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ABSTRACT 
 

This dissertation explores the potential of scalp electroencephalography (EEG) for 
the detection and evaluation of neurological deficits due to moderate/severe traumatic 
brain injury (TBI), mild cognitive impairment (MCI), and early Alzheimer’s disease (AD). 
Neurological disorders often cannot be accurately diagnosed without the use of advanced 
imaging modalities such as computed tomography (CT), magnetic resonance imaging 
(MRI), and positron emission tomography (PET). Non-quantitative task-based 
examinations are also used. None of these techniques, however, are typically performed in 
the primary care setting. Furthermore, the time and expense involved often deters 
physicians from performing them, leading to potential worse prognoses for patients. 

  
If feasible, screening for cognitive deficits using scalp EEG would provide a fast, 

inexpensive, and less invasive alternative for evaluation of TBI post injury and detection of 
MCI and early AD. In this work various measures of EEG complexity and causality are 
explored as means of detecting cognitive deficits. Complexity measures include event-
related Tsallis entropy, multiscale entropy, inter-regional transfer entropy delays, and 
regional variation in common spectral features, and graphical analysis of EEG inter-channel 
coherence. Causality analysis based on nonlinear state space reconstruction is explored in 
case studies of intensive care unit (ICU) signal reconstruction and detection of cognitive 
deficits via EEG reconstruction models. Significant contributions in this work include: (1) 
innovative entropy-based methods for analyzing event-related EEG data; (2) 
recommendations regarding differences in MCI/AD of common spectral and complexity 
features for different scalp regions and protocol conditions; (3) development of novel 
artificial neural network techniques for multivariate signal reconstruction; and (4) novel 
EEG biomarkers for detection of dementia.  
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CHAPTER 1 
INTRODUCTION AND CURRENT EEG RESEARCH  

IN TBI, MCI, AND AD 
 
 

 Introduction to EEG 
 

A Brief History of EEG 
 

EEG has emerged as a potential clinical tool of interest in diagnosing and monitoring 
the pathological progression of neurological disorders including TBI and dementia over the 
last two decades. The revival of interest in EEG is the result of new technological 
developments that have allowed for the fast computation of various connectivity and 
complexity features of EEG which research suggest have potential application as 
biomarkers of neurological disease [110]. 

 
Richard Carton first described EEG in 1875, when he noted electrical oscillations on 

the exposed cortical surface of animals [111]. Fifty years later, Hans Berger began a series 
of reports in 1929 that are commonly accepted as the first systematic description of human 
EEG [48]. Quickly following Berger, Gibbs and Gibbs noted that EEG oscillatory behavior 
was sensitive to the effects of anesthetic agents. Specifically, the frequency of dominant 
EEG rhythms appeared to correlate with levels of alertness and attention [48]. The next 
century saw a significant improvement in transducers, amplifiers, and other equipment 
used to record and display EEG [110]. In the last 30 years, progress has been made toward 
understanding the genesis of EEG waveforms and how they relate to brain function [110].  

 
Currently, EEG monitoring is often used to visually assess the general “well-being” 

of the higher central nervous system after injury and to assess the level of alertness of 
patients receiving anesthetics or pharmaceuticals [110]. EEG has also found numerous 
applications in the diagnosis and evaluation of neurological disorders. EEG is used to assess 
autonomic reactions of visual and auditory stimuli, thereby providing evidence for 
neurological deficits (e.g., use of EEG in newborn hearing screenings) [57]. EEG continues 
to be extensively used in studies of sleep disorders, where the frequencies of dominant EEG 
rhythms are used to assess depth of sleep [139]. EEG is generally accepted as being a highly 
sensitive and moderately specific indicator of brain swelling (ischemia) and oxygen 
deprivation (hypoxia) [110]. When EEG oscillatory behavior is correlated to functions of 
the cerebral cortex, such as awareness and memory, reliable and clinically relevant results 
have been observed [84,86]. These results provide supporting evidence for the current 
understanding that EEG is a phenomenon of the cerebral cortex.  
 
Genesis of EEG Potentials 

 
Bioelectrical potentials measured on the skin’s surface are caused by the flow of ion-

based electrical currents within the body [110]. The macroscopic currents recorded via 
EEG are the net summation of microscopic currents contributed by billions of individual 
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neurons in the brain [110]. Each neuron consists of a central body, called a soma, and 
branching tendrils called dendrites and axons. Dendrites carry afferent signals and axons 
carry efferent signals. Each soma has many dendrites but typically a single axon. The axon 
itself many have several branches. The axons and dendrites communicate via chemical 
reactions initiated or halted by neurotransmitters that occur at the junction between axons 
and dendrites. The junctions between the end of an axon and a dendrite (or in some cases, 
the soma) are known as synaptic gaps; see Fig. 1.1 for a schematic of a typical neural cell. 
The paths involved in the transmission of information throughout the brain are known as 
synaptic pathways [121].   
 

The electrical activity of neurons can be separated into two categories: postsynaptic 
potentials (PSP) and regenerative action potentials (AP). PSPs occur when 
neurotransmitters released by a presynaptic axon alter the permeability of ion channels in 
the membrane of postsynaptic neural cells [110]. Subsequent flow of ions in and out of a 
postsynaptic cell changes the cell’s transmembrane ionic gradient, and thus its 
transmembrane voltage. Neurotransmitters act over a very short distance, resulting in 
localized changes in transmembrane voltages, with the magnitude of voltage changes 
decreasing exponentially with distance from the synapse [110]. The change in 
transmembrane potential can be positive (depolarization) or negative (hyperpolarization). 
PSPs decay over time due to cessation of ligand-channel activity as a result of reuptake of 
neurotransmitters or PSP-induced currents that redistribute ionic charges [110]. PSPs last 
from tens of milliseconds to seconds. If a neuron’s membrane is depolarized beyond an 
intrinsic threshold, an AP is initiated. APs propagate rapidly along neural membranes 
without diminishing in amplitude. The constant voltage of APs is sustained by voltage-
sensitive ion channels [110]. APs typically last for about 2 ms and may reach approximately 
100 mV in amplitude. 
 

 
 

 
Fig. 1.1. General Schematic of A Neural Cell; figure copied from [128]. 
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PSPs of pyramidal neurons in the brain are believed to be responsible for the 
macroscopic currents detected via EEG [110]. Pyramidal cells are neurons that have long, 
apical dendrites that extend through the cortical layers of the brain, from the soma toward 
the exterior surface of the cerebral cortex [158]. Pyramidal cells are thus arranged with 
relatively parallel dendrites. Each of these dendrites receives inputs from thousands of 
other neural cells. Interestingly, neighboring dendrites tend to receive PSPs from the same 
sources at homologous locations along their respective dendrites [110]. Physical distances 
between inhibitory and excitatory PSPs on individual dendrites yield bridging current 
loops between the PSPs [110]. Because neighboring pyramidal cells have similar PSP 
voltages at similar positions, their individual current loops combine additively in the 
extracellular fluid, creating voltages large enough to be detected on the surface of the scalp; 
see Fig. 1.2. 

 
Recorded EEG voltages are the result of millions of asynchronously firing PSPs from 

all over the cerebral cortex. Thus, unlike electrocardiography (ECG), which is used to 
record the electrical activity of the heart, normal EEG has no readily apparent, repetitive 
nature [110]. Decades of research suggest, however, that certain characteristics of EEG are 
indicative of underlying brain activity [110]. For example, higher cortical function, such as 
abstract thought, is usually associated with higher frequencies and greater 
desynchronization of EEG channels [121]. In certain instances, such as specific stages of 
sleep, EEG may exhibit characteristic waveform features (e.g., K-spindles) which can be 
used for diagnostic purposes [57]. 

 
EEG Signal Acquisition 
 

In order to record EEG potentials, metal needles or electrically conductive gel 
electrodes are used as transducers that convert physiological EEG currents into electrical 
currents capable of being recorded and processed. EEG is typically measured using 
multiple electrodes arranged on the scalp in a specific manner. The most commonly used 
arrangement is the International 10-20 System [68]. The 10-20 system is based on 
meridians crossing the scalp with additional lines drawn over the midfrontal and 
midparietal lobes. The typical nomenclature used to designate electrodes includes a prefix 
that indicates the brain/scalp region (e.g., C = central, F = frontal, T = temporal, etc.) and a 
number that indicates the relative distance from the midline. Right hemispheric electrodes 
are designated with even numbers (e.g., F4) and left hemispheric electrodes are designated 
with odd numbers (e.g., F3). Electrodes along the midline are designated with a Z (e.g., FZ) 
rather than a number. 

 
EEG recordings are digitized samples of the continuous physiological potentials on 

the scalp. Digitization implies quantization in amplitude and time, the resolution of which 
are dependent on the number of bits and sampling frequency used [110]. The accuracy of 
binary numbers is determined by the number of bits they contain. For example, a 16-bit 
number can represent 216 or 65,536 possible states. Assuming a range of -1.0 to +1.0 V, a 
16-bit converter would allow for a resolution of approximately 30 μV. Sampling frequency 
inherently determines the maximum frequency of EEG oscillations that can be recorded 
without aliasing effects. The sampling rate should always be more than twice the highest  
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Fig. 1.2. Illustration of Current Loops in Extracellular Fluid Surrounding Pyramidal Cells. 

 
 
 
expected frequency (or highest frequency of interest) [120]. Diagnostic EEG is typically 
sampled at 500 or 1000 Hz [110]. 
 
Preprocessing of EEG 
 

Preprocessing of EEG is needed to remove artifacts that may appear due to 
electromyographic (EMG) sources and background electronics [110]. The most common 
source of EMG artifacts is eye blinks [110]. Transocular electrodes are often used to detect 
eye blinks and remove eye blink artifacts. In addition, the human body acts as an antenna, 
amplifying 60 Hz frequencies of background electronics [110]. For this reason, a 60 Hz 
notch filter is often used to remove 60 Hz frequency components. Alternatively, EEG may 
be recorded in specially designed rooms that mitigate interferences from background 
electronics. Finally, low-pass filters are used to remove any high frequency noise. Typically, 
only frequencies below 80 Hz are considered to be physiologically relevant [110].  
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Introduction to TBI 
 

Overview of TBI 
 

TBI can be defined as any acute physical injury that disrupts normal brain function. 
Usually such injuries are head injuries, but injuries to the chest due to concussive blasts can 
also produce TBI symptoms [30,157]. The severity of TBI is categorized by the severity of 
symptoms as mild, moderate, or severe [157]. In the case of mild traumatic brain injuries, 
patients may or may not experience a loss of consciousness for a short period of time, as 
well as headaches, faulty sensory adaptation, fatigue, changes in sleeping behavior, and 
mood disorders [95]. Those with moderate TBI suffer loss of consciousness (typically less 
than 1 hour), post-traumatic amnesia (PTA, typically less than 24 hours), and localized 
brain damage such as bleeding, bruising or lesions. Severe TBI usually presents loss of 
consciousness  greater than 1 hour, PTA greater than 24 hours, and localized brain damage 
[95]. Repeated vomiting and nausea are also common symptoms of moderate and severe 
TBI due to increased intracranial pressure [157]. Severe TBI also has a multitude of unique 
symptoms including coma, incongruities in pupil dilation, and partial paralysis or 
numbness in the extremities [157]. When the skull is penetrated during the initial 
traumatic event, the patient is more likely to suffer severe TBI symptoms [121].  

 
TBI does not necessarily imply loss of consciousness. In fact, one of the major 

difficulties in diagnosing mild TBI is that patients may not present with any obvious initial 
symptoms, such as loss of consciousness, and therefore are not often tested further by 
means of CT, MRI, or PET scanning [157]. Even in cases of severe TBI, such as gunshot 
wounds to the head, loss of consciousness does not always occur [157]. A system of the 
brain known as the Reticular Activating System is believed to be responsible for 
wakefulness and is located in the midbrain [121]. Research suggests that it is damage to 
this system resulting from rotational forces in the midbrain that is believed to be the cause 
of concussions and chronic fatigue post injury [121]. 

 
The most common causes of TBI in the United States are falls (28%), motor-vehicle 

collisions (20%), accidental trauma (19%), and physical assaults (11%) [157]. Concussive 
blasts are the leading cause of traumatic brain injury for active duty military personnel in 
war zones [30]. The risk of TBI varies with age and occupation, with the two age groups at 
greatest risk of injury being infants to 4 years of age and those 15- to 19-years old [157]. 
Occupations with high incidence of TBI include construction and certain military duties, 
such as paratrooping and infantry combat [30,157]. 
 
Pathology of TBI 
 

The pathology of TBI can be divided into the physical processes immediately 
following the incident of injury (primary pathology) and the secondary pathology due to 
the natural healing processes including inflammation and scarring [121]. Primary 
pathology can be viewed as resulting from a combination of localized injury to the brain 
and diffuse axonal injury (DAI) throughout the brain. 
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Localized injury to the brain implies that a specific region of the brain is injured, 
such as a contusion in a particular area [121]. When the head experiences large 
acceleration/deceleration, the brain may strike the interior of the skull with enough force 
to incur damage. Because of the brain’s anatomical positioning within the skull, the frontal 
and temporal lobes are the regions of the brain especially vulnerable to such injuries [30]. 
These regions are also where emotions and memory are formed and processed, where 
visual information is deciphered, and language is formulated. Patients with injuries to these 
regions of the brain often suffer from depression, have trouble maintaining socially 
acceptable behavior, and have difficulty communicating verbally [29,108].  

 
When the brain strikes the skull, the soft tissues of the brain are compressed and 

stretched, and blood vessels that cover the surface of the brain or exist in the blood-rich 
protective layers between the brain and the skull may be stretched or torn [125]. The 
stretching and tearing of these blood vessels result in either micro-scale hemorrhages or 
overt bleeds. The collection of blood resulting from an intracranial bleed, known as 
hematoma, can increase intracranial pressure and surgery may be required to relieve the 
pressure within the skull and to stop bleeding. Surgery may also be required to remove 
blood clots that may develop. If an expanding hematoma is not treated quickly, other 
regions of the brain may become bruised, damaged, or ischemic, which can lead to regional 
brain cell death or the death of the patient [9,29,157]. Confirmation of the presence of a 
hematoma is best obtained from a non-contrast CT scan, although it can be identified on an 
MRI scan as well [121,157]. Unfortunately mild TBI patients do not routinely have CT or 
MRI scans performed, and may have small intracranial bleeds that remain undiagnosed 
until the bleed becomes a serious problem later on [157]. 

 
Unlike localized injuries to the brain that may result from TBI, such as contusions 

and intracranial bleeds, DAI occurs throughout the brain and is believed to be the cause of 
many of the later symptoms that develop from mild TBI [9,14,121,144]. When the brain 
experiences sharp acceleration/deceleration, axons within the brain are stretched and 
compressed because of their relatively fixed length and positions [51]. If the axons of a 
neural cell are sufficiently injured by such deformations, the cell will not survive [51,121]. 
The death of neurons is a common feature of TBI and occurs in small pockets throughout 
the brain. Though global in nature, the small scale of DAI makes the detection of DAI 
damage with CT and MRI scans difficult or impossible [64]. Instead, the diagnosis of DAI is 
usually made on the basis of a patient’s symptoms, such as loss of consciousness. Anytime 
there is a loss of consciousness associated with a traumatic head injury DAI is present, and 
the length of time a patient is unconscious following TBI is directly correlated with the 
severity of DAI [64]. DAI, however, also occurs in patients who do not lose consciousness. 
For these patients, degenerative symptoms brought on by the secondary pathology of 
axonal injury are usually the only means of diagnosis, at which time little can be done to 
mitigate the damage [64,121]. 
 

Secondary pathology of TBI includes pathology resulting from the body’s natural 
healing processes [157]. For example, as a result of the body’s natural inflammatory 
response generalized swelling of the entire brain, known as edema, can occur after well 
after the time of the initial injury. Edema can cause increased intracranial pressure without 
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the presence of localized contusions or bleeds [121]. Depending on the location of the brain 
injury and level of intracranial pressure, damage to the midbrain or brain stem may occur. 
This is a potentially serious condition because damage to these regions of the brain can 
result in the loss of a patient’s vital involuntary regulatory processes, such as breathing 
[29,108]. Depressed ventilatory status can lead to ischemia or hypoxia, which may result in 
large areas of neuronal demise or even brain death [108]. 

 
Some neurological symptoms of TBI present weeks or months after the injury. The 

cause of these symptoms is often due to the natural healing processes taking place in the 
brain. The development of fibrous scar tissue, for example, can act as an insulating factor 
and disrupt the flow of electrical signals (APs and PSPs) along a patient’s synaptic 
pathways [121]. Years after the initial injury, as the scar tissue begins to tighten, further 
deformation of axons and disruption of synaptic pathways may occur, causing new or 
worsening symptoms [121]. 

 
Another common issue observed in TBI is the swelling of individual neural cell 

clusters in the brain, forming pockets known as axonal nodes [64,121]. These axonal nodes 
have similar effects to that of scar tissue. The physiopathology of axonal node development 
is not well understood, but it is believed to be the result of neural cells responding to 
specific neurotransmitters that “leak” from damaged axons during initial DAI and the 
presence of proteins associated with the natural inflammatory process [64]. 
 
Current Diagnostic Techniques Applied to TBI 
 

Currently the most common methods of diagnosing TBI are the Glasgow scales, CT 
and MRI scanning, and biomarker proteins [157]. The Glasgow Coma Scale (GCS) tests are 
used to grade patients’ level of consciousness post injury, focusing on eye responsiveness 
and verbal and motor functioning tests. The Glasgow Outcome Scale (GOS) tests are used to 
measure patients’ levels of recovery long after the incident of injury [51]. CT, MRI, and PET 
scans are utilized to locate contusions of the brain, blood clots within the skull, and 
possible intracranial swelling that may take place soon after TBI [121,157]. Certain 
biomarker proteins in the blood and cerebrospinal fluid (CSF), which are characteristic of 
brain and nervous system injuries, are also used to detect TBI [102]. 

 
Glasgow Scales 

The GCS is a common method used to determine the severity of TBI soon after injury 
[157]. Patients’ scores are based on their best verbal responses, their ability to follow 
simple instructions, and eye opening responsiveness. GCS scores range from 3 to 15, with 3 
indicating a patient whose eyes do not open, is incapable of speaking or making verbal 
sounds, and does not respond to simple instructions or painful stimuli. Low GCS scores are 
indicative of severe TBI. A score of 15 indicates that a patient has his/her eyes open and is 
capable of speaking and following simple instructions. Under current diagnostic criteria, a 
GCS score of 8 or below is indicative of severe TBI, 9-12 moderate TBI, and 13-15 mild TBI 
[51,157]. 
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Certain factors affect the diagnostic validity of GCS tests. Often in emergency 
situations patients are intubated, a procedure during which a tube is placed down the 
patient’s trachea to ensure a patent airway. Conscious patients must be sedated before they 
can be intubated. By the time GCS test are performed, patients may have been sedated and 
intubated, preventing them from performing the verbal GCS tests and affecting their 
response to the eye responsiveness and instruction exams [51]. The non-verbal GCS tests 
are usually still performed, with the fact that a patient is intubated during the test being 
denoted by a T next to the score (e.g., GCS 5T). Afterwards, the GCS tests are generally 
performed at regular intervals in attempt to acquire more accurate assessments [51]. Aside 
from intubation, the GCS score also fails to take into account the mental status of patients 
before or at the time of injury. Previously existing mental impairment or the consumption 
of alcohol prior to the incident of injury could negatively influence a patient’s GCS score. 
Furthermore, GCS scores are often ineffective in diagnosing mild TBI injuries due to the fact 
that mild TBI patients often have high or normal GCS scores soon after the incident of 
injury [51,121,157]. 

 
Contrary to the GCS, the GOS is used to assess patients’ levels of recovery post injury 

and is not intended to be a means of diagnosis. The GOS does not include in-depth 
neuropsychological testing. Occasionally GOS tests do serve as the means of diagnosis when 
patients’ symptoms become progressively worse post injury due to secondary pathology of 
undiagnosed mild TBI [51,157]. 
 
CT, MRI, and PET 

CT scans are performed using X-rays and produce images of the human brain that 
allow for detection of injures including contusions of the brain, intracranial bleeds, and 
brain swelling [121]. The X-rays used in CT scanning produce density maps of the body so 
that dense objects, such as metals and bone, cause significant image degradation. With non-
contrast CT scans, intracranial hemorrhages are easily visible [121].  

 
MRI scans are also used to diagnose brain swelling, contusions, and intracranial 

bleeds. MRI uses the magnetic resonance properties of molecules in tissues and primarily 
images the protons in the hydrogen atoms in water molecules [64]. MRI images are 
degraded somewhat by metallic foreign bodies but not to the extent that a CT is [121]. 
Certain medical devices, such as cardiac pacemakers, experience interference from the 
intense magnetic fields of the superconducting MRI magnets. Thus, patients containing 
such devices cannot be imaged by MRI [64]. Studies have demonstrated that neither CT nor 
conventional MRI is effective in determining the presence of DAI [64]. Diffusion tensor 
imaging, a specialized type of MRI that measures water diffusion in the brain, appears to be 
more sensitive in detecting DAI than traditional MRI scans, but still lacks the accuracy 
required for diagnosis [121].  

