 

the wide variety of challenges and rule sets found in various games it is important to produce levels 

that correspond with the criteria imposed by a particular game genre. For the purpose of this 

research, we’ll look at the genre of the 2D platformer. “2D platformers”, sometimes known as 

“platformers” or “side scrollers”, originated during the 1980s and possess unique constraints and 

level design principles which differ from other game genres. In this section we will assess the 

constraints imposed by 2D platformers and how they correspond to level design. 

One particular constraint of the genre is that the game world is restricted to two axes and 

consequently players cannot move as within a 3D space. Björk, S., & Holopainen, J. (2005) note the 

importance of spatial relationships in such games. It is important to note that the main classification 

of the 2D platformer is based on the movement of the game world, not the graphical representation. 

“...a computer Chess with splendidly rendered 3D graphics still has a 2D game world.” (Björk, S., & 

Holopainen, J. 2005).   

Since a 2D platformer works within a 2D space, certain constraints are imposed on an Avatar’s 

actions in order to suit the genre’s mechanics. The term “platformer” derives itself from the most 

frequent challenge in the genre, jumping platforms. Consequently 2D platformers grant the player 

some form of control over the Avatar’s vertical movement and almost always control over their 

horizontal movement (Smith, G., M. Cha, et al. 2008). Some platformers grant the Avatar more 

advanced abilities such as double jumping or wall jumps. In all cases it is evident that Avatar abilities 

conform to a game’s level design and therefore the design of a game level must be suited to a 

desired set of game mechanics. Additionally, the 2D platformer genre imposes restrictions on the 

level design itself. Proportions of the game level could be displayed at once and move along one or 

two axes to follow the movement of the player such as the game Super Mario Bros (1985), or an 

entire level could be displayed at once like the arcade game Pac Man (1980).  

Smith, G., Cha, M., & Whitehead, J. (2008) presented a framework for describing 2D platformer 

levels, categorizing components of a level by the roles they perform in game play. Describing how 

combinations of specific components present smaller sections of game play, such as a challenge to 

overcome. Such an example would be a tall wall with some form of jumping aid, like a trampoline, at 

the base of it. Players cannot pass over the wall by themselves but through using the trampoline, 

they can get over the wall and continue. These collections of level components are combined 

together to produce the overall game level in a 2D platformer. Careful selection and combination of 

these components can promote flow in a game. 2D platformers are a suitable genre to research “as 
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its rules are simple to understand yet provide substantial complexity” (Smith, G., Cha, M., & 

Whitehead, J. 2008). However it can be tiresome to manually combine thousands of game 

components to produce larger game levels, presenting the desire for an automated approach. 

 

2.4 Procedural Content Generation 
Procedural Content Generation (PCG) is a means for generating data through algorithmic means, and 

has a strong presence in game development. Whilst PCG can be used to develop various features of 

a game, this chapter will focus on the use of PCG for level creation in video games. Procedural level 

generation (PLG) makes use of PCG algorithms to generate game environments. 

There are several well-known PCG algorithms used extensively in game development today. Each 

has a unique approach to generating content and unique trade-offs. It’s important to identify these 

features in order to gain an understanding of PCG in general and how it can be applied to level 

design. A global standard for PCG has not been documented and so these algorithms have been 

classified into the following groups, Parameter-driven PCG, Chunk-based PCG, Search-based PCG or 

Agent-based PCG. Each has a unique approach to handling algorithmic generation of content. 

2.4.1   Parameter Driven PCG 

The simplest and most widely used form of PCG involves generating content from a fixed algorithm 

that has a number of parameters which can be tuned. Complexity and diversity is found through the 

use of randomness in the algorithm. The parameters can be used to influence what content is 

generated by the algorithm. The simplest case is for a single parameter to be used in the algorithm 

as a random number generator seed. This then defines the random sequence of numbers to be used 

in the algorithm. A more complex case is when a series of parameters are passed to the algorithm 

where each parameter describes a certain attribute for the content being generated. 

Smith, G & Whitehead, J. (2011) presented a framework for parameter-based procedural level 

generation of 2D platformers called Launchpad. Levels are made from the combination of unique 

rhythm groups over a two-phase grammar approach. The first phase generates a set of player 

actions, assigning them to particular times during a rhythm. The second phase iterates over the 

assigned actions and produces game level geometry to suit it. Through the modification of 

parameters given to the level generator, a wide range of playable levels can be generated to suit 

different action sets. 

The 2D platformer Infinite Mario Bros featured parameter-based procedural level generation. 

Playable game levels similar to that of the game Super Mario Bros (1985) are generated from code 



Research Dissertation 22 | P a g e  
 

passed to a PCG algorithm. This game framework was used in the Mario AI Championship (2012) 

competition where participants would compete to produce code that generates fun game levels. 

While parameter driven PCG is flexible and easy to use, it also has its downsides. Parameters 

commonly represent a desired feature/element in the content to be generated. However, due to the 

randomness of PCG algorithms, the generation of the feature/element cannot always be 

guaranteed. Generated content always features a large degree of variation and requires further 

refinement to produce useful results (Lambre, 2012). If a game developer wanted a height map 

describing a valley instead of a mountain, it may be impractical to repeatedly generate the landscape 

waiting for a valley to generate when it can be manually added to the height map through another 

means. 

 

2.4.2   Chunk-based PCG 

Chunk-based PCG involves the storage of pre-made modules (Ichiro Lambe, 2012) from which a PCG 

algorithm selects and combines modules together to generate larger content. This method could be 

best described as having a tile-based or jigsaw puzzle approach, where smaller pieces of content 

make up the larger image. This methodology has seen extensive use in earlier video games such as 

the platformer game Super Mario Bros (1985) or the side scrolling shoot-em-up R-Type (1987) where 

space and computation was a limitation. The advantage of this algorithm is performance as the 

algorithm only has to focus on the combination and placement of chunks as opposed to generating 

the complicated detail and visuals of the chunks themselves. The disadvantage however is the 

requirement of pre-authored modules and repetition. 

A chunk-based approach to handling platformer level generation was proposed by Compton, K., & 

Mateas, M. (2006) where the structure of a level could be produced from various components 

during run-time. They noted that level design in platformer games relied heavily on rhythm. This 

rhythm could be the sequence of player actions, the occurrence of certain game elements or the 

difficulty of challenges presented in a game. Level geometry could be selected to encourage a 

certain sequence of actions from the player. Smith, G., M. Treanor, et al. (2009) acknowledged that 

the rhythmic patterns in level design helps the player reach a “flow” state leading to a better game 

experience. 

Jennings-Teats (2010) experimented with dynamic difficulty adjustment through the use of 

segmented procedural level generation. 2D side scrolling levels were generated based off feedback 

from players and statistical machine learning. An adoption of a rhythm-based platform generator 
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was used to generate levels (Smith, G. 2009). Results of this approach highlighted the difficulty of 

measuring the interaction of level components and the difficulty of measuring player experience 

during online (real-time) level generation. 

 

2.4.3   Search Based PCG 

Search based PCG (SBPCG) focuses on the use of metaheuristic algorithms to generate content. 

SBPCG aims to produce more refined content from the randomness of procedural algorithms. While 

other forms of PCG involved content being pre-defined or generated once, SBPCG makes use of a 

generate-then-test cycle where content is first generated then evaluated over though a series of 

iterations. (Togelius, J. Yannakakis, G. Stanley, K. Browne, C, 2010) During each iteration content is 

not just accepted or rejected, It’s graded with a value of fitness. This is why the evaluation function is 

known as the fitness function. Content with the best fitness value is then used to produce content in 

the next iteration. Hence, the algorithm aims to produce content with higher fitness values.  

The challenge in using such an algorithm lies in how to represent generated content and how the 

content can be evaluated. Often, generating content that just “works” is not enough. It is desirable 

to have content that improves the player experience. An effective search-space design and fitness 

function can evolve content to the point that it’s desirable. “The search space must be well-matched 

to the domain if it is to perform optimally.” (Togelius, J. 2010). In regard to this, numerous 

experiments involving SBPCG have been conducted. 

Hastings, Guha and Stanley (2009) developed a multiplayer space shooter entitled Galactic Arms 

Race game that used SBPCG. Players would fly a space-vessel around an arena engaging in dog-fights 

with their opponents whilst using a variety of different weapons. Weapons were represented as 

variable size vectors of real values. The fitness function evaluated weapons based off of how 

frequently they were used relative to how often the weapons sat unused in player’s weapon caches. 

Adaptations of the weapons most frequently used were generated resulting in certain types of 

weapons becoming more prominent in particular servers. The procedural variation of weapons 

available also resulted in an increased interest from players. 
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2.4.4   Agent-based PCG 

The last approach to PCG involves having a large number of computerized agents generate content. 

Agents are entities that perceive their environments through sensors and act upon it through 

effectors (Russell & Norvig, 1995). Agents themselves can work independently or together and can 

perform a series of functions. They could traverse a level to test viability (Shaker, Georgios, 

Yannakakis & Togelius, 2012), act as players to predict likely actions performed (Andrade, Ramalho, 

Santana & Corruble, 2005) or measure levels of adaption or balance in pre-generated content 

(Andrade, 2005).  

Lechner, Watson & Wilensky (2004) proposed a method to procedurally generate a city landscape. 

Agents were used to generate the most common components of cities. One type of agent would 

navigate the terrain to map a path for another type of agent to paint roads. Users could specify 

parameters on a planning interface which would guide agent behaviour. Notable outcomes of this 

research included the requirement for high performance agents to lower generation time and the 

increased complexity of the algorithm required when generating larger, more detailed maps. 

Kerssemakers (2012) produced a procedural level generator based on the platform game, Super 

Mario bros (1985). A series of Agents are used to represent levels, that could be generated, for the 

game based off a series of random actions the agent could make. Agents were used in SBPCG with a 

fitness function based on user experience, diversity of generated levels and performance. The 

approach was an attempt to produce procedurally generated procedural generators. Results 

concluded that such an approach to making games was feasible. Developing random generators 

produced levels faster than fixed generators. Such an algorithm has the potential for use during 

online (real-time) games. 
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2.5 Computerised Agents 
Computerised agents come from a branch of Artificial Intelligence in which an autonomous entity 

observes and acts upon an environment. Russell & Norvig (2003) grouped agents into five classes 

based on their perceived intelligence and functionality. These are the simple reflex agents, model-

based reflex agents, goal-based agents, utility-based agents and learning agents. The simplest 

classification of agent is the reflex agent which works upon a condition-action rule where specific 

actions occur as a reaction to particular conditions. This requires that the entire environment is 

observable in order to assess certain conditions.  

While the internal workings of agents vary, an Agent always has some form of interaction with its 

environment. Gathering some form of measurement from sensors, and then acting upon the 

environment through actuators. The model for a simple reflex agent is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 3. Simple reflex agent (Extracted from http://en.wikipedia.org/wiki/File:IntelligentAgent-
SimpleReflex.png) 
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2.6 Genetic Algorithms 
Genetic algorithms (GA) are a form of search heuristic developed to mimic the process of natural 

evolution. A population of initial candidates are iteratively improved over a series of generations to 

produce a better population. GA has been commonly used to provide solutions to optimisation and 

search problems where an apparent solution is not readily available.  

