
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Fall 11-30-2018

EvoAlloy: An Evolutionary Approach For
Analyzing Alloy Specifications
Jianghao Wang
University of Nebraska - Lincoln, jianghao@huskers.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Wang, Jianghao, "EvoAlloy: An Evolutionary Approach For Analyzing Alloy Specifications" (2018). Computer Science and Engineering:
Theses, Dissertations, and Student Research. 162.
http://digitalcommons.unl.edu/computerscidiss/162

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNL | Libraries

https://core.ac.uk/display/188141517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/162?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages

EVOALLOY: AN EVOLUTIONARY APPROACH FOR ANALYZING

ALLOY SPECIFICATIONS

by

Jianghao Wang

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Hamid Bagheri

Lincoln, Nebraska

December, 2018

EVOALLOY: AN EVOLUTIONARY APPROACH FOR ANALYZING

ALLOY SPECIFICATIONS

Jianghao Wang, M.S.

University of Nebraska, 2018

Adviser: Hamid Bagheri

Using mathematical notations and logical reasoning, formal methods precisely define

a program’s specifications, from which we can instantiate valid instances of a system.

With these techniques, we can perform a variety of analysis tasks to verify system

dependability and rigorously prove the correctness of system properties. While there

exist well-designed automated verification tools including ones considered lightweight,

they still lack a strong adoption in practice. The essence of the problem is that

when applied to large real world applications, they are not scalable and applicable

due to the expense of thorough verification process. In this thesis, I present a new

approach and demonstrate how to relax the completeness guarantee without much

loss, since soundness is maintained. I have extended a widely applied lightweight

analysis, Alloy, with a genetic algorithm. Our new tool, EvoAlloy, works at the level

of finite relations generated by Kodkod and evolves the chromosomes based on the

feedback including failed constraints. Through a feasibility study, I prove that my

approach can successfully find solutions to a set of specifications beyond the scope

where traditional Alloy Analyzer fails. While EvoAlloy solves small size problems

with longer time, its scalability provided by genetic extension shows its potential to

handle larger specifications. My future vision is that when specifications are small

I can maintain both soundness and completeness, but when this fails, EvoAlloy can

switch to its genetic algorithm.

iii

COPYRIGHT

c© 2018, Jianghao Wang

iv

ACKNOWLEDGMENTS

I would like to express my sincere graditude to my advisor, Dr. Hamid Bagheri,for his

mentorship and encouragement. His enthusiasm and dedication on research always

inspired me to move forward and investigate new possibilities. Without his guidance

and inspiration this thesis would not have been possible. I deeply appreciate all the

efforts he has put into helping me.

I would like thank my committee members, Dr. Myra Cohen and Dr. Witty Srisa-

an, for their guidance and helpful suggestions. Especially for the kind help from Dr.

Myra Cohen, without her deep insight and knowledge of evolutionary algorithms, I

could not finish this work successfully. Their suggestions greatly help me to improve

this thesis and I own them a deep sense of gratitude.

I thank all my friends at UNL, Yanlin Zhou, Parvez Rashid, Jonathan Saddler,

Alireza Khodaei, Yan Xia, Tuyishime Yves, Zeynep Hakguder, Bruno Silva, Shideh

Yavari, Pengfei Dong, Yalan Liang, Jared Soundy, James Drake, David Shriver,

Mohammad-Ebrahim Mohammadi, Niloofar Mansoor, Zahre Sadri, Qi Xia, and Yang

Liu who made my graduate studies a wonderful experience.

Last but not least, I would like to express my deepest gratitude to my Master,

Mr. Li HongZhi, who teaches Falun Dafa, an advanced practice of Buddha school

self-cultivation, to public and make practitioners including me and my mother greatly

benefit from daily practicing. Through following his teaching "Truthfulness, Compas-

sion, Forbearance", I become a better person everyday and gain significantly improve-

ment both on mind and body. Human words are not enough to express my immense

gratitude and appreciation to him. Without his teachings, I would not be able here.

Thank you, Master Li!

v

Table of Contents

List of Figures vii

List of Tables viii

1 Introduction 1

2 Background 6

2.1 Alloy and Alloy Analyzer . 6

2.2 Genetic Algorithm . 12

2.2.1 Crossover . 15

2.2.2 Mutation . 16

2.2.3 Fitness . 17

2.2.4 Selection . 17

2.2.5 Termination Condition . 19

2.2.6 Parameters Tuning . 19

3 Related Work 21

3.1 Alloy extentions . 21

3.2 Evolutionary algorithms . 22

4 EvoAlloy 24

4.1 Motivation and Illustrative Example 25

vi

4.2 Overview of EvoAlloy approach . 28

4.3 Problem Representation . 32

4.4 Fitness Function . 33

4.5 Selection . 34

4.6 Crossover . 36

4.7 Mutation . 37

5 Experimental Evaluation 38

5.1 Phase One . 39

5.2 Phase two . 43

5.3 Discussion . 45

6 Conclusion and Future work 49

Bibliography 51

vii

List of Figures

1.1 High level view of lightweight formal methods 3

1.2 High level view of our approach . 4

2.1 Overview of the main components of Alloy Analyzer 13

2.2 Overview of Genetic Algorithm . 14

2.3 An illustration of one-point crossover . 15

2.4 An illustrative example of mutation . 16

2.5 An Overview of Tournament Selection 18

4.1 EvoAlloy’s (a) representation of a chromosome, (b) two produced chromo-

somes for the specification of Listing 2.1, (c) crossover step for creating a

new chromosome, and (d) mutation step. 26

4.2 An Alloy model instance derived automatically from the chromosome

shown in Fig. 4.1d. 28

4.3 Schematic view of EvoAlloy. 29

4.4 An example of unbiased tournament selection algorithm 35

4.5 An example of two point crossover algorithm 36

5.1 The population evolving diagrams of analysis on initial parameter settings 41

5.2 An example of unbiased tournament selection algorithm 43

viii

List of Tables

5.1 The parameter configurations of Initial Settings and Final Settings . . . 40

5.2 The analysis time in second of tuning experiments over increasing muta-

tion rate . 42

5.3 The analysis time in second taken from Random (RD) over the increasing

analysis scope across objects of study . 44

5.4 The analysis time in second taken from EvoAlloy (EA) and Alloy An-

alyzer (AA) over the increasing analysis scope across objects of study . . 46

5.5 The number of iterations taken from EvoAlloy (EA) over the increasing

analysis scope across objects of study . 47

1

Chapter 1

Introduction

Software has become an intrinsic part of our daily life nowadays, and it has been

successfully embedded in various devices with all kinds of purposes, ranging from

transportation, communication, healthcare, and even home comfort. Yet at the same

time, software including those considered life-critical, continues to fail. And software

failures can be exploited by malicious users, consequently causing a variety of pri-

vacy and security issues [1]. Fifteen years ago, the National Institutes of Standards

reported that an inadequate software quality infrastructure was costing the US up-

wards of $59 Billion annually [2]. And similarly, another equally ominous report from

Tricentis in 2017 estimated the annual financial loss due to software failures world-

wide at $1.7 Trillion [3]. These survey reports implied us that, as software products

keep increasing their influence on almost every aspects of our life during the recent

decades, the cost of software failures also follows this trend. To mitigate these ongoing

threats, researchers in our software community have made great efforts to improve

software engineering techniques, and to develop better software validation methods.

Therefore over the last several decades, a large body of research works related to

software verification and testing have been investigated, and new approaches such

as machine learning have also been introduced to this area to ensure the quality of

software products. However, the problems still persist. Recent highly publicized bugs

2

like the Toyota acceleration problem and the heartbleed bug as well as the explosion

of Android exploits [4] show that there is no silver-bullet yet discovered — we are

still lack of sufficient techniques to verify and validate our software.

One class of techniques that have been widely applied to tackle dependability

problem, are those which fall into the category of formal methods. Leveraging math-

ematical concepts to rigorously model the entire system, formal method can precisely

perform various verification tasks as well as proving the correctness of dependabil-

ity properties. Most notably, lightweight formal methods, such as those based on

bounded verification, have recently received a lot of attention due to their capabili-

ties of conducting automated and formally precise analysis, which significantly reduce

the burden on traditional formal techniques. Its applications spans a wide range of

software engineering and security domains, including software design [5, 6, 7], code

analysis [8], security analysis [4], test case generation [9, 10] and tradeoff synthesis

and analysis [11, 12]. As shown in Figure 1.1, such kind of techniques often starts

with a system specification and optional properties to be verified. By introducing

user specified scope, bounded verification then transforms them into a finite satisfia-

bility problem. Consequently, it delegates the task of solving the SAT problem to a

constraint solver. And finally, the analysis is conducted by exhaustive enumeration

over the bounded scope of specification instances.

Despite significant advances mentioned above, we still find ourselves lacking strong

adoptions of formal techniques. The essential problem that prohibits them from being

regularly applied in industry, lies in their scalability and applicability for large real-

world systems. In other words, when the complexity of a software system increases

to a certain extent, it is infeasible to thoroughly model and analyze the complete

specifications of a entire system. Benefited from reduced analysis scope, bounded

verification techniques are at once both sound and complete for the given bound.

3

Figure 1.1: High level view of lightweight formal methods

However, the completeness still means that when performing analysis tasks on large

systems, they either fail or need to be further reduced in scope. In software engineer-

ing community, an alternative approach to solving problems that grow exponentially

has been to use search-based techniques, or more specifically evolutionary algorithms

[13]. Basically, these algorithms successfully formulate different types of problems as

optimization problems, therefore heuristically explore large complex solutions spaces

and converge on single optimal solution, rendering them in sound but incomplete.

There are numerous success stories for evolutionary algorithms. They are, for ex-

ample, being used in test case generation[14], module clustering[15], and cost-effort

prediction[16].

