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Abstract 

 

 

Abstract strategy games present a deterministic perfect information environment with 

which to test the strategic capabilities of artificial intelligence systems. With no 

unknowns or random elements, only the competitors’ performances impact the results. 

This thesis takes one such game, Lines of Action, and attempts to develop a competitive 

heuristic. Due to the complexity of Lines of Action, artificial neural networks are utilized 

to model the relative values of board states. An application, pLoGANN (Parallel Lines of 

Action with Genetic Algorithm and Neural Networks), is developed to train the weights 

of this neural network by implementing a genetic algorithm over a distributed 

environment. While pLoGANN proved to be designed efficiently, it failed to produce a 

competitive Lines of Action player, shedding light on the difficulty of developing a 

neural network to model such a large and complex solution space. 
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EVOLUTIONARY ARTIFICIAL NEURAL NETWORK WEIGHT TUNING TO 
OPTIMIZE DECISION MAKING FOR AN ABSTRACT GAME 

 
 

I.  Introduction 

The ability of computers to assess the quality of a single state in a complex search 

space is a fundamental challenge in the area of artificial intelligence. While it is easy for 

a computer to quantify elements of a state, such as the number and locations of items A, 

B, and C, it can be very difficult for the computer to extrapolate how good the state is in 

terms of reaching a goal. The ultimate goal, perhaps, is to develop a generalized 

algorithm that can accept any search problem and state description as input, whether a 

simple tic-tac-toe board or a complex battlefield surveillance photograph, and 

automatically generate the optimal solution to the problem or a determination that there 

exists no optimal solution, all without any human intervention. In short, the ultimate goal 

is to develop a system that produces true artificial intelligence. 

Given the current limitations on computational complexity due to present day 

hardware technology, heuristic algorithms offer much promise compared to other 

algorithms since they functionally reduce the number of computations needed to perform 

a search[1]. Thus, unless hardware developments dramatically improve the computational 

efficiency of computers, the search for a generalized artificial intelligence algorithm is 

more realistically restricted to a search for a generalized heuristic generation algorithm.  

A heuristic algorithm implies a program that detects patterns or features in a 

particular domain which can be used as a heuristic in a search algorithm [1]. A heuristic 
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itself is an attribute, feature, or characteristic of a particular problem domain that can be 

utilized in order to navigate a search algorithm to an acceptable solution within the 

domain. Consider the problem of efficiently traveling from one corner in downtown 

Manhattan to a corner in uptown Manhattan. If one wants to walk the shortest distance 

possible, then one heuristic is compass direction. As one approaches an intersection, 

compass direction can be used to determine which direction one should turn. This may 

not lead to the shortest path from source to destination (one could turn into a dead-end 

alley and be forced to turn around, for example), but it does lead to a good solution under 

some circumstances. For problems which are so computationally complex that the search 

for the optimal solution is inefficient or even intractable, a heuristic algorithm can be 

used to provide a quality solution under many circumstances.  

In the pursuit of a generalized heuristic generation algorithm, it is a useful step to 

focus on a subset of all search problems to identify what may or may not work. Within 

the pantheon of search problems exists a set known as abstract strategy games (ASG). A 

game is an ASG if it contains no hidden information and has no stochastic processes 

intrinsic to the game (determining who goes first in a game is generally extrinsic to the 

game itself and so does not impact whether or not a game is an ASG) [10]. ASGs in 

general make excellent fields of study for developing decision making algorithms 

because they tend to be well-studied and thus have known attributes, they are limited in 

scope, and they are easy for an average person to understand. Computationally, they can 

also be quite complex; Go, played on a 19x19 board, has approximately 10170 legal game 

board states, far too many to enumerate by any known method [2]. By comparison, a real-
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world environment featuring merely one thousand independent actors (soldiers on a 

battlefield, for example), each with ten actions they can take within a given timeframe, 

has a decision complexity of 101000 for a single state, far higher than any commonly 

played ASG. Thus, while no ASG approaches the complexity of a real world scenario, 

they are excellent stepping stones towards developing generalized decision making 

algorithms. After all, if a computer cannot outperform a human in a game of limited 

scope with perfect information and no stochastic processes, it is unlikely to outperform a 

human in the dynamic environments faced by humans in everyday life. 

This thesis focuses on a single game, the abstract strategy game Lines of Action 

(LoA, see Chapter 2 for rules) [3], and attempts to develop an algorithm to correctly 

evaluate the quality of board states. The purpose is quite simple: given a current state of 

the game, the program evaluates the states produced by every possible legal move 

available to a player at a given turn. If performed accurately, the state that is rated highest 

predicts the move that the player should make to maximize his or her probability of 

winning the game. If all states of the game are correctly evaluated, then the game is 

strongly solved [4]. 

Other methods have been used to play not only LoA but other games with varying 

results. While each method brings both positive and negative attributes to the table, to 

attempt all of them is well beyond the scope of this thesis. Where appropriate, other 

methods are compared to the methodology used here, and obviously this project builds 

upon the knowledge garnered from the efforts of other researchers. 
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Problem Statement 

The goal of this thesis project is to automatically generate a heuristic that 

advances the ability for computers to play Lines of Action effectively.  

Research Objectives/Questions/Hypotheses 

This thesis utilizes feedforward artificial neural networks (ANN) to evaluate 

board states. ANNs have demonstrated both strengths and weaknesses on different types 

of problems [5]. It generally performs better on small problems, especially since the 

classic method of training via feed-forward/back-propagation is computationally 

expensive, so it becomes highly inefficient when training a large structured network. 

While a game of LoA, with a board size of 64 squares (same as chess and checkers) is 

significantly smaller than other fields an ANN might examine, such as photographs, a 

LoA board challenges pattern matching algorithms because nearly identical board states 

can lead to very different outcomes. In Figure 1, two board states are shown with only a 

single difference, the location of the dotted white piece. Despite being on the opposite 

side of the board from where black’s potential winning move takes place, the difference 

in the positions of the white piece is the difference between a black victory and a white 

victory. This minute difference with drastic consequences can be difficult for a pattern 

matching algorithm to detect. 
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Figure 1: Given that it is black’s turn, black has a winning move in the left board by 
moving the right-most piece diagonally two spaces to the upper left. In the right 
board, however, the adjusted position of white’s right-most piece (with red dot) 
augments black. 

Research Focus 

The focus is to design and train an artificial neural network to accurately evaluate 

the board states of a game of LoA. If a program can correctly evaluate every board state, 

then by always choosing the optimal move it becomes a perfect player. In theory, the 

closer a program comes to correct evaluations, the closer it comes to solving the game.  

One reason ANNs are considered for this thesis is because of past successes 

ANNs achieved with other games, notably backgammon [6] and checkers [7]. One 

anecdote of Tesauro’s success using temporal difference learning and ANNs on 

backgammon occurs as an aside in one researcher’s thesis: “almost every paper listed in 

the bibliography [of this thesis] cites one of Tesauro’s papers on backgammon” [41]. 
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Aside from ANNs’ achievements with other games, experiments focusing on 

small LoA boards (smaller than the standard 8x8 board), suggest that ANNs have the 

capability of providing a framework for a quality LoA heuristic. While competing on a 

5x5 board, for example, an ANN was able to model the board states of LoA to within a 

mean squared error of less than 0.02 (see Figure 2). In this experiment a temporal 

difference learning (TD-learning) [5] hash client competed 10,000 games against a 

separate heuristic player called ALoA (see Chapter 3 for more details). Each visited 

board state was recorded in a hash table along with that states value based on the outcome 

of the game in which that board state was visited. Progress was saved after every 1,000 

games to enable analysis. After the completion of all the games, the stored board states 

and results were transformed into a pattern file for training a simple ANN in JavaNNS. 

The ANN, consisting of 25 input nodes (one for each cell of the 5x5 board), one hidden 

layer with 12 nodes, and one output node, was trained using temporal difference learning 

with three different learning rate values, ή. ή started at 0.2, but decreased to 0.05 and 0.01 

after 100 cycles each. The final results suggest that the ANN is able to correctly model 

the results of the experiment to within 2% mean squared error. Given this success in 

modeling a 5x5 board, it is worthwhile to examine whether or not an ANN can model a 

full 8x8 board.  
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MSE of ANN for 5x5 Lines of Action Board
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Figure 2: The mean squared error (MSE) of an ANN with 25 inputs, a single hidden 
layer with 12 nodes, and 1 output modeled the board states that were visited during 
up to 10,000 games between a random player and ALoA, a heuristic player. As the 
number of games increased, a greater number of board states were visited, yet the 
ANN maintained a low MSE regardless of the amount the ANN was trained. The 
three divisions represent learning rates, ή. In order, they are 0.2, 0.05, and 0.01. 
 

Methodology 

There are two primary strategies considered in this research effort to develop a 

LoA player: offline reinforcement learning and online reinforcement learning. The first 

uses TD-learning [5] and the second uses a genetic algorithm to train the network weights 

(see Appendix C). Both methods have been used by others in previous research efforts on 

various domains, including other games, such as backgammon [6], checkers [7], and Go 
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[27]. Ultimately, online learning is implemented in a program called pLoGANN (Parallel 

Lines of Action with Genetic Algorithm and Neural Networks). A network structure and 

a genetic algorithm are designed, with the GA set to train the network in an online 

environment. Due to the large computational complexity of the online experiment, it is 

designed to operate over parallel machines and the experiment is conducted on a parallel 

cluster. The basic methodology for the genetic algorithm is to use tournament 

competition to select which chromosomes advance to the next generation, where each 

chromosome represents all of the weights of a network. In other words, each 

chromosome represents a full artificial LoA player, and the ultimate goal of the second 

experiment is to evolve a perfect player which effectively solves the game of Lines of 

Action. 

Implications 

Lines of Action is an abstract strategy game with a approximately 1.3 x 1024 

board states and an average of 30 transitions (moves from one state to another) per board 

state [17]. As with other such games, such as chess or go, they can be likened to the 

generalized problem of evaluating a specific state of a domain and determining the best 

course of action [4]. Finding an algorithm to solve LoA, while perhaps not as prestigious 

as finding one to solve chess or go, or even the recently solved game of checkers [8], is 

nonetheless a stepping stone towards discovering a generalized decision-making 

algorithm with real world implications.  
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Preview 

As detailed in Chapters 4 and 5, the results of these experiments indicated that 

artificial neural networks are not conducive towards accurately evaluating the board 

states of Lines of Action. Through a series of experiments, it is clear that ANNs fail to 

produce a quality LoA player. However, it is beyond the scope of this thesis to prove that 

ANNs cannot produce a quality LoA player.  

Additionally, regardless of the method used, training the network is a time 

consuming process, which makes ANNs a poor tool to use for changing environments 

where weights need to be frequently retrained. This is a known property of ANNs, and so 

only serves as affirmation of other people’s findings [5]. 

A positive outcome of this research effort is the development of a framework, 

called pLoGANN, for employing a genetic algorithm on a computer cluster. While 

pLoGANN did not produce positive results on this particular problem, its computational 

performance and inherent extensibility make it a promising tool for other research efforts. 

This framework, with modest modifications, could be deployed over the internet and 

provide a backbone for using a genetic algorithm on an ad hoc network of computers in a 

manner similar to that used by the @home method of distributed computing [9].  
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II. Literature Review 

This chapter provides an overview of the three primary fields of research of this 

thesis, reviewing previous research related to this topic and identifying the current state 

of research in these fields. In order, they are abstract strategy games, including a 

description of the rules of Lines of Action (LoA), Reinforcement Learning (RL) using 

Artificial Neural Networks (ANNs), and network optimization using Genetic Algorithms 

(GAs).  

