
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-10-2010

Evolutionary Artificial Neural Network Weight
Tuning to Optimize Decision Making for an
Abstract Game
Corey M. Miller

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Artificial Intelligence and Robotics Commons, and the Theory and Algorithms
Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Miller, Corey M., "Evolutionary Artificial Neural Network Weight Tuning to Optimize Decision Making for an Abstract Game"
(2010). Theses and Dissertations. 2000.
https://scholar.afit.edu/etd/2000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277529138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F2000&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2000&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F2000&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholar.afit.edu%2Fetd%2F2000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholar.afit.edu%2Fetd%2F2000&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholar.afit.edu%2Fetd%2F2000&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2000?utm_source=scholar.afit.edu%2Fetd%2F2000&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

EVOLUTIONARY ARTIFICIAL NEURAL NETWORK WEIGHT TUNING TO
OPTIMIZE DECISION MAKING FOR AN ABSTRACT GAME

THESIS

Corey M. Miller

AFIT/GCS/ENG/10-06

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U.S.

Government.

AFIT/GCS/ENG/10-06

EVOLUTIONARY ARTIFICIAL NEURAL NETWORK WEIGHT TUNING TO
OPTIMIZE DECISION MAKING FOR AN ABSTRACT GAME

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Corey M. Miller, B.S.C.E.

March 2010

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

iv

AFIT/GCS/ENG/10-06

Abstract

Abstract strategy games present a deterministic perfect information environment with

which to test the strategic capabilities of artificial intelligence systems. With no

unknowns or random elements, only the competitors’ performances impact the results.

This thesis takes one such game, Lines of Action, and attempts to develop a competitive

heuristic. Due to the complexity of Lines of Action, artificial neural networks are utilized

to model the relative values of board states. An application, pLoGANN (Parallel Lines of

Action with Genetic Algorithm and Neural Networks), is developed to train the weights

of this neural network by implementing a genetic algorithm over a distributed

environment. While pLoGANN proved to be designed efficiently, it failed to produce a

competitive Lines of Action player, shedding light on the difficulty of developing a

neural network to model such a large and complex solution space.

v

Acknowledgments

I would like to express my sincere appreciation to my faculty advisor, Dr. Gilbert

Peterson, for his guidance and support throughout the course of this effort. The insight,

experience, guidance, and especially patience were certainly appreciated more than I can

describe. I would, also, like to thank Maj Scott Graham, for his involvement. To Dr Gary

Lamont, who introduced me to the parallel computing and taught the mathematical

foundations underlying that field. To the IT staff of AFIT, who provided speedy and

expert assistance and support. Most importantly, I wish to thank my wife for her gentle

support and wisdom, and to my daughter, who inspires me every day with her joy and

exuberance.

vi

Table of Contents

Page

Abstract .. iv

Acknowledgments..v

Table of Contents ... vi

List of Figures .. viii

List of Tables ...x

I. Introduction ...1

Problem Statement ..4

Research Objectives/Questions/Hypotheses ..4

Research Focus ...5

Methodology...7

Implications ..8

Preview ...9

II. Literature Review ..10

Artificial Neural Networks ...15

Genetic Algorithms ..20

Summary...28

III. Methodology ..29

Complexity of Design ...29

Focused Heuristics..30

Genetic Algorithms for Neural Network Optimization ..36

Description of pLoGANN ..37

Implementation of pLoGANN ...44

vii

Stochastic Player ..46

Summary...46

IV. Analysis and Results ..49

Results of pLoGANN ...49

Results of Random Heuristic ..55

Results of Random Heuristic vs. pLoGANN ...59

Summary...62

V. Conclusions and Recommendations ..63

Conclusions of Research: What Went Wrong ..63

Conclusions of Research: What Went Right ..71

Significance of Research ..73

Final Remarks ...74

Appendix A: Derivation of Parallelization of Fitness Function ..75

Appendix B: Theorem: Not all valid Board States of Lines of Action are Reachable77

Appendix C: Discussion of Offline and Online Reinforcement Learning79

Appendix D: Analysis of Single Elimination versus Round Robin Tournament82

Bibliography ..85

viii

List of Figures

Page

1: Illustriation of Similar Lines of Action Board States ... 5

2: Mean Squared Error using ANN on 5x5 LoA Board ... 7

3: Comparison of Some Abstract Strategy Games ... 12

4: Starting position for Lines of Action .. 13

5: Perceptron ... 16

6: A Fully-Connected ANN with a Single Hidden Layer ... 18

7: Single Point Crossover ... 21

8: Mutation Operator... 22

9: Column groupings... 32

10: Diagonal Heuristic .. 33

11: Quadcounts Heuristic .. 34

12: Nonad Heuristic .. 35

13: Self/Non-Self Heuristic... 35

14: Diagram of pLoGANN's Artificial Neural Network and Inputs................................. 43

15: pLoGANN Max Performance by Epoch .. 50

16: pLoGANN Mean Performance by Epoch ... 51

17: pLoGANN Median Performance by Epoch.. 52

18: pLoGANN Mean Performance by Epoch with 5-Smoothing 54

19: pLoGANN Median Performance by Epoch with 5-Smoothing.................................. 55

20: Max Scores by Random Heuristic by Epoch .. 57

ix

21: pLoGANN Mean Performance Against Random Heuristic 59

22: Example of Unreachable LoA Board State ... 77

x

List of Tables

Page

1: Detailed comparison of consecutive epochs ... 52

2: Details of consecutive epochs after 5-smoothing is applied ... 53

3: Results of random heuristic .. 56

4: Comparison of random heuristic and pLoGANN ... 56

5: Results of random heuristic competing against pLoGANN ... 60

6: Results of games and matches between random heuristic and pLoGANN 60

7: Results of pLoGANN and RandomANN versus random heuristic 61

8: Results of games and matches between random heuristic and RandomANN 61

1

EVOLUTIONARY ARTIFICIAL NEURAL NETWORK WEIGHT TUNING TO
OPTIMIZE DECISION MAKING FOR AN ABSTRACT GAME

I. Introduction

The ability of computers to assess the quality of a single state in a complex search

space is a fundamental challenge in the area of artificial intelligence. While it is easy for

a computer to quantify elements of a state, such as the number and locations of items A,

B, and C, it can be very difficult for the computer to extrapolate how good the state is in

terms of reaching a goal. The ultimate goal, perhaps, is to develop a generalized

algorithm that can accept any search problem and state description as input, whether a

simple tic-tac-toe board or a complex battlefield surveillance photograph, and

automatically generate the optimal solution to the problem or a determination that there

exists no optimal solution, all without any human intervention. In short, the ultimate goal

is to develop a system that produces true artificial intelligence.

Given the current limitations on computational complexity due to present day

hardware technology, heuristic algorithms offer much promise compared to other

algorithms since they functionally reduce the number of computations needed to perform

a search[1]. Thus, unless hardware developments dramatically improve the computational

efficiency of computers, the search for a generalized artificial intelligence algorithm is

more realistically restricted to a search for a generalized heuristic generation algorithm.

A heuristic algorithm implies a program that detects patterns or features in a

particular domain which can be used as a heuristic in a search algorithm [1]. A heuristic

2

itself is an attribute, feature, or characteristic of a particular problem domain that can be

utilized in order to navigate a search algorithm to an acceptable solution within the

domain. Consider the problem of efficiently traveling from one corner in downtown

Manhattan to a corner in uptown Manhattan. If one wants to walk the shortest distance

possible, then one heuristic is compass direction. As one approaches an intersection,

compass direction can be used to determine which direction one should turn. This may

not lead to the shortest path from source to destination (one could turn into a dead-end

alley and be forced to turn around, for example), but it does lead to a good solution under

some circumstances. For problems which are so computationally complex that the search

for the optimal solution is inefficient or even intractable, a heuristic algorithm can be

used to provide a quality solution under many circumstances.

In the pursuit of a generalized heuristic generation algorithm, it is a useful step to

focus on a subset of all search problems to identify what may or may not work. Within

the pantheon of search problems exists a set known as abstract strategy games (ASG). A

game is an ASG if it contains no hidden information and has no stochastic processes

intrinsic to the game (determining who goes first in a game is generally extrinsic to the

game itself and so does not impact whether or not a game is an ASG) [10]. ASGs in

general make excellent fields of study for developing decision making algorithms

because they tend to be well-studied and thus have known attributes, they are limited in

scope, and they are easy for an average person to understand. Computationally, they can

also be quite complex; Go, played on a 19x19 board, has approximately 10170 legal game

board states, far too many to enumerate by any known method [2]. By comparison, a real-

3

world environment featuring merely one thousand independent actors (soldiers on a

battlefield, for example), each with ten actions they can take within a given timeframe,

has a decision complexity of 101000 for a single state, far higher than any commonly

played ASG. Thus, while no ASG approaches the complexity of a real world scenario,

they are excellent stepping stones towards developing generalized decision making

algorithms. After all, if a computer cannot outperform a human in a game of limited

scope with perfect information and no stochastic processes, it is unlikely to outperform a

human in the dynamic environments faced by humans in everyday life.

This thesis focuses on a single game, the abstract strategy game Lines of Action

(LoA, see Chapter 2 for rules) [3], and attempts to develop an algorithm to correctly

evaluate the quality of board states. The purpose is quite simple: given a current state of

the game, the program evaluates the states produced by every possible legal move

available to a player at a given turn. If performed accurately, the state that is rated highest

predicts the move that the player should make to maximize his or her probability of

winning the game. If all states of the game are correctly evaluated, then the game is

strongly solved [4].

Other methods have been used to play not only LoA but other games with varying

results. While each method brings both positive and negative attributes to the table, to

attempt all of them is well beyond the scope of this thesis. Where appropriate, other

methods are compared to the methodology used here, and obviously this project builds

upon the knowledge garnered from the efforts of other researchers.

4

Problem Statement

The goal of this thesis project is to automatically generate a heuristic that

advances the ability for computers to play Lines of Action effectively.

Research Objectives/Questions/Hypotheses

This thesis utilizes feedforward artificial neural networks (ANN) to evaluate

board states. ANNs have demonstrated both strengths and weaknesses on different types

of problems [5]. It generally performs better on small problems, especially since the

classic method of training via feed-forward/back-propagation is computationally

expensive, so it becomes highly inefficient when training a large structured network.

While a game of LoA, with a board size of 64 squares (same as chess and checkers) is

significantly smaller than other fields an ANN might examine, such as photographs, a

LoA board challenges pattern matching algorithms because nearly identical board states

can lead to very different outcomes. In Figure 1, two board states are shown with only a

single difference, the location of the dotted white piece. Despite being on the opposite

side of the board from where black’s potential winning move takes place, the difference

in the positions of the white piece is the difference between a black victory and a white

victory. This minute difference with drastic consequences can be difficult for a pattern

matching algorithm to detect.

5

Figure 1: Given that it is black’s turn, black has a winning move in the left board by
moving the right-most piece diagonally two spaces to the upper left. In the right
board, however, the adjusted position of white’s right-most piece (with red dot)
augments black.

Research Focus

The focus is to design and train an artificial neural network to accurately evaluate

the board states of a game of LoA. If a program can correctly evaluate every board state,

then by always choosing the optimal move it becomes a perfect player. In theory, the

closer a program comes to correct evaluations, the closer it comes to solving the game.

One reason ANNs are considered for this thesis is because of past successes

ANNs achieved with other games, notably backgammon [6] and checkers [7]. One

anecdote of Tesauro’s success using temporal difference learning and ANNs on

backgammon occurs as an aside in one researcher’s thesis: “almost every paper listed in

the bibliography [of this thesis] cites one of Tesauro’s papers on backgammon” [41].

6

Aside from ANNs’ achievements with other games, experiments focusing on

small LoA boards (smaller than the standard 8x8 board), suggest that ANNs have the

capability of providing a framework for a quality LoA heuristic. While competing on a

5x5 board, for example, an ANN was able to model the board states of LoA to within a

mean squared error of less than 0.02 (see Figure 2). In this experiment a temporal

difference learning (TD-learning) [5] hash client competed 10,000 games against a

separate heuristic player called ALoA (see Chapter 3 for more details). Each visited

board state was recorded in a hash table along with that states value based on the outcome

of the game in which that board state was visited. Progress was saved after every 1,000

games to enable analysis. After the completion of all the games, the stored board states

and results were transformed into a pattern file for training a simple ANN in JavaNNS.

The ANN, consisting of 25 input nodes (one for each cell of the 5x5 board), one hidden

layer with 12 nodes, and one output node, was trained using temporal difference learning

with three different learning rate values, ή. ή started at 0.2, but decreased to 0.05 and 0.01

after 100 cycles each. The final results suggest that the ANN is able to correctly model

the results of the experiment to within 2% mean squared error. Given this success in

modeling a 5x5 board, it is worthwhile to examine whether or not an ANN can model a

full 8x8 board.