 
PET scans use gamma radiation to detect levels of radioactively tagged glucose in 

the brain, with high levels of glucose being indicative of greater glucose consumption and 
therefore greater brain activity [29,108]. PET scans are currently used to detect areas of 
the brain with abnormal inactivity, which could indicate the presence of trauma. 
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Unfortunately, PET scans are not conducted outside of hospitals and PET scanning is not 
specific to TBI detection [121,157].  
 
Biomarker Proteins 

Recent research studies have identified proteins found in the blood and CSF that 
appear to be characteristic of TBI and neurological injuries [102]. Levels of these proteins 
in the blood and CSF increase soon after TBI and can be used as a possible means of 
diagnosing and measuring the severity of TBI. CSF measurements are generally preferred 
over blood samples because it is believed that blood serum levels of these proteins are 
more affected than CSF levels by non-nervous system sources [102]. Unfortunately, 
measurement of these proteins is still not reliable as a solitary means of diagnosing TBI and 
is usually performed in conjunction with other diagnostic tests, such as GCS tests, CT, or 
MRI. 
 
 
 

Introduction to MCI and AD 
 

Overview of MCI and AD 
 

MCI, especially the amnestic type, is a degenerative neurological disorder defined by 
cognitive decline of a greater degree than expected for an individual’s age but does not 
necessarily interfere with daily activities [45,100]. Early stages of AD cause similar 
symptoms of cognitive degeneration including progressive memory loss, shrinking 
vocabulary, and lower ability to execute precise motor movements. MCI is known to be a 
related neurological disorder to AD; however, there is still debate in the scientific 
community regarding whether MCI is an early stage of AD, simply comorbid with AD, or 
actually predisposes patients to developing AD [101,155]. Previous research has shown 
that MCI patients progress to AD at rate of approximately 10-15% of patients per year. An 
estimated 16% of individuals over the age of 70 years present with MCI symptoms [101]. 
The prevalence of MCI and AD increases with age, making MCI research of significant 
interest in geriatric medicine. Accurate identification of patients with MCI is crucial for AD 
treatment and research because patients with MCI are at high risk of developing AD. A 
major goal of current research is the development of early treatments with new therapies 
that may forestall or slow cognitive decline of MCI and AD. 

 
AD is the most common form of dementia in the United States, effecting millions of 

Americans [151]. The disease process is known to cause a generally slow progression of 
cognitive degeneration. Early stages of AD include symptoms similar to MCI, both of which 
are commonly undiagnosed. AD is generally diagnosed sometime within the 4th to 14th year 
of the disease, during which time symptoms progress to a point that patients and their 
family/caretakers become aware that an obvious problem exists [151]. Symptoms during 
this later stage of the disease include the inability to speak except in simple phrases, 
inability to recognize close relatives and family members, loss of personality, and 
increasing aggression, irritability, or other indications of decreased inhibitory higher brain 
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functions. The disease ultimately results in death, usually through external factors such as 
infection of pressure ulcers or pneumonia [151]. 
 
Pathology of MCI and AD 
 

Several causes for MCI and AD have been hypothesized based on the observations of 
chemical imbalances in the brains of AD patients; however, no definitive cause has yet been 
determined. Two of the leading hypotheses for the cause of AD are the tau hypothesis and 
the amyloid beta hypothesis.  

 
Mammalian neural cells in the brain require the microtubule protein tau to function 

properly [66]. In a brain with AD, tau is abnormally hyperphosphorylated. The protein 
becomes toxic at higher concentrations when produced in excess and begins causing 
neurodegeneration. The brain’s natural immune response to elevated levels of 
hyperphosphorylated tau is the formation of inert polymers from the toxic tau proteins 
[66]. The resulting neurofibrillary “tangles”, however, consequently contribute to further 
cognitive degeneration [17].  

 
The amyloid hypothesis postulates that amyloid beta deposits are the cause of AD. 

The peptide is contained in plaques found in AD brains post mortem [159]. Research with 
transgenic mouse models indicates that amyloid beta deposition is a key component in the 
disease process. Immunological therapies that decrease amyloid beta concentrations have 
been shown to have stabilizing effects on cognitive degeneration [159].  

 
Other hypotheses for the cause of AD include the breakdown of the myelin sheaths 

of neural cells, which serve as protective insulation for neural cells’ axons and dendrites 
[16]. This hypothesis is difficult to test experimentally, however, because myelin 
breakdown is known to be a normal effect of aging [16]. Another hypothesis currently 
being considered is oxidative stress signaling. Oxidative stress is caused by an imbalance in 
biochemical processes, resulting in the production of reactive oxygen species (ROS). ROS 
levels are mainly affected by mitochondrial and metabolic abnormalities; however, amyloid 
beta levels have been shown to be a minor factor [137]. 

 
No root cause has been attributed to MCI; however, given the high number of MCI 

patients that progress to AD, the causes of both diseases may be related on a fundamental 
level [151]. 
 
Current Diagnostic Techniques Applied to MCI and AD 
 
Protein Biomarkers 

Unfortunately, the diagnostic capabilities for AD are limited, with only “possible” or 
“probable” diagnoses being capable. Definitive diagnosis of AD can only truly be made by a 
post-mortem analysis of the brain [151]. Nevertheless, physicians have developed an array 
of neuropsychological exams and assessments that allow them to diagnose patients 
accurately while they are still alive.  
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The earliest stage of MCI and AD diagnosis is often based on neuropsychological 
tests and patient history evaluations [101]. Once it is determined that a patient is 
experiencing abnormal cognitive decline, physicians employ more quantitative diagnostic 
tools. One such tool is the analysis of CSF biomarker proteins [8]. The most common CSF 
biomarkers used for AD diagnosis are amyloid beta and tau. These proteins provide one of 
the more reliable means of distinguishing AD from other forms of dementia and appear in 
characteristically abnormal levels at the earliest onset of the disease [8]. Published findings 
suggest that spinal taps cap identify abnormal proteins in patients who went on to develop 
AD later [39]. 
 
PET and MRI 

Imaging in Alzheimer’s diagnostics is one of the fastest growing areas of the 
disease’s study. PET and structural MRI are two of the leading imaging methods used 
currently. PET is generally used to analyze neurochemical activity in the brain. In AD 
research, the amyloid-binding compound Pittsburgh Compound-B (PiB) is most widely 
used [65]. The regional variation in PiB binding in vivo are strikingly similar to the deposits 
of amyloid beta and tau neurofibrillary tangle distributions observed post mortem [65]. 
PET scans have been able to measure PiB uptake of the neocortex and identify the regional 
placement of the amyloid beta plaque burden with moderate specificity [85].  

 
Structural MRI studies have focused on the hippocampus, one of the main areas of 

the brain affected by the disease and the center of neurofibrillary pathology [67]. These 
scans can also measure myelin breakdown rates in the brain as a function of a patient’s age, 
one of the key components in the consideration of the patient’s treatment [16]. Structural 
MRI is often used in conjunction with PET as using both imaging modalities provides a 
more well-rounded view of the brain and its diseased areas. 
 
 
 

Current EEG Research in TBI, MCI, and AD 
 
Evaluation of TBI Using EEG 
 

EEG data have been used to study TBI patients’ severity of injury, level of awareness 
and unconsciousness, and to predict patient outcome. Such computer-aided signal 
processing of EEG data is often referred to as quantitative EEG (QEEG) [152]. QEEG has 
been studied in conjunction with other neurological indicators, such as MRI, to predict 
gross outcomes of TBI patients.  

 
One of the first QEEG methods investigated was Fourier Transform EEG (FT-EEG), 

which provides concurrent and continuous resolution and quantification of all relevant 
brainwave frequency bands. Leon-Carrion et al. demonstrated the ability of FT-EEG to 
correctly discriminate between different levels of functional dependence for individuals 
who had sustained TBI [73]. Others have shown that FT-EEG can better predict survival of 
TBI patients than other common clinical tools, such as GCS tests [152]. More recently, FT-
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EEG and MRI have been used as complementary tools in order to relate anatomical and 
physiological symptoms of injuries of TBI patients [60,140,141,146]. In a related approach 
to FT-EEG, Thatcher et al. used variables derived from EEG spectral analyses to accurately 
classify mild (n=40), moderate (n=25), and severe (n=43) TBI patients, achieving a 
classification accuracy of 96.39%, sensitivity of 95.45%, and specificity of 97.44% [142]. 

 
QEEG-derived techniques have also been used to examine differences in 

responsiveness and level of awareness in TBI individuals. The Bispectral Index (BSI), 
derived from EEG, is primarily used to monitor the depth of unconsciousness in TBI 
patients. Paul and Rao have also shown that in patients with mild and moderate head 
injuries there was a significant correlation between GCS scores and BSI; however, the large 
degree of scatter of BSI values for a given GCS score limits the use of BSI as a monitor for 
depth of coma in TBI [99]. Docktree et al. and Roche et al. examined differences in the 
response times (RTs) and alpha band power synchronization of TBI EEG and controls 
during a Sustained Attention Response Task [40,114]. They noted that while controls 
demonstrated lengthening RTs and alpha band power desynchronization, TBI individuals 
demonstrated shorter RTs with no evidence of alpha desynchronization. Angelakis et al. 
studied trait and state differences in peak alpha frequency, a measure of alertness that has 
been correlated to cognitive performance [6]. EEG recordings were taken before and after 
visual and auditory working memory tasks, including repeated tasks (WAIS-R Digit Span). 
They concluded that TBI individuals demonstrated significantly lower peak alpha 
frequencies, mostly during post-task rest. 

 
In addition to traditional QEEG and imaging techniques, several researchers have 

also explored the use of EEG entropy analyses for evaluation of brain injuries. For example, 
Tong et al. explored statistical characteristics of Tsallis-like time-dependent entropy 
derived from EEG of individuals who had suffered asphyxic cardiac arrest (ACA) injury 
[144]. Specifically, the mean and variance of Tsallis-like time-dependent entropy showed 
good specificity to ACA brain injury and its recovery. Cao and Slobounov used entropy to 
measure EEG nonstationarity and used nonstationarity features to discriminate mild TBI 
[28]. Bezerianos et al. showed that EEG rhythm changes estimated from time-dependent 
entropy can be used to discriminate brain ischemia damage [18]. Zhang et al. used Tsallis 
entropy in quantifying burst suppression in rats after induced ACA injury [163]. 
 
Diagnosis of MCI and AD Using EEG 

 
Recent research in exploring the potential for diagnosing MCI and AD from EEG has 

yielded three major observations: (1) slowing of EEG, (2) reduced complexity of EEG, and 
(3) perturbations in EEG synchrony [37]. Current techniques used for detecting each of 
these abnormalities are summarized here. In addition, limitations of computational 
analysis of EEG for diagnosing MCI and AD are discussed. 
 
Slowing of EEG 

Different EEG frequency bands are known to be of physiological relevance. These 
bands include delta band frequencies (0—3.5 Hz), theta band frequencies (3.5—7.5 Hz), 
alpha band frequencies (7.5—12.5 Hz), beta band frequencies (12.5—25 Hz), and gamma 
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band frequencies (25—100 Hz). Delta and theta frequencies are associated with sleeping, 
drowsiness, and daydreaming; alpha and beta bands are associated with being awake and 
alert; gamma band frequencies are associated with short-term memory and cross-modal 
tasks (tasks which require various regions of the brain to work in concert) [57]. AD 
appears to affect each of these EEG frequency bands in specific ways. Previous research has 
shown that MCI and AD EEG demonstrates a “slowing,” or a shift in spectral power of EEG 
toward the lower frequency bands [15,20,35,46,58,83,94,107,119,148]. Interestingly, 
however, increased spectral power in the gamma band has also been reported in MCI and 
AD compared to normal individuals [149]. Oscillations in high-energy regions of time-
frequency maps of EEG activity have also been observed to occur at lower frequencies in 
MCI and AD, indicating that the frequency of transient EEG oscillations also “slow” in AD 
[37]. 
 
Reduction in EEG Complexity 

Various complexity measures have been used to quantify EEG complexity [37]. 
Several of these are measures with roots in information theory, including Tsallis entropy, 
approximate entropy, sample entropy, multiscale entropy (MSE), and Lempel-Ziv 
complexity.  

 
In information theory, entropy is a measure of the uncertainty associated with a 

random variable. The classical mathematical definition of entropy was proposed by 
Shannon, and is referred to as Shannon entropy [123]. Tsallis entropy is a nonextensive 
generalization of Shannon entropy, parameterized by a nonextensivity parameter  . The 
parameter   is a measure of the nonextensivity of the system of interest. Nonextensivity 
refers to the fact that a system’s total entropy is not equal to the sum of the entropy of its 
constituent parts [34]. See Chapter 2 for more details regarding the mathematical theory of 
Tsallis entropy. 

 
Sneddon et al. investigated Tsallis entropies computed for event-related EEG 

intervals during a delayed recognition task as well as a test of perception of structure-from-
motion (SFM) [126]. Specifically, a ratio of anterior to posterior event-related Tsallis 
entropies was computed. Sneddon et al. demonstrated that the Tsallis entropy measure 
used was capable of high discrimination between normal and MCI individuals when applied 
to the delayed recognition task, yielding results that were comparable to the accuracy 
reported for PET scans. Tsallis entropy did not perform well for the SFM task, suggesting 
that the event-related Tsallis entropy measure used may be specific to different 
psychological tasks [126]. In another study, Zhao et al. demonstrated that normalized 
Tsallis entropies can be used to compute EEG markers that appear to discriminate AD from 
normal individuals [164]. 

 
Approximate entropy is an entropy measure that reflects the likelihood that 

patterns in a time series will be followed by “similar” patterns [37, 106]. Sample entropy is 
a modified version of approximate entropy, which employs smaller bins [82]. In MSE 
analysis, the entropy of coarse-grained time series, constructed from the original time 
series, are computed for various coarseness parameter values (scales) [32,33]. The entropy 
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of each coarse-grained time series may be computed using Tsallis entropy, approximate 
entropy, or sample entropy. See Chapter 3 for more information on the derivation of MSE. 

 
Lempel-Ziv complexity measures the number of unique patterns in a times series 

[71]. See Chapter 5 for more details regarding the mathematical theory of Lempel-Ziv 
complexity. Lempel-Ziv theory is used in the Lempel-Ziv-Welch compression algorithm. 
The extent of compression, often expressed as a ratio of the file size before and after 
compression, is a measure of the regularity of a time series. 

 
Differences in measures of approximate entropy, sample entropy, MSE, and Lempel-

Ziv complexity in MCI and AD have been investigated in several studies [1,2,3,62,98,160]. 
All of these studies observed greater regularity (decreased complexity) in the EEG of 
individuals with MCI and AD. No biological mechanism has been determined to be 
responsible for this phenomenon. It should be noted that decreased complexity might also 
be related to the slowing of EEG, since slower (low pass) signals are intrinsically more 
regular [37]. 
 
Changes in EEG Synchrony 

A multitude of studies have reported decreased synchronization in EEG of MCI and 
AD patients recorded during resting states. These studies have employed a large variety of 
synchronization measures including the Pearson correlation coefficient, magnitude and 
phase coherence, Granger causality, phase synchrony, state-space synchrony, stochastic 
event synchrony, mutual information, and graphical network measures. 
 

Perhaps the most basic synchrony measure, the Pearson correlation coefficient is a 
measure of the linear correlation between two time series. Although there have been 
published findings suggesting the decrease in Pearson correlation coefficients in EEG of 
MCI patients compared to normal individuals, results have not been statistically significant. 
Furthermore, no differences have been observed between AD patients and normal 
individuals [37]. 

 
As a frequency domain analog to the Pearson correlation coefficient, magnitude 

coherence measures linear correlations in the frequency domain. Many studies have 
demonstrated a decrease in magnitude and phase coherence in MCI and AD patients’ EEG 
[7,19,24,52,59,61,69,87,132,136,150]. In some studies, differences have even allowed for 
the discrimination of MCI and normal controls’ (NC) EEG records using coherence features. 
Contradictory results, however, have also been reported, which suggests that coherence 
features may be incapable of serving as discriminatory features for distinguishing between 
MCI and NC or AD and NC [36,38,72,134,135]. 

 
Granger causality extends correlation coefficients from two time series to multiple 

time series, allowing for the estimation of the causality of linear interactions. Many 
different Granger causality measures have been proposed, including linear and nonlinear 
extensions [5,31,74]. Examples of linear measures include the direct transfer function 
(DTF) and full frequency directed transfer function (ffDTF). Previous research has noted 
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decreased ffDTF in MCI and AD patients compared to NCs; however, only a minor decrease 
in DTF was observed, and only for AD patients [36,38]. 
 

All of the above measures assess synchronization of the amplitude/magnitude of 
time series. In addition to the amplitude synchrony measures, phase synchrony measures 
have also been investigated. Examples include mean phase coherence, phase lag index, 
imaginary coherence, and global field synchrony (GFS) [77,81,132]. While the other phase 
synchrony measures compare the phase of two time series, GFS allows for the detection of 
phase coupling between a large number of channels. Decreased phase synchrony has been 
reported in resting EEG of mild AD patients [132]. A general decrease in GFS has been 
observed in AD; however, Park et al. did not observe this effect in MCI [36]. In addition to 
GFS, Park et al. investigated five additional phase synchrony measures, none of which 
demonstrated significant differences between MCI patients and NC. In a similar study, 
Dauwels et al. observed no differences in AD patients [38]. Differences have been reported 
in the spatial distributions of EEG phase synchrony between AD patients and NCs [76]. 
 

Another group of synchrony measures includes state-space synchrony measures. 
These measures are based on the assumption that time series are generated by an 
unknown, deterministic, and potentially high-dimensional nonlinear dynamical system. 
Generally, an attempt is made to reconstruct the system by representing the time series in 
a state space, where each time series is represented as a trajectory in the in the state space. 
Signals are considered to be synchronous if their trajectories remain “close” to each other 
[37]. Significant decreases in sate-space synchrony measures have been observed in MCI 
and AD patients who transitioned from MCI to AD [13,70,103,104,131,134,153,161]. 

 
A recently developed approach, termed stochastic event synchrony, characterizes 

the interaction between “events” in two time series [34]. Typically, in EEG, these “events” 
include spikes or transient oscillatory components [11,12,22,109]. Significant decreases in 
synchrony have been noted in MCI and AD patients using these measures [36]. Stochastic 
event synchrony and ffDTF have also been shown to have high discrimination in separating 
MCI and AD EEG records from NC records when used in conjunction [36]. 
 

Derived from information theory, mutual information and Kullback-Leiber 
divergence measures have been applied toward the analysis on EEG synchrony in MCI and 
AD. Inter-channel mutual information has been observed to be significantly reduced in AD 
patients compared to NCs [71]. No significant differences between MCI and NC EEG have 
been reported based on observations of mutual information of Kullback-Leiber divergence 
[36]. See Chapter 4 for more on the mathematical theory of mutual information. 

 
Various synchrony measures have been used to construct macroscopic network 

models of the brain using EEG where each electrode serves as a node and synchrony 
measures determine connections between nodes. Typically a threshold is applied to 
determine if a synchrony measure between any two channels is significant (included in the 
graph). If a synchrony measure fails the threshold criterion, the connection between those 
two nodes is severed (excluded from the graph) [37]. The properties of the resulting graph 
can be analyzed using graph theory and used as measures of synchrony. In effect, this is a 
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method for deriving features of features with the objective being a reduction in the feature 
space. For example, a total of 435 unique inter-channel synchronization measures for an 
EEG record with 30 channels may be summarized using a handful of graphical network 
features [90]. 

 
A graphical network’s complexity is typically quantified in terms of statistical 

randomness and regularity among the network’s connections [145]. More recent research 
has demonstrated that the behavior in complex systems (e.g., the human brain) is shaped 
by the interactions among the network’s constituent elements [27]. Brain networks 
characteristically demonstrate small-world behavior, or clustering [17,47,112,129,133]. 
Small-world behavior is the occurrence of highly connected clusters of nodes within a 
larger network [154]. EEG records of MCI and AD patients have demonstrated weaker 
small-world network characteristics, or decreased clustering, compared to NCs [55,130]. 
 
 
 

Datasets Used in Analyses 
 

Event-Related EEG for TBI (WM1 Dataset) 
 

The EEG data for TBI participants used in the studies presented in this work were 
originally collected by Vagnini et al. [147]. The corresponding normal participants were 
required to have no medical history of TBI. Records obtained from hospitals revealed that 
the TBI participants had sustained their injuries an average of 13 years (SD 7.2 years) prior 
to the data collection, had an average GCS score of 8.7 (SD 2.9) at the time of injury, and an 
average loss of consciousness of 7.2 days (SD 12 hours). CT and MRI scans indicated 
moderate to severe injury in a variety of regions in the brain, including brain stem, frontal, 
temporal, parietal, and occipital lobes in both the right and left hemispheres.  