Abstract Strategy Games 

An abstract strategy game is defined by Thompson as a perfect information game 

in which there is no element of chance, and where there is no significant theme to the 

game which applies meaning to the actions taken in the game [10]. Perfect information 

implies that the entire board state is known to all players, precluding games in which 

there is any random element, such as dice or randomized cards or tokens, as well as 

games in which either player may conceal any state information from his or her 

opponent, such as in the game Battleship. Such games are always turn-based, in which 

each player alternates turns. Games in which players move simultaneously, such as with 

the game Diplomacy, are excluded by this definition.  

Sophisticated abstract strategy games have sufficiently large complexity that it is 

beyond the capability of human beings to know optimal moves for every possible state of 

the game, thus forcing the player to rely on other resources in order to make a decision on 

his or her turn. Consequently, the advantage goes to the player who is best able to utilize 

their resources and counter their opponent’s resources.  
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Allis defines two measures of game complexity: state-space complexity and 

game-tree complexity [4]. State-space complexity refers to the number of legal positions 

that are reachable from the starting position. It is important to note that for some games, 

including Lines of Action, there are legal positions that are not reachable (see Appendix 

B). Game-tree complexity refers to the total number of leaf nodes in the smallest game-

tree which can establish the true value of the starting position. Both state-space and 

game-tree complexity can be difficult to calculate for some games, so in some cases, 

upper and lower bounds are calculated instead. Additional notable metrics include the 

board size and average game length. Board size refers to the number of cells active pieces 

may be moved to. This does not include off-board collections where pieces may start (as 

in connect four or Go) or destinations where eliminated pieces are removed to, even, as in 

chess, if those eliminated pieces may eventually return. Board size nomenclature, 

however, may be confusing. For example, one can say that both standard chess and 

standard checkers are played on an eight by eight (8x8) board, despite the implication 

being that their board sizes are different, since only half cells on a board are legal in 

checkers. Thus, an 8x8 board in chess implies a 64 cell board size while in checkers it 

implies a 32 cell board size. Average game-length varies depending on the relative skill 

of the participants, but a rough estimate is possible by averaging the results of many 

games played. Figure 3 has shows a comparison of several games and their relative 

complexities. 
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Figure 3: Comparison of Some Abstract Strategy Games [4, 11, 12, 13, 14, 15]. 

 

Zero-Sum Property 

Another descriptive categorization of games is whether or not they possess the 

zero-sum property. A zero-sum game holds that the sum of consequences of a single 

action for all participants must equal zero. In other words, for any action taken by any 

player, all gains made by players must be offset by equal losses suffered by other players. 

In laymen’s terms, this means that in a zero-sum game, there can be neither win-win 

situations nor lose-lose situations, but only either win-lose situations or neutral (situations 

in which no participants gain or lose) situations. Games, especially two-player games, 

which possess the zero-sum property are perhaps easier to model, since the value of a 

given game-state from one player’s perspective is merely the additive inverse of the value 

from the other player’s perspective [16]. 



 

13 

Lines of Action 

Lines of Action (LoA) is a zero-sum abstract strategy game developed by Claude 

Soucie and first published in 1969 [3]. It is played on a regular checkers board which is 

an eight by eight matrix of alternating black and white tiles. Each player starts with 

twelve pieces, arranged at the edges of the board as shown in Figure 4. 

 
Figure 4: Starting position for Lines of Action. 

 

Traditionally, play begins with black, and then alternates every turn. On each turn, 

a player may move one piece in any direction. The piece must move a number of tiles 

equal to the total number of pieces in the line in which the piece is moving, including 

itself. The moving piece may not land outside of the board. Nor may it jump over a piece 

of the opposing color, although it is permitted to jump over a piece of the same color. 

Finally, the moving piece may not land on a tile occupied by a piece of the same color; 

however, if it lands on a tile occupied by a piece of the opposing color, the opposing 
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piece is then removed from the game. A side wins when all pieces of that color are 

connected, which is defined as all pieces forming a single cohesive unit in which each 

piece is connected to every other piece of the same color via a sequence of orthogonal or 

diagonal connections [3].  

There are approximately 1.3 x 1024 board states in LoA [17]. However, the actual 

number of achievable board states is somewhat less, due to an unknown number of board 

positions that are unachievable. The game begins with a branching factor of 36, but 

averages 30 over the course of the entire game. Winands’ study suggests an average 

game length of 38 turns, but game length varies with the skill of the players. In terms of 

complexity, as measured by state-space, Lines of Action is comparable to 

Othello/Reversi. The same is true when measured by game tree complexity. 

Due to the extremely high state-space complexity, LoA cannot be solved by 

enumeration methods. Furthermore, LoA is currently not solved under any of Allis’ 

definitions of solved abstract strategy games [4]: 

1. Ultra weakly solved: the outcome of perfect play from the initial 

position is known. However, this does not imply that the perfect playing 

strategy itself is known. 

2. Weakly solved: perfect playing strategy from the initial position is 

known. 

3. Strongly solved: perfect playing strategy is known for all legal 

positions. 
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Van den Herik, et al., conjecture that LoA will be weakly solved by 2010 [18], 

but at the time of this paper’s completion, this has not occurred. 

Lines of Action presents a different type of challenge from other well-known 

abstract strategy games. While mathematically comparable to Othello/Reversi [4], the 

play of LoA, as well as its unusual end-game conditions, creates a state space where 

nearly identical positions can lead to completely opposite outcomes. While this is 

plausibly true of any ASG, especially an ASG known to be strongly solved, LoA is 

notable because of the frequency of such states. As there is no clearly defined ‘side’ of 

the board, as there is with chess or checkers, and because pieces can move across the 

board in irregular ways, the most minor of differences between two board states can be 

highly consequential. 

To date there are several very successful artificial intelligence programs designed 

to compete against humans in Lines of Action. The most notable is MIA by Mark 

Winands [17] which has won several Computer Olympiad events. A couple of other 

strong programs are YL and MONA, both developed by Billings and Björnsson, which 

use very different approaches [32]. 

Artificial Neural Networks 

An Artificial Neural Network (ANN) is a computational model derived from 

observations of biological neural networks. First introduced by McCulloch and Pitt in 

1943 as a system of propositional logic, ANNs simulate a network of synapses, where 

each artificial synapse represents a logic gate. McCulloch and Pitt demonstrated that a 

network of so-called MP-Neurons could express any statement in propositional logic 
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[19]. However, neither McCulloch nor Pitts were interested in artificial intelligence, and 

so it was others who adapted their model towards the purpose of computer learning. 

Since then, the basic ANN has developed into a network of units called perceptrons that 

are typically organized into layers and feature dynamic properties that are altered by 

training. 

Perceptrons 

In 1958, Frank Rosenblatt developed the perceptron, which replaced the simple 

MP-Neurons as the building blocks of a ANN [20]. A perceptron, like the MP-Neuron, is 

modeled after a single synapse. However, unlike its predecessor, the perceptron is not 

strictly a logic gate; rather, as shown in Figure 5, it represents a function, with n weighted 

inputs, a weighted bias input, an activation function g, and a series of output links that 

may connect to other perceptrons in the network. 

 

Figure 5: A Perceptron. Note that a single perceptron’s output may feed multiple 
destinations, such as multiple perceptrons in a subsequent layer. 

 

The perceptron functions by taking the summation of all the weighted inputs and 

feeding it to the activation function g. The function activation may take many forms, 

notably threshold or a sigmoid functions [21]. It is important that g not be a linear 
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function, however, as that would allow a network of such perceptrons to be reduced to a 

linear function, thus negating the purpose of having a network in the first place [21]. 

A threshold function would produce a discrete set of outputs, such as {0, 1}. In 

such a simple case, the perceptron could act as a logic gate, given appropriate inputs. The 

more general perceptron uses a sigmoid activation function to return a value within a 

finite range, such as between -1 and 1. It is called an activation function because one 

extreme of the output range is considered active while the other inactive, and so the 

perceptron is only ‘triggered’ when the sum of the weighted inputs exceeds some 

threshold. The bias input defines the threshold, and results in the perceptron being 

activated only when the sum of the weighted inputs exceeds the weighted bias. 

Perceptron Networks and Layers 

A single perceptron is limited in its ability to separate inputs. A threshold 

perceptron is a linear separator, because it determines a straight line (or n-dimensional 

plane) through the weight space and activates on all inputs on one side of the line and 

none of the inputs on the other [21]. However, such a perceptron by itself cannot 

distinguish between inputs which are not linearly separated. For such problems, a 

network of perceptrons is needed. 

A neural network consists of multiple perceptrons that are connected together in 

some arrangement. The simplest such arrangement is called a perceptron layer, and 

consists of a set of perceptrons arranged parallel to one another where they each are fed 

the same inputs and produce independent outputs. In a single layer network, the number 

of outputs equals the number of perceptrons. In a standard multi-layer network, the 
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number of outputs equals the number of perceptrons in the outermost, layer, called the 

output layer. Networks that do not fit this model are called convoluted neural networks, 

and may be organized any number of ways [24]. 

The layer that is connected directly to the inputs is called the input layer. Any 

layers between the input layer and the output layer are called hidden layers. Networks 

may be fully-connected or partially-connected. A fully connected graph implies that 

every input feeds into every perceptron in the input layer and that every perceptron in 

each layer provides input for every perceptron in the subsequent layer (see Figure 6). 

Hidden layers are important because they add flexibility in terms of what inputs activate 

the network as a whole. With sufficient hidden inputs it is possible to represent any 

continuous function [21]. 

 

Figure 6: A fully-connected ANN with a single hidden layer. 
Performance is a concern when it comes to NNs. On a fully connected graph, the 

number of connections equals the sum of the products of the size of each layer and it’s 
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subsequent layer. Thus, for the ANN in Figure 6, the layers (including the inputs) are of 

size, 5, 5, 3, and 1. Thus, the total number of connections is (5*5) + (5*3) + (3*1) = 43. 

Computing the output of a ANN is of complexity O(cg), where c is the number of 

connections on the graph, and g is the cost of the activation function). Since training a 

ANN involves re-computing the network many times, the operational efficiency of the 

network can degrade very quickly as the size of the network increases.  

Back Propagation and Direct Weight Training  

 The two methods used to train the ANN in this thesis are back propagation and 

direct weight training. Back propagation is performed by experimentally measuring the 

delta, or difference, between the ANN’s evaluation of a state’s value and the state’s 

actual value. The delta is then used to incrementally adjust the weights of the network, 

beginning with the output layer, and working backwards towards the input layers [21].  

Direct weight training, on the other hand, utilizes a methodology which directly 

sets some or all of the weights to specific values. A number of methods for setting the 

values exist, including genetic algorithms [1], ant colony optimization [40], and 

simulated annealing [1]. The strategy behind direct weight training is to determine the 

values of the weights that will optimize the network without dealing with the negatives of 

back propagation, which include lengthy computation times and the risk of getting stuck 

in a local minima. 

Neural Network as a Continuous Optimization Problem 

Another way to view the problem of optimizing the weights of a network is to 

examine the problem globally. Given a network with n weights, there exists a n-
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dimension space consisting of all possible permutations of weights. If the goal is to find 

the single permutation that yields the optimal performance of the network, the problem of 

training the network becomes an optimization problem. When the search space for an 

optimization problem is so large that a full search is infeasible, other methods can be used 

to search for the optimal solution. One such method is a genetic algorithm. 

