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Abstract 
  Electroencephalography (EEG) is a recording of voltage fluctuations resulting from 

ionic current flows within the neurons of the brain and refers to the recording of the 

brain’s spontaneous electrical activity over a short period of time. It is widely used in 

clinical diagnosis of brain diseases and brain research. The objective of this dissertation 

is to use different feature analysis methods to process the EEG signal. The main works 

include the EEG-based analysis on brain death determination (BDD) and brain 

computer interface (BCI). 

  Brain death is defined as the irreversible loss of all functions of the brain, including 

the brainstem. In clinics, death of brain therefore qualifies as death, as the brain is 

essential for integrating critical functions of the body. Notably, a reliable, safe and rapid 

method in the determination of brain death, the EEG-based preliminary examination 

has been proposed in [1][2] by our laboratory. In my dissertation, three kinds of feature 

analysis methods are performed including energy, complexity and connectivity feature 

analysis. 

  For energy feature analysis, an adaptive algorithm for MEMD called dynamic 

MEMD (Dynamic-MEMD) are proposed to calculate and evaluate the EEG energy. In 

the mentioned preliminary examination, the empirical mode decomposition (EMD) 

method is used to decompose a single-channel recorded EEG data into a number of 

components with different frequencies. From there, the components which are related 

to the brain activities were selected to compute EEG energy using power spectrum 

analysis technique for evaluating the differences between comatose patients and quasi-

brain-deaths. Moreover, multivariate empirical mode decomposition (MEMD) method, 

an extensions approach of EMD, also proposed in [3] to calculate and evaluate the EEG 

energy in which the main advantage is to extract brain activity features from multi-

channel EEG simultaneously. However, by using MEMD, it is difficult to observe EEG 

energy variation for subjects. While by using Dynamic-MEMD, we can not only 

denoise the original EEG data but also calculate the EEG energy of subjects in a 

dynamic duration. From the result, we distinguish three consciousness levels of heathy 

people in rest state, patients in comatose and brain death. The results show the 

effectiveness of the proposed method in differentiating for consciousness levels, which 

can be applied into the development of real-time BBD system further. 

  For complexity feature analysis, the chaos degree of EEG signal in the time domain 



which is different from energy feature analysis in frequency domain. Two different 

complexity parameters are used including dynamic approximate entropy (ApEn) and 

permutation entropy (PE). Dynamic ApEn measures crossing all channels along the 

time-coordinate of EEG signal to observe the variation of the dynamic complexity 

which can be used to monitor the state changing online [4]. Compared with other 

complexity parameters, PE has the better performance in clinic EEG analysis offline 

[5]. Results show that ApEn and PE can distinguish from heath people, comatose 

patients and brain death along time coordinate and in different bands respectively.  

  For connectivity analysis, the time-varying information flow between channels are 

calculated based on partial directed coherence (PDC), which combined the time and 

frequency domain. Energy and complexity analysis are focusing on the property of 

single channel while connectivity analysis can find out relationship between channels. 

Result show that the connectivity of coma patients is much stronger than brain death, 

but weaker than health subjects.  

On the other side, through appropriate external stimuli like visual and auditory, some 

EEG feature components can be evoked (called evoked potentials). Brain computer 

interface system is to control external devices based on EEG evoked potentials. Based 

on different kinds of external stimuli, there are many kinds of BCI system, such as 

motor image (IM) based BCI, steady-state visual evoked potentials (SSVEP) based BCI 

and P300-based BCI [6][7][8]. P300-based brain computer interface (BCI), often called 

P300 speller, is one of the most successful paradigm, which has shown advantages in 

terms of high accuracy and short training time. However, the existing P300-based BCI 

employs single type of external stimuli, such as visual stimuli, which limits their 

performance in clinical applications.  

In this dissertation, an eight-class hybrid-BCI system based on multiple modalities 

of P300 evoked by simultaneous audio and visual stimuli is proposed. The experimental 

results show the significant difference in event related potential (ERP) between single 

type and multiple types of stimuli. The experiment results demonstrate the effectiveness 

of our new BCI paradigm, which outperforms the visual or audio P300 in terms of 

higher accuracy and information transfer rates (ITR). Hybrid-BCI has extensive 

potential in high performance and stability BCI system development. 

  The structure of this dissertation is organized as follows: 



.   Chapter 1 describes the background and objective of EEG-based BDD and BCI 

system. This chapter describes the definition of brain death, and the brain dead 

determine the flow. The significance of brain-dead judgment research and the 

importance of brain-dead judgment system are also introduced. In addition, the 

definition of BCI system and the type of BCI system are introduced. 

.   Chapter 2 describes methods of data analysis for brain death determination. Based 

on these basic methods, it is difficult to observe EEG energy variation of subjects. 
To solve this problem, an adaptive algorithm was proposed to calculate and 
evaluate the energy of EEG recorded from the healthy subjects, comatose 
patients and brain deaths and observe the state changes of patients’ 
consciousness. Moreover, to study the connectivity between each channel, granger 

causality analysis and graph theory are also introduced in this chapter. 

Chapter 3 describes the analysis results based on the mentioned methods in chapter 

2. By using dynamic-MEMD, EEG energy can be calculated in time series for subjects. 

In addition, EEG energy variation of subjects could increase the reliability and show 

three groups of healthy subjects in rest state, comatose patients and brain death. The 

analyzed results show the effectiveness and performance of the proposed method in 

calculation of EEG energy for evaluating consciousness levels.  

Chapter 4 describes the data processing methods that are used to build BCI system. 

Furthermore, tensor factorization method for incomplete EEG data are also descripted 

in this chapter. For incomplete EEG signals, tensor factorization method can be used to 

complete the missing data of EEG signal. 

  Chapter 5 describes a hybrid-BCI system with visual and audio stimuli that proposed 

in this dissertation. The experimental results show the significant difference in ERPs 

between visual stimuli and multiple types of stimuli. The classification accuracy results 

demonstrate the effectiveness of our BCI paradigm, which outperforms the visual P300. 

On the other hand, a fully Bayesian CP factorization for incomplete tensors method is 

used to analysis real EEG data. Experimental results show that, this method has a better 

performance on incomplete EEG signal with certain degree of data missing ratio. 

Classification results also proved the availability of this method. But if the data missing 

ratio of EEG signal was very high, this method will recover EEG data not very well. 

Chapter 6 is the conclusion part of this dissertation. The existing research works are 

summarized and the future work is put forward.  



In BDD research, by using dynamic-MEMD which is proposed in this dissertation, 

EEG energy of subjects can be calculated in a dynamic duration. From the result, three 

consciousness levels of heathy people in rest state, patients in comatose and brain death 

can be distinguished. By using PE feature analysis method, the brain death and 

comatose can be distinguished in different bands of EEG signal. From the analysis 

result of PDC method, the connectivity of coma patients is much stronger than brain 

death, but weaker than health subjects. 

In BCI research, higher accuracy and information transfer rates (ITR) can be obtain 

based on this hybrid-BCI system. It has extensive potential in high performance and 

stability BCI system development. 

Future work in BDD research, the objective is to construct a real-time EEG spare 

inspection system based on the proposed analysis method and tensor analysis method. 

In hybrid-BCI research, different hybrid stimuli will be test to look for the best hybrid 

stimulus and develop a high-performance hybrid BCI system. 

�
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Chapter 1 Introduction 

1.1 Brain death determination (BDD) 

  Brain death is defined as the irreversible loss of all functions of the brain, including 

the brainstem. The three essential findings in brain death are coma, absence of 

brainstem reflexes and apnea [9]- [10]. In clinics, death of brain therefore qualifies as 

death, as the brain is essential for integrating critical functions of the body. The 

equivalence of brain death with death is largely, although not universally, accepted [9]. 

The diagnosis of brain death is very important. Guidelines for determining brain have 

been proposed for example the apnea test and brainstem function detection [10]. 

Notably, it is commonly accepted that EEG might serve as an auxiliary and useful tool 

in the confirmatory tests, for both adults and children [11]- [14].  

  EEG has been effectively used into diagnosis diseases in clinics and related research 

area [15]- [17]. It has several nice features forwarding the applications in clinical 

practice and science research. Non-invasion feature makes it easily accessible and safe 

to be used in used. Specifically, patients in the deep coma state could be recorded the 

frontal area of head without big operations, decreasing the risks resulted from 

movement. High time resolution (milliseconds) feature enables it to catch the real-time 

dynamic changes of neural activity. Simple and friendly operation steps feature 

motivate wide-use of EEG in both theory and practice area such as disease diagnosis 

and classification. EEG can record continuous signals where is much safer than the test 

on patients’ spontaneous breathing with unplugging the ventilator intermittently. 

  Even though there are such several strong points in EEG application for brain death 

detection, the reasons for improvement of EEG analysis on brain death diagnosis should 

be paid attention to are summarized as follows. 

(1) There are diagnosis mistakes in brain death EEG confirmation. In a Chinese training 

program [18] on EEG for brain death determination and improvement, all 114 trainees 

came from 72 3A grade hospitals in which 66 trainees were from department of 

neurology and 22 ones were from electrophysiology. The total error rate was 9.19% 
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among which the error rate of parameter setting was the highest (11.40%), followed by 

those of result determination (10.44%), recording techniques (10.25%), environmental 

requirements (7.46%) and pitfalls (3.68%). We can see that the doctors with 

professional knowledge of medicine would make mistakes of operations on EEG even 

if during the period of training program. In the clinic, the accuracy and in time diagnosis 

of disease for patients in coma is so urgent that the improvement of interpretation of 

clinical EEG is so necessary and needs to be highly emphasized. 

(2). Distinguish from coma and brain death should be confirmed. Patients in coma may 

or may not progress to brain death and they often show symptoms of absence of 

movement, and breathing occasionally less brainstem activity, whose clinic 

performance is like brain death. But what is the difference inner mechanism and how 

come we don’t consider a coma to be temporary brain death. We should understand the 

point in definition of brain death, irreversible loss of functions of the brain, while coma 

is temporary loss of conscious but still alive [19]-[20]. 

  A brain death diagnosis is often made according to some precise criteria following a 

well-defined procedure [1]. For example, the Japanese established the criterion 

including following major items to diagnose the brain death: 1) Deep coma: 

unresponsive to external visual, auditory and tactile stimuli and be incapable of 

communication; 2) Pupil test: no pupils’ response to light and pupils dilate to 4 mm; 3) 

Brain stem reflexes test: absence of reflex such as cough reflex, corneal reflex, painful 

stimuli; 4) Apnea test: patient’s loss of spontaneous respiration after disconnecting the 

ventilator; 5) EEG confirmatory test: persistence of brain dysfunction, six hours with a 

confirmatory EEG, flat EEG at level of 2 µV/mm. In the standard process of brain death 

diagnosis, it involves certain risk and takes a long time (e.g., the need of removing the 

respiratory machine and 30 minutes’ EEG confirmatory test). Since the process of brain 

death determination usually takes a long time and involves certain risks, a practical yet 

safe method would be desirable for the pre-test of the patient’s brain-state status [21]-

[22]. For supporting the diagnosis of brain death, we have proposed an EEG 
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preliminary examination system as a reliable yet safety and rapid way for the 

determination of brain death [2]. That is, after above items 1)- 3) have been verified, 

and an EEG preliminary examination along with real-time recorded data analysis 

method is applied to detect the brain wave activity at the bedside of patient. On the 

condition of positive examined result, we suggest to stop the brain death diagnosis 

process and spend more time on the medical care. 

  In this thesis, EMD, MEMD, ApEn and other methods are used to analysis the 

clinical EEG signal of brain death, coma patients and health subjects. Based on these 

research, a dynamic MEMD method is proposed, which analyzes the signals over a 

period of time. Furthermore, Granger causality analysis and graph theory are used to 

analysis the EEG signal of clinical and constructed the brain network. It is used to 

analysis the correlation between channels during different brain activity status. 

1.2 Brain computer interface (BCI) 

  Brain computer interface (BCI) is a new type of human interface that can contribute 

to the augmentation of human capabilities, namely for people affected by severe motor 

disabilities. BCI system can directly translates the EEG signals into control signals that 

people can use them to control external devices without using their nerves and limbs 

[23]. Recently, there has been a great process in research and development of brain-

controlled devices based on BCI system [24]- [26]. For instance, users can essential to 

operate a relatively sophisticated device, such as a computer mouse, a wheelchair, a 

prosthetic limb, a robot, etc. [27]- [33]. Furthermore, the research on BCI applied to 

human control of physical devices has been broadly focused mainly in two directions: 

neuroprosthetics and brain-actuated wheelchairs [34]. Neuroprosthetics focuses on the 

motion control or hand orthosis, which usually improves the upper body possibilities 

of users with mobility impairments, such as reachability and grasping. Wheelchairs 

focus on the facilitation of assistance in mobility to accomplish complex navigational 

tasks to improve quality of life and self-independence of users [35] [36].� 

  According to EEG signal collection methods, there are two broad categories of BCI 
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system: invasive BCI and noninvasive BCI. For invasive BCI, EEG recording 

electrodes are placed on the cerebral cortex in surgically [42]. Using invasive BCI, 

people can obtain high quality and complex control signals and a high speed of 

information transfer. However, the subjects need to take the risk of brain surgery and 

long-term viability with chronic invasive neural probes [43]. For noninvasive BCIs, 

subjects could avoid the risk of surgery and simplify experimental procedures.  