In this thesis, I present a novel tradeoff approach that provides a new path towards

solving scalability issue. Our vision is that when the search space of a system’s

specification is relatively small, we can keep using the full power of a constraint

solver, and maintain both soundness and completeness. But when this approach fails

as the scope exceeds its limitation, we switch on evolutionary algorithms [17], which

in turn promise to scale to real-world large problems, and at the same time without

sacrificing soundness.

4

To evaluate the feasibility of this new approach, I develop EvoAlloy, an extension

to the existing lightweight formal analysis tool, Alloy Analyzer [18]. EvoAlloy skips

exhaustive enumeration process conducted by the underlying SAT solver of traditional

Alloy. Rather, it delegates the task of finding satisfiable instances to an alternative

analysis engine using a genetic algorithm (GA), one of the most popular types of

evolutionary algorithms, that have been demonstrated to be useful for pinpointing

solutions in a large search space. At a very high level, as depicted in Figure 1.2,

our genetic extension generates a population of candidate solutions as chromosomes

derived from the bounded model. And it then search within the finite state space

through iteratively evolving this population guided by the feedback about violated

constraints, and eventually find a satisfiable solution. I have chosen the Alloy platform

as an exemplar for our study, since it is a widely-used, open-source tool for modeling

and analysis of software systems, and it has an active development community. Yet

not surprisingly, it also suffers from exactly the scalability problems addressed by this

work. The main contributions for this thesis are the following two aspects:

Figure 1.2: High level view of our approach

• I have implemented the prototype of our research artifact EvoAlloy, and make

it publicly available to the research and education community [19].

5

• I have conducted preliminary experiments to evaluate our approach and com-

pare it with traditional Alloy Analyzer. The experimental results prove the

feasibility of our approach and denote that this direction of research is promis-

ing.

The remainder of this thesis is organized as follows. Section 2 provides the back-

ground of this work and Section 3 puts it in context with related efforts. Section 4

overviews our approach towards achieving a more scalable analysis technique. Section

5 presents the preliminary results obtained in our experiments and lesson I learned.

Finally and Section 6 concludes this thesis with a summary of our contributions and

our vision of future research.

6

Chapter 2

Background

In this chapter, I first provide the background of light-weight formal methods, more

specifically, Alloy and its corresponding analysis tool Alloy Analyzer. And then I

describe the basic concepts of Genetic Algorithm, one of the most popular search-

based techniques.

2.1 Alloy and Alloy Analyzer

Formal methods are techniques that leverage mathematical notions and logical reason-

ing to rigorously model a complex system [20]. This precisely defined mathematical

model can then be used to design software products or perform a variety of verifica-

tion tasks to improve system reliability in a thorough fashion. On one side, formal

methods can promise both precision and discipline through mathematical proof over

formal, rigorous specified descriptions. On the other side, since rigor involved, the

expense of formal approaches always makes it prohibitive to be commonly applied in

industry. In essence, the underlying problem is mainly twofold: (1) the steep learn-

ing curve that formal methods require, and (2) the infeasible cost of full verification

of an entire real world system. The first problem can be potentially solved by de-

signing simple and expressive formal language with automated analysis tool, which

7

implies less burden for developers. Yet finding the solution to the latter one is not

that straightforward. Researchers are still attempting to develop effective alternative

options that can alleviate the exponentially growing expense of thorough analysis.

One direction towards the scalability issue is lightweight formal methods, more

specifically, bounded verification, which has received lots of attention in the software

engineering community over the last decades. The intuition behind the bounded ver-

ification is simple and straightforward: since the expense of all-encompassing formal

analysis over the entire system is prohibitive, as a tradeoff, emphasizing partial-

ity can reduce the computational efforts and maintain soundness and completeness

within a finite scope. The idea is supported by "small scope hypothesis", which im-

plies a high proportion of problems can be found within some small scope[21]. As

one of lightweight formal methods, Alloy is a first-order relational logic with transi-

tive closure[22]. It uses a lightweight object modeling notation to abstract structural

properties of a software system. Due to its expressive power, Alloy, and its corre-

sponding analysis engine, Alloy Analyzer, has been used to solve numerous problems

in software engineering domain, including software design, code analysis and test case

generation. The Alloy Analyzer is an automatic analysis engine built on top of state-

of-the-art SAT solvers. In general, given a specification of a software system in Alloy,

the Alloy Analyzer automatically analyze the software system’s properties over user

defined scope, specified in the form of predicates and formulas.

Listing 2.1 is an alloy specification for a simplified model of a file system. This

specification is adopted from [18] , and it is published with the Alloy Analyzer. A

typical Alloy specification mainly consists of three components: data types, formulas

that specify constraints over data types, and commands to run the analyzer. In

Alloy, essential data types are specified by signatures (sig). Similar to the concept

of inheritance in object oriented language, a signature can be extended (extends)

8

1 abstract sig FSObject {}
2 sig Dir extends FSObject {
3 contents: set FSObject
4 }
5 sig File extends FSObject {}
6 one sig Root extends Dir {}
7
8 fact Hierarchy {
9 // Root has no parent

10 no contents.Root
11 // All FSObjects are reachable from Root
12 FSObject in Root.*contents
13 // Each FSObject has at most one parent
14 all obj: FSObject | lone contents.obj
15 }
16 pred model {
17 some File
18 }
19 run model for 2 File, 2 Dir

Listing 2.1: An Alloy specification example describing a simple model of file system.

as a subsignature/extension, while an abstract signature has no elements of its own

type except those belonging to its extensions. Singleton, defined by using the keyword

(one), is a special data type that can only have exactly one element. The relationships

between signatures are captured by the declaration of fields within the definition

of each signature. The running example defines 4 signagures(line1-6): File system

objects, FSObject, which are partitioned into Dir and File types, with Root defined as

a singleton extending Dir. The declaration of field contents specifies the relation that

each Dir may have a set of content objects of type FSObject.

Facts (fact) are formulas that does not take any argument, and define constraints

that every model instance of a specification must satisfy, which means they are ex-

pressions that enforced to be true. Basically, they restrict the instance space of the

specification. The formulas can be further structured using predicates (pred) and

9

functions (fun), which are parameterized formulas that can be invoked. Formulas

in Alloy are hierarchical, which indicates they might contain other formulas. The

Hierarchy fact paragraph (lines 8–15) states that for a satisfiable instance, (1) the

Root directory should not have any parent, and it cannot be a subdirectory for any

other directory; (2) each single file and directory should be reachable from the Root

directory; and (3) each file and directory belongs to at most one parent directory.

Analysis of specifications written in Alloy is completely automated, but bounded

up to user-specified scopes on the size of type signatures. Particularly, to make the

search space finite, we need to specify certain scopes which can limit the number of

instances of each signature. In general, an Alloy command run/check can be used to

invoke predicate/assertion to analyze the given model, through requesting the analyzer

to search for instances/counterexample. An optional keyword "expect" is provided

for explicitly specifying the satisfiability and unsatisfiability of the predicate being

invoked, respectively, with expect 1 and expect 0. Here in our example, through

invoking model predicate, the run command (lines 16–19) asks the analyzer for finding

instances that contain at least one File, and specifies a scope that bounds the search

for specification instances with at most two elements for both File and Dir top-level

signatures.

In order to analyze such kind of relational specification bounded by the specified

scope, the next step for Alloy Analyzer is translating the bounded specification in

Alloy into a corresponding finite relational model in Kodkod language [23]. Listing 2.2

partially outlines a Kodkod translation of Listing 2.1. A model in Kodkod’s relational

logic consists of three parts: (1) a universe of elements (also called atoms), (2) a set

of relation declarations including their lower and upper bounds specified over the

model’s universe, and (3) a relational formula, where the declared relations appear

as free variables [23].

10

1 {F1 , F2 , R1 , D1}
2
3 Root : (1 , 1) : : {{R1} ,{R1}}
4 F i l e : (0 , 2) : : {{} ,{{ F1 } ,{ F2}}}
5 Di r : (0 , 1) : : {{} ,{{D1}}}
6 c o n t e n t s : (0 , 8) : : {{} ,{{R1 , R1} ,{R1 , D1} ,{R1 , F1 } ,{R1 , F2 } ,{D1 , R1} ,{D1 , D1

} ,{D1 , F1 } ,{D1 , F2}}}
7
8 (a l l o : Root + Di r + F i l e | l o n e (D i r . c o n t e n t s . o)) && . . .

Listing 2.2: Kodkod representation of the Alloy module of Listing 2.1.

As shown in Listing 2.2, the first line declares a universe of four uninterpreted

atoms (F1,F2,R1,D1). Here in this chapter, I arbitrarily choose an interpretation of

atoms, where the first two (F1 and F2) represent File elements, the next one (R1)

represents a Root element, and the last one (D1) represents a Dir element. To be

noticed that, as I explain in the next paragraph, all relations in Kodkod are untyped,

and the abbreviated atom names are just chosen for readability, but do not indicate

type.

In general, each Kodkod relation declaration defines the arity of a relational vari-

able and bounds on its value. In our example, lines 3-6 state relational variables

(Root,File,Dir,contents). Comparable to Alloy, formulas in Kodkod are constraints

that are specified over relational variables. One main difference between Alloy speci-

fication and Kodkod model with respect to relational variables is that, in Alloy they

are devided into two types, signatures which represent unary relations and fileds that

represent non-unary relations, yet in Kodkod all relations are untyped, which means

there is no difference between unary and non-unary relational variables.