Genetic Algorithms 

Genetic Algorithms (GAs) were first introduced by John Holland in the 1970’s 

[22]. Modeled after cellular mechanics, a GA is a stochastic process designed to solve 

combinatorial optimization problems. A GA maintains a set of values, called alleles, that 

form a chromosome. Each chromosome exists in genome space, and represents a solution 

space the GA is operating on. A GA uses a stochastic process to evolve a population of 

initially randomly generated chromosomes into better solutions. The three primary 

processes used by a GA are crossover, mutation, and selection. The domain over which 

these processes operate, however, depend entirely on how information is encoded into the 

chromosomes.  

Crossover 

Crossover, also known as recombination, is the basic act of producing new 

chromosomes. Analogous to sexual reproduction, it does this by taking two chromosomes 

and swapping a set of alleles between the two chromosomes, thus producing two 

additional chromosomes. Different implementations of the crossover operator use varying 

techniques, but one of the simplest methods is the k-point crossover [22], where k 

crossover points are selected at equal points in the two chromosomes. Thus, each 
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chromosome is divided into k + 1 chromosomal sections, which are then swapped with 

one another. In the simplest case, k equals one, such that each chromosome is split in two 

and one of the sections is swapped between the parents. On the other side of the spectrum 

is uniform crossover, where a crossover point is placed between any two alleles with 

equal probability throughout the length of the chromosome [23].  

 

Figure 7: Single Point Crossover. 

Mutation 

Mutation is the process where a portion of a solution is randomly changed. 

Whereas the basic crossover operator uses two parents, the mutation operator uses only 

one, and is thus analogous to asexual reproduction. With this operator, a chromosome is 

selected, and then a random number of alleles are changed randomly. If an allele is 

represented by a single bit, then the change is simply a not operation on the bit. As with 

crossover, there are many ways to implement mutation. There is a probability p1 that a 

given chromosome is selected for mutation, and then within that chromosome a 

probability p2 that a mutation operator acts on a given allele. If p1 equals one, then the 
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mutation operator will proceed over every chromosome in the entire population, mutating 

each allele with probability p2. Depending on the design of the GA, the mutated 

chromosome may replace the original, or just join the population alongside the original. 

 

Figure 8: Mutation Operator. 

Selection 

Selection is used to trim the size of the population in each generation of the 

genetic algorithm. Although there are many variants of the selection operator, the basic 

principle is that the operator selects n chromosomes from the existing population to be 

used for crossover and/or mutation, and discards the rest, thus leaving the population of 

the next generation at size n. The operator uses a fitness function to determine the value 

of each member of the population, and based on those evaluations determines which 

chromosomes advance [31].  

Fitness functions take various forms, and the function itself is dependent upon the 

domain. For some domains, the fitness function measures exactly the value of the 

solution represented by each chromosome, whereas for other domains, an exact value 

cannot be determined, and so the fitness function may only represent an approximation as 
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to what value the solution has. An example of the former is a fitness function for an allele 

that represents a Hamiltonian circuit, such as a sequence of cities used to solve the 

Travelling Salesman Problem [25]. In this case, the fitness function can accurately 

measure the length of the circuit; however, it cannot necessarily determine if the 

chromosome represents an optimal solution.  

Even if it is possible to determine a correct value of a chromosome, the developer 

of a GA may opt to use another fitness function that only approximates the value in order 

to improve performance. Because GAs run over many generations and the fitness 

function is performed over each member of the population (in most implementations of 

GAs), a slow fitness function may introduce a bottleneck in the algorithm. Thus, it is 

important to develop efficient methods of evaluating the population of chromosomes 

each generation. 

In most GAs, fitness functions operate over all chromosomes, or sets of 

chromosomes, independently. Since the chromosomes can be evaluated independently (or 

in the case of tournaments, in small, independent, subsets), these functions lend 

themselves easily to parallelization. Based on Gustafson’s Law [26], given a computer or 

network with P processors, and a population with n chromosomes, parallelizing a fitness 

function with efficiency O(x), which operates over every chromosome individually, 

improves the performance of the fitness function from O(xn) to O(xn/P + Ptc), where Ptc 

is the cost of communication to the different nodes. When the cost of communication is 

very low, this yields a near linear improvement in performance over a single-node 

implementation (see Appendix A). 
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Once evaluated, the selection algorithm determines which chromosomes to 

advance to the next generation, and which to discard. A simple elitist algorithm may 

simply select the n highest performing chromosomes, whereas a stochastic algorithm 

might apply a probability of selection for each chromosome based on their fitness 

function, such that the best performing chromosomes have a higher probability of being 

retained. In certain domains, very poorly performing chromosomes may yet be adjacent 

to very well performing locations in the solution space. In such cases, it is said to contain 

good ‘building blocks’ [28], and a GA can use those building blocks to find the better 

performing neighbors. Thus, strictly elitist methods sometimes lose opportunities to 

explore possible new promising avenues.  

Encoding 

The singular requirement of a GA’s encoding algorithm is that an entire solution 

must be encoded into each chromosome. The method used is problem-specific, as it 

depends on what kind of data is to be encoded. As an example, real values, such as 32-bit 

integers can be stored as entire values (32-bit alleles) or as individual bits (thirty two 1-

bit alleles). The former is susceptible to change only by mutation, while the latter is also 

influenced by crossover, since the crossover point could be placed in the middle of the 

bits that make up that integer value. Advocates for either approach exist [25]. One stated 

advantage for the binary approach is that it maximizes the number of alleles, and thus 

maximizes the capabilities of the crossover operator [28]. However, no proof exists that 

this is the best approach, and in fact there are examples of real-valued encoding methods 

outperforming the binary approach on benchmark problems [23]. 
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Schema Theorem 

The idea of the Schema Theorem is that in each generation of a GA, there are 

schemata within the population, and the proportion of the population of one generation 

that has a particular schema is a function of the proportion of the previous generation that 

had that schema and its fitness value, independently of other schema in the population. 

 A schema is “a subset of the space Al in which all the strings share a particular set 

of defined values” [29]. To draw a parallel from real life, an example of a schema might 

be the gene that controls eye color. This gene is a subset of all genes in which people 

with the same (or similar, at least) colored eyes share certain values in their DNA. The 

Schema Theorem than argues that the proportion of people in the next generation that 

have a particular eye color is a function of the proportion of the current generation that 

have that eye color and the fitness value (undefined as that is for humans) of that eye 

color. A key assumption of the Schema Theorem is that the fitness of a particular schema 

is the average fitness of members of the population that have that schema.  

 Returning to GAs, two important properties of schemas are needed for the 

theorem. The first is the length of a schema. This is simply the number of nodes between 

the first and last defined positions of a schema, inclusive. Thus, the length of “1**4*”, 

where ‘*’ represents an undefined position, is four. Length is important because of the 

nature of crossover. The longer a schema is, the more likely it will be split during cross-

over. For example, if the length of a schema is one (“*2*”), it cannot be split, and is 

guaranteed to be preserved during any crossover operation. On the other hand, if the 

length is equal to the string length (“123”), any non-trivial crossover operation will split 
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the schema, and it will be lost to the next generation unless the other ‘parent’ also 

happens to have that schema, or enough of the schema that crossover preserves it. 

Similarly, two parents without a schema could produce an offspring with that schema by 

coincidence.  

The second important property is order. A schema’s order is the number of 

defined positions of a schema. Thus, the order of “1**4*” is two. Order is more 

important when mutation is taken into consideration, as the greater a schema’s order is, 

the more likely it is to be mutated out of a given generation, and the less likely it is to be 

randomly produced by mutation. For example, on a schema of order one on a binary 

string, if mutation occurs on that single defined position, it will wipe it out. However, if 

mutation occurs on that defined position on a member that does not have that schema, 

mutation may create that schema in that member. 

 While the ability to predict the proportion of a population that carries a particular 

schema from one generation to the next is nice, it has failed in explaining the 

performance of GAs in general, which was one of the hopes Holland had when he first 

proposed with the Schema Theorem. Criticisms of Schema Theorem have focused mostly 

on the fact that although it is likely true (nobody has definitively disproved the 

mathematics behind the Schema Theorem), it is not relevant to long-term performance 

[30]. There is a lot to be said about the assumption that a schema’s fitness value is simply 

the average value of members of the population that happen to have that schema. After 

all, this makes the fitness value more dependant upon other members of the population 

than on the actual amount that a particular allele contributes. Using a real world example, 
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the Schema Theorem, applied to humans, implies that the fitness value of the gene that 

causes humans to grow wisdom teeth or the appendix is a function of the average fitness 

value of people, which is a debatable proposition. 

 The Schema Theorem was an early attempt to predict the behavior of a 

genetic algorithm. While it may do so from one particular generation to the next, large 

numbers of critics have shown that it is not sufficient in explaining long-term behavior. 

At the least, the Schema Theorem provides important background knowledge and an 

introduction to the rather imprecise stochastic math, filled with assumptions, that plays an 

important role in GAs. 

Trends 

Genetic Algorithms operate over large, sometimes ill-defined domains over the 

course of many generations. A developer must design a GA around competing interests, 

namely exploration and exploitation [25]. In order to improve their odds of finding 

optimal solutions, GAs must explore as wide a breadth of the solution space as possible. 

However, they must also hone in on good solutions once a promising sector of the 

solution space has been discovered. In short, a good GA explores the space sufficiently, 

but also converges once an optimal solution is found. The two basic reproductive 

operators, crossover and mutation, are designed specifically to meet the exploration goal, 

while the selection strategy for the new population and the population members used in 

crossover meets the exploitation goal.  

As illustrated by the Schema Theorem, crossover seeks to improve the 

performance of a population by replicating good schema. Thus, crossover is designed to 
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exploit good traits. Mutation, on the other hand, being completely arbitrary, is more 

suited for exploring the solution space. In particular, mutation can help a GA to escape 

local minima by randomly moving elsewhere in the solution space. If the new found 

chromosome performs better than the rest of the population, it should propagate into 

further generations. By tweaking mutation rates, a designer can also change the 

performance of a GA midway [28]. 

Fitness and selection also play a key role in the balance between exploration and 

exploitation. An elitist selection algorithm is more prone to converging. However, as in a 

basic hill-climbing algorithm, premature convergence may lead to a local minimum, 

perhaps even a very weak local minimum, rather than the global minimum. On the other 

hand, non-elitist methods may not converge at all, or even worse, may even discard the 

global minimum. For this reason, it is wise to retain copies of the highest scoring 

chromosomes, even if they are discarded by the selection algorithm.  

Summary 

The game Lines of Action has a very quiet global following. However, within the 

field of artificial intelligence it presents a challenging environment for any pattern 

recognition algorithm, due to the symmetry and movement within the game. In order to 

overcome the prohibitive search space presented by this design, modern sophisticated 

heuristics, including genetic algorithms, are utilized to attempt to find good, though not 

necessarily optimal, solutions.  
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III. Methodology 

This chapter describes the design and implementation of pLoGANN, a distributed 

program designed to learn to play Lines of Action. It includes a discussion of some of the 

focused heuristics that can be used to analyze a LoA board, one of which is prominently 

featured in pLoGANN. Finally, this chapter describes the process of testing pLoGANN 

as well as a separate program to assist with the analysis of pLoGANN’s performance. 

Complexity of Design 

A significant component in designing an experiment using an artificial neural 

network is that one must identify the structure of the network. Identifying the optimal 

network structure for a given problem domain is itself, however, a combinatorial 

optimization problem [33]. To that end, one must first examine the domain with the hope 

that patterns or clues can be detected and then perhaps exploited. A simple example is the 

game tic-tac-toe, where after a cursory examination, it is clear that the center square is 

highly important when playing the game. 

