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To give a more definite criterion using electroencephalograph (EEG) approach on brain death determination is vital for both
reducing the risks and preventing medical misdiagnosis. This paper presents several novel adaptive computable entropy methods
based on approximate entropy (ApEn) and sample entropy (SampEn) tomonitor the varying symptoms of patients and to determine
the brain death. The proposed method is a dynamic extension of the standard ApEn and SampEn by introducing a shifted time
window.The main advantages of the developed dynamic approximate entropy (DApEn) and dynamic sample entropy (DSampEn)
are for real-time computation and practical use. Results from the analysis of 35 patients (63 recordings) show that the proposed
methods can illustrate effectiveness and well performance in evaluating the brain consciousness states.

1. Introduction

Brain death is defined as the complete, irreversible, and per-
manent loss of all brain and brainstem functions [1–4]. Under
the definition, however, it is hard to conduct brain death
judgement precisely for some clinical reasons. Traditional
clinical tests are expensive, time consuming, and even dan-
gerous in some cases (e.g., apnea test etc.). To avoid the above
disadvantages, we have proposed an EEG preliminary exam-
ination procedure before the test of spontaneous respiration,
which makes the test easier more effective and brings less
risks [5]. To determine quasi-brain-death (QBD, where quasi
means that it is a preliminary decision), EEG which is known
to us as an important clinical tool for observing brain signals
has been widely available in many countries to evaluate the
absence of cerebral cortex function [5–7]. Our research aim is
to provide several signal processing tools to determine brain
death based on EEG analysis and help clinicians conduct the
diagnosis in the practical operation.

The complexity of nonlinear physiologic signals has been
wildly used in evaluating the differences between health and
disease states [8]. The information of complexity contained

by a physiologic time series directly reflects the state of such
physiologic system [9]. The concept of entropy has been ex-
tensively available for complexity measures [10, 11]. Approx-
imate entropy (ApEn) and sample entropy (SampEn) are ef-
fective approaches used in the complexity analysis and help us
have a better understanding of biological system. Pincus first
introduced ApEn [11], a set of measures of system complexity
closely related to entropy, which has well been performed
to analyze clinical cardiovascular and other time series. One
defect of ApEn, however, is that its statistics lead to incon-
sistency. Therefore, Richman and Moorman have developed
SampEn [12] as an improvement, due to that ApEn leads to
bias where SampEn does not, which is caused by self matches,
so that SampEn agrees with theory much more closely than
ApEn over a broad range of conditions. In our studies, we will
further illustrate the improved accuracy of SampEn statistics
for brain death diagnosis.

This paper presents the dynamic extensions of ApEn and
SampEn, since the staticmethods can only deal with a limited
length of time series whereas the analysis of the data of
long recording length is common in a biological system. The
analysis on a small segment of the original data may probably
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Figure 1: The diagram of dynamic measures. The time sections of 6 channels (Fp1, Fp2, F3, F4, F7, and F8) were intercepted as an example.
Our dynamic method dealt with data in a moving time window with length 𝑡.

cause a larger error and even a fault (e.g., the segment is
seriously contaminated by noise), causingmisleadingness. So
that the dynamic method enables us to gain a more com-
prehensive and global view into a complex system. On the
other hand, our dynamic method can decrease the amount of
calculation in a simulation process and improve the efficiency
for an analysis on a full data. As a result, the analysis on the
successively changing information contained by a total time
series is available for us.

The paper is organized as follows. In Section 2, we first
recall a set of computable entropy methods including ApEn
and SampEn and then derive the extension formulas of the
proposed DApEn and DSampEn. In Section 3, we present
real-world EEG data recording and data analysis results.
Section 4 includes the conclusions.

2. Methods of EEG Data Analysis

2.1. Approximate Entropy (ApEn). In ApEn, the limited time
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Equation (2) is mainly defined to calculate the possibility
that, for each 𝑋

𝑖
and 𝑋

𝑗
, the two vectors are similar within

the threshold 𝑟, while (3) is used to calculate the average.
By finding 𝜙𝑚+1(𝑟), ApEn(𝑟, 𝑚,𝑁) takes the form as

ApEn (𝑚, 𝑟,𝑁) = 𝜙𝑚 (𝑟) − 𝜙𝑚+1 (𝑟) . (4)

This is howApEn is defined tomeasure the self-similarity
of the time series [11].