A genetic algorithm can be divided into four processes, these being Initialisation, Fitness and 

Selection, Genetic Operation and Termination. Figure 4 shows the processes and their interaction of 

a typical GA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Cycle of a Genetic Algorithm 

 

2.6.1   Initialisation 

Many individual solutions are generated to form an initial population. Each solution has a unique set 

of properties which can be altered. Traditionally they are represented in binary as strings of 0s and 

1s. Initializing the population randomly is usually in order to cover a wide range of possible solutions 

in the search space. However, individuals in the population can also be initially generated with some 

form of bias towards areas where optimal solutions are most likely found. 
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2.6.2   Fitness & Selection 

In each successive generation, a portion of the existing population is selected to produce the next 

generation. Individuals are selected based on a fitness value where individuals that display the best 

characteristics are used in the next generation. In GA, a fitness function derives the level of fitness a 

particular solution has. It is important to note that the fitness function is always problem dependant. 

While a solution could be deemed optimal, it may not always solve the problem at hand. In some 

cases, it can be hard to define an actual fitness function. 

2.6.3   Genetic Operations 

To generate the next generation from the selected candidates, various genetic operations are 

performed upon the current population. Crossover is the process by which two parent solutions are 

selected and used to produce a “child” solution. Mutation involves a random and selective change to 

the attributes of a solution. This process ensures variation in future populations. It’s important to 

choose a suitable rate at which mutation occurs, for a high frequency of mutation will result in a loss 

of good solutions or a low amount of mutation will lead to genetic drift where solution variants 

could disappear. 

2.6.4   Termination 

A termination condition must be reached in order to stop the algorithm’s cycle. Commonly used 

conditions involve finding a solution that satisfies the minimum fitness criteria, reaching a fixed 

number of iterations, or until the fitness no longer improves over a set number of cycles. Note that 

optimal solutions are only better in comparison to other solutions that have been explored. 
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2.7 Summary 
To summarise the key topics covered in this chapter, we’ve investigated key areas in video game 

development and computational science relevant to the work in this thesis have been investigated.  

The chapter looked at how fun is assessed in games, covering three key theories, Malone’s 

motivational theory (1987), Ralph Koster’s theory of fun (2003) and Csikszentmihalyi’s Flow theory 

(1975). Literature concerning the concept of Dynamic Difficulty Adjustment and its application in 

video games has been covered. Following this was a review of the constraints of level design in the 

2D platformer genre then literature covering procedural content generation and its use in video 

games. The technical review examined the concepts of computerized agents and genetic algorithms 

which are used in the approach developed in this thesis. 
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Chapter 3 – Project Testbed 
The test bed developed and used for this research is a 2D platformer game context in which a player 

can play procedurally generated game levels and assign them ratings. This test bed was required in 

order to implement the proposed approach and to perform experimentation to evaluate the 

developed approach. This chapter details how the game context was produced and how it supports 

this research. The chapter has been divided into sections describing the game context, input and 

output, level generation and level generation parameters. 

 

3.1 The Game Context 
A typical 2D platformer game context involves a player controlling a character (game avatar) and 

completing a series of game levels that make up the larger game. The developed game context 

involves a small rabbit character that must traverse hills, avoid hedgehogs, collect carrots and make 

it to the finish line to complete the level. A score indicator at the top of the screen presents the 

number of carrots the player has collected and the number of carrots available in the level. Figure 11 

illustrates the general appearance of the game. 

 

Smith, et al. (2008) presented a framework for the analysis of 2D platforming games. Components of 

a 2D platforming game can be categorized based on their role in the game. For example, obstacles 

have the role of preventing progress in a level and must be overcome in order for the player to 

continue. Following this framework, each of these components (game avatar, platforms, obstacles, 

movement aids, collectable items, and win conditions) is explained below. 

Figure 11. The game context used for this research, showing the player avatar (rabbit) jumping to a platform. 
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Game Avatar 
 

 

The game avatar represents the character controlled by 

the player/agent. For this game context, the game 

avatar character has the appearance of a rabbit. The 

playercan make the avatar move left or right and jump 

while playing the game. 

Platforms 
 

 

Levels in the game context make use of both platforms 

and small hills that the game avatar can run across. The 

game avatar can walk infront of small hills. Hills act as a 

platform when landed upon. A standard platform is 

always solid, airborne and the game avatar cannot move 

through them in any way. The role of platforms in the 

game is to help the player either to progress through a 

level or to collect points. 

Obstacles 
 

Obstacles are used as a major source of challenge in 2D 

platformer games, often through hindering progress or 

imparting damage upon the game avatar. There are two 

forms of obstacles in the game levels. The first obstacle 

is the terrain, which can be considered an obstacle as in 

some places the player cannot simply jump high enough 

to overcome a cliff and must make use of another 

component in order to continue. The second obstacle 

type is patrolling enemies. In the game context enemies 

are small hedgehogs that patrol along fixed paths back 

and forward at a constant speed, as shown in Figure 12. 

They will repeatedly patrol and if the game 

avatarcollides with one, they are knocked back losing 

control of their character for a short duration of time. 

 

Figure 12. A hedgehog in the game. 
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Both of these obstacle types are used to present 

challenges in levels. The specific method behind this 

implementation will be described later in this chapter. 

 

Movement Aids 
 

 

Movement aids help a player through a level in a way 

other than running or jumping. Due to the simplicity of 

the game only one movement aid is used to aid in level 

generation. In places where the terrain forms an 

impassable cliff face, the level generator produces a 

spring at the base of the cliff that can launch the game 

avatar over. The force with which the game avatar is 

propelled is scaled to suit the height of the cliff. 

Collectable Items 
 

 

Collectable points are scattered through the game level 

in the form of carrots. The game avatar can collect these 

as they play the game however they are not required in 

order to complete a game level. The role of collectible 

items is to address both Malone’s motivational theory 

(1987) and Bartle’s player types (1996). During game-

play, a player sets themselves personal goals. Having a 

point system encourages players to “collect all the 

points” and adds to the level of enjoyment in the game. 

 

Game Conditions 

 

The developed game has no loss condition; rather a 

player keeps playing until all levels are completed and 

then the game ends. To complete a game level the 

player must make it to the finish line located on the far 

right of a game level. 
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3.2    Game Input & Output 
The player uses both the mouse and keyboard to play. The keyboard is used for controlling the 

player character whilst the mouse is used to rate the game. The player character has a simple ability 

set comprising of walking and jumping. To use the abilities, the game receives input from the 

keyboard. Specific key presses result in certain actions being performed by the player character, as 

shown in Table 2. Note that the game was built to support the “QWERTY” keyboard layout which 

was used during all conducted experiments. 

Keyboard Key Action 

Up arrow, W Jump 

Left arrow, A Walk Left 

Right arrow, D Walk Right 

Down arrow, S Fall through backdrop hills 
Table 1. List of keyboard keys the player can use to control the player avatar. 

While the human player plays a game level, data is recorded to capture their behaviour during 

game-play. This data can then be used to derive player characteristics, which can then be used to 

control the behaviour of agents. These characteristics were derived from a combination of theory 

from the literature review and from observations made during early play-tests..  

The base move-speed of the game avatar is 4.2 units. The standard force of the avatar’s jump is 5.6 

units and the gravitational force applied to the character each frame is 0.18 units. The frame rate of 

the software is constrained to 60fps so processing is constant. 
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3.3 Level Generation 
The ability to procedurally generate game levels allows levels to be changed dynamically. A 

procedural level generator was built into the game context to generate levels using four input 

parameters: distanceFactor, timeFactor, scoreFactor and challengeFactor. Each parameter is a real 

number ranging from 0 to 1 that represents the desired amount of a game level feature. 

DistanceFactor represents the minimum travel distance required to complete the game level. 

TimeFactor represents the amount of time required to reach the end of the level. ScoreFactor 

represents the amount of points that are generated in a game level. ChallengeFactor represents the 

amount of enemies (hedge hogs) that are placed in the game level. Higher values for a particular 

parameter result in levels with a higher amount of the stated feature. 

Together these parameters produce unique levels of various difficulties. Representing a game level 

through four parameters instead of a single difficulty parameter is important as players have unique 

preferences and abilities when it comes to playing games. One feature of a game may prove more 

challenging to an individual then the other three. Using multiple parameters allows for exploration 

into how the game can be adapted to particular player’s preferences. 

The following sections will now cover an overview of how levels are structurally composed, how 

each of the four specified parameters is used to generate level elements and the resulting game-play 

of generated levels. 

 

3.3.1 Level Structure 

Smith G. et. al (2008) described how 2D platformer levels can be decomposed into cells containing 

particular game-play segments. These could be small areas such as a spike pit that the player must 

jump over or a group of moving platforms that the player must jump across though timing jumps 

correctly. In this game context, game levels are made up of 8 cells aligned side by side as shown in 

Figure 13. Each cell contains a particular path that the player is to travel when in that cell. These 

paths are represented by polynomial equations that can be constant, linear or quadratic. Each path 

starts at the end of previous cells path to form a consistent player path though the game level. An 

example is shown in Figure 14. Both the first and last cells use constant polynomials, resulting in flat 

player paths that allow for unique features at the beginning and end of a level. It is important to 

note that for the first cell of the game level, the player path begins at half the cell’s height, as shown 

in Figure 14. 
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Another structural element of this game is its tile-based nature. Levels are comprised of many tiles. 

Each tile can be any one of three types: Solid, Backdrop or Empty. Solid tiles are impassable and are 

displayed as the light colored foreground terrain that makes up game levels. Backdrop tiles make up 

the smaller hills described earlier that can be walked through and provides a solid surface above to 

land upon. Empty tiles are passable and have no particular graphic associated with them. After level 

generation, the assigned graphics are assigned to each tile to give the game level a consistent look 

and feel. 

Figure 13. Eight level cells (green) aligned horizontally to make a level. 

Figure 14. The player path (purple) through the level cells. 
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Together, both player paths and a level’s tile-based nature give us a reasonable structure to 

dynamically produce levels. Cells comprise of a fixed 24x72 grid of tiles. In assigning Solid, Backdrop 

or Empty tiles, we can define a level’s terrain, as in Figure 15, that is the surface the game avatar 

must traverse to complete the level. 

 

 

Figure 15. A level terrain generated to match the level cells and player path. 
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3.3.2 Cell Paths 

When a level is to be generated, the level generation algorithm takes the four input parameters: 

distanceFactor, timeFactor, scoreFactor and challengeFactor. The algorithm iterates over each cell in 

the level and generates a player path polynomial based on the level generation parameters for 

distance and time.  

Polynomials are mathematical expressions that contains multiple terms. Each term of a polynomial 

contains a constant (coefficient), a variable and an exponent and is defined by its order (the value of 

the largest exponent). A polynomial can be written as: 

 

      
 

 

   

            

An example polynomial of order 2 

 

The degree of a polynomial is the max of the degrees of the variables in its terms. A polynomial of 

degree 0 includes only the constant term. Polynomials of the first, second and third degree are 

known as linear, quadratic (Figure 16) and cubic (Figure 17) polynomials. Additionally, polynomials 

can be combined using multiplication, division, addition and subtraction.  

 

 

Figure 16. Polynomial of degree 2 

 

Figure 17. Polynomial of degree 3 

 

For the testbed, each cell in a game level uses a polynomial to represent a theoretical player path. 