Lines of Action is played on an n by n board consisting of n2 tiles, each of which 

may be occupied by a white piece, a black piece, or an empty space. Thus, there is a 

maximum of 3nn possible board states. However, not all such board states are valid board 

states in LoA due to the restrictions of pieces. For example, it is not possible for a board 

state to exist with 2n tiles occupied by black pieces since there are never more than 2n – 4 

black pieces in any game of LoA. For an 8x8 board, the ceiling of the number of legal 

positions has been calculated to be approximately 1.3 x 1024 [17]. However, this is just a 
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ceiling, as there are some states that are unreachable given the standard starting position 

of LoA (Appendix B).  

The task of the ANN then is to accept as input 3nn possible board states and 

provide meaningful evaluations, where board states that indicate an approach to a loss 

have a lower limit of –1 and board states that lead to victories approach an upper limit of 

1. Unfortunately, there is no upper bound to the number of topologies that can be used for 

a given network. However, larger networks take longer to compute, and in a simulation 

that requires millions of board evaluations, the cost of using a larger network becomes 

computationally expensive. In general, there are two prudent approaches to selecting a 

network topology. The first is to design a fixed topology based on best practices, 

although it amounts to little more than a best guess. The second approach is to 

simultaneously evolve the weights of the network and its topology. The latter approach 

has produced some promising results. Stanley and Miikkulainen [34] developed a routine 

called NeuroEvolution of Augmenting Topologies (NEAT) that performed well on 

several problems. Unfortunately, evolving an optimal topology is perhaps even more 

computationally difficult than it is to optimize the weights of a fixed topology. 

Furthermore, to attempt such a feat is tantamount to changing the scope of the original 

problem. Consequently, a fixed topology is used for these experiments. 

Focused Heuristics 

As part of these experiments, different elements, or sections, of the board state are 

evaluated separately by the network, under the hypothesis that focusing extra attention on 

certain aspects of the board may yield better results. Within the ANN, some elements are 
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represented merely by a low level sub-tree which accepts as input each cell within that 

element, while other elements are fed through an interpretation algorithm before being 

passed to the ANN. Regardless, each is a focused heuristic that augments the overall 

interpretation of the board by the network. Borrowing from the heuristics used by 

Winands [35], these are (number of inputs reference an nxn sized board): 

Board: Each cell of the board is fed directly into an input. This requires n2 inputs, 

where the values of the inputs are numerical representations of the cell. In these 

experiments, if the cell is occupied by one’s own piece (“self”), it is represented with a 1, 

while a cell occupied by the opponent’s piece is represented as -1 and an empty cell is 

represented as 0. 

Rows and Columns: Each cell of each row and each column are grouped together. 

Thus, there are n rows, each with n inputs, and the same for columns (as demonstrated in 

Figure 9), for a total of 2n2 inputs grouped into 2n sets of n individual cells. The input for 

each row and column is the number of pieces (both self and opponent) in that row or 

column. 
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Figure 9: Column groupings. 

Diagonals: Diagonal segments are grouped together. Each segment ranges in 

length from one cell to n cells, and for each diagonal direction, there is one segment of 

length n and two segments each of lengths 1 through n-1, for a total of n2 inputs per 

direction, or 2n2 inputs total. The two diagonal directions are forward leaning and 

backward leaning, or, if referring to cardinal directions, NW-SE (shown in Figure 10) and 

NE-SW. The input for each of these segments is then the number of pieces, both self and 

opponent, on each diagonal. 
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Figure 10: NW-SE Diagonal groupings. 

Quadcounts: Quadcounts refer to a heuristic developed by Winands [36]. Each 

quad represents an overlapping 2x2 section of the board. So that each space on the board 

is counted equally, quadcounts assume the existence of a phantom border to the board 

with a depth of one cell in all directions, and are always empty. Thus, each cell of the 

board appears in four different quads, once in each position within a quad. Quadcounts 

simply maintain the number of each type of quad that a side has. There are six 

possibilities, as illustrated in Figure 11: 

0: the side has no pieces in the quad 
1: the side has one piece in the quad 
2: the side has two pieces in the quad, arranged orthogonally 
3: the side has three pieces in the quad 
4: the side has four pieces in the quad 
5: the side has two pieces in the quad, arranged diagonally 
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Figure 11: Examples of quadcounts. Each quad can appear in any orientation. 

 
Quads are treated as combinations, rather than permutations. This allows quads of 

the same shape to be treated equally regardless of orientation. The quadcounts, then, are 

simply the sum of all quads of a particular type. The network accepts as input the count 

of each type of quad, for a total of 6 inputs. 

Nonads: Nonads represent a sequence of samplings of the board state. Each nonad 

is a 3x3 square of the board. Unlike Winands’ quads, nonads do not assume a phantom 

border. Thus, there are (n-2)2 nonads for an nxn board. Each nonad is evaluated by 

assigning a point total for every piece of the active side in the 3x3 area, based on where 

in the 3x3 area that piece is located. The points are awarded on three schedules 

(highlighted in Figure 12): 1.0 for the center cell, 0.8 for each side cell, and 0.75 for each 



 

35 

corner cell. As with quads, the opponent’s pieces are ignored. The total values of each 

nonad are fed into the network, requiring (n-2)2 inputs.  

 
Figure 12: A nonad with the center schedule in green, the side schedule in red, and 

the corner schedule in blue. 

 

Self/non-self: Self and non-self boards are full representations of the board in 

which one side is completely ignored. For self, the input of each cell can hold two values: 

one if the cell is occupied by a piece of the active player’s color, and the other if the cell 

is empty or occupied by a piece of the opponent’s color. As shown in Figure 13, the 

opposite holds true for the non-self evaluation. Both self and non-self representations use 

one input per cell of the board. Thus, these representations require a total of 2n2 inputs.  

 
Figure 13: The self/non-self heuristic takes a regular board (left) and separately 
evaluates the self (center) and non-self (right) components. 
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Genetic Algorithms for Neural Network Optimization 

The approach used to train a neural network to play LoA is to use a genetic 

algorithm to evolve the weights of the neural network [33]. In contrast with offline 

reinforcement learning, which was considered (see Appendix C), this requires the 

network to learn as it plays in an online environment. In this GA, each chromosome 

represents all of the weights of a network, where each allele is a particular weight. Each 

generation features both crossover and mutation to increase the size of the population. 

Tournament selection [31] is then used to determine which chromosomes persist to the 

next generation. The tournament is elitist, which guarantees that if there is a single best 

chromosome in the search space, that once found, it cannot be eliminated from the 

population. In this case, the single best chromosome would result in a network that acts 

as a perfect player, effectively solving the game. Exploration is achieved via mutation, 

and exploitation via crossover. 

For Lines of Action, the search space is very large. Each allele represents a single 

weight. Each weight is stored as a double, and ranges from -1 to 1. Since there are 

approximately 6.9 * 1018 values between -1 and 1 that can be stored as a double, there are 

x = 6.9 * 1018 possible values for each weight. For a given neural network, there are w 

weights. Thus, the GA must contend with a search space of xw possible network 

configurations. In my experiments, each network has 2041 weights, producing a total 

search space of size 1.531 * 1038,451.  

Tournament selection is conducted by having two chromosomes compete in a 

match against one another. Each chromosome is used to seed the weights of a neural 
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network. The two networks then play two games, swapping colors after the first game. 

During each turn of these games, the network evaluates all the possible moves, which 

consists of the resultant board state of each move being evaluated by the network. Each 

evaluation results in a score between -1 and 1. Whichever move has the highest score is 

selected. The winner of the match is determined by which network wins the most games. 

If they each win one game, then a tie-breaker is used to determine the winner. The tie-

breaker awards the victory to whichever network achieved its win in the fewest number 

of moves. If each side won its game in an equal number of moves, or if both games 

resulted in a draw, then one chromosome is selected at random as the winner. The 

tournament is single elimination; once a chromosome has lost a match, it is no longer 

considered for advancement to the next generation. Consequently, given a pool of size p 

and a selection limit of size s chromosomes that are to be selected for advancement, the 

tournament selector must play p – s matches, or 2(p – s) total games per generation. 

Description of pLoGANN 

To perform the online learning experiment, a program is developed called Parallel 

Lines of Action with Genetic Algorithm and Neural Networks, or pLoGANN for short. 

Written in Java, it is a network based program with two parts, the master and the slaves. 

The master controls the course of the genetic algorithm, while the slaves simulate games 

of Lines of Action and transmit to the master the results. 

The master performs three primary tasks. First, it manages the genetic algorithm, 

which includes performing the genetic operators, handling the loading and saving 

operations, and managing the populations. Second, it commands the slaves, to include the 
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network communications protocols as well as assigning the slaves tasks. Finally, the 

master performs evaluations every ten generations and to enable the experimenter to 

monitor the progress of the algorithms evolution. 

The slaves on the other hand have more straightforward responsibilities. It need 

only establish communications with the master and then play games of Lines of Action. 

The master sends the slave two chromosomes, A and B, which consist of a set of weights 

in a known order. The slaves apply those weights to two identically structured pre-

defined artificial neural networks, and then use those networks as the players in a two 

game match of LoA. Each chromosome plays one game as black and one as white. The 

winner is determined using the following criteria: 

1. If a chromosome wins both games 

2. If a chromosome wins one game and ties the other 

3. If a chromosome wins one game, loses the other, but the win occurred in 

fewer turns than the loss 

4. If a chromosome wins one game, loses the other, and games are of equal 

length; or if the chromosomes tie both games, then chromosome A is assigned 

as the winner (note: a game is declared tied in pLoGANN if, after one 

hundred moves, neither side has achieved victory) 

The purpose of the tiebreaker rules 3 and 4 are twofold. Rule three favors a strong 

and fast offense, while rule 4 favors longevity, which results from the fact that 

chromosome A is passed down from the previous generation, while chromosome B is 

newly evolved. Thus, a form of elitism is established, which says that a chromosome that 
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has won a match persists until it is definitively defeated. As a caveat, in the inaugural 

generation, where both chromosomes A and B are newly created, rule 4 implies that A is 

selected because it was randomly created first. 

The organization of the genetic algorithm is as follows. Each generation begins 

with a population equal to the number of slaves connected to the server. In pLoGANN, 

this number is defined at compile time, and is based on the known number of computer 

nodes available to the experimenters. For the final experiment, performed on a cluster 

computer with 32 dual-core processors, the master operates alone on a single processor 

while each of the other 31 processors are assigned two slaves, for a total of 62. Thus each 

generation begins with 62 chromosomes.  

The first step in each generation is to expand the population by using genetic 

operators. Each individual produces two offspring via mutation and one offspring via 

recombination with another parent. For each individual, another individual is randomly 

selected, which means that on average, each chromosome will parent two offspring with 

different partners through recombination. pLoGANN uses single-point crossover for 

recombination. Once the crossover point is randomly determined, the alleles to the left of 

the point from parent A are spliced to the alleles to the right of the crossover point from 

parent B to form the offspring. The number of newly created chromosomes equals the 

number of chromosomes that existed at the start of the cycle, which equals the number of 

slaves. Thus, at this point there are four individuals in the population for each slave, 

producing a total of 248 participants each generation. 
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The mutation operator iterates twice over each chromosome. During each pass, it 

changes any given allele with probability 0.15. If an allele is selected to be mutated, its 

value is simply replaced with another uniformly distributed random floating point value 

within the range of -1 and 1. Each pass creates a new mutated offspring. Given that each 

chromosome has 2041 alleles, each mutated offspring has on average 306 alleles that 

differ from its parent. This is a high mutation rate, but is deemed necessary to ensure that 

pLoGANN explores the solution space as much as possible, and is meant to compensate 

for the elitist tournament selector, which may induce premature convergence. In the 

absence of any deterministic way to determine an optimal mutation rate, 0.15 was 

selected basically because it is a round number that is high enough to produce large 

mutations but still low enough that it does not mutate the majority of the alleles of a 

given chromosome with any great frequency.  