7

MSE of ANN for 5x5 Lines of Action Board

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

Training Cycles

M
SE

1k Games
5k Games
10k Games

Figure 2: The mean squared error (MSE) of an ANN with 25 inputs, a single hidden
layer with 12 nodes, and 1 output modeled the board states that were visited during
up to 10,000 games between a random player and ALoA, a heuristic player. As the
number of games increased, a greater number of board states were visited, yet the
ANN maintained a low MSE regardless of the amount the ANN was trained. The
three divisions represent learning rates, ή. In order, they are 0.2, 0.05, and 0.01.

Methodology

There are two primary strategies considered in this research effort to develop a

LoA player: offline reinforcement learning and online reinforcement learning. The first

uses TD-learning [5] and the second uses a genetic algorithm to train the network weights

(see Appendix C). Both methods have been used by others in previous research efforts on

various domains, including other games, such as backgammon [6], checkers [7], and Go

8

[27]. Ultimately, online learning is implemented in a program called pLoGANN (Parallel

Lines of Action with Genetic Algorithm and Neural Networks). A network structure and

a genetic algorithm are designed, with the GA set to train the network in an online

environment. Due to the large computational complexity of the online experiment, it is

designed to operate over parallel machines and the experiment is conducted on a parallel

cluster. The basic methodology for the genetic algorithm is to use tournament

competition to select which chromosomes advance to the next generation, where each

chromosome represents all of the weights of a network. In other words, each

chromosome represents a full artificial LoA player, and the ultimate goal of the second

experiment is to evolve a perfect player which effectively solves the game of Lines of

Action.

Implications

Lines of Action is an abstract strategy game with a approximately 1.3 x 1024

board states and an average of 30 transitions (moves from one state to another) per board

state [17]. As with other such games, such as chess or go, they can be likened to the

generalized problem of evaluating a specific state of a domain and determining the best

course of action [4]. Finding an algorithm to solve LoA, while perhaps not as prestigious

as finding one to solve chess or go, or even the recently solved game of checkers [8], is

nonetheless a stepping stone towards discovering a generalized decision-making

algorithm with real world implications.

9

Preview

As detailed in Chapters 4 and 5, the results of these experiments indicated that

artificial neural networks are not conducive towards accurately evaluating the board

states of Lines of Action. Through a series of experiments, it is clear that ANNs fail to

produce a quality LoA player. However, it is beyond the scope of this thesis to prove that

ANNs cannot produce a quality LoA player.

Additionally, regardless of the method used, training the network is a time

consuming process, which makes ANNs a poor tool to use for changing environments

where weights need to be frequently retrained. This is a known property of ANNs, and so

only serves as affirmation of other people’s findings [5].

A positive outcome of this research effort is the development of a framework,

called pLoGANN, for employing a genetic algorithm on a computer cluster. While

pLoGANN did not produce positive results on this particular problem, its computational

performance and inherent extensibility make it a promising tool for other research efforts.

This framework, with modest modifications, could be deployed over the internet and

provide a backbone for using a genetic algorithm on an ad hoc network of computers in a

manner similar to that used by the @home method of distributed computing [9].

10

II. Literature Review

This chapter provides an overview of the three primary fields of research of this

thesis, reviewing previous research related to this topic and identifying the current state

of research in these fields. In order, they are abstract strategy games, including a

description of the rules of Lines of Action (LoA), Reinforcement Learning (RL) using

Artificial Neural Networks (ANNs), and network optimization using Genetic Algorithms

(GAs).

Abstract Strategy Games

An abstract strategy game is defined by Thompson as a perfect information game

in which there is no element of chance, and where there is no significant theme to the

game which applies meaning to the actions taken in the game [10]. Perfect information

implies that the entire board state is known to all players, precluding games in which

there is any random element, such as dice or randomized cards or tokens, as well as

games in which either player may conceal any state information from his or her

opponent, such as in the game Battleship. Such games are always turn-based, in which

each player alternates turns. Games in which players move simultaneously, such as with

the game Diplomacy, are excluded by this definition.

Sophisticated abstract strategy games have sufficiently large complexity that it is

beyond the capability of human beings to know optimal moves for every possible state of

the game, thus forcing the player to rely on other resources in order to make a decision on

his or her turn. Consequently, the advantage goes to the player who is best able to utilize

their resources and counter their opponent’s resources.

11

Allis defines two measures of game complexity: state-space complexity and

game-tree complexity [4]. State-space complexity refers to the number of legal positions

that are reachable from the starting position. It is important to note that for some games,

including Lines of Action, there are legal positions that are not reachable (see Appendix

B). Game-tree complexity refers to the total number of leaf nodes in the smallest game-

tree which can establish the true value of the starting position. Both state-space and

game-tree complexity can be difficult to calculate for some games, so in some cases,

upper and lower bounds are calculated instead. Additional notable metrics include the

board size and average game length. Board size refers to the number of cells active pieces

may be moved to. This does not include off-board collections where pieces may start (as

in connect four or Go) or destinations where eliminated pieces are removed to, even, as in

chess, if those eliminated pieces may eventually return. Board size nomenclature,

however, may be confusing. For example, one can say that both standard chess and

standard checkers are played on an eight by eight (8x8) board, despite the implication

being that their board sizes are different, since only half cells on a board are legal in

checkers. Thus, an 8x8 board in chess implies a 64 cell board size while in checkers it

implies a 32 cell board size. Average game-length varies depending on the relative skill

of the participants, but a rough estimate is possible by averaging the results of many

games played. Figure 3 has shows a comparison of several games and their relative

complexities.

12

0

50

100

150

200

250

300

350

400

Tic-
tac

-to
e

Con
ne

ct
Fou

r

Che
ck

ers

Oware
Qub

ic

Fan
oro

na

Lin
es

 of
 Acti

on

Rev
ers

i

Che
ss

Xian
gq

i

Sho
gi

Arim
aa

Go (
19

x1
9)

State-Space Complexity (log base 10)

Game-Tree Complexity (log base 10)

Average Game Length

Board Size

Figure 3: Comparison of Some Abstract Strategy Games [4, 11, 12, 13, 14, 15].

Zero-Sum Property

Another descriptive categorization of games is whether or not they possess the

zero-sum property. A zero-sum game holds that the sum of consequences of a single

action for all participants must equal zero. In other words, for any action taken by any

player, all gains made by players must be offset by equal losses suffered by other players.

In laymen’s terms, this means that in a zero-sum game, there can be neither win-win

situations nor lose-lose situations, but only either win-lose situations or neutral (situations

in which no participants gain or lose) situations. Games, especially two-player games,

which possess the zero-sum property are perhaps easier to model, since the value of a

given game-state from one player’s perspective is merely the additive inverse of the value

from the other player’s perspective [16].

13

Lines of Action

Lines of Action (LoA) is a zero-sum abstract strategy game developed by Claude

Soucie and first published in 1969 [3]. It is played on a regular checkers board which is

an eight by eight matrix of alternating black and white tiles. Each player starts with

twelve pieces, arranged at the edges of the board as shown in Figure 4.

Figure 4: Starting position for Lines of Action.

Traditionally, play begins with black, and then alternates every turn. On each turn,

a player may move one piece in any direction. The piece must move a number of tiles

equal to the total number of pieces in the line in which the piece is moving, including

itself. The moving piece may not land outside of the board. Nor may it jump over a piece

of the opposing color, although it is permitted to jump over a piece of the same color.

Finally, the moving piece may not land on a tile occupied by a piece of the same color;

however, if it lands on a tile occupied by a piece of the opposing color, the opposing

14

piece is then removed from the game. A side wins when all pieces of that color are

connected, which is defined as all pieces forming a single cohesive unit in which each

piece is connected to every other piece of the same color via a sequence of orthogonal or

diagonal connections [3].

There are approximately 1.3 x 1024 board states in LoA [17]. However, the actual

number of achievable board states is somewhat less, due to an unknown number of board

positions that are unachievable. The game begins with a branching factor of 36, but

averages 30 over the course of the entire game. Winands’ study suggests an average

game length of 38 turns, but game length varies with the skill of the players. In terms of

complexity, as measured by state-space, Lines of Action is comparable to

Othello/Reversi. The same is true when measured by game tree complexity.

Due to the extremely high state-space complexity, LoA cannot be solved by

enumeration methods. Furthermore, LoA is currently not solved under any of Allis’

definitions of solved abstract strategy games [4]:

1. Ultra weakly solved: the outcome of perfect play from the initial

position is known. However, this does not imply that the perfect playing

strategy itself is known.

2. Weakly solved: perfect playing strategy from the initial position is

known.

3. Strongly solved: perfect playing strategy is known for all legal

positions.

15

Van den Herik, et al., conjecture that LoA will be weakly solved by 2010 [18],

but at the time of this paper’s completion, this has not occurred.

Lines of Action presents a different type of challenge from other well-known

abstract strategy games. While mathematically comparable to Othello/Reversi [4], the

play of LoA, as well as its unusual end-game conditions, creates a state space where

nearly identical positions can lead to completely opposite outcomes. While this is

plausibly true of any ASG, especially an ASG known to be strongly solved, LoA is

notable because of the frequency of such states. As there is no clearly defined ‘side’ of

the board, as there is with chess or checkers, and because pieces can move across the

board in irregular ways, the most minor of differences between two board states can be

highly consequential.

To date there are several very successful artificial intelligence programs designed

to compete against humans in Lines of Action. The most notable is MIA by Mark

Winands [17] which has won several Computer Olympiad events. A couple of other

strong programs are YL and MONA, both developed by Billings and Björnsson, which

use very different approaches [32].

Artificial Neural Networks

An Artificial Neural Network (ANN) is a computational model derived from

observations of biological neural networks. First introduced by McCulloch and Pitt in

1943 as a system of propositional logic, ANNs simulate a network of synapses, where

each artificial synapse represents a logic gate. McCulloch and Pitt demonstrated that a

network of so-called MP-Neurons could express any statement in propositional logic

16

[19]. However, neither McCulloch nor Pitts were interested in artificial intelligence, and

so it was others who adapted their model towards the purpose of computer learning.

Since then, the basic ANN has developed into a network of units called perceptrons that

are typically organized into layers and feature dynamic properties that are altered by

training.

Perceptrons

In 1958, Frank Rosenblatt developed the perceptron, which replaced the simple

MP-Neurons as the building blocks of a ANN [20]. A perceptron, like the MP-Neuron, is

modeled after a single synapse. However, unlike its predecessor, the perceptron is not

strictly a logic gate; rather, as shown in Figure 5, it represents a function, with n weighted

inputs, a weighted bias input, an activation function g, and a series of output links that

may connect to other perceptrons in the network.

Figure 5: A Perceptron. Note that a single perceptron’s output may feed multiple
destinations, such as multiple perceptrons in a subsequent layer.

The perceptron functions by taking the summation of all the weighted inputs and

feeding it to the activation function g. The function activation may take many forms,

notably threshold or a sigmoid functions [21]. It is important that g not be a linear

in1

in2

inn

g

w0

w2

wn

w1

in0(bias)

∑ iniwi o

17

function, however, as that would allow a network of such perceptrons to be reduced to a

linear function, thus negating the purpose of having a network in the first place [21].

A threshold function would produce a discrete set of outputs, such as {0, 1}. In

such a simple case, the perceptron could act as a logic gate, given appropriate inputs. The

more general perceptron uses a sigmoid activation function to return a value within a

finite range, such as between -1 and 1. It is called an activation function because one

extreme of the output range is considered active while the other inactive, and so the

perceptron is only ‘triggered’ when the sum of the weighted inputs exceeds some

threshold. The bias input defines the threshold, and results in the perceptron being

activated only when the sum of the weighted inputs exceeds the weighted bias.

Perceptron Networks and Layers

A single perceptron is limited in its ability to separate inputs. A threshold

perceptron is a linear separator, because it determines a straight line (or n-dimensional

plane) through the weight space and activates on all inputs on one side of the line and

none of the inputs on the other [21]. However, such a perceptron by itself cannot

distinguish between inputs which are not linearly separated. For such problems, a

network of perceptrons is needed.

A neural network consists of multiple perceptrons that are connected together in

some arrangement. The simplest such arrangement is called a perceptron layer, and

consists of a set of perceptrons arranged parallel to one another where they each are fed

the same inputs and produce independent outputs. In a single layer network, the number

of outputs equals the number of perceptrons. In a standard multi-layer network, the

18

number of outputs equals the number of perceptrons in the outermost, layer, called the

output layer. Networks that do not fit this model are called convoluted neural networks,

and may be organized any number of ways [24].

The layer that is connected directly to the inputs is called the input layer. Any

layers between the input layer and the output layer are called hidden layers. Networks

may be fully-connected or partially-connected. A fully connected graph implies that

every input feeds into every perceptron in the input layer and that every perceptron in

each layer provides input for every perceptron in the subsequent layer (see Figure 6).