This is the line that the player would have to travel along in order to traverse the level cell. A 

polynomial’s degree is randomly assigned to be either linear or quadratic. However both the 

beginning and final cell always generate a constant (flat) polynomial. Polynomials are also generated 

within the positive x and y Cartesian space. This is then translated and applied into world space in 

the game. 
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Each polynomial has a defined range for its highest order. This is specified by scaling a randomly 

generated real number, between a minimum and maximum value, by the level generation 

parameter of distanceFactor. This results in scaling the height of generated paths. A minimum and 

maximum coefficient value is specified so that a polynomial shouldn't exceed the height of a cell. 

Linear polynomials range from 0.05 to 0.8 and quadratic polynomials range from 0.3 to 0.8. 

Importantly only the left-most coefficient in the polynomial is assigned a scaling factor as explained 

above. The other coefficients default to 0.0. A higher value for distanceFactor results in steeper cell 

paths, a lesser distanceFactor results in shallower cell paths (Figure 18, Figure 19).  

So to summarize, the distance parameter scales the height of a generated polynomial through 

multiplication of the highest order coefficient. 

 

 

Figure 18. Distance parameter of 1.0 

 
Figure 19. Distance parameter of 0.5 

The level generation parameters distanceFactor and timeFactor enforce levels with higher amounts 

of each. While distanceFactor controls the height of generated hills, timeFactor controls the slope of 

paths. Polynomials can be either negative or positive. Positive polynomials create upward slopes 

while negative polynomials create downwards slope. 

 
 
 
 
 
 

Linear Positive 

 
 
 
 
 
 

Linear Negative 

 
 
 
 
 
 

Quadratic Positive 

 
 
 
 
 
 

Quadratic Negative 

 

Sloping player paths upwards or downwards varies the amount of time it takes to complete a level. 

Travelling up-hill takes notably longer than travelling downhill in game levels with gravity. So time 

can be manipulated through controlling ascent and descent in player paths. TimeFactor is used to 

specify player path gradients. In the first cell if the time parameter is greater than 0.5, the path 

slopes upwards otherwise it slopes downwards. For subsequent cells, the slope is forced into a 

positive or negative gradient if it has exceeded the cell bounds. If the path has remained within the 
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cell Y bounds, it is randomly assigned either a positive or negative gradient with a bias applied based 

on the timeFactor parameter.  

                                                                  

Bias is the variable that controls whether the path goes upwards or downwards. This encourages 

more downward trends when                 and more upward trends while              

0.5. 

As the player path is represented as a polynomial in 0 - 1 Cartesian coordinate space, but the cells 

themselves work with tile coordinates greater than 1, a transformation must be applied to cell tile 

coordinates from the player path. To do this, the polynomial is evaluated at an X tile coordinate 

resulting in a Y coordinate.  

                                           

These polynomial coordinates can then be transformed into cell space. 

                                    

                                    

This transform is used during the level generation algorithm to determine where the player path 

intersects tiles within a cell; and can be used for operations upon tiles from the bottom of the cell to 

the player path, such as setting all the tiles to Solid. The procedure for this is detailed in the 

following section. 

3.3.3 Cell Terrain 

Each cell is filled with tiles to provide a surface that corresponds with the player path. This enforces 

the player to travel along the cell path in order to complete that cell. A custom technique named 

“baseline filling” was created to fill cells with foreground tiles. The algorithm assigns a Y tile 

coordinate in a cell called a “baseline” then fills all tiles from the bottom of the cell to the Y 

coordinate, with foreground tiles. This baseline can adjust its Y coordinate several times in a cell. The 

process is as follows, visualized in Figure 20: 

1. Given a cell, start at the X coordinate of the lowest cell path tile. This is either on the 

leftmost or rightmost side of the cell. If both sides are the same, then start at the leftmost 

side. 

2. Set the baseline Y coordinate to the Y coordinate of the choosen tile from step 1.. 

3. Assign a number of baseline adjustments to be made within the cell. 
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Where       is the change in height of the cell path. Eg. Absolute value of (starting Y tile 

coordinate of cell’s path minus ending Y tile coordinate of cell’s path). 

4. Equally divide the cell width by the number of baseline adjustments. At each division, the 

baseline will adjust to the Y coordinate of the player path. 

5. Scan horizontally across the cell, iterating over each X tile coordinate. Fill all tiles from the 

bottom of the cell to the current baseline Y coordinate with tiles. 

 

 

Figure 20. Visualisation of the baseline fill technique 

Note that when filling tiles to the baseline, only tiles between 5 and (the height of a cell – 8) can be 

changed. This ensures that the terrain is at least 5 tiles high from the bottom of the cell and at least 

8 tiles from the cell ceiling. 

The above technique, when applied across an entire level, creates a surface comprising of numerous 

varying flat sections separated by cliffs. Future content can then be added onto these flats. However 

due to the randomness in the baseline adjustments, it is possible that some steep paths results in 

cliffs that are too high for the game avatar to traverse. Based on the extremity of the cliff, one of 

two level components is added: a backdrop hill (section 3.3.3.1) or a spring (section 3.3.3.2). 
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3.3.3.1  Backdrop Hills 

A second pass over all cells in a level is performed, which measures the height of cliffs going upwards 

in the level. If a cliff is within a certain height in tiles then a series of smaller backdrop hills (as shown 

in Figure 21) are generated to enable the game avatar to overcome the cliff. 

 

Figure 21. A backdrop hill 

The game avatar has a limited jump height and width of 3 tiles. The height of the cliff in tiles is 

divided by the jump height of the player avatar to determine the number of jumps required to 

overcome the cliff. Additionally the number of horizontal tiles from the base of the cliff to the 

previous cliff is recorded. These values are assessed to determine if backdrop hills can be used to 

traverse the cliff. 

If more than 3 jumps are required to traverse the cliff, a different level component, the spring, is 

applied (described in the next section). Or, if the flat space before the cliff is less than 5 tiles, the 

spring must be applied as well. 

If both of the above conditions are false, then backdrop hills can be used to overcome the cliff. The 

number of required jumps results in an equal number of backdrop hills being generated. Each hill is 3 

tiles high, as this is the maximum height in tiles a player can jump. The final hill can be 2 tiles high if 

the remaining cliff height doesn’t require the highest jump to overcome. 

Figure 22 shows a two jump backdrop hill to overcome a smaller cliff. For each required jump, the 

backdrop hill has been divided into smaller ‘hill’ sections placed side by side with increasing height. 

Each hill is randomly between 3 and 9 tiles wide, limited to the number of horizontal tiles available 

to build upon. Additionally, a random offset between 0 and 2 tiles is applied to add variation to hills. 

Backdrop hills allow for smaller impassable cliffs to be overcome by the player by jumping. 
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Figure 22. A two jump hill generated for a smaller cliff 

Additionally, hills have a chance of being generated randomly on larger flat areas provided that the 

horizontal tile space is greater than 8 tiles. Then the probability of a backdrop hill being generated is 

equal to 25 multiplied by the distanceFactor parameter.  
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3.3.3.2  Springs 

In the event that one of the two conditions described above is not satisfied (i.e. not enough space 

for hills or too high a cliff), then a level component called a spring is added at the base of the 

problematic cliff (Figure 23). A spring takes up a single tile and when stepped upon, adds a vertical 

impulse to the game avatar to launch them over the cliff. 

 

Figure 23. A spring generated to overcome a taller cliff 

The strength of this impulse must be strong enough to launch the game avatar over the cliff. So the 

strength is calculated based on the height of the cliff. Its equation is shown below. 

                      

Where   is the height of the cliff in number of tiles. 

The value 1.18 was calculated from movement speed measurements to provide enough velocity to 

overcome a single tile vertically with room to clear. 
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3.3.4 Platforms 

On a third pass over a level’s cells, platforms are introduced to add variation and complexity to 

levels. The use of platforms corresponds with Smith’s framework for analysis of 2D platformers 

(2008) and Malone’s motivational theory (1987) where the addition of platforms presents additional 

paths and details to game levels, thus appealing to a player’s sense of curiosity and challenge. 

Platforms comprise of single sets of horizontal foreground tiles. The game avatar cannot jump 

through platforms like backdrop hills but it can land upon them. Platforms are applied to a game 

level using two level generation parameters, timeFactor and challengeFactor. The following steps 

describe how platforms are applied to a game level. 

1. For each cell in a level, the probability of adding a platform is equal to              . If 

timeFactor is greater than 0.8, the chance of adding a platform is doubled. 

2. For each platform applied: 

a. Set its position to a random X coordinate in the current cell.  

b. Randomize the width of the platform in tiles from 3 to 6 tiles.  

c. Constrain the platform width to a value between 3 and (3*challenge). This ensures 

larger platforms for levels with greater challenge. 

d. Scan vertically downwards from the top of the cell for room to place the platform. If 

any non-Empty tiles are detected, the platform to be placed is vertically offset by 3 

tiles. This ensures that no platform intersects the terrain. Figure 24 shows two 

platforms that were generated over Backdrop or Solid tiles. Therefore, they were 

positioned 3 tiles above the intersection. 

e. Scan across from the platforms assigned X coordinate a number of tiles equal to the 

width of the platform and fill with foreground tiles. 

3. After a platform is added, additional checks are performed to determine whether to add 

other components to the platform. This can involve the placement of either a hedgehog or 

carrots. Both these checks are detailed later on in this chapter. 
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Figure 24. Platforms offset by hills and terrain 

 

3.3.5 Carrots 

Points are added to a level solely based upon the level generation parameter entitled scoreFactor. 

Points are added through one of 3 ways: an initial four points at the start of the level (as shown in 

Figure 25), a chance of applying points to platforms and; lastly from allocated positions throughout a 

game level. Points take up a single tile with the appearance of a carrot. As shown in Figure 26, when 

collided with the game avatar, the carrot explodes and the player receives a point. 

 

 

Figure 25. The initial four carrots of a level 

 

Figure 26. Player avatar collecting carrots 

 

To ensure score is always present in a level, a minimum of four points are added in the starting cell 

of each level.  

3.3.5.1   Platform Points 

Some platforms will have points randomly placed on them. The chance of this occurring is a 

percentage equal to 80 percent multiplied by the scoreFactor. The number of points applied to a 

platform is equal to the width of the platform minus two. Platform points are always placed 2 tiles 

above a platform and in the center, Figure 27. 
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Figure 27. Points generated on top a platform 

 

3.3.5.2   Point Clusters 

Points can also be scattered across a level in a similar manner to how platforms are assigned. A 

number of clusters are assigned to a level. This number is equal to (10 multiplied by the scoreFactor 

parameter) + 1. Each cluster is assigned a random x-coordinate position in the game level and a 

random width between 0 and the number of clusters. An example is shown in Figure 28. During the 

application of point clusters, if a non-air tile is in the way of a point then is vertically offset by 2 tiles. 

 

 

Figure 28. Two point clusters 

 

 

3.3.6 Level Challenge 

On-top of all implied challenge from traversing the terrain of a game level, two additional features 

are used to enforce challenge in a game level. Firstly, as mentioned earlier, platform sizes are scaled 

based on the challengeFactor. Secondly, the most prominent form of challenge in game levels is 

introduced through placing hedgehogs in the level. 
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The difficulty associated with hedgehogs is manipulated through modifying the number of 

hedgehogs in a game level and the hedgehog’s movement. The method of applying hedgehogs to a 

level is as follows. 

1. For each flat terrain space in a game level, probability of applying a hedgehog is 

100*challengeFactor, provided that: 

a. The flat space is over 5 tiles wide 

b. The flat space is not within the first or last cell of the game level 

2. When positioning the hedgehog, a random offset (in tiles) between 0 and (flat_width – 5 

tiles) is used. 