Tournament selection is used to once again reduce the population. Four 

chromosomes, one old and two new mutated individual, and one bred (via crossover) 

individuals, all randomly selected, are grouped together and sent to each slave. They 

compete in a “final four” style tournament consisting of a total of three matches, after 

which the slave returns to the master the identity of the winner. Elitism is employed in 

order to maximize the number of solutions examined over the course of the experiment. 

Thus, once a solution has been defeated, it is permanently removed from the population 

to make room for as many offspring as possible. The master retains the winner and 

discards the losers. Once all slaves have returned to the master the winners of their 
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tournaments, the generational cycle is complete, and reproduction takes place again to 

begin the next cycle. 

Every ten generations, the master then performs two tasks. First, it competes each 

of the 62 surviving members of the latest generation against another artificial LoA player, 

called ALoA (AFIT LoA) in this thesis. This is also done in parallel, with each slave 

performing the evaluation for one chromosome. Each evaluation consists a two game 

match against ALoA, after which the slave returns the score of each game to the master. 

Second, the master saves all the chromosomes from that generation in order to allow the 

experimenter to recreate any ANN that shows promising results. By competing the entire 

population against a strong artificial player and recording the results, a measurement is 

generated that reveals to what extent the population is evolving into a stronger pool of 

players. This measurement is not used by the GA, but rather is only a tool for monitoring 

the performance and progress of the GA extrinsically. 

ALoA uses several heuristics to evaluate board states. The two primary heuristics 

(other than connectivity, which is a terminal state anyway) are centrality and quadcounts. 

Centrality measures the average distance between all of the pieces of each side. The 

shorter the distance between all of one’s own pieces the better. Furthermore, an 

additional penalty is levied against pieces that are on the edge of the board, since they are 

not only less mobile but are also easier to block. Quadcounts are evaluated as described 

above. If a side has either three or four pieces in a quad (quads 4 and 5 as shown in 

Figure 11) and that quad is located in the proximity of the center of all of that side’s 

pieces, the board is evaluated more favorably. Finally, taking advantage of the fact that 
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LoA is a zero-sum game, the opponent’s pieces are evaluated using the same heuristics, 

and the final evaluation is the difference between the evaluations of one’s own pieces and 

one’s opponent’s pieces. ALoA, which also uses a min-max search with alpha-beta 

pruning, derives its heuristics following the strategy described by Winands [35]: 

concentration, centralization, center-of-mass, quads, mobility, connectedness, and player-

to-move. 

The network design used with pLoGANN consists of 100 input nodes, a single 

hidden layer with 20 nodes, and a single node in the output layer for a total of 121 nodes. 

The activation function g used by every perceptron in the network is the tanh function, a 

type of sigmoid function: 

tanh x = (e2x – 1) / (e2x + 1). 

A fully connected network, it requires 2000 connections between the input and 

hidden layers and 20 connections between the hidden layer and output layer for a total of 

2020 connections. As each connection has a weight, and each non-input node has a bias 

weight, there are a total of 2041 weights in the network. Thus, this experiment requires 

2041 chromosomes to describe the network. 
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Figure 14: Diagram of pLoGANN's artificial neural network and inputs. 

As displayed in the diagram above, the input consists of two sections. The first 64 

nodes each receive input from one of the 64 spaces on the board. If the space is occupied 

by one’s own piece, the input value is 0.75; if occupied by one’s opponent’s piece, the 

input value is 0.5; otherwise the input value is 0.5. The remaining 36 nodes (nodes 65-

100) receive as input the results of the nonad evaluations taken from each of the 36 

nonads on an 8x8 board.  

This board configuration was chosen for two primary reasons. The first was 

efficiency. In order to ensure that the algorithm could process enough generations to 
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provide results within the narrow window of opportunity available for this experiment, a 

small network was requires. Even at this relatively small size, the computer cluster 

needed to perform the experiment was only available long enough to let the experiment 

run for approximately ten thousand generations, which is not a lot, considering the size of 

the solution space. The second consideration was to utilize at least one heuristic that 

covered the full extent of the board. Rows and columns, diagonals, and self/non-self 

heuristics on the other hand, require 2n2 = 128 inputs. Quadcounts, while requiring only 

six inputs, do not provide any spatial information. Nonads, on the other hand, provide for 

full board coverage, including spatial information, and require a much smaller (n-2)2 = 36 

inputs. Thus, nonads and the board state itself were chosen as the only heuristics for the 

final experiment.  

Implementation of pLoGANN 

As the first initial of pLoGANN’s acronym indicates, the final experiment is run 

in parallel on multiple processors. While development and testing for pLoGANN was 

performed on a network of Windows PCs running Microsoft Windows XP, the 

experiment was specifically designed to be conducted on a computer cluster. The cluster 

used featured thirty-two dual core nodes, each of which is connected via a crossbar, 

enabling uniform communication. Communication was conducted using network 

protocols, rather than MPI, which makes pLoGANN technically a distributed program, 

rather than a parallelized program. The amount of communication relative to the amount 

of processing is very small. The master only sends out the allele values to each slave, and 

the slaves return only the identity of the winner of the tournament, which is a single 
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integer value. As described above, the tournaments and the evaluations versus ALoA are 

distributed, while the crossover and mutation operations, as well as the persistence of the 

epochs are performed exclusively by the master. 

One of the final choices was to determine to which depth the competitors 

searched. Search depth, or ply, refers to the number of moves ahead one looks at. For 

example, if the ply is set to 1, one considers only one’s immediate options. If the ply is 

set to 2, one considers one’s immediate options as well as all of one’s opponent’s options 

the following turn. The advantage of increasing the ply is that it allows the program to 

search deeper into the game. However, the disadvantage is that it takes longer to decide 

upon the move, since one must evaluate many more board states. Given a branching 

factor of b, a p-ply search requires the evaluation of on average bp boards. Thus, an 

increase in ply leads to an exponential increase in search time. 

With this in mind, pLoGANN’s ply was set to 3. This enabled it to look ahead to 

avoid any losing moves, if possible, as well as to move towards a potential winning 

move. A larger ply was not used for two reasons. First, the extra computation cost would 

have significantly reduced the number of generations computed. Second, the goal was to 

develop a great heuristic, which would have made a multi-ply search unnecessary, so it 

was undesirable to allow pLoGANN to have the crutch of additional search depth since 

that might prevent the evolution of a great heuristic. However, ALoA’s search depth was 

set to 5. This was done because at 3-ply, ALoA is beatable by average quality humans, 

but is much more formidable at 5-ply.  
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Stochastic Player 

In order to establish a benchmark for performance measurement, an additional 

experiment is performed. A stochastic player is introduced which makes each move at 

random, except that board states in which one’s own pieces are connected (a winning 

board state) are rated maximally while board states in which one’s opponent’s pieces are 

connected are rated minimally. Thus, the stochastic player still takes advantage of 

winning moves and avoids losing moves, if possible. The average performance of this 

player is then compared with the average performance of the chromosomes. Given that 

each chromosome represents a semi-random location in the solution space, this 

experiment is intended to measure if the GA has any impact whatsoever in the 

performance of the ANN. It is possible that the solution space is so jagged that the GA is 

unable to exploit any surface characteristics. If so, then each chromosome devolves to 

little more than a deterministic player whose moves are seeded by a random number. 

Thus, the stochastic player is introduced as a means to determine if there is any 

measurable improvement in performance over the course of the primary experiment.  

Summary 

The nature of genetic algorithms is such that there is no clear point at which to 

terminate an experiment short of finding a true optimal solution. GAs do not exhaustively 

search a solution space, and so cannot prove that an optimal solution does not exist. 

Furthermore, in cases where a GA’s fitness function is a simulation of what the task that 

the GA is expected to perform, it may not even be possible to detect when the GA 

discovers an optimal solution. Thus, the most reasonable termination condition is based 
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on the real world limitations of the experimenters. In this case, the primary limitation is 

time, and the secondary limitation is money, in the form of computer resources. For this 

thesis, both limitations were bottlenecked by the limited access available on the key 

computer cluster. 

In order to perform the major experiment on the parallel cluster, time and 

processors had to be reserved in advance. Granted approximately a two week window on 

32 dual-core nodes, it was imperative to finish developing and testing pLoGANN so that 

as much of the reserved processor time as possible could be utilized with the actual 

experiment. As such, preliminary tests on smaller LoA boards and with different neural 

network configurations were limited and by no means thorough.  

Fortunately, most testing and program validation could be performed on regular 

PCs. Also, smaller numbers of nodes were available for performance testing prior to the 

commencement of the major experiment. During these tests it was discovered that the 

master became a bottleneck if it shared a dual-core node with a slave. Consequently, the 

master resided on its own node and the planned 63 slaves were reduced to 62.  

Given the known limit of time and processing power, prior to the experiment, it 

was known that the upper limit of the number of generations computed was 

approximately 10,000, for a total of 620,000 competitions, producing up to 62,000 

chromosomes which would be evaluated. Given that 62,000 is a miniscule fraction of the 

number of computable points in the solution space, it was viewed prior to the experiment 

that the odds of finding a optimal solution was rather slim, if not nil. As such, secondary 

goals came into focus. The first was to demonstrate improvement via learning. The 
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second was to determine whether that methodology produced better results than a random 

player. The former is measured by pLoGANN’s results over time while the latter is 

measured by comparing pLoGANN’s and the random heuristic’s performances against 

both shared competition and each other.  
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IV. Analysis and Results 

The results of the tests are used to determine whether or not PLoGANN was a 

successful in developing a competitive Lines of Action player. As a genetic algorithm, 

pLoGANN examined many points in the solution space, each one representing separate 

LoA heuristic. If any of the examined heuristics produced competitive player, then the 

final measurement was a success. Barring that, a secondary goal was to determine if 

pLoGANN demonstrated learning. To that end additional tests were designed and run to 

determine if pLoGANN improved over the course of generations of the genetic 

algorithm.  

Results of pLoGANN 

In total, 1000 epochs were computed, each consisting of 10 generations of 248 

competitors producing 62 victors. Out of those 620,000 solutions that survived 

tournament selection, the surviving solutions of the final generation of each epoch were 

matched against an outside competitor, ALoA, and their performance documented. As 

each epoch consists of ten generations, 62,000 total solutions competed against ALoA.  

In each of the following charts, four values are displayed. The performance of an 

individual (or set of solutions) while playing black, the performance while playing white, 

the combined performance, and then the average of the performances while playing black 

and white. Performance is measured by the results of a match against the traditional LoA 

heuristic. If the game results in a victory, then it is scored as 100 minus the number of 

moves required. If it results in a loss, then the score is simply the number of moves the 
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game lasted. Games that did not end after 50 moves resulted in a score of 50 regardless of 

the outcome. The match score then is the sum of the scores of each game. 

The first objective was to discover a winning player. For that, the best method is 

to investigate each of the 62 best highest scoring solutions from each epoch: 

 
Figure 15: pLoGANN performance of highest scoring solution of each epoch. 
 

As demonstrated in Figure 15, in only nine of the thousand epochs were solutions 

produced which defeated ALoA (a tenth produced a tie). More significantly, none of 

those epochs were consecutive, which means the solutions in question did not survive 

another ten generations of competition, a fact that is examined in further detail in Chapter 

5. Furthermore, none of the individual solutions in question were able to defeat a human 

of average competence. Each of these competitors were victorious playing black or white, 
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but not both (the highest overall performance came from individual solution 22 of epoch 

903 (903:22), which won as black and lost as white in 35 turns each). Thus, it is clear that 

pLoGANN failed in its primary objective, to produce a competitive Lines of Action 

player. 

