1,678 research outputs found

    Analyzing EEG of Quasi-Brain-Death Based on Dynamic Sample Entropy Measures

    Get PDF
    To give a more definite criterion using electroencephalograph (EEG) approach on brain death determination is vital for both reducing the risks and preventing medical misdiagnosis. This paper presents several novel adaptive computable entropy methods based on approximate entropy (ApEn) and sample entropy (SampEn) to monitor the varying symptoms of patients and to determine the brain death. The proposed method is a dynamic extension of the standard ApEn and SampEn by introducing a shifted time window. The main advantages of the developed dynamic approximate entropy (DApEn) and dynamic sample entropy (DSampEn) are for real-time computation and practical use. Results from the analysis of 35 patients (63 recordings) show that the proposed methods can illustrate effectiveness and well performance in evaluating the brain consciousness states

    Heterogeneous data fusion for brain psychology applications

    No full text
    This thesis aims to apply Empirical Mode Decomposition (EMD), Multiscale Entropy (MSE), and collaborative adaptive filters for the monitoring of different brain consciousness states. Both block based and online approaches are investigated, and a possible extension to the monitoring and identification of Electromyograph (EMG) states is provided. Firstly, EMD is employed as a multiscale time-frequency data driven tool to decompose a signal into a number of band-limited oscillatory components; its data driven nature makes EMD an ideal candidate for the analysis of nonlinear and non-stationary data. This methodology is further extended to process multichannel real world data, by making use of recent theoretical advances in complex and multivariate EMD. It is shown that this can be used to robustly measure higher order features in multichannel recordings to robustly indicate ‘QBD’. In the next stage, analysis is performed in an information theory setting on multiple scales in time, using MSE. This enables an insight into the complexity of real world recordings. The results of the MSE analysis and the corresponding statistical analysis show a clear difference in MSE between the patients in different brain consciousness states. Finally, an online method for the assessment of the underlying signal nature is studied. This method is based on a collaborative adaptive filtering approach, and is shown to be able to approximately quantify the degree of signal nonlinearity, sparsity, and non-circularity relative to the constituent subfilters. To further illustrate the usefulness of the proposed data driven multiscale signal processing methodology, the final case study considers a human-robot interface based on a multichannel EMG analysis. A preliminary analysis shows that the same methodology as that applied to the analysis of brain cognitive states gives robust and accurate results. The analysis, simulations, and the scope of applications presented suggest great potential of the proposed multiscale data processing framework for feature extraction in multichannel data analysis. Directions for future work include further development of real-time feature map approaches and their use across brain-computer and brain-machine interface applications

    Prediction of the Outcome in Cardiac Arrest Patients Undergoing Hypothermia Using EEG Wavelet Entropy

    Get PDF
    Cardiac arrest (CA) is the leading cause of death in the United States. Induction of hypothermia has been found to improve the functional recovery of CA patients after resuscitation. However, there is no clear guideline for the clinicians yet to determine the prognosis of the CA when patients are treated with hypothermia. The present work aimed at the development of a prognostic marker for the CA patients undergoing hypothermia. A quantitative measure of the complexity of Electroencephalogram (EEG) signals, called wavelet sub-band entropy, was employed to predict the patients’ outcomes. We hypothesized that the EEG signals of the patients who survived would demonstrate more complexity and consequently higher values of wavelet sub-band entropies. A dataset of 16-channel EEG signals collected from CA patients undergoing hypothermia at Long Beach Memorial Medical Center was used to test the hypothesis. Following preprocessing of the signals and implementation of the wavelet transform, the wavelet sub-band entropies were calculated for different frequency bands and EEG channels. Then the values of wavelet sub-band entropies were compared among two groups of patients: survived vs. non-survived. Our results revealed that the brain high frequency oscillations (between 64-100 Hz) captured from the inferior frontal lobes are significantly more complex in the CA patients who survived (pvalue ≤ 0.02). Given that the non-invasive measurement of EEG is part of the standard clinical assessment for CA patients, the results of this study can enhance the management of the CA patients treated with hypothermia