3. Finally, each hedgehog is assigned a patrol distance. This distance is equal to the flat space 

width minus the random offset + 2. If challengeFactor is less than 0.21, a lower level of 

challenge is required in the game level. Therefore, all generated hedgehogs do not patrol. 
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3.4 The Level Generator 
The Testbed makes use of a level generator that takes an input of four parameters with a unique 

seed number and returns a generated that satisfied these inputs. The Level generation parameters  

are distanceFactor, timeFactor, scoreFactor and challengeFactor. The level seed variable is used to 

seed the random number generator. Using the same 4 inputs and seed produces the same exact 

level. 

Testing was performed to ensure that the level generator could consistently adhere to the specified 

level parameters. The following comparisons test values of 1.0 and 0.5 for each parameter. All other 

level generation parameters are 0. 

 

 

Figure 29. Two levels with a distanceFactor of 1.0 (top) and 0.5 (bottom). All other level generation parameters are 0. 

Figure 29 highlights the difference between two levels generated with a distanceFactor of 1.0 and 

0.5 respectively; where all other generation parameters are set to 0. Note that the top figure, 

generated with a distanceFactor of 1.0, has a larger surface area with more evident hills. The bottom 

figure (distanceFactor of 0.5) has less surface area with no evident hills.  
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Figure 30. Two levels with a timeFactor of 1.0 (top) and 0.5 (bottom).  

Figure 30 shows two levels generated with different timeFactor variables (1.0 and 0.5). All other 

generation parameters are set to 0. Consequently, the level is flat because distanceFactor is set to 0. 

Therefore, timeFactor only influences the amount of platforms in the generated in each level. 

 

 

 
Figure 31. Two levels with a scoreFactor of 1.0 (top) and 0.5 (bottom). 

Figure 31 shows two levels, one generated with a scoreFactor of 1.0 and the other with a scoreFactor 

of 0.5. Notice how the bottom image (scoreFactor of 0.5) does not have any carrots besides the 

initial four. This is due to the other generation parameters being set to 0 so carrots cannot be added 

unless they are in clusters. The above figure (scoreFactor of 1.0) shows four carrot clusters 

generated due to the high scoreFactor parameter. 
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Figure 32. A level with distanceFactor of 0.5 and challengeFactor of 1.0. Note that the level has multiple hills and 
hedgehogs. However there are less platforms as timeFactor being zero. 

Figure 32 shows a combination of two level generation parameters (distanceFactor of 0.5 and 

challengeFactor of 1.0) with all other parameters set to 0. Each parameter reflects its qualities upon 

the resulting level. The distanceFactor parameter has resulted in a moderately sloped game level 

with a short decent. The challengeFactor has generated numerous hedgehogs in the game level that 

are guarding carrots. Due to timeFactor being zero, the level terrain slopes downwards and no 

platforms are generated. 

 

3.5 Summary 
This chapter described the testbed developed for this research, including the level generation 

algorithm, each level generation parameter and the resulting levels. The game context provides a 

means for assigning various quantities of level components in a game level, generated from 4 input 

parameters distanceFactor, timeFactor, scoreFactor and challengeFactor and a seed value. A game 

level generated with the same 4 input parameters and seed value results in the exact same level. A 

greater value specified for a generation parameter during the generation of a game level, the higher 

the quantity of the related components.   
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Chapter 4 – Proposed Approach 

This research explores dynamic difficulty adjustment adapting 2D platformer game levels to an 

individual player’s skill level through the use of procedural level generation and interactive 

evolutionary computation (IEC). The IEC technique used in this research involves a genetic algorithm 

that optimizes level generation parameter sets using a human player’s game-play characteristics. 

However, it is impractical for a human to evaluate every level solution in the GA cycle. Therefore, 

computerized agents that model the human player are a key part of the approach developed in this 

thesis to enhance the GA cycle. 

To generate the agent model of the player, the approach requires a human player to play a series of 

game levels in the research testbed (as described in chapter 4). Characteristics are captured during 

game-play and used to generate the agent, which is then used in a genetic algorithm to test game 

levels. The basic principle of using agents is to allow game levels to be played without requiring a 

human player and to accelerate the evolutionary cycle by providing a proxy for player ratings. 

This chapter presents details of the developed approach. This approach consists of three phases 

(Figure 33), each of which is detailed in the following sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. An overview of the proposed research approach phases, consisting of initial player agent construction (Phase 
1) followed by cycling between using the agent to evolve levels suitable for a player (Phase 2) and then player 
evaluation from which the agent model is updated (Phase 3). 
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1. Phase 1: Agent Construction, involves player-based evaluation of randomly generated game 

levels (5 in this study) to create an agent which is then passed to the next phase. Details are 

found in section 5.1. 

2. Phase 2a: Initial Population, involves a population of chromosomes (level generation 

parameter sets) being randomly generated to serve as the initial population for the genetic 

algorithm. This population is then repeatedly updated in each cycle of Phase 2b. 

3. Phase 2b: Genetic Algorithm involves running a genetic algorithm using the derived agent 

model to evaluate game levels, as detailed in Section 4.2. The agent and the best solution found 

after 10 generations is then passed to Phase 3. 

4. Phase 3: Player Evaluation has the player play the best game level generated in Phase 2, and 

using data from this play-through to update the agent using the newly acquired characteristics, 

as discussed in section 4.3. The updated agent is then passed back to Phase 2b which is then 

repeated to generate another level for the player. 
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4.1    Phase 1: Agent Construction 
The aim of this phase is to develop an agent model which can then be used for the evaluation of 

game levels during phase 2. A number of levels (five in this study) are randomly generated and 

sequentially presented to the player to complete. Data regarding the player's game-play are 

recorded and used to construct an agent model.  When all levels are completed, the developed 

agent model is then output to Phase 2 where it is then used for fitness evaluation in the GA. 

Additionally, after each level is completed; an enjoyment rating is collected from the player to be 

used for subsequent analysis. Figure 34 shows the components of Phase 1 with inputs and outputs. 

Details of the agent model will now be presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.1    Player Characteristics. 

In order to be effective, agents must mimic the way in which an individual player plays a game level. 

This ensures that game-play data collected will remain consistent with data gathered during the 

player’s evaluations. To do this, player game-play characteristics are captured during a player’s initial 

five game level evaluations. These characteristics represent the player’s game-play behaviour and 

are used to control agent behaviour during the GA cycles.  

Figure 34. Phase 1 of the proposed approach. A human player evaluates a number of random game levels (5 in this study) to initially 
create the agent model. 
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Agent characteristics are shown in Table 2. An average of the 5 recorded characteristic sets recorded 

from the player is used to initially configure the agent. 

These parameters are used as input to a set of rules that govern agent behaviour. For example, one 

parameter (Carrots collected) represents the probability of an agent deliberately collecting points or 

ignoring them. 

Agent Inputs (Player game-play characteristics) 

Name Measurement 

Random pause time Number of frames passed while character is stopped and idle. 

Hurt pause time Number of frames passed while character stopped and idle after being hurt. 

Pause frequency Number of times the player stopped during the game level. 

Carrots collected 
Ratio of number of points collected vs. Number of points generated. 

 
              

              
        

Response time 

Ratio of number of times player hit a hedge-hog vs. number of hedge hogs.  

 
             

                   
           

Clamped to (0 – 100) 

Spring use 

Ratio of number of springs bounced on vs. Springs generated. 

 
            

                 
) 

Clamped from (0 – 3) 

Random jumps 
                                   

Clamped from (0 – 100) 

Table 2. Player game-play characteristics. 

 

Whilst there are many characteristics that could describe a player’s behaviour, only seven were 

selected based on their influence on the four game-play attributes that form the basis of level 

generation by the GA. Characteristics that influence the distance, time, score and challenge 

experienced in a level were given more priority over others. For example, jumping repeatedly on a 

spring results in the game avatar traversing a lot of distance via the jump distance and speed. 

Consequently, a higher overall distance travelled is recorded for that game level. 

Pause times are recorded in terms of number of frames, where a frame is defined as a single 

iteration of the game update loop (everything updates by one interval). Frames were chosen rather 

than milliseconds as the game time was sped up for the agent-based game runs. 

After player characteristics are recorded from game play, they are saved into a list. This list stores 

the 5 last recordings. When an agent is initialized, the list is queried and for each characteristic, with 
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the average value of each characteristic returned. This becomes the characteristic input parameters 

for the agent. 

 

4.1.2    Agent Rule-sets 

The computerized agent model was produced to address the issue of user fatigue and limited time 

during input into the evolutionary cycle. This research involved the development of a reflex agent 

model (Russell & Norvig, 2003). Simple reflex agents work off two steps, perceive the immediate 

environment and then take an action accordingly. In a 2D platformer genre, rule sets are constrained 

as the game consists of a small number of simple goals. Thus, the simple reflex agent model was 

deemed suitable over more sophisticated agent models. 

The agent model uses a hybrid combination of a finite state machine and hierarchical rule set. Rules 

are selected and fired based on the agent’s immediate environment and its current state. For 

example, if the agent was to collect a point that is positioned above itself, the agent first looks at its 

current state (is it on the ground and able to jump?), and then perceives its environment (is it 

directly under the point?), and then acts accordingly (jump upwards). 

Operating upon a state-machine requires that agents maintain their own memory. So agents can 

determine their own state at run time. Importantly, states are used by the game avatar from which 

the either the player or agent controls. The states used by the game avatar are as follows: 

Name Description Transitions to... 

STATE_IDLE Character is idle and not moving.  

STATE_WALK Character is walking.  

STATE_JUMP Character has jumped upwards. STATE_JTOF 

STATE_JTOF Character is transitioning from a jump to a fall. STATE_FALL 

STATE_FALL Character is falling downwards.   

STATE_PAIN Character has been hurt and knocked up and backwards. STATE_IDLE 

 

  

Table 3. States used by both the player and agent state machines. 
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Figure 35 shows the state machine used by the game avatar. When an agent controls the game 

avatar, it uses the same model but instead of reading key actions from peripheral equipment such as 

the mouse or keyboard, key actions are fired through rules in the agent model. 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. A visual representation of the Player characters state machine. 

 

In order for an agent to complete a game level like a player, rule-sets were defined to enforce three 

goals during an agent’s evaluation. They are as follows: 

1. Get to the end of the level. 

o Prioritize moving to the right. 

2. Avoid obstacles in the way. 

o Prioritize moving upwards (jumping) 

3. Collect as many points along the way. 

o Change direction to collect detected points (carrots). 

1.  
While active, the agent is updated each frame in the application. During an update a list of ordered rules are 

evaluated. Each rule has certain conditions that must be met. These conditions are derived from a 

combination of the agent’s immediate environment and a probability defined by the agent’s input 

parameters. It is important to note that the agent’s behaviour is influenced through these input parameters 

and that the parameters are updated after each level play-through by the player. 

 

 

STATE_IDLE 

STATE_WALK 

STATE_PAIN 

STATE_JUMP 

Jump Key pressed 

Character Hurt 

Walk Key pressed/released 

Character landed 

Character Hurt 

Character landed 

Character Hurt 
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Tables 4 to 7 below present the rule-sets used to govern agent behaviour in this research. Each rule requires 

the game avatar to be in a certain state (walking, running, etc.) and meet specific conditions (perceive 

environment + input characteristics) before an action can be taken. The title of each table is based on the 

state required for that set of rules to be considered. Characteristic parameters and utility functions are 

denoted by italic text. 