 
Participants were given a series of tests to evaluate their reading comprehension, 

writing abilities, and their depressive states. Specifically these tests included the Weschler 
Test of Adult Reading (WTAR) and the Beck Depression Inventory II (BDI-II). There were 
no statistically significant differences between the TBI and normal controls in regards to 
reading and writing abilities or depressive state. Participants were also well matched in 
regards to age, gender, education level, and marital status; see Table 1.1. 
 

Participants were connected to 32-channel EEG caps using a NeuroscanTM SynAmp II 
system. Recordings were taken during a visual memory recognition (“old-new”) task [147]. 
The memory task consisted of two phases: the study phase and the recognition phase; see 
Fig. 1.3. During the study phase, participants were initially shown 100 images of common 
objects for 5 s each and asked to memorize the images. The images were studied for a 
second time after a short break and the participants were again asked to memorize the 
images.  During the recognition phase, the participants were shown 140 images, 70 of 
which were from the previously studied (old) set of 100 images, and 70 of which were 
previously unseen (new) images. EEG recordings were taken during the recognition phase 
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while the participants were asked to determine whether the images were old or new. Note 
that the order in which the 140 images were shown was predetermined in a random 
manner. To avoid expectation effects, interstimulus intervals between images and fixation 
images (presented between each image) were randomly determined to be 1100 ms, 1300 
ms, or 1500 ms. The recognition phase took approximately 9.5 min to complete on average. 
EEG recordings were sampled at 500 Hz. The 32 EEG channels included 2 ocular channels, 
which were used to determine the dominant eye blink frequency. Notch filters were used to 
remove dominant eye blink frequencies and to remove 60 Hz frequencies, which may have 
been amplified by background electronic devices.  A simple 2nd order Butterworth low-pass 
filter was used to attenuate frequencies greater than 150 Hz. 

 
Only 25 of the 32 channels are used in analyses. The channels not used include the 

horizontal and vertical ocular channels, HEO and VEO, and channels that were corrupted or 
missing for one or more participants due to signal loss. Missing channels were those for 
which no data were recorded. Only three participants had corrupted or missing channels—
two NC, one TBI—but this led to a total of five channels that could not be included. Thus, 
analyses are conducted with 25 channels out of the 32 available. The omitted channels 
included the two ocular channels (HEO and VEO) as well as CZ, CPZ, FZ, FC3, and FC4. 

 
The performance in the memory tests of the normal and TBI participants are 

presented in Fig. 1.4. The difference in sample means allows for the statistical inference of a 
linear separability at the population level with 95% confidence. However, due to the large 
variation in the scores of TBI participants, the performance for each image type allowed for 
a maximum classification accuracy of only 73.3%. Using the performance on both old and 
new images as features for a support vector machine model with a quadratic kernel, a 
leave-one-out cross-validation accuracy of 86.7% was achieved; see Chapter 2 for more 
information regarding support vector machines and leave-one-out cross-validation. 
However, one potential concern of using performance-based classification is that a normal 
participant could purposefully make wrong choices during the memory recognition to 
reduce his or her performance (malingering) [147]. Collectively, the 30 EEG records (15 
TBI, 15 NC) recorded during the old-new working memory task just described are referred 
to as the first working memory dataset (WM1 Dataset) in later Chapters. 

 
Event- and Non-Event-Related EEG for MCI, AD (WM2 and NER Datasets) 

 
The MCI and AD EEG data used in the studies presented in this work were collected 

in the laboratory of Dr. Yang Jiang of the Behavioral Science Department and Sanders-
Brown Center on Aging at the University of Kentucky (UK) College of Medicine. Participants 
between the ages of 60 and 90 years were recruited from a study cohort of cognitively 
normal older adults identified by the Alzheimer’s Disease Center (ADC) of the UK College of 
Medicine.  MCI patients were recruited from the Memory Disorders Clinic of the ADC. 
Normal older participants are screened regularly and when screenings indicate possible 
cognitive decline they are referred to the ADC’s Research Memory Disorders Clinic. MCI 
and AD participants were diagnosed and recruited by cognitive neurologists Drs. C. Smith 
and G. Jicha at the UK ADC Clinical Core and from its Research Memory Disorders Clinic.  
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Table 1.1. Demographic Data WM1 Dataset Participants 
 

Variable TBI NC 
age 40.5 (11.7) 36.2 (12.2) 
education 14.3 (1.9) 15.4 (2.3) 
WTAR 105.5 (6.9) 110.3 (11.3) 
BDI-II 6.9 (6.3) 5.1 (7.6) 
gender 46.7 56.3 
race 100 68.8 
marital status 53.3 50 
n 15 15 
means; standard deviations in ( ); WTAR = Weschler Test of Adult Reading; BDI-II = Beck Depression Index II; 
gender reported in % female; race reported in % white; marital status reported in % single. Data taken from 
Vagnini et al. [147]. 

 
 
 

 
Fig. 1.3. Examples of Images Shown during WM1 Dataset Working Memory Task [147]. 
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Fig.1.4. Performance of NC and TBI Participants for Working Memory Task [91]. Note the 
optimal classification boundary determined using a support vector machine model and 
quadratic kernel function. 
 
 
 
A list of neurological assessments used to make MCI and AD diagnoses is provided in Table 
1.2 [117].  
 

Participants were screened to exclude active or unstable medical conditions, 
depression, and other psychiatric disorders, or history of neurologic or neurosurgical 
conditions. No participants were to have the ApoE4 allele for Alzheimer’s risk or to be on 
any psychoactive medication other than antidepressants. Due to the small number of 
participants, individuals with the ApoE4 risk factor were excluded in order to have more 
uniform groups. Systolic hypertension, donepezil, and anti-depressants are known to 
modulate EEG markers including event-related potentials (ERPs) associated with cognitive 
functions. These conditions are very common in the population of interest, complicating 
outright exclusion; however, uncontrolled hypertension or use of sedatives, such as the 
benziazepines, was basis for exclusion from the study. 
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All MCI participants belonged to the amnestic MCI subtype. In addition, a few of the 
MCI participants also presented with executive dysfunction. Differences between single- 
and multiple-domain MCI subtypes are not he focus of the current study. MCI and early AD 
participants’ EEG data were recorded as soon as possible after diagnoses were made. Two 
different sets of EEG data were recorded: event-related data recorded during a visual 
working memory task and non-event-related data recorded during resting states and 
simple cognitive task.  
 
Event-Related Data Collection (WM2 Dataset) 

Event-related EEG was recorded for 17 NC, 16 MCI, and 10 AD participants. 
Participants were well matched with regards to age, with NC, MCI, and AD participants 
having mean ages of 75.2 years (SD 4.9 years), 73.9 years (SD 9.5 years), and 76.5 years (SD 
5.2 years), respectively. NC participants were 60% female and AD participants were 70% 
female. MCI participants were only 20% female. Difference in MCI gender was likely due to 
recruiting and does not reflect population trends. 
 

Participants were connected to 64- or 32-channel EEG caps using a Neuroscan II 
system (10-20 montage). In either case, only the 32 common channels were recorded. 
Recordings were taken during a visual working-memory matching task [26]. The matching 
task consisted of 30 trials with 2-s intervals between trials. During each trial, participants 
were initially shown an image (sample target) for 3 s and asked to hold the image in mind. 
Sample target images were outlined in a green border in order to distinguish them. After 1 
s, participants were then shown a series of test images. The test images consisted of two 
repetitions of the original image (“targets”), two similar but different images 
(“distractors”), and one filler image (target or distractor chosen at random) presented in a 
randomized order. The number of target versus distractor images presented was also 
randomized, but equal in occurrence. Thus, a total of 150 test images were shown during 
all 30 trials, including 75 targets and 75 distractors. Each of the test images was shown for 
1 s. To avoid expectation effects, interstimulus intervals between test images were 
randomly determined to be 900 ms, 1000 ms, or 1100 ms. The entire matching task 
required approximately 9.8 min to complete on average. EEG recordings were sampled at 
500 Hz. The 32 EEG channels included 2 ocular channels, which were used to determine 
the dominant eye blink frequency. Notch filters were used to remove dominant eye blink 
frequencies and to remove 60 Hz frequencies, which may have been amplified by 
background electronic devices. A simple 2nd order Butterworth low-pass filter was used to 
attenuate frequencies greater than 150 Hz. 

 
Broster et al. previously analyzed the data used here in conjunction with a 

replication of the matching task in order to study the effects of repetition priming in MCI 
and AD. For data detailing the performance of participants for the matching task, including 
accuracies and response times, the reader is referred to their work [26].  

 
Collectively, the 43 EEG records (17 NC, 16 MCI, and 10 AD) recorded during the 

working memory matching task just described are referred to as second working memory 
dataset (WM2 Dataset) in this document. 
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Table 1.2. Cognitive Tests and Other Evaluations Used to Make MCI, AD Diagnoses 
 

General Cognitive Measures Baseline Only 
MMSE National Adult Reading Test 
Clinical Dementia Rating (CDR) Medical Evaluation 

Memory Domain Measures Physical exam 
WMS Logical Memory I & II Neurological exam 
California Verbal Learning Test Medical history 
Attention/Executive Domain Measures Medications 
Trail Making Tests A & B Nutritional supplements 
WAIS-R Digit Span & Digit Symbol Food Frequency Questionnaire (FFQ) 

Language Domain Measures Psychiatric Evaluation 
COWAT Neuropsychiatric Inventory Questionnaire (NPIQ) 
Animal Fluency Geriatric Depression Scale (GDS) 
Vegetable Fluency Functional Ability Measures 
Boston Naming Functional Assessment Questionnaire (FAQ) 

Visual/Spatial Domain Measures SF-36 
CERAD Figures ADCS-ADL 

 
 
 
 
 
 
 

 

 
Fig. 1.5. Examples of Images Shown During WM2 Dataset Working Memory Task [26]. 
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Non-Event-Related Data Collection (NER Dataset) 
Non-event-related EEG was recorded for 15 NC, 16 MCI, and 17 AD participants. 

Participants were well matched with regards to age, with NC, MCI, and AD participants 
having mean ages of 75.7 years (SD 5.5 years), 74.6 years (SD 9.0 years), and 76.7 years (SD 
5.2 years), respectively. NC and AD participants were also well matched in regards to 
gender, with NC and AD participants being comprised of 60% females. MCI participants 
were only 25% female. Again, the difference in MCI gender was likely due to recruiting and 
does not reflect population trends. 

 
Participants were connected to 64- or 32-channel EEG caps using a Neuroscan II 

system (10-20 montage). In either case, only the 32 common channels were recorded. EEG 
data were recorded under a protocol using three different non-memory-task conditions. 
These included: (1) resting with eyes open (REO) for 5 min, (2) resting with eyes closed 
while counting backwards by ones for 10 min while tapping a finger (counting task), and 
(3) resting with eyes closed (REC) for 10 min, followed by another 5 min of REO. EEG 
recordings were performed without interruption at the same appointment for each 
participant. EEG data were acquired at 500 Hz. The 32 EEG channels included 2 ocular 
channels, which were used to determine the dominant eye blink frequency. Notch filters 
were used to remove dominant eye blink frequencies and to remove 60 Hz frequencies, 
which may have been amplified by background electronic devices. A simple 2nd order 
Butterworth filter was used to attenuate frequencies greater than 200 Hz. In addition, 
analysis of EEG data examined only frequency components less than 40 Hz. 

 
Collectively, the 48 EEG records (15 NC, 16 MCI, and 17 AD) recorded during the 

resting states and simple cognitive task just described are referred to as the non-event-
related dataset (NER Dataset) in this document. 
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CHAPTER 2 
EVENT-RELATED DISCRIMINATION OF TBI AND MCI  

USING TSALLIS ENTROPY 
 
 

In this Chapter, an exploration of event-related Tsallis entropy measures as 
potential biomarkers of neurological disease is presented. The approach developed is 
applied toward the discrimination of TBI and MCI using EEG recorded during working 
memory tasks. The specific working memory task protocols for TBI and MCI data are 
similar, but differ in several respects; see Chapter 1 for more details regarding data 
collection procedures. This Chapter begins with a review of the mathematical theory of 
communication systems and the definition for an estimator of Tsallis entropy. Next, the 
methodology for computing event-related Tsallis entropy measures is described. Finally, 
results obtained for discrimination of TBI vs. NC and MCI vs. NC EEG records are presented 
and discussed. 

 
 
 

Mathematical Theory of Tsallis Entropy 
 

Components of Communication Systems in the Brain 
 

Levels of Communication in the Brain 
The mathematical bases of signal theory were originally presented by Shannon in 

his classic work The Mathematical Theory of Communication [120]. In this work, Shannon 
describes the essential components of any communication system as being: (1) a sender, or 
originator of the signal; (2) a receiver, or the final destination of the signal; (3) a 
communication channel, or medium through which the signal can travel (radio and other 
electromagnetic waves can travel in the absence of a medium); and (4) an encoding of the 
information contained within the signal. A synthetic example of such a communication 
system would be the telegraph. The system used to relay information via a telegraph is 
composed of the telegraph key (the sender) and the telegraph receiver (the receiver) at the 
other end of the telegraph wire (communication channel). The message sent via the 
telegraph system is encoded using Morse code. 

 
 Communication systems in nature are rarely as simple as the example of the 
telegraph just given. For example, communication within the brain occurs at the 
microscopic and macroscopic levels [29,108,125]. At the microscopic level, the method of 
communication is the interneuronal PSPs and APs. Neurons serve as both senders and 
receivers of PSPs and APs, with the synaptic gaps between neurons described in Chapter 1 
serving as the communication channel by which the PSPs and APs are transmitted from one 
neuron to another. Previous studies have concluded that the method of encoding of 
information by PSPs and APs in interneuronal communication is based on the time 
variation or frequency of occurrence of PSPs and APs [29, 108]. Though the basic means of 
communication at the microscopic level within the brain is well understood, the amount of 
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interconnectivity involved in synaptic pathways is currently beyond the ability of modern 
technology to accurately map [108,125]. 
 
 The picture becomes even more ambiguous at the macroscopic level of 
communication within the brain. Communication within the brain at this level involves 
intra- and inter-regional, time-varying voltages that are recordable by EEG. The brain itself 
serves as the originator and receiver of the signals, usually with different regions 
originating and receiving the signals [125]. Each major structural area or “nucleus” of 
neurons within the brain can serve as both senders and receivers [30]. In the case of EEG, 
the communication channel includes the brain, skull, soft tissues between different brain 
structures, and the EEG recording devices themselves. 
 
The Encoding Problem 

The method of encoding of time-varying EEG voltages is unknown [125,126]. This 
makes the translation of the information captured in the signal nearly impossible, a 
problem often referred to in cognitive neuroscience as the “encoding problem” [125]. The 
challenge presented in analyzing EEG data lies in the process of estimating the information 
contained in the signal without knowledge of the method of encoding. A plausible 
assumption, however, is that the ability of individuals who suffer from neurological 
disorders to process information is less than that of healthy individuals. Such disparity in 
information processing by the brain could theoretically be evident in the amount of 
information present in EEG data recorded during cognitively taxing activities [125]. 
 
Estimation of Tsallis Entropy 
 
Classical Shannon Entropy 

Information can be defined as that which decreases uncertainty and the basic 
amount of information in a signal can be defined mathematically in terms of entropy [125]. 
The classic formula for calculating entropy of a signal, originally proposed by Shannon, is 
generally known as Shannon entropy and can be calculated using Equation (2.1) [125]: 

 

   ∑ (  )   , (  )-

 

   

      (   ) 

 
where   is a random variable with domain   informational symbols (  ,   , …,   ) and 
 (  ) is the probability of occurrence of information event    in the signal. Those familiar 
with entropy in other scientific applications, such as thermodynamics, may recognize that 
the formula for Shannon entropy is the same as Gibbs-Boltzmann entropy, which is the 
measure of disorder in a thermodynamic system [125]. 
 

Unfortunately, Shannon entropy has limited validity in application to natural 
signals, including EEG, because Shannon entropy is based on the assumption that the 
system being measured is an extensive system. In other words, the total entropy of the 
system is assumed to be equal to the sum of the entropy present in the system’s individual 
components. This is not the case for the EEG signal acquisition system, which is composed 
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of the brain, skull, skin, muscles, electrodes, connecting wires, and the data acquisition 
system used to record measurements. The relationship between the entropy present in 
these individual components to the entropy of the EEG signal is not known and can change 
from trial to trial, patient to patient, and is dependent on the equipment used. The EEG 
recording system, therefore, is more accurately viewed as an intensive system, in which the 
entropy present in the individual components of the system may be sub- or super-additive 
in relation to the entropy in the EEG signal [125]. 
 
Tsallis Entropy for Intensive Systems 

Fortunately, a formula for estimating the entropy of an intensive system, first 
proposed by Tsallis, is applicable for analyzing the entropy of EEG and other natural 
signals. The general formula for Tsallis entropy is presented as Equation (2.2): 
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where the q-logarithm function is defined as: 
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In particular, ln1(x) = ln(x). The parameter q is a measure of the nonextensivity of the 
system being measured. Given the relationship presented in Equation (2.2), the amount of 
information contained within an EEG signal, or the entropy of the signal, can be estimated if 
the probability of occurrence of the information events within the signal is known.  
 

Observations of known physical information events in other natural signals provide 
examples that can be used to estimate the probability of the information events in EEG 
recordings. Specifically, critical points (local maxima, local minima, and discontinuities) 
appear to delineate information events in natural signals [125]. Using this observation, an 
approximation of Tsallis entropy for q = 2 was proposed by Sneddon as follows: 
 

    ̂    

 
 

∑  
 

  
     (   ) 

 
where N is the number of bins delineated by local critical points of the signal, si

2 is the 
variance within each of these bins (       ), and σ2 is the variance of the entire signal.  
In the studies presented here, critical points are defined as points where the discrete 
derivative (       )    equals zero or changes sign from its previous value.  
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Methodology 
 

Selection of Event-Related Intervals 
 
Visual Stimulus Events 

Though the working memory tasks differed for the TBI and MCI data, both tasks 
included two distinct types of images. As described in Chapter 1, the TBI working memory 
task was comprised to two phases. The first phase was the study phase, during which 
participants were shown 100 images and asked to memorize them. The second 
(recognition) phase, during which EEG was recorded, included the presentation of 140 
images, 70 of which had benn presented during the study phase (old, studied images) and 
70 of which had not been seen previously (new images). The presentation of each old and 
new image during the second phase constituted an event. Thus, there were a total of 140 
events, 70 corresponding to the presentation of old images and 70 corresponding to the 
presentation of new images. 

 
The protocol for the MCI working memory task is described in detail in Chapter 1. 

This working memory task consisted of single phase, comprised of 30 trials. For each trial, 
participants were presented with a sample target image and asked to memorize the image. 
The participants were then shown a set of five test images comprised of at least two target 
images (repetitions of the sample target) and at least two distractor images (images similar 
to the sample target image but different in some respect). The order of presentation of 
target and distractor images after each sample target image was randomized. The number 
of target versus distractor images presented was also randomized, but equal in occurrence. 
Thus, a total of 150 test images were shown during all 30 trials, including 75 targets and 75 
distractors. Each presentation of a target or distractor image was considered an event for a 
total of 150 events, 75 corresponding to target images and 75 corresponding to distractor 
images. 
 
Event-Related Intervals 
 Tsallis entropies are computed for selected visual stimulus events using two 
discrete intervals, I1 and I2. Here, the I1 interval is selected to be the first 300 ms after an 
image was shown (0-300 ms), and the I2 interval is selected to be 300 to 800 ms after an 
image was shown (300-800 ms).  
 

Selection of I1 and I2 intervals is motivated by previous observations of visually 
evoked EEG responses during short-term memory tasks, including event-related potentials 
(ERPs), and the desire to have non-overlaying intervals. Neuronal changes in response to a 
visual stimulus presentation typically occur within 1 s after stimulus onset. An ERP known 
as P100 is also often referred to a P1 because it is the first positive-going component 
observed around 100-150 ms after the onset of visual stimuli. It is associated with 
perceptual difficulty and visual attention [44]. P1 is considered a visually evoked potential 
(VEP) due to its apparent relationship to visual stimuli. Its amplitude is maximized over the 
lateral occipital scalp and varies based on the attention paid to visual stimulation.  
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Similarly, P300 is often referred to as P3 because it is also a positive-going 
component observed around 300-600 ms after the onset of visual stimuli. P3 is considered 
to be an endogenous potential, meaning that its amplitude and timing are not related to the 
type of stimulus but rather the individual’s reaction to the stimulus. Its amplitude is 
typically maximized over the parietal area. Thus, the limits of the I1 and I2 intervals were 
chosen such that they encompass the possible ranges for the occurrence of P100 and P300 
ERPs, respectively. 
 