  Currently, the brain signals for noninvasive BCIs include functional magnetic 

resonance imaging (fMRI), magnetoencephalography (MEG), functional near infrared 

spectroscopy (fNIRS) and Electroencephalography (EEG). Among them, EEG has 

been widely used in BCI system because of its convenience. Although EEG-based BCI 

also have good real-time response, technically less demanding and a lower cost, but its 

low signal-noise ratio (SNR) and low spatial resolution limit the performance of EEG-

based BCI system.�In clinical application, many neurological diseases such as 

amyotrophic lateral sclerosis (ALS) and some certain types of cerebral palsy where 

there is no control of voluntary movements. A number of studies report that individuals 

with ALS can have impaired eye movements and slowing of saccades [37]. 

  In such cases, standard interfaces such as language processing, eye tracking and head 

or teeth switches are not suitable. In the previous studies, there are two major categories 

of EEG-based BCI systems: some of them are controlled by the voluntary modulation 

of the brain activity and others based on an event-related response to an external 

stimulus. In the latter category, the users need to focuses attention on one of possible 

visual, audio, or other sensory stimuli, and then BCI system use EEG to infer the 

stimulus to which the user is attending. One of most successful paradigm is event 

related potential (ERP) P300-based BCI system and it haven been widely used in BCI 

system [38][39]. The P300 is an ERP component that appears as a positive deflection 

over central and parietal scalp areas approximately 300ms after the presentation of a 

rare or salient stimulus [40][41]. It was firstly discovered by Sutton, Braren and Zubin 

in 1965. The P300 is an innate response of the human brain and it will not be affected 
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by mind and physical activity. The stimulus can be visual, audio, somatosensory, etc. 

[42][43].�In previous studies, most of the ERP P300-based BCI system generally used 

single type sense organ to accept external stimuli, such as audio, visual, tactile sensation 

and so on [44]-[45]. The single pathway of receiving stimulation, is one reason of low 

information transfer rates (ITR). It also can make people feel irritable and fatigue when 

people accept same kind of stimuli for a long time. In this situation, the participants 

will easily to be influenced by ambient noise and affect the BCI system performance.  

  In this thesis, we attempt to take advantage of audio and visual simultaneously in 

EEG-based hybrid BCI system. It means that when a user receives visual stimuli, will 

also receive an auditory stimulus. In our experiments, we did three different situations 

of tests under the same experimental conditions: P300 based visual stimuli, audio 

stimuli and hybrid stimuli. And then, the results based on three different situations tests 

will be compared and analyzed. Our experiments proved that this experimental method 

can indeed improve the performance of BCI system.  

1.3 Chapter summary 

  This chapter introduces the research background and research significance of brain 

death determination and brain-computer interface. Also illustrates the importance of 

this study and development prospects. 

�

�

�

�

�

�

�

�

�

�

�

�



� ��

Chapter 2. Data analysis methods for brain death determination 

2.1 Energy feature analysis 

2.1.1 Empirical mode decomposition (EMD) algorithm 

  The EMD method for analyzing nonlinear and nonstationary data was proposed in 

Huang et al. (1998). This method is used to decompose the data into several oscillatory 

components called intrinsic mode function (IMF). The IMF components are usually 

expressed as the standard Hilbert transforms, from which the instantaneous frequencies 

can be calculated. The local energy and the instantaneous frequency derived from the 

IMF components through the Hilbert transform can be given a full energy-frequency-

time distribution of the data. 

  For an observed time-domain signal !(#), we can always obtain its Hilbert transform 

%(#), such as 

%(#) =
1
(
)*

!(+)

# − +

-

.-
/+.																																																(2 − 1)	 

  It is impossible to calculate the Hilbert transform as an ordinary improper integral 

because of the pole at + = # . However, the )  in front of the integral denotes the 

Cauchy principal value which expands the class of functions for the integral in Equation 

(2-1). 

  With this definition, !(#)  and %(#)  form the complex conjugate pair, so the 

complex signal 3(#) can be formulated as 

3(#) = !(#) + 5%(#) = 6(#)789(:)																																						(2 − 2) 

where j is the imaginary unit (5; = −1), an instantaneous amplitude 6(#)  and an 

instantaneous phase <(#) are presented by 

6(#) = =!;(#) + %;(#)																																																		(2 − 3) 

<(#) = #6?.@ A
%(#)

!(#)
B																																																			(2 − 4) 

  The instantaneous frequency D(#) of the signal !(#) can be defined as 

D(#) =
/<(#)

/#
																																																											(2 − 5) 
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  In principle, it is necessary that one limitation is a narrow band signal for the 

instantaneous frequency by Equation (2 −5). 

  An IMF component as a narrow band signal is a function that satisfies two conditions: 

(1) In the whole data set, the number of extrema and the number of zero crossings must 

be either equal or differ at most by one. 

(2) At any point, the mean value of the upper envelope with the lower envelope is zero. 

Here the upper envelope is defined by the local maxima, and the lower envelope is 

defined by the local minima. 

  The procedure to obtain the IMF components from an observed signal is called 

sifting and it consists of the following steps: 

(1) Identification of the extrema of an observed signal. 

(2) Generation of the waveform envelopes by connecting local maxima as the upper 

envelope, and connection of local minima as the lower envelope. 

(3) Computation of the local mean by averaging the upper and lower envelopes. 

(4) Subtraction of the mean from the data for a primitive value of IMF component. 

(5) Repetition of the above steps, until the first IMF component is obtained. 

(6) Designation of the first IMF component from the data, so that the residue 

component is obtained. 

(7) Repetition of the above steps, the obtained residue component contains 

information about longer periods which will be further resifted to find additional IMF 

components. 

  The sifting algorithm is applied to calculate the IMF components based on a criterion 

by limiting the size of the standard deviation (SD) computed from the two consecutive 

sifting results as 

FG =HI
JℎL.@(#) − ℎL(#)M

;

ℎL.@
; (#)

N																																												(2 − 6)

P

:QR

 

  Based on the sifting procedure for one channel of the real-measured EEG data, we 

finally obtain 



� 
�

!(#) =HST(#) + UV(#)																																																	(2 − 7)

V

TQ@

 

where ST(#), (Y = 1,… , ?)  represents ?  IMF components, and UV  represents a 

residual component which can be either the mean trend or a constant.  

 

2.1.2 Multivariate empirical mode decomposition (MEMD) algorithm 

  For multivariate signals, the local maxima and minima may not be defined directly 

because the fields of complex numbers and quaternions are not ordered. Moreover, the 

notion of ‘oscillatory modes’ defining an IMF is rather confusing for multivariate 

signals. To deal with these problems, the multiple real-valued projections of the signal 

is proposed. The extrema of such projected signals are then interpolated component 

wise to yield the desired multidimensional envelopes of the signal. In MEMD, we 

choose a suitable set of direction vectors in n-dimensional spaces by using: (i) uniform 

angular coordinates and (ii) low-discrepancy pointiest. 

  The problem of finding a suitable set of direction vectors that the calculation of the 

local mean in an n-dimensional space depends on can be treated as that of finding a 

uniform sampling scheme on an n sphere. For the generation of a point set on an 

(? − 1) sphere, consider the ? sphere with center point [ and radius \, given by 

\ = HJ!8 − [8M
;
																																																											(2 − 8)

V^@

8Q@

 

  A coordinate system in an n-dimensional Euclidean space can then be defined to 

serve as a pointset on an (? − 1) sphere. Let {<@, <;	,·	·	·, <V.@	}  be the (? − 1) 

angular coordinates, then an ?-dimensional coordinate system having {!T}TQ@V  as the 

? coordinates on a unit (? − 1) sphere is given by 

!V = sin(<@) × ⋯× sin(<V.;) × sin(<V.@)																																(2 − 9) 

  Discrepancy can be regarded as a quantitative measure for the irregularity (non-

uniformity) of a distribution, and may be used for the generation of the so-called ‘low 

discrepancy pointset’, leading to a more uniform distribution on the n sphere. A 

convenient method for generating multidimensional ‘low-discrepancy’ sequences 
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involves the family of Halton and Hammersley sequences. Let !@, !;	,·	·	·, !V be the 

first ? prime numbers, then the Yth sample of a one-dimensional Halton sequence, 

denoted by UTh is given by 

UT
h =

6R
!
+
6@
!

;
+
6;
!

i
+ ⋯+

6j
!

j^@
																																			(2 − 10) 

where base-! representation of Y is given by 

Y = 6R + 6@ × 	! + 6; ×	!; + ⋯+ 6j × 	!j																															(2 − 11) 

Starting from Y = 0, the Yth sample of the Halton sequence then becomes 

JUT
hl, UT

hm, UT
hn, ⋯ , UT

hoM																																																				(2 − 12) 

  Consider a sequence of ? -dimensional vectors {p(#)}:Q@P = 	 {q@(#), q;(#),·	·	·

	, qV(#)}  which represents a multivariate signal with ? -components, and r9s 	=

	{!@
L	, !;

L	,·	·	·	, !VL	} denoting a set of direction vectors along the directions given by 

angles <L = 	 {<@L	, <;L	,·	·	·	, <V.@L 	}  on an (? − 1)  sphere. Then, the proposed 

multivariate extension of EMD suitable for operating on general nonlinear and non-

stationary ?-variate time series is summarized in the following. 

(1) Choose a suitable point set for sampling on an (? − 1) sphere. 

(2) Calculate a projection, denoted by tu9s(#)v
:Q@

P
, of the input signal {p(#)}:Q@P  

along the direction vector r9s , for all k (the whole set of direction vectors), 

giving tu9s(#)v
LQ@

w
 as the set of projections. 

(3) Find the time instants {#T
9s} corresponding to the maxima of the set of projected 

signals tu9s(#)v
LQ@

w
. 

(4) Interpolate [#T
9s, py#T

9sz] to obtain multivariate envelope curves t79s(#)v
LQ@

w
. 

(5) For a set of K direction vectors, the mean |(#) of the envelope curves is 

calculated as 

|(#) =
1
}
H79s(#)
w

LQ@

																																																					(2 − 13) 

(6) Extract the ‘detail’ /(#)  using /(#) = !(#) − |(#) . If the ‘detail’ /(#) 

fulfills the stoppage criterion for a multivariate IMF, apply the above procedure 
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to !(#) − /(#), otherwise apply it to /(#). 

  The stoppage criterion for multivariate IMFs is similar to the standard one in EMD, 

which requires IMFs to be designed in such a way that the number of extrema and the 

zero crossings differ at most by one for F  consecutive iterations of the sifting 

algorithm. The optimal empirical value of S has been observed to be in the range of 2-

3. In the MEMD, we apply this criterion to all projections of the input signal and stop 

the sifting process once the stopping condition is met for all projections. 

 

2.1.3 Dynamic-MEMD algorithm 

  The Dynamic-MEMD is an adaptive algorithm of the MEMD. We have defined the 

EEG energy using the power spectrum within the frequency band multiplied by 

recorded EEG time. To observe EEG energy variation of subjects, we extend MEMD 

in the temporal domain along time-coordinate of EEG signal. Supposing a multivariate 

EEG data series p(#) consisting of	~ segments (epochs) {pV(#)}VQ@� , the MEMD can 

be carried out through each segment. 

  The Dynamic-MEMD is defined as the MEMD applied to all segments such that 

p(#) = 	 [p@(#),… , p�(#)] = 	 ÄHSL,@(#) + U@(#),… ,HSL,V(#) + U�(#)	

wÅ

LQ@

	

wl

LQ@

Ç	(2 − 14) 

where p�(#)  are residue signals and {SL,V(#)}LQ@
wo  are IMF components with 

}V	(? = 1,… , ~) being the number of IMFs for the segmented nth signal p�(#). 