 

STATE_WALK  - DIRECTION RIGHT 

Rules (ordered by priority) Conditions Actions 

Chance to randomly jump                 
            

  
 Jump 

Fall through background hill 

to collect carrots. 

                                 

 A point 2 tiles below agent from                      

 No hedge hog 2 tiles below in                      

Down 

Turn back to collect carrots 

if missed them on jump. 

                                 

 A point in                      

Left, 

Jump 

Jump to avoid hedge hogs. 

                             

 A hedge hog in tile                      

           >                               

 

Jump 

Jump to collect carrots. 

                                 

 A point within                      and 

                       

Jump, Down 

Jump to land on hilltops. 
 Background Hill in tile                     

 Empty tile above detected Background Hill tile. 

 

Jump, 

Scale X speed 

Jump to land on platforms. 
 Ground in tile                     . 

 Tiles above and below ground tile not Ground. 

Jump, 

Scale X speed 

Turn back to collect carrots 

on platforms behind agent. 

                                 

 Ground in tile          

 Tiles above and below Ground tile not Ground. 

 2 Tiles above Ground tile is a point. 

Left, 

Jump 

Jump to overcome cliffs. 

 Ground in tile                     . 

 Ground in tiles above and below detected Ground tile. 

 No hedge hog 2 tiles above detected ground from 

                      . 

Jump 

 

 

 

 

 

 

 

Table 4. Rule-set for the walking state and moving right. 
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STATE_WALK  - DIRECTION LEFT 

Rules (ordered by priority) Conditions Actions 

Slow movement if jumped 

left off of a cliff. 
 Empty tile in          from                     . Scale X speed 

Jump to collect carrots 
                                 

 A point 1 tile above agent from                     . 
Scale X speed 

Table 5. Rule-set for walking and moving left. 

 

STATE_JUMP – DIRECTION RIGHT 

Rules (ordered by priority) Conditions Actions 

Upon collecting a carrot 

during a jump, resume full 

speed. 

 Collected a carrot in last frame Max X speed 

Change direction to avoid 

landing on hedge hogs. 

                           . 

 Agent is travelling downwards where                . 

 Hedge hog in tile below agent from                   . 

Left 

If used a trampoline, slow 

movement. 

 

 Agent is travelling upwards faster than jump speed. Scale X speed 

Table 6. Rule-set for jumping to the right. 

Additionally, other rules, independent of the agent state but required in order to make use of other 

characteristics are shown in the table below. 

ADDITIONAL BEHAVIOUR 

Rule Conditions Actions 

Additional bounces on 

springs. 

 Agent just bounced on a trampoline 

                                 
Zero X speed. 

Delay after landing from 

a jump. 

 Just landed from a jump. 

 No current delay. 

                                  

Delay for 

                  

Delay after hitting a 

hedge hog 

 Just landed after getting hurt. 

 No current delay. 

                                

Delay for 

                

Table 7. Additional rule-sets used by Agents. 
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4.1.3    Agent Testing 

The agent’s behaviour was developed by evaluating its performance during tests on both minimal 

and complex game levels. In order to be acceptable, the agent has to meet certain performance 

standards. 

1) Agents have to be able to complete game levels. 

2) Agents have to accurately reflect the characteristics of the player they are based on. 

 

Agents must be able to complete game levels in order to accelerate the evaluation cycle of the 

genetic algorithm. Primarily, this was addressed through careful implementation of the hybrid rule 

system. Agents were run with the same frame-rate as that used during player evaluation. This 

allowed for visual evaluation of the agent’s behaviour and allowed for the refinement of the rule 

system. Testing was conducted to assess the performance of agents on both minimal and complex 

levels. However, even with careful construction of rule sets, in some cases agents could not 

complete game levels.  

While an agent is adaptable due to its ability to perceive and then act upon its environment, 

sometimes the environment itself was not possible to traverse. In rare cases, the terrain had 

impassable cliffs or the agents rules resulted in logic loops. During test runs over several hundred 

randomly generated levels, it was found that agents could not complete approximately 3% of levels.  

To resolve the above issues, the progress of agents during attempted completion of a level was 

monitored. The further-most X coordinate an agent has reached during a level was monitored. If no 

progress occurred after                                           ) frames then the 

agent would reset and a new level with the same generation parameters would be produced and 

given to the agent. This fix has no consequence on the evaluation procedure other than delaying the 

time taken. 

Additionally, tests were conducted to ensure that agents could accurately reflect the same 

characteristics. This procedure is detailed in section 4.2.2.1, Attribute Testing. 
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4.2    Phase 2: Genetic Algorithm 
This section details Phase 2a and Phase2b of the proposed approach, incorporating interactive 

evolutionary computation with agent based evaluation to perform dynamic difficulty adjustment. 

Phase 2 is divided into two parts, namely Phase 2a and Phase 2b. Figure 36 below shows the 

components of both phases with their input and output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Phase 2 of the proposed approach divided into two parts. Phase 2a involves the generation of an initial 
population that Phase 2b can work off. Phase 2b involves running the genetic algorithm for a number of generations (10 
used in this study) using agent-based evaluation. 
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4.2.1    Phase 2a:   Initial Population 

Phase 2a is a step between Phase 1 and Phase 2b where an initial population of level generation 

parameter sets (i.e. chromosomes) is generated. The aim of this phase is to provide a population for 

the GA to start and update with each generation. 

Solutions (represented as chromosomes) in the GA are represented as sets of four level generation 

parameters. Each parameter is encoded as a real number ranging from 0.0 to 1.0 that corresponds 

with one of four level generation parameters: DistanceFactor, TimeFactor, ScoreFactor and 

ChallengeFactor. These solutions can be passed directly to the level generation algorithm which 

results in a corresponding game level being generated. The genetic algorithm in Phase 2 is to evolve 

a population of these candidate levels to suit a player’s skills.  

For the purposes of this research, a constant population size of 50 solutions was used. Each solution 

in the initial population is randomly generated through randomly generating a real number between 

0.0 and 1.0 for each parameter. After the initial population has been generated, it is passed to Phase 

2b. 

 

4.2.2    Phase 2b:    Genetic Algorithm 

The development of an interactive genetic algorithm is a critical step in this research approach for 

game levels to be optimized to suit player skill levels. The cycle of a typical GA is outlined in the 

literature, section 2.7, Figure 4. The fitness of each solution in the population is evaluated. Genetic 

operators are applied to the population through selection, mutation and crossover schemes. If 

termination conditions are met then the GA cycle terminates, otherwise it repeats the cycle again.  

An interactive GA varies from the traditional GA through incorporating external evaluation to 

determine the fitness of individual solutions. The following sections detail each of the components 

of the IGA developed for this research with identification of the issues encountered. It is important 

to note that GA’s design details are problem dependant and that this chapter presents the GA used 

for the proposed approach. 

The following sub-sections detail each of the components depicted in Figure 37. Phase 2b works with 

the last updated population. On the first generation just after Phase 2a, this would be the randomly 

generated population of solutions. After fitness evaluation has been performed on the current 

generation, genetic operations are performed. These include selection, crossover and mutation 

which results in a new population that is evaluated once again. 
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4.2.2.1    Fitness Evaluation 

The fitness evaluation phase is where the interactive genetic algorithm varies from traditional GA 

implementations. Fitness values need to be assigned to each solution in the current population. To 

assign these fitness values, each solution in the population is passed to the procedural level 

generator from which a game level is generated and then evaluated by the computerized agent.  

The evaluation of a game level involves using the constructed agent model from Phase 1 to complete 

the game level. During the evaluation of game levels from both the player and agent, attributes of 

game-play are measured. These variables are used during the fitness calculation process to 

determine the fitness of the level. Table 9 shows the attributes measured during game-play and the 

process by which they are calculated. Note that italics denote variables measured during the game-

play. 

Difficulty Attributes 

Name Measurement 

Relative Distance 
travelled 

Ratio of the actual distance travelled in the level versus the estimated 

shortest path distance from start to finish. 

                                    

                  
 

Clamped to (0.0 – 1.0) 

Time taken Ratio of the time taken to complete the level versus the estimated time that 

will be taken. 

                            

              
 

Clamped to (0.0 – 1.0) 

Score achieved Ratio of the score collected versus the score generated in the level. 

     
              
              

  

Clamped to (0.0 – 1.0) 

Challenges beaten Ratio of the number of hit occurrences against hedgehogs versus the number 

of hedgehogs generated. 

 
                    

                  
  

Clamped to (0.0 – 1.0) 

Table 8. Difficulty attributes used to evaluate game levels. 

Distance_travelled is used to predict how close the agent/player was to the estimated distance 

required to traverse the level. Two values are required to compute this attribute, the actual distance 

travelled by the agent/player in the game level and the estimated distance (using linear 

approximation of the player path length) required to complete the game level. 
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Distance travelled by the agent/player is recorded as the number of “units” (pixels) travelled by the 

game avatar. Note, that a tile in a game level is 32 units (pixels), a level cell is 24 tiles wide and a 

level has 8 cells aligned horizontally. During game-play, a movement value is incremented with all 

movement made by either the player or the agent along the x and y axis in the game world. This 

accumulation of distance becomes the overall distance the player/agent travelled in the game level. 

The estimated distance required to complete a level is calculated by solving the polynomials 

describing the path for each cell. Polynomials are explained in section 4.2 in the last chapter. It was 

also previously explained how game levels consist of 8 cells aligned horizontally; and how each cell is 

24 tiles wide and has a single player path defined by a polynomial. To get the length of a cell’s 

polynomial, each individual tile across the width of a cell is used to create a series of vectors. Each 

vector spans from the starting X coordinate of its tile to the ending X point of the tile. The Euclidean 

distance from the start point to the end point of this vector is then calculated and added together 

with the magnitudes of all the tiles in the level’s cell. This results in an approximation of the distance 

of the cells path. These steps are repeated for each of the 8 cells in a game level, resulting in an 

overall estimated distance required to complete the level. The predicted distance for a level is 

calculated during the level generation algorithm. 

Attribute Testing 

Tests were conducted during development to ensure that agents could evaluate game levels in the 

same way a player does. To achieve this, a series of measurements were recorded from an agent 

playing the same level repeatedly. The predicted attribute amount was compared against the 

recorded measurement from a player for each attribute. Testing was performed against two level 

extremes; levels generated with maximized parameters and levels generated using minimal 

parameter values. Essentially, minimal flat levels and complex detailed levels. 

The attribute Distance_travelled was tested through recording the predicted distance (as explained 

in the above section) and comparing it against the actual distance travelled of the game avatar. 

These tests were applied with both human players (the research team) and agents with varied 

characteristic levels. For veteran players and efficient agents, less variance was expected. Flat levels 

returned promising results, as a quick run through resulted in nearly identical values for both agents 

and human tests. However, in the case of more complicated levels being tested using the agent, 

significant variance was found.  

More complex levels have larger hills and increase the risk of actions having more effect on attribute 

measurement. For example, if an agent/player were to miss a jump from a cliff to a platform, a large 

amount of travel distance is required just to get back to the original jump position again. The same 
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applies for mis-stepping off of a cliff that the agent/player needs to be on top of. These actions 

result in higher distances being recorded. A series of agent trials were performed upon a minimal 

level and maximum level to ensure that measurements were accurate. The standard deviation 

between the measured distance and estimated distance was around 63 units with an average 

variance of 0.7%.  