We can further specify a scope over each relational variable in Kodkod from both

below and above by two relational constants, using upper and lower bounds, respec-

tively. In principle, each relational constant is a pre-defined set of tuples drawn from

a universe of atoms. Consider the declaration of signature Root in line 3, both its

11

1 // model i n s t a n c e 1
2 Root : {{R1}}
3 F i l e : {{F1}}
4 Di r : {{}}
5 c o n t e n t s : {{R1 , F1}}
6
7 // model i n s t a n c e 2
8 Root : {{R1}}
9 F i l e : {{F1}}
10 Di r : {{D1}}
11 c o n t e n t s : {{R1 , F1 } ,{R1 , D1}}

Listing 2.3: Two arbitrarily selected instances for the specification of Listing 2.1.

lower and upper bounds contain only one atom R1, as it is defined as a singleton in

Listing 2.1 , a special type of signature aforementioned. The upper bound for the

variable contents ⊆ Dir × FSObject (line 6) is a product of the upper bound set

for its corresponding domain and co-domain relations, taking every combination of

an element from both and concatenating them. Essentially, for each relational vari-

able, the lower bound contains the tuples that each relation in a model instance must

include, whereas the upper bound holds the whole set of tuples which a relational

variable’s value may contain in an instance. An illustrative example is that, the lower

bound for relational variable File is empty set {}, and its upper bound is {{F1},{F2}}.

Therefore, the possible values that could be assigned to File are {},{F1},{F2} and

{{F1},{F2}}. In Kodkod, formula constraints are in the form of a conjunction of

several sub-formulas, i.e., F = ∧subformulas. As an example, the formula at the

last line of Listing 2.2 represents this form for the constraints specifications in our

running example. The relation values of a valid solution to a Kodkod model must

satisfy every sub-formula in F .

Generally, the Kodkod engine then translates kodkod relational model into Com-

pact Boolean Circuit, which is a boolean logic. With this boolean formula, it further

transforms the problem into a CNF SAT formula. And ultimately, Kodkod’s model

12

finder leverages off-the-shelf SAT solvers to search satisfiable instances of the CNF

formula. Figure 2.1 outlines the main steps that Alloy Analyzer takes when per-

forming analysis on a given system’s specification. In essence, the analyzer explores

within upper and lower bounds that defined for each relational variable to find solu-

tions to a formula, which are bindings of the formula’s relational variables to relation

constants that makes the formula true. Listing 2.3 shows two different instances for

specification of Listing 2.1 found by Alloy Analyzer. Basically, a model instance can

be viewed as an exact bound, where the lower and upper bounds are the same set of

tuples.

2.2 Genetic Algorithm

During the last decades, searched-based techniques are increasingly applied to ad-

dressing a variety of software engineering problems including test case generation[14],

cost-effort estimation[16], module clustering[15] and etc. For these large and complex

problems that grow exponentially, traditional techniques such as model checking [24]

are not suitable due to their scalability. As an alternative approach, searched-based

techniques, more specifically evolutionary algorithms, provide researchers a more ef-

ficient method to tackle these hard problems. In general, evolutionary algorithms

reformulate various type of problems as optimization problems, thus use heuristic

search to explore large complex state spaces and converge on single or partial global

optimal solution(s). Normally, several different types of evolutionary operators are

adopted during the evolutionary process and the search is guided by a fitness function

that can differentiate between better and worse candidate solutions. As a tradeoff

approach, evolutionary algorithms can generate sound solutions to the problem, but

completeness is often sacrificed. Due to their efficiency and effectiveness, evolutionary

13

Figure 2.1: Overview of the main components of Alloy Analyzer

algorithms have been successfully applied for developing numerous research works in

software engineering[14, 25, 26].

As one of the most widely used types of evolutionary algorithms, genetic algo-

rithms are inspired by theory of biological evolution. In principle, they are meta-

heuristic optimization techniques that emulate the process of natural genetic variation

and selection into a computational problem [17]. Generally, a basic genetic algorithm

starts with a randomly or manually created set of candidate solutions, where every

one of them could be a potential instance to the problem we expect to solve[27]. Each

candidate solution is represented as a chromosome, a.k.a. an individual, consisting of

14

Figure 2.2: Overview of Genetic Algorithm

a set of genes. Here if the representations of genes are continuous, they are named

with vector, otherwise, they are called bit strings. And each gene has a domain of val-

ues called alleles. Then there are two main genetic operators crossover and mutation

that are often involved in the evolutionary process. Crossover operator combines two

or more parent chromosomes to produce new offspring chromosomes. And mutation

operator just simply mutate some randomly picked genes in the population. The bet-

ter chromosomes that have been generated are then selected for the next generation

based on fitness. The genetic algorithm will keep evolving this population of chro-

mosomes through these processes, until one of the termination conditions is satisfied,

which is normally the optimal solution has been found or the specified resources have

been all consumed. Figure 2.2 outlines this iterative evolutionary process of a classic

genetic algorithm.

15

Figure 2.3: An illustration of one-point crossover

2.2.1 Crossover

Crossover operator implements a mechanism that generates new chromosomes by

mixing the genetic makeup of two or more parent chromosomes . While in nature

most species have only two parents, some variants of genetic algorithms extend the

crossover to more than two parents. In general, the first step of crossover is picking

pairs of chromosomes as parents. As mating in biology, the pairs of parents then

combine their genes and inherit them to their offspring.

Figure 2.3 shows a simple example for one-point crossover. String A (01011010)

and B(11110000) are two parents chromosomes we selected, each consisting of 8 bits.

Using one-point crossover we can randomly pick position four as crossover point, cut

them into four pieces, and recombine these four bit strings to produce two children

String C(01010000) and D(11111010) . For different optimization problems, we can

easily extend it to two or more points crossover. Analogy to evolution in nature,

the main benefit of applying crossover operator is to inherit parts of genetic makeup

from successful parents such that it might get a higher chance to generate even better

offspring.

16

2.2.2 Mutation

Figure 2.4: An illustrative example of mutation

Another commonly used genetic operator is mutation, which randomly change

parts of the chromosome with a probability threshold called mutation rate. Analogy

to genetic mutation in nature, mutation is normally applied to a small portion of genes

within the entire population and the mutation rate varies from one problem to the

other. The motivation of applying mutation operator is to keep a diverse population

of chromosomes by generating new genes, such that it can get the opportunity to reach

the parts of the solution space which never reached before. Theoretically, mutation

is one of the most effective way to avoid getting stuck on local optima and plateaus.

The three main principles for mutation operator are reachability, unbiasedness and

scalability [27]. Reachability indicates that the mutation should provide the chance

to reach every part of the search space. Unbiasedness means mutation should not

guide the search to a particular direction, at least in the solution spaces that is

unconstrained and without plateaus. And the third principle, scalability requires

that mutation need to provide certain flexibilty with respect to mutation rate.

A simple example of mutation is depicted in Figure 2.4. Here, it first selects

chromosome String A (01011010) out of the entire population. Then it randomly

chooses position two and eight and alters their values, thus a new chromosome String

17

B (01011010) is generated. To notice that, since in this example the two chromosomes

are bit strings, which means that the alleles of each gene only contain 0 and 1, thus

the mutation operator could only flip the values of each gene from 0 to 1 or the

opposite way. In practice, the new values generated by mutation would have more

choices when the range of alleles is larger.

2.2.3 Fitness

After finishing crossover and mutation, a new generation of population is produced

and each chromosome must be evaluated in terms of its ability to solve the problem.

In order to measure the quality of chromosomes, a fitness function need to be build.

Designing a fitness function is a non-trivial task since the value of fitness is directly

used to distinguish candidate solutions between better and worse, thus guide the

search towards the global optimal solution(s). More specifically, we need to carefully

choose both appropriate penalty function for the infeasible candidates solutions and

the weights of multiple objectives, so that the values calculated by fitness function can

accurately reflect the exact distance between candidates solutions and valid solutions.

For multiple objectives problems, there are several well-known design techniques in-

cluding Non-dominated Sorting, Crowding Distance [28] and etc. For the sake of

simplicity, here I do not discuss them in detail.

2.2.4 Selection

By using selection operator, the best chromosomes are selected as parents in the

next generation of population. This mechanism ensures the convergence of the search

towards optimal solutions. For this purpose, the selection process generally picks

the elitism of the population based on fitness values, keeping the optimal genes for

potentially producing better offspring chromosomes in the next generation. The chro-

18

mosomes with higher fitness values are preferred in maximization problem, while it is

the opposite case in minimization problem. One of the simplest selection algorithm

is ranking selection/elitist selection that directly selects a certain number of elite

candidate solutions after ranking the entire population based on fitness values.

Figure 2.5: An Overview of Tournament Selection

To avoid the search easily converging to local optima and getting stuck at plateaus,

selection algorithms that allow certain degree of randomness are commonly applied in

practice. Figure 2.5 depicts the overview of the tournament selection [29]. Basically,

tournament selection uses a mechanism called tournament bucket with a specific size

t, and for each time t individuals are randomly chosen from the current generation of

population as they are put into the bucket. The best chromosome in the tournament

bucket is then selected to be the parent in the next generation. This process will be

19

iteratively executed until all the parent individuals for the next mating pool have been

selected. In practice, the tournament bucket size is a key factor that can significantly

affect the genes of next generation. Since when the size t is larger, there is a smaller

chance for worse chromosomes to be chosen and vise versa. For certain optimization

problems, there might be a need to keep some worse individual in the pool to achieve

the diverse of the population. And another reason to randomly bring some bad

chromosomes to the next generation is that they might contain some genes better

than the others’, that can contribute to producing better offspring.

2.2.5 Termination Condition

As aforementioned, the evolutionary algorithm is a iterative process that explores

the solutions space, thus certain end criterion need to be specified to ensure that

the search will be eventually terminated. These end criterion are called termination

condition in genetic algorithm. Normally, limited resources including, running time,

number of generations are reasonable predefined conditions to restrict the length of

search process. Another commonly used termination condition is convergence of the

evolutionary process, which implies the search stops when approximating the optimal

solution and no significant fitness improvements are further made. And for certain

types of problems, the most straightforward criteria is the global optimal solution is

found.