Consequently, in our experiment, we remove the residue signal \�(#) and 3 IMFs 

from {SL,V(#)}LQ@
wo  which is not expected, and combine the (N − Q) IMFs to be the 

denoised signal. We have defined the EEG energy using the power spectrum within the 

frequency band multiplied by recorded EEG time. Thus, we change the denoised signal 

from time domain to frequency domain by Fast Fourier Transformation and integrate it 

to compute the EEG energy. 

2.2 Complexity feature analysis 

2.2.1 Approximate Entropy (ApEn) algorithm 
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  ApEn is a regularity statistic quantifying the unpredictability of fluctuations in a time 

series that appears to have potential application to a wide variety of physiological and 

clinical time-series data [12], [13]. Intuitively, one may reason that the presence of 

repetitive patterns of fluctuation in a time series renders it more predictable than a time 

series in which such patterns are absent.  

  Given a time series {!(?)}, (? = 1, … ,~), to compute the ÉuÑ?(!(?),|, U) (|: 

length of the series of vectors, U: tolerance parameter) of the sequence, the series of 

vectors of length | , q(Ö) = [!(Ö), !(Ö + 1),… , !(Ö + | − 1)]  is firstly 

constructed from the signal samples {!(?)}. Let G(Y, 5) denote the distance between 

two vectors q(Y) and q(5) (Y, 5 ≤ ~ − | + 1), which is defined as the maximum 

difference in the scalar components of q(Y) and q(5), or 

G(Y, 5) = max
äQ@,…,ã

|qä(Y) − qä(5)|																																		(2 − 15) 

  Then, we further compute the ~ã,ç(Y), which represents the total number of vectors 

q(5)  whose distance with respect to the generic vector q(Y)  is less than U , or 

G(Y, 5) ≤ U. Now define [ã,ç(Y), the probability to find a vector that differs from q(Y) 

less than the distance U. And éã,ç, the natural logarithmic average over all the vectors 

of the [ã,ç(Y) probability as 

[ã,ç(Y) =
~ã,ç(Y)

~ −| + 1
																																											(2 − 16)	

éã,ç(Y) =
∑ êëí[ã,ç(Y)�.ã^@
TQ@

~ −| + 1
																																	(2 − 17) 

For	| + 1, repeat above steps and compute éã^@,ç. ApEn statistic is given by 

ÉuÑ?(!(?),|, U) = éã,ç − éã^@,ç																											(2 − 18) 

  The typical values | = 2 and r between 10% and 25% of the standard deviation of 

the time series {!(?)} are often used in practice [12]. 

  Furthermore, based on the algorithm for computing ApEn of one sequence, we 

extend it in the temporal domain along time coordinate of EEG signal. Supposing an 

EEG data series F� consists of ~ sequence intervals {!T(?)}, the ApEn measure is 

carried out through each interval. We define the dynamic ApEn measure of given EEG 
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signal as 

ÉuÑ?(F�,|, U) = ÉuÑ?(!@(?),|, U),… , ÉuÑ?(!�(?),|, U)								(2 − 19) 

  Consequently, in our experiment, the ÉuÑ?(F�(?),|, U)  statistic measures the 

variation the of complexity of a EEG data series F�. The occurrence of irregular pattern 

of one interval is excepted to be followed by the next in brain-death EEG. 

 

2.2.2 Multi-scale permutation entropy algorithm 

  Permutation entropy is a complexity parameter method based on comparison 

between adjacent values of time series whose performance is similar to other chaotic 

dynamical systems such as Lyapunov exponent. Unlike some other non-linear 

monotonic transformation methods, its features include simple, easier to calcite and 

stronger anti-jamming capability [23]. Multi-scale permutation entropy is a 

measurement method of finite length time series complexity. Compared with the 

traditional entropy method with fixed scale factor, multi-scale permutation entropy 

creates a coarse-grained continuous time series through the coarse graining 

transformation. And then calculate the data using entropy which fulfil the changing 

from the single static entropy value to the dynamics entropy sequence [24]. The key 

functions are from formula 2-20 to 2-22. 

  Coarse-grained processing is got by formula 2-20, permutation probability 2-21 and 

entropy 2-22. Here, the length of original EEG data is ì. î is expressed for scale factor, 

| is the embedding dimension. ~ corresponds to the number of m! permutation cases 

on the constructed sequence. 

r8
j =

∑ !T,
8
TQ8∗j^@

î
, 0 ≤ 5 ≤

ì
î
																																(2 − 20)�

u8
j =

~8
?
î − (| − 1)

																																											(2 − 21)�

Ññj =Hu8
j logu8

j

ã!

TQ@

																																												(2 − 22)�

�
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2.3 Connectivity feature analysis 

2.3.1 Brain network construction based on PDC 

  Partial directed coherence (PDC) is proposed to express Granger Causality in a new 

way based on MVAR (multivariate autoregressive) model. Normalized PDChû→h†  

accounts for the proportion between xT flowing to x8 and signals outgoing from x8. 

PDChû→h† is nearer 0 and then it means no much connection while its value is greater 

than 0.1, which is regarded as the two channels connected to each other [11]. 

Specifically, the algorithm will be discussed below [12-13]. A time-varying N-variate 

AR process of order p could be expressed in formula 2-23.  

⎣
⎢
⎢
⎢
⎢
⎡
r@
r;
.
.
.
rL⎦
⎥
⎥
⎥
⎥
⎤

= 	HÉç

⎣
⎢
⎢
⎢
⎢
⎡
!@(? − Y)
!;(? − Y)

.

.

.
!L(? − Y)⎦

⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡
ß@(#)
ß;(#)
.
.
.

ßL(#)⎦
⎥
⎥
⎥
⎥
⎤

ñ

TQ@

																											(2 − 23) 

where µ is the noise vector and ∑ Éç
ñ
TQ@  is given by formula 2-24.  

Éç(?) = I
6@@ç ⋯ 6@Lç
⋮ ⋱ ⋮

6L@ç ⋯ 6LLç
N																																				(2 − 24) 

  Here, we process the brain death EEG data of 6 channels k = 6 so first the AR model 

of EEG in time domain should be solved. And then do the FFT on formula 2. The time-

varying version of partial directed coherence is defined as formula 2-25,  

PDChû→h†(%) =
ÉT,8(%)

™68
´(%)68(%)

																																		(2 − 25) 

where 68(%) is the 5#ℎ column of the matrix É(%).�	PDChû→h†(%) is normalized 

where the higher value (taking 0.3 as the border) in a certain frequency band represents 

the linear influence from channel Y to channel 5. As a result, we will get a connectivity 

matrix (6 multiple 6) to test the information flow strength and direction between two 

channels in EEG data.  

  In our paper, we take the 6 channels as nodes and the PDC value as the edge and 

direction to build the brain topological graph network for brain death. Through network 
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map, we can analyze the characteristics for coma and brain death groups and then to 

locate the abnormal connectivity in brain death.  

  In the graph, the connectivity between channels is illustrated by connectivity matrix. 

We have 6 nodes in the network so the size of adjacency matrix is 6 � 6. Suppose the 

adjacency matrix is B and T̈8  is the element of B. If T̈8 = 1  and then there is 

connection between node Y and 5. Else T̈8 = 0 and then there is no connection from 

node Y  to 5 . So, the constructed brain network based on PDC value is directed 

weighted network. But some of the parameters of network would be transferred into 

two-value one to be analyzed and calculated. We use three topological graph 

parameters to do quantificational estimation.  

1) Degree: for our network graph, degree has in-degree and out-degree respectively. In-

degree represents the number of edges importing into the certain node; out-degree 

shows the number of edges out of the node. The value degree could be used as the 

evaluation of the node importance level in the network.  

2) Clustering coefficient: the clustering degree could be measured by clustering 

coefficient, showing the probability of the connectivity between each node adjacency 

edge. The formula 2-26 and 2-28 is taken as the calculated function for node Y and the 

average whole network.  

ìT =
2Së??7S#7/7T
ÖT(ÖT − 1)

																																									(2 − 26) 

ì =
∑ ìTT∈Æ

~
																																																	(2 − 27) 

3) Betweenness centrality: the role and importance could be described by betweenness 

centrality. The value of it is bigger, the more important of the node in the network 

(named core node). The solved function is formula 2-28. The Ø8L  means the number 

of optimal path from node 5 to node Ö.  

~(Y) = H
Ø8L(Y)

Ø8L8∞±∞L∈≤

																																									(2 − 28) 

	Ø8L(Y), 5
T
→Ö 
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  In this thesis, the specific steps for brain network construction of these two groups 

data based on PDC value are given as follows. There are 10 adult patients’ EEG data 

for the two groups. Each patient has a corresponding PDC matrix 6 � 6. Set different 

threshold values ω0(ωmin ≤ ω0 ≤ ωmax) for PDC, where ωmin = 0.1 and ωmax = 1.79. 

The single sampling t-test is applied to determine every group functional connectivity 

and then the final brain network structure will be fixed. 

Suppose the sample mean value is D≥ and the zero hypothesis is given as follows:  

¥R:	D ≤ DR,¥@:	D > DR 

The test statistic function is given in formula 2-29.  

# =
D≥ − DR

™î
;

?

																																																					(2 − 29) 

If # is in the reject domain and then the connectivity strength between each channel is 

bigger than DR, which means that there is connection between the corresponding nodes 

in the brain network; else there is no connection.  

2.4 Chapter summary 

  This chapter introduces the principles of data analysis for brain dead determinations, 

such as EMD, MEMD, ApEn and others. Based on these, Dynamic-MEMD analysis 

method is proposed. In addition, the theoretical basis for PDC for constructing brain 

networks is also introduced. 
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Chapter 3. Analysis results of brain death determination 

3.1 Energy feature analysis 

3.1.1 Analysis result based on EMD method 

  The first case is concerned with an 18-year-old male patient (Patient A). The patient 

had a primary cerebral disease and was admitted to the hospital in April 2004. After 

one month of hospitalization, the patient lost consciousness and went into a deep-coma 

state. His pupil dilated to 2 mm, and a respiratory machine was used. In June, the patient 

presented symptoms similar to that of a brain-death case. On the same day, the EEG 

examination was taken for 710s. 

  From the EEG signal, we paid close attention to a raw EEG signal of a randomly 

chosen channel in one second. For instance, the signal of channel F4 in the time range 

217-218 s is selected as an example. By applying the EMD method described in Section 

2 to the chosen signal, as shown in Fig. 3-1, we obtained five IMF components (C1–

C5) and a residual component (r). In this case, the high-frequency component (C1) and 

the residual component (r) are not the typical useful components considered. 

  Then, the remaining four IMF components (C2–C5), as desirable ones, are displayed 

in the frequency domain by applying the fast Fourier transform (FFT). As shown in Fig. 

3-2, the right column gives the peak value of each IMF component’s power spectra in 

their frequency domain. With y-coordinate in the scope from zero to 4000, one 

component with a frequency of 12 Hz was visualized (the third block in right column 

of Fig. 3-2. This component corresponds to the range of alpha wave that we mentioned 

before. Compared to other components, its peak value of power goes up to 2578.69 that 

reflects a high intensity of brain activity. The patient was in a coma state but the analysis 

result indicated the patient still had physiological brain activity. With the aid of further 

therapy, this patient regained consciousness. 

  The second is concerned with a 19-year-old female patient (Patient B) and EEG 

recording lasted 1102s. Applying the EMD method to the selected channel F7 in the 

time range 834–835s, for example, we obtained the EMD result of seven IMF 
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components shown in Fig. 3-3. 

�

� �

Fig. 3-1 EMD result of single channel 

�

Fig. 3-2 EMD result and its Fourier transform 

 

  The results showed in Fig. 3-4 are the five desirable components (C2–C6) changed 

into frequency domain by Fourier transform. Here, several important points should be 
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noted in distinguishing the results of the above two cases. The y-coordinate of Fig. 3-4 

is in the same scope as the one of Fig. 3-2 from 0 to 4000, however, the amplitudes of 

IMF components this time are all in a low range. The maximum value of IMFs’ in the 

power spectra is only 422.742. 

  It is clear that by comparing the frequency amplitude plots for Patients A and B, the 

brain activity of Patient B within the range up to 13 Hz is significantly weaker. Thus, 

the brain activity could hardly be seized except for the irregular noise. Without loss of 

generality, the same process was applied to other channels and time points. Only similar 

results could be obtained. Further clinical diagnosis of this case concluded that the 

patented had been in the brain-death state. 