Event-Related Tsallis Entropy Functionals 
 
Regional Segregation of EEG Electrodes 

As discussed in Chapter 1, due to channel corruption and missing data only 25 
uncorrupted channels were available for all 30 of the WM1 Dataset’s EEG records.  The 
WM2 Dataset did not include any corrupted or missing channels. Thus, there were 30 
channels (32 channels excluding the 2 ocular channels) available for WM2 Dataset. Note 
that the 30 channels available for the WM2 Dataset included the 25 channels available for 
the WM1 Dataset. These 30 channels are divided into 6 recording regions corresponding to 
major regions of the cerebral cortex; see Fig. 2.1. The six regions include the central region 
(posterior frontal electrodes), anterior frontal region, left temporal region, occipital region, 
parietal region (central and parietal electrodes), and the right temporal region denoted by 
C, F, L, O, P, and R, respectively. Channels excluded from analysis of the WM1 Dataset are 
indicated in Fig.2.1.  

 
Tsallis Entropy Functionals 

Tsallis entropies are computed for I1 and I2 intervals corresponding to each event 
for all channels. Tsallis entropies are then averaged for each image type within each scalp 
region for each event-related interval. These regional averages are termed Tsallis entropy 
functionals (TEFs). Thus, for the WM1 Dataset, 6 old TEFs and 6 new TEFs are calculated 
for each of the 2 event-related intervals for a total of 24 TEFs per record. For the WM2 
Dataset, 6 target TEFs and 6 distractor TEFs are calculated for each of the 2 event-related 
intervals for a total of 24 TEFs per record.  

 
Discrimination of EEG Records 
 

The 24 TEFs are used as features for discrimination of TBI vs. NC EEG records (WM1 
Dataset) and MCI vs. NC EEG records (WM2 Dataset). Discrimination analyses are 
performed using support vector machine functions in MATLAB [88]. Feature selection is 
used to determine which TEFs best discriminate between categories of EEG records. 
Discrimination accuracy is assessed using leave-one-out cross-validation accuracy. 
 
Leave-One-Out Cross-Validation (LOOCV) 

Leave-one-out cross-validation (LOOCV) accuracy is determined as follows. For each 
record, a support vector machine model is trained using selected features from all other 
records. The model is then applied to the current record and the resulting categorical 
determination is recorded. This process is repeated for all records and the LOOCV accuracy 
is equal to the accuracy of recorded resulting categorical determinations. This is a rigorous  
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Fig. 2.1. Regional Boundaries for Electrodes. Note channels excluded for WM1 Dataset. C = 
central; F = frontal; L = left temporal; O = occipital; P = parietal; R = right temporal. 
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method of cross-validation and helps to ensure that results are more generalizable to other 
datasets. 
 
Support Vector Machine (SVM) 
 Support vector machines (SVMs) are a collection of techniques for pattern 
classification and nonlinear regression. SVMs have been widely applied in machine 
learning, optimization, statistics, neural networks, functional analysis, etc. The fundamental 
premise of SVM is to construct a hyperplane in a feature space to serve as the decision 
surface for separating data from two different categories. For convenience, two theoretical 
categories are denoted by +1 and -1. The objective in SVM analysis is to maximize the 
margin between positive and negative examples. Figure 2.2 shows a schematic 
representation of an optimized separation hyperplane for a 2D feature space. In case 
patterns are not separable, a nonlinear mapping can be applied to transform input data 
into a new feature space by means of a kernel function. Then, an optimal hyperplane can be 
constructed between the two categories in the new feature space. The data vectors that are 
nearest to the constructed hyperplane in the transformed space are known as support 
vectors. 
 

SVM analysis is based on the method of structural risk minimization. Consider a 
train set *(     )+ for         where input       and the associated output 
    *     +. Let   be a transformation mapping function. The aim is to find a separating 
hyperplane    ( )      such that   (   (  )   )       . The optimal separating 
hyperplane minimizes the cost function   (   )    . This constrained optimization 
problem can be solved using the method of Lagrange multipliers as present in Equation 
(3.5): 
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where the nonnegative auxiliary variables    are known as Lagrange multipliers. Solving 
this optimization problem using techniques such as a quadratic program leads to an SVM.  
 

For a given testing vector  , an inner-product kernel is defined as  (    )  
  ( ) (  )  Based on the form of the inner-product kernel, different vector machines can 
be generated, including linear learning machines, polynomial learning machines, and radial 
basis function machines. In the Tsallis entropy analyses presented in this work SVM 
analyses are performed using quadratic kernel functions and SVM functions in MATLAB 
[88]. The cost parameter, used for penalizing misclassifications during optimization, is held 
constant at unity. 

 
Feature Selection and Statistical Significance 
 To avoid overfitting and to increase robustness of analysis, nested LOOCV loops are 
used for feature selection and testing of selected features. The inner loop is used to 
generate a list of suggested combinations of up to eight features using a forward, 
supervised, high-score method of feature selection. The scores used are LOOCV accuracies  
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Fig. 2.2. Schematic Representation of SVM Classification of Two Categories Using a Linear 
Hyperplane in 2D Feature Space. Categories are denoted by +1 and -1, respectively. 
  
 
 
of SVM model simulations using a subset of records. The outer loop is used to determine 
the LOOCV accuracy of suggested features using all available records. For more details on 
forward, supervised, high-score feature selection, see work by Bishop [21]. 
 

The statistical significance of LOOCV accuracies obtained using selected TEFs is 
estimated using Monte Carlo permutation testing. Specifically, 10,000 permutations of 
shuffled labels are used to estimate 95% confidence intervals for the probabilities that the 
LOOCV accuracies obtained are due to chance. The p-values presented are determined 
using this method. For more on Monte Carlo permutation testing, see work by Thomas and 
Holmes [143]. 

 
 
 

Results for Discrimination of TBI and MCI 
Using Tsallis Entropy 

 
TBI vs. NC Results 
 

Two-sample student t-distribution tests (unequal variance) are performed on group 
means of all 24 TEFs in order to determine whether it can be statistically inferred that 
groups are linearly separable at the population level. Results for the WM1 Dataset are 
presented in Table 2.1. For the majority of TEFs, differences between group means are 
significant enough to statistically infer linear separability in the populations. Given the 
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small sample size, such inference requires large differences between group means and 
small variation within groups. It should be noted that such tests are dependent on the 
assumption of representative samples. 

 
A summary of the feature selection results for TBI vs. NC discrimination are 

presented in graphical form in Fig. 2.3, where a color scale is used to indicate the inclusion 
of given features in the best 200 performing combinations of features tested in outer loop 
simulations. For example, 100% would indicate that a given feature is included in all of the 
best 200 performing combinations; 50% indicates inclusion in half of the 200 best 
performing combinations; etc. As can be seen in Fig. 2.3, TEFs corresponding to I2 intervals 
of new image presentation events appear to best discriminate TBI records, most notably in 
the occipital (O) and right temporal (R) regions. In addition, TEFs corresponding to I2 
intervals of old image presentation events for the central (C) and right temporal (R) 
regions also appear to contribute markedly toward discriminating TBI. TEFs corresponding 
to I1 intervals do not appear to contribute as significantly to discrimination of TBI. 

 
Ultimately, the four TEFs with the highest inclusivity in the 200 best performing 

combinations are selected for further analyses. These TEFs are denoted as     
  ,     

  ,     
  , 

and     
  , where letter indicates region, superscript indicates event-related interval, and 

subscript indicates image type. Combinations of one to four of selected TEFs are tested, 
where combinations are increased by adding selected TEFs sequentially in order of their 
relative inclusivity ranking. Results for TBI vs. NC discrimination obtained using selected 
TEFs are presented in Table 2.2. A maximum LOOCV accuracy of 93.3% (p-value < 4.7716E-
4) is achieved using all four selected TEFs. 

 
MCI vs. NC Results 
 
 Results for two-sample student t-distribution tests (unequal variance) on TEF group 
means for the WM2 Dataset are presented in Table 2.3. For all 24 TEFs, differences in MCI 
and NC group means are significant enough to statistically infer linear separability in the 
populations. Feature selection results for MCI vs. NC discrimination are presented in 
graphical form in Fig. 2.4. The format of Fig. 2.4 is analogous to Fig. 2.3 for TBI vs. NC 
feature selection results. As can be seen in Fig. 2.4, TEFs corresponding to the left temporal 
(L) region are highly discriminatory for all event-related intervals. Additionally, the most 
highly discriminatory TEFs are those corresponding to I2 intervals of distractor image 
presentations in the parietal (P) and frontal (F) regions.  
 

Ultimately, the six TEFs clearly indicated in Fig. 2.4 as being highly discriminatory 
are selected for further analyses:     

  ,     
  ,     

  ,     
  ,     

  , and     
  . Combinations of one 

to six of selected TEFs are tested, where combinations are increased by adding selected 
TEFs sequentially in order of their relative inclusivity ranking. Results for MCI vs. NC 
discrimination obtained using selected TEFs are presented in Table 2.4. A maximum 
LOOCV accuracy of 81.8% (p-value < 0.0036) is achieved using only the three most highly 
inclusive TEFs selected via feature selection. The use of additional selected TEFs does not 
necessarily improve the overall accuracy of the discrimination. This is a phenomenon often 
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observed in SVM discrimination, which results from the fact that an additional dimension 
in the feature space can actually result in an optimized hyperplane with inferior accuracy. 

 
 
 
 

Table 2.1. Significance of TBI and NC Group Differences in TEFs 
 

TEFs   
Image/Interval Region Group means P-value 

old I1 

C TBI < NC <0.05 
F TBI > NC NS 
L TBI < NC <0.15 
O TBI > NC <0.05 
P TBI < NC NS 
R TBI < NC <0.05 

new I1 

C TBI < NC <0.05 
F TBI > NC NS 
L TBI < NC <0.15 
O TBI > NC <0.1 
P TBI < NC NS 
R TBI < NC <0.05 

old I2 

C* TBI < NC <0.05 
F TBI > NC NS 
L TBI < NC <0.15 
O TBI > NC <0.05 
P TBI > NC NS 

R* TBI < NC <0.1 

new I2 

C TBI < NC <0.05 
F TBI > NC <0.15 
L TBI < NC <0.15 

O* TBI > NC <0.05 
P TBI > NC <0.15 

R* TBI < NC <0.1 
*TEF selected via feature selection; NS = not significant 
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Fig. 2.3. TEF Feature Selection Results for TBI vs. NC Discrimination. Color scale indicates 
the inclusion of given features in the 200 best performing combinations. 

 
 
 
 

Table 2.2. TBI vs. NC Discrimination Results Using Selected TEFs 
 

# in  
combn. 

 
TEFs 

 
Acc. (Sens., Spec.)* 

 
95% CI for p-value 

1     
   60.0% (86.7%, 33.3%) (0.2500, 0.2672) 

2     
  ,     

   80.0% (86.7%, 73.3%) (0.0022, 0.0044) 
3     

  ,     
  ,     

   83.3% (80.0%, 86.7%) (0.0010, 0.0028) 
4     

  ,     
  ,     

  ,     
   93.3% (100%, 86.7%) (0, 4.7716E-4) 

*acc. = overall LOOCV accuracy; sens. = sensitivity or accuracy in TBI group; spec. = specificity or accuracy in 
NC group 

 
 
 



34 

 

 
Table 2.3. Significance of MCI, NC Group Differences in TEFs 

 

TEFs   
Image/Interval Region Group means P-value 

Target I1 

C MCI < NC <0.05 
F MCI > NC <0.1 
L* MCI < NC <0.05 
O MCI < NC <0.025 
P MCI < NC <0.025 
R MCI < NC <0.05 

Distractor I1 

C MCI < NC <0.05 
F MCI > NC <0.15 
L* MCI < NC <0.05 
O MCI < NC <0.025 
P MCI < NC <0.025 
R MCI < NC <0.05 

Target I2 

C MCI < NC <0.05 
F MCI > NC <0.1 
L* MCI < NC <0.1 
O MCI < NC <0.025 
P MCI < NC <0.05 
R MCI < NC <0.05 

Distractor I2 

C MCI < NC <0.05 
F* MCI > NC <0.15 
L* MCI < NC <0.15 
O MCI < NC <0.025 
P* MCI < NC <0.05 
R MCI < NC <0.05 

*TEF selected via feature selection 
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Fig. 2.4. TEF Feature Selection Results for MCI vs. NC Discrimination. Color scale indicates 
the inclusion of given features in the 200 best performing combinations. 

 
 
 

Table 2.4. MCI vs. NC Discrimination Results Using Selected TEFs 
 

# in  
combn. 

 
TEFs 

 
Acc. (Sens., Spec.)* 

95% CI for 
p-value 

1     
   66.7% (81.3%, 52.9%) (0.0606, 0.0702) 

2     
  ,     

   63.6% (56.3%, 70.6%) (0.1363,0.1501) 
3     

  ,     
  ,     

   81.8% (81.3%, 82.4%) (0.0016, 0.0036) 
4     

  ,     
  ,     

  ,     
   78.8% (81.3%, 76.5%) (0.0040, 0.0068) 

5     
  ,     

  ,     
  ,     

  ,     
   81.8% (81.3%, 82.4%) (0.0015, 0.0035) 

6     
  ,     

  ,     
  ,     

  ,     
  ,     

   81.8% (81.3%, 82.4%) (0.0025,0.0041) 
*acc. = overall LOOCV accuracy; sens. = sensitivity or accuracy in MCI group; spec. = specificity or accuracy in 
NC group 
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Discussion and Conclusions 
 

Several previous studies have used ERPs to reveal cortical deficits during cognitive 
tasks among TBI patients in both acute phase and weeks after the incident of injury [50]. 
Reduced ERP P300 amplitudes have been reported among TBI patients compared to 
normal controls during cognitive performance tasks (such as memory and attention tasks) 
[80,147]. En lieu of complex ERP analysis, which generally requires redundant protocols 
and multiple trials, the method present here using event-related Tsallis entropy 
demonstrates that analysis of EEG data from a single trial has the potential to successfully 
discriminate TBI vs. NC. The methodology presented may be used in future investigations 
to develop a simple and effective means for screening for and possibility evaluating the 
severity of TBI. 

 
Previous work by Sneddon et al. has demonstrated that event-related Tsallis 

entropy measures of EEG can be used to discriminate MCI from normal controls with 
accuracy comparable of PET scans. Sneddon et al. also reported that their approach 
appeared to be task specific [126]. The accuracy achieved using the current methodology 
and working memory matching task is comparable to the accuracy reported by Sneddon et 
al. Sneddon et al. investigated the ratio of frontal to parietal event-related Tsallis entropy. 
Interestingly, parietal and frontal TEFs also appear to be the best discriminating features 
for MCI in this study, specifically those corresponding to I2 intervals of distractor image 
presentation events. However, in addition to frontal and parietal TEFs, left temporal TEFs 
appear to be highly discriminatory regardless of the event-related interval or type of image 
being presented. 

 
The accuracy in discriminating TBI vs. NC and MCI vs. NC EEG records achieved by 

the methods presented here likely reflects underlying differences resulting from altered 
neural mechanisms in TBI and MCI brains during short-term memory recognition tasks. 
Results indicate that differences between TBI and NC groups’ responses are greater for the 
I2 event-related intervals, which correspond to the endogenous ERP P300. P300 is part of 
an autonomic response of the visual cortex and visual processing regions of the brain to 
visual stimuli. The ventral stream of the autonomic pathway of visual information 
processing in the brain is known to involve the occipital, central, parietal, right temporal, 
and ultimately frontal lobes [121]. Interestingly, the four TEFs that best discriminated TBI 
vs. NC EEG records include three of these five regions. The differences observed in the left 
temporal region of MCI participants may be indicative of an alteration in the organization 
of visual information processing in the brain due to neurodegeneration 

 
The reported injuries in the TBI participants were widespread across the brain. One 

limitation of this study is the lack of access to data to allow evaluation of the correlation 
between the areas of brain injury with TEF results. In a future study, examining 
participants with acute damage in a known area of the brain may be able to provide further 
insights into area-specific TBI. 

 
The results in this work demonstrate a strong correlation between Tsallis entropy-

based TEFs and the presence of moderate to severe TBI and MCI. Extensive numerical 
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analyses are carried out to investigate the influences of various parameters, including 
choice of different event-related intervals. Results suggest that a simple model based on 
SVM with a quadratic kernel function and the regional, event-related Tsallis entropy 
measures presented here may be a viable method for the development of a diagnostic 
screening tool for TBI or MCI. Since EEG is more convenient and much more cost effective 
than the gold standard imaging modalities, EEG-based techniques would allow for earlier 
medical intervention and therefore better prognoses for TBI and MCI patients.  

 
The current method cannot be readily applied to the clinical setting since it requires 

25-30 EEG channels and takes about 30 min to collect the data (including setup time). A 
shorter protocol and fewer electrodes would be required for more convenient application. 
In addition, a larger sample size and new test samples would also be needed to further 
validate the approach before it could be applied in a private practice setting. The approach 
presented here may have potential for indexing cognitive deficits due to neurological 
disorders in other clinical applications. 
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CHAPTER 3 
DISCRIMINATION OF TBI, MCI, AND AD  

USING MULTISCALE ENTROPY 
 
 

In this Chapter, an exploration of event-related Multiscale Entropy (MSE) measures 
as potential indicators of neurological disease is presented. The approach developed is 
applied toward the discrimination of TBI, MCI, and AD using EEG recorded during working 
memory tasks. The specific working memory task protocols for the TBI data and the MCI 
and AD data are similar, but differ in several respects; see Chapter 1 for details regarding 
data collection procedures. The Chapter begins with a review of the mathematical theory of 
MSE. Next, the methodology for computing event-related MSE measures is described. Later, 
the method is adapted for NER data in order to discriminate MCI and AD using EEG 
recorded during resting states and a simple cognitive task. Results for working memory 
and NER analyses are presented and discussed. For MCI and AD discrimination, NER results 
are compared to results obtained for event-related analyses.  
 
 

Mathematical Theory of Multiscale Entropy 
 

Premise of MSE Analysis 
 

MSE was first introduced as a tool for quantifying the complexity of a signal when 
considering several time series derived from the same original data [33]. The premise of 
MSE is based on the computation of entropy (Tsallis entropy, sample entropy, or 
approximate entropy) estimated on coarse-grained sequences, each of which represents 
the system dynamics of the original signal of interest on different time scales (coarseness 
parameters). Generally, sample entropy is the favored choice for computing the entropy of 
these coarse-grained time series due to two important attributes: (1) sample entropy is 
independent of the sequence length (for stationary time series), and (2) can be applied to 
relatively short, noisy datasets [113]. 
 
 In order to compute MSE values for a given one-dimensional time series 
  ,       -  one must first construct successive coarse-grained time series    
corresponding scale factors        . This is accomplished as follows. For a given scale 
 , the original time series   is divided into non-overlapping windows of length   and the 
values within each window are averaged. This process is summarized by Equation (3.1): 
 

  
  

 

 
∑   

  

  (   )   

       (   )  

 
where         and subscripts denote elements in the time series vectors. It should be 
readily apparent from the definition provided in Equation (3.1) that the coarse-grained 
times series    corresponding to scale factor     is simply the original signal  . 
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Moreover, the length of each coarse-grained time series is   times shorter than the original 
signal.  
 
Computing Sample Entropy 
 

Having constructed the coarse-grained time series from the original signal, the 
sample entropy of each is computed. Sample entropy measures the negative of the 
logarithmic conditional probability that sets of patterns that are “close” to each other 
(within a tolerance  ) for   contiguous points remain similar at the next point (also “close” 
for   + 1 data points). Note that self-matches are not included in calculating the 
probability. The more irregular the data, the larger the sample entropy value will be 
(sample entropy is non-negative) [114]. A code for computing sample entropy is provided 
below. See also work by Richman and Moorman, Costa et al., or Abásolo et al. [2,32,113]. 

 
 
 

% code for computing sample entropy 

X = N x 1 time series 

A = m x 1 vector of zeros % number of matches of length 1,…,m 

B = m x 1 vector of zeros % number of matches of length 1,…,m  

 % excluding last point 

C = N x 1 vector of zeros 

D = N x 1 vector of zeros 

for i = 1,…,N-1 

 for j = 1,…,N-i 

  k = i + j; 

  if |X(k)-X(i)| < r %tolerance test 

   D(j) = C(j) + 1; 

   for n = 1,…,min[m,D(j)] 

    A(n) = A(n) + 1; 

    if k < N 

     B(n) = B(n) + 1; 

    end 

   end 

  else 

   D(j)=0; 

  end 

 end 

 for j = 1,…,N-i 

  C(j)=D(j); 

end 

end  

probability = A(m) / B(m-1); 

sample entropy = -log(probability);  
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The values chosen for   and   are critical for the performance of MSE. Comparisons 
between time series can only be made when time series are the same length and values for 
  and   are constant. In order to avoid significant contribution to sample entropy due to 
noise,   must be greater than most of the noise in the original signal. In addition, if the 
tolerance level is set too low, estimation of sample entropy may fail (due to division by zero 
in computing probability) [42]. Typically, the accuracy and confidence for sample entropy 
improves as the tolerance   is increased and the length of matches   decreases (thereby 
increasing the number of matches of length   and   + 1) [82].  