2.2.6 Parameters Tuning

The choice of parameter settings is one of the most important foundations that de-

cides if evolutionary algorithm can be successfully applied to certain problems. In

fact, finding the optimal parameter choices itself is also a challenging optimization

problem. Normally, parameter tuning is the initial step in research problem for ge-

20

netic algorithm. While there are many static settings were proposed, i.e. mutation

rate = 0.1 in bit flip mutation, no optimal configurations are found that can generally

solve all problems [27]. This means every time before applying genetic algorithm to a

new problem, the process of searching appropriate parameter configurations has to be

developed. There are several different kinds of parameter tuning methods, including

latin hypercube sampling, simple grid search and etc [27]. To applying proper tuning

strategies, experts with domain knowledge, good sense of guesses and estimations can

also contribute to finding the optimal parameters settings efficiently.

21

Chapter 3

Related Work

In this chapter, I provide a discussion of the most related research efforts in light of

my study from two areas: Alloy extentions and evolutionary algorithms.

3.1 Alloy extentions

The widespread use of Alloy has lead to a significant number of extensions to its

underlying automated analyzer [30, 31, 32, 33]. Many research works have been con-

ducted for exploring model instances from Alloy’s relational logic constraints [34, 35,

36, 37].Nelson et al. present Aluminum [32], an extension to Alloy Analyzer, that

defines a relational model instance as scenario, thus generate the minimal scenarios

through selection and partitioning. It relies on a procedure in which tuples are it-

eratively removed from the tuple set of found scenarios until a minimal scenario is

reached. Macedo et al. [35] explores the space of scenario exploration operations by

formulating them using relational logic. Rather than facilitating the exploration of

the space of solutions for evolving models, their work focuses on the order of exploring

model instances. Montaghami and Rayside [31] developed an extension to Alloy that

explicitly supports specification of partial models.

Other relevant works target on improving Alloy’s performance from various di-

22

rections. Uzuncaova and Khurshid [38] divide a specification into base and derived

slices, in which a solution to the base slice can be extended to produce a solution for

the entire specification. Rosner et al. [36] present a technique, Ranger, that leverages

a linear ordering of the solution space to support parallel analysis of first-order logic

specifications. These techniques rely on leveraging multiplicity of computing to im-

prove the efficiency of the Alloy analyzer. Bagheri and Malek present Titanium [33],

that leverages the results from previous analysis narrow the state space of the revised

specifications, thus significantly reducing the required computational efforts when ap-

plied to analysis tasks of evolving systems. Ghazi et al. [39] propose their approach

that by replacing the underlying SAT Solver with SMT Solver, it can virtually prove

the correctness a property without the restriction of a bounded scope. They develop

a mechanism to translate alloy to SMT-LIB their idea of using SMT Solver also ex-

tends the Alloy’s capability of handling of arithmetic expressions and supporting for

numerical constraints. Different with all the works above mentioned, EvoAlloy is

geared towards the application of genetic algorithms to foster exploration of large,

complex solution spaces.

3.2 Evolutionary algorithms

There is a large body of research works on using evolutionary algorithms to solve

software engineering problems [13]. EvoAlloy falls within this class of solutions.

Much work is about applying evolutionary algorithms to software testing and test

case generation[40, 41, 14, 42]. Among others, One of the exemplar approaches, Evo-

Suite, uses a genetic algorithm to generate JUnit test cases for Java classes [14]. K.

Inkumsah and T. Xie [42] proposed Evacon framework that integrates symbolic exe-

cution and evolutionary testing to improve coverage of structural testing. There are

23

also other techniques that have been developed for solving other software engineering

problems based on evolutionary algorithms. Targeting on automatic software repair,

C. Le Goues et al. [43] presents Genprog, that iteratively evolves a program variant

by using genetic programming to repair a particular defect without loss of functional-

ity. Through restricting the operation at statement level and reusing existing program

statements, their technique succeeds to automatically repair large scale programs with

both quality and efficiency. Thomé et al. develops ACO-Solver to solve large com-

plex string constraints. Their approach employs a hybrid constraint solving procedure

based on the Ant Colony Optimization, that achieves significantly improvement in

terms of vulnerability detection when combining with two other off-the-shelf con-

straint solver[25]. Dings and Agha designed Concolic Walk algorithm, that combines

linear constraint solving with tabu search, another popular evolutionary algorithm, to

solve complex arithmetic path conditions[26]. Through mixing heuristic search and

symbolic reasoning, their approach successfully generates tests with higher coverage

and efficiency. The work conducted by Godefroid and Khurshid [44] is perhaps the

most closely related work to ours. It uses a genetic algorithm to guide a search in

the analysis of concurrent reactive systems towards errors like deadlocks and assertion

violations. In contrast with all of this prior work, the problem addressed in this thesis

is bounded analysis of large-scale solution spaces specified in relational logic. Among

other things, it requires the development of both original chromosome encodings and

fitness functions appropriate for models specified in Alloy’s relational logic. To the

best of our knowledge, EvoAlloy is the first evolutionary technique for automated

analysis of bounded relational logic specifications.

24

Chapter 4

EvoAlloy

In this chapter 1, I present our novel approach, EvoAlloy. The specific goal of

designing this mechanism is to prove that by leveraging the power of evolutionary

algorithms, it is feasible to improve the scalability of formal method tool, i.e. Alloy,

to handle various analysis tasks for large complex software systems. To this end, I

develop EvoAlloy, an extension to traditional Alloy Analyzer, that delegates the

model finding process currently performed by computationally expensive constraint

solvers to an efficient analysis engine based on genetic algorithm. Working at the level

of finite relations generated by Kodkod, our EvoAlloy engine can efficiently create

and evolve a population of candidate solutions iteratively, and eventually converges

to single satisfiable solution, in the meantime only consumes limited resources.

This chapter is organized as follows. I first provide motivation of my study and an

illustrative example. I then overview the high-level idea of my approach in Section 4.2.

In Section 4.3, I formally define the genetic representation of the problem. Section

4.4 presents the fitness function. Finally, Section 4.5, 4.6 and 4.7, describes the main

evolutionary operators I implemented in this work, including selection, crossover and

mutation, respectively.
1The approach described in this chapter has been presented in my published paper "An Evolu-

tionary Approach for Analyzing Alloy Specifications" [45]

25

4.1 Motivation and Illustrative Example

In Section 2.1, I have introduced the principles of Alloy and its corresponding anal-

ysis tool Alloy Analyzer using an example that describes the model finding process

for a simple piece of Alloy specification. As aforementioned, because of its signifi-

cant advances, Alloy has been a popular analysis tool for solving a variety of soft-

ware problems and it has an active development community. However, in practice

constraint-solving techniques that traditional Alloy Analyzer relies on, continues to

be a bottleneck when applied to various analysis tasks. To gain further confidence

in the correctness of their system’s specification, Alloy users must re-analyze them

with larger and larger scopes. Yet, the cost of the constraint-solving technologies un-

derlying Alloy is exponential in those bounds, thus prevents further analysis beyond

only trivial bounds. The magnitude of formulas tends to increase exponentially in

the size of the system to be analyzed, making it less practicable to employ constraint

solving in analyzing realistic complex systems. An open problem to us as software

engineering researchers is that, we need to develop certain mechanisms that can facil-

itate efficient application of formal analyzers in rapidly growing domain of software

systems. Therefore, our EvoAlloy, an analysis engine that bypass the computa-

tional heavy constraint solver based on genetic algorithm, is inspired by this ongoing

demand.

Utilizing the bounded relational model in Kodkod to generate a population of

candidate solutions, EvoAlloy successfully reformulates the Alloy model finding

problem as optimization problem, such that it heuristically explores the entire search

space to find a satisfiable solution through iterative evolving the population. Fig-

ure 4.1a delineates a genetic representation of the problem. In general, a candidate

solution to a system’s specification is represented as a chromosome. Each chromosome

26

contains a gene for each relational variable within the specification under analysis.

The domain of values of each gene, namely, the alleles, are defined as a set of tuples

drawn from a universe of uninterpreted atoms within the upper and lower bounds

defined for each relation(Listing 2.2, lines 3-6).

Figure 4.1: EvoAlloy’s (a) representation of a chromosome, (b) two produced chro-
mosomes for the specification of Listing 2.1, (c) crossover step for creating a new
chromosome, and (d) mutation step.

Similar to classic genetic algorithm, our genetic extension starts with an initial

population of randomly created chromosomes. Figure 4.1b demonstrates two sample

27

chromosomes generated for our Alloy example described in Section 2.1. Each chromo-

some in this case consists of four genes that correspond to the specification’s relations,

i.e., Root, File, Dir, and contents, from left to right, respectively. Our evolutionary

search mainly employs two types of operators, i.e. crossover and mutation. Generally,

crossover between two or more selected parent chromosomes is carried out to breed

new chromosomes. Figure 4.1c represents EvoAlloy’s crossover step for producing

offspring. In EvoAlloy the recombination of the two parent chromosomes creates

two new chromosomes. For the sake of simplicity and as it suffices to make the idea

concrete, here I just demonstrate one offspring chromosome. The diagram shows a

single-point crossover operator. Generally, it just randomly picks certain relation

within the middle range of a chromosome as crossover point, then splits each parent

individual into two pieces and mix them to produce the children. Here in the example,

the crossover operator selects the cutting point before relation Dir, and generate the

offspring shown in the diagram by combining the first two genes from Parent 1 and

the last two genes from Parent 2. EvoAlloy also provides configurable options for

crossover operator including two-points crossover and all-points crossover, and it is

possible for us to effectively exploit other types of crossover operators. For mutation

in EvoAlloy, some genes in the population will be mutated using a given mutation

rate. Figure 4.1d illustrates applying a mutation operator to a chromosome that gives

rise to a randomized change in the chromosome. As shown in the example, mutation

randomly selects the gene Dir as one of the mutation point and alter its value from an

empty tuple set to D1. In practice, mutation randomly selects a percentage of genes

in the population and modifies each by assigning a different tuple set from within

that gene’s domain.