�

Fig. 3-3 EMD result of single channel 
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�

Fig. 3-4 EMD result and its Fourier transform 

3.1.2 Analysis result based on MEMD method 

  In this part, we use MEMD to analysis the coma patients’ EEG signal. Through the 

MEMD method described, we obtained 9 IMF components (C1 to C9) with different 

frequency from high to low. Each IMF carries a single frequency mode, illustrating the 

alignment of common scales within different channels. Therefore, generally in our 

experiment, the IMF components from C1 to C3 with the same high frequency scales 

refer to electrical interference or other noise from environment that contains in the 

recorded EEG. The residual component (r) is not the typical useful components 

considered, either. The desired components from C4 to C9 are combined to form the 

denoised EEG signal, and changed into frequency domain by fast Fourier transform 

(FFT). As showed in Fig. 3-5, the upper line gives each channels denoised EEG signal 

in time domain, and the lower line display the denoised EEG signal of each channel in 

their frequency domain. With y-coordinate in the scope from 0 to 7000 in the frequency 

domain, we find the value of power spectra at 2-10 Hz is very high. The average energy 

of each channel is 2.14×104. The analysis result indicated the patient still had strong 

physiological brain activity, and in fact, the patient was in a comatose state. 
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Furthermore, clinical diagnosis from the doctor confirm the patient is in a coma state at 

recorded time. 

�

Fig.3-5 MEMD result of coma patient 

  Then we use the MEMD to analysis the brain death patient’s EEG. As showed in Fig. 

3-6, with the same analysis of the first patient, contrary to the first patient power 

spectrum, the value is in a low range. The average energy of each channel is 0.229×104. 

The analysis result indicate that this patient physiological brain activity is extremely 

low and we suspect the patient was in the quasi-brain- death state. Later, the clinical 

doctor confirms this result is correct. 
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Fig. 3. The first Patient for comatose patient used MEMD.

find the value of power spectra at 2-10 Hz is very high. The
average energy of each channel is 2.14×104. The analysis
result indicated the patient still had strong physiological brain
activity, and in fact, the patient was in a comatose state.
Furthermore, clinical diagnosis from the doctor confirm the
patient is in a coma state at recorded time.

C. A Patient in the Quasi-Brain-Death State

The second patient’s EEG examination was carried out one
day in June 2010, and was lasted 1030 seconds. Being similar
analysis to the previous, we calculate every 1 second data
of each channel by ApEn measure(r=0.25) from 0 second to
1030 second. It can be seen from the Fig. 4, comparing with
the first patient, ApEn measure distribution of each channel
is mostly over 0.9, and the average results of each channel
are from 0.972 to 1.22, and gives us a much higher ApEn
value of approximate to 1. According to the definition of
the ApEn, random sequence produces a higher ApEn value
of approximate to 1, we consider this patient’s EEG data is
without spontaneous brain activity. From this result above, we
suspect the patient was in the quasi-brain-death state. Then we
use the MEMD to analysis the patient’s EEG. As showed in
Fig. 5, with the same analysis of the first patient, contrary
to the first patient power spectrum, the value is in a low
range. The average energy of each channel is 0.229×104. The
analysis result indicate that this patient physiological brain
activity is extremely low and we suspect the patient was in
the quasi-brain- death state. Later, the clinical doctor confirm
this result is correct.
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Fig. 4. Approximate Entropy measure’s distribution and average value of the
second Patient.
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Fig. 5. The second Patient for quasi-brain-death state used MEMD.

D. The EEG Energy of all patients
EEG energy analysis is supplied to evaluate the brain

activity. EEG energy of healthy human is higher than comatose
patient and brain death. However, Fig. 6 show the EEG energy
of all patients. In Fig. 6, healthy human’s maximum EEG
energy of each channel is 7.42×104, and the minimum is
0.806×104. Contrary to this, brain deaths reflected no EEG
energy over 0.48×104. However, comatose patients’ EEG
energy of each channel is between 8.00×104 and 0.8×104.
This illustrate that the brain activity of comatose patients
whose EEG energy is close to the brain deaths’ are not high.
We speculate that they are brain damage. But another part of
comatose patients’ EEG energy is close to, even more than the
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Fig.3-6 MEMD result of brain death patient 

3.1.3 Analysis result based on Dynamic-MEMD method 

  Furthermore, let us show dynamic EEG energy of healthy subject, comatose patient 

and brain death by using Dynamic-MEMD. By applying the Dynamic-MEMD method, 

with the change of time, the number of IMF components will change in theory. In our 

experiments, 5 lower frequency IMF components are combined to form the denoised 

EEG signal. Therefore, the number of IMF components change will not affect the result 

of experiments. The example for healthy subject’s EEG examination was performed in 

August 2013. The EEG recording last over 500 seconds. By applying Dynamic-MEMD 

algorithms, we obtain EEG energy variation of healthy subject (Fig.3-7) in 60 seconds. 

EEG energy of each channel are between 1.43×104 and 8.65×104. 
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Fig. 3. The first Patient for comatose patient used MEMD.

find the value of power spectra at 2-10 Hz is very high. The
average energy of each channel is 2.14×104. The analysis
result indicated the patient still had strong physiological brain
activity, and in fact, the patient was in a comatose state.
Furthermore, clinical diagnosis from the doctor confirm the
patient is in a coma state at recorded time.

C. A Patient in the Quasi-Brain-Death State

The second patient’s EEG examination was carried out one
day in June 2010, and was lasted 1030 seconds. Being similar
analysis to the previous, we calculate every 1 second data
of each channel by ApEn measure(r=0.25) from 0 second to
1030 second. It can be seen from the Fig. 4, comparing with
the first patient, ApEn measure distribution of each channel
is mostly over 0.9, and the average results of each channel
are from 0.972 to 1.22, and gives us a much higher ApEn
value of approximate to 1. According to the definition of
the ApEn, random sequence produces a higher ApEn value
of approximate to 1, we consider this patient’s EEG data is
without spontaneous brain activity. From this result above, we
suspect the patient was in the quasi-brain-death state. Then we
use the MEMD to analysis the patient’s EEG. As showed in
Fig. 5, with the same analysis of the first patient, contrary
to the first patient power spectrum, the value is in a low
range. The average energy of each channel is 0.229×104. The
analysis result indicate that this patient physiological brain
activity is extremely low and we suspect the patient was in
the quasi-brain- death state. Later, the clinical doctor confirm
this result is correct.
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Fig. 4. Approximate Entropy measure’s distribution and average value of the
second Patient.
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Fig. 5. The second Patient for quasi-brain-death state used MEMD.

D. The EEG Energy of all patients
EEG energy analysis is supplied to evaluate the brain

activity. EEG energy of healthy human is higher than comatose
patient and brain death. However, Fig. 6 show the EEG energy
of all patients. In Fig. 6, healthy human’s maximum EEG
energy of each channel is 7.42×104, and the minimum is
0.806×104. Contrary to this, brain deaths reflected no EEG
energy over 0.48×104. However, comatose patients’ EEG
energy of each channel is between 8.00×104 and 0.8×104.
This illustrate that the brain activity of comatose patients
whose EEG energy is close to the brain deaths’ are not high.
We speculate that they are brain damage. But another part of
comatose patients’ EEG energy is close to, even more than the
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Fig.3-7 EEG energy variation of healthy subject 

 

Fig.3-8 EEG energy variation of healthy subject in three-dimensional display 

  The comatose case is concerned with a male patient. The EEG recording lasted 380 

seconds. By the same way of healthy subject to analysis the EEG data of this patient by 

Dynamic-MEMD, we obtain the EEG energy variation of comatose patient in 60 

seconds (Fig.3-9). This patient’s EEG energy of each channel is between 1.05×104 to 

4.2×104 that reflects a high intensity of brain activity. 
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(a) EEG energy variation of a healthy subject.
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(b) EEG energy variation of a comatose patient.
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(c) EEG energy variation of a brain death.
Fig. 2. Results for a dynamic EEG energy analysis using D-MEMD.

subject using MEMD to calculate a static EEG energy. This
subject’s EEG recording last over 500 seconds.

As shown in Fig. 1, the decomposing condition of channel
Fp1, Fp2, F3, F4, F7 and F8 expressed as X1, X2, X3,
X4, X5 and X6 in the time range one second is selected
randomly. By applying the MEMD method described in
Section II-A, we obtain 7 IMF components (C1 to C7)
within different frequency from high to low. Since the IMF
components C1 to C2 that with high frequency scales refer
to electrical interference or other noise from environment
that contains in the recorded EEG. The residual component
r is not the typical useful components considered, either.
The desired components from C3 to C7 are combined to
form the denoised EEG signal, and changed into frequency
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Fig. 3. Comparison of dynamic EEG energy for a healthy subject, comatose
patient and brain death.

domain by fast Fourier transform (FFT) (Fig. 1). And then
we integrate the denoised signal and calculate the energy
of EEG data. The average energy of every channels of this
second is 6.05⇥104.

C. Result for Healthy Subject, Comatose Patient and Brain

Death Using D-MEMD

Furthermore, let us show dynamic EEG energy of healthy
subject, comatose patient and brain death by using D-
MEMD. By applying the D-MEMD method described in
the Section II-B, with the change of time, the number of
IMF components will change in theory. In our experiments,
5 lower frequency IMF components are combined to form
the denoised EEG signal. Therefore, the number of IMF
components change will not affect the result of experiments.
The example for healthy subject’s EEG examination was
performed in August 2013. The EEG recording last over
500 seconds. By applying D-MEMD algorithms described
in Section II-B, we obtain EEG energy variation of healthy
subject (Fig. 2-a) in 60 seconds. EEG energy of each channel
are between 1.43⇥104 and 8.65⇥104.

The comatose case is concerned with a male patient. The
EEG recording lasted 380 seconds. By the same way of
healthy subject to analysis the EEG data of this patient by
D-MEMD, we obtain the EEG energy variation of comatose
patient in 60 seconds (Fig. 2-b). This patient’s EEG energy
of each channel is between 1.05⇥104 to 4.2⇥104 (Fig. 2-b)
that reflects a high intensity of brain activity.

With the same analysis for brain death, we still analyzed
60 seconds EEG data by using D-MEMD as an example. Fig.
2-c shows each channel’s EEG energy. This patient’s max-
imum value of 6 channels’ EEG energy is only 7.03⇥103,
the value is extremely low. The analysis result indicate that
this patient’ physiological brain activity is extremely low.

D. Comparison of EEG Energy for Healthy Subject, Co-

matose Patient and Brain death

Fig. 5 shows the Comparison of total EEG energy for
healthy subject, comatose and brain death by simple moving
average for 3 seconds. First, we averaged each channel’s
EEG energy of these 3 subjects. Moreover, by using simple
moving average, we averaged 3 seconds’ EEG energy of each

0
10

20
30

40
50

60

1

2

3

4

5

6
1

2

3

4

5

6

7

8

9

x 10
4

 

Time(s)Channel

 

E
n

e
rg

y

2

3

4

5

6

7

8

x 10
4



� ���

 

Fig.3-9 EEG energy variation of coma subject 

 
Fig.3-10 EEG energy variation of coma subject in three-dimensional display 

  With the same analysis for brain death, we still analyzed 60 seconds EEG data by 

using Dynamic-MEMD as an example. Fig.3-11 shows each channel’s EEG energy. 

This patient’s maximum value of 6 channels’ EEG energy is only 7.03×103, the value�

is extremely low. The analysis result indicates that this patient’ physiological brain 
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(a) EEG energy variation of a healthy subject.
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(b) EEG energy variation of a comatose patient.
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(c) EEG energy variation of a brain death.
Fig. 2. Results for a dynamic EEG energy analysis using D-MEMD.

subject using MEMD to calculate a static EEG energy. This
subject’s EEG recording last over 500 seconds.

As shown in Fig. 1, the decomposing condition of channel
Fp1, Fp2, F3, F4, F7 and F8 expressed as X1, X2, X3,
X4, X5 and X6 in the time range one second is selected
randomly. By applying the MEMD method described in
Section II-A, we obtain 7 IMF components (C1 to C7)
within different frequency from high to low. Since the IMF
components C1 to C2 that with high frequency scales refer
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that contains in the recorded EEG. The residual component
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we integrate the denoised signal and calculate the energy
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MEMD. By applying the D-MEMD method described in
the Section II-B, with the change of time, the number of
IMF components will change in theory. In our experiments,
5 lower frequency IMF components are combined to form
the denoised EEG signal. Therefore, the number of IMF
components change will not affect the result of experiments.
The example for healthy subject’s EEG examination was
performed in August 2013. The EEG recording last over
500 seconds. By applying D-MEMD algorithms described
in Section II-B, we obtain EEG energy variation of healthy
subject (Fig. 2-a) in 60 seconds. EEG energy of each channel
are between 1.43⇥104 and 8.65⇥104.

The comatose case is concerned with a male patient. The
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healthy subject to analysis the EEG data of this patient by
D-MEMD, we obtain the EEG energy variation of comatose
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of each channel is between 1.05⇥104 to 4.2⇥104 (Fig. 2-b)
that reflects a high intensity of brain activity.