    Exploring the alterations in the distribution of neural network weights in dementia due to alzheimer’s disease

    Get PDF
    Producción CientíficaAlzheimer’s disease (AD) is a neurodegenerative disorder which has become an outstanding social problem. The main objective of this study was to evaluate the alterations that dementia due to AD elicits in the distribution of functional network weights. Functional connectivity networks were obtained using the orthogonalized Amplitude Envelope Correlation (AEC), computed from source-reconstructed resting-state eletroencephalographic (EEG) data in a population formed by 45 cognitive healthy elderly controls, 69 mild cognitive impaired (MCI) patients and 81 AD patients. Our results indicated that AD induces a progressive alteration of network weights distribution; specifically, the Shannon entropy (SE) of the weights distribution showed statistically significant between-group differences (p < 0.05, Kruskal-Wallis test, False Discovery Rate corrected). Furthermore, an in-depth analysis of network weights distributions was performed in delta, alpha, and beta-1 frequency bands to discriminate the weight ranges showing statistical differences in SE. Our results showed that lower and higher weights were more affected by the disease, whereas mid-range connections remained unchanged. These findings support the importance of performing detailed analyses of the network weights distribution to further understand the impact of AD progression on functional brain activity.Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación, Fondo Europeo de Desarrollo Regional (FEDER) - (project PGC2018-098214- A-I00)Comisión Europea y Fondo Europeo de Desarrollo Regional (FEDER) - (Cooperation Programme Interreg V-A Spain-Portugal POCTEP 2014–20200

    Multi-dimensional profiling of elderly at-risk for Alzheimer's disease in a differential framework

    Get PDF
    International audienceThe utility of EEG in Alzheimer’s disease (AD) research has been demonstrated over several decades in numerous studies. EEG markers have been employed successfully to investigate AD-related alterations in prodromal AD and AD dementia. Preclinical AD is a recent concept and a novel target for clinical research. This project tackles two issues: first, AD prediction at the preclinical sta ge, by exploiting the multimodal INSIGHT-preAD database, acquired at the Pitié-Salpetrière Hospital; second, an automatic AD diagnosis in a differential framework, by exploiting another large-scale EEG database, acquired at Charles-Foix Hospital. In this project, we will investigate AD predictors at preclinical stage, using EEG data of only subjective Memory Complainers in order to establish a cognitive profiling of elderly at-risk. We will also identify EEG markers for AD detection at early stages in a di fferential diagnosis context. The correlation between EEG markers and clinical biomarkers will be also assessed for a better characterization of the retrieved profiles and a better understanding on the severity of the cognitive disorder. The exploited larg e-scale complementary data offer the opportunity to investigate the full spectrum of the AD neuro-degeneration changes in the brain, using a big data approach and multimodal patient profiling based on resting-state EEG marker

    Dynamic Complexity and Causality Analysis of Scalp EEG for Detection of Cognitive Deficits

    Get PDF
    This dissertation explores the potential of scalp electroencephalography (EEG) for the detection and evaluation of neurological deficits due to moderate/severe traumatic brain injury (TBI), mild cognitive impairment (MCI), and early Alzheimer’s disease (AD). Neurological disorders often cannot be accurately diagnosed without the use of advanced imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). Non-quantitative task-based examinations are also used. None of these techniques, however, are typically performed in the primary care setting. Furthermore, the time and expense involved often deters physicians from performing them, leading to potential worse prognoses for patients. If feasible, screening for cognitive deficits using scalp EEG would provide a fast, inexpensive, and less invasive alternative for evaluation of TBI post injury and detection of MCI and early AD. In this work various measures of EEG complexity and causality are explored as means of detecting cognitive deficits. Complexity measures include eventrelated Tsallis entropy, multiscale entropy, inter-regional transfer entropy delays, and regional variation in common spectral features, and graphical analysis of EEG inter-channel coherence. Causality analysis based on nonlinear state space reconstruction is explored in case studies of intensive care unit (ICU) signal reconstruction and detection of cognitive deficits via EEG reconstruction models. Significant contributions in this work include: (1) innovative entropy-based methods for analyzing event-related EEG data; (2) recommendations regarding differences in MCI/AD of common spectral and complexity features for different scalp regions and protocol conditions; (3) development of novel artificial neural network techniques for multivariate signal reconstruction; and (4) novel EEG biomarkers for detection of dementia