 The next step is to determine if pLoGANN’s failure to find a competitive player is 

due to limitations of time. In other words, if pLoGANN clearly demonstrated learning, 

then it stands to reason that given more time (as in more generations), pLoGANN may 

produce a better player. To measure this, the mean and median values of the epochal 

solutions are examined. Each represents an ‘average’ of that epoch’s performance.  

 
Figure 16: pLoGANN mean performance of each epoch. 
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Figure 17: pLoGANN performance of median scoring solution of each epoch. 
 

 Both the mean and median graphs show very similar data. In fact, for all four 

measurements, there is very little difference between the mean and the median in each 

epoch. In fact, even when an extreme outlier exists, such as in epoch 903, that outlier has 

only a marginal impact on the mean value, as demonstrated by a comparison of epochs 

902-904: 

Table 1: Detailed comparison of consecutive epochs 

Epoch Mean Median Max 
Comb. 
Mean 

Comb. 
Median Comb. Max 

902 28.26 28 50 56.52 55  83 
903 30.43 28 165 60.85 57  200 
904 28.47 28 54 56.94 55  85 
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If solution 903:22 is discounted as a statistical outlier [38], the mean and 

combined means of epoch 903 would be 29.28 and 58.57, respectively. While this is still 

higher than the neighboring epochs, the values fall within a single standard deviation 

(0.60 and 1.20) of the means of all epochs (28.72 and 57.43). In other words, even when 

an epoch produces what appears to be an outstanding player, the overall performance of 

that epoch is statistically unexceptional. This trend is more apparent when smoothing is 

used. 

Applying a 5-smoothing average on the results of each epoch with the results of 

the two preceding epochs and the two following epochs reduces the impact of any 

outliers such as 903:22. Using 5-smoothing, the data of the chart above looks very 

similar: 

Table 2: Details of consecutive epochs after 5-smoothing is applied 

Epoch Mean Median Max 
Comb. 
Mean  

Comb. 
Median Comb. Max 

902 29.05 28.00 89.67 57.77 56.20  108.00 
903 29.23 28.00 87.00 57.91 56.20  108.00 
904 29.13 28.00 49.33 58.44 57.00  106.00 

 

 The 5-smoothing has a similar effect on the graphs produced by all of the epochs, 

shown below with trend lines for the combined data. As the trend lines demonstrate, there 

is no indication that the general population of solutions produced by pLoGANN improves 

during the course of the thousand epochs. In fact, the trend lines have very slight negative 

slopes, although the negative slope is so small as to be insignificant.  

In terms of success at solving the game of Lines of Action, the results of 

pLoGANN show no evidence of either evolution or devolution. In fact, if anything, the 
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data suggests that during the first 10,000 generations of its run, pLoGANN behaved like a 

random player, occasionally coming across an individual that played the right sequence 

of moves to beat ALoA. 

 

 
Figure 18: pLoGANN mean performance after 5-smoothing is applied. 
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Figure 19: pLoGANN median scoring performance of each epoch after 5-smoothing 
is applied. 

Results of Random Heuristic 

To test whether or not pLoGANN did indeed perform like a random player, a 

stochastic player was developed and tested against ALoA. The stochastic player, or rather 

the random heuristic, assigns values in one of three ways: a winning move is given the 

highest rating, a losing move is given the lowest rating, and all other moves receive a 

rating returned from the pseudo-random number generator from in the default Java 

Random class.  
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Table 3: Results of random heuristic 
 Overall White Black Combined 
Mean 30.98 30.67 31.28 61.95 
Median 28 28 29 59 
Max 162 100 162 208 
Standard Deviation 10.45 10.20 10.39 14.65 

 

 The simulation was modeled after pLoGANN’s simulation. The random player 

played one game as white and then one as black to complete a match, which was repeated 

62,000 times. The results are tabulated in Table 3. The combined score pairs the white 

and black scores from each match. One item of note is that the random heuristic won 

exactly one game and one match. Thus the max score from black of 162 is an aberration. 

The next highest black score was 100, a tie game. Also of note is that the random 

heuristic performed slightly better as black than as white. This is not surprising, given the 

tendency for the side that moves first in some abstract strategy games, including chess, to 

have an advantage [39]. 

Table 4: Comparison of random heuristic and pLoGANN 

 Random Heuristic pLoGANN 
Overall White Black Combined Overall White Black Combined

Mean 30.98 30.67 31.28 61.95 28.71 28.55 28.87 57.43
Median 28 28 29 59 28 27 28 57
Max 162 100 162 208 165 164 165 200
St. Dev. 10.45 10.20 10.39 14.65 5.54 5.48 5.48 7.84

  

By merging all the epochs of the pLoGANN simulation, one can easily compare 

the performances of the random heuristic and pLoGANN (see Table 4). These results 

indicate that in some ways pLoGANN behaved very much like the random heuristic. The 

median scores were nearly identical, while the mean score of the random heuristic 
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exceeded that of pLoGANN by only 7.9%. Nevertheless, given the very large sample 

sizes (124,000 for overall, 52,000 for the other three categories), a t-test upon the null 

hypothesis that the two samples have in fact the same mean returns a zero percent 

probability for all four categories, firmly rejecting the null hypothesis.  

The notable contrast between the two occurs with the standard deviation. 

pLoGANN’s standard deviation is nearly half of that of the random heuristic. The cause 

is easily discernable when examining the graph of the random heuristic’s maximum 

scores when the matches are divided to epochs in the same manner as pLoGANN (Figure 

20). 
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Figure 20: Highest scores achieved by random heuristic within each epoch. 
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Unlike pLoGANN, the random heuristic frequently forced tie games. These tie 

games thus pushed up the mean values as well as the standard deviation. Although 

pLoGANN managed to win seven more matches than the random heuristic, both one and 

eight victories in 124,000 games should be considered outliers. In the greater scheme of 

things, the only meaningful difference between the performances of pLoGANN and the 

random heuristic is the number of tied games the random heuristic achieved. 

 These results brought up two questions. First, is ALoA so good that there is a 

threshold of competence that must be reached before evidence of learning can be 

measured? To use a sports analogy, if a novice basketball player plays one-on-one against 

a professional basketball player for one thousand games, he will in all probability 

improve as a player during the course of those games. However, the professional player is 

likely so good that it will take more than just a little improvement before the novice’s 

improved competence is actually measurable based on the game statistics. In that sense, 

the professional player possesses some threshold of competence that the novice player 

must surpass before his learning produces improved measurable results in the box score.  

Second, if the ALoA possesses such a threshold of competence, does that mean 

that pLoANN may indeed have learned to play Lines of Action better? If it did not pass 

that threshold, any improved capability would have been obscured by the dominance of 

ALoA. For that reason, one more experiment was designed. The most rudimentary 

heuristic is the random heuristic, which should not have any threshold of competence. 

Thus, if pLoGANN did indeed learn how to play LoA better, that learning should be 

evident in competitions against the random heuristic.  
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Results of Random Heuristic vs. pLoGANN 

For this experiment, every tenth epoch was extracted and matched against the 

random heuristic. Just as each heuristic was set to a search depth of 3 for their matches 

against the traditional heuristic, so were each set to a search depth of three when matched 

against one another. The results of these matches are shown below (results show the 

performance of pLoGANN, not the performance of the random heuristic): 

 
Figure 21: pLoGANN mean performance against random heuristic. 
  

Between epochs 10 and 150, pLoGANN’s score for black rises steadily from 

75.74 to 103.03. However, after that peak, it descends and no further epoch displays a 

winning average against the random heuristic while playing either white or black. 



 

60 

Furthermore, the values for the tenth and thousandth epochs all fall well between the 

minimum and maximum values for any epoch.  

Table 5: Results of random heuristic competing against pLoGANN 

 Random Heuristic pLoGANN 
Overall White Black Combined Overall White Black Combined

Mean 121.81 125.50 118.13 243.62 78.19 74.50 81.87 156.38
Median 129 133 124.5 252 71 67 75.5 148
Max 186 186 181 353 182 179 182 328
Standard 31.47 30.78 31.36 45.45 31.47 30.78 31.36 45.45
 

 The overall statistics for this experience show that the random heuristic clearly 

outplayed pLoGANN. Not surprisingly each side’s best games were similar, but the 

random heuristic had significantly higher scores through each epoch compared, with the 

singular exception of epoch 150 when pLoGANN played as black. Their actual records 

further demonstrate the dominance: 

Table 6: Results of games and matches between random heuristic and pLoGANN 

 pLoGANN 
Wins Losses Ties Winning Percentage 

All Games 2168 9089 1143 19.26 
White 959 4792 449 16.68 
Black 1209 4297 694 21.96 
Match 1099 4976 125 18.09 

 

 These results, however, only examine networks that have survived at least one 

round of tournament selection. That leaves the question of the base case scenario: how 

does a pLoGANN network perform prior to any evolution? To answer that question, a 

network, dubbed RandomANN, was created, whose weights were set to uniformly 

distributed random values between -1 and 1. This network then competed in 1240 
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matches against the random heuristics using the same settings as before (search depth of 

3). The results of this experiment are presented in Tables 7 and 8.  

Table 7: Results of pLoGANN and RandomANN versus random heuristic 

 RandomANN pLoGANN 
Overall White Black Combined Overall White Black Combined

Mean 55.41 52.07 58.75 110.82 78.19 74.50 81.87 156.38
Median 51.5 48 53.5 104.5 71 67 75.5 148
Max 166 159 166 281 182 179 182 328
Standard 21.71 19.63 22.68 32.38 31.47 30.78 31.36 45.45
 

Table 8: Results of games and matches between random heuristic and RandomANN 

 RandomANN 
Wins Losses Ties Winning Percentage 

All Games 38 1180 22 3.12 
White 16 599 5 2.60 
Black 22 581 17 3.65 
Match 17 602 1 2.75 

 

These results provide two insights into pLoGANN. First, the early hypothesis that 

pLoGANN was essentially a random heuristic does not hold up. In a trial of 62,000 

matches between identical random heuristics, the two competitors produced winning 

percentages of 49.9% and 50.1%. By comparison, RandomANN has a mere 2.75% 

winning percentage while pLoGANN had an 18% winning percentage against the 

random heuristic. Thus, there clearly exists some attribute within the network itself, 

perhaps a dependency between the perceptrons, that prevents it from performing like a 

random heuristic. 

The second insight is that it appears that pLOGANN did in fact improve its 

performance relative to the RandomANN. However, this improvement actually took 
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place within the first epoch. So while pLoGANN did learn how to play LoA slightly 

better, it quickly plateaud and remained a very weak competitor for the remainder fo the 

experiment. As such, not only did pLoGANN fail to learn much, but there is some 

component of pLoGANN’s heuristic that actively leads it to make bad moves. For these 

moves to place it at such a disadvantage to a random heuristic indicates a significant 

failure on pLoGANN’s part. 

Summary 

The early experiments which led to the development of pLoGANN produced 

unclear results. The additional challenges presented by the computational limitations set 

by the limited access to computing power led to a minimalistic design for pLoGANN that 

incorporated a speculative heuristic (nonads). However, every experimental result 

showed that not only did pLoGANN begin the experiment as an extremely weak Lines of 

Action player, never improved to the point of being able to compete with even a random 

heuristic. In short, pLoGANN is a failure. 
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V.  Conclusions and Recommendations 

The results of the final experiment clearly indicate that pLoGANN failed to 

develop a quality Lines of Action player. However, the reason it failed to do so is much 

less clear. In this chapter, several possible reasons why pLoGANN failed are examined. 