 
It is often convenient to normalize the tolerance by the standard deviation of the 

original time series [32]. MSE profiles are sensitive to both variance and entropy because 
the effective filter,  , is fixed but not normalized for the estimation of sample entropy on 
scales   > 1 [97]. However, the entropy of a sequence depends both on its variance and 
correlation properties [33]. Furthermore, there is no straightforward relationship between 
variance and entropy for non-trivial signals [32,42]. Thus, the tolerance should not be 
normalized for each coarse-grained time series because the changes in variance contain 
information about the entire original signal [32].  

 
Previous researchers have applied MSE to the study of background activity of EEG in 

patients with AD [2,42]. These previous studies used the values   = 1 and   = 0.25 times 
the standard deviation of the original signal. These same values for   and   are used in 
computing MSE in this work. 
 
 
 

Methodology 
 

Selection of Event-Related Intervals 
 
Working Memory Datasets 

 The choice of events for both the TBI working memory dataset (WM1 Dataset) and 
the MCI and AD dataset (WM2 Dataset) are the same as described in Chapter 2 for event-
related Tsallis entropy analyses. Thus, a total of 140 events—70 corresponding to 
presentation of old images and 70 corresponding to presentation of new images—are 
present in the WM1 Dataset. For the WM2 Dataset, a total of 150 events are present—75 
corresponding to the presentation of target images and 75 corresponding to the 
presentation of distractor images. For each event, event-related intervals of 1 s are 
examined (0-1000 ms after presentation of image). The chosen window length is based on 
previous studies that VEPs tend to occur within 1 s after the presentation of visual stimuli 
[44]. See Chapter 2 for more information regarding common VEPs. 
 
Non-Event-Related Dataset 

For the non-event-related dataset (NER Dataset), which did not contain any events 
corresponding to the presentation of external stimuli, pseudo-events are defined as non-
overlapping windows of EEG. For simplicity of comparison between event- and non-event-
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related results, a window length of 1 s is chosen for NER pseudo-events. Previous studies 
that have investigated the transient, nonstationary nature of EEG, have also noted that the 
current behavior of EEG is relatively independent of EEG behavior 1 s previous. In other 
words, the majority of quasi-stationary segments in EEG (pseudo-events) have been 
observed to have durations less than 1 s [74]. 

 
As described in Chapter 1, the NER Dataset consisted of three separate protocol 

conditions: the REO condition, the counting task, and the REC condition. For each protocol 
condition, samples of 2 min duration are extracted for analyses. Given the definition of 
pseudo-events provided above, each 2-min sample contained 120 non-overlapping, 1-s 
pseudo-events. 
 
MSE Deviation Measures 
 
Deviations of Entropy-vs.-Scale (E-s) Curves  

For both MW1 and WM2 Datasets, MSE entropy-vs.-scale (E-s) curves are computed 
for selected visual stimulus events using intervals of 1 s duration (0-1000 ms after 
presentation of images). For the NER Dataset, for which no events were present, non-
overlapping, pseudo-events intervals of 1-s duration are examined. MSE E-s curves are 
computed for each pseudo-event.  

 
MSE values are calculated for scales   = 1,…,5 and entropy values are averaged 

across events for each scale, channel, and image type. Thus, for the event-related datasets 
WM1 and WM2, two E-s curves are computed for each channel: one corresponding to each 
image type (old/new for WM1 Dataset, target/distractor for WM2 Dataset). For the NER 
Dataset, only one E-s curve is calculated for each channel; however, this procedure is 
repeated for each of the three protocol conditions. 
 
 Average E-s curves are computed for each group (TBI, MCI, AD, and NC) of EEG 
records. Thus, for the WM1 Dataset, TBI and NC average E-s curves are computed for each 
channel and image type (e.g., FP1 old images, FP1 new images, etc.). For the WM2 Dataset, 
AD, MCI, and NC average E-s curves were computed for each channel and image type (e.g., 
FP2 target images, FP2 distractor images, etc.). For the NER Dataset, AD, MCI, and NC 
average E-s curves are computed for each channel, for each protocol condition (e.g. REO F3, 
counting task F3, REC F3, etc.). 
 
 Deviations of participants’ individual E-s curves from the group average E-s curves 
are computed for each scale. See Fig. 3.1 for an illustration of the deviations ( ) for an 
example participant’s data. For the WM1 Dataset, a ratio of the average absolute deviation 
of from the TBI average curve to the NC average curve is computed for each channel and 
image type. The formula for these ratios is presented in Equation (3.2): 
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where    denotes the image type (old/new),   denotes the channel (e.g., FP1, FP2, etc.), 
and   

     
denotes absolute deviation in entropy of the participant from group (TBI/NC) 

average entropy at scale  ; see Fig. 3.1 (a)-(b) for illustration of how deviation is 
determined for the WM1 Dataset for a given channel and image type. The ratios   

   are 
later used as features in SVM models for discrimination of TBI and NC EEG records. 
 
 Similar ratios are computed for the WM2 Dataset; however, the three groups of EEG 
records in the WM2 Dataset provide three binary classification problems: (1) MCI vs. NC, 
(2) AD vs. NC, and (3) MCI vs. AD. One ratio is computed for each binary classification 
problem, as presented in Equations (3.3)—(3.5): 
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See Fig. 3.1 (c)-(d) for illustration of how deviation is determined for the WM2 Dataset for a 
given channel and image type. The ratios    

   
 
  ,    

  
 
  ,    

   
 
   are later used as features 

in SVM models for the binary discrimination problems MCI vs. NC, AD vs. NC, and MCI vs. 
AD, respectively. 
 
 For the NER Dataset, ratios are computed for each channel and protocol condition. 
As was the case for the WM2 Dataset, the three groups of EEG records provide three binary 
discrimination problems. Thus, three different ratios are computed for each protocol 
condition corresponding to the particular binary discrimination problem. The formulas for 
these ratios are presented in Equations (3.6)—(3.8): 
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where     denotes the protocol condition (REO, counting task, REC); see Fig. 3.1 (e)-(g) for 
illustration of how deviation is determined for the NER Dataset for a given channel and 
protocol condition. The ratios    

   
 
  ,    

  
 
  ,    

   
 
   are later used as features in SVM 
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models for the binary discrimination problems MCI vs. NC, AD vs. NC, and MCI vs. AD, 
respectively. 
 

As discussed in Chapter 1, due to channel corruption and missing data only 25 
uncorrupted channels were available for all of the WM1 Dataset’s EEG records.  Both the 
WM2 Dataset and NER Dataset did not include any corrupted or missing channels. Thus, 
there were 30 channels (32 channels excluding the 2 ocular channels) available for both 
datasets containing MCI and AD EEG records. Note that the 30 channels available for the 
WM2 and NER Datasets included the 25 channels available for the WM1 Dataset. Channels 
excluded from analysis of the WM1 Dataset are indicated in Fig. 2.1.   

 
Since ratios are computed on an individual channel basis, there are a total of 50 

ratios for the WM1 Dataset—25 for old images and 25 for new images; 60 ratios for each 
binary discrimination problem for the WM2 Dataset—30 for target images and 30 for 
distractor images; and 90 ratios for each binary discrimination problem for the NER 
Dataset—30 for the REO condition, 30 for the counting task, and 30 for REC condition. 
 
Discrimination of EEG Records 
 

Feature selection is used to determine which features best discriminate between 
groups of EEG records. To avoid overfitting and to increase robustness of analysis, nested 
LOOCV loops are used for feature selection and testing of selected ratios. The inner loop 
generates a list of suggested combinations of ratios using a forward, supervised, high-score 
feature selection method where combinations are scored using LOOCV accuracy of SVM 
model predictions based on a smaller subset of records. The outer loop then determines 
the LOOCV accuracy of the combinations of ratios suggested by the inner loop for all 
records. Specifically, combinations of up to six channels/ratios are tested. The contribution 
of individual ratios is assessed based on how often they appear in the best 200 performing 
combinations tested in the outer loop simulations. A set of ratios is then selected based on 
relative inclusivity in the best 200 performing combinations. All SVM simulations are 
performed using quadratic kernel functions and the cost coefficient is held constant at 
unity. See Chapter 2 for more details concerning LOOCV and SVM. 
  

The statistical significance of LOOCV accuracies obtained using selected ratios is 
evaluated using Monte Carlo permutation testing. Ten thousand permutations of shuffled 
labels are used to estimate 95% confidence intervals for the probabilities that the LOOCV 
accuracies obtained are due to chance. The p-values presented are determined using this 
method. For more information regarding Monte Carlo permutation testing see work by 
Thomas and Holmes [143]. 
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Fig. 3.1. Illustration of MSE Deviation from Average E-s Curves. (a) WM1 Dataset old images; (b) WM1 Dataset new images; (c) 
WM2 Dataset target images; (d) WM2 Dataset distractor images; (e) NER Dataset resting with eyes open condition; (f) NER 
Dataset counting with eyes closed condition; NER Dataset resting with eyes closed condition. All plots are for channel FP1. 
Here,     denotes deviation from NC average curve;      denotes deviation from TBI average curve; and      denotes 
deviation from MCI average curve;     denotes deviation from AD average curve.
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Results for Discrimination of TBI, MCI, and AD 
Using MSE Ratios 

 
TBI vs. NC Working Memory Results 

 
TBI vs. NC LOOCV discrimination accuracies for individual ratios are presented in a 

graphical format in Fig. 3.2. The color scale indicates the accuracy. As demonstrated in the 
figure, accuracies of 70-80% are possible using only the ratios of relative distance between 
E-s curves of individual channels. For old images, there appears to be large differences in 
the E-s curves for channels in the posterior parietal and frontotemporal regions of the 
scalp. For new images, the largest differences are observed in the channels of the central 
region of the scalp; see Fig. 2.1 for general regional scalp boundaries. 

 
A summary of the feature selection results is presented in Fig. 2.3, where a color 

scale is used to indicate the inclusion of given features in the 200 best-performing feature 
combinations. For example, 100% would indicate that a given ratio is included in all of the 
200 best performing feature combinations; 50% indicates inclusion in half of the 200 best 
performing feature combinations; etc. As can be seen in Fig. 3.3, five to six ratios are clearly 
highlighted as being highly discriminatory (highly inclusive). The five ratios with greatest 
inclusivity are selected and tested in combination using a quadratic SVM model. 
Specifically, these ratios are, in descending rank of performance,    

   ,    
   ,    

   ,    
   , and 

   
   . The results are summarized in Table 3.1. An accuracy of 93.3% (p-value <4.910E-6) is 

achieved using the five selected ratios in combination. Recall that the 95% confidence 
intervals for p-values presented in Table 3.1 for LOOCV accuracies are estimated using 
Monte Carlo permutation testing. 
 
 
 

Table 3.1. TBI vs. NC Discrimination Results Using Selected MSE Ratios 
 

# in  
combn. 

 
Ratios 

 
Acc. (Sens., Spec.)* 

95% CI for 
p-value 

1    
    73.3% (73.3%, 73.3%) (0.0293, 0.0359) 

2    
   ,    

    83.3% (73.3%, 93.3%) (0.0004,0.0011) 
3    

   ,    
   ,    

    80.0% (73.3%, 86.7%) (0.0021, 0.0043) 
4    

   ,    
   ,    

   ,    
    90.0% (86.7%, 93.3%) <1.115E-4 

5    
   ,    

   ,    
   ,    

   ,    
    93.3% (86.7%, 93.3%) <4.910E-6 

*acc. = overall leave-one-out cross-validation accuracy; sens. = sensitivity or accuracy in 
TBI group; spec. = specificity or accuracy in NC group 
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Fig. 3.2. TBI vs. NC LOOCV Accuracies for MSE Ratios. As can be seen in the figure, for old 
images, the majority of differences are observed in channels of the posterior parietal and 
frontotemporal regions. For new images, the differences are more widespread. 
 
 
 
MCI and AD Working Memory Results 
 
MCI vs. NC 

MCI vs. NC working memory LOOCV discrimination accuracies for individual ratios 
are presented in a graphical format in Fig. 3.4. Accuracies of 60-75% are possible using 
only the ratios of the average relative distance to MCI and NC E-s curves for individual 
channels. For target images, the majority of differences are observed in channels of the 
occipital, frontal, and central regions. For distractor images, differences are concentrated in 
channels of the central and frontal regions. 

 
The feature selection results are presented in Fig. 3.5, where a color scale is used to 

indicate the inclusion of given features in the 200 best-performing feature combinations. 
Five ratios are clearly highlighted in Fig. 3.5 as being highly discriminatory (highly 
inclusive). Note that target image ratios of channels in the frontal and anterior parietal 
regions appear to best discriminate MCI and NC participants. The five highlighted ratios are  
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Fig. 3.3. MSE Feature Selection Results for TBI vs. NC. Color scale indicates the inclusion of 
given features in the 200 best performing combinations for the given protocol condition. 
 
 
 
selected and tested in combination using a quadratic SVM model. Specifically, these ratios 

are, in descending rank of performance,    
   

   
      

,    
   

   
      

,    
   

   
      

,    
   

  
      

, and 

   
   

  
      

. Note that only ratios for target images are selected. The results are summarized 
in Table 3.2. An accuracy of 87.9% (p-value <1.322E-4) is achieved using the first four 
selected ratios. Confidence intervals for p-values are estimated using Monte Carlo 
permutation testing 
 
AD vs. NC 

AD vs. NC working memory LOOCV discrimination accuracies for individual ratios 
are presented in a graphical format in Fig. 3.6. As shown in Fig. 3.6, accuracies of 60-80% 
are possible using only the ratios of the average relative distance to AD and NC E-s curves 
for individual channels. As can be seen in Fig. 3.6, for target images, the majority of 
differences are observed in channels of the occipital, frontal, and central regions. For 
distractor images, differences are observed in channels of the central and frontal regions. 
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The feature selection results are presented in Fig. 3.7. The color scale indicates the 
inclusion of given features in the 200 best-performing feature combinations.  Note that only 
two ratios are highlighted and the majority of ratios have poor inclusivity. Thus, the feature 
selection process is unsuccessful in suggesting a robust set of ratios for discrimination 
analyses. Instead, the five ratios with the best performance on an individual basis (Fig. 3.6) 

are selected. Specifically, these ratios are, in descending rank of performance,    
  

  
      

, 

   
  

  
        ,    

  
  
        ,    

  
   
        , and    

  
   
      

. LOOCV discrimination results are 

summarized in Table 3.3. An accuracy of 88.9% (p-value <2.886E-5) is achieved using the 
first two selected ratios. The results displayed in Table 3.3 are a great illustration of the fact 
that the use of additional features does not necessarily improve the performance of an SVM 
classifier. Confidence intervals for p-values are estimated using Monte Carlo permutation 
testing. 
 
AD vs. MCI 

Results for AD vs. MCI working memory LOOCV discrimination of individual ratios 
are presented in a graphical format in Fig. 3.8. Accuracies of 70-80% are possible using 
only the ratios of the average relative distance to AD and MCI E-s curves for individual 
channels. As can be seen in the figure, high accuracies are achieved using ratios from 
various regions of the scalp for both target and distractor images. 

 
Figure 3.9 presents the feature selection results, where a color scale is used to 

indicate the inclusion of given features in the 200 best-performing feature combinations. 
Five ratios are clearly highlighted in Fig. 3.9 as being highly discriminatory (highly 
inclusive). These channels are located in the frontal and parietal regions of the scalp. The 
five highlighted ratios are selected and tested in combination using a quadratic SVM model. 

Specifically, these ratios are, in descending rank of performance,     
  

  
      

,     
  

   
        , 

    
  

  
      

,     
  

  
      

, and     
  

  
      

. The results are summarized in Table 3.4. An 
accuracy of 92.3% (p-values <4.910E-6) is achieved using the first four selected ratios. 
Confidence intervals for p-values are estimated using Monte Carlo permutation testing. 
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Fig. 3.4. MCI vs. NC LOOCV Accuracies for Working Memory MSE Ratios. As can be seen in 
the figure, for target images, the majority of differences are observed in channels of the 
occipital, frontal, and central regions. For distractor images, differences are concentrated in 
channels of the central and frontal regions. 
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Fig. 3.5. Working Memory MSE Feature Selection Results for MCI vs. NC. Color scale 
indicates the inclusion of given features in the 200 best performing combinations for the 
given protocol condition. Note that target image ratios of channels in the frontal and 
anterior parietal regions appear to best discriminate MCI and NC participants. 
 
 
Table 3.2. MCI vs. NC Discrimination Results Using Selected Working Memory MSE Ratios 

 

# in  
combn. 

 
Ratios 

 
Acc. (Sens., Spec.)* 

95% CI for 
p-value 

1    
   

   
      

 72.7% (68.8%, 76.5%) (0.0245, 0.0300) 

2    
   

   
      

    
   

   
      

 78.8% (87.5%, 70.6%) (0.0020,0.0031) 

3    
   

   
      

    
   

   
      

    
   

   
      

 81.8% (93.8%, 70.6%) <7.980E-4 

4    
   

   
      

    
   

   
      

    
   

   
      

  

   
   

  
      

 

87.9% (93.8%, 82.4%) <1.322E-4 

5    
   

   
      

    
   

   
      

    
   

   
      

  

   
   

  
      

    
   

  
      

 

84.9% (93.8%, 76.5%) <3.176E-4 

*acc. = overall LOOCV accuracy; sens. = sensitivity or accuracy in MCI group; spec. = specificity or accuracy in 
NC group 
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Fig. 3.6. AD vs. NC LOOCV Accuracies for Working Memory MSE Ratios. As can be seen in 
the figure, for target images, the majority of differences are observed in channels of the 
frontal and parietal regions. For distractor images, differences are concentrated in channels 
of the central, parietal, and frontal regions. 
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Fig. 3.7. Working Memory MSE Feature Selection Results for AD vs. NC. Color scale 
indicates the inclusion of given features in the 200 best performing combinations for the 
given protocol condition. Results from feature selection are poor, with only two to three 
ratios suggested. Ratios were selected based on individual performance instead.  
 
 

Table 3.3. AD vs. NC Discrimination Results Using Selected Working Memory MSE Ratios 
 

# in  
combn. 

 
Ratios 

 
Acc. (Sens., Spec.)* 

95% CI for 
p-value 

1    
  

  
      

 77.8% (80.0%, 76.5%) (0.0056, 0.0101) 

2    
  

  
      

    
  

  
         88.9% (90.0%, 88.2%) <2.886E-5 

3    
  

  
      

    
  

  
            

  
  
         88.9% (90.0%, 88.2%) <3.732E-5 

4    
  

  
      

    
  

  
            

  
  
          

    
  

   
         

77.8% (80.0%, 76.5%) (0.0026,0.0052) 

5    
  

  
      

    
  

  
            

  
  
          

    
  

   
            

  
   
      

 

74.1% (70.0%, 76.5%) (0.0273,0.0131) 

*acc. = overall leave-one-out cross-validation accuracy; sens. = sensitivity or accuracy 
in AD group; spec. = specificity or accuracy in NC group 
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Fig. 3.8. AD vs. MCI LOOCV Accuracies for Working Memory MSE Ratios. As can be seen in 
the figure, high accuracies are achieved using ratio from various regions of the scalp for 
both target and distractor images. 
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Fig. 3.9. Working Memory MSE Feature Selection Results for AD vs. MCI. Color scale 
indicates the inclusion of given features in the 200 best performing combinations for the 
given protocol condition. Note that target image ratios of channels in the frontal and 
anterior parietal regions appear to best discriminate MCI and NC participants.  
 
 
Table 3.4. AD vs. MCI Discrimination Results Using Selected Working Memory MSE Ratios 

 

# in  
combn. 

 
Ratios 

 
Acc. (Sens., Spec.)* 

95% CI for 
p-value 

1     
  

  
      

 80.8% (81.3%, 80.0%) (0.0024, 0.0029) 

2     
  

  
      

     
  

   
         84.6% (87.5%, 80.0%) <8.016E-4 

3     
  

  
      

     
  

   
             

  
  
      

 88.5% (93.8%, 80.0%) <3.732E-5 

4     
  

  
      

     
  

   
             

  
  
      

  

    
  

  
      

 

92.3% (100%, 80.0%) <4.910E-6 

5     
  

  
      

     
  

   
             

  
  
      

  

    
  

  
      

     
  

  
      

 

80.8% (93.8%, 60.0%) (0.0099,0.0273) 

*acc. = overall LOOCV accuracy; sens. = sensitivity or accuracy in MCI group; spec. = specificity or accuracy in AD 
group 
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MCI and AD Non-event-related Results 
 
MCI vs. NC 

MCI vs. NC NER leave-one-out cross-validation discrimination accuracies for 
individual ratios are presented in a graphical format in Fig. 3.10. Accuracies of up to 75% 
are possible using only the individual ratios. For the REO condition, differences are greatest 
for the occipital, frontotemporal, central, and parietal regions. Differences are widespread 
and more varied during the counting task. During the REC condition, differences are again 
seen the occipital, frontotemporal, and parietal regions. 