Time_taken is the attribute describing a ratio between the time taken to complete a level in game 

frames and the predicted time taken to complete the game level. Much alike Distance_travelled, 

Time_taken was found to be proportional the how complex the level was. 

 

Fitness Function 

After agent evaluation of a game level has been completed, the difficulty attributes are calculated 

from the measurements taken during the agent’s game-play. The fitness function takes recorded 

difficulty attributes from the agent as input and returns a fitness score as output. Importantly, this 

fitness score is generated from multiple performance variables. Table 8 shows each of the difficulty 

attributes, namely: RelativeDistanceTravelled,  TimeTaken, ScoreAchieved and ChallengesBeaten. 

DDA involves matching the difficulty experienced in a game level to a NotionalTargetDifficulty. 

Consequently, the fitness function was designed to give higher fitness values based on how close the 

difficulty experienced by the agent was to the NotionalTargetDifficulty. The principle behind this is 

that in adjusting game levels to a specific NotionalTargetDifficulty, players of either a high or low skill 

level experienced the same degree of difficulty from the game. For example, if the 

NotionalTargetDifficulty is set to 0.5 (with max = 1), the difficulty of evolved game levels will be 

adjusted to 50% for the skill level of the human player of interest (i.e. the player whom the approach 

is attempting to identify a suitable game level for). If NotionalTargetDifficulty is set to 1.0, evolved 

game levels will be adjusted to 100% of the skill level of the human player of interest. 

To determine the best value for this NotionalTargetDifficulty, an empirical study was conducted. The 

results from this empirical study are detailed in Section 6.1. 

To calculate the difficulty experienced by an agent during the completion of game level, a simple 

linear difficulty equation was used to calculate an overall difficulty experienced value from the 

recorded difficulty attributes. Since all difficulty attributes are real numbers ranging from 0.0 to 1.0, 

the values are averaged together to determine the overall difficulty. The equation is shown below.  
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In this research, where an interactive genetic algorithm is concerned, the fitness function takes the 

                  variable as input and assigns a fitness value to that solution in the population. Figure 

11 shows the equation used to calculate the fitness score, a real number between 0.0 and 1.0. 

                                                           

Figure 37. The equation used to calculate fitness. 

Fitness is defined by how closely the difficulty experienced by the agent during the completion of the 

game level is to the NotionalTargetDifficulty. The absolute difference between these values is 

subtracted from 1.0 resulting in a real number, where the higher the value, the greater the fitness is. 

Due to the stochastic nature of the procedural level generation in the testbed and the agent rule 

sets, each game level evaluation is only an estimate of level fitness. However, the time taken to 

process all the populations using this approach was time consuming (two minutes during Phase 2b). 

Only one evaluation of each game level was conducted to minimise player waiting time between 

levels. 

 

4.2.2.2    Selection 

An appropriate selection scheme is required for the effective operation of a GA. Solutions must be 

selected from the current population in order to perform genetic operations upon and save to the 

next population. This research used Stochastic Universal Selection (SUS) due to its support for fitness 

proportionate selection (FPS) where solutions with higher fitness values are more likely to be 

selected. SUS exhibits no bias or minimal spread across a large range of varying fitness values (Deb, 

K. 2001). As opposed to other FPS selection schemes such as roulette wheel where solutions are 

picked from the population through repeated random sampling, SUS samples all solutions in the 

population using a single random value and selects solutions at evenly spaced intervals. Solutions 

with lesser fitness values still have a chance to be selected. 

The developed GA includes an elitism scheme where a select percentage of solutions with the 

highest fitnesses are carried over to the next generation unaltered. The principle behind elitism is 

that creating a new population through only crossover and mutation, some of the best solutions will 

be lost. Elitism avoids this issue as it prevents losing the best solution whilst at the same time rapidly 

increases the performance of the GA. A four percent elitism factor is used in the GA, resulting in the 

two best solutions carrying across to the next generation. 
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4.2.2.3    Genetic operators 

After fitness evaluation of the initial population is completed, genetic operators are applied on 

members of the current population to form solutions in the next population. Section 2.7.3 provides 

details into how genetic operators are used. 

Crossover 

For each new solution in the next population, a pair of solutions from the current generation is 

selected for a process known as crossover. This process results in two offspring or “child” solutions. 

The idea is that and offspring carries over characteristics of the two “parent” solutions into the next 

generation. There are many crossover techniques and these include: single point crossover (SPC), 

uniform crossover (UC) or arithmetic crossover (AC).  

Uniform crossover is implemented in this approach which involves a chance to randomly swap a 

particular element between the two parents. With experimentation, a crossover probability of 40 

percent was applied in the genetic algorithm. Too high a recombination rate can lead to premature 

convergence and too low a recombination rate results in too few characteristics carrying into the 

next generation. During the crossover procedure itself, each of the four parameters in a solution has 

as 50 percent chance to be applied to the child solution. 

Mutation 

Mutation is a technique commonly used in genetic algorithm to maintain genetic diversity in 

populations over several generations. Too low a mutation rate can lead to genetic drift where all 

members of a population become similar and diversity of solutions is lost. Too high a mutation rate 

could result in the loss of good solutions unless backed by an elitism scheme. Although the GA does 

make use of elitism, the elitism factor used here is not high enough to support higher mutation 

rates. 

Typically, mutation involves randomly modifying elements (genes) in a solution (chromosome), as 

detailed in Section 2.7.3. This can be done through inversion: where selected genes are inverted, 

order changing: when two genes are randomly selected and exchanged or addition: where a small 

number is added to a gene value. Since game level solutions are encoded as a set of four real 

numbers, Polynomial mutation (Deb, 2001) is applied to each member of the population. 

A 25 percent chance of mutation is applied to each parameter in a solution.  Polynomial mutation 

applies a probability that a solution is perturbed. On-top of the mutation chance, a variance of 0.1 is 

used to define the range that the resulting number can be within. So for example, mutation of a 
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value of 0.5 results in a value within 0.4 and 0.6 with a higher chance for the resulting number to be 

near 0.5. Figure 38 visualizes this example. 

 

 

 

 

 

Figure 38. Probability of resulting number from polynomial mutation using the value 0.5 with a variance of 0.1. 

This technique results in higher diversity in mutations. Local minima are avoided as each subsequent 

population of chromosomes maintains variation through polynomial mutation. 

 

4.2.2.4    Phase 2 Summary 

To summarize, Phase 2 involves running an interactive genetic algorithm using agent based 

evaluation. A constructed agent is passed from Phase 1 as input into Phase 2. Phase 2 is divided into 

two parts. Phase 2a involves generating an initial population of random level solutions. Phase 2b 

involves performing 10 iterations of the genetic algorithm using agent based evaluation. The 

configuration of the genetic algorithm is shown in Table 11. 

GA Configuration 

Variable Scheme Value 

Crossover  Uniform Crossover 40% 

Mutation Polynomial Mutation 25% 

Selection Stochastic Universal Selection N/A 

Elitism - 4% 

Population Size - 50 

Genome Length - 4 
Table 11. The parameters used to configure and control the genetic algorithm in Phase 2b. 

 

  

0.5 0.4 0.6 
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4.3    Phase 3: Player Evaluation 
Phase 3 involves the human player’s evaluation of the solution with the highest fitness from the 

current population, obtained from the completion of one iteration of Phase 2b. During this 

evaluation, player characteristics are recorded and used to update the agent model. The current 

characteristics are averaged with the last 4 recorded characteristics and the result applied to the 

agent. At the end of the completed level, the player provides an enjoyment rating which will be used 

during later analysis. Figure 39 below shows the components and process of Phase 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 39. Phase 3 of the proposed approach. The human player plays the best found solution in phase 2b. If at the end 
the player wants to play more levels then Phase 2b is repeated, otherwise the process terminates. 

 

After the player has evaluated the game level, the program either terminates or phase 2b is 

repeated again based on whether the player is going to play another level. For the purposes of this 

study, the player plays 5 levels. The experiments to evaluate this approach (detailed in chapter 6) 

required all players to play five evolved game levels on top of the initial five random levels. 

Phase 3 

 

Testbed 

Procedural Level Generator 

Player 

Agent 

Update 
Characteristics 

Level 

Repeat Phase 2b 

(generate another 

level) 

 
Game Finished? 

No 

Yes 

Best Level found in Phase 2b 

Terminate 



Research Dissertation 68 | P a g e  
 

4.4    Summary 
This chapter details the developed approach used to undertake this research. The approach consists 

of three phases, each of which plays a unique role in performing DDA. Phase 1 involves constructing 

an agent model and having the player of interest evaluate five random game levels. Characteristics 

of the player are used to control the behaviour of computerized agents which evaluate game levels 

in the players stead during the evolutionary cycle. Phase 2b involves running the genetic algorithm 

to evolve game levels which are then presented to the player in Phase 3. The following chapter will 

detail the experiments conducted as part of this research with their findings. 
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Chapter 5 – Experimental Results and Discussion 
This chapter details the experiments conducted to evaluate the developed approach and presents 

the results obtained with analysis of findings. Two experiments are detailed in this chapter: 

1) Experiment 1: Empirical study to determine NotionalTargetDifficulty. 

2) Experiment 2: Evaluation of the approach 

Experiment 1 involves performing a series of trials to find a suitable setting for 

NotionalTargetDifficulty of the game levels which is used in the fitness evaluation step. Experiment 2 

involved conducting game trials with human participants to evaluate the developed approach in 

terms of its potential in evolving game levels that suit the skill level of each participant. 

5.1    Experiment 1: Empirical study to determine NotionalTargetDifficulty 
The aim of this experiment is to explore and determine an appropriate value for the 

NotionalTargetDifficulty variable used in the IGA fitness function. Section 4.2.2.1 details the 

requirement to specify a NotionalTargetDifficulty relative to the skill level of a player. If set to a low 

value, players will experience lower difficulty relative to their skill level. If set to a higher value, 

players will experience a higher difficulty relative to their skill level. The following sub-sections detail 

the procedure of conducting this experiment (Figure 40), the materials used and the results obtained 

with analysis. 

Experiment 1:    Procedure 

Step 1. Capture characteristics from beginner and experienced human players. 

Step2. Use characteristics from step 1 to produce: 

o A beginner agent (B) 

o An experienced agent (E) 

Step 3. For each agent of the agents (B, E): 

o For NotionalTargetDifficulty less than 1.0, increment NotionalTargetDifficulty by 0.1 

and do the following: 

o Perform 10 GA runs across 50 generations using the agent to evaluate game 

levels.  

o Record the maximum, minimum and average fitnesses for each generation. 

Step 4. Produce averaged fitness plots for the results of each GA run, for each 

NotionalTargetDifficulty increment during step 3. 

 

Figure 40. The steps involved in conducting Experiment 1: Empirical study to determine NotionalTargetDifficulty 
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To determine an appropriate NotionalTargetDifficulty, a total of 20 runs were conducted: 10 with an 

inexperienced player model agent and another 10 with an experienced agent, were each performed 

on a range of NotionalTargetDifficulty from 0.0 to 1.0, incremented by 0.1 each run. Each run 

involved 10 GA generations using only agent evaluation with the set NotionalTargetDifficulty value. 

Additionally, each run was repeated 10 times with the results averaged together. The experienced 

agent characteristics were acquired from the author of this thesis, who developed the game context 

and has a high level of experience in 2D platformer games. The beginner agent characteristics were 

captured from an elderly participant who had no experience in games at all. The measured 

characteristics of both players are listed in Table 10. 