For the purpose of calculating the fitness, EvoAlloy relies in part on the Kodkod

analysis engine to get the relations that fail within each chromosome along with the

28

Figure 4.2: An Alloy model instance derived automatically from the chromosome
shown in Fig. 4.1d.

number of failed subformulas. Based on the fitness values, EvoAlloy chooses the

best candidate solutions for the next generation with a variant of tournment selection

called unbiased tournment selection, guiding the search towards those solutions that

have no violations of the constraint formula. In principle, the evolutionary search

using genetic operators above mentioned is iteratively carried on up to an identifica-

tion of a satisfying solution or an termination condition is encountered. Figure 4.2

illustrates a satisfiable model instance automatically derived from the chromosome

shown in Fig. 4.1d using EvoAlloy. Basically, it describes a valid file system in-

stance that, it has a directory Dir and a file File1 under the Root directory. And Dir

also contains a content file, which is File2.

4.2 Overview of EvoAlloy approach

The key idea of our approach that towards achieving better scalability is to somehow

replace the intractable part of the existing Alloy Analyzer. For this purpose, I choose

genetic algorithm as an alternative technique since they are exceptionally success-

29

ful in pinpointing solutions in a large search space. Figure 4.3 shows an overview

of EvoAlloy, and explains how it bypass the computationally-heavy SAT solver

underlying the traditional Alloy Analyzer.

Figure 4.3: Schematic view of EvoAlloy.

The left side of Figure 4.3 depicts the flowchart of Alloy Analyzer at very high

level. Basically, the Alloy Analyzer first reads in an Alloy specification and translates

it into a relational model. Then it passes that model through Kodkod engine (a finite

relational model analyzer) [23]. For each relation, Kodkod uses the scopes and sig-

nature bounds from Alloy, and concretizes these to bound the problem specification.

The use of Kodkod in Alloy has already provided scalability beyond its original im-

plementation, because it can help reason about partial models. To transform such a

30

finite relational model into a Boolean logic formula, Kodkod renders each relation as

a Boolean matrix, in which any tuple within the bounds of the given relation maps to

a unique Boolean variable [37]. Relational constraints are then captured as Boolean

constraints over the translated Boolean variables. It then translates the resulting

Boolean formula to CNF (Conjunctive Normal Form), and passes the CNF formula

to an off-the-shelf SAT solver to obtain a solution. Last, the result produced by the

SAT sovler is translated by the Alloy interpreter into a solution instance.

I decide to utilize the bounded relational model in Kodkod to make the genetic

algorithm scalable mainly for two reasons. First, applying the genetic algorithm on

the Kodkod level, rather than the higher Alloy level, is more efficient. Since Kodkod

relational model is both tightly bounded and partial represented, the space of concrete

instances that need to be explored by the search engine is thus limited. Second,

translating a Kodkod model to a propositional formula and then to CNF formula

introduces many auxiliary variables [23, 32], which will increase extra computational

cost due to the expensive transformation process. In fact during the experiment, other

than the underlying SAT Solver, I find the transformation from boolean formula to

CNF is another bottleneck that prevents the Alloy Analyzer from analyzing complex

specifications. The explosion in the number of variables can also largely affect the

scalability of the genetic algorithm approach.

Therefore, our GA extensions is inserted between Kodkod and the Alloy inter-

preter, as depicted in Figure 4.3. At the highest level, EvoAlloy’s GA extension

takes in the bounded relational model generated by Kodkod, and outputs a satisfying

solution to the Alloy interpreter. The box at right describes the steps EvoAlloy fol-

lows to do this.

Algorithm 1 delineates the GA employed in our work. The initial population of our

chromosomes is made up of random assignment of values to each relational variable,

31

Algorithm 1 The genetic algorithm applied in EvoAlloy
1: Popcurrent ← generate random population
2: repeat
3: Popnew ← elite(Popcurrent, e)
4: P ′, P ′′ ← permute(Popcurrent)
5: i← 0
6: while |Popnew| 6= |Popcurrent|/2 do
7: Popnew ← Popnew ∪ select(P ′[i], P ′′[i])
8: i← i + 1
9: end while
10: while |Popnew| 6= |Popcurrent| do
11: p1, p2← pickParents(Popnew)
12: 〈c1, c2〉 ← crossover(p1, p2, probcrossover)
13: Popnew ← Popnew ∪ {c1, c2}
14: end while
15: j ← 0
16: while j 6= |Popnew| ∗ rate do
17: cold ← pickChromosome(Popnew)
18: cnew ← mutation(cold, P robmutation)
19: replaceChromosome(Popnew, cold, cnew)
20: j ← j + 1
21: end while
22: Popcurrent ← Popnew

23: until solution found OR maximum resources spent

from within the legal relations and their bounds. As mentioned in Section 2.1, The

scope of each relational variable in Kodkod is defined by two relational constants,

called upper and lower bounds, respectively. The upper bound represents the whole

set of tuples that a relational variable may contain, and a lower bound represents a

partial solution for a given model. Every relation in a satisfying solution, thus, must

contain all tuples in the lower bound, and no tuple that is not in the upper bound.

In the initial population, I randomly assign a value to each relation from within the

specified bounds. To be noticed that, here by assigning a concrete value to a specific

32

relation, it means that its upper and lower bounds are set to be equal. In practice,

a random relational value generator is implemented to create the equal bound by

arbitrarily selecting a set of tuples from the upper bounds of this relation. Essentially,

each chromosome within the population represents a potential Alloy instance with

exact bound for each relation.

Fitness is measured by assessing the chromosome and monitoring how close it

gets to satisfying constraints of the target specification. To verify each individual, I

employ the APIs provided by the Kodkod model finder; it also has a built-in abil-

ity to identify a minimal unsatisfiable core when the individual does not satisfy the

specification constraints. Essentially, if any constraint is omitted from the identi-

fied core, the resulting set of constraints would be satisfiable. Thus it provides us a

good measurement to distinguish between better and worse individuals, i.e. a candi-

date solution with less violated constraints and less relation variable involved should

be closer to a satisfiable solution. With each subsequent iteration, I generate new

offspring chromosomes through combining chromosomes selected with a likelihood

proportional to their fitness value as parent, and then altering the resulting ones

with mutation operators (e.g., arbitrarily change some of its tuples). And eventually

when satisfiable solution is found or certain termination criterion is encountered (e.g.,

maximum resources all spent), the evolutionary cycle stops and the Alloy interpreter

render the result as Alloy instance.

I describe the details of EvoAlloy in the followings sections.

4.3 Problem Representation

The initial step in developing any evolutionary algorithm is to decide on a genetic

representation of a candidate solution to the problem. This involves defining a chro-

33

mosome and the mapping from it to the original problem context. As I illustrate in

Section 4.1 with an example shown in Figure 4.1, in EvoAlloy, a potential model

instance to the problem, namely a chromosome, is represented as a vector, where

each index in the vector denotes a gene. It can be seen as a tuple-string of length n,

where n is the number of relations within the problem specification. Each single gene

then refers to the value assignment of exactly one relational variable. Given an Alloy

specification S, I formally define a function fS : Relation (S) → N that maps each

relation r of the specification S into a vector index assigned to that relation. Simi-

larly, I define f−1
S : N → Relation (S) as a function that maps a given vector index

to the relation it represents. To be noticed that, this representation of a chromosome

has a fixed size for a given problem, which is determined by the number of relations

within the problem specification under analysis. And it further influences variation

operators, i.e., crossover and mutation.

4.4 Fitness Function

The fitness function is a decisive factor of evolutionary algorithms. Essentially, it

measures the solution-quality of a chromosome, and acts as a means to differentiate

chromosomes in proportion to the extent of their contribution to a solution. Specif-

ically in EvoAlloy, when designing the fitness of chromosome, I mainly consider

two main factors: Formula constraints (ci), i.e., subformulas, and relations (ri). Ac-

cordingly, the fitness function of a chromosome chrom is expressed as follows:

f (chrom) =
∑

ci∈Consts

Tc(ci, chrom) +
∑

ri∈Rels

Tr(ri, chrom)

In this formula, Tc(ci, chrom) equals one if ci is not satisfied by chrom; and it

evaluates to zero otherwise. Similarly, Tr(ri, chrom) equals one if ri is violated by

34

chrom; it is assigned to be zero otherwise. This representation of fitness function

implies that I mapped the Alloy model finding problem as a minimization problem.

The better a candidate solution is, the more constraints and relations are satisfied,

and the lower the fitness value will be. When a chromosome for a given specification

satisfies all its constraints defined over its relational variables, I identify it as an

ideal chromosome with a fitness score of 0. The fitness function establishes truth-

invariance, as the Alloy specification is satisfied provided that all the relations and

formulas thereof are satisfied.

4.5 Selection

The Algorithm on lines 3–9 explains the process by which EvoAlloy selects chromo-

some variants to pass to the next generation. Basically, I implement a selection mech-

anism that leverages both elitism and unbiased tournament selection algorithm [46]

to select half of population members in a new generation from the current generation.

The selected group of chromosomes establishes the next mating pool. Specifically, the

selection algorithm first picks a configurable number (e) of chromosomes with best

fitness values. The goal of keeping elitism is to prevent the loss of the current fittest

members of population. Then the new generation is half-filled with chromosomes

chosen by the unbiased tournament selection, a variant of the traditional tournament

selection that aims to reduce the biased sampling.

An example that illustrates how unbiased tournament selection works is depicted

in Figure 4.4. It first starts with lines up the population as two distinct permutations

of the current population, P1 and P2, respectively. Then it conducts pairwise com-

parison, where normally the chromosome with better fitness value is selected from

each pair, as demonstrated by comparison of Pair 1 in the example. Note that Pair

35

Figure 4.4: An example of unbiased tournament selection algorithm

2 are accidentally formed with the same chromosome Solution H. In this case, I just

simply pick any one of them for the next generation. The selection process ends once

the new generation of population is half-filled. In EvoAlloy, I also implemented tra-

ditional tournament selection as an optional selection operator. Yet, our experiments

prove that the use of unbiased tournament selection can successfully eliminate the

loss of diversity due to chromosomes being sampled, such that it can help avoid the

search getting stuck to local optima and plateaus, thus outperforming the traditional

tournament selection in terms of efficiency. The detail of the comparison experiment

is presented in the next chapter.