 
Feature selection results are presented in Fig. 3.11, where a color scale is used to 

indicate the inclusion of given features in the 200 best-performing feature combinations. 
Three ratios are clearly highlighted (black bars) in Fig. 3.10; however, 10-12 are ratios also 
have relatively high inclusivity (gray bars). Note that most of the highly inclusive ratios 
(ratios that perform best in combination) belong to the REO protocol condition. Ultimately, 
the five ratios with the highest inclusivity are selected and tested in combination using a 
quadratic SVM model. Specifically, these ratios are, in descending rank of performance, 

   
   

  
       

   
   
       

   
   
        

    
   

   
     and    

   
  
   . The results are summarized in Table 

3.5. An accuracy of 80.7% (p-value <0.0028) is achieved using the first three selected 
ratios. Confidence intervals for p-values are estimated using Monte Carlo permutation 
testing 
 
AD vs. NC 

AD vs. NC NER leave-one-out cross-validation discrimination accuracies for 
individual ratios are presented in a graphical format in Fig. 3.12. Accuracies of 50-60% are 
achieved with only individual ratios. As can be seen in the figure, for the REO condition, 
high accuracies are achieved for ratios of channels in the frontotemporal, parietal, and 
occipital regions. Well-performing ratios for the counting task and REC condition are more 
varied. 

 
The feature selection results are presented in Fig. 5.13. The color scale indicates the 
inclusion of given features in the 200 best-performing feature combinations.  Five ratios 
are clearly highly inclusive in the best-performing combinations. Specifically, these ratios 

are, in descending rank of performance,    
  

   
        

    
  

  
       

  
  
       

  
   
     and 

   
  

   
        

. LOOCV discrimination results are summarized in Table 3.6. An accuracy of 

87.5% (p-value <1.322E-4) is achieved using the first four selected ratios. Confidence 
intervals for p-values are estimated using Monte Carlo permutation testing. 
 
AD vs. MCI 

Results for AD vs. MCI NER leave-one-out cross-validation discrimination of 
individual ratios are presented in a graphical format in Fig. 3.14. Individual ratios achieve 
accuracies of up to 65%. For the REO condition, high accuracies are achieved for ratios of 
channels in the frontotemporal and frontal regions. Well-performing ratios for the counting 



 

56 
 

task and REC condition are more varied but do include occipital channels, which the REO 
condition did not. 
 

Figure 3.9 presents the feature selection results, where a color scale is used to 
indicate the inclusion of given features in the 200 best-performing feature combinations. 
Five ratios are clearly highlighted in Fig. 3.9 as being highly discriminatory (highly 
inclusive). The five highlighted ratios are selected and tested in combination using a 
quadratic SVM model. Specifically, these ratios are, in descending rank of performance, 

    
  

  
        

,     
  

   
   ,     

  
  
   ,     

  
   
   , and     

  
   
        

. The results are summarized in 

Table 3.7. An accuracy of 90.9% (p-value <2.788E-5) is achieved using the first four 
selected ratios. Confidence intervals for p-values are estimated using Monte Carlo 
permutation testing. 
 
 

 
Fig. 3.10. MCI vs. NC LOOCV Accuracies for NER MSE Ratios. REO = resting, eyes open 
protocol; REC = resting, eyes closed protocol; EC = eyes closed. As can be seen in the figure, 
for the REO protocol, differences were greatest for the occipital, frontotemporal, central, 
and parietal regions. Differences were widespread and more varied during the counting 
task. During the REC protocol, differences were again seen the occipital, frontotemporal, 
and parietal regions.  
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Fig. 3.11. NER MSE Feature Selection Results for MCI vs. NC. Color scale indicates the 
inclusion of given features in the 200 best performing combinations for the given protocol 
condition. REO = resting, eyes open protocol; REC = resting, eyes closed protocol; EC = eyes 
closed. Note that ratios for the REO protocol appear to best discriminate MCI and NC 
participants. 
 
 

Table 3.5. MCI vs. NC Discrimination Results Using Selected NER MSE Ratios 
 

# in  
combn. 

 
Ratios 

 
Acc. (Sens., Spec.)* 

95% CI for 
p-value 

1    
   

  
    74.2% (81.3%, 66.7%) (0.0272, 0.0359) 

2    
   

  
       

   
   
    71.0% (87.5%, 53.3%) (0.0591,0.0647) 

3    
   

  
       

   
   
       

   
   
        

 80.7% (87.5%, 73.3%) (0.0018,0.0028) 

4    
   

  
       

   
   
       

   
   
        

  

   
   

   
    

80.7% (87.5%, 73.3%) (0.0010,0.0018) 

5    
   

  
       

   
   
       

   
   
        

  

   
   

   
       

   
  
    

80.7% (87.5%, 73.3%) (0.0002,0.0015) 

*acc. = overall LOOCV accuracy; sens. = sensitivity or accuracy in MCI group; spec. = 
specificity or accuracy in NC group 
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Fig. 3.12. AD vs. NC LOOCV Accuracies for NER MSE Ratios. REO = resting, eyes open 
protocol; REC = resting, eyes closed protocol; EC = eyes closed. As can be seen in the figure, 
for the REO protocol, high accuracies are achieved for ratios of channels in the 
frontotemporal, parietal, and occipital regions. Well-performing ratios for the counting task 
and REC protocol are more varied. 
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Fig. 3.13. NER MSE Feature Selection Results for AD vs. NC. Color scale indicates the 
inclusion of given features in the 200 best performing combinations for the given protocol 
condition. REO = resting, eyes open protocol; REC = resting, eyes closed protocol; EC = eyes 
closed.  
 
 

Table 3.6. AD vs. NC Discrimination Results Using Selected NER MSE Ratios 
 

# in  
combn. 

 
Ratios 

 
Acc. (Sens., Spec.)* 

95% CI for 
p-value 

1    
  

   
        

 68.8% (47.1%, 93.3%) (0.0319 0.0755) 

2    
  

   
        

    
  

  
    75.0% (58.8%, 93.3%) (0.0091,0.0099) 

3    
  

   
        

    
  

  
       

  
  
    84.4% (76.5%, 93.3%) <7.980E-4 

4    
  

   
        

    
  

  
       

  
  
     

   
  

   
    

87.5% (82.4%, 93.3%) <1.322E-4 

5    
  

   
        

    
  

  
       

  
  
     

   
  

   
       

  
   
        

 

75.0% (64.7%, 86.7%) (0.0073,0.0087) 

*acc. = overall LOOCV accuracy; sens. = sensitivity or accuracy in AD group; spec. = specificity or 
accuracy in NC group 
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Fig. 3.14. AD vs. MCI LOOCV Accuracies for NER MSE Ratios. REO = resting, eyes open 
protocol; REC = resting, eyes closed protocol; EC = eyes closed. As can be seen in the figure, 
for the REO protocol, high accuracies are achieved for ratios of channels in the 
frontotemporal and frontal regions. Well-performing ratios for the counting task and REC 
protocol are more varied but do include occipital channels, which the REO protocol did not. 
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Fig. 3.15. NER MSE Feature Selection Results for AD vs. MCI. Color scale indicates the 
inclusion of given features in the 200 best performing combinations for the given protocol 
condition. REO = resting, eyes open protocol; REC = resting, eyes closed protocol; EC = eyes 
closed.  
 
 

Table 3.7. AD vs. MCI Discrimination Results Using Selected NER MSE Ratios 
 

# in  
combn. 

 
Ratios 

 
Acc. (Sens., Spec.)* 

95% CI for 
p-value 

1     
  

  
        

 63.6% (81.3%, 47.1%) (0.2153, 0.2990) 

2     
  

  
        

     
  

   
    81.8% (81.3%, 82.4%) <8.016E-4 

3     
  

  
        

     
  

   
        

  
  
    87.9% (87.5%, 88.2%) <1.883E-4 

4     
  

  
        

     
  

   
        

  
  
     

    
  

   
    

90.9% (87.5%, 94.1%) <2.788E-5 

5     
  

  
        

     
  

   
        

  
  
     

    
  

   
        

  
   
        

 

84.9% (87.5%, 82.4%) <6.603E-4 

*acc. = overall LOOCV accuracy; sens. = sensitivity or accuracy in MCI group; spec. = specificity or accuracy in 
AD group 
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Discussion and Conclusions 
 

Observations for TBI 
 

Previous research has shown the capability of ERPs recorded during cognitive tasks 
to reveal cognitive deficits in both the acute and long-term recovery process of TBI. ERP 
analysis, however, generally requires redundant protocols and multiple trials, making ERP 
studies inconvenient. In contrast, the MSE method presented here allows for meaningful 
data to be extracted from a single trial. 

 
As discussed in Chapter 2, previous work by Sneddon et al. has demonstrated that 

event-related entropy measures of EEG can be used to discriminate MCI from normal 
controls with accuracy comparable of PET scans, and that the accuracy is dependent on the 
cognitive task employed [126]. The use of ratios of the distances from group average MSE 
curves presented here is capable of achieving high levels of accuracy (93.3%), comparable 
to the accuracy reported by Sneddon et al. Interestingly, the selected ratios selected via 
feature selection are from channels located in the frontal and posterior parietal regions of 
the scalp. In their work, Sneddon et al. investigated the ratio of frontal to parietal event-
related Tsallis entropy, noting that EEG from those two regions appeared to contain more 
diagnostically relevant entropy changes in response to visual stimuli [126]. 
 

The accuracy in discriminating TBI vs. NC EEG records achieved likely reflects 
underlying differences resulting from altered neural mechanisms in TBI brains during 
short-term memory recognition tasks. The ventral stream of the autonomic pathway of 
visual information processing in the brain is known to involve the occipital, central, 
parietal, right temporal, and ultimately frontal lobes [121]. The parietal lobe is a hub of 
neural connections in the brain. Information from visual stimuli passes from the eyes, to 
the occipital lobe, and then to the parietal lobe before branching out into the sensory-
motor cortex, temporal lobes, and frontal lobe [121]. Any observable differences in the 
parietal lobe may indicative of differences in brain functional organization. Furthermore, 
the frontal lobe is involved in the contextualizing and analysis of visual information and the 
temporal lobes are involved in emotion and memory. Keeping these facts in mind, it is 
interesting to observe that ratios of channels in the frontotemporal and parietal regions of 
the scalp achieved high LOOCV accuracies for old (studied) images. 

 
The results in this work demonstrate a strong relationship between event-related 

MSE measures and the presence of moderate to severe TBI. Results suggest that a simple 
model based on SVM with a quadratic kernel function and the MSE measures presented 
here may be a viable method for the development of a diagnostic screening tool for 
evaluation of TBI during the recovery process. 

 
The reported injuries in the TBI participants were widespread across the brain. One 

limitation of this study is the lack of access to data to allow evaluation of the correlation 
between the areas of brain injury with MSE results. A future study examining participants 
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with acute damage in a known area of the brain may be able to provide further insights into 
area-specific TBI. 
 
Comparison of Event-related and NER Results for MCI and AD 
 
MCI vs. NC 

For both the working memory protocol and the NER data, individual ratios are 
capable of achieving LOOCV accuracies in the 60-75% range for MCI vs. NC discrimination. 
For the working memory task, ratios corresponding to channels in the occipital, frontal, 
and central regions (target images) perform the best. Ratios of channels in the 
frontotemporal and parietal regions also perform well during both of the resting protocols. 
An accuracy of 87.9% (p-value <1.322E-4) is achieved for the working memory task, while 
an accuracy of only 80.7% (p-value <0.0028) is achieved for the NER protocols.  
 
AD vs. NC 

AD vs. NC LOOCV discrimination accuracies of individual ratios are very high for the 
working memory protocol (up to 80%) compared to those achieved for the NER protocols 
(up to 60%). The feature selection process performs poorly for the working memory data 
(likely due to the fact that so many ratios perform well individually). Ultimately, the five 
ratios with the highest individual performance are selected. Well-performing ratios in the 
working memory task corresponded to channels in the frontal and central regions for both 
image types. For the REO condition, the best performing ratios corresponded to the 
frontotemporal, parietal, and occipital regions. For the eyes closed protocols, regions do 
not cluster well-performing ratios. An accuracy of 88.9% (p-value <2.886E-5) is achieved 
for the working memory task using the first two selected ratios.  A comparable accuracy of 
87.5% (p-value <1.322E-4) is achieved for the NER data using the first four selected ratios. 
 
AD vs. MCI 

Working memory ratios perform better individually for AD vs. MCI discrimination 
than those derived from NER data. Working memory ratios are capable of achieving LOOCV 
accuracies in the 70-80% range vs. the 50-65% range achieved by NER ratios. The best-
performing working memory ratios correspond to channels in various regions across the 
scalp. For the REO condition, the well-performing ratios correspond to channels in the 
frontotemporal and frontal regions. During the eyes closed protocols, the corresponding 
channels are again in various regions. An accuracy of 92.3% (p-values <4.910E-6) is 
achieved using the first four selected working memory ratios. A comparable accuracy of 
90.9% (p-value <2.788E-5) is achieved using the first four selected NER ratios. While the 
NER ratios perform more poorly on an individual basis, the accuracy improves dramatically 
with combinations of only two are considered. 

 
The high accuracy achieved here in discriminating between MCI and NC is 

encouraging as there is great interest in being able to detect cognitive decline that may be 
associated with AD at the earliest stages. The results of this work suggest the potential for 
the use of MSE complexity features representing scalp electrical activity as a means for 
objectively discriminating between normal, MCI, and AD participants. The current method 
cannot be readily applied to the clinical setting since it requires 25-30 EEG channels and 
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takes about 30 minutes to collect the data (including setup time) for the working-memory 
(event-related) approach. While the validity of the approach has been demonstrated for 
MCI and AD using a shorter protocol and NER EEG, the same was not performed for TBI. In 
addition, fewer electrodes would be ideal for more convenient application. Another 
shortcoming of the current studies is the need for a larger sample size. Furthermore, new 
test samples would also be needed to further validate the approach before it could be 
applied in a private practice setting. The methodology presented may be used in future 
investigations to develop simple and effective means for evaluating the recovery of TBI and 
the detection of MCI and early-stage AD in the primary care setting. 
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CHAPTER 4 
NER DISCRIMINATION OF MCI AND AD  

USING TRANSFER ENTROPY 
 
 

In this Chapter, a method for quantifying the inter-channel, causal transfer of 
information in EEG for discrimination of MCI and AD is presented. The EEG records used in 
this study were recorded during resting states and a simple cognitive task (NER Dataset); 
see Chapter 1 for more details regarding data collection procedures. This Chapter begins 
with an introduction to the mathematical theory transfer entropy. Next, the methodology 
for developing intra- and inter-regional transfer entropy measures capable of 
characterizing differences in MCI and AD are described. Finally, results obtained for 
discrimination of MCI and AD EEG records are presented and discussed.  
 
 
 

Mathematical Theory of Transfer Entropy 
 
Mutual Information 
 
 Recall from Chapter 2 that information can be defined mathematically as that which 
decreases uncertainty [125]. Entropy, being a measure of the uncertainty in a system, can 
therefore be used to mathematically quantify the basic amount of information in a time 
series [125]. For example, the average number of bits required to optimally encode 
independent samples of a discrete variable  , which follows a probability distribution 
function   , is given by the classical definition for Shannon entropy, as presented in 
Equation (2.1) and modified for the specific random variable   in Equation (4.1): 
 

    ∑  (  )     ,  (  )-

 

   

      (   ) 

 
where the sum extends over all possible states    (       ) the random variable   can 
assume. The base of the logarithm depends only on the units used for measuring 
information; thus, it will be dropped in further equations. If a different distribution is used, 
there will be an excess number of bits and the information will not be optimally encoded 
[118]. The excess number of bits that will be encoded if a different distribution function   is 
used is given by the Kullback entropy   as presented in Equation (4.2) [79]: 
 

   ∑  (  )    [
  (  )

 (  )
]

 

   

     (   ) 

 
 The mutual information of two random variables   and   with joint probability 
distribution function      can be viewed as the excess amount of code produced when the 
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two variables are assumed to be independent. That is, assuming     (     ) =   (  )  (  ). 

Mutual information     between the variables   and   is thus the Kullback entropy given 

the assumption of independence between the two variables, as presented in Equation (4.3): 
 

    ∑∑    (     )    *
    (     )

  (  )  (  )
+

 

   

 

   

    (   ) 

 
where the random variable   can assume states    (       ). Mutual information thus 

provides an intuitive means for quantifying the deviation from independence of two 
random variables. Note that mutual information     is symmetric under the exchange of   

and   and therefore does not contain any information regarding the directional transfer of 
information (causality). 
 
Transfer Entropy 
 
 Suppose that the variables   and   are generated by two separate but coupled 
systems. An entropy rate    can be defined as the amount of additional information 
required to represent the current value    of the random variable   given the value of both 
variables at an observation   steps in the past, as presented in Equation (4.4): 
 

     ∑ ∑ ∑              
(            )    [             

(            )]

          

      (   ) 

 
where              

 is the joint probability function for the observations   ,     , and     , 

and              
 is the conditional probability function for    given      and     . Further 

suppose that the value of the current observation    of the random variable   is 
independent of the value of the random variable   observed   steps in the past (    ). The 
entropy rate in this case would then reduce to Equation (4.5): 
 

     ∑ ∑ ∑              
(            )    [        

(       )]

          

      (   ) 

 
where         

 is the conditional probability function for    given     . The incorrectness 

of this assumption can then be express as the difference       between the two entropy 
rates presented in Equation (4.4) and (4.5). This difference in entropy is then termed 
transfer entropy     

 , and is presented in Equation (4.6) [118]: 

 

    
  ∑ ∑ ∑              

(            )    *
             

(            )

        
(       )

+     (   )
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Substituting the definitions for the conditional probabilities given in Equations (4.7)—
(4.8), Equation (4.6) reduces to Equation (4.9): 
 

             
(            )  

             
(            )

          
(         )

        (   ) 

 

        
(       )  

        
(       )

  (  )
        (   ) 

 
    

   

∑ ∑ ∑              
(            )    *

             
(            )  (  )

          
(       )        

(       )
+

          

     (   ) 

 
where           

 is the joint probability of variables      given     , and         
 is the 

joint probability of variables     and     . The transfer entropy     
  is explicitly not 

symmetric since it measures the degree of dependence of   on   and not vice versa. Thus, 
    

      
 . 

  
Generally, transfer entropy is computed for binary sequences, where time series 

data   and   are converted to binary symbolic sequences   and   using a simple threshold 
method as discussed in detail in Chapter 5. The most usual means to do this is to convert 
each signal into a 1/0 symbolic sequence by comparing the signal to the median value of 
each signal; a signal is larger than its median value, one maps the signal to 1, otherwise, to 
0.  A code for computing transfer entropy is presented below: 
 
 
 
% code for computing transfer entropy (y -> x) 

x = N x 1 time series 

y = N x 1 time series 

d = delay % set delay 

 

% convert times series x and y into binary sequences s and r,  

% respectively 

s = N x 1 zero vector; 

indx = find(x>mean(x)); 

s(indx) = 1; 

r = N x 1 zero vector; 

indx = find(y>mean(y)); 

r(indx) = 1; 

 

% compute Px (probX) 

% 2 possibilities: 0,1 

probX(1) = length(find(s(d+1:N)=0))/(N-d); 

probX(2) = 1-probX(1); 
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% compute joint probability Px,x-d (probXX) 

% 4 possibilities: 0-0, 0-1, 1-0, 1-1 

probXX = 4 x 1 zero vector;  

for i = 0,1 % x 

 for j = 0,1 % x-d 

  probXX(i*2+j+1) = length(find(s(d+1:N)=i && … 

s(1:N-d)=j))/(N-d);  

 end 

end 

 

% compute joint probability Px-d,y-d (probXY) 

% 4 possibilities: 0-0, 0-1, 1-0, 1-1 

probXY = 4 x 1 zero vector; 

for j = 0,1 % x-d 

 for k = 0,1 % y-d 

  probXY(j*2+k+1) = length(find(s(1:N-d)=j && … 

r(1:N-d)=k))/(N-d); 

 end 

end 

 

% compute joint probability Px,x-d,y-d (probXXY) 

% 6 possibilities: 0-0-0, 0-0-1, 0-1-0, 0-1-1, 1-0-0, 1-0-1,  

% 1-1-0, 1-1-1 

probXXY = 6 x 1 zero vector; 

for i = 0,1 % x 

 for j = 0,1 % x-d 

  for k = 0,1 % y-d 

   probXXY(i*4+j*2+k+1) = length(find(s(d+1:N)=I &&… 

   s(1:N-d)=j &&  r(1:N-d)=k))/(N-d);   

  end 

 end 

end 

 

% compute transfer entropy (TE) 

TE = 0; 

for i = 0,1 % x 

 for j = 0,1 % x-d 

  for k = 0,1 % y-d 

% for appropriate indices   

TE=TE+probXXY*log2(probXXY*probX/(probXX*probXY)) 

end 

  end 

 end 

end 
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Methodology 
 
Peak Inter-regional Transfer Entropy Delays (PITEDs) 
 
 Transfer entropies are computed for each directional, pairwise combination of 30 
channels (2 ocular channels excluded) for each protocol condition. The first 2 min of data 
for each protocol condition is used. Entropies are computed for delays of 0.002 through 1 s 
in 0.002-s steps. The delay at which the transfer entropy is greatest in magnitude is noted 
as the peak delay.   
 