2.2. Sample Entropy (SampEn). SampEn deals with the same
𝑚-dimension vectors 𝑋

𝑖
and 𝑋

𝑗
as defined in ApEn. The

distance between two vectors is calculated by (1). In SampEn,
let 𝐴𝑚
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times
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, for all
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By increasing the space dimension to 𝑚 + 1 and also
repeating the steps in (1), (5), we can obtain 𝐴𝑚+1. Then
SampEn can be obtained by

SampEn (𝑚, 𝑟,𝑁) = − ln(𝐴
𝑚+1
(𝑟)

𝐴
𝑚
(𝑟)
) . (6)

This is how SampEn is defined to measure the self-
similarity of the time series [11, 12].

2.3. Dynamic Extensions of ApEn and SampEn. The dynamic
ApEn (DApEn) and dynamic SampEn (DSampEn) are pro-
posed for the analyzing physiologic time series. The values of
ApEn or SampEn are calculated in a set of consecutive time
windows marked with their starting moments 𝑡with a length
𝑡
 of the whole data with a length 𝑇, respectively, as shown
in Figure 1. Here, the expressions of DApEn and DSampEn
are then obtained as ApEn(𝑚, 𝑟,𝑁)

𝑡
and SampEn(𝑚, 𝑟,𝑁)

𝑡
,

where the footnotes 𝑡 represent the time windows for ApEn
and SampEn computation. As a result, if the denoted variable
𝑡 ranges, for example, from 𝑡

1
to 𝑡
2
with a step length𝜆 (set𝜆 =

𝑡
), the values of ApEn or SampEn are obtained, respectively,
in several nonoverlapping windows. Then DApEn is defined
by
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𝑡
= 𝜙
𝑚

𝑡
(𝑟) − 𝜙
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while DSampEn is defined by

SampEn(𝑚, 𝑟,𝑁)
𝑡
= − ln(
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(𝑟)

𝐴
𝑚

𝑡
(𝑟)
) . (8)

3. Experimental Results

In our present study, the EEG experimental protocols were
executed in the ICUs of a hospital.The EEGdata were directly
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Figure 2: Statistical results for coma state (C) and brain death state (D).

recorded at the bedside of patient where high environmental
noise from medical machines seriously corrupted recording
procedure. The EEG recording instrument was a portable
NEUROSCAN ESI-32 amplifier associated with a laptop
computer. During EEG recording, a total of nine electrodes
were placed on the forehead of the patients. Six channels
were placed at corresponding electrodes (Fp1, Fp2, F3, F4,
F7, and F8), two electrodes (A1, A2) were placed on the ears
as reference and an additional channel, GND, served as the
ground, whose sampling rates were all set as 1000Hz and
resistances of electrodes were set under 8 kΩ. Experimental
data were obtained from 35 patients (19 male, 16 female)
of ages ranging from 17 to 85 years old; 19 of them were
diagnosed to be comatose and the left were brain deaths.
The average length of the EEG recordings from these patients
was about five minutes. Instead of using the EEG cap in the
standard EEG recording, we used individual electrodes with
high-chloride electrolyte gel (suitable for using DC power) in
all data recording sessions.

3.1. Comparison of ApEn and SampEn. The EEG signals of
the coma cases include brain waves together with environ-
mental noise, while the EEG signals of quasi-brain-death only
include environmental noise. Therefore, we consider that
regular or predictable components exist in the EEG signals
of coma patients. Both ApEn and SampEn measures of coma
states may assign a much lower value to coma cases.

Let us begin with having a look into the tables, where
ApEn and SampEn results of two patients, respectively, in

the state of coma (C) and in the state of brain death (D) for
each channel with different threshold are given. In general,
we took samples of 100–5000 points, set𝑚 = 2, and the toler-
ance as 𝑟 = 0.15 × standard deviation (SD) or 𝑟 = 0.25 × SD
according to [11, 12]. In order to demonstrate the differences
between the two types, we present one case from each group.