36

Figure 4.5: An example of two point crossover algorithm

4.6 Crossover

The initial step in producing new chromosomes for the next generation is crossover.

In EvoAlloy, crossover operator starts with selecting two chromosomes from the

mating pool. While other mating selections that pair two chromosomes can be ap-

plied, here I just simply picked parents based on their indices as shown in Figure 4.5.

Basically, a chromosome is paired with another one when the difference between their

indices is two. Then to produces new offspring chromosomes, the well-known two

point crossover is essentially employed with a configurable probability, that decides if

the offspring are generated by recombining parents genes or simply replicating their

genes. When the decision is made to mix the two parent chromosomes, two random

cut points for both parent chromosomes are uniformly chosen, since the lengths of

the two chromosomes are the same. The crossover operator then swaps every tuple

assigned to the genes between the two points of the parent chromosomes, eventually

creates two offspring. To be noticed that, during the tuning process of developing

EvoAlloy, I realized two other crossover algorithms i.e. one point crossover and all

points crossover. However, both of them can not guarantee to converge when applying

37

to alloy specifications solved by two point crossover. Therefore, the EvoAlloy tool

do not provide any options for crossover operator.

4.7 Mutation

To counter genetic drift [47] and recover lost genes, crossover is often used along with

mutation, another commonly used evolutionary operator. In general, Mutation sim-

ply alters parts of the genetic material of a chromosome with a configurable mutation

rate. The specific aim of applying mutation is to achieve a diverse population of chro-

mosomes. To this end, I develop three different mutation operators in EvoAlloy,

i.e. creation, transformation and removal .

The Algorithm on lines 16-21 describes the mutation process in EvoAlloy. It

picks a chromosome from the population, and a likelihood ratio is introduced, which

decides if this chromosome will be mutated or not. Once decided, one of the three

mutation operators might be applied to an randomly selected gene within the chromo-

some. Basically, given a gene, namely a relation, currently contains no tuple, creation

operator generates a new tuple-string from within the upper and lower bounds spec-

ified for this relation. But if the chosen gene is not empty set of tuples, then both

transformation and removal operator can potentially be applied. Transformation op-

erators include changing one tuple to another and inserting a new tuple-string at a

random index. The removal operator omits the tuple-string assigned to a gene. In

other words, the gene becomes empty, if permitted by its given lower bound.

38

Chapter 5

Experimental Evaluation

To evaluate our approach, I implement EvoAlloy as an open-source extension to

the Alloy automated analysis engine. To implement the genetic algorithms discussed

in the prior chapters, EvoAlloy modifies both the Alloy Analyzer and its under-

lying finite relational model finder, Kodkod [23]. The modifications mainly lie in

realizing facilities for producing the initial population of chromosomes and next gen-

erations, assessing satisfiability of each chromosome within the population, collecting

the feedback information necessary for measuring fitness values, and transforming

chromosome-level model instances into high-level Alloy models. And the implemen-

tation of all types of evolutionary operators that facilitate the search is also designed

by leveraging the bounded relational model at Kodkod level. The EvoAlloy pro-

totype is publicly available at the project website [19]. In this chapter, I present

an empirical study that evaluates EvoAlloy. Our evaluation mainly addresses two

research problems:

• RQ1 What is the performance of EvoAlloy when applied to small specifica-

tions compared to Alloy Analyzer?

• RQ1 Can EvoAlloy solve problems that their scope of specification are too

large for Alloy Analyzer to solve ?

39

I design a two phases evaluation. In phase one through heuristic parameters tuning

experiments, I obtain the optimal settings of all the optional parameters for our GA

extension that best suits our five object specifications. In phase two, I compare our

EvoAlloy tool to both random exploration approach and the state-of-the-art Alloy

Analyzer (version 4.2) in terms of their ability to solve problems with large search

space and the running time for each experiment.

5.1 Phase One

As mentioned in Chapter 2.2.6, the initial step for genetic algorithm problems is to de-

cide the parameter settings through necessary tuning process. Our objects of analysis

for both parameter tuning experiments in Phase one and comparison experiments in

Phase two are the same set of five specifications. These specifications varies in terms

of both size and complexity, and they are all distributed with the Alloy Analyzer

as samples (cf. Table 5.2). Chord models the chord distributed hash table lookup

protocol; com specifies Microsoft component object model query interface and aggre-

gation mechanism; sync is a model of a generic file synchronizer; fileSystem specifies

a generic file system; and life specification models John Conway’s game of life. To

perform the experiments of adjusting the configurations, I just choose a small set of

scopes, i.e. 5, 10, and 15, as specified scopes to conduct analysis on each of five object

specifications.

We used a Mac computer with an Intel Core i7 2.3GHz CPU processor and 8 GB

of main memory to conduct all the experiments in Phase One. Based on our expert

knowledge, I initially configured the GA parameters as described in column Initial

Settings of Table 5.1. I then performed a series of tuning experiments that every time

only one parameter was selected for heuristically altering its value, in the meantime

40

all other parameters were kept unchanged. To control for variance, for each of the five

objects I ran our technique three times with the same configurations and record the

average. Through around 1200 runs, eventually I obtained an optimal GA parameter

settings, as shown in column Final Settings of Table 5.1, that was specifically adjusted

for solving our five object specifications .

Parameter Initial Settings Final Settings
Population Size 100 32

Selection Algorithm
Tournament Selection Unbiased Tournament Selection
with bucket size 2 & Elitism Selection of 4

Crossover Algorithm
One Point Crossover Two Points Crossover
with 100% probability with 50% probability

Mutation Algorithm
Transformation 60%

Transformation 100% Creation 30%
Removal 10%

Mutation Rate 0.1 0.8

Table 5.1: The parameter configurations of Initial Settings and Final Settings

For the sake of simplicity, I just review the process that I adjusted the mutation

rate through analyzing the experimental results. I first configure all the parameters

with initial settings and run each of the five object specifications over scope of 10 for

three times. Figure 5.1 only shows the search processes for com and chord. Basically,

In each diagram, the x axis and the y axis represent fitness value and number of gen-

erations, respectively. The curve with blue color shows the best chromosome within

the population and the yellow one delineate the median. These diagrams mainly re-

veal that the search process under current configuration often quickly converges to

local optima and can not efficiently get out of stuck. I observe the similar results

when running the same experiments over scope 5 and 15. Based on our experience,

41

I can potentially improve the search by applying a different mutation settings, as

better mutation operator can effectively increase the diversity of population, thus get

higher chances to reach previously unexplored states. As it is just the first attempt

for optimizing the configurations, I decide to simply increase the mutation rate rather

than revising the mutation algorithm.

(a) life (b) chord

Figure 5.1: The population evolving diagrams of analysis on initial parameter settings

To find the optimal mutation rate, I perform the experiments by increasing the

mutation rate step by step from 0.1 to 0.5, 0.8 and 1.2. The results shown in Table 5.2

are consistent with our guess that higher mutation rate can keep a diverse population,

thus improve the efficiency of exploring satisfiable solution. Figure 5.2 clearly reveals

the trend that as mutation rate increased from 0.1 to 0.5, the analysis time for each

object specification decreased as expected. This trend continues when the rate is

increased to 0.8, only except for sync where the performance improvement stops.

For all the specifications, the performance gains from increasing the number of genes

being mutated are entirely reversed when the mutation rate is changed to 1.2. This is

reasonable according to our prior experience that if there is a large number of genes

within the population are about to revised, (1) the quality of the chromosomes might

deteriorate, and (2) the mutation itself might become much more time-consuming.

42

Therefore, I heuristically estimate that the best mutation rate for our objects of

analysis might varies within the range from 0.8 to 1.2.

Spec Mutation Rate
10% 50% 80% 120%

com 169.7 59.7 44 76
sync 8.3 3.7 4.3 8
fileSys 24.3 9.7 8.3 15.7
chord 143.3 56 40.7 75
life 158.3 40 32 39.7

Table 5.2: The analysis time in second of tuning experiments over increasing mutation
rate

After roughly getting the estimation, I continue to optimize the performance of

EvoAlloy through conducting experiments on gradually revising other parameters

i.e crossover algorithm, crossover probability, selection algorithm, elitism number,

mutation algorithm and population size. Since our ultimate goal is to apply our

approach to large analysis scope, therefore when tuning the parameters, the main

principle I followed is that the optimal configuration should be customized towards

obtaining efficiency not only from minimizing the number of generations it takes to

find the solution, but also from reducing the calculation effort of GA itself. For

example, if I realized that with mutation rate 0.8 EvoAlloy can solve the five

specifications by running the evolutionary process with similar number of iterations

as with 1.2, then I should select 0.8 for saving extra computational effort. At last,

I obtained the optimal parameter settings for EvoAlloy to perform comparison

experiment in Phase two.

43

Figure 5.2: An example of unbiased tournament selection algorithm

5.2 Phase two

In Phase two 1, I evaluate the effectiveness of EvoAlloy by comparing it with the

state-of-the-art Alloy Analyzer (version 4.2). Prior to the comparison experiment,

I also consider a random exploration approach, RD, that neither applies a GA nor

leverages constraint solvers. It just randomly generates candidate solutions following

the rules implied by the bounds of specifications relations. I set RD to generate

10,000 candidates. This is a general process for genetic algorithm research work, that

it provides the ground truth about the complexity of the problem. In other words,

if the target problem can be solved by random exploration, then there is no need for

using genetic algorithm or other alternative approach.