Hidden layers are important because they add flexibility in terms of what inputs activate

the network as a whole. With sufficient hidden inputs it is possible to represent any

continuous function [21].

Figure 6: A fully-connected ANN with a single hidden layer.
Performance is a concern when it comes to NNs. On a fully connected graph, the

number of connections equals the sum of the products of the size of each layer and it’s

19

subsequent layer. Thus, for the ANN in Figure 6, the layers (including the inputs) are of

size, 5, 5, 3, and 1. Thus, the total number of connections is (5*5) + (5*3) + (3*1) = 43.

Computing the output of a ANN is of complexity O(cg), where c is the number of

connections on the graph, and g is the cost of the activation function). Since training a

ANN involves re-computing the network many times, the operational efficiency of the

network can degrade very quickly as the size of the network increases.

Back Propagation and Direct Weight Training

 The two methods used to train the ANN in this thesis are back propagation and

direct weight training. Back propagation is performed by experimentally measuring the

delta, or difference, between the ANN’s evaluation of a state’s value and the state’s

actual value. The delta is then used to incrementally adjust the weights of the network,

beginning with the output layer, and working backwards towards the input layers [21].

Direct weight training, on the other hand, utilizes a methodology which directly

sets some or all of the weights to specific values. A number of methods for setting the

values exist, including genetic algorithms [1], ant colony optimization [40], and

simulated annealing [1]. The strategy behind direct weight training is to determine the

values of the weights that will optimize the network without dealing with the negatives of

back propagation, which include lengthy computation times and the risk of getting stuck

in a local minima.

Neural Network as a Continuous Optimization Problem

Another way to view the problem of optimizing the weights of a network is to

examine the problem globally. Given a network with n weights, there exists a n-

20

dimension space consisting of all possible permutations of weights. If the goal is to find

the single permutation that yields the optimal performance of the network, the problem of

training the network becomes an optimization problem. When the search space for an

optimization problem is so large that a full search is infeasible, other methods can be used

to search for the optimal solution. One such method is a genetic algorithm.

Genetic Algorithms

Genetic Algorithms (GAs) were first introduced by John Holland in the 1970’s

[22]. Modeled after cellular mechanics, a GA is a stochastic process designed to solve

combinatorial optimization problems. A GA maintains a set of values, called alleles, that

form a chromosome. Each chromosome exists in genome space, and represents a solution

space the GA is operating on. A GA uses a stochastic process to evolve a population of

initially randomly generated chromosomes into better solutions. The three primary

processes used by a GA are crossover, mutation, and selection. The domain over which

these processes operate, however, depend entirely on how information is encoded into the

chromosomes.

Crossover

Crossover, also known as recombination, is the basic act of producing new

chromosomes. Analogous to sexual reproduction, it does this by taking two chromosomes

and swapping a set of alleles between the two chromosomes, thus producing two

additional chromosomes. Different implementations of the crossover operator use varying

techniques, but one of the simplest methods is the k-point crossover [22], where k

crossover points are selected at equal points in the two chromosomes. Thus, each

21

chromosome is divided into k + 1 chromosomal sections, which are then swapped with

one another. In the simplest case, k equals one, such that each chromosome is split in two

and one of the sections is swapped between the parents. On the other side of the spectrum

is uniform crossover, where a crossover point is placed between any two alleles with

equal probability throughout the length of the chromosome [23].

Figure 7: Single Point Crossover.

Mutation

Mutation is the process where a portion of a solution is randomly changed.

Whereas the basic crossover operator uses two parents, the mutation operator uses only

one, and is thus analogous to asexual reproduction. With this operator, a chromosome is

selected, and then a random number of alleles are changed randomly. If an allele is

represented by a single bit, then the change is simply a not operation on the bit. As with

crossover, there are many ways to implement mutation. There is a probability p1 that a

given chromosome is selected for mutation, and then within that chromosome a

probability p2 that a mutation operator acts on a given allele. If p1 equals one, then the

22

mutation operator will proceed over every chromosome in the entire population, mutating

each allele with probability p2. Depending on the design of the GA, the mutated

chromosome may replace the original, or just join the population alongside the original.

Figure 8: Mutation Operator.

Selection

Selection is used to trim the size of the population in each generation of the

genetic algorithm. Although there are many variants of the selection operator, the basic

principle is that the operator selects n chromosomes from the existing population to be

used for crossover and/or mutation, and discards the rest, thus leaving the population of

the next generation at size n. The operator uses a fitness function to determine the value

of each member of the population, and based on those evaluations determines which

chromosomes advance [31].

Fitness functions take various forms, and the function itself is dependent upon the

domain. For some domains, the fitness function measures exactly the value of the

solution represented by each chromosome, whereas for other domains, an exact value

cannot be determined, and so the fitness function may only represent an approximation as

23

to what value the solution has. An example of the former is a fitness function for an allele

that represents a Hamiltonian circuit, such as a sequence of cities used to solve the

Travelling Salesman Problem [25]. In this case, the fitness function can accurately

measure the length of the circuit; however, it cannot necessarily determine if the

chromosome represents an optimal solution.

Even if it is possible to determine a correct value of a chromosome, the developer

of a GA may opt to use another fitness function that only approximates the value in order

to improve performance. Because GAs run over many generations and the fitness

function is performed over each member of the population (in most implementations of

GAs), a slow fitness function may introduce a bottleneck in the algorithm. Thus, it is

important to develop efficient methods of evaluating the population of chromosomes

each generation.

In most GAs, fitness functions operate over all chromosomes, or sets of

chromosomes, independently. Since the chromosomes can be evaluated independently (or

in the case of tournaments, in small, independent, subsets), these functions lend

themselves easily to parallelization. Based on Gustafson’s Law [26], given a computer or

network with P processors, and a population with n chromosomes, parallelizing a fitness

function with efficiency O(x), which operates over every chromosome individually,

improves the performance of the fitness function from O(xn) to O(xn/P + Ptc), where Ptc

is the cost of communication to the different nodes. When the cost of communication is

very low, this yields a near linear improvement in performance over a single-node

implementation (see Appendix A).

24

Once evaluated, the selection algorithm determines which chromosomes to

advance to the next generation, and which to discard. A simple elitist algorithm may

simply select the n highest performing chromosomes, whereas a stochastic algorithm

might apply a probability of selection for each chromosome based on their fitness

function, such that the best performing chromosomes have a higher probability of being

retained. In certain domains, very poorly performing chromosomes may yet be adjacent

to very well performing locations in the solution space. In such cases, it is said to contain

good ‘building blocks’ [28], and a GA can use those building blocks to find the better

performing neighbors. Thus, strictly elitist methods sometimes lose opportunities to

explore possible new promising avenues.

Encoding

The singular requirement of a GA’s encoding algorithm is that an entire solution

must be encoded into each chromosome. The method used is problem-specific, as it

depends on what kind of data is to be encoded. As an example, real values, such as 32-bit

integers can be stored as entire values (32-bit alleles) or as individual bits (thirty two 1-

bit alleles). The former is susceptible to change only by mutation, while the latter is also

influenced by crossover, since the crossover point could be placed in the middle of the

bits that make up that integer value. Advocates for either approach exist [25]. One stated

advantage for the binary approach is that it maximizes the number of alleles, and thus

maximizes the capabilities of the crossover operator [28]. However, no proof exists that

this is the best approach, and in fact there are examples of real-valued encoding methods

outperforming the binary approach on benchmark problems [23].

25

Schema Theorem

The idea of the Schema Theorem is that in each generation of a GA, there are

schemata within the population, and the proportion of the population of one generation

that has a particular schema is a function of the proportion of the previous generation that

had that schema and its fitness value, independently of other schema in the population.

 A schema is “a subset of the space Al in which all the strings share a particular set

of defined values” [29]. To draw a parallel from real life, an example of a schema might

be the gene that controls eye color. This gene is a subset of all genes in which people

with the same (or similar, at least) colored eyes share certain values in their DNA. The

Schema Theorem than argues that the proportion of people in the next generation that

have a particular eye color is a function of the proportion of the current generation that

have that eye color and the fitness value (undefined as that is for humans) of that eye

color. A key assumption of the Schema Theorem is that the fitness of a particular schema

is the average fitness of members of the population that have that schema.

 Returning to GAs, two important properties of schemas are needed for the

theorem. The first is the length of a schema. This is simply the number of nodes between

the first and last defined positions of a schema, inclusive. Thus, the length of “1**4*”,

where ‘*’ represents an undefined position, is four. Length is important because of the

nature of crossover. The longer a schema is, the more likely it will be split during cross-

over. For example, if the length of a schema is one (“*2*”), it cannot be split, and is

guaranteed to be preserved during any crossover operation. On the other hand, if the

length is equal to the string length (“123”), any non-trivial crossover operation will split

26

the schema, and it will be lost to the next generation unless the other ‘parent’ also

happens to have that schema, or enough of the schema that crossover preserves it.

Similarly, two parents without a schema could produce an offspring with that schema by

coincidence.

The second important property is order. A schema’s order is the number of

defined positions of a schema. Thus, the order of “1**4*” is two. Order is more

important when mutation is taken into consideration, as the greater a schema’s order is,

the more likely it is to be mutated out of a given generation, and the less likely it is to be

randomly produced by mutation. For example, on a schema of order one on a binary

string, if mutation occurs on that single defined position, it will wipe it out. However, if

mutation occurs on that defined position on a member that does not have that schema,

mutation may create that schema in that member.

 While the ability to predict the proportion of a population that carries a particular

schema from one generation to the next is nice, it has failed in explaining the

performance of GAs in general, which was one of the hopes Holland had when he first

proposed with the Schema Theorem. Criticisms of Schema Theorem have focused mostly

on the fact that although it is likely true (nobody has definitively disproved the

mathematics behind the Schema Theorem), it is not relevant to long-term performance

[30]. There is a lot to be said about the assumption that a schema’s fitness value is simply

the average value of members of the population that happen to have that schema. After

all, this makes the fitness value more dependant upon other members of the population

than on the actual amount that a particular allele contributes. Using a real world example,

27

the Schema Theorem, applied to humans, implies that the fitness value of the gene that

causes humans to grow wisdom teeth or the appendix is a function of the average fitness

value of people, which is a debatable proposition.

 The Schema Theorem was an early attempt to predict the behavior of a

genetic algorithm. While it may do so from one particular generation to the next, large

numbers of critics have shown that it is not sufficient in explaining long-term behavior.

At the least, the Schema Theorem provides important background knowledge and an

introduction to the rather imprecise stochastic math, filled with assumptions, that plays an

important role in GAs.

Trends

Genetic Algorithms operate over large, sometimes ill-defined domains over the

course of many generations. A developer must design a GA around competing interests,

namely exploration and exploitation [25]. In order to improve their odds of finding

optimal solutions, GAs must explore as wide a breadth of the solution space as possible.

However, they must also hone in on good solutions once a promising sector of the

solution space has been discovered. In short, a good GA explores the space sufficiently,

but also converges once an optimal solution is found. The two basic reproductive

operators, crossover and mutation, are designed specifically to meet the exploration goal,

while the selection strategy for the new population and the population members used in

crossover meets the exploitation goal.

As illustrated by the Schema Theorem, crossover seeks to improve the

performance of a population by replicating good schema. Thus, crossover is designed to

28

exploit good traits. Mutation, on the other hand, being completely arbitrary, is more

suited for exploring the solution space. In particular, mutation can help a GA to escape

local minima by randomly moving elsewhere in the solution space. If the new found

chromosome performs better than the rest of the population, it should propagate into

further generations. By tweaking mutation rates, a designer can also change the

performance of a GA midway [28].

Fitness and selection also play a key role in the balance between exploration and

exploitation. An elitist selection algorithm is more prone to converging. However, as in a

basic hill-climbing algorithm, premature convergence may lead to a local minimum,

perhaps even a very weak local minimum, rather than the global minimum. On the other

hand, non-elitist methods may not converge at all, or even worse, may even discard the

global minimum. For this reason, it is wise to retain copies of the highest scoring

chromosomes, even if they are discarded by the selection algorithm.

Summary

The game Lines of Action has a very quiet global following. However, within the

field of artificial intelligence it presents a challenging environment for any pattern

recognition algorithm, due to the symmetry and movement within the game. In order to

overcome the prohibitive search space presented by this design, modern sophisticated

heuristics, including genetic algorithms, are utilized to attempt to find good, though not

necessarily optimal, solutions.

29

III. Methodology

This chapter describes the design and implementation of pLoGANN, a distributed

program designed to learn to play Lines of Action. It includes a discussion of some of the

focused heuristics that can be used to analyze a LoA board, one of which is prominently

featured in pLoGANN. Finally, this chapter describes the process of testing pLoGANN

as well as a separate program to assist with the analysis of pLoGANN’s performance.