Characteristic Experienced Player Beginner Player Units 

Random pause time 15 37 Frames 

Hurt pause time 0 12 Frames 

Pause frequency 3 62 Number 

Carrots collected 100 91 Percentage 

Response time 2 11 Frames 

Spring use 0 0 Number 

Random jumps 0 0 Number 
Table 9. Acquired player characteristics for performing agent trial runs during the GA configuration process. 

 

Figure 41 and Figure 42 show the resulting fitness plots for each run set of 10 runs (averaged) for the 

experienced and beginner agent respectively. 

Figure 41 consists of 10 plots for each NotionalTargetDifficulty level tested using the experienced 

agent, where the top right-hand plot shows the results from using NotionalTargetDifficulty of 0.1. 

From observations of this plot, it was relatively easy for the GA to produce suitable levels at a low 

difficulty level as the maximum fitness was substantially high in the first generation and remains high 

during each subsequent generation. A small increase in maximum fitness can be observed in 

generation 4. The minimum fitness begins at 0.0 but improves in each generation until around 

generation 48. The average fitness begins at 0.8 and increases to around 0.97 after 40 generations. 

The second plot in Figure 41 shows an averaged fitness plot for a NotionalTargetDifficulty value of 

0.2. The trends of this plot are similar to the NotionalTargetDifficulty of 0.1. It can be observed 

however, that the maximum fitness increases sooner and the minimum fitness peaks sooner around 

a fitness of 0.8 in generation 31. The average fitness shows slight increase in the first 5 generations 

and then sits around a fitness of 0.9 for subsequent generations. 
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For each plot in Figure 41 with a NotionalTargetDifficulty of 0.3 or higher, the minimum and average 

fitnesses do not achieve as high a result as the earlier two plots. The plot for 0.3 shows an initial 

increase in average fitness but then a decrease from generation 6 onwards down to a minimum of 

0.81 in generation 47. Minimum fitnesses improve rapidly in the first few generations but peak at 

increasingly lower fitness scores. The highest minimum fitness reached is seen in the plot with a 

NotionalTargetDifficulty of 0.2 at a score 0.82. The lowest minimum fitness reached is shown in the 

final plot where NotionalTargetDifficulty equals 1.0. Average fitnesses that achieve lower scores can 

also be seen across subsequent plots. These observations indicate that as challenge increases, there 

are less suitable game levels and a high variance of solutions in each generation. 

For Figure 41, the plot for a NotionalTargetDifficulty of 0.8 is observed to be of the most importance 

as the maximum fitness shows the highest improvement over time whilst achieving a high fitness 

score around 0.9. Earlier plots achieve higher maximum fitness scores but show less increase in 

fitness whilst later plots have lower starting maximum fitnesses that do not reach as high. Notably, 

NotionalTargetDifficulty values above 0.8 results in lower fitness scores, achieved over a greater 

number of generations, meaning it is harder to create a level with a NotionalTargetDifficulty that is 

still suitable for the player. 

Figure 42 shows the fitness plots for each tested NotionalTargetDifficulty value using beginner 

agents. Each fitness plot is similar to the same NotionalTargetDifficulty plot in Figure 41. A 

NotionalTargetDifficulty of 0.8 was thus selected for use during Experiment 2 as it expresses a higher 

level of difficulty whilst reaching higher fitness values in the GA cycle. 
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Figure 41. Averaged fitness plots for each of the 10 trials on a specific target difficulty using the experienced agent. 
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Figure 42. Averaged fitness plots for each of the 10 trials on a specific target difficulty using the beginner agent. 
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5.1.1  Discussion 

Two criteria are important for determining the best target difficulty value. Firstly, which target 

difficulty expresses the highest amount of learning in the GA? Secondly, how do the maximum, 

average and minimum fitnesses of each generation behave over five iterations of phase 2? 

A lower target difficulty score achieves high fitness ratings from both experienced and beginner 

agents in the first generations. That is, easier levels do not require agents as there are a lot of 

initially suitable levels. However the evolution of levels with higher target difficulty scores required 

more generations of the genetic algorithm, where the highest fitness was achieved around 

generation 40. With so many generations required, agents provide the best means for achieving this 

as a human player cannot perform as many evaluations as an agent can. Based on these results, it 

can be ruled that agents provide a means for accelerating the evolution of more challenging game 

levels. 
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5.2    Experiment 2: Evaluation of the approach 
This section details the experimentation conducted to evaluate the approach developed in this 

research with trials conducted using human participants. In order to determine if interactive 

evolutionary computation can be used to perform dynamic difficulty adjustment, this experiment 

was conducted across a range of players with various levels of experience. The following sub-

sections describe the experiments carried out to conduct this research, followed by a detailed 

analysis of the gathered data and the observed results. 

5.2.1    Data Collection Procedure 

The data collection phase involved conducting play-testing sessions where participants would each 

play the game and then complete an online questionnaire. Figure 43 shows a typical play-through 

which involves an introduction screen where the player enters a username, then completion of both 

phases of the game, that is 5 random levels in phase 1 followed by 5 adapted levels in phase 2. 

Following this, the game is completed and the participant fills out an online questionnaire that is 

used to gather demographic data. 

 
 
 
 
 
 
 
 
 
 
 
Figure 43. The steps involved in a participant role during experiment 2. 

 

Completion of a single game and questionnaire took approximately 15 minutes on average. The time 

taken to complete was dependent on the skill level of the participant and the time taken for the GA 

cycles to complete. Game sessions were run over the course of two weeks in order to collect as 

many participants as possible. The experiments were approved by the Edith Cowan University, 

Faculty of Health, Engineering and Science. 

 

 

 

Phase 1 

  

Questionnaire Phase 2 

Complete 5 
random levels 

Complete 5 
adapted levels 

Fill in online 
Questionnaire  

Intro 

Player enters 
Username 



Research Dissertation 76 | P a g e  
 

The following list details the instruments and materials required to conduct the game sessions. 

 Computer lab of windows PCs 

 Developed game software 

 Survey monkey online questionnaire 

 

5.2.3    Recorded Data 

During each phase of game-play, data was collected and recorded for analysis. Specifically, collected 

data consisted of: 

1) An enjoyment rating from the player after each level was completed.  

2) The behavioural characteristics of the derived agent model of the player. 

3) Data recording each population and associated fitness values from each generation of level 

generation parameters. 

4) Online questionnaire data for each player. 

Details of the gathered data are now provided. 

Enjoyment Ratings 

Enjoyment ratings were collected to determine how participants felt about each level they played. 

Figure 44 shows the rating screen presented at the end of each game level. Players select a rating 

ranging from 1 to 10. Analysis of this data over a series of levels provides a measurement for how 

levels adapted to the player over time. The basic hypothesis behind this is that if the proposed 

approach is successful, the difficulty of each adapted level will have scaled to suit the player’s skills, 

resulting in a more enjoyable experience for the player. 

 

Figure 44. The rating screen as seen in the developed video game. 
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As discussed in the literature review (Section 2.1.2), the basis of dynamic difficulty adjustment relies 

on creating an effective Flow state for the individual player (Nakamura, J., & Csikszentmihalyi, M. 

2002) where the challenge matches player skills. Therefore, higher enjoyment ratings may be linked 

to a stronger Flow state. 

 

Player Characteristics 

Characteristics describing a player’s game-play style are used to control agent behaviour during level 

evaluations. These characteristics are collected during phase 1 to produce an initial agent model. 

Player characteristics are saved to a file so that they can be assessed later (categorize players by skill 

level).  

To examine the characteristics of the approach for players of different skill levels, data is categorized 

using a player skill model. This was used to develop a model for estimating the human participants’ 

level of skill based on PauseFequency, ResponseTime and CarrotsCollected. The formula for doing so 

is shown below.  

                                                                         

                          

 

The function Clamp(A,B,C) restricts the variable A to be within the values B and C by constraining the 

value A to C if greater than its value and constraining A to B if lower than that value. Under this 

scheme the maximum SkillLevel possible is 96 with the minimum being 0. The player was then 

categorized into one of three skill levels based the scale shown in Figure 45. The scale is derived 

from splitting the maximum weight (96) into 6 divisions. A single division is used to denote 

experienced players, a further two denote average players and a further 3 divisions specify beginner 

players. 

Skill Level Classification 
 
 
 
 
 
 
Figure 45. Player skill level classification scale used to categorize participant’s agents into one of three skill categories. 

 

96 48 16 0 

Experienced Average Beginner 
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Experiment 2’s post-game questionnaire also included a self-assessment question for video game 

skill; however classification using recorded player characteristics provides more direct and objective 

skill estimation based on actual game-play rather than self-assessment which may be biased.  

 

Population Fitnesses 

Each population and their calculated fitnesses were recorded during each GA cycle in Phase 2b. 

Recorded fitnesses over time was used to analyse the convergence of the interactive genetic 

algorithm. 

Online Questionnaire 

An online questionnaire was developed using the online survey site ‘Survey Monkey’. This was 

completed online in a browser that is opened upon completion of the game. Only demographical 

data is collected on the player, specifically data concerning gender, age and experience is collected. 

The anonymous username, used to play the game, is to be entered at the start of the questionnaire. 

This username is required in order to match gathered game-play data against collected 

questionnaire data. The full questionnaire together with information presented to the player prior to 

their participation and informed consent form are provided in Appendix 1. 

 

5.2.5    Experiment Results 

A total of 17 participants completed the experiment. Each participant was then categorized into one 

of three skill groups, using the scale from Figure 45, based on their recorded characteristics.  

Figures 46, 47 and 48 show the averaged convergence plots for the beginner, average and 

experienced players respectively. The end of level enjoyment measure is presented in Figure 49, 

categorised by player skill. Analysis was conducted on the results obtained to evaluate the 

developed approach, discussed in the next section.  
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Beginner Skill Level 

 
Figure 46. Averaged results as a fitness plot for players categorized as beginners. 

Average Skill Level 

 
Figure 47. Averaged results as a fitness plot for players categorized as average. 

Experienced Skill Level

 
Figure 48. Averaged results as a fitness plot for players categorized as experienced. 
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Enjoyment Ratings 

 
 

 
 

Figure 49. Collated enjoyment ratings across each subsequent game level. Players have been divided into three 
categories as explained in Section 5.2.1. 
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From Figures 46, 47 and 48, an increase in maximum fitness was seen across all three skill level 

categories. The most substantial improvement was seen early in the beginner plot. However, a 
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Figure 49 (b) has a constant rating across all three skill groups of 0.5. When compared to the random 

levels, no ratings of 0.5 or lower can be observed during the random levels. This means that on 

average, the first adapted level was less enjoyable than any of the random levels. Consequently, 

some analysis was performed to assess why such an outlier was observed. 

The consistent rating of 0.5 observed for level 1 in Figure 49b could be explained by one of three 

reasons: 

1) A disturbance was seen in ratings due to the introduction of a wait while undergoing the GA 

cycle to produce the first adapted level (no such wait existed between the random levels), 

2) The participants did not enjoy the first adapted level as it was significantly different to the 

previous random levels or: 

3) The difficulty experienced in the first adapted game level was substantially different than 

the player’s previous experience on the random levels. 