The 30 channels are grouped into 14 scalp regions based their arrangement and 
location on the scalp. The regions include: (1) left frontal (LF); (2) right frontal (RF); (3) 
frontal (F = LF + RF + channel FZ); (4) left temporal (LT); (5) right temporal (RT); (6) left 
central (LC); (7) right central (RC); (8) central (C = LC + RC + channels FCZ and CZ); (9) left 
parietal (LP); (10) right parietal (RP); (11) parietal (P = LP + RP + channels CPZ and PZ);  
(12) left occipital (LO); (13) right occipital (RO); and (14) occipital (O = LO + RO + channel 
OZ). Note that left and right regions do not include central line channels; see Fig. 4.1 for 
regional boundaries. 

 
The mean peak delays between regions are computed as follows. For each 

directional pairing of regions (for example, region X  region Y), the peak delay for each 
channel in the first region (region X) to those in the second region (region Y) are averaged; 

see Equation (4.10), where     
    

 is the peak delay for channel   in region X to channel   in 

region Y,    is the number of channels in region X, and    is the number of channels in 

region Y. Regional pairings are not made between major regions (C, F, O, P, R) and their 
sub-regions. For example, the peak inter-regional delays for FLF or LFF are not 
computed. Thus, a total of 166 directional, mean peak inter-regional transfer entropy 
delays (PITEDs) are determined for each protocol condition. 

 

         
 

    
∑∑    

    

  

   

  

   

       (    ) 

 
Binary Discrimination 
 
Feature Selection  

Feature selection is performed for each of three binary discrimination problems 
(MCI vs. NC, AD vs. NC, and MCI vs. AD) for each protocol condition as follows. 
Combinations of up to five PITEDs are tested using SVM functions in MATLAB™ [88]. 
Quadratic kernel functions are used in all discriminations and the cost coefficient is held 
constant at unity. Nested LOOCV loops are used to avoid overfitting while suggesting and 
testing different combinations of PITEDs as features. The inner loop generated a list of 
suggested combinations via a forward, high-score, features selection method where 
combinations are scored using LOOCV accuracy of SVM model predictions from a smaller,  
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Fig. 4.1. Regional and Subregional Boundaries for Electrodes. Left: major regions; right: subregions. LF=left frontal; RF=right 
frontal; F=frontal; LT=left temporal; RT=right temporal; LC=left central; RC=right central; C=central; LP=left parietal; RP=right 
parietal; P=parietal; O=occipital. Note that central line channels (those with Z in the designation) are excluded from L/R 
subregions.
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randomized, subset of records [143]. The outer loop determined the LOOCV accuracy of 
combinations suggested by the inner loop for all available records. 

 
The discriminatory power of individual PITEDs is then assessed based on how often 

they appeared in the 200 best performing combinations tested in the outer loop 
simulations. Ultimately, the three PITEDs that appear most often for each binary classifier 
for each protocol condition are selected to serve as input features. Use of more than three 
features does not significantly improve results. 

 
Statistical Significance 

Monte Carlo permutation testing is used to assess the statistical significance of the 
LOOCV accuracies of the binary classifiers. Specifically, a random sample of 10,000 
permutations of shuffled labels indicating groups (NC, MCI, or AD) is used to estimate 95% 
confidence intervals for the probabilities that the LOOCV accuracies obtained are due to 
chance. The p-values presented are determined using this method. 
 
Three-way classification 
 

A three-way classification scheme is constructed for each protocol condition from 
binary SVM classifiers using the pairwise coupling approach proposed by Hastie and 
Tibshirani [54]. For a given record, binary SVM classifiers (i.e., MCI vs. NC, AD vs. NC, and 
MCI vs. AD) are trained using all other available records and then applied to the given 
record. If two out of three of the SVM binary classifiers classify a record as belonging to 
class  , then the final decision of the three-way classifier is to classify the record as 
belonging to class  . Otherwise, the probability that a record belongs to each class,   , 
       , is then estimated as follows, and then the final decision of the three-way 
classifier is to choose the class corresponding to the largest probability,        (  ). 

 
SVM models are binary classifiers that find the hyperplane in the feature space 

maximizing the minimum (signed) distance between the hyperplane and training points. 
The distance from the hyperplane for a given set of features   is given by Equation (4.11), 
where    are weights,   is a kernel function (quadratic),    are support vectors (selected 
subset of vectors of training data features),   is the bias,         , and    is the number 
of support vectors. If    , then the classifier classifies   as class -1 (class  ), otherwise as 
class +1 (class  ).  

   ∑    (    )

  

   

        ∑   (       
  )

 

  

   

          (    ) 

 
The observed conditional probability that a given record will be classified as class   

by the    classifier,         (        ), can be estimated via the distance   as follows. 

Define       and let    and    be the means of   for classes   and  , respectively. 

Furthermore, define   as the standard deviation of    (     )    The conditional 

probability     for a given record can then be defined by Equation (4.12), where  (   ) 

denotes the Gaussian density with mean   and standard deviation  : 
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 (  
(     )

   )

 (  
(     )

   )   (  
(     )

   )

        (    ) 

 
In order to determine probabilities   , one must define a model for the true 

conditional probability such as  

    
  

     
       (    ) 

 
One can then use an iterative procedure to estimate the probabilities   : (1) Start with an 
initial guess for each class assuming equal probability, with   ̂    ̂    ̂    . (2) Compute 
the corresponding  ̂  . (3) Update   ̂ using Equation (4.14), where     is the number of 

training examples for binary classifier   . (4) Renormalize   ̂ such that ∑  ̂   . (5) Repeat 
steps (2)-(4) until convergence   ̂     is achieved.  

 

 ̂       ̂     

∑          

∑     ̂     

      (    ) 

 
 
 

Results for Discrimination of MCI and AD  
Using Transfer Entropy 

 
 

Binary Discrimination Results  
 
Two-sample Student’s t-distribution tests (unequal variance) are performed on 

group means of PITEDs selected as features for binary classifiers in order to determine if 
observed differences are significant enough to infer a linear separability at the population 
level. Such an inference would require large differences between group means and small 
variation within groups. It should be noted that inferences are dependent on the 
assumption of representative samples.  
 
MCI vs. NC. 

Results for LOOCV accuracies for each binary classifier are presented in Table 4.1 
along with the selected features. Accuracies presented are obtained using all three selected 
features. For the REO condition, MCI participants demonstrate a lower PITED for occipital 
region to right frontal region coupled with an increased PITED from the frontal region to 
the left occipital region, compared to normal controls. An increased central-to-frontal 
PITED is also observed for MCI participants. Selected features for the counting task all 
include PITEDs involving the parietal region. Specifically, MCI participants have an 
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increased right frontal-to-left parietal PITED and decreased parietal-to-left temporal and 
left parietal-to-left occipital PITEDs. For the REC condition, MCI participants are observed 
to have significantly increased PITED for left occipital and right frontal regions and 
between the right temporal and right parietal regions. A decrease in the PITED for central 
and right temporal regions is also observed. Ninety-five percent confidence intervals for 
the corresponding p-values are determined via Monte Carlo permutation testing. 

 
LOOCV accuracies of   93.6% (p-value <0.0032), 90.3% (p-value <0.0182), and 

87.1% (p-value <0.0321) are achieved for MCI vs. NC discrimination for the REO condtion, 
counting task, and REC condition, respectively. 
 
AD vs. NC 

Compared to normal controls, AD participants demonstrate a significantly greater 
left temporal-to-frontal PITED coupled with a decrease in frontal-to-left temporal PITED 
during the REO condition. A greater right occipital-to-left central PITED is also observed for 
AD participants. A LOOCV accuracy of 93.8% (p-value <0.0043) is achieved for the REO 
condition based on these differences. 

 
During the counting task, AD participants demonstrate significantly increased 

PITEDs for right parietal-to-left occipital, left frontal-to-left occipital, and right occipital-to-
left occipital. These observations allow for a LOOCV accuracy of 90.6% (p-value <0.0110) 
for AD vs. NC discrimination during the counting task. 

 
When resting with eyes closed, AD participants demonstrated an increase in 

occipital-to-left frontal PITED and a decrease in left temporal-to-right central PITED 
coupled with a decrease in left occipital-to-left temporal PTITED. An accuracy of 87.5% (p-
value <0.0324) is achieved for the REC condition. 
 
MCI vs. AD 

For the REO condition, AD participants demonstrate a significantly greater left 
temporal-to-left frontal PITED compared to MCI participants. This appears to closely follow 
the observation of increased left temporal-to-frontal PITED in AD participants compared to 
normal controls. Interestingly, during the REO condition, the right occipital-to-left central 
PITED is greater for AD participants compared to NC participants but lower for AD 
participants compared to MCI participants. There is also an observed increase in parietal-
to-left occipital PITED for AD participants. A LOOCV accuracy of 90.9% (p-value <0.0118) 
for MCI vs. AD discrimination is achieved based on these observations for the eyes open 
resting condition. 

 
MCI vs. AD LOOCV accuracies of 84.5% (p-value <0.0195) and 81.8% (p-value 

<0.0373) are achieved for the counting task and REC condition, respectively. During the 
counting task, AD participants demonstrate significantly increased right occipital-to-left 
central PITED compared to MCI participants and NC participants. AD participants also have 
significantly higher right parietal-to-occipital and left frontal-to-left temporal PITEDs. 
While resting with eyes closed, AD participants and higher right frontal-to-right temporal, 
left central-to-occipital, and right parietal-to-occipital PITEDs. 
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Table 4.1. Group Comparisons of Selected Features for Binary Classifiers 
 

Condition MCI vs. NC AD vs. NC AD vs. MCI 

 
 
 
 

REO 

Selected 
Features 

Group 
Means 

Selected 
Features 

Group 
Means 

Selected 
Features 

Group 
Means 

ORF MCI<NC LTF AD>NC LTLF MCI<AD*** 
FLO MCI>NC ROLC AD>NC ROLC MCI>AD 

CF MCI>NC FLT AD<NC PLO MCI<AD 
 acc. (sens., spec.): acc. (sens., spec.): acc. (sens., spec.): 

 93.6% (100%, 
86.7%) 

93.8% (100%, 86.7%) 90.9% (93.8%, 88.2%) 

 95% CI for p-value: 95% CI for p-value: 95% CI for p-value: 

  (0.0001, 0.0032) (0.0031, 0.0043) (0.0097, 0.0118) 

 
 
 
 
 

Counting 
task 

Selected 
Features 

Group 
Means 

Selected 
Features 

Group 
Means 

Selected 
Features 

Group 
Means 

RFLP MCI>NC RPLO AD>NC**
* 

RPLO MCI<AD*
* 

PLT MCI<NC ROLO AD>NC* RPO MCI<AD*
** 

LPLO MCI<NC LFLO AD>NC* LFLT MCI<AD* 
 acc. (sens., spec.): acc. (sens., spec.): acc. (sens., spec.): 

 90.3% (93.8%, 
86.7%) 

90.6& (82.4%, 100%) 90.9% (88.2%, 93.8%) 

 95% CI for p-value: 95% CI for p-value: 95% CI for p-value: 

 (0.00138, 0.0182) (0.0020, 0.0110) (0.0032, 0.0195) 

 
 
 
 
 
 

REC 

Selected 
Features 

Group 
Means 

Selected 
Features 

Group 
Means 

Selected 
Features 

Group 
Means 

LORF MCI>NC*
* 

LTRC AD<NC RFRT MCI<AD* 

CRT MCI<NC*
* 

OLF AD>NC LCO MCI<AD 

RTRP MCI>NC LOLT AD<NC RPO MCI<AD 
 acc. (sens., spec.): acc. (sens., spec.): acc. (sens., spec.): 

 87.1% (87.5%, 
86.7%) 

87.5% (82.4%, 93.3%) 81.8% (100%, 64.7%) 

 95% CI for p-value: 95% CI for p-value: 95% CI for p-value: 

 (0.0057, 0.0321) (0.0211, 0.0324) (0.0162, 0.0373) 
* p< 0.05 ** p<0.01, ***p<0.001.  Feature designations are preceded by regional indices: LF=left frontal; 
RF=right frontal; F=frontal; LT=left temporal; RT=right temporal; LC=left central; RC=right central; C=central; 
LP=left parietal; RP=right parietal; P=parietal; LO=left occipital; RO=right occipital; O=occipital; see Fig. 4.1 
for regional boundaries. REO = resting with eyes open; REC = resting with eyes closed. 
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Three-way Classification Results  
 

A confusion table for three-way classification results for the REO condition is 
presented in Table 4.2. One participant from each group is misclassified using data from 
the REO condition: one NC participant is misclassified as AD, one MCI participant is 
misclassified as NC, and one AD participant is misclassified as MCI. Overall, the accuracy is 
impressive at 93.8%. 

 
A summary of the three-way classification results for the counting task as presented 

in Table 4.3. All NC participants are correctly classified. Two MCI participants are 
misclassified as NC participants. Two AD participants are also misclassified, one as MCI and 
one as NC. Thus, 100% of those predicted as AD are AD, 93.3% of those predicted to be MCI 
are MCI, and 83.3% of those predicted to belong to the NC group are actually NC 
participants. The resulting overall accuracy is 91.7%. 

 
Results for the REC condition are very similar to those of the REO condition and are 

presented in Table 4.4. Comparing Tables 4.2 and 4.4, the only difference is that a NC 
participant is misclassified as MCI (eyes closed, Table 4.2) instead of being misclassified as 
AD (eyes open, Table 4.2). The overall accuracy for the REC condition is thus the same as 
for the REO condition at 93.8%. 

 
 
 
 

Table 4.2. Confusion Table of 3-Way Results for REO Condition Using PITEDs 
 

  
Predicted Classes 

 

  
NC MCI AD 

 

T
ru

e 
C

la
ss

es
 NC 

 
14 0 1 93.3% 

MCI 
 

1 15 0 93.8% 

AD 
 

0 1 16 94.1% 

  
93.3% 93.8% 94.1% 

Overall Acc.: 
93.8% 
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Table 4.3. Confusion Table of 3-Way Results for Counting Task Using PITEDs 
 

  
Predicted Classes 

 

  
NC MCI AD 

 

T
ru

e 
C

la
ss

es
 NC 

 
15 0 0 100% 

MCI 
 

2 14 0 87.5% 

AD 
 

1 1 15 88.2% 

  
83.3% 93.3% 100% 

Overall Acc.: 
91.7% 

 
 

 
Table 4.4. Confusion Table of 3-Way Results for REC Condition Using PITEDs 

 

  
Predicted Classes 

 

  
NC MCI AD 

 

T
ru

e 
C

la
ss

es
 NC 

 
14 1 0 93.3% 

MCI 
 

1 15 0 93.8% 

AD 
 

0 1 16 94.1% 

  
93.3% 88.2% 100% 

Overall Acc.: 
93.8% 

 
 
 
 

Discussion and Conclusions 
 
In this study, the average of delays that maximized transfer entropy between EEG 

channel of difference scalp regions are examined as potential biomarkers for detection of 
alterations in brain functional organization associated with the cognitive decline of MCI 
and early Alzheimer’s disease. A feature selection procedure is used to objectively select 
average peak inter-regional transfer entropy delays (PITEDs) for use as features in SVM 
models and binary classification. A three-way classification scheme derived from the binary 
classifiers is also proposed based on pairwise coupling. 
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The data in this study included scalp EEG recorded during resting state conditions 
and a simple cognitive task of counting backwards by ones. A great advantage of resting 
state protocols and simple cognitive tasks (i.e., counting backwards) is that they eliminate 
the need for extra training of primary care personnel in administering complex cognitive 
tasks. The short length of data required for the analyses (two minutes) is also practical for 
a primary care setting.  

 
Previous studies have explored various EEG features for the detection of cognitive 

decline due to MCI or AD. Several of these researchers have observed that features that 
appear to discriminate AD from NC well, do not necessarily perform well when applied to 
MCI data [13,63,66]. Often, a different set of features may be required for discriminating 
between NC, MCI, and AD as features rarely appear to function as a sliding scale with NC at 
one end, AD at the other, and MCI in the middle [15].  

 
Reduced complexity and perturbations in EEG synchrony may be associated with 

the cognitive decline of MCI and AD. Recent research exploring the potential for diagnosing 
MCI and AD from EEG has yielded observations suggesting (1) reduced complexity in EEG 
and (2) perturbations in EEG synchrony may be associated with cognitive decline due to 
AD [37,130-135].  

 
Analysis of EEG inter-channel transfer entropy allows for observations of patterns 

in the complexity and synchrony of EEG data. Specifically, the features proposed here are 
intended to represent trends in the delay of the transfer of the information present in EEG 
signals between major regions of the scalp. The successful discrimination between the 
three groups of EEG records (NC, MCI, and AD) are the result of differences in the dynamics 
of the information distribution in EEG voltages across the scalp in resting states and during 
a simple cognitive task. It is possible the observed differences in these information 
dynamics may be influenced by alterations in the functional organization of the brain as a 
result of cognitive decline. 

 
In this work, participants are classified at the individual level, which is the case 

when a patient comes into a doctor’s office. Individualized analysis allows these EEG 
markers to be tested against known biomarkers for Alzheimer's disease and with cognitive 
tests. A goal of EEG research is the identification of easy neural indicators to diagnose and 
predict cognitive decline pre-clinically, such as among people with subjective memory 
complaints. 

The results for the three-way discrimination presented here are encouraging, 
especially those for MCI, as detection of MCI at the earliest possible stage is currently of 
great interest in the field. The three-way classification scheme presented here allows for 
the differentiation of the three groups without a priori knowledge that individuals fall into 
two of the three groups. 

 
The results of this pilot study suggest the potential for the use of features 

representing inter-regional EEG transfer entropy relationships as a means for objectively 
discriminating between normal older, MCI, and AD participants. The results suggest that a 
simple discrimination model utilizing SVM and the features presented here may be a viable 



 

78 
 

basis for future development of a diagnostic screening tool for early MCI and early AD with 
applicability in the primary care setting.  
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CHAPTER 5 

NER DISCRIMINATION OF MCI AND AD  

USING REGIONAL SPECTRAL AND COMPLEXITY FEATURES 
 
 

In this Chapter, an exploration of common EEG spectral and complexity measures as 
potential biomarkers of MCI and early AD is presented. The approach developed is applied 
toward the discrimination of MCI and AD using EEG recorded during resting states and a 
simple cognitive task (NER Dataset); see Chapter 1 for more details regarding data 
collection procedures. This Chapter begins by presenting the common EEG spectral and 
complexity measures being investigated. Next, the methodology for applying these 
measures is described. Results are then presented and discussed.  

 
 
 

Methodology 
 

 As discussed in Chapter 1, various spectral and complexity features have been 
previously investigated in regards to discrimination of MCI and AD using scalp EEG. 
Generally, researchers have noted a shift in spectral power toward lower frequencies and a 
decrease in EEG signal complexity in AD [37]. In this study, common spectral and 
complexity measures previously investigated are computed on a regional basis for 
preprocessed EEG taken during NER conditions. Features are examined in order to 
determine which features, regions, and conditions appear to best discriminate MCI and AD. 
 
 The spectral and complexity features examined in this study are listed in Table 5.1. 
In addition to features computed for preprocessed EEG, a few spectral and complexity 
features are also computed for the first time derivative of the EEG. Investigation of spectral 
and complexity feature of the first time derivatives is motivated by the fact that time 
derivatives of the EEG voltages (  ( )) contain indirect information regarding the time-
dependent rate of change of impedance (  ( )) and distribution of charge (rate of change of 
current flow,   ( )) in the brain, both of which may be affected by disruption of neural 
pathways due to disease pathology (  ( )=   ( ) ( )    ( ) ( )). A total of 32 features are 
calculated for each channel: 26 for the preprocessed EEG and 6 for the time derivatives. 
The features can be divided into two main categories: (1) spectral features and (2) entropy 
and complexity features. 
 