Complexity of Design

A significant component in designing an experiment using an artificial neural

network is that one must identify the structure of the network. Identifying the optimal

network structure for a given problem domain is itself, however, a combinatorial

optimization problem [33]. To that end, one must first examine the domain with the hope

that patterns or clues can be detected and then perhaps exploited. A simple example is the

game tic-tac-toe, where after a cursory examination, it is clear that the center square is

highly important when playing the game.

Lines of Action is played on an n by n board consisting of n2 tiles, each of which

may be occupied by a white piece, a black piece, or an empty space. Thus, there is a

maximum of 3nn possible board states. However, not all such board states are valid board

states in LoA due to the restrictions of pieces. For example, it is not possible for a board

state to exist with 2n tiles occupied by black pieces since there are never more than 2n – 4

black pieces in any game of LoA. For an 8x8 board, the ceiling of the number of legal

positions has been calculated to be approximately 1.3 x 1024 [17]. However, this is just a

30

ceiling, as there are some states that are unreachable given the standard starting position

of LoA (Appendix B).

The task of the ANN then is to accept as input 3nn possible board states and

provide meaningful evaluations, where board states that indicate an approach to a loss

have a lower limit of –1 and board states that lead to victories approach an upper limit of

1. Unfortunately, there is no upper bound to the number of topologies that can be used for

a given network. However, larger networks take longer to compute, and in a simulation

that requires millions of board evaluations, the cost of using a larger network becomes

computationally expensive. In general, there are two prudent approaches to selecting a

network topology. The first is to design a fixed topology based on best practices,

although it amounts to little more than a best guess. The second approach is to

simultaneously evolve the weights of the network and its topology. The latter approach

has produced some promising results. Stanley and Miikkulainen [34] developed a routine

called NeuroEvolution of Augmenting Topologies (NEAT) that performed well on

several problems. Unfortunately, evolving an optimal topology is perhaps even more

computationally difficult than it is to optimize the weights of a fixed topology.

Furthermore, to attempt such a feat is tantamount to changing the scope of the original

problem. Consequently, a fixed topology is used for these experiments.

Focused Heuristics

As part of these experiments, different elements, or sections, of the board state are

evaluated separately by the network, under the hypothesis that focusing extra attention on

certain aspects of the board may yield better results. Within the ANN, some elements are

31

represented merely by a low level sub-tree which accepts as input each cell within that

element, while other elements are fed through an interpretation algorithm before being

passed to the ANN. Regardless, each is a focused heuristic that augments the overall

interpretation of the board by the network. Borrowing from the heuristics used by

Winands [35], these are (number of inputs reference an nxn sized board):

Board: Each cell of the board is fed directly into an input. This requires n2 inputs,

where the values of the inputs are numerical representations of the cell. In these

experiments, if the cell is occupied by one’s own piece (“self”), it is represented with a 1,

while a cell occupied by the opponent’s piece is represented as -1 and an empty cell is

represented as 0.

Rows and Columns: Each cell of each row and each column are grouped together.

Thus, there are n rows, each with n inputs, and the same for columns (as demonstrated in

Figure 9), for a total of 2n2 inputs grouped into 2n sets of n individual cells. The input for

each row and column is the number of pieces (both self and opponent) in that row or

column.

32

Figure 9: Column groupings.

Diagonals: Diagonal segments are grouped together. Each segment ranges in

length from one cell to n cells, and for each diagonal direction, there is one segment of

length n and two segments each of lengths 1 through n-1, for a total of n2 inputs per

direction, or 2n2 inputs total. The two diagonal directions are forward leaning and

backward leaning, or, if referring to cardinal directions, NW-SE (shown in Figure 10) and

NE-SW. The input for each of these segments is then the number of pieces, both self and

opponent, on each diagonal.

33

Figure 10: NW-SE Diagonal groupings.

Quadcounts: Quadcounts refer to a heuristic developed by Winands [36]. Each

quad represents an overlapping 2x2 section of the board. So that each space on the board

is counted equally, quadcounts assume the existence of a phantom border to the board

with a depth of one cell in all directions, and are always empty. Thus, each cell of the

board appears in four different quads, once in each position within a quad. Quadcounts

simply maintain the number of each type of quad that a side has. There are six

possibilities, as illustrated in Figure 11:

0: the side has no pieces in the quad
1: the side has one piece in the quad
2: the side has two pieces in the quad, arranged orthogonally
3: the side has three pieces in the quad
4: the side has four pieces in the quad
5: the side has two pieces in the quad, arranged diagonally

34

Figure 11: Examples of quadcounts. Each quad can appear in any orientation.

Quads are treated as combinations, rather than permutations. This allows quads of

the same shape to be treated equally regardless of orientation. The quadcounts, then, are

simply the sum of all quads of a particular type. The network accepts as input the count

of each type of quad, for a total of 6 inputs.

Nonads: Nonads represent a sequence of samplings of the board state. Each nonad

is a 3x3 square of the board. Unlike Winands’ quads, nonads do not assume a phantom

border. Thus, there are (n-2)2 nonads for an nxn board. Each nonad is evaluated by

assigning a point total for every piece of the active side in the 3x3 area, based on where

in the 3x3 area that piece is located. The points are awarded on three schedules

(highlighted in Figure 12): 1.0 for the center cell, 0.8 for each side cell, and 0.75 for each

35

corner cell. As with quads, the opponent’s pieces are ignored. The total values of each

nonad are fed into the network, requiring (n-2)2 inputs.

Figure 12: A nonad with the center schedule in green, the side schedule in red, and

the corner schedule in blue.

Self/non-self: Self and non-self boards are full representations of the board in

which one side is completely ignored. For self, the input of each cell can hold two values:

one if the cell is occupied by a piece of the active player’s color, and the other if the cell

is empty or occupied by a piece of the opponent’s color. As shown in Figure 13, the

opposite holds true for the non-self evaluation. Both self and non-self representations use

one input per cell of the board. Thus, these representations require a total of 2n2 inputs.

Figure 13: The self/non-self heuristic takes a regular board (left) and separately
evaluates the self (center) and non-self (right) components.

36

Genetic Algorithms for Neural Network Optimization

The approach used to train a neural network to play LoA is to use a genetic

algorithm to evolve the weights of the neural network [33]. In contrast with offline

reinforcement learning, which was considered (see Appendix C), this requires the

network to learn as it plays in an online environment. In this GA, each chromosome

represents all of the weights of a network, where each allele is a particular weight. Each

generation features both crossover and mutation to increase the size of the population.

Tournament selection [31] is then used to determine which chromosomes persist to the

next generation. The tournament is elitist, which guarantees that if there is a single best

chromosome in the search space, that once found, it cannot be eliminated from the

population. In this case, the single best chromosome would result in a network that acts

as a perfect player, effectively solving the game. Exploration is achieved via mutation,

and exploitation via crossover.

For Lines of Action, the search space is very large. Each allele represents a single

weight. Each weight is stored as a double, and ranges from -1 to 1. Since there are

approximately 6.9 * 1018 values between -1 and 1 that can be stored as a double, there are

x = 6.9 * 1018 possible values for each weight. For a given neural network, there are w

weights. Thus, the GA must contend with a search space of xw possible network

configurations. In my experiments, each network has 2041 weights, producing a total

search space of size 1.531 * 1038,451.

Tournament selection is conducted by having two chromosomes compete in a

match against one another. Each chromosome is used to seed the weights of a neural

37

network. The two networks then play two games, swapping colors after the first game.

During each turn of these games, the network evaluates all the possible moves, which

consists of the resultant board state of each move being evaluated by the network. Each

evaluation results in a score between -1 and 1. Whichever move has the highest score is

selected. The winner of the match is determined by which network wins the most games.

If they each win one game, then a tie-breaker is used to determine the winner. The tie-

breaker awards the victory to whichever network achieved its win in the fewest number

of moves. If each side won its game in an equal number of moves, or if both games

resulted in a draw, then one chromosome is selected at random as the winner. The

tournament is single elimination; once a chromosome has lost a match, it is no longer

considered for advancement to the next generation. Consequently, given a pool of size p

and a selection limit of size s chromosomes that are to be selected for advancement, the

tournament selector must play p – s matches, or 2(p – s) total games per generation.

Description of pLoGANN

To perform the online learning experiment, a program is developed called Parallel

Lines of Action with Genetic Algorithm and Neural Networks, or pLoGANN for short.

Written in Java, it is a network based program with two parts, the master and the slaves.

The master controls the course of the genetic algorithm, while the slaves simulate games

of Lines of Action and transmit to the master the results.

The master performs three primary tasks. First, it manages the genetic algorithm,

which includes performing the genetic operators, handling the loading and saving

operations, and managing the populations. Second, it commands the slaves, to include the

38

network communications protocols as well as assigning the slaves tasks. Finally, the

master performs evaluations every ten generations and to enable the experimenter to

monitor the progress of the algorithms evolution.

The slaves on the other hand have more straightforward responsibilities. It need

only establish communications with the master and then play games of Lines of Action.

The master sends the slave two chromosomes, A and B, which consist of a set of weights

in a known order. The slaves apply those weights to two identically structured pre-

defined artificial neural networks, and then use those networks as the players in a two

game match of LoA. Each chromosome plays one game as black and one as white. The

winner is determined using the following criteria:

1. If a chromosome wins both games

2. If a chromosome wins one game and ties the other

3. If a chromosome wins one game, loses the other, but the win occurred in

fewer turns than the loss

4. If a chromosome wins one game, loses the other, and games are of equal

length; or if the chromosomes tie both games, then chromosome A is assigned

as the winner (note: a game is declared tied in pLoGANN if, after one

hundred moves, neither side has achieved victory)

The purpose of the tiebreaker rules 3 and 4 are twofold. Rule three favors a strong

and fast offense, while rule 4 favors longevity, which results from the fact that

chromosome A is passed down from the previous generation, while chromosome B is

newly evolved. Thus, a form of elitism is established, which says that a chromosome that

39

has won a match persists until it is definitively defeated. As a caveat, in the inaugural

generation, where both chromosomes A and B are newly created, rule 4 implies that A is

selected because it was randomly created first.

The organization of the genetic algorithm is as follows. Each generation begins

with a population equal to the number of slaves connected to the server. In pLoGANN,

this number is defined at compile time, and is based on the known number of computer

nodes available to the experimenters. For the final experiment, performed on a cluster

computer with 32 dual-core processors, the master operates alone on a single processor

while each of the other 31 processors are assigned two slaves, for a total of 62. Thus each

generation begins with 62 chromosomes.

The first step in each generation is to expand the population by using genetic

operators. Each individual produces two offspring via mutation and one offspring via

recombination with another parent. For each individual, another individual is randomly

selected, which means that on average, each chromosome will parent two offspring with

different partners through recombination. pLoGANN uses single-point crossover for

recombination. Once the crossover point is randomly determined, the alleles to the left of

the point from parent A are spliced to the alleles to the right of the crossover point from

parent B to form the offspring. The number of newly created chromosomes equals the

number of chromosomes that existed at the start of the cycle, which equals the number of

slaves. Thus, at this point there are four individuals in the population for each slave,

producing a total of 248 participants each generation.

40

The mutation operator iterates twice over each chromosome. During each pass, it

changes any given allele with probability 0.15. If an allele is selected to be mutated, its

value is simply replaced with another uniformly distributed random floating point value

within the range of -1 and 1. Each pass creates a new mutated offspring. Given that each

chromosome has 2041 alleles, each mutated offspring has on average 306 alleles that

differ from its parent. This is a high mutation rate, but is deemed necessary to ensure that

pLoGANN explores the solution space as much as possible, and is meant to compensate

for the elitist tournament selector, which may induce premature convergence. In the

absence of any deterministic way to determine an optimal mutation rate, 0.15 was

selected basically because it is a round number that is high enough to produce large

mutations but still low enough that it does not mutate the majority of the alleles of a

given chromosome with any great frequency.

Tournament selection is used to once again reduce the population. Four

chromosomes, one old and two new mutated individual, and one bred (via crossover)

individuals, all randomly selected, are grouped together and sent to each slave. They

compete in a “final four” style tournament consisting of a total of three matches, after

which the slave returns to the master the identity of the winner. Elitism is employed in

order to maximize the number of solutions examined over the course of the experiment.

Thus, once a solution has been defeated, it is permanently removed from the population

to make room for as many offspring as possible. The master retains the winner and

discards the losers. Once all slaves have returned to the master the winners of their

41

tournaments, the generational cycle is complete, and reproduction takes place again to

begin the next cycle.

Every ten generations, the master then performs two tasks. First, it competes each

of the 62 surviving members of the latest generation against another artificial LoA player,

called ALoA (AFIT LoA) in this thesis. This is also done in parallel, with each slave

performing the evaluation for one chromosome. Each evaluation consists a two game

match against ALoA, after which the slave returns the score of each game to the master.