    Mutual Information in the Frequency Domain for Application in Biological Systems

    Get PDF
    Biological systems are comprised of multiple components that typically interact nonlinearly and produce multiple outputs (time series/signals) with specific frequency characteristics. Although the exact knowledge of the underlying mechanism remains unknown, the outputs observed from these systems can provide the dependency relations through quantitative methods and increase our understanding of the original systems. The nonlinear relations at specific frequencies require advanced dependency measures to capture the generalized interactions beyond typical correlation in the time domain or coherence in the frequency domain. Mutual information from Information Theory is such a quantity that can measure statistical dependency between random variables. Herein, we develop a model–free methodology for detection of nonlinear relations between time series with respect to frequency, that can quantify dependency under a general probabilistic framework. Classic nonlinear dynamical system and their coupled forms (Lorenz, bidirectionally coupled Lorenz, and unidirectionally coupled Macky–Glass systems) are employed to generate artificial data and to test the proposed methodology. Comparisons between the performances of this measure and a conventional linear measure are presented from applications to the artificial data. This set of results indicates that the proposed methodology is better in capturing the dependency between the variables of the systems. This measure of dependency is also applied to a real–world electrophysiological dataset for emotion analysis to study brain stimuli–response functional connectivity. The results reveal distinct brain regions and specific frequencies that are involved in emotional processing

    New feature extraction approach for epileptic EEG signal detection using time-frequency distributions

    Get PDF
    10 pages, 6 figures.-- PMID: 20217264.This paper describes a new method to identify seizures in electroencephalogram (EEG) signals using feature extraction in time–frequency distributions (TFDs). Particularly, the method extracts features from the Smoothed Pseudo Wigner-Ville distribution using tracks estimated from the McAulay-Quatieri sinusoidal model. The proposed features are the length, frequency, and energy of the principal track. We evaluate the proposed scheme using several datasets and we compute sensitivity, specificity, F-score, receiver operating characteristics (ROC) curve, and percentile bootstrap confidence to conclude that the proposed scheme generalizes well and is a suitable approach for automatic seizure detection at a moderate cost, also opening the possibility of formulating new criteria to detect, classify or analyze abnormal EEGs.This work has been funded by the Spain CICYT grant TEC2008-02473.Publicad

    Multivariate multiscale complexity analysis

    No full text
    Established dynamical complexity analysis measures operate at a single scale and thus fail to quantify inherent long-range correlations in real world data, a key feature of complex systems. They are designed for scalar time series, however, multivariate observations are common in modern real world scenarios and their simultaneous analysis is a prerequisite for the understanding of the underlying signal generating model. To that end, this thesis first introduces a notion of multivariate sample entropy and thus extends the current univariate complexity analysis to the multivariate case. The proposed multivariate multiscale entropy (MMSE) algorithm is shown to be capable of addressing the dynamical complexity of such data directly in the domain where they reside, and at multiple temporal scales, thus making full use of all the available information, both within and across the multiple data channels. Next, the intrinsic multivariate scales of the input data are generated adaptively via the multivariate empirical mode decomposition (MEMD) algorithm. This allows for both generating comparable scales from multiple data channels, and for temporal scales of same length as the length of input signal, thus, removing the critical limitation on input data length in current complexity analysis methods. The resulting MEMD-enhanced MMSE method is also shown to be suitable for non-stationary multivariate data analysis owing to the data-driven nature of MEMD algorithm, as non-stationarity is the biggest obstacle for meaningful complexity analysis. This thesis presents a quantum step forward in this area, by introducing robust and physically meaningful complexity estimates of real-world systems, which are typically multivariate, finite in duration, and of noisy and heterogeneous natures. This also allows us to gain better understanding of the complexity of the underlying multivariate model and more degrees of freedom and rigor in the analysis. Simulations on both synthetic and real world multivariate data sets support the analysis
    corecore