From Tables 1 and 2, we find that the calculated values
of both ApEn and SampEn significantly differ between the
coma and the brain deaths. On the other hand, 𝑑 denoted as
the average difference indicates the capability to classify the
two states. Particularly in the SampEn case with the threshold
𝑟 = 0.15 × SD, there is a relatively huger difference between
these two states. In a word, here we regard SampEn as a
method in the first place. To eliminate the possibility that the
divergence is caused by different patients, we take another
special example for a certain patient as a further result in the
Table 3. This patient behaved from coma to brain death.

Obviously, the results of both ApEn and SampEn for this
certain patient who behaved these two states are tremen-
dously different, which means that it is an available and
significant method for us to carry on brain death diagnosis.

3.2. Statistical Results. To obtain more convincing results,
ApEn and SampEn are applied to calculate all our recordings.
As shown in Figure 2, the box plot of ApEn and SampEn
are calculated for all the six channels with the same param-
eters. According to the two-way ANOVA against the null
hypothesis that the two groups have the same mean and
the returned 𝑝 value, the significance is found and the null
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Table 1: Set 𝑟 = 0.15 × SD, with this threshold, and calculate the average difference 𝑑 for each channel. In the ApEn case, 𝑑 = 0.69, while in
the SampEn case, 𝑑 = 0.97.

ApEn case Fp1 Fp2 F3 F4 F7 F8 Avg. Std.
C 0.5502 0.4361 0.3974 0.2999 0.9083 0.4221 0.5023 0.2144
D 1.0656 1.0624 1.2173 1.4059 1.3344 1.0644 1.1917 0.1521
SampEn case Fp1 Fp2 F3 F4 F7 F8 Avg. Std.
C 0.5005 0.3618 0.3195 0.2403 0.9054 0.3204 0.4413 0.2429
D 1.1806 1.2222 1.5216 1.7924 1.5891 1.1719 1.4130 0.2590

Table 2: Set 𝑟 = 0.25 × SD, with this threshold, and calculate the average difference 𝑑 for each channel. In the ApEn case, 𝑑 = 0.71, while in
the SampEn case, 𝑑 = 0.75.

ApEn case Fp1 Fp2 F3 F4 F7 F8 Avg. Std.
C 0.3215 0.2336 0.1977 0.1415 0.6265 0.2279 0.2914 0.1743
D 0.8232 0.8353 1.0132 1.3042 1.1760 0.8363 0.9980 0.2044
SampEn case Fp1 Fp2 F3 F4 F7 F8 Avg. Std.
C 0.2802 0.1926 0.1588 0.1178 0.6146 0.1655 0.2549 0.1844
D 0.8036 0.8122 1.0239 1.3749 1.2068 0.8182 1.0066 0.2410

Table 3: Approximate entropy and sample entropy results of a certain patient in the state of coma (C) and brain death (D) for each channel
with threshold 𝑟 = 0.15 × SD, 𝑑apen = 1.11, 𝑑sampen = 1.20.

ApEn case Fp1 Fp2 F3 F4 F7 F8 Avg. Std.
C 0.1637 0.3323 0.8113 0.4469 0.4955 0.0989 0.3914 0.2573
D 1.7701 1.7669 1.6229 1.3967 1.2260 1.2009 1.4973 0.2586
SampEn case Fp1 Fp2 F3 F4 F7 F8 Avg. Std.
C 0.1523 0.3009 0.7261 0.3972 0.4480 0.0914 0.3527 0.2287
D 1.9952 2.0280 1.6697 1.3353 1.1699 1.1090 1.5512 0.4065

Table 4: The two-way ANOVA results for two groups and for the
performance across channels.