With the same analysis for brain death, we still analyzed
60 seconds EEG data by using D-MEMD as an example. Fig.
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imum value of 6 channels’ EEG energy is only 7.03⇥103,
the value is extremely low. The analysis result indicate that
this patient’ physiological brain activity is extremely low.
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activity is extremely low. 

 

Fig.3-11 EEG energy variation of brain death subject 

 

Fig.3-12 EEG energy variation of brain death subject in three-dimensional display 
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(b) EEG energy variation of a comatose patient.
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(c) EEG energy variation of a brain death.
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of each channel is between 1.05⇥104 to 4.2⇥104 (Fig. 2-b)
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With the same analysis for brain death, we still analyzed
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we averaged 3 seconds’ EEG energy of each kind of subject to compare the value of 

EEG energy. Comparing the value of them, we obtain that healthy subjects’ maximum 

EEG energy is 4.35×104, and the minimum is 2.3×104. Contrary to healthy subject’s 

EEG energy, brain deaths reflected no EEG energy over 4.1×103. Comatose patient’s 

EEG energy is between 1.71×104 and 2.3×105. In brief, EEG energy of healthy subject 

is almost higher than comatose patient, and EEG energy of comatose patient is higher 

than brain death. The results illustrated the effectiveness and performance of Dynamic-

MEMD in calculation of EEG energy for evaluating consciousness level. 

 
Fig. 3-13 EEG energy for subjects by simple moving average for 3 seconds. 

physiological brain activity is extremely low. 
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(b) EEG energy variation of a comatose patient.
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(c) EEG energy variation of a brain death.
Fig. 2. Results for a dynamic EEG energy analysis using D-MEMD.

subject using MEMD to calculate a static EEG energy. This
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X4, X5 and X6 in the time range one second is selected
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Section II-A, we obtain 7 IMF components (C1 to C7)
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components C1 to C2 that with high frequency scales refer
to electrical interference or other noise from environment
that contains in the recorded EEG. The residual component
r is not the typical useful components considered, either.
The desired components from C3 to C7 are combined to
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domain by fast Fourier transform (FFT) (Fig. 1). And then
we integrate the denoised signal and calculate the energy
of EEG data. The average energy of every channels of this
second is 6.05⇥104.

C. Result for Healthy Subject, Comatose Patient and Brain

Death Using D-MEMD

Furthermore, let us show dynamic EEG energy of healthy
subject, comatose patient and brain death by using D-
MEMD. By applying the D-MEMD method described in
the Section II-B, with the change of time, the number of
IMF components will change in theory. In our experiments,
5 lower frequency IMF components are combined to form
the denoised EEG signal. Therefore, the number of IMF
components change will not affect the result of experiments.
The example for healthy subject’s EEG examination was
performed in August 2013. The EEG recording last over
500 seconds. By applying D-MEMD algorithms described
in Section II-B, we obtain EEG energy variation of healthy
subject (Fig. 2-a) in 60 seconds. EEG energy of each channel
are between 1.43⇥104 and 8.65⇥104.

The comatose case is concerned with a male patient. The
EEG recording lasted 380 seconds. By the same way of
healthy subject to analysis the EEG data of this patient by
D-MEMD, we obtain the EEG energy variation of comatose
patient in 60 seconds (Fig. 2-b). This patient’s EEG energy
of each channel is between 1.05⇥104 to 4.2⇥104 (Fig. 2-b)
that reflects a high intensity of brain activity.

With the same analysis for brain death, we still analyzed
60 seconds EEG data by using D-MEMD as an example. Fig.
2-c shows each channel’s EEG energy. This patient’s max-
imum value of 6 channels’ EEG energy is only 7.03⇥103,
the value is extremely low. The analysis result indicate that
this patient’ physiological brain activity is extremely low.

D. Comparison of EEG Energy for Healthy Subject, Co-

matose Patient and Brain death

Fig. 5 shows the Comparison of total EEG energy for
healthy subject, comatose and brain death by simple moving
average for 3 seconds. First, we averaged each channel’s
EEG energy of these 3 subjects. Moreover, by using simple
moving average, we averaged 3 seconds’ EEG energy of each
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analysis second patient’s EEG. It can be seen from the Fig. 3-15, comparing with the 

first patient, ApEn measure distribution of each channel is mostly over 0.9, and the 

average results of each channel are from 0.707 to 1.1, and gives us a much higher ApEn 

value of approximate to 1. From this result above, we suspect the patient was in the 

quasi-brain-death state. 

  Last, we also analyzed a health subject and the result were shown in Fig. 3-16. From 

this result, we can see that the average value of each channel is from 0.079 to 0.222. 

 
Fig.3-14 ApEn result of coma subject 

  We also use ApEn method to analysis the same EEG data. In Fig. 3-17, we calculate 

the average ApEn value of 6 channels of each subjects. From the result, we can see that 

the average ApEn value of each patients in brain death state were from 0.82 to 1.09. 

And the average ApEn value of each patients in coma state were from 0.13 to 0.23. The 

ApEn value of health subjects were from 0.12 to 0.26. 
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deaths’ are not high. We speculate that they are brain damage. But another part of
comatose patients’ EEG energy is close to, even more than the healthy subject’s. These
patients still have high brain activity.
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Fig. 3. Results for a dynamic EEG analysis used dynamic ApEn.

4 Conclusion

In this paper, we focus on a novel data analysis method based on D-MEMD and ApEn
to analysis EEG recorded from the healthy subjects, comatose patients and brain deaths
and observe the state changes of patients’ consciousness. By using D-MEMD and
ApEn, we can not only denoised the original EEG data but also calculate the EEG en-
ergy of subjects with the time series. Two methods were used to analysis same patients’
EEG from different perspectives improving the reliability of the analysis results.In ad-
dition to this, we recorded EEG energy variation of subjects and compared them. The
result is that EEG energy of healthy subjects is extremely high and show a high brain
activity. EEG energy of brain death is extremely low and demonstrate that brain death
has no brain activity. In comatose patients, a part of patients’ EEG energy is close to
the brain deaths’. We speculate that they are brain damage. Another part of comatose
patients’ EEG energy is close to, even more than the healthy subjects’. They are no-
brain-damage and still have high brain activity. The analyzed results illustrate the ef-
fectiveness and performance of the proposed method in calculation of EEG energy for
evaluating consciousness level and increase the reliability.
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Fig. 3-16 ApEn result of health subject 
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4 Conclusion
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Fig. 3-17 ApEn comparison of different subjects  

3.2.2 Analysis result based on Multi-scale permutation entropy algorithm 

  We calculate the multi-scale entropy of EEG data and then reserved the mean entropy 

value for each channel in different groups. The beta rhythm has much to do with the 

nervous and very clear brain state, so we escape this component to compare the two 

clinic patients’ groups. The results are given as Fig.3-18. 

  From the results, the conclusions could be made. On one side, for the entropy value 

of each channel in different brain rhythms for brain death group patients’ EEG data is 

bigger than the coma group respectively which is accordance with the entropy 

significance in characterization of the random degree of data. On the other hand, as the 

rhythm in deeper sleeping state, the difference between each group is bigger which is 

in line with the clinic hypothesis. 

8 G. Cui, Q. Zhao, T. Tanaka, J. Cao and A. Cichocki
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(a) Entropy value at alpha rhythm 

 

(b) Entropy value at theta rhythm 

 

(c) Entropy value at delta rhythm 

Fig.3-18 Comparison on brain inner-component for each patients’ group EEG data 

3.3 Connectivity feature analysis 

3.3.1 Analysis result of brain network construction based on graph theory 

  Fig.3-19 shows the PDC results of the brain death group, coma group and health 
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group. In the result of coma group (Fig.3-19b), the connectivity between channels are 

notably higher than brain death group (Fig.3-19a). Especially in Fp1 and Fp2 of coma 

group, both of these two channels have strong connectivity with other channels. In 

health group, Fp2 also have strong connectivity with other channels. 

  In addition, the PDC spread across the whole T-F plane with emphasis on low 

frequency component. So, the brain network construction is based on PDC values. 

 

Fig.3-19 PDC result of three groups. 
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  As the aforementioned, we use the three parameters to do quantity description and 

then we find that the difference between the two groups is the clearest at DR = 0.3. 

The difference description for the two groups is taken at DR = 0.3 below. 

1) Distribution of degree: In-degree represents for the information importing into one 

certain node, taking as “causality”; out-degree represents for the information 

flowing out of one node, taking as “effect”. Tab.3-1 is the distribution of in-degree 

and Tab.3-2 is distribution of out-degree of the two brain networks. 

Table.3-1 In-degree of each node in brain network for three groups 

 

Table.3-2 Out-degree of each node in brain network for three groups 

 
2) Clustering coefficient: The average clustering coefficient stands for the clustering 

degree of the whole network. If the value is higher and then the operation efficiency 

of corresponding network is higher. The mean clustering coefficient of average 

brain network for brain death and coma groups (6 nodes) is 0.775, 0.851and 0.880. 

It is clearly that the network efficiency of brain death is much lower than coma. 

3) Betweenness centrality: The constructed average brain network for the two groups 

based on t-test p ≤ 0.05 is shown in Fig.3-20~Fig.3-22 and the betweenness 

centrality important position node is labeled. There are 3 nodes (F7, F3 and F8) for 

brain death group and 4 nodes (FP1, F7, F3 and F8) for coma group. The health 

subjects have 5 nodes. From the result, we can see that the brain death is more 

dispersed than coma and health which means the clustering degree is decreasing for 

brain death and the importance of core node is dropping. 
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Fig. 8. DFT for three groups data.
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3) Betweenness centrality: the role and importance could be
described by betweenness centrality. The value of it is bigger,
the more important of the node in the network (named core
node). The solved function is formula 10. The "jk means the
number of optimal path from node j to node k.

N(i) =
X

j 6=I 6=k2G

"jk(i)

"jk
,

"jk(i), j i�!k

(10)

In our paper, the specific steps for brain network construction
of these two groups data based on PDC value are given as
follows. There are 26 adults patients EEG data for the two
groups. Each patient has a corresponding PDC matrix 6⇤6. Set
different threshold values !0(!min  !0  !max) for PDC,

where !min = 0.1 and !max = 1.79. The single sampling t-
test is applied to determine every group functional connectivity
and then the final brain network structure will be fixed.

Suppose the sample mean value is and the zero hypothesis
is given as follows:

H0 : !  !0, H1 : ! > !0

The test statistic function is given in formula 11.

t =
! � !0q

s2

n

(11)

If t is in the reject domain and then the connectivity strength
between each channel is bigger than !0, which means that
there is connection between the corresponding nodes in the
brain network; else there is no connection.

A. Results

As the aforementioned, we use the three parameters to
do quantity description and then we find that the difference
between the two groups is the most clear at !0 = 0.3. The
difference description for the two groups is taken at !0 = 0.3
below.

1) Distribution of degree: In-degree represents for the
information importing into one certain node, taking as ’causal-
ity’; out-degree represents for the information flowing out of
one node, taking as ’effect’. Tab.II is the distribution of in-
degree and Tab.III is distribution of out-degree of the two brain
networks.

TABLE II
IN-DEGREE OF EACH NODE IN BRAIN NETWORK FOR TWO GROUPS

Groups Channel locations
Fp1 Fp2 F7 F3 F4 F8

Brain death 4 3 2 3 0 4
Coma 5 4 3 2 2 3
Health 4 4 4 5 4 5

TABLE III
OUT-DEGREE OF EACH NODE IN BRAIN NETWORK FOR TWO GROUPS

Groups Channel locations
Fp1 Fp2 F7 F3 F4 F8

Brain death 3 1 2 2 1 2
Coma 2 2 4 0 2 3
Health 1 4 3 3 3 3

2) Clustering coefficient: The average clustering coefficient
stands for the clustering degree of the whole network. If the
value is higher and then the operation efficiency of corre-
sponding network is higher. The mean clustering coefficient
of average brain network for brain death and coma groups (6
nodes) is 0.775, 0.851and 0.880. It is clearly that the network
efficiency of brain death is much lower than coma.
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do quantity description and then we find that the difference
between the two groups is the most clear at !0 = 0.3. The
difference description for the two groups is taken at !0 = 0.3
below.