Second, the master saves all the chromosomes from that generation in order to allow the

experimenter to recreate any ANN that shows promising results. By competing the entire

population against a strong artificial player and recording the results, a measurement is

generated that reveals to what extent the population is evolving into a stronger pool of

players. This measurement is not used by the GA, but rather is only a tool for monitoring

the performance and progress of the GA extrinsically.

ALoA uses several heuristics to evaluate board states. The two primary heuristics

(other than connectivity, which is a terminal state anyway) are centrality and quadcounts.

Centrality measures the average distance between all of the pieces of each side. The

shorter the distance between all of one’s own pieces the better. Furthermore, an

additional penalty is levied against pieces that are on the edge of the board, since they are

not only less mobile but are also easier to block. Quadcounts are evaluated as described

above. If a side has either three or four pieces in a quad (quads 4 and 5 as shown in

Figure 11) and that quad is located in the proximity of the center of all of that side’s

pieces, the board is evaluated more favorably. Finally, taking advantage of the fact that

42

LoA is a zero-sum game, the opponent’s pieces are evaluated using the same heuristics,

and the final evaluation is the difference between the evaluations of one’s own pieces and

one’s opponent’s pieces. ALoA, which also uses a min-max search with alpha-beta

pruning, derives its heuristics following the strategy described by Winands [35]:

concentration, centralization, center-of-mass, quads, mobility, connectedness, and player-

to-move.

The network design used with pLoGANN consists of 100 input nodes, a single

hidden layer with 20 nodes, and a single node in the output layer for a total of 121 nodes.

The activation function g used by every perceptron in the network is the tanh function, a

type of sigmoid function:

tanh x = (e2x – 1) / (e2x + 1).

A fully connected network, it requires 2000 connections between the input and

hidden layers and 20 connections between the hidden layer and output layer for a total of

2020 connections. As each connection has a weight, and each non-input node has a bias

weight, there are a total of 2041 weights in the network. Thus, this experiment requires

2041 chromosomes to describe the network.

43

Figure 14: Diagram of pLoGANN's artificial neural network and inputs.

As displayed in the diagram above, the input consists of two sections. The first 64

nodes each receive input from one of the 64 spaces on the board. If the space is occupied

by one’s own piece, the input value is 0.75; if occupied by one’s opponent’s piece, the

input value is 0.5; otherwise the input value is 0.5. The remaining 36 nodes (nodes 65-

100) receive as input the results of the nonad evaluations taken from each of the 36

nonads on an 8x8 board.

This board configuration was chosen for two primary reasons. The first was

efficiency. In order to ensure that the algorithm could process enough generations to

44

provide results within the narrow window of opportunity available for this experiment, a

small network was requires. Even at this relatively small size, the computer cluster

needed to perform the experiment was only available long enough to let the experiment

run for approximately ten thousand generations, which is not a lot, considering the size of

the solution space. The second consideration was to utilize at least one heuristic that

covered the full extent of the board. Rows and columns, diagonals, and self/non-self

heuristics on the other hand, require 2n2 = 128 inputs. Quadcounts, while requiring only

six inputs, do not provide any spatial information. Nonads, on the other hand, provide for

full board coverage, including spatial information, and require a much smaller (n-2)2 = 36

inputs. Thus, nonads and the board state itself were chosen as the only heuristics for the

final experiment.

Implementation of pLoGANN

As the first initial of pLoGANN’s acronym indicates, the final experiment is run

in parallel on multiple processors. While development and testing for pLoGANN was

performed on a network of Windows PCs running Microsoft Windows XP, the

experiment was specifically designed to be conducted on a computer cluster. The cluster

used featured thirty-two dual core nodes, each of which is connected via a crossbar,

enabling uniform communication. Communication was conducted using network

protocols, rather than MPI, which makes pLoGANN technically a distributed program,

rather than a parallelized program. The amount of communication relative to the amount

of processing is very small. The master only sends out the allele values to each slave, and

the slaves return only the identity of the winner of the tournament, which is a single

45

integer value. As described above, the tournaments and the evaluations versus ALoA are

distributed, while the crossover and mutation operations, as well as the persistence of the

epochs are performed exclusively by the master.

One of the final choices was to determine to which depth the competitors

searched. Search depth, or ply, refers to the number of moves ahead one looks at. For

example, if the ply is set to 1, one considers only one’s immediate options. If the ply is

set to 2, one considers one’s immediate options as well as all of one’s opponent’s options

the following turn. The advantage of increasing the ply is that it allows the program to

search deeper into the game. However, the disadvantage is that it takes longer to decide

upon the move, since one must evaluate many more board states. Given a branching

factor of b, a p-ply search requires the evaluation of on average bp boards. Thus, an

increase in ply leads to an exponential increase in search time.

With this in mind, pLoGANN’s ply was set to 3. This enabled it to look ahead to

avoid any losing moves, if possible, as well as to move towards a potential winning

move. A larger ply was not used for two reasons. First, the extra computation cost would

have significantly reduced the number of generations computed. Second, the goal was to

develop a great heuristic, which would have made a multi-ply search unnecessary, so it

was undesirable to allow pLoGANN to have the crutch of additional search depth since

that might prevent the evolution of a great heuristic. However, ALoA’s search depth was

set to 5. This was done because at 3-ply, ALoA is beatable by average quality humans,

but is much more formidable at 5-ply.

46

Stochastic Player

In order to establish a benchmark for performance measurement, an additional

experiment is performed. A stochastic player is introduced which makes each move at

random, except that board states in which one’s own pieces are connected (a winning

board state) are rated maximally while board states in which one’s opponent’s pieces are

connected are rated minimally. Thus, the stochastic player still takes advantage of

winning moves and avoids losing moves, if possible. The average performance of this

player is then compared with the average performance of the chromosomes. Given that

each chromosome represents a semi-random location in the solution space, this

experiment is intended to measure if the GA has any impact whatsoever in the

performance of the ANN. It is possible that the solution space is so jagged that the GA is

unable to exploit any surface characteristics. If so, then each chromosome devolves to

little more than a deterministic player whose moves are seeded by a random number.

Thus, the stochastic player is introduced as a means to determine if there is any

measurable improvement in performance over the course of the primary experiment.

Summary

The nature of genetic algorithms is such that there is no clear point at which to

terminate an experiment short of finding a true optimal solution. GAs do not exhaustively

search a solution space, and so cannot prove that an optimal solution does not exist.

Furthermore, in cases where a GA’s fitness function is a simulation of what the task that

the GA is expected to perform, it may not even be possible to detect when the GA

discovers an optimal solution. Thus, the most reasonable termination condition is based

47

on the real world limitations of the experimenters. In this case, the primary limitation is

time, and the secondary limitation is money, in the form of computer resources. For this

thesis, both limitations were bottlenecked by the limited access available on the key

computer cluster.

In order to perform the major experiment on the parallel cluster, time and

processors had to be reserved in advance. Granted approximately a two week window on

32 dual-core nodes, it was imperative to finish developing and testing pLoGANN so that

as much of the reserved processor time as possible could be utilized with the actual

experiment. As such, preliminary tests on smaller LoA boards and with different neural

network configurations were limited and by no means thorough.

Fortunately, most testing and program validation could be performed on regular

PCs. Also, smaller numbers of nodes were available for performance testing prior to the

commencement of the major experiment. During these tests it was discovered that the

master became a bottleneck if it shared a dual-core node with a slave. Consequently, the

master resided on its own node and the planned 63 slaves were reduced to 62.

Given the known limit of time and processing power, prior to the experiment, it

was known that the upper limit of the number of generations computed was

approximately 10,000, for a total of 620,000 competitions, producing up to 62,000

chromosomes which would be evaluated. Given that 62,000 is a miniscule fraction of the

number of computable points in the solution space, it was viewed prior to the experiment

that the odds of finding a optimal solution was rather slim, if not nil. As such, secondary

goals came into focus. The first was to demonstrate improvement via learning. The

48

second was to determine whether that methodology produced better results than a random

player. The former is measured by pLoGANN’s results over time while the latter is

measured by comparing pLoGANN’s and the random heuristic’s performances against

both shared competition and each other.

49

IV. Analysis and Results

The results of the tests are used to determine whether or not PLoGANN was a

successful in developing a competitive Lines of Action player. As a genetic algorithm,

pLoGANN examined many points in the solution space, each one representing separate

LoA heuristic. If any of the examined heuristics produced competitive player, then the

final measurement was a success. Barring that, a secondary goal was to determine if

pLoGANN demonstrated learning. To that end additional tests were designed and run to

determine if pLoGANN improved over the course of generations of the genetic

algorithm.

Results of pLoGANN

In total, 1000 epochs were computed, each consisting of 10 generations of 248

competitors producing 62 victors. Out of those 620,000 solutions that survived

tournament selection, the surviving solutions of the final generation of each epoch were

matched against an outside competitor, ALoA, and their performance documented. As

each epoch consists of ten generations, 62,000 total solutions competed against ALoA.

In each of the following charts, four values are displayed. The performance of an

individual (or set of solutions) while playing black, the performance while playing white,

the combined performance, and then the average of the performances while playing black

and white. Performance is measured by the results of a match against the traditional LoA

heuristic. If the game results in a victory, then it is scored as 100 minus the number of

moves required. If it results in a loss, then the score is simply the number of moves the

50

game lasted. Games that did not end after 50 moves resulted in a score of 50 regardless of

the outcome. The match score then is the sum of the scores of each game.

The first objective was to discover a winning player. For that, the best method is

to investigate each of the 62 best highest scoring solutions from each epoch:

Figure 15: pLoGANN performance of highest scoring solution of each epoch.

As demonstrated in Figure 15, in only nine of the thousand epochs were solutions

produced which defeated ALoA (a tenth produced a tie). More significantly, none of

those epochs were consecutive, which means the solutions in question did not survive

another ten generations of competition, a fact that is examined in further detail in Chapter

5. Furthermore, none of the individual solutions in question were able to defeat a human

of average competence. Each of these competitors were victorious playing black or white,

51

but not both (the highest overall performance came from individual solution 22 of epoch

903 (903:22), which won as black and lost as white in 35 turns each). Thus, it is clear that

pLoGANN failed in its primary objective, to produce a competitive Lines of Action

player.

 The next step is to determine if pLoGANN’s failure to find a competitive player is

due to limitations of time. In other words, if pLoGANN clearly demonstrated learning,

then it stands to reason that given more time (as in more generations), pLoGANN may

produce a better player. To measure this, the mean and median values of the epochal

solutions are examined. Each represents an ‘average’ of that epoch’s performance.

Figure 16: pLoGANN mean performance of each epoch.

52

Figure 17: pLoGANN performance of median scoring solution of each epoch.

 Both the mean and median graphs show very similar data. In fact, for all four

measurements, there is very little difference between the mean and the median in each

epoch. In fact, even when an extreme outlier exists, such as in epoch 903, that outlier has

only a marginal impact on the mean value, as demonstrated by a comparison of epochs

902-904:

Table 1: Detailed comparison of consecutive epochs

Epoch Mean Median Max
Comb.
Mean

Comb.
Median Comb. Max

902 28.26 28 50 56.52 55 83
903 30.43 28 165 60.85 57 200
904 28.47 28 54 56.94 55 85

53

If solution 903:22 is discounted as a statistical outlier [38], the mean and

combined means of epoch 903 would be 29.28 and 58.57, respectively. While this is still

higher than the neighboring epochs, the values fall within a single standard deviation

(0.60 and 1.20) of the means of all epochs (28.72 and 57.43). In other words, even when

an epoch produces what appears to be an outstanding player, the overall performance of

that epoch is statistically unexceptional. This trend is more apparent when smoothing is

used.

Applying a 5-smoothing average on the results of each epoch with the results of

the two preceding epochs and the two following epochs reduces the impact of any

outliers such as 903:22. Using 5-smoothing, the data of the chart above looks very

similar:

Table 2: Details of consecutive epochs after 5-smoothing is applied

Epoch Mean Median Max
Comb.
Mean

Comb.
Median Comb. Max

902 29.05 28.00 89.67 57.77 56.20 108.00
903 29.23 28.00 87.00 57.91 56.20 108.00
904 29.13 28.00 49.33 58.44 57.00 106.00

 The 5-smoothing has a similar effect on the graphs produced by all of the epochs,

shown below with trend lines for the combined data. As the trend lines demonstrate, there

is no indication that the general population of solutions produced by pLoGANN improves

during the course of the thousand epochs. In fact, the trend lines have very slight negative

slopes, although the negative slope is so small as to be insignificant.

In terms of success at solving the game of Lines of Action, the results of

pLoGANN show no evidence of either evolution or devolution. In fact, if anything, the

54

data suggests that during the first 10,000 generations of its run, pLoGANN behaved like a

random player, occasionally coming across an individual that played the right sequence

of moves to beat ALoA.

Figure 18: pLoGANN mean performance after 5-smoothing is applied.

55

Figure 19: pLoGANN median scoring performance of each epoch after 5-smoothing
is applied.