Also, the benefits of the approaches taken towards pLoGANN’s design are analyzed, and 

suggestions for improvements discussed, as well as applications for this approach besides 

solving Lines of Action. 

Conclusions of Research: What Went Wrong 

 Without a doubt, pLoGANN failed to develop a strong LoA player. The reasons 

why, however, are ambiguous. There are several factors that may or may not have 

contributed to the lack of success: 

- Not enough time: pLoGANN ran for 10,000 generations and in that time 

revealed no measurable improvement. However, it is always possible that 

given enough time, an individual solution could be found in a region in the 

solution space that would enable the population to converge. However, short 

of a full analysis of the solution space, which is completely infeasible, this is 

only a supposition, and not worth investigating. pLoGANN, as is, ran for a 

long time, and its results gave no indication that additional time would 

produce a better outcome. 

- Existence of a solution: One unanswerable question is whether or not a quality 

solution, one which effectively approximates the value of a Lines of Action 

state exists within the solution space of pLoGANN. This is akin to asking 
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whether or not the structure of pLoGANN’s final tree can be tuned to solve 

Lines of Action. If not, then pLoGANN was predestined to fail the primary 

objective. However, even if that were the case, there would still be a best 

solution within the solution space, and the question would then be how good 

of a solution, compared to the best achievable solution, did pLoGANN 

achieve? Given the poor performance of the best measured solutions against 

human players, if pLoGANN did indeed land at a high quality solution, then 

clearly this entire approach to solving LoA is invalid. 

- Solution space topography: Genetic algorithms are essentially hill-climbing 

mechanisms with the ability to escape local minima. However, in order to 

climb the hill, there must exist a hill to climb. The topography of pLoGANN’s 

solution space is unclear, and given that it is 2,041 dimensions, mapping the 

solution space is well beyond the scope of this thesis. If there is in fact no 

discernible topography, then the task at hand reduces to what in a sense is a 

needle in the haystack problem. Since pLoGANN examined only a tiny 

fraction of the solution space, there was little chance of it finding a good 

solution if indeed there is no useful topography. 

- Crossover scheme: Even assuming that pLoGANN’s solution space has an 

adequate topography, it is unknown if pLoGANN was capable of following 

the topography in a useful manner. There is much debate within the GA 

community [23, 30] about the merits of different crossover schemes. Since 

each individual solution’s chromosomes fit separate weights on the artificial 
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neural network, and since the ordering of those weights matters when 

crossover operations occur, the choice of crossover schemes and the ordering 

of the weights can produce very different results. As a specific example, the 

input layer was organized linearly, starting at the upper left corner of the 

board and proceeding like words on a page to the lower right corner (the 

nonads portion of the input weights were ordered similarly). Thus, weights 

eight and nine were adjacent, even though the squares they represented (the 

top-right corner square and the left most square on the second row, 

respectively) were not connected in any way relative to the game of Lines of 

Action (i.e., pieces in those two squares cannot directly effect one another 

during any given turn in Lines of Action, since they do not occupy the same 

horizontal, vertical, or diagonal lines). On the other hand, either a spiral 

scheme or a salamander scheme would have ensured that adjacent weights 

represented adjacent squares. However, given that at some point there would 

have to be some disconnect between adjacent weights and what they 

represented, such as the separation between input weights and hidden layer 

weights, a re-ordering of weights could not have created uniform consistency. 

pLoGANN had both crossover and mutation schemes in place which would 

allow it to explore and converge; the fact that it failed to converge at all 

suggests that different reproductive schemes are unlikely to have produced 

better results in the face of other problems with pLoGANN. 



 

66 

- Tournament selection: It was a known fact at design time that by far the 

greatest computational bottleneck that pLoGANN faced was the fitness 

function. As such, there was a deliberate attempt to extract as much utility out 

of the fitness function as was possible. To that end, it made sense to 

implement a tournament selection scheme, since that allowed two individuals 

to be evaluated using one call to the fitness function (the fitness function 

being a match between the two individuals). Had a different fitness function 

been used, such as the fitness function to evaluate each epoch (by competing 

each individual against a traditional heuristic), then two drawbacks would 

have occurred. The first is that only half as many individuals could have been 

evaluated. The second is that the de facto objective of the GA would then 

have been to find a chromosome best able to compete against that heuristic, 

rather than to find the best general Lines of Action player. This might very 

well have led to a final population that consisted of solutions similar to the 

outliers that did indeed defeat the heuristic (especially if the heuristic was 

deterministic, as was the case with the one used to evaluate the epochs in 

pLoGANN), yet were clearly unexceptional players as measured by 

competition against beginner level humans. However, pLoGANN, as 

implemented, clearly did not succeed, and this remains one of the possible 

reasons why. 

- Elimination scheme: The tournament selection model used by pLoGANN 

used a single elimination format. The advantage of this method is that it 
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allows a genetic algorithm to examine more individual solutions, since an 

individual remains in the population if and only if it wins every match. Such 

an advantage is useful on a tremendously large solution space such as the one 

pLoGANN operated on, but it comes at the risk of eliminating quality 

solutions too quickly. For example, a solution that defeats 60% of the 

population only has a 13% chance of surviving two tournaments. In fact, a 

solution that defeats 90% of the population has only a 12% chance of 

surviving an entire epoch. In hindsight, it should come as no surprise then that 

not a single individual was repeated in any of the 1,000 epochs measured. 

Since a population is measured against an outside player only once per epoch, 

it is certainly possible that a great solution was evolved and perished within a 

single epoch and so was never recorded. However, even if that were so, it is 

clear by the absence of any rise in the population averages that any such 

superior solution did not have a lasting impact on the population. During 

design time, naïve optimism that a perfect solution would be found, and that it 

would persist across epochs, led to this area being overlooked. Thus, if 

pLoGANN were to be redesigned, this portion of the program would almost 

certainly be implemented differently, to allow for greater persistence of 

solutions. 

- Tournament format: The simplicity of a single elimination tournament also 

had the advantage of requiring the fewest possible matches to determine a 

winner. This efficiency, however, exacerbated the single elimination issues 
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described above. Another approach, a round robin tournament featuring six 

total matches amongst four competitors would have rewarded solutions that 

were better against more opponents. However, this, too, is unclear, especially 

considering all competitions within pLoGANN were strictly deterministic 

(unlike real life athletic competitions), and where no game or match was 

influenced in any way by any events before or after that game or match 

(again, unlike real-life athletic competitions, where injuries, fatigue, and 

standings impact in-game decisions). In the single elimination scheme, the 

winner defeated two of the three opponents. In a round robin scheme featuring 

the same four participants, however, the tournament would produce a different 

winner only 25% of the time (see Appendix D), and even then the victor 

would statistically be only marginally better, as it’s victory would be due to a 

tiebreaker. Thus, the cost of computing only half the generations is pretty 

steep compared to the gain of what may or may not be a better solution only 

one quarter of the time.  

- Population size: During the design of pLoGANN, it was obvious that in order 

to maximize the efficiency of the parallel environment, that the population 

size should be some multiple of the number of slaves available, 62. In 

pLoGANN, that multiple was chosen to be one. The effect this had was that it 

effectively gave priority to depth of search over breadth of search. Had the 

multiple been set to any other positive integer, the population would have 

been much larger, but the number of generations calculated would have been 
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reduced by a factor of the same multiple. The total number of tournaments 

held, however, would have remained the same given the same timeframe. The 

primary concern of having a small population was that it may lead to 

premature convergence. This, however, clearly did not happen. While a larger 

population may have produced a different result, the impact of population size 

is secondary. In other words, a larger population cannot have a significant 

impact if the basic mechanisms of the GA are not functioning well. 

 

A pair of the above issues can be dismissed outright. There is no indication in any 

of the evaluations that pLoGANN was learning, and so there is no justification to 

conclude that more generations would have produced different results. Similarly, there is 

no evidence that a different population size could have produced better results.  

Of the items above, two are issues that arose prior to the development of the 

genetic algorithm. If no configuration of the ANN could produce a quality LoA heuristic, 

then pLoGANN was doomed as of the moment the network configuration was 

determined. Similarly, if the solution space topography was so chaotic that the problem 

reduced to a “needle in the haystack” problem, then no GA could navigate it successfully. 

If either of these conditions were true, then no amount of tuning the GA would have 

produced viable results. However, neither of these problems are feasibly diagnosed, and 

therefore it is unknown to what extent these factors impacted pLoGANN’s performance. 

Two of the six issues that pertain directly to the GA, the choice of using 

tournament selection and the tournament format no doubt impacted how the GA 
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operated. However, given the relatively low amount of resources available for the 

experiment compared to the extremely large size of the solution space, the basis for these 

two design decisions still hold up despite pLoGANN’s performance. As stated above, 

tournament selection, by allowing the evaluation heuristic to compare two solutions at 

once, doubled the number of solutions that could be evaluated within the same amount of 

time. Similarly, the use of a single elimination tournament scheme, as opposed to a round 

robin scheme, also doubled the number of generations measured, while producing an 

inferior solution at most one quarter of the time. The four-fold increase in efficiency 

generated by these two choices outweighs the relatively minor evaluation differences as 

well as the unknown impact a different selection format might have had. 

The final two issues, however, definitely bear greater scrutiny. The crossover 

scheme, which was single point crossover, was developed without critically analyzing the 

chromosome encoding scheme. Given three alleles a, b, and c, which are encoded in that 

order, single point crossover means that alleles a and c can never be retained in a 

chromosome unless b is also, but b can be paired with one or both of a and c. Thus, if 

there exist any dependencies between genes, then this single point crossover has uneven 

impact on the set of alleles because it enables some combinations of genes to be retained 

but not other combinations. 

The elimination scheme, however, is the element of the GA that had the most 

visible unintended consequences. The single elimination scheme resulted in an epochal 

turnover rate of one hundred percent. Without a single solution persisting from one epoch 

to another, pLoGANN had very little chance of converging, since the turnover rate would 
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have made it prohibitively difficult for a set of solutions to remain in the population for 

long. Of all the critical issues with the genetic algorithm at the heart of pLoGANN, this is 

the one that had the clearest impact.  

Conclusions of Research: What Went Right 

Given the performance of pLoGANN, it is easy to overlook what pLoGANN did 

well. pLoGANN represented a combination of several different disciplines within 

computer science. It combined a meta-heuristic search algorithm with artificial neural 

networks over a parallelized runtime environment. The effectiveness of the search 

algorithm combined with the ANN is in doubt, but the effectiveness of the parallelization 

of pLoGANN is not. Furthermore, the fact that it was designed to operate in a platform-

independent manner not only enabled for easy testing of the software, but also presents 

an expandable framework that can be used for further research. 

pLoGANN took advantage of a computational model that was embarrassingly 

parallel. As such, it required little innovation to configure it to run in parallel or in a 

distributed environment. Nevertheless, several design and post-testing decisions were 

made to eliminate inefficiencies during the operation. One such decision was to introduce 

a four-unit tournament selection. Because of the variability in game length, each 

generation took as long as the longest single tournament. Thus, the effort to normalize the 

length of the tournaments by introducing additional competitors and transforming it into a 

multi-competitor tournament ensured any sequence of three matches (aka one complete 

tournament in pLoGANN) would take at most as long as three generations had 

pLoGANN’s selector consisted of a single match. Given 62 nodes, the probability that a 
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single tournament consisted of all three of the longest matches of that generations was 

5.64 x 10-9. Assuming probability held up, this decision enabled pLoGANN to save time 

in every single generation of this experiment. 