ANOVA Coma versus brain death Channel
ApEn cases 𝑝 = 1.3 × 10

−53
, 𝐻 = 1 𝑝 = 2.3 × 10

−6
, 𝐻 = 1

SampEn cases 𝑝 = 2.5 × 10−52, 𝐻 = 1 𝑝 = 1.8 × 10−8, 𝐻 = 1

hypothesis is rejected (𝐻 = 1) for our EEG experiment. Note
that the performance of each electrodes is different because
of the different distance to the reference, and comparison
of complexity measures across each channel is also given by
two-way ANOVA that summarized in Table 4. As seen, the
results obtained from channel Fp1 and Fp2 are more reliable
and convincible for our brain death diagnosis according to
the box plot. For the other channels, the determination of
coma and brain death states is statistically clear; however, the
values of both states range within a common section, possibly
causing misdiagnosis for one patient. So our further effort is
based on the data sampled through channel Fp1 or Fp2. 𝑡-test
is also used to show the significance (𝑃 < 0.05) for the two
groups with the marker ∗ for each channel in Figure 2.

3.3. Results for DApEn and DSampEn. For the real-time
application such as monitoring a state of the patient, it is

necessary to introduce dynamic-based analysis to explore
the brain wave activity changes of the patients over time. As
shown in Figure 3, over the time coordinate (0–800 s) of EEG
signals, ApEn and SampEn in each second are calculated.
Results of DApEn and DSampEn for a coma case (a), a quasi-
brain-death case (b), and a case that the patient behaved from
coma to quasi-brain-death (c).

Under the same experimental environment, the results
of DApEn and DSampEn are obtained by (7) and (8). To
obtain a more smooth curve, the moving average method is
applied to decrease the high frequency part by calculating the
average of every ten points. For the same coma case, values
of SampEn (green) remain low over time, while values of
ApEn (red) remain slightly higher than those of SampEn. For
the same quasi-brain-death case, SampEn assigns a higher
value (purple) than that of ApEn (blue).This indicates amore
powerful capability for DSampEn to classify the two brain
consciousness states than for ApEn. Around 750 s, the huge
fluctuation is caused by the serious contamination of noise.
Moreover, the results of DApEn and DSampEn of the certain
patient whose coma state and brain death state are both
recorded are plotted in Figure 3(c). In this case, this patient’s
two states are well discernible because of a huge difference
of the values of both DApEn and DSampEn, however, the
results of coma state are slightly different and several data
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(c) Results for a single patient

Figure 3: Dynamic complexity measure for two different cases (a) versus (b) and a patient has two states (c).
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Figure 4: Based on the obtained results in Figure 3, the correspond-
ing average values and error bars are calculated and summarized as
supplementary information.

segments are under the influence of interfering noise. To
make our estimates in Figure 3 solid, we would like to give
the corresponding average values and error bars in Figure 4.
We define 𝑑 as the average distance between the bars which
estimates the difference between the two methods and also
the capability of states determination. It also helps prove that
DSampEn value of coma state and its value of brain death
state vary more greatly than DApEn values which means
DSampEn is better to discern the states of coma and brain
death. As an expansion of the standard SampEn, DSampEn is
more durably effective to perform a function.

From all the obtained results, we firmly believe that
complexity of the coma and the brain deaths can be well used
for brain consciousness determination. The plotted dynamic

ApEn or SampEn indicates the state of a patient and such
time-dependent methods also help monitor the trend of a
patient’s state, with which clinic can carry out emergency
medical care before danger. But in this paper the methods
applied to predict are beyond our scope. So, with the help
of our dynamic algorithm, the online EEG preliminary brain
death determination system comes into reality.

4. Conclusions

This paper has proposed the recently introduced complexity
analysis based on calculating entropy of a time series in
physiologic systems. For approximate entropy and sample
entropy measures, we have found a complexity-analysis-
based criterion on the determination of quasi-brain-death,
providing a reference for our proposed EEG preliminary pro-
cedure. Furthermore, based on the criterion, we have tested
all our recordings and obtain the statistically reliable result
which is identical to the clinical brain death determination
completely. Finally, we have developed the novel DApEn and
DSampEn algorithms for the online EEG preliminary brain
death determination system. These methods may be applied
to analysis of other physiologic time series as a reference.
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