Results of Random Heuristic

To test whether or not pLoGANN did indeed perform like a random player, a

stochastic player was developed and tested against ALoA. The stochastic player, or rather

the random heuristic, assigns values in one of three ways: a winning move is given the

highest rating, a losing move is given the lowest rating, and all other moves receive a

rating returned from the pseudo-random number generator from in the default Java

Random class.

56

Table 3: Results of random heuristic
 Overall White Black Combined
Mean 30.98 30.67 31.28 61.95
Median 28 28 29 59
Max 162 100 162 208
Standard Deviation 10.45 10.20 10.39 14.65

 The simulation was modeled after pLoGANN’s simulation. The random player

played one game as white and then one as black to complete a match, which was repeated

62,000 times. The results are tabulated in Table 3. The combined score pairs the white

and black scores from each match. One item of note is that the random heuristic won

exactly one game and one match. Thus the max score from black of 162 is an aberration.

The next highest black score was 100, a tie game. Also of note is that the random

heuristic performed slightly better as black than as white. This is not surprising, given the

tendency for the side that moves first in some abstract strategy games, including chess, to

have an advantage [39].

Table 4: Comparison of random heuristic and pLoGANN

 Random Heuristic pLoGANN
Overall White Black Combined Overall White Black Combined

Mean 30.98 30.67 31.28 61.95 28.71 28.55 28.87 57.43
Median 28 28 29 59 28 27 28 57
Max 162 100 162 208 165 164 165 200
St. Dev. 10.45 10.20 10.39 14.65 5.54 5.48 5.48 7.84

By merging all the epochs of the pLoGANN simulation, one can easily compare

the performances of the random heuristic and pLoGANN (see Table 4). These results

indicate that in some ways pLoGANN behaved very much like the random heuristic. The

median scores were nearly identical, while the mean score of the random heuristic

57

exceeded that of pLoGANN by only 7.9%. Nevertheless, given the very large sample

sizes (124,000 for overall, 52,000 for the other three categories), a t-test upon the null

hypothesis that the two samples have in fact the same mean returns a zero percent

probability for all four categories, firmly rejecting the null hypothesis.

The notable contrast between the two occurs with the standard deviation.

pLoGANN’s standard deviation is nearly half of that of the random heuristic. The cause

is easily discernable when examining the graph of the random heuristic’s maximum

scores when the matches are divided to epochs in the same manner as pLoGANN (Figure

20).

Chromosome Performance: Max Score

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000

Epoch

M
ax

 S
co

re

Black
White
AVG
Combined

Figure 20: Highest scores achieved by random heuristic within each epoch.

58

Unlike pLoGANN, the random heuristic frequently forced tie games. These tie

games thus pushed up the mean values as well as the standard deviation. Although

pLoGANN managed to win seven more matches than the random heuristic, both one and

eight victories in 124,000 games should be considered outliers. In the greater scheme of

things, the only meaningful difference between the performances of pLoGANN and the

random heuristic is the number of tied games the random heuristic achieved.

 These results brought up two questions. First, is ALoA so good that there is a

threshold of competence that must be reached before evidence of learning can be

measured? To use a sports analogy, if a novice basketball player plays one-on-one against

a professional basketball player for one thousand games, he will in all probability

improve as a player during the course of those games. However, the professional player is

likely so good that it will take more than just a little improvement before the novice’s

improved competence is actually measurable based on the game statistics. In that sense,

the professional player possesses some threshold of competence that the novice player

must surpass before his learning produces improved measurable results in the box score.

Second, if the ALoA possesses such a threshold of competence, does that mean

that pLoANN may indeed have learned to play Lines of Action better? If it did not pass

that threshold, any improved capability would have been obscured by the dominance of

ALoA. For that reason, one more experiment was designed. The most rudimentary

heuristic is the random heuristic, which should not have any threshold of competence.

Thus, if pLoGANN did indeed learn how to play LoA better, that learning should be

evident in competitions against the random heuristic.

59

Results of Random Heuristic vs. pLoGANN

For this experiment, every tenth epoch was extracted and matched against the

random heuristic. Just as each heuristic was set to a search depth of 3 for their matches

against the traditional heuristic, so were each set to a search depth of three when matched

against one another. The results of these matches are shown below (results show the

performance of pLoGANN, not the performance of the random heuristic):

Figure 21: pLoGANN mean performance against random heuristic.

Between epochs 10 and 150, pLoGANN’s score for black rises steadily from

75.74 to 103.03. However, after that peak, it descends and no further epoch displays a

winning average against the random heuristic while playing either white or black.

60

Furthermore, the values for the tenth and thousandth epochs all fall well between the

minimum and maximum values for any epoch.

Table 5: Results of random heuristic competing against pLoGANN

 Random Heuristic pLoGANN
Overall White Black Combined Overall White Black Combined

Mean 121.81 125.50 118.13 243.62 78.19 74.50 81.87 156.38
Median 129 133 124.5 252 71 67 75.5 148
Max 186 186 181 353 182 179 182 328
Standard 31.47 30.78 31.36 45.45 31.47 30.78 31.36 45.45

 The overall statistics for this experience show that the random heuristic clearly

outplayed pLoGANN. Not surprisingly each side’s best games were similar, but the

random heuristic had significantly higher scores through each epoch compared, with the

singular exception of epoch 150 when pLoGANN played as black. Their actual records

further demonstrate the dominance:

Table 6: Results of games and matches between random heuristic and pLoGANN

 pLoGANN
Wins Losses Ties Winning Percentage

All Games 2168 9089 1143 19.26
White 959 4792 449 16.68
Black 1209 4297 694 21.96
Match 1099 4976 125 18.09

 These results, however, only examine networks that have survived at least one

round of tournament selection. That leaves the question of the base case scenario: how

does a pLoGANN network perform prior to any evolution? To answer that question, a

network, dubbed RandomANN, was created, whose weights were set to uniformly

distributed random values between -1 and 1. This network then competed in 1240

61

matches against the random heuristics using the same settings as before (search depth of

3). The results of this experiment are presented in Tables 7 and 8.

Table 7: Results of pLoGANN and RandomANN versus random heuristic

 RandomANN pLoGANN
Overall White Black Combined Overall White Black Combined

Mean 55.41 52.07 58.75 110.82 78.19 74.50 81.87 156.38
Median 51.5 48 53.5 104.5 71 67 75.5 148
Max 166 159 166 281 182 179 182 328
Standard 21.71 19.63 22.68 32.38 31.47 30.78 31.36 45.45

Table 8: Results of games and matches between random heuristic and RandomANN

 RandomANN
Wins Losses Ties Winning Percentage

All Games 38 1180 22 3.12
White 16 599 5 2.60
Black 22 581 17 3.65
Match 17 602 1 2.75

These results provide two insights into pLoGANN. First, the early hypothesis that

pLoGANN was essentially a random heuristic does not hold up. In a trial of 62,000

matches between identical random heuristics, the two competitors produced winning

percentages of 49.9% and 50.1%. By comparison, RandomANN has a mere 2.75%

winning percentage while pLoGANN had an 18% winning percentage against the

random heuristic. Thus, there clearly exists some attribute within the network itself,

perhaps a dependency between the perceptrons, that prevents it from performing like a

random heuristic.

The second insight is that it appears that pLOGANN did in fact improve its

performance relative to the RandomANN. However, this improvement actually took

62

place within the first epoch. So while pLoGANN did learn how to play LoA slightly

better, it quickly plateaud and remained a very weak competitor for the remainder fo the

experiment. As such, not only did pLoGANN fail to learn much, but there is some

component of pLoGANN’s heuristic that actively leads it to make bad moves. For these

moves to place it at such a disadvantage to a random heuristic indicates a significant

failure on pLoGANN’s part.

Summary

The early experiments which led to the development of pLoGANN produced

unclear results. The additional challenges presented by the computational limitations set

by the limited access to computing power led to a minimalistic design for pLoGANN that

incorporated a speculative heuristic (nonads). However, every experimental result

showed that not only did pLoGANN begin the experiment as an extremely weak Lines of

Action player, never improved to the point of being able to compete with even a random

heuristic. In short, pLoGANN is a failure.

63

V. Conclusions and Recommendations

The results of the final experiment clearly indicate that pLoGANN failed to

develop a quality Lines of Action player. However, the reason it failed to do so is much

less clear. In this chapter, several possible reasons why pLoGANN failed are examined.

Also, the benefits of the approaches taken towards pLoGANN’s design are analyzed, and

suggestions for improvements discussed, as well as applications for this approach besides

solving Lines of Action.

Conclusions of Research: What Went Wrong

 Without a doubt, pLoGANN failed to develop a strong LoA player. The reasons

why, however, are ambiguous. There are several factors that may or may not have

contributed to the lack of success:

- Not enough time: pLoGANN ran for 10,000 generations and in that time

revealed no measurable improvement. However, it is always possible that

given enough time, an individual solution could be found in a region in the

solution space that would enable the population to converge. However, short

of a full analysis of the solution space, which is completely infeasible, this is

only a supposition, and not worth investigating. pLoGANN, as is, ran for a

long time, and its results gave no indication that additional time would

produce a better outcome.

- Existence of a solution: One unanswerable question is whether or not a quality

solution, one which effectively approximates the value of a Lines of Action

state exists within the solution space of pLoGANN. This is akin to asking

64

whether or not the structure of pLoGANN’s final tree can be tuned to solve

Lines of Action. If not, then pLoGANN was predestined to fail the primary

objective. However, even if that were the case, there would still be a best

solution within the solution space, and the question would then be how good

of a solution, compared to the best achievable solution, did pLoGANN

achieve? Given the poor performance of the best measured solutions against

human players, if pLoGANN did indeed land at a high quality solution, then

clearly this entire approach to solving LoA is invalid.

- Solution space topography: Genetic algorithms are essentially hill-climbing

mechanisms with the ability to escape local minima. However, in order to

climb the hill, there must exist a hill to climb. The topography of pLoGANN’s

solution space is unclear, and given that it is 2,041 dimensions, mapping the

solution space is well beyond the scope of this thesis. If there is in fact no

discernible topography, then the task at hand reduces to what in a sense is a

needle in the haystack problem. Since pLoGANN examined only a tiny

fraction of the solution space, there was little chance of it finding a good

solution if indeed there is no useful topography.

- Crossover scheme: Even assuming that pLoGANN’s solution space has an

adequate topography, it is unknown if pLoGANN was capable of following

the topography in a useful manner. There is much debate within the GA

community [23, 30] about the merits of different crossover schemes. Since

each individual solution’s chromosomes fit separate weights on the artificial

65

neural network, and since the ordering of those weights matters when

crossover operations occur, the choice of crossover schemes and the ordering

of the weights can produce very different results. As a specific example, the

input layer was organized linearly, starting at the upper left corner of the

board and proceeding like words on a page to the lower right corner (the

nonads portion of the input weights were ordered similarly). Thus, weights

eight and nine were adjacent, even though the squares they represented (the

top-right corner square and the left most square on the second row,

respectively) were not connected in any way relative to the game of Lines of

Action (i.e., pieces in those two squares cannot directly effect one another

during any given turn in Lines of Action, since they do not occupy the same

horizontal, vertical, or diagonal lines). On the other hand, either a spiral

scheme or a salamander scheme would have ensured that adjacent weights

represented adjacent squares. However, given that at some point there would

have to be some disconnect between adjacent weights and what they

represented, such as the separation between input weights and hidden layer

weights, a re-ordering of weights could not have created uniform consistency.

pLoGANN had both crossover and mutation schemes in place which would

allow it to explore and converge; the fact that it failed to converge at all

suggests that different reproductive schemes are unlikely to have produced

better results in the face of other problems with pLoGANN.

66

- Tournament selection: It was a known fact at design time that by far the

greatest computational bottleneck that pLoGANN faced was the fitness

function. As such, there was a deliberate attempt to extract as much utility out

of the fitness function as was possible. To that end, it made sense to

implement a tournament selection scheme, since that allowed two individuals

to be evaluated using one call to the fitness function (the fitness function

being a match between the two individuals). Had a different fitness function

been used, such as the fitness function to evaluate each epoch (by competing

each individual against a traditional heuristic), then two drawbacks would

have occurred. The first is that only half as many individuals could have been

evaluated. The second is that the de facto objective of the GA would then

have been to find a chromosome best able to compete against that heuristic,

rather than to find the best general Lines of Action player. This might very

well have led to a final population that consisted of solutions similar to the

outliers that did indeed defeat the heuristic (especially if the heuristic was

deterministic, as was the case with the one used to evaluate the epochs in

pLoGANN), yet were clearly unexceptional players as measured by

competition against beginner level humans. However, pLoGANN, as

implemented, clearly did not succeed, and this remains one of the possible

reasons why.