1) Distribution of degree: In-degree represents for the
information importing into one certain node, taking as ’causal-
ity’; out-degree represents for the information flowing out of
one node, taking as ’effect’. Tab.II is the distribution of in-
degree and Tab.III is distribution of out-degree of the two brain
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TABLE III
OUT-DEGREE OF EACH NODE IN BRAIN NETWORK FOR TWO GROUPS

Groups Channel locations
Fp1 Fp2 F7 F3 F4 F8

Brain death 3 1 2 2 1 2
Coma 2 2 4 0 2 3
Health 1 4 3 3 3 3

2) Clustering coefficient: The average clustering coefficient
stands for the clustering degree of the whole network. If the
value is higher and then the operation efficiency of corre-
sponding network is higher. The mean clustering coefficient
of average brain network for brain death and coma groups (6
nodes) is 0.775, 0.851and 0.880. It is clearly that the network
efficiency of brain death is much lower than coma.
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Fig.3-20 Brain network connection for the coma group. 

 

Fig.3-21 Brain network connection for the brain death group. 

 

Fig.3-22 Brain network connection for the health group. 
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3.4 Chapter summary 

This chapter introduces all the analysis results of the data analysis methods in Chapter 

2. Fully proved the effectiveness of each algorithm in the brain death determination. 

Especially from the analysis results of Dynamic-MEMD method which proposed, we 

can be seen that the dynamic changes of EEG energy over time and improve the 

accuracy of the analysis results. 
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Chapter 4. Method of data analysis for brain computer interface 

4.1 Support vector machine (SVM) algorithm 

  The principle of support vector machine (SVM) is making the points in the low-

dimensional space mapped to the high- dimensional space, so that they become linearly 

separable. Then use the principle of linear division to determine the classification 

boundary. 

  SVM is based on the structural risk minimization theory to construct an objective 

function, and then separate the two models as far as possible. Usually divided into two 

categories, linearly separable and linearly inseparable. 

1) Linear separable situation 

∑ ∙ π + ¨ = 0																																																							(4 − 1) 

Linear separable case, there is a hyperplane makes the training samples completely 

separate [14]. The hyperplane can be described as 

where ‘·’ is dot product, ∑ is n-dimensional vector, ¨ is offset.  

2) Linearly inseparable situation 

In the linearly inseparable situation, the curves (surfaces) in the low-dimensional space 

can be mapped to the line or plane in high-dimensional space. After mapping, data in 

the high- dimensional space are linearly separable. In high-dimensional space, use the 

function of the original space to realize the inner product operation, the nonlinear 

problem is transformed into linear problem in another space [15]. 

Because of the complexity of the data calculation in high dimensional space, we use 

the kernel function to make the computational complexity return to the level in low-

dimensional space. There are many kinds of kernel function, in this paper, we use the 

Gaussian Radial Basis Function kernel as 

K(!, !T) = exp Ω−
‖! − !T‖;

2ø;
¿																																					(4 − 2) 

where !T is kernel function center, ø is the width of the function, it controls the radial 

scope. 
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4.2 Linear discriminant analysis (LDA) algorithm 

 Let the training set contain ì classes and each class rT has ?T samples. F¡ and 

F¬ are defined as, 

F¡ =H H (πL −√T)
πs∈ƒû

≈

TQ@

(πL − √T)P																														(4 − 3) 

F¬ = H?T

≈

TQ@

(√T −√)(√T −√)P																																(4 − 4) 

where √ is the center of the whole training set, √T is the center for the class rT, and 

πL is the sample belonging to class rT. ∆ can be computed from the eigenvectors 

of F¡.@F¬ . However, when the small sample size problem occurs, F¡  becomes 

singular and it is difficult to compute F¡.@. 

  LDA method tries to find a set of projection vectors W maximizing the ratio of 

determinant of F¬ to F¡, 

∆ = 6Uí|6! «
∆PF¬∆
∆PF¡∆

«																																					(4 − 5) 

  To avoid the singularity of F¡, a two-stage PCA+LDA approach is used in [3]. PCA 

is first used to project the high dimensional face data into a low dimensional feature 

space. Then LDA is performed in the reduced PCA subspace, in which F¡ is non-

singular. 

4.3 Tensor factorization for incomplete EEG data algorithm 

  Tensor factorization for incomplete data is to capture the underlying multilinear 

factors from only partially observed entries, and then use these factors to predict the 

missing entries. Many existing methods, such as CP weighted optimization (CPWOPT) 

[7] and structured CPD using nonlinear least squares (CPNLS) [8] will make tensor 

factorization schemes tend to over fit the model because of an incorrect specified tensor 

rank. It will lead to reduce their predictive performance. Another common technique is 

to exploit a low-rank assumption for recovering the missing entries and it has been 

extended to higher order tensors by defining the nuclear norm of a tensor to obtain the 

tensor completion [10]. But these methods cannot capture the underlying factors 
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accurately. In the paper [9], a fully Bayesian probabilistic tensor factorization model 

according to the CP factorization framework was proposed and this method can solve 

the above problem. CP factorization can be shown as Fig. 3-1.  

 

Fig.4-1 CANDECOMP/PARAFAC (CP) tensor factorization. 

 

  The formula of CP model is  

X =H6T ∘ T̈ ∘ ST

 

TQ@

																																																(4 − 6) 

where ∘ denotes the outer product of vectors, r ∈ ℝ±l×±m×±n  is third-order tensor. \ 

is a positive value, 6T ∈ ℝ±l, T̈ ∈ ℝ±m, ST ∈ ℝ±n, Y = 1, … , \. 

  In this method, a sparsity-inducing hierarchical was specified prior over multiple 

factor matrices with individual hyper-parameters associated to each latent dimension 

and the number of components in factor matrices can be constrained to be minimum. 

All the model parameters, including noise precision, are considered to be latent 

variables over which the corresponding priors are placed. They used variational 

Bayesian inference and derived a deterministic solution to approximate the posteriors 

of all the model parameters and hyper-parameters. Based on these principles and 

methods, underlying multilinear factors can be inferred from a noisy incomplete tensor 

and the predictive distribution of missing entries, while the rank of the true latent tensor 

can be determined automatically and implicitly. The features of this method are a tuning 

parameter-free approach that can effectively avoid parameter selections.  

  There are several advantages of this method, which is shown as follows:  

(1) The automatic determination of CP rank enables us to obtain an optimal low-rank 

tensor approximation, even from a highly noisy and incomplete tensor.  

entries. Many existing methods, such as CP weighted opti-
mization (CPWOPT) [7] and structured CPD using nonlinear
least squares (CPNLS) [8] will make tensor factorization
schemes tend to overfit the model because of an incorrect
specified tensor rank. It will lead to reduce their predictive
performance. Another common technique is to exploit a low-
rank assumption for recovering the missing entries and it
has been extended to higher order tensors by defining the
nuclear norm of a tensor to obtain the tensor completion
[10]. But these methods cannot capture the underlying factors
accurately. In the paper [9], a fully Bayesian probabilistic

Fig. 1. CANDECOMP/PARAFAC (CP) tensor factorization.

tensor factorization model according to the CP factorization
framework was proposed and this method can solve the above
problem. CP factorization can be shown as Fig. 1. The formula
of CP model is

X =
RX

i=1

ai � bi � ci (1)

where � denotes the outer product of vectors, X2RI1⇥I2⇥I3

is third-order tensor.R is a positive value, ai2RI1 , bi2RI2 ,
ci2RI3 , i=1,...,R.

In this method, a sparsity-inducing hierarchical was spec-
ified prior over multiple factor matrices with individual hy-
perparameters associated to each latent dimension and the
number of components in factor matrices can be constrained
to be minimum. All the model parameters, including noise
precision, are considered to be latent variables over which
the corresponding priors are placed. They used variational
Bayesian inference and derived a deterministic solution to
approximate the posteriors of all the model parameters and
hyperparameters. Based on these principles and methods,
underlying multilinear factors can be inferred from a noisy
incomplete tensor and the predictive distribution of missing en-
tries, while the rank of the true latent tensor can be determined
automatically and implicitly. The features of this method is
a tuning parameter-free approach that can effectively avoid
parameter selections.

There are several advantages of this method, which is
shown as follows: (1) The automatic determination of CP rank
enables us to obtain an optimal low-rank tensor approximation,
even from a highly noisy and incomplete tensor. (2) This
method is characterized as a tuning parameter- free approach
and all model parameters can be inferred from the observed
data, which avoids the computational expensive parameter
selection procedure. In contrast, the existing tensor factor-
ization methods require a predefined rank, while the tensor
completion methods based on nuclear norm require several

tuning parameters. (3) The uncertainty information over both
latent factors and predictions of missing entries can be inferred
by our method, while most existing tensor factorization and
completion methods provide only the point estimations. (4) An
efficient and deterministic Bayesian inference is developed for
model learning, which empirically shows a fast convergence.

III. EXPERIMENTS AND RESULTS

In this section, the real EEG data of 5 subjects based on
event related potentials (ERP) P300 experiment will be used
for data analysis. Firstly, a part of original EEG data will be
missing uniformly and randomly in different degrees. Then
Bayesian CP factorization for incomplete tensors method will
be used to take completion of EEG signal with missing data.
Finally, we will make comparison of classification accuracy
rate between EEG signal with missing data and EEG signal
of data completion.

A. EEG data acquisition based on ERP P300 experiment.

EEG data was recorded from a BCI system based on ERP
P300. In this experiment, 8 electrodes were setting on Fz, Cz,
Cp5, Pz, Cp6, Po7, Oz and Po8 for recording EEG data.The
reference electrodes is A1 and A2. Sampling frequency is 256

Fig. 2. Location of 8 electrodes for recording EEG data.

Hz and window length for analysis after stimuli is 700 ms.
Images will randomly appear on the arrows which represent
eight different directions. Each subject was asked to watch 50
target direction as tasks and each target will flash 2 times in
one trial.

During each target direction recognition, every direction will
have flashing image randomly, and all of the directions will
have image flashing 16 times including target and non-target
directions. Acquired brain signals will be saved in the form
of three-dimensional tensor in (channel⇥time⇥trial). In our
experiments, all of the EEG data can be represented by a third-
order tensor of size 8⇥180⇥800.
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(2) This method is characterized as a tuning parameter-free approach and all model 

parameters can be inferred from the observed data, which avoids the computational 

expensive parameter selection procedure. In contrast, the existing tensor factorization 

methods require a predefined rank, while the tensor completion methods based on 

nuclear norm require several tuning parameters.  

(3) The uncertainty information over both latent factors and predictions of missing 

entries can be inferred by our method, while most existing tensor factorization and 

completion methods provide only the point estimations.  

(4) An efficient and deterministic Bayesian inference is developed for model learning, 

which empirically shows a fast convergence. 

4.4 Chapter summary 

  This chapter introduces the classification algorithms that used in brain-computer 

interface system commonly and the theoretical basis of completing data by tensor 

analysis method. 
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Chapter 5. Hybrid brain computer interface system 

5.1 Subjects 

  Four healthy volunteers (age from 20 - 26, all males) participated in our experiments. 

The subject sat in a reclining chair and faced a LCD monitor (60Hz refresh rate, 

1024*768 screen resolution) 30 cm far away from subject in a shielded room. All of the 

subjects were asked to relax before experiments. 

5.2 Experimental stimuli and paradigm 

  In order to compare BCI system based on different external stimuli, three different 

types of BCI system were setting up based on audio stimuli, visual stimuli and hybrid 

stimuli respectively. The image as Fig.1(a) will display on the monitor. In the Fig.5-

1(a), number 1 to number 8 represented eight different directions (N, W, S, E, NW, NE, 

SW, SE). On bottom, right corner of each arrow had a phonetic symbol. They remind 

subjects what the audio will be played on each direction and they are different from 

each other. Target directions will be set up in the gray box by press the button on the 

top of gray box. And then press “START” button, the experiment will begin. In the 

Fig.5-1(b) Sub-trial of audio stimulus: In the audio stimulus experiment, face images 

will not be flashed and it will be replaced by audio playing. One sub-trial contained 

audio stimulus of 150ms and inter-stimulus interval of 100ms. In the Fig.5-1(c) Sub-

trial of visual stimulus: In the visual stimulus experiment, there will be no sound during 

the whole experiment. One sub-trial contained visual stimulus by flashing face image 

of 150ms and inter-stimulus interval of 100ms. In the Fig.5-1(d) Sub-trial of hybrid 

stimulus: In the hybrid stimulus experiment, an audio will be played simultaneously 

when the face image flashed. One sub-trial contained hybrid stimulus of 150ms and 

inter-stimulus interval of 100ms. 

The target directions which subject needs to focus will display in the center gray box. 