The introduction of having to wait for a level to be processed half-way through the experiment could 

be responsible for a sudden change in ratings. However, higher ratings are seen from level 2 

onwards which suggests that the ‘bias’ was not evident in subsequent levels, as each level onwards 

also had to be produced resulting in more waiting. Additionally, the observed rating is the lowest 

encountered from the beginning of the experiment. The introduction of having to wait could have 

created some bias in the player’s perspective of the game; and that ratings of 0.5 were given in 

anticipation that the following levels would be adapted in some manner. 

Another explanation for the unusual outlier observed in level 1 of Figure 49 (b), is that the level itself 

was significantly different to previously encountered levels. This could be due to a sudden change in 

level generation parameters.  

The following Tables 11 to 13 show the difficulty experienced by players during each of the random 

levels. Tables 14 to 16 show the difficulty experienced by players during the five adapted levels. 

Values close to 0.0 means the player found the level easier. Higher values up to 1.0 means the player 

found the level challenging. It is important to note that these tables reflect the difficulty experienced 

by players during game levels and for the purposes of this research, the NotionalTargetDifficulty was 

0.8.  
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Difficulty experienced during Random Levels 

Random Level 1 Level 2 Level 3 Level 4 Level 5 AVERAGE 

Beginner 1 0.275322 0.69019 0.0879845 0.0617281 0.361047 0.29525432 

Beginner 2 0.583333 0.254199 0.444098 0.418018 0.477875 0.4355046 

Beginner 3 0.757143 0.368552 0.482033 0.500326 0.145365 0.4506838 

AVERAGES 0.538599333 0.437647 0.3380385 0.3266907 0.328095667 0.39381424 
Table 11. Difficulty experienced by beginner players during the five random levels in phase 1 of the experiment. 

 

Random Level 1 Level 2 Level 3 Level 4 Level 5 AVERAGE 

Average 1 0.141697 0.557862 0.769231 0.0712967 0.358479 0.37971314 

Average 2 0.55 0.059984 0.235091 0.0896869 0.636682 0.31428878 

Average 3 0.216175 0.185669 0.133514 0.396697 0.221176 0.2306462 

Average 4 0.0372106 0.696024 0.442808 0.0275902 0.509693 0.34266516 

Average 5 0.142169 0.355335 0.190331 0.105727 0.639573 0.286627 

Average 6 0.273759 0.0953507 0.212095 0.212474 0.0895067 0.17663708 

Average 7 0.432264 0.0804949 0.126801 0.603478 0.397697 0.32814698 

Average 8 0.538283 0.562137 0.0283213 0.153702 0.0546539 0.26741944 

Average 9 0.206363 0.261965 0.372624 0.15893 0.761364 0.3522492 

Average 10 0.589271 0.148815 0.75 0.0990538 0.455267 0.40848136 

Average 11 0.609196 0.0445103 0.567001 0.216495 0.553813 0.39820306 

AVERAGES 0.33967 0.2771042 0.347983 0.1941027 0.4252640 0.316825218 
Table 12. Difficulty experienced by average skilled players during the five random levels in phase 1 of the experiment. 

 

Random Level 1 Level 2 Level 3 Level 4 Level 5 AVERAGE 

Experienced  1 0.229856 0.260299 0.287748 0.062291 0.244371 0.2169130 

Experienced 2 0.792857 0.376156 0.241829 0.357165 0.08364 0.3703294 

Experienced 3 0.179466 0.188463 0.115794 0.152937 0.400672 0.2074664 

AVERAGES 0.400726 0.274972 0.215123 0.190797 0.242894 0.2649029 
Table 13. Difficulty experienced by experienced skilled players during the five random levels in phase 1 of the 
experiment. 
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Difficulty experienced during Adapted Levels 

Random Level 1 Level 2 Level 3 Level 4 Level 5 AVERAGE 

Beginner 1 0.113883 0.576426 0.511905 0.620643 0.73518 0.5116074 

Beginner 2 0.174517 0.525178 0.403692 0.819444 0.633219 0.51121 

Beginner 3 0.307257 0.638158 0.736162 0.623134 0.664468 0.5938358 

AVERAGES 0.198552 0.579920 0.550586 0.687740 0.677622 0.5388844 
Table 14. Difficulty experienced by beginner players during the five adapted levels in phase 2 of the experiment. 

 

Random Level 1 Level 2 Level 3 Level 4 Level 5 AVERAGE 

Average 1 0.141697 0.557862 0.769231 0.0712967 0.358479 0.37971314 

Average 2 0.0863438 0.462492 0.278662 0.344447 0.470221 0.32843316 

Average 3 0.154918 0.763514 0.309138 0.590278 0.323471 0.4282638 

Average 4 0.223575 0.243431 0.308001 0.365945 0.276329 0.2834562 

Average 5 0.261124 0.0983422 0.305581 0.13323 0.218454 0.20334624 

Average 6 0.379872 0.433284 0.207658 0.332593 0.398573 0.350396 

Average 7 0.0901611 0.56245 0.442229 0.491958 0.371786 0.39171682 

Average 8 0.489824 0.622589 0.76875 0.211546 0.75 0.5685418 

Average 9 0.206363 0.261965 0.372624 0.15893 0.761364 0.3522492 

Average 10 0.130682 0.667446 0.75 0.560424 0.75 0.5717104 

Average 11 0.210713 0.338639 0.189613 0.0696502 0.292136 0.22015024 

AVERAGES 0.215933 0.4556376 0.4274079 0.3027543 0.4518920 0.370725182 
Table 15. Difficulty experienced by average skilled players during the five adapted levels in phase 2 of the experiment. 

 

Random Level 1 Level 2 Level 3 Level 4 Level 5 AVERAGE 

Experienced  1 0.338187 0.211728 0.170335 0.227043 0.195518 0.2285622 

Experienced 2 0.0623081 0.0843698 0.201951 0.116297 0.0723419 0.10745356 

Experienced 3 0.352982 0.225578 0.0922181 0.0869588 0.71578 0.29470338 

AVERAGES 0.2511590 0.1738919 0.15483 0.1434329 0.3278799 0.2102397 
Table 16. Difficulty experienced by experienced skilled players during the five adapted levels in phase 2 of the 
experiment. 
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From observations of Tables 14 to 16, a large increase in difficulty is experienced between levels 1 

and 2 of the adapted phase for both average and beginner players. The difference is most evident 

for beginners with an average difficulty of 0.1985 in level 1 changing to 0.5799 in level 2. This 

substantial difference could be a factor contributing to outlier set in player enjoyment data observed 

for the first adapted level in Figure 49b. 

However, Table 16 shows that experienced players did not find game levels challenging. A decrease 

in experienced difficulty was observed followed by a sudden significant rise in level 5. This 

observation highlights an issue that experienced players may not have found the game levels 

challenging enough. 

In comparing between the average fitness observed in Figures 46 to 48 and the average experienced 

difficulties in Tables 14 to 16, it can be seen that fitness was proportional to the difficulty 

experienced by players. Additionally, the unique change in difficulty experienced between level 1 

and 2 of the adapted levels supports the hypothesis that there was a significant change in difficulty 

that caused players to give questionable ratings to the first adapted level. 

Observations on Figure 49 conclude that a higher average and trend was observable between the 

two results. The averaged results across players of all experience levels for both random and 

adapted game level sets were plotted on two charts, as shown in Figure 50. 
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Figure 50. Enjoyment Rating trends for the five random levels versus the five adapted levels. 

 

The observed increase in ratings during the adapted levels as opposed to the random levels indicates 

that DDA was being performed. To justify that IEC was responsible for this, the rating results were 

compared against the fitness plots for correlation using the Pearson correlation coefficient test. A 

correlation was seen (r = 0.58660) which was statistically significant (t = 0.14924) where (p = 0.669) 

(t < p).  

 

Observations on the convergence plots shown in Figures 45 to 47 show that higher fitness is reached 

after numerous generations of the genetic algorithm. This supports the hypothesis that 
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In the case of beginner players, convergence was seen early in the GA. Indicating that a wide variety 
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Theory of Fun (2003), where once the brain learns the pattern present in the activity, the activity is 

no longer fun. Generating new game levels allows for Players to always be experiencing new content 

and overcoming new challenges. Additionally, Csikszentmihalyi’s Theory of Flow (2002) dictates that 

part of an optimal experience is that difficulty of a task is matched with the skill of the person 
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attempting it. The purpose of using IEC with Agents that mimic the player, meaning the difficulty of 

the game can be tuned to a particular individual. Additionally, as the player learns the pattern of the 

game, increasing player skill, this skill will be reflected in the agents produced, allowing the DDA 

algorithm to produce more challenging levels. 
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Chapter 6 – Conclusion & Future Work 

6.1    Conclusion  
The aim of this research was to explore how dynamic difficulty adjustment could be performed in 2D 

platformer video games through IEC, PLG and CAs. In doing so, game levels can be adapted to suit 

the skill level of particular players. This study involved the design, development and human trial of a 

2D video game context using the proposed DDA system.  

The IEC used in this study involved an Interactive Genetic Algorithm with which game levels were 

evolved to suit human player skill levels. However, the evaluation of game levels required game 

levels to be played; it was impractical for a player to play every level solution in the evolutionary 

cycle. Consequently, this research explored the application of computerized agents to play game 

levels in place of the human.  

The solution provided in this study provides a means by which industry can produce more effective 

2D platformer video games. The difficulty of game levels can be dynamically adapted to suit a 

player’s skill level. A procedural level generator for 2D platformer game levels has been developed. 

Additionally, computerized agents that can play generated levels have been developed. 

6.2    Future Work 
Video games vary to a large extent based on genre. Due to the time constraints and the amount of 

work required, the scope of this thesis was limited to 2D platform games. The extension and 

evaluation of the approach to games of other genres with different game mechanics would be an 

interesting topic of further research.  

Future research can also provide a means for exploring the parameters of the developed approach in 

using agent evaluation of game levels in a genetic algorithm. For example, different agent models 

could be compared and evaluated and the role of player preference and experience explored in a 

more in depth study. While there may be further opportunities for future work in this research, the 

possibilities stated above are based as natural extensions of this study and its findings. 
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Appendix 1: Online Questionnaire & Consent Form 
 

ECU Honours Research - Adjusting game-play in 2D Platformers 
Player Information 
  
Information provided will be kept confidential, will only be used for the purposes of this project and 
you will not be identified in any written paper or presentation of the results of this project without given 
consent. 

 
1. Please enter the Username you used to play the game. 

 
 

2. What is your gender? 

Male 

Female 

 
3. What year were you born? 

 
 

4. Do you actively play video games? 

Yes 

No 

 
5. Do you like 2D platforming video games? 

Yes 

No 

 
6. What experience do you have in playing 2D platformer games? 

 Very Low Low Average High        Very High Very High 

 
7. What is your skill level in playing video games? 

 Very Low Low Average High         Very High Very High 
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Informed Consent Form 
 
I agree to take part in the project explained and specified above. I certify that I am 18 years of age or 
older.  
 
I understand that participation in the research project will involve:  

• Attendance to a game session 
• Participation in the trial of a videogame 
• Completion of an online questionnaire 
 

I understand that the information provided will be kept confidential, will only be used for the purposes 
of this project and I will not be identified in any written paper or presentation of the results of this 
project without given consent. I understand that I am free to withdraw from further participation at any 
time, without explanation or penalty  
 
I freely agree to participate in the project. 
 
 
 
……………………………………………………………………………  
Name  
 
 
……………………………………………………………………………  
Signature  
 
 
……………………………………………………………………………  
Date 
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