The objects of analysis are the same specifications as I used in Phase one. And I

configured my EvoAlloy with the optimal settings obtained in Phase one. Basically,
1The experimental results described in this section has been presented in my published paper

"An Evolutionary Approach for Analyzing Alloy Specifications" [45]

44

I use 32 as the population size. And I configured the algorithm to perform a two-point

crossover with a crossover probability of 50%, and set the mutation rate to 80%. For

mutation, I use the addition operator 10% of the time, the transformation operators

60% of the time, and the creation operator 30% of the time. To control for variance,

I ran the technique three times. I did this separately on each of the five specifications

under consideration. All of the experiments were conducted on an 8-core 2.0 GHz

AMD Opteron 6128 system, with an 8 GB of memory was dedicated to the running

technique to keep extraneous variables constant. I used two stopping criteria: (1)

reaching a satisfying model, (2) exceeding the given maximum memory.

Spec Analysis Scope
5 25 45 65 85 105 125

com — — — — — — —
sync 1 — — — — — —
fileSys — — — — — — —
chord — — — — — — —
life — — — — — — —

Table 5.3: The analysis time in second taken from Random (RD) over the increasing
analysis scope across objects of study

The analysis time of randomly generating solutions for all five objects over the

increasing analysis scope is recorded in Table 5.3. The scope of analysis is specified on

the horizontal axis. Note that the dashes simply indicate that the approach terminates

without finding a solution. The result of this experiment demonstrates that, the

random approach, except in one case, i.e., the sync specification over the analysis scope

of 5, was not able to find any satisfying solution. This confirms that one has almost

no chance to come up with a valid Alloy solution with a pure random search, which

also proves that the need of applying genetic algorithm as an alternative approach

actually exists.

45

I then conduct the comparison experiment between EvoAlloy and Alloy An-

alyzer, to answer the two research questions aforementioned. Table 5.4 reports the

analysis time taken from both approaches over the increasing analysis scope across

object specifications. Firstly, I observe that for the small scopes that less than 45,

EvoAlloy is almost as efficient as Alloy Analyzer. The only exception is life, where

Alloy outperforms our approach. Therefore according to the experimental results, my

answer to RQ1 is that for the selected five objects, the performance of our EvoAl-

loy is no worse than Alloy tool over the relatively small scope. I then observe that as

the scope of analysis increases, EvoAlloy is more effective than the Alloy Analyzer.

For instance, for chord, Alloy fails at scope 45, but EvoAlloy finds a solution up to

a scope of 125. Indeed, higher analysis scope is accompanied by a larger search space,

which can amplify the relative effectiveness of a GA-based approach, like EvoAlloy.

With com, EvoAlloy goes beyond Alloy and solves scope 25, but fails afterwards

due to out of allocated time. The reasoning about results of the two outliers, i.e.

life and com is discussed in the following section in detail. Overall, the experimen-

tal result answers RQ2 that for each of five specification, EvoAlloy outperforms

the state-of-the-art Alloy Analyzer in terms of scalability, and the difference in the

analysis capability is more pronounced for the larger analysis scopes.

5.3 Discussion

The results of Phase two experiment generally prove that, EvoAlloy gains signif-

icantly improvement on scalability of analysis over larger scopes compared to tradi-

tional Alloy Analyzer. However, in Table 5.4, there exist inconsistency in the results

of experiments with com and life that need to be carefully investigate.

46

Spec
Analysis Scope

5 25 45 65 85 105 125
AA EA AA EA AA EA AA EA AA EA AA EA AA EA

com 11 4 — 313 — 31311 — — — — — — — —
sync 2 2 4 3 13 6 31 11 55 30 235 43 294 74
fileSys 1 3 8 8 23 26 63 176 203 333 363 680 — 1501
chord 3 2 94 16 — 241 — 299 — 391 — 705 — 1496
life 3 3 7 80 26 624 93 1000 205 3412 — 4389 — 6850

Table 5.4: The analysis time in second taken from EvoAlloy (EA) and Alloy Ana-
lyzer (AA) over the increasing analysis scope across objects of study

The first object that has inconsistent results is com. As metioned before, the

dashes in the first row of Table 5.4 indicate that when the scope is increased beyond

25, both EvoAlloy and Alloy Analyzer fail to generate any result for com, which

implies both techniques are terminated before reaching a valid solution. By checking

the output files and log files in detail, I realize that the termination of Alloy Analyzer

experiments with com was caused by exceeding the memory limits, whereas EvoAl-

loy could keep exploring the search space by using the genetic algorithm until 24

hours time limit was passed. On one side, it confirms that my GA extension could

scale for complex specifications in terms of memory consumption. On the other side,

for each iteration GA consumes much more time than it supposed to, which impinge

the effectiveness of EvoAlloy for exploring large complex state space. To figure out

the reason for this abnormal result, I profile each stage of GA to check which proce-

dure takes most of the time within each iteration, or if every GA processes consumes

unacceptable amount of time. The profiling results reveal that when the scope is

increased to 45 or more, after generating the first generation of population, EvoAl-

loy keep executing the examination process of each constraint and collecting number

of violated constraint for each chromosome until it is terminated 24 hours later, which

means it has not finished one iteration within the time limit. Given that signatures

in com have more complicated relationships that generate exceptionally large search

47

space for each relation compared to other four objects, it is reasonable that its calcu-

lation effort of transformation from Kodkod to boolean logic increased dramatically

faster than other specifications. Thus the main challenge to improve the scalability

of EvoAlloy further relies on developing a more efficient mechanism that supports

evaluating the quality of chromosomes without Kodkod engine. Moreover, a more

compact way to store finite Kodkod models that previously has been explored will

also contribute to improving the analysis.

Spec
Analysis Scope

5 25 45 65 85 105 125
com 25 34 69 — — — —
sync 2 3 3 3 4 4 3
fileSys 31 12 15 13 12 16 12
chord 26 26 24 33 25 29 26
life 64 1710 2069 2150 2099 2149 2113

Table 5.5: The number of iterations taken from EvoAlloy (EA) over the increasing
analysis scope across objects of study

The second outlier is life. According to Phase two experiment, while the com-

plexity of life specification is not significantly higher than the other three objects,

i.e. sync, fileSys, chord, it takes EvoAlloy unexpected large amount of time to

solve life problem. Only by comparing the Kodkod models generated by each of the

five objects, I am not able to reach the conclusion that life’s state space grows much

faster than other three objects like com does, which means the running time of life

for each iteration should not increase dramatically. This assumption is supported

by the data recorded in Table 5.5, which represents the number of generations taken

from EvoAlloy to reach the satisfying solution over increasing scope across all five

objects. Then in order to figure out the origin of this large number of generations,

48

I checked the population of chromosomes from life in detail, including their genes,

fitness, failed constraints and failed relations. I observe a pattern that no matter on

which analysis scope, my GA extension can rapidly evolve the entire population to

local optima that the best 20% chromosomes have relatively low fitness, only taking

less than 30 generations on average. Yet, after 30 iterations, even the population can

keep a certain degree of diversity due to my composite mutation operator, (1) The

fitness of best chromosomes could not be improved over more than 1000 iterations, (2)

chromosomes with different genes share similar or even the same fitness, (3) certain

constraints have never been satisfied before the model instance is found. These three

observations hint that for effectively analyzing diverse Alloy specifications including

life, I need to further develop fitness that can accurately differentiate chromosomes,

and tune the genetic algorithm towards better solving constraints that are hard to

satisfy.

In summary, while certain limitations exist, the preliminary results provide the

evidence that the line of this research on exploring the synergy between evolutionary

algorithms and lightweight formal analyzers is worth pursuing.

49

Chapter 6

Conclusion and Future work

Leveraging mathematical concepts, lightweight formal methods can rigorously model

the software system and precisely perform a multitude of analysis tasks over a bounded

scope. As one of the most popular lightweight analysis, Alloy and its automated an-

alyzer, has been applied to a variety of software engineering problems, including

program analysis[8, 48, 49], test case generation[9, 10], software design[5, 6, 7] and

tradeoff synthesis and analysis[11, 12]. Yet, the underlying constraint solving tech-

nique that Alloy currently relies on still prohibits it from being commonly adopted

in real world applications. Therefore developing mechanisms that facilitate efficient

application of formal analyzer is still an open problem.

To this end, I presented an novel approach and an accompanying tool, namely EvoAl-

loy, that can find solutions to a set of specifications beyond the scope in which tra-

ditional Alloy Analyzer fails. EvoAlloy extends Alloy with an efficient analysis

engine based on genetic algorithm. To bypass the computational heavy model finding

process performed by off-the-shelf SAT Solver underlying traditional Alloy Analyzer,

EvoAlloy first randomly generates a population of candidate solutions based on

Kodkod relational model. It then explores the bounded search space by iteratively

evolving this population until a satisfying solution is found. Taking advantage of

genetic algorithm, EvoAlloy is feasible to analyze even larger specifications where

50

Alloy fails, and in the meantime the result is maintained to be sound without much

loss. The result of comparison experiments between my approach and Alloy corrob-

orate the significant improvement on scalability of EvoAlloy.

While the results obtained so far are promising, EvoAlloy is still early in its

development and it suffers from some limitations. First, The fitness function provides

strong guidance early in the search, but needs refinement when the solution gets

close. I plan to experiment with more sophisticated fitness functions and to consider

an adaptive approach that has been used in prior work on evolutionary algorithms

for constraint based problems. Second, I have found that the parameter tuning (e.g.

mutation, crossover) is sensitive to the specific specification being solved. I plan to

explore this issue further; recent work on self-tuning and hyperhueristic algorithms

may help us in this context. Last, I still depend on loading the entire Kodkod model

for each chromosome, which may limit us as we scale to even larger systems. I plan

to examine ways to store it in a more efficient way.

I have made the prototype of EvoAlloy and the experimental results publicly

available to the research and education community.

51

Bibliography

[1] Symantec Corp. 2012 norton study: Consumer cybercrime estimated at $110

billion annually. http://www.symantec.com/about/news/release/

article.jsp?prid=20120905_02, September 2012. [Online].