The experiment layout contained 8 direction commands to simulate a wheelchair 

control. Every experiment based on each type of BCI system contained a training phase 

and an online test phase. In the training phase, 8 different target directions were set as 
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8 runs and each run consisted of 5 trials (see Fig.5-2, n=5). The online test phase 

contained 50 runs (50 target directions) and each run consisted of 2 trials. At the 

beginning of each run, the experiment image will stop 1 s to cue this run will start. After 

that, a sequence of flash trials was started, in each of which eight stimuli flashed 

randomly on the corresponding eight directions for once (i.e., eight flash sub-trials), 

respectively, with a stimulus presentation duration of 150ms and inter-stimulus interval 

(ISI) of 100ms. During the experiment, subjects were instructed to perceive the target 

stimuli and silently count how many times they flashed while watching them. 

 

 

Fig.5-1 Experiment image and sub-trial. 

(a) Experiment image� (b) Sub-trial of auditory stimulus

�150 ms 100 ms�

!

"

!

"

(d) Sub-trial of hybrid stimulus

��

!

"

!

"

150 ms 100 ms

(c) Sub-trial of visual stimulus

��

!

"

150 ms 100 ms

!
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Figure 1: Experiment image and sub-trial: (a) Experiment image: eight gray arrows were set

in a square interface, every arrow represent eight di↵erent directions (N, W, S, E, NW, NE,

SW, SE). On bottom right corner of each arrow had a phonetic symbol. They remind subjects

what the audio will be played on each directions and they are di↵erent from each other. Target

directions will be set up in the gray box by press the button on the top of gray box. And

then press ”START” button, the experiment will began. (b) Sub-trial of audio stimulus: In

the audio stimulus experiment, face images will not be flashed and it will replaced by audio

playing. One sub-trial contained audio stimulus of 150 ms and inter-stimulus interval of 100

ms. (c) Sub-trial of visual stimulus: In the visual stimulus experiment, there will be no sound

during the whole experiment. One sub-trial contained visual stimulus by flashing face image

of 150 ms and inter-stimulus interval of 100 ms. (d) Sub-trial of hybrid stimulus: In the hybrid

stimulus experiment, a audio will be played simultaneously when the face image flashed. One

sub-trial contained hybrid stimulus of 150 ms and inter-stimulus interval of 100 ms.

and all electrodes were kept with impedances under 5K⌦. The data collection,

stimuli presentation and online processing were controlled by Simulink/Matlab125

(Mathworks Inc., USA).

2.4. Feature extraction and classification

In each experimental session, 600ms bu↵ers were made from each start time

of a stimulus, subtracting baseline correlation by using 100ms pre-stimulus data

was extracted from each sub-trial. The whole training phase have 320 such130

data segments include 40 targets and 280 non-targets. Each data segment was

formed a spatiotemporal feature vector after down sampled. And then, 320

6
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Fig.5-2 One run of the experiments. 

5.2.1 Visual stimuli P300 experiment 

  In the visual stimuli P300 experiment, one face image will be flashed on the arrow 

what represent different directions. When the experiment began, subject was instructed 

to focus on target image cued by a center number and count how many times the target 

was flashed. During every sub-trial, only one direction had face image appeared and 

the image will be disappeared after staying 150ms. And then after 100ms interval, next 

sub-trial will begin. 

5.2.2 Audio stimuli P300 experiment 

  In audio stimuli P300 experiment, every direction had its own audio and these audios 

were different from each other. The audio from arrow 1 to arrow 8 were set as (a) (i) (u) 

(e) (o) (en) (da) and (go). When the experiment was in progress, there was no face 

image flashing on the target direction, audio randomly emerged instead of face images 

flashed. Only one audio will be played and it lasts 150ms during every sub-trial. And 

then after 100ms interval, next sub-trial will begin. 

  In addition, the other setting of experiment will same visual stimuli P300 experiment.  

5.2.3 Hybrid stimuli P300 with visual and audio experiment 

  In the hybrid stimuli with visual and audio P300 experiments, the subject not only 

received visual stimuli by flashing face images, but also received audio stimuli by audio 

played on different target direction. For example, when direction 1 has a face image 

One trial

Sub-trial 1 Sub-trial 8

Trial 1 Trial n-1 Trial nTrial 2

Figure 2: One run of the experiments: In the training phase, the number of the trials was

5 (n=5) and each run contained of 40 flash sub-trials (5 targets and 35 non-targets). In the

online test phase, the number of the trial was 2 (n=2). Each trial consisted of eight sub-trials

in each of which one stimulus was randomly presented on one of the eight directions (N, W,

S, E, NW, NE, SW, SE) for 150 ms with an inter-stimulus interval (ISI) of 100 ms.

Figure 3: The layout of electrodes: Fz, Cz, Cp5, Pz, Cp6, Po7, Oz, Po8 are the exploring

electrodes, Fpz is the ground electrode (GND).

such feature vectors were collected as calibration data for each type of external

stimuli. After that, the linear discriminant analysis (LDA) [B] which has been

widely used in BCI for ERP classification was adopted to train the classifier135

applied to the subsequent online test.

For the online detection, spatiotemporal feature vectors were extracted from

flash sub-trials respectively, and were inputted into the classifier to calculate

their posterior probabilities belong to the target class. Then, the stimulus di-

7



� ���

flashed, the audio (a) on this direction will also played. Both visual and audio flashing 

time will last 150ms, and then after 100ms interval, the next sub-trial will begin. 

5.3 EEG data acquisition and processing 

  The EEG data recording used a commercial g.Tec EEG system (an 32-channel EEG 

cap, 11 electrodes and a g.USBamp amplifier). The location of the electrodes was 

selected according to Fig.5-3, at Fz, Cp5, Cz, Cp6, Pz, PO7, Oz and PO8 based 10-20 

international system. The ground electrode was positioned on the forehead (position 

Fpz) and the reference electrode was placed on the left and right earlobe. The EEG 

signal was amplified and digitized with 256 Hz sampling frequency rate. The high-pass 

filter and low-pass filter were between 0.5 Hz and 30 Hz, a notch filter 50 Hz was set 

to remove AC artifacts and all electrodes were kept with impedances under 5KΩ. The 

data collection, stimuli presentation and online processing were controlled by 

Simulink/Matlab (Mathworks Inc., USA). 

� �

Fig.5-3 The layout of electrodes. 

5.4 Feature extraction and classification 

  In each experimental session, 600ms buffers were made from each start time of a 

stimulus, subtracting baseline correlation by using 100ms pre-stimulus data was 

extracted from each sub-trial. The whole training phase have 320 such data segments 

include 40 targets and 280 non-targets. Each data segment was formed a spatiotemporal 

feature vector after down sampled. And then, 320 such feature vectors were collected 
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Figure 2: One run of the experiments: In the training phase, the number of the trials was

5 (n=5) and each run contained of 40 flash sub-trials (5 targets and 35 non-targets). In the

online test phase, the number of the trial was 2 (n=2). Each trial consisted of eight sub-trials

in each of which one stimulus was randomly presented on one of the eight directions (N, W,

S, E, NW, NE, SW, SE) for 150 ms with an inter-stimulus interval (ISI) of 100 ms.

Figure 3: The layout of electrodes: Fz, Cz, Cp5, Pz, Cp6, Po7, Oz, Po8 are the exploring

electrodes, Fpz is the ground electrode (GND).

such feature vectors were collected as calibration data for each type of external

stimuli. After that, the linear discriminant analysis (LDA) [B] which has been

widely used in BCI for ERP classification was adopted to train the classifier135

applied to the subsequent online test.

For the online detection, spatiotemporal feature vectors were extracted from

flash sub-trials respectively, and were inputted into the classifier to calculate

their posterior probabilities belong to the target class. Then, the stimulus di-
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as calibration data for each type of external stimuli. After that, the linear discriminant 

analysis (LDA) [B] which has been widely used in BCI for ERP classification was 

adopted to train the classifier applied to the subsequent online test.  

  For the online detection, spatiotemporal feature vectors were extracted from flash 

sub-trials respectively, and were inputted into the classifier to calculate their posterior 

probabilities belong to the target class. Then, the stimulus direction with the maximal 

posterior probability was detected and presented to the subject as a feedback. Totally 

50 test commands were implemented with each type of stimuli for each subject in the 

experiment. 

5.5 Information transfer evaluation and classification 

  Information transfer rate (ITR) was used to evaluate the communication performance 

of the BCI system. For a trial with N possible choices in which each choice is equally 

probable to be selected by the user, the probability (P) of the desired selection will 

indeed be chosen always keeps invariant, and each error choice has the same probability 

of selection, the ITR (bits/trial) can be calculated as: 

ITR = log; ~ + ) log; ) + (1 + )) log; œ
1 − )
~ − 1

–																			(5 − 1) 

5.6 Results 

  The P300 component of each channel in the experiments are shown in Fig.5-4 where 

the red line is the average of target signal by visual stimuli, the blue line is the average 

of target signal by hybrid stimulation and green line is the average of target signal by 

audio stimulation. From these results, we can see that both audio and visual stimuli 

effect on ERP at the same time, the P300 components are more obvious than the single 

stimuli, and the P300 components are appeared between 200ms and 250ms. Based on 

the audio stimuli, P300 components are appeared later than the other stimuli. Based on 

these obvious P300 components, the classifier can identify P300 component more 

effective with higher accuracy as result. 
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Fig.5-4 P300 component based on visual stimuli, auditory stimuli and hybrid stimuli. 

 

  For the recognition rate, four experiments identify the same group of targets include 

50 different arrows. In the visual stimuli P300 experiment, the average recognition 

accuracy of four subjects is 63.5%. In the audio stimuli P300 experiment, the average 

recognition accuracy of four subjects is 85.5%. In the hybrid stimuli with visual and 

audio, the average recognition accuracy of four subjects is 94.5%. 

  Fig.5-5 showed the accuracy of classification results of four subjects with different 

types stimuli. In the Fig.5-5, the blue part is the accuracy of classification results by 

visual stimuli and the red part is the accuracy of classification results by hybrid stimuli. 

From this result, we can see that P300 component with hybrid stimuli can improve the 

performance of the P300-based BCI. 
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Figure 4: P300 component of visual stimuli and hybrid stimuli: the blue line is P300 compo-

nent with hybrid stimuli, red line is the P300 component with visual stimuli and green line is

the P300 component with audio stimuli

stimuli with visual and audio, the average recognition accuracy of four subjects165

is 94.5%.

Fig.5 showed the accuracy of classification results of four subjects with dif-

ferent types stimuli. In the Fig.5, the blue part is the accuracy of classification

results by visual stimuli and the red part is the accuracy of classification re-

sults by hybrid stimuli. From this result, we can see that P300 component with170

hybrid stimuli can improve the performance of the P300-based BCI.

Fig.6 show the results of ITR based on audio stimuli, visual stimuli and

hybrid stimuli BCI system of four subjects. From the result, we can see that

the ITR of BCI system based on hybrid stimuli is significantly higher than the

others. The maximum value of ITR of BCI system based on audio stimuli is only175

1.36 bits/trial. The ITR value of BCI system based on visual stimuli is much

higher than audio stimuli, is about 2.13 bits/trial. But The ITR maximum

value of BCI system based on hybrid stimuli is 2.80 bits/trial and it is improved

by 30% comparing to the visual stimuli in four subjects.

9
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Fig.5-5: The classification results of 4 subjects with audio stimuli,  

visual stimuli and hybrid stimuli. 

 

  Fig.5-6 show the results of ITR based on audio stimuli, visual stimuli and hybrid 

stimuli BCI system of four subjects. From the result, we can see that the ITR of BCI 

system based on hybrid stimuli is significantly higher than the others. The maximum 

value of ITR of BCI system based on audio stimuli is only 1.36 bits/trial. The ITR value 

of BCI system based on visual stimuli is much higher than audio stimuli, is about 2.13 

bits/trial. But the ITR maximum value of BCI system based on hybrid stimuli is 2.80 

bits/trial and it is improved by 30% comparing to the visual stimuli in four subjects. 
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Figure 5: The results of 4 subjects with audio stimuli, visual stimuli and hybrid stimuli: the

classification result of visual stimuli experiment from subject1 to subject4 are 66%, 72%, 64%

and 52%; the classification result of visual stimuli experiment from subject1 to subject4 are

88%, 86%, 86% and 82%; the classification result of hybrid stimuli experiment from subject1

to subject4 are 98%, 94%, 96% and 90%.

4. Conclusions180

In this paper, we propose a hybrid-BCI system with visual and audio stimuli.

Based on the hybrid stimuli, we obtain the P300 components and compare with

the single stimuli P300 components. Further more, we use the classifier based on

LDA to identify the P300 components and we also calculated the ITR value of

BCI system based on di↵erent types of external stimuli From the results, we can185

known that the amplitude of P300 components evoked by hybrid stimuli were

increased and further improve the accuracy of classifier. It make BCI system

has a better performance such as higher classification accuracy and higher ITR.