- Elimination scheme: The tournament selection model used by pLoGANN

used a single elimination format. The advantage of this method is that it

67

allows a genetic algorithm to examine more individual solutions, since an

individual remains in the population if and only if it wins every match. Such

an advantage is useful on a tremendously large solution space such as the one

pLoGANN operated on, but it comes at the risk of eliminating quality

solutions too quickly. For example, a solution that defeats 60% of the

population only has a 13% chance of surviving two tournaments. In fact, a

solution that defeats 90% of the population has only a 12% chance of

surviving an entire epoch. In hindsight, it should come as no surprise then that

not a single individual was repeated in any of the 1,000 epochs measured.

Since a population is measured against an outside player only once per epoch,

it is certainly possible that a great solution was evolved and perished within a

single epoch and so was never recorded. However, even if that were so, it is

clear by the absence of any rise in the population averages that any such

superior solution did not have a lasting impact on the population. During

design time, naïve optimism that a perfect solution would be found, and that it

would persist across epochs, led to this area being overlooked. Thus, if

pLoGANN were to be redesigned, this portion of the program would almost

certainly be implemented differently, to allow for greater persistence of

solutions.

- Tournament format: The simplicity of a single elimination tournament also

had the advantage of requiring the fewest possible matches to determine a

winner. This efficiency, however, exacerbated the single elimination issues

68

described above. Another approach, a round robin tournament featuring six

total matches amongst four competitors would have rewarded solutions that

were better against more opponents. However, this, too, is unclear, especially

considering all competitions within pLoGANN were strictly deterministic

(unlike real life athletic competitions), and where no game or match was

influenced in any way by any events before or after that game or match

(again, unlike real-life athletic competitions, where injuries, fatigue, and

standings impact in-game decisions). In the single elimination scheme, the

winner defeated two of the three opponents. In a round robin scheme featuring

the same four participants, however, the tournament would produce a different

winner only 25% of the time (see Appendix D), and even then the victor

would statistically be only marginally better, as it’s victory would be due to a

tiebreaker. Thus, the cost of computing only half the generations is pretty

steep compared to the gain of what may or may not be a better solution only

one quarter of the time.

- Population size: During the design of pLoGANN, it was obvious that in order

to maximize the efficiency of the parallel environment, that the population

size should be some multiple of the number of slaves available, 62. In

pLoGANN, that multiple was chosen to be one. The effect this had was that it

effectively gave priority to depth of search over breadth of search. Had the

multiple been set to any other positive integer, the population would have

been much larger, but the number of generations calculated would have been

69

reduced by a factor of the same multiple. The total number of tournaments

held, however, would have remained the same given the same timeframe. The

primary concern of having a small population was that it may lead to

premature convergence. This, however, clearly did not happen. While a larger

population may have produced a different result, the impact of population size

is secondary. In other words, a larger population cannot have a significant

impact if the basic mechanisms of the GA are not functioning well.

A pair of the above issues can be dismissed outright. There is no indication in any

of the evaluations that pLoGANN was learning, and so there is no justification to

conclude that more generations would have produced different results. Similarly, there is

no evidence that a different population size could have produced better results.

Of the items above, two are issues that arose prior to the development of the

genetic algorithm. If no configuration of the ANN could produce a quality LoA heuristic,

then pLoGANN was doomed as of the moment the network configuration was

determined. Similarly, if the solution space topography was so chaotic that the problem

reduced to a “needle in the haystack” problem, then no GA could navigate it successfully.

If either of these conditions were true, then no amount of tuning the GA would have

produced viable results. However, neither of these problems are feasibly diagnosed, and

therefore it is unknown to what extent these factors impacted pLoGANN’s performance.

Two of the six issues that pertain directly to the GA, the choice of using

tournament selection and the tournament format no doubt impacted how the GA

70

operated. However, given the relatively low amount of resources available for the

experiment compared to the extremely large size of the solution space, the basis for these

two design decisions still hold up despite pLoGANN’s performance. As stated above,

tournament selection, by allowing the evaluation heuristic to compare two solutions at

once, doubled the number of solutions that could be evaluated within the same amount of

time. Similarly, the use of a single elimination tournament scheme, as opposed to a round

robin scheme, also doubled the number of generations measured, while producing an

inferior solution at most one quarter of the time. The four-fold increase in efficiency

generated by these two choices outweighs the relatively minor evaluation differences as

well as the unknown impact a different selection format might have had.

The final two issues, however, definitely bear greater scrutiny. The crossover

scheme, which was single point crossover, was developed without critically analyzing the

chromosome encoding scheme. Given three alleles a, b, and c, which are encoded in that

order, single point crossover means that alleles a and c can never be retained in a

chromosome unless b is also, but b can be paired with one or both of a and c. Thus, if

there exist any dependencies between genes, then this single point crossover has uneven

impact on the set of alleles because it enables some combinations of genes to be retained

but not other combinations.

The elimination scheme, however, is the element of the GA that had the most

visible unintended consequences. The single elimination scheme resulted in an epochal

turnover rate of one hundred percent. Without a single solution persisting from one epoch

to another, pLoGANN had very little chance of converging, since the turnover rate would

71

have made it prohibitively difficult for a set of solutions to remain in the population for

long. Of all the critical issues with the genetic algorithm at the heart of pLoGANN, this is

the one that had the clearest impact.

Conclusions of Research: What Went Right

Given the performance of pLoGANN, it is easy to overlook what pLoGANN did

well. pLoGANN represented a combination of several different disciplines within

computer science. It combined a meta-heuristic search algorithm with artificial neural

networks over a parallelized runtime environment. The effectiveness of the search

algorithm combined with the ANN is in doubt, but the effectiveness of the parallelization

of pLoGANN is not. Furthermore, the fact that it was designed to operate in a platform-

independent manner not only enabled for easy testing of the software, but also presents

an expandable framework that can be used for further research.

pLoGANN took advantage of a computational model that was embarrassingly

parallel. As such, it required little innovation to configure it to run in parallel or in a

distributed environment. Nevertheless, several design and post-testing decisions were

made to eliminate inefficiencies during the operation. One such decision was to introduce

a four-unit tournament selection. Because of the variability in game length, each

generation took as long as the longest single tournament. Thus, the effort to normalize the

length of the tournaments by introducing additional competitors and transforming it into a

multi-competitor tournament ensured any sequence of three matches (aka one complete

tournament in pLoGANN) would take at most as long as three generations had

pLoGANN’s selector consisted of a single match. Given 62 nodes, the probability that a

72

single tournament consisted of all three of the longest matches of that generations was

5.64 x 10-9. Assuming probability held up, this decision enabled pLoGANN to save time

in every single generation of this experiment.

Technically speaking, pLoGANN was developed as a distributed application

rather than a parallel application, as neither the master nor any of the slaves used shared

memory. While pLoGANN forsook the opportunity to use shared memory (and thus

reduce the volume of communication between the master and the slaves), it gained the

ability to be operated on any kind of cluster of computers, including random personal

computers connected by a LAN or even the internet. Not only did this enable much easier

debugging and testing, given the abundance of open computer labs at AFIT, but it also

makes pLoGANN easily modifiable to perform other tasks in a much more flexible

environment.

One inefficiency that pLoGANN suffers from is the requirement that generations

be synchronized. While this makes evaluating generations and epochs a more

straightforward task, it introduced three notable areas of inefficiency. The first was that

the master had to wait for all slaves to finish their computations for each generation. The

second was that the slaves which finished sooner had to wait for the slaves that finished

later. Finally, all the slaves had to wait for the master to perform crossover and mutation

operations. If the need to monitor generational (or in pLoGANN’s case, epochal)

performance is not as strong as it was for pLoGANN, an asynchronous model could be

developed, where the master maintains a reserve of solutions that can be sent out to

slaves as soon as one is available, then no slave would remain idle. Obviously, as the

73

number of slaves increases, other performance issues may arise in the master, but this is a

framework that could be utilized to run a distributed search on any environment, whether

it is LoA, a different abstract strategy game, or other.

Significance of Research

This research effort yielded decidedly underwhelming results. While it did not

yield any positive breakthroughs for the study of Lines of Action, it did demonstrate

some of the limitations of artificial neural networks. Lines of Action is not among the

most complex of abstract strategy games, but some of its mechanisms are decidedly

different than other well known games. The ambiguous value of having more or less

pieces on the board is virtually unique, and the absence of direction on the game board

adds another challenge, since no side can be weighted higher or lower than any other side

(unlike, checkers, for example). Despite this, compared to almost any real-time strategic

environment, such as a battlefield or soccer field, Lines of Actions is a very simple

environment, and one which an artificial neural network was unable to model in a simple

manner. Even with just one hundred inputs and a single hidden layer, the ANN had 2,041

individual weights. When a metaheuristic, such as a genetic algorithm, is used to

optimize these weights, it produces a search space so large that a complete search is an

intractable problem. If a GA is unable to feasibly train an ANN in a static environment, it

does not have any chance of doing so in a dynamic environment, which any real time

environment is. This thesis, if nothing else, exhibits some of the limitations of GA-tuned

artificial neural networks.

74

Final Remarks

The continuing advancements in computer engineering are increasing the

computational power available to researchers every year. With these resources at their

disposal, artificial intelligence continues to be a focus of sophisticated approaches to

design machines that can outperform humans. At present, such efforts have produced the

best competitors in the world in games such as checkers and Lines of Action. LoA is a

niche game with a relatively small following. Research into chess and Go, however, have

the potential to capture the general public’s attention as well as impact how those games

are played at the professional levels as computers introduce new strategies and provide

proof or disproof of existing strategies’ viabilities. Once artificial algorithms begin to

demonstrate the ability to find inefficiencies in existing methods of addressing

competitive tasks, whether in games, finance, or military matters, their value can only

increase.

75

Appendix A

Derivation of Parallelization of Fitness Function

According to Gustafson’s law, the speedup of parallelizing an algorithm can be

given as S(P) = P − α * (P − 1), where P is the number of processors in the parallel

implementation, α is the non-parallelizable, or serial, portion of the algorithm, and S(P) is

the speedup achieved over P processors [26]. Speedup itself is defined as the

improvement in performance of a parallel algorithm over the same algorithm performed

sequentially, and is given as S(P) = T1/TP, where T1 is the performance of the serial

algorithm and TP is the performance of the same algorithm once parallelized. Given that

T1 can be expressed using big-O notation as O(xn), where x is the performance of a single

instance of a fitness function and n the number of fitness functions that must be

performed, the two speedup formulas can be combined as follows:

S(P) = T1/TP; S(P) = P − α * (P − 1)

T1/TP = P − α * (P − 1)

O(xn)/ O(TP) = P − α * (P − 1)

O(TP) = O(xn)/O(P − α * (P − 1))

Given that α is not only a constant, but is in fact 0, since there is no non-parallel

portion of any instance of the fitness function, this formula can be reduced to:

O(TP) = O(xn)/O(P)

O(TP) = O(xn/P)

76

However, Gustafson’s law specifically ignores the cost of communications, which

is typically given as tc and is applied for each instance of communications to a processor,

in this case P:

O(TP) = O(xn/P) + Ptc

O(TP) = O(xn/P + Ptc)

Thus, the performance of the a fitness function over a parallel system is given as

O(xn/P + Ptc).

77

Appendix B

Theorem: Not all valid Board States of Lines of Action are Reachable

Proof by contradiction: Consider the following legal Lines of Action board state:

Figure 22: Example of unreachable board state.

If it was black’s turn, then white must have made the previous move. However,

there exist no moves which white could have made that would have allowed a piece north

of the black formation to move south of the formation. Therefore, only black could have

made the last move. At the start of black’s turn, only two possibilities exist: either it

landed on a white piece or it did not. If it did not land on a white piece, then the game

must have already been over, since white was already fully connected. If it did land on a

white piece, that white piece must have been on one of the eight tiles presently occupied

by a black piece, all of which connect to the white formation. Therefore, prior to black’s

78

move, white must have already been fully connected and the game thus already

concluded.

 As there exists no legal move within the context of a LoA game that reaches the

above legal board state, it is proof that not every legal board state is reachable.

79

Appendix C

Discussion of Offline and Online Reinforcement Learning

The decision to use online reinforcement learning with pLoGANN was based on

the advantages and disadvantages compared to offline reinforcement learning. This

appendix introduces describes these approaches.

In order to identify a quality network structure offline reinforcement learning is

used. It has the primary advantage of speed, which enables the testing of multiple

network structures in a relatively short amount of time. Consequently, different structures

are designed, tested, and compared to one another with the purpose of incorporating

elements of the more successful structures into a final network structure to be used in the

final online experiment.

Offline learning is accomplished by sampling the state space and assigning values

to each state sampled. This is done by repeatedly playing random games and evaluating

board states based on the outcome of each game. For example, in a particular game, if a

state leads to a black win, then it is evaluated positively for black, and negatively for

white. Each board state receives a cumulative evaluation, based on temporal difference

learning [37]. The update of the value for each board state is

λt = Vt(s) – γVt+1(s)

where λt is represents the difference between the actual value of a state (Vt(s)) and the

expected value (γVt+1(s)), which is the product of the actual value of the next state in the

sequence and the discount factor γ, where 0 ≤ γ < 1. As the value of γ approaches 1, the

difference between the actual and expected values tends to increase.