Technically speaking, pLoGANN was developed as a distributed application 

rather than a parallel application, as neither the master nor any of the slaves used shared 

memory. While pLoGANN forsook the opportunity to use shared memory (and thus 

reduce the volume of communication between the master and the slaves), it gained the 

ability to be operated on any kind of cluster of computers, including random personal 

computers connected by a LAN or even the internet. Not only did this enable much easier 

debugging and testing, given the abundance of open computer labs at AFIT, but it also 

makes pLoGANN easily modifiable to perform other tasks in a much more flexible 

environment. 

One inefficiency that pLoGANN suffers from is the requirement that generations 

be synchronized. While this makes evaluating generations and epochs a more 

straightforward task, it introduced three notable areas of inefficiency. The first was that 

the master had to wait for all slaves to finish their computations for each generation. The 

second was that the slaves which finished sooner had to wait for the slaves that finished 

later. Finally, all the slaves had to wait for the master to perform crossover and mutation 

operations. If the need to monitor generational (or in pLoGANN’s case, epochal) 

performance is not as strong as it was for pLoGANN, an asynchronous model could be 

developed, where the master maintains a reserve of solutions that can be sent out to 

slaves as soon as one is available, then no slave would remain idle. Obviously, as the 
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number of slaves increases, other performance issues may arise in the master, but this is a 

framework that could be utilized to run a distributed search on any environment, whether 

it is LoA, a different abstract strategy game, or other. 

Significance of Research 

This research effort yielded decidedly underwhelming results. While it did not 

yield any positive breakthroughs for the study of Lines of Action, it did demonstrate 

some of the limitations of artificial neural networks. Lines of Action is not among the 

most complex of abstract strategy games, but some of its mechanisms are decidedly 

different than other well known games. The ambiguous value of having more or less 

pieces on the board is virtually unique, and the absence of direction on the game board 

adds another challenge, since no side can be weighted higher or lower than any other side 

(unlike, checkers, for example). Despite this, compared to almost any real-time strategic 

environment, such as a battlefield or soccer field, Lines of Actions is a very simple 

environment, and one which an artificial neural network was unable to model in a simple 

manner. Even with just one hundred inputs and a single hidden layer, the ANN had 2,041 

individual weights. When a metaheuristic, such as a genetic algorithm, is used to 

optimize these weights, it produces a search space so large that a complete search is an 

intractable problem. If a GA is unable to feasibly train an ANN in a static environment, it 

does not have any chance of doing so in a dynamic environment, which any real time 

environment is. This thesis, if nothing else, exhibits some of the limitations of GA-tuned 

artificial neural networks.  
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Final Remarks 

The continuing advancements in computer engineering are increasing the 

computational power available to researchers every year. With these resources at their 

disposal, artificial intelligence continues to be a focus of sophisticated approaches to 

design machines that can outperform humans. At present, such efforts have produced the 

best competitors in the world in games such as checkers and Lines of Action. LoA is a 

niche game with a relatively small following. Research into chess and Go, however, have 

the potential to capture the general public’s attention as well as impact how those games 

are played at the professional levels as computers introduce new strategies and provide 

proof or disproof of existing strategies’ viabilities. Once artificial algorithms begin to 

demonstrate the ability to find inefficiencies in existing methods of addressing 

competitive tasks, whether in games, finance, or military matters, their value can only 

increase. 
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Appendix A 

Derivation of Parallelization of Fitness Function 

 

According to Gustafson’s law, the speedup of parallelizing an algorithm can be 

given as S(P) = P − α * (P − 1), where P is the number of processors in the parallel 

implementation, α is the non-parallelizable, or serial, portion of the algorithm, and S(P) is 

the speedup achieved over P processors [26]. Speedup itself is defined as the 

improvement in performance of a parallel algorithm over the same algorithm performed 

sequentially, and is given as S(P) = T1/TP, where T1 is the performance of the serial 

algorithm and TP is the performance of the same algorithm once parallelized. Given that 

T1 can be expressed using big-O notation as O(xn), where x is the performance of a single 

instance of a fitness function and n the number of fitness functions that must be 

performed, the two speedup formulas can be combined as follows:  

S(P) = T1/TP;  S(P) = P − α * (P − 1) 

T1/TP = P − α * (P − 1)  

O(xn)/ O(TP) = P − α * (P − 1) 

O(TP) = O(xn)/O(P − α * (P − 1))  

Given that α is not only a constant, but is in fact 0, since there is no non-parallel 

portion of any instance of the fitness function, this formula can be reduced to:  

O(TP) = O(xn)/O(P)  

O(TP) = O(xn/P)  
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However, Gustafson’s law specifically ignores the cost of communications, which 

is typically given as tc and is applied for each instance of communications to a processor, 

in this case P:  

O(TP) = O(xn/P) + Ptc  

O(TP) = O(xn/P + Ptc) 

Thus, the performance of the a fitness function over a parallel system is given as 

O(xn/P + Ptc). 
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Appendix B 

Theorem: Not all valid Board States of Lines of Action are Reachable 

Proof by contradiction: Consider the following legal Lines of Action board state: 

 

 
Figure 22: Example of unreachable board state. 

If it was black’s turn, then white must have made the previous move. However, 

there exist no moves which white could have made that would have allowed a piece north 

of the black formation to move south of the formation. Therefore, only black could have 

made the last move. At the start of black’s turn, only two possibilities exist: either it 

landed on a white piece or it did not. If it did not land on a white piece, then the game 

must have already been over, since white was already fully connected. If it did land on a 

white piece, that white piece must have been on one of the eight tiles presently occupied 

by a black piece, all of which connect to the white formation. Therefore, prior to black’s 
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move, white must have already been fully connected and the game thus already 

concluded. 

 As there exists no legal move within the context of a LoA game that reaches the 

above legal board state, it is proof that not every legal board state is reachable.  
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Appendix C 

Discussion of Offline and Online Reinforcement Learning 

The decision to use online reinforcement learning with pLoGANN was based on 

the advantages and disadvantages compared to offline reinforcement learning. This 

appendix introduces describes these approaches. 

In order to identify a quality network structure offline reinforcement learning is 

used. It has the primary advantage of speed, which enables the testing of multiple 

network structures in a relatively short amount of time. Consequently, different structures 

are designed, tested, and compared to one another with the purpose of incorporating 

elements of the more successful structures into a final network structure to be used in the 

final online experiment. 

Offline learning is accomplished by sampling the state space and assigning values 

to each state sampled. This is done by repeatedly playing random games and evaluating 

board states based on the outcome of each game. For example, in a particular game, if a 

state leads to a black win, then it is evaluated positively for black, and negatively for 

white. Each board state receives a cumulative evaluation, based on temporal difference 

learning [37]. The update of the value for each board state is  

λt = Vt(s) – γVt+1(s) 

where λt is represents the difference between the actual value of a state (Vt(s)) and the 

expected value (γVt+1(s)), which is the product of the actual value of the next state in the 

sequence and the discount factor γ, where 0 ≤ γ < 1. As the value of γ approaches 1, the 

difference between the actual and expected values tends to increase.  
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In the offline learning algorithm, each game is evaluated one at a time. The final 

position is evaluated as 1 for a win and 0 for a loss. Iterating in reverse order over all the 

positions of the game, the temporal difference formula is applied to each board state. 

Thus, each board state, which begins with a neutral evaluation, has its rating appreciated 

or depreciated slightly depending on whether that board state resulted in a win or a loss 

for the side in question.  

The goal of the algorithm is to slowly have each state reach an equilibrium value. 

In other words, as more games are played, certain states, particularly early game states, 

appear over and over again. If each appearance precedes the same outcome, then the 

value of that state slowly equalizes towards the value of that outcome, either a 0 (loss), 

0.5 (tie), or 1 (win). In theory, as more games are played, the valuations of all board 

states eventually equalize to either a 0, 0.5, or 1, because that state should always lead to 

either a loss, tie, or win (in games that do not allow for a tied result, all states should 

equalize to a 0 or 1).  

Unfortunately, this is only possible in very small games where it is feasible to 

visit and store every state. As the state space of LoA is well beyond the capacities of 

current processing and memory technologies, the practice of sampling is used. By 

sampling actual games, only samples of achieved board states are taken. Furthermore, 

sampling of the board states only happens once, before any ANNs are even introduced 

into the process. The same samples are then stored in a hash table and used for each 

ANN, which is where this process gains its speed, since half of each subsequent 

experiment has already been performed by the first experiment. 
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Once the state space has been sampled, these values may be used to train a neural 

network (or other construct) using feed-forward/back-propagation. Since the same 

sampled set is maintained, many different neural networks may be trained and evaluated. 

Thus, this allows for fast comparison of different network structures. Furthermore, tests 

are easy to repeat since the network can simply be re-randomized using a different 

random seed. Finally, the resulting networks are used to play opponents to determine if 

offline training actually results in a successful player. 

Whereas offline learning plays many games and then trains as many networks as 

desired on the same training set, online reinforcement learning trains the network as 

games are played. The key benefit of this approach is that it uses much less memory. 

Offline training requires a databank of board states and their estimated values. Online 

training only requires that the current state of the network be stored. Given the size of the 

state space for Lines of Action, this is not a trivial difference. However, the savings in 

memory come at the cost of operating time. In pLoGANN, the networks perform three 

ply searches, meaning for each move, they evaluate hundreds of board states. 

Furthermore, no data may be migrated from experiment to experiment, which means that 

each repeat must begin at the first step, leading to a higher operating time per experiment 

when multiple runs are made on the same network, as compared to offline reinforcement 

learning. 
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Appendix D 

Analysis of Single Elimination versus Round Robin Tournament 

The question of whether or not a round robin tournament might produce a 

different outcome compared to a single elimination tournament is an active subject of 

debate. In the United States, NCAA athletics adopt single elimination tournaments for 

many of their championship events, as do all of the major professional team sports (MLB, 

NBA, NFL, and NHL), while many international soccer tournaments incorporate a hybrid 

system. The UEFA and World Cup finals, for example, feature a set of four team round 

robin tournaments in the group stage, the top two finishers of which are then seeded into 

a single elimination final stage tournament. The merits of the styles are a matter of 

subjective taste as anything else. However, there is also a component driven by 

limitations. Because MLB, NBA, NHL postseason matches can last well over a week 

(each typically consists of a best of seven series that includes days off), adopting a round 

robin system would significantly alter scheduling.  

When it comes to pLoGANN, a couple points stand out. The first is that when 

four participants are included, a single elimination tournament requires three matches, 

while a round robin tournament requires six matches. Since the tournaments are the major 

bottleneck of pLoGANN, in order to justify a switch to a round robin format, there must 

be ample evidence that such a switch would produce a different outcome, that the 

different winner would be more deserving, and that having the new winner would justify 

the costs. 
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The winner of the single elimination tournament defeated two opponents. In a 

round robin system, two victories is a substantial leg up towards winning a tournament. 

Suppose a single elimination tournament consisted of participants a, b, c, and d, where 

the winner of each match is in red: 

  

 

If those teams were in a round robin tournament, and the matches are 

deterministic, as is the case in pLoGANN, then the tournament would look as follows: 

 

 

If one assumes that all participants are about equal and thus have a 50% chance of 

defeating any given opponent, then a defeats c with probability 0.5 and wins the round 

outright. However, if c wins, then the outcome is determined by a tiebreaker. The typical 

first tiebreaker is head-to-head. Thus, if c also defeated b in round two, c would defeat a 

because of the head-to-head victory. If b defeated c in round 2, then the winner of the b-d 

match in round three would finish 2-1 and then lose the tiebreaker to a. Thus, a only loses 

the round robin if c defeats both a and b, which occurs with probability 0.52 = 0.25. Thus, 
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the winner of the single elimination tournament of deterministic matches also wins the 

round robin equivalent three times out of four. 
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