In the future works, we will focus on reduce the times of target flash in the

training phase, and further improve the accuracy of classification and informa-190

tion transfer rate.
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Fig.5-6 The information transfer rates of 4 subjects with audio stimuli,  

visual stimuli and hybrid stimuli. 

 

5.7 EEG signal completion based on tensor factorization 

  In this section, the real EEG data of 5 subjects based on event related potentials (ERP) 

P300 experiment will be used for data analysis. Firstly, a part of original EEG data will 

be missing uniformly and randomly in different degrees. Then Bayesian CP 

factorization for incomplete tensors method will be used to take completion of EEG 

signal with missing data. Finally, we will make comparison of classification accuracy 

rate between EEG signal with missing data and EEG signal of data completion. 

  A. EEG data acquisition based on ERP P300 experiment. 

  EEG data was recorded from a BCI system based on ERP P300. Sampling frequency 

is 256Hz and window length for analysis after stimuli is 700ms. Images will randomly 

appear on the arrows which represent eight different directions. Each subject was asked 

to watch 50 target directions as tasks and each target will flash 2 times in one trial. 

During each target direction recognition, every direction will have flashing image 

randomly, and all of the directions will have image flashing 16 times including target 

and non-target directions. Acquired brain signals will be saved in the form of three-

dimensional tensor in (channel×time×trial). In our experiments, all of the EEG data can 
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Figure 6: The information transfer rates of 4 subjects with audio stimuli, visual stimuli and

hybrid stimuli: the ITR result of visual stimuli experiment from subject1 to subject4 are 1.12

bits/trial, 1.36 bits/trial, 1.05 bits/trial and 0.65 bits/trial; the ITR result of visual stimuli

experiment from subject1 to subject4 are 2.13 bits/trial, 2.02 bits/trial, 2.02 bits/trial and

1.81 bits/trial; the ITR result of hybrid stimuli experiment from subject1 to subject4 are 2.80

bits/trial, 2.50 bits/trial, 2.65 bits/trial and 2.25 bits/trial.

References

[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M.195

Vaughan, ”Brain-computer interfaces for communication and control,” Clin.

Neurophysiol., vol. 113, no. 6, pp. 767-791, 2002.

[2] R. Scherer, G. R. Muller, C. Neuper, B. Graimann, and G. Pfurtscheller. ”An

asynchronously controlled EEG-based virtual keyboard: improvement of the

spelling rate. ”IEEE Transactions on Biomedical Engineering, 51(6):979-984,200

2004.

[3] E. Mugler, M. Bensch, S. Halder, W. Rosenstiel, M. Bogdan, N. Birbaumer,

and A. Kubler, ”Control of an Internet browser using the P300 event-related

potential.” Int. J. Bioelectromagn., vol. 10, no. 1, pp. 56-63, 2008.

[4] Yu, Tianyou, et al. ”Surfing the internet with a BCI mouse.” Journal of205

neural engineering 9.3 (2012): 036012.

11



� ���

be represented by a third- order tensor of size 8×180×800. 

 

Fig.5-7 Performance evaluation RSE of all subjects. 

 

  B. Processing of data missing and data completion. 

  In processing of data missing, our objective is to deal with the original EEG data into 

incomplete EEG data with different degrees of missing data. The process of generate 

incomplete EEG data was shown as Fig.5. Firstly, a three-order tensor were established 

and it has same size as the original EEG data. All the elements of tensor were 0 and 

then 70% of tensor elements were set 1. Multiplying this tensor with original EEG data, 

we will obtain incomplete EEG data with 30% missing data. Using the same way, we 

can obtain incomplete EEG data with different degrees of missing data. In our 

experiments, data missing ratios will be set from 0.1 to 0.7 and the interval is 0.1. 

 

Fig.5-8 The process of generate incomplete EEG data. 

  Next, we use Bayesian CP factorization of incomplete tensors method to complete 
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Fig. 3. Performance evaluation RSE of all subjects: different color lines represent data of different subjects. The horizontal axis represents data missing ratio
of EEG signal, the vertical axis represents recovery performance on EEG signal with different varying degrees of data missing ratio.
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Fig. 4. The classification results of incomplete EEG data and complete EEG data. The horizontal axis represents data missing ratio of EEG signal, the
vertical axis represents classification accuracy of EEG signal with different varying degrees of data missing ratio. The blue line is accuracy of EEG signal
after completion and the green line is accuracy of EEG signal with missing data.

B. Processing of data missing and data completion.
In processing of data missing, our objective is to deal with

the original EEG data into incomplete EEG data with different

degrees of missing data. The process of generate incomplete

EEG data was shown as Fig.5. Firstly, a three-order tensor
were established and it has same size as the original EEG
data. All the elements of tensor were 0 and then 70% of tensor
elements were set 1. Multiplying this tensor with original EEG
data, we will obtain incomplete EEG data with 30% missing
data. Using the same way, we can obtain incomplete EEG data
with different degrees of missing data. In our experiments, data
missing ratios will be set from 0.1 to 0.7 and the interval is
0.1.

R

      EEG data
(Channel×Time)

          EEG data
(Channel×Time×Trial)

T T̀× S

Incomplete EEG data

=

Tensor with 
missing values

Fig. 5. The process of generate incomplete EEG data.

Next, we use Bayesian CP factorization of incomplete
tensors method to complete EEG data with missing data.
The relative standard error (RSE) was used to evaluate the
performance. The analysis results RSE of all subjects were
shown in Fig. 2. From this figure, we can see that almost all
the value of RSE were under 0.1 when the data missing ratio
under 0.7. It means that when the data missing ratio under
0.7, EEG signal with missing data could be recovered better
based on this new method. But when the data missing ratio
is over 0.7, data can not be recovered better. This relatively
high value of RSE means that EEG signal with missing data
almost had no completed, because there is enough data to
make the CP factorization of incomplete tensors method to
capture the underlying multilinear factors from only partially
observed entries, which can in turn predict the missing entries.

C. Classification of EEG signal in data missing and data
completion.

We also make classification experiments under incomplete
EEG signal and EEG signal after completion. In the classifi-
cation experiment, we use linear discriminant analysis (LDA)
method analyze EEG data of subjects. Each of EEG data has
800 trials, and 400 trials will be used as training data, the other
will be used as testing data. This result was the recognition
rate of target signal based on all 50 target signal in testing data.
The result shows the classification analysis on incomplete EEG
signal and complete in Fig. 3.

From this result, we can see that with the increase of
data missing ratio, the recognition rate of target signal will
decreased significantly. When the data missing ratio was 0.7,
target signal was very difficult to be identified. After we use
Bayesian CP facterization method to complete EEG signal,
the recognition rate of target signal has been significantly
improved. When the data missing ratio was under 0.5, the
correct rate was almost around 60%. Even if data missing
ratio was 0.7, accuracy still have improved.

IV. CONCLUSION

In this paper, we use a fully Bayesian CP factorization
for incomplete tensors method to analysis real EEG data.
Experimental results show that, this method has a better
performance on incomplete EEG signal with certain degree
of data missing ratio. The majority of the incomplete EEG
signal will be recovered. Classification results also proved the
availability of this method. But if the data missing ratio of
EEG signal was very high, this method will recover EEG data
not very well.
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EEG data with missing data. The relative standard error (RSE) was used to evaluate the 

performance. The analysis results RSE of all subjects were shown in Fig.5-7. Different 

color lines represent data of different subjects. The horizontal axis represents data 

missing ratio of EEG signal, the vertical axis represents recovery performance on EEG 

signal with different varying degrees of data missing ratio. 

  From this figure, we can see that almost all the value of RSE were under 0.1 when 

the data missing ratio under 0.7. It means that when the data missing ratio under 0.7, 

EEG signal with missing data could be recovered better based on this new method. But 

when the data missing ratio is over 0.7, data cannot be recovered better. This relatively 

high value of RSE means that EEG signal with missing data almost had no completed, 

because there is enough data to make the CP factorization of incomplete tensors method 

to capture the underlying multilinear factors from only partially observed entries, which 

can in turn predict the missing entries. 

  We also make classification experiments under incomplete EEG signal and EEG 

signal after completion. In the classification experiment, we use linear discriminant 

analysis (LDA) method analyze EEG data of subjects. Each of EEG data has 800 trials, 

and 400 trials will be used as training data, the other will be used as testing data. This 

result was the recognition rate of target signal based on all 50 targets signal in testing 

data. The result shows the classification analysis on incomplete EEG signal and 

complete in Fig.5-9. The horizontal axis represents data missing ratio of EEG signal, 

the vertical axis represents classification accuracy of EEG signal with different varying 

degrees of data missing ratio. The blue line is accuracy of EEG signal after completion 

and the green line is accuracy of EEG signal with missing data. 

  From this result, we can see that with the increase of data missing ratio, the 

recognition rate of target signal will be decreased significantly. When the data missing 

ratio was 0.7, target signal was very difficult to be identified. After we use Bayesian CP 

factorization method to complete EEG signal, the recognition rate of target signal has 

been significantly improved. When the data missing ratio was under 0.5, the correct 



� �
�

rate was almost around 60%. Even if data missing ratio was 0.7, accuracy still have 

improved. 

 
Fig.5-9 The classification results of incomplete EEG data and complete EEG data. 

5.8 Chapter summary 

This chapter describes the BCI system based on hybrid stimuli and its experimental 

simulation results. As can be seen from the results, the performance of hybrid BCI 

system has been significantly improved. 
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Fig. 3. Performance evaluation RSE of all subjects: different color lines represent data of different subjects. The horizontal axis represents data missing ratio
of EEG signal, the vertical axis represents recovery performance on EEG signal with different varying degrees of data missing ratio.
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Fig. 4. The classification results of incomplete EEG data and complete EEG data. The horizontal axis represents data missing ratio of EEG signal, the
vertical axis represents classification accuracy of EEG signal with different varying degrees of data missing ratio. The blue line is accuracy of EEG signal
after completion and the green line is accuracy of EEG signal with missing data.

B. Processing of data missing and data completion.
In processing of data missing, our objective is to deal with

the original EEG data into incomplete EEG data with different

degrees of missing data. The process of generate incomplete
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Chapter 6. Conclusions 

�  In this thesis, we discuss the application of EEG signal processing in clinical 

diagnosis and construct a new BCI system. 

6.1 Conclusion of BDD 

In the clinical diagnosis of brain dead determination, we used EMD, MEMD, ApEn 

and other methods of brain signal analysis of patients and complexity analysis. Based 

on these research, a Dynamic-MEMD method is proposed, which analyzes the signals 

over a period of time. It could improve the credibility of the analysis results greatly.  

For complexity feature analysis, two different complexity parameters are used 

including dynamic ApEn and PE. Results show that ApEn and PE can distinguish from 

heath people, comatose patients and brain death along time coordinate and in different 

bands respectively. 

Furthermore, PDC are used to analysis the EEG signal of clinical and constructed 

the brain network. From result of brain network, we can see that healthy people and 

coma patients have more central nodes than brain dead patients and they also have a 

more efficient brain network than brain death. 

6.2 Conclusion of BCI 

In the study of the application of brain signal processing in BCI, we propose a hybrid-

BCI system with visual and audio stimuli. Based on the hybrid stimuli, we obtain the 

P300 components and compare with the single stimuli P300 components. Furthermore, 

we use the classifier based on LDA to identify the P300 components and we also 

calculated the ITR value of BCI system based on different types of external stimuli.   

From the results, we can see that the amplitude of P300 components evoked by 

hybrid stimuli were increased and further improve the accuracy of classifier. It makes 

BCI system has a better performance such as higher classification accuracy and higher 

ITR. In the future works, we will focus on reduce the times of target flash in the training 

phase, and further improve the accuracy of classification and information transfer rate. 

6.3 Future works of BDD and BCI 
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 Future work in BDD research, the objective is to construct a real-time EEG spare 

inspection system based on the proposed analysis method and tensor analysis method. 

In hybrid-BCI research, the objective is to reduce the times of target flash in the training 

phase, and further improve the accuracy of classification and information transfer rate.�

Different hybrid stimuli will be test to look for the best hybrid stimulus and develop a 

high-performance hybrid BCI system. To improve the speed of brain death diagnosis 

based on EEG signals and application in the clinics, the real-time calculation should be 

considered and the cloud computing technology could be applied into the clinics EEG 

data processing in the era of big data. The parallel platform and cloud computing 

architecture have been shown in Fig.6-1. 

 

Fig.6-1 EEG data analysis clouding computing architecture 

6.4 Chapter summary 

  This chapter summarizes all the research results of this dissertation, and introduces 

the future work. 
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