80

In the offline learning algorithm, each game is evaluated one at a time. The final

position is evaluated as 1 for a win and 0 for a loss. Iterating in reverse order over all the

positions of the game, the temporal difference formula is applied to each board state.

Thus, each board state, which begins with a neutral evaluation, has its rating appreciated

or depreciated slightly depending on whether that board state resulted in a win or a loss

for the side in question.

The goal of the algorithm is to slowly have each state reach an equilibrium value.

In other words, as more games are played, certain states, particularly early game states,

appear over and over again. If each appearance precedes the same outcome, then the

value of that state slowly equalizes towards the value of that outcome, either a 0 (loss),

0.5 (tie), or 1 (win). In theory, as more games are played, the valuations of all board

states eventually equalize to either a 0, 0.5, or 1, because that state should always lead to

either a loss, tie, or win (in games that do not allow for a tied result, all states should

equalize to a 0 or 1).

Unfortunately, this is only possible in very small games where it is feasible to

visit and store every state. As the state space of LoA is well beyond the capacities of

current processing and memory technologies, the practice of sampling is used. By

sampling actual games, only samples of achieved board states are taken. Furthermore,

sampling of the board states only happens once, before any ANNs are even introduced

into the process. The same samples are then stored in a hash table and used for each

ANN, which is where this process gains its speed, since half of each subsequent

experiment has already been performed by the first experiment.

81

Once the state space has been sampled, these values may be used to train a neural

network (or other construct) using feed-forward/back-propagation. Since the same

sampled set is maintained, many different neural networks may be trained and evaluated.

Thus, this allows for fast comparison of different network structures. Furthermore, tests

are easy to repeat since the network can simply be re-randomized using a different

random seed. Finally, the resulting networks are used to play opponents to determine if

offline training actually results in a successful player.

Whereas offline learning plays many games and then trains as many networks as

desired on the same training set, online reinforcement learning trains the network as

games are played. The key benefit of this approach is that it uses much less memory.

Offline training requires a databank of board states and their estimated values. Online

training only requires that the current state of the network be stored. Given the size of the

state space for Lines of Action, this is not a trivial difference. However, the savings in

memory come at the cost of operating time. In pLoGANN, the networks perform three

ply searches, meaning for each move, they evaluate hundreds of board states.

Furthermore, no data may be migrated from experiment to experiment, which means that

each repeat must begin at the first step, leading to a higher operating time per experiment

when multiple runs are made on the same network, as compared to offline reinforcement

learning.

82

Appendix D

Analysis of Single Elimination versus Round Robin Tournament

The question of whether or not a round robin tournament might produce a

different outcome compared to a single elimination tournament is an active subject of

debate. In the United States, NCAA athletics adopt single elimination tournaments for

many of their championship events, as do all of the major professional team sports (MLB,

NBA, NFL, and NHL), while many international soccer tournaments incorporate a hybrid

system. The UEFA and World Cup finals, for example, feature a set of four team round

robin tournaments in the group stage, the top two finishers of which are then seeded into

a single elimination final stage tournament. The merits of the styles are a matter of

subjective taste as anything else. However, there is also a component driven by

limitations. Because MLB, NBA, NHL postseason matches can last well over a week

(each typically consists of a best of seven series that includes days off), adopting a round

robin system would significantly alter scheduling.

When it comes to pLoGANN, a couple points stand out. The first is that when

four participants are included, a single elimination tournament requires three matches,

while a round robin tournament requires six matches. Since the tournaments are the major

bottleneck of pLoGANN, in order to justify a switch to a round robin format, there must

be ample evidence that such a switch would produce a different outcome, that the

different winner would be more deserving, and that having the new winner would justify

the costs.

83

The winner of the single elimination tournament defeated two opponents. In a

round robin system, two victories is a substantial leg up towards winning a tournament.

Suppose a single elimination tournament consisted of participants a, b, c, and d, where

the winner of each match is in red:

If those teams were in a round robin tournament, and the matches are

deterministic, as is the case in pLoGANN, then the tournament would look as follows:

If one assumes that all participants are about equal and thus have a 50% chance of

defeating any given opponent, then a defeats c with probability 0.5 and wins the round

outright. However, if c wins, then the outcome is determined by a tiebreaker. The typical

first tiebreaker is head-to-head. Thus, if c also defeated b in round two, c would defeat a

because of the head-to-head victory. If b defeated c in round 2, then the winner of the b-d

match in round three would finish 2-1 and then lose the tiebreaker to a. Thus, a only loses

the round robin if c defeats both a and b, which occurs with probability 0.52 = 0.25. Thus,

84

the winner of the single elimination tournament of deterministic matches also wins the

round robin equivalent three times out of four.

85

Bibliography

[1] Z. Michalewicz, D. B. Fogel. How to Solve it: Modern Heuristics, Second Edition.
Heidelberg, Germany: Springer-Verlag, 2004.

[2] J. Tromp, G. Farnebäck. “Combinatorics of Go.” In Proceeedings of 5th Internatinal
Conference on Computer and Games. Torino, Italy, 2006.

[3] S. Sackson. A Gamut of Games. New York, NY: Random House, 1969.
[4] L. V. Allis. “Searching for Solutions in Games and Artificial Intelligence.” Ph. D.

Thesis. Rijksuniversiteit Limburg, Maastricht, The Netherlands, 1994.
[5] T. M. Mitchell. Machine Learning. Boston, MA: WCB McGraw-Hill, 1997.
[6] G. Tesauro. “Temporal Difference Learning and TD-Gammon.” Communications of

the ACM 38, 1995.
[7] D. B. Fogel. Blondie 24: Playing at the Edge of AI. San Francisco, CA: Morgan

Keufmann, 2001.
[8] J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto, M. Müller, R. Lake, P. Lu, S.

Sutphen. “Checkers Is Solved.” Science, 2007.
[9] “Folding@Home Distributed Computing.” http://folding.stanford.edu/
[10] J. M. Thompson. “Defining the Abstract.” Unpublished article.

http://www.thegamesjournal.com/articles/DefiningtheAbstract.shtml, 2000.
[11] S. Reisch. “Gomoku is PSPACE-complete.” Acta Informatica 13. 1980
[12] M. P. D. Schaff, M. H. M. Winands, J. W. H. M. Uiterwijk, H.J. van den Herik,

M. H. J. Bergsma. “Best Play in Fanorona leads to Draw.” New Mathematics and
Natural Computation 4, 2008.

[13] M. H. M. Winands. “Informed Search in Complex Games.” Ph. D. Thesis,
Maastrich University, Maastricht, The Netherlands, 2004.

[14] S. Yen, J. Chen, T. Yang, S. Hsu. “Computer Chinese Chess.” International
Computer Games Association Journal 27, 2004.

[15] C. Cox. “Analysis and Implementation of the Game Arimaa.” Masters Thesis,
Maastricht University, Maastricht, The Netherlands, 2006.

[16] J. von Neumann, O. Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1944.

[17] M. H. M. Winands, “Analysis and Implementation of Lines of Action.” Masters
Thesis, Maastricht University, Maastricht, The Netherlands, 2000.

[18] L. V. Allis, H. J. van den Herik, I. S. Herschberg. “Which Games Will Survive?”
Heuristic Programming in Artificial Intelligence 2: the second computer Olympiad.
Ellis Horwood, Chichester, 1991.

[19] W. S. McCulloch, W. Pitts. “A Logical Calculus of the Ideas Imminent in
Nervous Activity.” Bulletin of Mathematical Biophysics, Vol 5, 1943.

[20] F. Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain.” Psychological Review, Vol 65, 1958.

[21] S. Russell, P. Norvig. Artificial Intelligence: A Modern Approach, Second
Edition. Upper Saddle River, NJ: Pearson Education, Inc., 2003.

86

[22] J. H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor, MI:
University of Michigan Press, 1975.

[23] G. Syswerda. “Uniform crossover in genetic algorithms.” Proceedings of the
Third International Conference on Genetic Algorithms, 1989.

[24] Y. Bengio, Y. Le Cun. “Scaling Learning Algorithms Towards AI.” 2007.
[25] T. Bäck, D. B. Fogel, T. Michalewicz. Evolutionary Acomputation 1: Basic

Algorithms and Operators. Bristol, United Kingdom: Institute of Physics Publishing,
2000.

[26] J. L. Gustafson. “Reevaluating Amdah;’s Law.” Communications of the ACM 31,
1988.

[27] M. Enzenberger. “Evaluation in Go by a Neural Network Using Soft
Segmentation.” 10th Advances in Computer Games conference, 2003.

[28] T. Bäck, D. B. Fogel, T. Michalewicz. Evolutionary Acomputation 2: Basic
Algorithms and Operators. Bristol, United Kingdom: Institute of Physics Publishing,
2000.

[29] C. R. Reeves, J. E. Rowe. Genetic Algorithms – Principles and Perspectives: A
Guide to GA Theory. Boston, MA: Kluwer Academic Publishers, 2002.

[30] K. M. Burjorjee. “A Unified Explanation for the Adaptive Capacity of Simple
Recombinative Genetic Algorithms.” Ph. D. Thesis, Brandeis University, Waltham,
MA, 2009.

[31] D. E. Goldberg, K. Deb. “A Comparative Analysis of Selection Schemes Used in
Genetic Algorithms.” 1991.

[32] D. Billings, Y. Björnsson. “Search and Knowledge in Lines of Action.” Advances
in Computer Games: Many Games, Many Challenges, 2004.

[33] E. Alba, J. F. Aldana, J. M. Troya. Full Automatic ANN Design: A Genetic
Approach, New Trendsand Neural Computation. 1993.

[34] K. O. Stanley, R. Miikkulainen. “Efficient Reinforcement Learning through
Evolving Neural Network Topologies.” Proceedings of the Genetic and Evolutionary
Computation Conference, 2002.

[35] M. H. M. Winands, H. J. van den Herik, J. W. H. M. Uiterwijk. “An Evaluation
Function for Lines of Action.” 2004.

[36] M. H. M. Winands, H. J. van den Herik, J. W. H. M. Uiterwijk. “The quad
heuristic in Lines of Action”. ICGA Journal, 24(1), 2001

[37] R. Sutton. “Learning to Predict by Methods of Temporal Differences.” Machine
Learning 3, 1988.

[38] J. S. Milton, J. C. Arnold. Introduction to Probability and Statistics, Fourth
Edition. Boston, MA: McGraw-Hill, 2003.

[39] W. F. Streeter. “Is the First Move an Advantage?” Chess Review, 1946.
[40] C. Blum, K. Socha. “Training Feed-Forward Neural Networks with Ant Colony

Optimization: An Application to Pattern Classification.” IRIDIA – Technical Report
Series, 2005.

[41] I. Ghory. “Reinforcement Learning in Board Games.” 2004.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

25-03-2010
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

June 2005 – March 2010
4. TITLE AND SUBTITLE

EVOLUTIONARY ARTIFICIAL NEURAL NETWORK
WEIGHT TUNING TO OPTIMIZE DECISION MAKING

FOR AN ABSTRACT GAME

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Miller, Corey M.

5d. PROJECT NUMBER
ENG09-219
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/10-06

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Labs, Sensor Directorate, Reference Branch
Attn: Dr. Jacob Campbell (jacob.campbell@wpafb.af.mil)
2241 Avionics Circle, Area B, Bldg 620, Wright-Patterson AFB,
OH (937)785-6127x4154

10. SPONSOR/MONITOR’S
ACRONYM(S)
AFRL/RYRN
11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Abstract strategy games present a deterministic perfect information environment with which to
test the strategic capabilities of artificial intelligence systems. With no unknowns or random
elements, only the competitors’ performances impact the results. This thesis takes one such game,
Lines of Action, and attempts to develop a competitive heuristic. Due to the complexity of Lines
of Action, artificial neural networks are utilized to model the relative values of board states. An
application, pLoGANN (Parallel Lines of Action with Genetic Algorithm and Neural Networks),
is developed to train the weights of this neural network by implementing a genetic algorithm over
a distributed environment. While pLoGANN proved to be designed efficiently, it failed to
produce a competitive Lines of Action player, shedding light on the difficulty of developing a
neural network to model such a large and complex solution space.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION
OF:

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
 OF
 PAGES

98

19a. NAME OF RESPONSIBLE PERSON
Gilbert L. Peterson, PhD

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4281
(gilbert.peterson@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Air Force Institute of Technology
	AFIT Scholar
	3-10-2010

	Evolutionary Artificial Neural Network Weight Tuning to Optimize Decision Making for an Abstract Game
	Corey M. Miller
	Recommended Citation

	Microsoft Word - Miller Thesis.doc