[2] RTI. The economic impacts of inadequate infrastructure for software testing.

Technical Report 7007.011, National Institute of Standards & Technology, 2002.

[3] Tricentis Corp. 2017 tricentis software fail watch report. https://www.

tricentis.com/software-fail-watch/, 2017. [Online].

[4] H. Bagheri, A. Sadeghi, R. Jabbarvand, and Sam Malek. Practical, formal syn-

thesis and automatic enforcement of security policies for android. In Proceedings

of DSN, pages 514–525, 2016.

[5] H. Bagheri and K. Sullivan. Model-driven synthesis of formally precise stylized

software architectures. Formal Aspects of Computing, 28(3):441–467, 2016.

[6] H. Bagheri and K. Sullivan. Bottom-up model-driven development. In Proceed-

ings of ICSE, pages 1221–1224, 2013.

[7] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A micromodularity mech-

anism. In Proceedings of the 8th European Software Engineering Conference Held

Jointly with 9th ACM SIGSOFT International Symposium on Foundations of

http://www.symantec.com/about/news/release/ article.jsp?prid=20120905_02
http://www.symantec.com/about/news/release/ article.jsp?prid=20120905_02
https://www.tricentis.com/software-fail-watch/
https://www.tricentis.com/software-fail-watch/

52

Software Engineering, ESEC/FSE-9, pages 62–73, New York, NY, USA, 2001.

ACM.

[8] M. Taghdiri and D. Jackson. Inferring specifications to detect errors in code.

Automated Software Engineering, 14(1):87–121, 2007.

[9] D. Marinov and S. Khurshid. Testera: A novel framework for automated test-

ing of java programs. In Proceedings of the IEEE International Conference on

Automated Software Engineering, ASE’01, 2001.

[10] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek. Reducing com-

binatorics in gui testing of android applications. In Proceedings of ICSE, pages

559–570, 2016.

[11] H. Bagheri, C. Tang, and Kevin Sullivan. Trademaker: Automated dynamic

analysis of synthesized tradespaces. In Proceedings of ICSE, 2014.

[12] H. Bagheri, C. Tang, and K. Sullivan. Automated synthesis and dynamic analysis

of tradeoff spaces for object-relational mapping. IEEE Transactions on Software

Engineering, 43(2):145–163, February 2017.

[13] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based software engineering:

Trends, techniques and applications. ACM Comput. Surv., 45(1):11:1–11:61,

December 2012.

[14] G. Fraser and A. Arcuri. Whole test suite generation. IEEE Transactions on

Software Engineering, 39(2):276–291, feb 2013.

[15] A. C. Kumari, K. Srinivas, and M. P. Gupta. Software module clustering using

a hyper-heuristic based multi-objective genetic algorithm. Advance Computing

Conference, pages 813–818, February 2013.

53

[16] S. J. Huang and N. H. Chiu. Optimization of analogy weights by genetic al-

gorithm for software effort estimation. Information and Software Technology,

48(11):1034–1045, November 2006.

[17] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.

SpringerVerlag, 2003.

[18] D. Jackson. Software Abstractions, 2nd ed. MIT Press, 2012. MIT Press, 2012.

[19] Evoalloy web page. https://sites.google.com/site/

evoalloy2018/, 2018. [Online].

[20] M. Collins. Formal methods. carnegie mellon university. 18-849b dependable em-

bedded systems. https://users.ece.cmu.edu/~koopman/des_s99/

formal_methods/, Spring 1998. [Online].

[21] A. Andoni, D. Daniliuc, S. Khurshid, and D. Marinov. Evaluating the "small-

scope hypothesis". Technical report, MIT CSAIL, 2002.

[22] D. Jackson. Alloy: a lightweight object modelling notation. ACM Transactions

on Software Engineering and Methodology (TOSEM), 11(2):256–290, 2002.

[23] E. Torlak and D. Jackson. Kodkod: A relational model finder. In Proceedings of

TACAS, pages 632–647, 2007.

[24] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 1999.

[25] J. Thomé, L. K. Shar, D. Bianculli, , and L. C. Briand. Search-driven string

constraint solving for vulnerability detection. In Proceedings of ICSE, pages

198–208, 2017.

https://sites.google.com/site/evoalloy2018/
https://sites.google.com/site/evoalloy2018/
https://users.ece.cmu.edu/~koopman/des_s99/formal_methods/
https://users.ece.cmu.edu/~koopman/des_s99/formal_methods/

54

[26] P. Dings and G. A. Agha. Solving complex path conditions through heuristic

search on induced polytopes. In Proceedings of FSE, pages 425–436, 2014.

[27] O. Kramer. Genetic Algorithm Essentials. Springer, 2017. Volume 679 of Studies

in Computational Intelligence.

[28] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist multiob-

jective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Compu-

tation, 6(2):182–197, 2002.

[29] B. Miller and D. Goldberg. Genetic algorithms, tournament selection, and the

effects of noise. Complex Systems, 9:193–212, 1995.

[30] E. Torlak, M. Taghdiri, G. Dennis, and J. P. Near. Applications and extensions

of alloy: past, present and future. Mathematical Structures in Computer Science,

23(4):915–933, 2013.

[31] V. Montaghami and D. Rayside. Extending alloy with partial instances. In Proc.

of ABZ, pages 122–135, 2012.

[32] T Nelson, S Saghafi, D. J. Dougherty, K. Fisler, and S. Krishnamurthi. Alu-

minum: Principled scenario exploration through minimality. In Proceedings of

ICSE, pages 232–241, 2013.

[33] H. Bagheri and S. Malek. Titanium: Efficient Analysis of Evolving Alloy Speci-

fications. In Proceedings of FSE, pages 27–38, 2016.

[34] A. Cunha, N. Macedo, and T. Guimaraes. Target oriented relational model

finding. In Proc. of International Conference on Fundamental Approaches to

Software Engineering, FASE’14, pages 17–31, 2014.

55

[35] N. Macedo, A. Cunha, , and T. Guimaraes. Exploring scenario exploration.

In Proc. of International Conference on Fundamental Approaches to Software

Engineering, FASE’15, pages 301–315, 2015.

[36] N. Rosner, J. H. Siddiqui, N. Aguirre, S. Khurshid, and M. F. Frias. Ranger:

Parallel analysis of alloy models by range partitioning. In Proceedings of ASE,

pages 147–157, 2013.

[37] E. Torlak. A Constraint Solver for Software Engineering: Finding Models and

Cores of Large Relational Specifications. PhD thesis, MIT, February 2009.

[38] E Uzuncaova and S. Khurshid. Constraint prioritization for efficient analysis of

declarative models. In Proc. of International Symposium on Formal Methods,

FM’08, pages 310–325, 2008.

[39] A.A.E. Ghazi and M. Taghdiri. Relational reasoning via smt solving. Proceedings

of FM, pages 133–148, 2011. Springer, Berlin.

[40] Stefan Wappler and Frank Lammermann. Using evolutionary algorithms for

the unit testing of object-oriented software. In Proceedings of the 7th Annual

Conference on Genetic and Evolutionary Computation, GECCO ’05, pages 1053–

1060, New York, NY, USA, 2005. ACM.

[41] Phil McMinn, Mark Harman, David Binkley, and Paolo Tonella. The species per

path approach to searchbased test data generation. In Proceedings of the 2006

International Symposium on Software Testing and Analysis, ISSTA ’06, pages

13–24, New York, NY, USA, 2006. ACM.

[42] K. Inkumsah and Tao Xie. Improving structural testing of object-oriented pro-

grams via integrating evolutionary testing and symbolic execution. In Proceedings

56

of the 2008 23rd IEEE/ACM International Conference on Automated Software

Engineering, ASE ’08, pages 297–306, Washington, DC, USA, 2008. IEEE Com-

puter Society.

[43] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic method

for automatic software repair. Software Engineering, IEEE Transactions on,

38(1):54–72, 2012.

[44] P. Godefroid and S. Khurshid. Exploring very large state spaces using genetic

algorithms. Int. J. Softw. Tools Technol. Transf., 6(2):117–207, March 2004.

[45] J. Wang, H. Bagheri, and M. B. Cohen. An evolutionary approach for analyzing

alloy specifications. In Proceedings of the 33rd ACM/IEEE International Confer-

ence on Automated Software Engineering, ASE 2018, pages 820–825, New York,

NY, USA, 2018. ACM.

[46] A. Sokolov and D. Whitley. Unbiased tournament selection. In Proceedings of

GECCO, pages 1131–1138, 2005.

[47] A. Rogers and A. Pruegel-Bennett. Genetic drift in genetic algorithm selection

schemes. IEEE Transactions on Evolutionary Computation, 1999.

[48] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek. Covert: Compositional anal-

ysis of android inter-app permission leakage. IEEE Transactions on Software

Engineering, 41(9):866–886, 2015.

[49] Joseph P. Near and Daniel Jackson. Derailer: Interactive security analysis for web

applications. In Proceedings of the 29th ACM/IEEE International Conference

on Automated Software Engineering, ASE ’14, pages 587–598, New York, NY,

USA, 2014. ACM.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Fall 11-30-2018

	EvoAlloy: An Evolutionary Approach For Analyzing Alloy Specifications
	Jianghao Wang

	List of Figures
	List of Tables
	Introduction
	Background
	Alloy and Alloy Analyzer
	Genetic Algorithm
	Crossover
	Mutation
	Fitness
	Selection
	Termination Condition
	Parameters Tuning

	Related Work
	Alloy extentions
	Evolutionary algorithms

	EvoAlloy
	Motivation and Illustrative Example
	Overview of EvoAlloy approach
	Problem Representation
	Fitness Function
	Selection
	Crossover
	Mutation

	Experimental Evaluation
	Phase One
	Phase two
	Discussion

	Conclusion and Future work
	Bibliography