Spectral Features 
 
 Relative spectral power in the   band (  

 , 3.5—7.5 Hz),    band (   
 , 7.5—9.5 Hz), 

   band (   
 , 9.5—12.5 Hz),    band (   

 , 12.5—17.5 Hz),    band (   

 , 17.5—25 Hz), and   

band (  
 , 25—40 Hz) are computed. Additional spectral features include total spectral 

power (      , 3.5—40 Hz), peak   band frequency (     
 ), median frequency (    ), and 

spectral entropy (     ). Peak   band frequency is defined as the frequency in the range 
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7.5—12.5 Hz at which the power spectral density curve is maximized. Median frequency is 
defined as the frequency at which the total spectral power is halved. Spectral entropy is 
defined as Shannon entropy computed over the normalized power spectral density curve. 
The mathematical definition for       is given by Equation (5.1), where  (  ) is the 

probability of occurrence of frequency   ,  (  ) is the spectral power at frequency   , and 
       is the total spectral power (3.5—40 Hz). 
 

        ∑ (  )    (  )

 

   

  ∑
 (  )

      

 

   

  (
 (  )

      
)    (   ) 

 
Three spectral power ratios are also computed. These ratios are used based on previous 
observations of increased power in the   band of EEG taken from MCI and AD individuals 
[124]. The definitions for these ratios are presented in Equations (5.2)—(5.4). 
 
 
 

Table 5.1 Spectral and Complexity Features 
 

Relative Spectral Power Features Spectral Power Ratios 
(1)   

 : relative power in   band  (11)   : first ratio 
(2)    

 : relative power in    band (12)   : second ratio 

(3)    
 : relative power in    band (13)   : third ratio 

(4)    

 : relative power in    band  

(5)    

 : relative power in    band Entropy/Complexity Features 

(6)   
 : relative power in   band (14)  : activity 

 (15)  : mobility 
Additional Spectral Features (16)  : complexity 

(7)       : total spectral power (17)      : sample entropy 

(8)      
 : peak   band freq. (18)    : Lempel-Ziv complexity 

(9)     : median freq.  

(10)      : spectral entropy  

  
First Derivative Features 

(19) (      )
 : total spectral power of 

                       first derivative 
(22) (     )

 
: spectral entropy of  

                       first derivative 

(20) (     
 )

 
: peak   band freq. of  

                       first derivative 

(23) (     )
 
: sample entropy of 

                        first derivative 
(21) (    ) : median freq. of first  
                     derivative 

(24) (   )
 : Lempel-Ziv complexity  

                     of first derivative 
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     (   ) 

 

    
  

   
    

    
    

   (   ) 

 

    
  

   
    

    (   ) 

 
 Spectral features are computed using the power spectral density of individual 
channels’ records as determined by the Welch Modified Averaged Periodogram Method 
[88]. In applying Welch’s method, a signal is split into overlapping segments of a given 
length. The overlapping segments have a tapering window applied to them in the time 
domain that tapers the data at either end. Periodograms are then calculated for each 
segment by computing the discrete Fourier transform and the squared magnitude of the 
result. The periodograms are then averaged. In calculating spectral features, two-second 
segments with 50% overlap are used. Each 2-s segment is modified by a Hanning window 
(50% cosine taper). Periodograms are then calculated for each 2-s segment and averaged. 
Choice of window length and tapering window are based on methods for computing other 
common spectral features of EEG presented by previous researchers [124]. 
 
Entropy and Complexity Features 
 
 Entropy and complexity measures are also computed, including activity ( ), 
mobility ( ), complexity ( ), sample entropy (     ), and Lempel-Ziv complexity (   ). 

The definitions for activity, mobility, and complexity are presented in Equation (5.5), 
where    is the variance of the signal,    is the variance of the first derivative of the signal, 
and    is the variance of the second derivative of the signal.  
 

         √
  

  
          √

  

  
 

  

  
      (   ) 

 
 Sample entropy is defined as the negative natural log of the conditional probability 
that time series of length  , having repeated itself within a tolerance of   for   data points, 
will also repeat itself for   + 1 points. Note that this definition excludes self-matches. One 
can define    as the number of matches of length   and     

  as the subset of    that 
also matches for length   +1. Sample entropy can then be defined mathematically by 
Equation (5.6). Here, the choice of   = 2 and   = 0.2 times the standard deviation of the 
signal are based on approaches presented by previous researchers [124]. 
 

          (
    

 

  
)    (   ) 
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 Lempel-Ziv complexity     is a commonly used measure for characterizing the 
randomness of biomedical signals. To compute    , the numerical sequence (signal) must 
first be transformed into a symbolic sequence  . The most usual means to do this is to 
convert the signal into a 1/0 symbolic sequence by comparing the signal to a threshold 
value, usually the median value of the signal. For example, whenever the signal is larger 
than the median value, one maps the signal to 1, otherwise, to 0.  After mapping the signal 
into its symbolic 1/0 sequence, the sequence can be parsed to obtain distinct “words”, and 
the “words” can be encoded. Lempel-Ziv complexity can then be defined as the length of the 
encoded sequence   divided by the length of the signal  . 
 
 In order to parse the signal, one can sequentially scan the sequence            
and rewrite it as a concatenation   =   -      of    “words” chosen such that    =     
and    is the shortest “word” that has not appeared previously. Thus,    =     or    , 

where 1    -1. For example, for the sequence   = 1011010100010,   = 1-0-11-01-010-
00-10. The “word” sequence   must then be encoded. This can be done as follows. For 
each “word” use       bits to describe the location of the prefix to each “word” and 1 bit to 
describe the last bit of the “word”. For this example,     words. Thus, one would use 3 
bits to describe the prefix location for each word, with 000 being the prefix for an empty 
set. The encoded sequence would then be (000,1)-(000,0)-(001,1)-(010,1)-(100,0)-(010,0)-
(001,0). The length of the encoded sequence   is then equal to  (       ). Lempel-Ziv 
complexity can then be defined mathematically by Equation (5.7). When the length of the 
signal   is very large,           and Equation (5.7) reduces to Equation (5.8) [124]. 
 

Entropy and complexity features are computed using 5-s windows with 50% overlap 
and then averaged. Choice of window length is based on methods presented by previous 
researchers [124]. 
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Discrimination of EEG Records  
 

As discussed in Chapter 1, the NER Dataset included NC, MCI, and AD EEG records 
recorded during three NER protocol conditions: the REO condition, the counting task, and 
the REC condition. Two-minute samples from each of these three conditions are extracted 
for analyses.  

 
The 24 features described above and presented in Table 5.1 are calculated for the 2-min 

samples for each protocol condition. Features are computed for each channel used in 
analyses. The 30 channels are grouped into 12 scalp regions based on their arrangement 
and location on the scalp. The regions include: (1) left frontal (LF); (2) right frontal (RF); 
(3) frontal (F = LF + RF + channel FZ); (4) left temporal (LT); (5) right temporal (RT); (6) 
left central (LC); (7) right central (RC); (8) central (C = LC + RC + channels FCZ and CZ); (9) 
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left parietal (LP); (10) right parietal (RP); (11) parietal (P = LP + RP + channels CPZ and 
PZ); and (12) occipital (O). Note that left and right regions do not include central line 
channels; see Fig. 4.1 for regional boundaries. A global region (G) comprised of all channels 
is also considered. Each of the 24 features is averaged over each region (including G) for a 
total of 13 regional average feature groups. 

 
Feature Selection 

The three groups of participants (NC, MCI, and AD) in the NER Dataset provided 
three binary discrimination problems: MCI vs. NC, AD vs. NC, and MCI vs. AD. Twenty-four 
features are computed for each of the 13 regions described above for each subject for each 
protocol condition. Feature selection is performed as follows. For each discrimination 
problem and each condition, combinations of up to eight features are tested using SVM 
functions in MATLAB™ [88]. Quadratic kernel functions are used in all discriminations and 
the cost coefficient is held constant at unity. To help avoid overfitting, nested LOOCV loops 
are used to suggest and test different combinations of features. The inner loop is used to 
generate a list of suggested combinations of features. The outer loop determines the LOOCV 
accuracy of the combinations of features suggested by the inner loop. The contribution of 
individual features is then assessed based on how often they appeared in the best 200 
performing combinations tested in the outer loop simulations. Ultimately, the eight 
features that appear most often are selected for each protocol condition and binary 
classifier. 
 
Statistical Significance 

The statistical significance of LOOCV accuracies obtained using selected features is 
assessed using Monte Carlo permutation testing. Ten thousand (10,000) permutations of 
shuffled labels are used to estimate 95% confidence intervals for the probabilities that the 
LOOCV accuracies obtained are due to chance. The p-values presented are determined 
using this method. For more on Monte Carlo permutation testing, see work by Thomas and 
Holmes [143]. 

 
 

 

Results for Discrimination of MCI and AD  
Using Regional Spectral and Complexity Features 

 
For each protocol condition, the selected features for each binary classifier are 

selected for further analyses. Two-sample Student t-distribution tests (unequal variance) 
are performed on group means of individual features in order to test linear separability at 
the population level.. Features for which significant linear separation existed, and the 
significance of the separability, are indicated in Table 5.2. Given the small sample sizes, 
such inference required large differences between group means and small variation within 
groups. It should be noted that such tests are dependent on the assumption of 
representative samples. 
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Leave-one-out binary classification accuracies are computed for each binary 
classifier for each protocol condition. In each case, all eight of selected features listed in 
Table 5.2 are employed in combination using a quadratic SVM model. The results are 
summarized in Table 5.2 where 95% confidence intervals for corresponding p-values of the 
resulting LOOCV accuracies are assessed using Monte Carlo permutation testing.  
 
MCI vs. NC 

For both the REO protocol condition and the counting task, MCI patients 
demonstrate a significant increase in total power in the central region (C-      ) compared 
to normal controls. While resting with eyes open, the MCI group’s data show a decrease in 
alpha and beta activity in the first derivative for the right frontal (RF) and parietal (P) 
regions, as evidenced by a significant decrease in the median frequency in the right frontal 
region (RF-    ) and peak alpha frequency in the parietal region (P-(     

 ) ). A significant 

decrease in the alpha and beta activity of the first derivative is also observed in the right 
frontal region (decreased RF-(    ) ) during the counting task. MCI participants also 
demonstrate a significant increase in the activity measure ( ) in the central region (C) 
during the counting task. When resting with eyes closed, MCI participants exhibit increased 
theta activity in the central (C) and left temporal  (LT) regions coupled with decreased 
higher beta band activity in the left frontal (LF) region compared to NC participants, 
although these differences are not substantial enough to allow statistical inferences 
regarding linear separability at the population level. Significant differences for MCI 
participants while resting with eyes closed included a decrease in the sample entropy of 
the first derivative (C-(     ) ), a decrease in total power in the left parietal regions (LP-

      ), and an increase in gamma band activity on a global level (G-  
 ).  

 
 LOOCV discrimination accuracies of 96.8% (p<0.0014), 83.9% (p<0.0029), and 

93.6% (p<0.0003) are achieved for MCI vs. NC discrimination for the REO condition, 
counting task, and REC conditions, respectively. 

 
AD vs. NC 

A LOOCV accuracy of 84.4% (p<0.0043) is achieved for AD vs. NC discrimination 
during the REO condition. Group differences in selected features indicate a significant 
increase in the total power of the first derivative in the frontal region (F-(      ) ) and a 
decrease in spectral entropy of the first derivative in the left parietal region (LP-
(     ) ) for AD participants. AD participants also demonstrated an increase in complexity 

in the left temporal region (LT- ). Increases in theta activity and decreases in alpha and 
beta activity are also observed in the frontal (F) regions, though groups are not linearly 
separable at a significant level for these features. 

 
While counting backwards with eyes closed, AD patients are observed to have a 

significant increase in total power (      ) and activity ( ) in the frontal region (F) 
compared to normal controls, including a significant increase in total power of the first 
derivative in the right frontal region (RF-(      ) ). Increases in theta activity are also 
observed in the left temporal  (LT) and parietal (P) regions; however group differences are 
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not significantly linearly separable. A LOOCV accuracy of 96.9% (p-value<0.0003) is 
achieved for AD vs. NC discrimination during the counting task. 

 
For the REC condition, the AD group data show significant increases in the total 

power (LC-      ) and activity (C- ) in the central region compared to normals. In addition, 
AD participants are also observed to have a significant decrease the total power of the first 
derivative in the right temporal region (RT-(      ) ). Increases in theta activity in the 
central (C) region and a decrease in sample entropy in the occipital (O) region are also 
observed in AD data, although differences are not linear. A LOOCV accuracy of only 71.9% 
(p-value<0.0333) is achieved for the REC condition. 
 
AD vs. MCI 

Differences between MCI and AD patients while resting with eyes open include a 
significant increase in total power in the right temporal region (RT-      ), total power of 
the first derivative in the frontal region (F-(      ) ), and sample entropy of the first 
derivative in the left frontal region (LF-(     ) ) for AD participants. In addition, AD 

participants are observed to have lower gamma activity in the right frontal (RF) and left 
temporal (LT) regions, decreased alpha and beta activity in the left temporal (LT) region, 
and increased alpha and beta activity in the right parietal (P) and occipital (O) regions. 
These differences, however, do not significantly deviate in a linear manner from patterns 
observed for MCI participants. During the counting task, AD participants demonstrate 
significant increases in total power in the right central region (RC-      ) and activity ( ) in 
the right central (RC) and parietal (P) regions. Less significant differences include 
increased alpha activity in the central regions and decreases in alpha activity and 
complexity in the left frontal and occipital regions, respectively. While resting with eyes 
closed, AD participants again demonstrate significant increases in total power (      ) in 
the central (C) regions. This is accompanied by a significant increase in activity in the left 
temporal region (LT- ). AD participants also have decreased beta activity in the right 
central (RC) and frontal (F) regions. 

 
LOOCV discrimination accuracies of 90.9% (p<0.0136), 90.9% (p<0.0081), and 

87.9% (p<0.0063) are achieved for AD vs. MCI discrimination for the ERO condition, 
counting task, and REC conditions, respectively. 

 
 
 

Discussion and Conclusions 
 

In this study, regional spectral and complexity features of scalp EEG recorded during 
resting state conditions and a simple cognitive task of counting backwards by ones are 
explored as potential biomarkers for discriminating among NC, MCI and AD groups. Resting 
state protocols and a simple cognitive task (i.e., counting backwards) eliminates the need 
for extra training of primary care personnel in administering complex cognitive tasks. Good 
results are demonstrated from analyzing short data segments (2 min), practical for a 
primary care setting.  
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Table 5.2. Group Comparisons of Selected Spectral and Complexity Features 
 

Condition MCI vs. NC AD vs. NC AD vs. MCI 

 
 
 

REO 

Selected 
Features 

Group 
Means 

Selected 
Features 

Group 
Means 

Selected 
Features 

Group 
Means 

C-  
  MCI>NC RC-(     

 )  AD<NC F-(      )  AD>MCI**
* 

C-       MCI>NC**
* 

RF-     AD<NC LF-
(     )  

AD>MCI** 

RC-      MCI<NC F-      AD>NC RF-  
  AD<MCI 

RF-     MCI<NC F-(      )  AD>NC**
* 

LT-  
  AD<MCI 

RF-(    )  MCI<NC**
* 

LF-  
  AD>NC LT-     AD<MCI 

P-(     
 )  MCI<NC** LF-   

  AD<NC O-   

  AD>MCI 

RP-(      )  MCI<NC LT-  AD>NC* RP-   
  AD>MCI 

G-      MCI<NC LP-(     )  AD<NC** RT-       AD>MCI**
* 

 acc. (sens., spec.): acc. (sens., spec.): acc. (sens., spec.): 
 96.8% (93.8%, 100%) 84.4% (88.2%, 80.0%) 90.9% (82.4%, 100%) 

 95% CI for p-value: 95% CI for p-value: 95% CI for p-value: 
 (0.0002, 0.0014) (0.0021, 0.0043) (0.0094, 0.0136) 

 
 
 
 

Counting 
task 

Selected 
Features 

Group 
Means 

Selected 
Features 

Group 
Means 

Selected 
Features 

Group 
Means 

C-   
  MCI<NC RC-(     

 )  AD<NC C-   
  AD>MCI 

C-       MCI>NC**
* 

F-       AD>NC**
* 

RC-   
  AD>MCI 

C-     
  MCI>NC F-  AD>NC**

* 
RC-       AD>MCI**

* 
C-  MCI>NC**

* 
LF-       AD>NC**

* 
RC-  AD>MCI**

* 
LC-       MCI>NC**

* 
RF-     

  AD>NC RC-      AD<MCI 

RC-   MCI>NC RF-(      )  AD>NC**
* 

LF-   
  AD<MCI 

RF-(     
 )  MCI<NC** LT-   AD>NC O-    AD<MCI 

O-(    )  MCI<NC**
* 

P-   AD>NC P-  AD>MCI**
* 

 acc. (sens., spec.): acc. (sens., spec.): acc. (sens., spec.): 

 83.9% (93.8%, 73.3%) 96.9& (100%, 93.3%) 90.9% (88.2%, 93.8%) 
 95% CI for p-value: 95% CI for p-value: 95% CI for p-value: 

 (0.0011, 0.0029) (0, 0.0003) (0.0049, 0.0081) 
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Table 5.2. Group Comparisons of Selected Spectral and Complexity Features (cont’d…) 
 

Condition MCI vs. NC AD vs. NC AD vs. MCI 

 
 

REC 

Selected 
Features 

Group 
Means 

Selected 
Features 

Group 
Means 

Selected 
Features 

Group 
Means 

C-   MCI>NC C-       AD>NC**
* 

C-       AD>MCI**
* 

C-(     )  MCI<NC**
* 

C-   AD>NC LC-       AD>MCI**
* 

LC-       MCI>NC**
* 

C-   AD>NC RC-   

  AD<MCI 

LF-   

  MCI<NC C-  AD>NC**
* 

RC-   

  AD<MCI 

LF-   MCI<NC LC-       AD>NC**
* 

F-   

  AD<MCI 

LT-   MCI>NC RC-       AD>NC**
* 

RF-(     
 )  AD>MCI 

LP-       MCI<NC**
* 

O-      AD<NC LT-  AD>MCI**
* 

G-  
  MCI>NC**

* 
RT-(      )  AD<NC**

* 
LP-(     )  AD>MCI 

 acc. (sens., spec.): acc. (sens., spec.): acc. (sens., spec.): 

 93.6% (100%, 86.7%) 71.9% (64.7%, 80.0%) 87.9% (88.2%, 87.5%) 
 95% CI for p-value: 95% CI for p-value: 95% CI for p-value: 

 (0, 0.0003) (0.0314, 0.0333) (0.0035, 0.0063) 
* p< 0.05 ** p<0.01, ***p<0.001.  Feature designations are preceded by regional indices: LF=left frontal; 
RF=right frontal; F=frontal; LT=left temporal; RT=right temporal; LC=left central; RC=right central; C=central; 
LP=left parietal; RP=right parietal; P=parietal; O=occipital; G=global. See Table 1 for feature designations; see 
Fig. 4.1 for regional boundaries. REO = resting eyes open; REC = resting eyes closed. 

 
 
 
Previous studies have explored various EEG features for the discrimination of MCI 

and AD from normal individuals. Several of these researchers have observed that features 
which appear to discriminate AD from NC well, do not necessarily perform well when 
applied to MCI data [63,66,159]. While it would be convenient to have features that operate 
with normals at one extreme value, AD at the other extreme, and MCI somewhere in the 
middle, thus making the three groups clearly and linearly separable with a clear linear 
pattern of progression, that is often not the case. Instead, MCI individuals often appear to 
be spread across boundaries that otherwise clearly discriminate AD from normal 
participants. A different set of features may, therefore, be required for discriminating 
between MCI vs. NC, AD vs. NC, and MCI vs. AD [42].  

 
Three generally accepted trends in the literature for MCI and AD discrimination via 

EEG are: (1) a shift in the power spectrum toward the lower frequencies (delta and theta 
band) and occasional observations of increased gamma band activity, coupled with a 
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decrease in alpha and beta band activity; (2) decreased complexity; and (3) decreased 
synchronization [37,130-135]. These trends, however, are generally reported as global 
trends observed during REO protocol conditions. Trends in the complexity and spectral 
power distribution of the first derivative of EEG for MCI and AD are less well established. 
Furthermore, patterns may differ at different parts of the brain.  The features selected to 
serve as discriminating features for the binary classifiers are examined for trends between 
groups. For the REC condition, consistent results (i.e., decreased complexity, decreased 
alpha and beta band activity) are observed, however these trends statistically significant at 
the population level. 

 
 As stated in [37], evidence of the diagnostic utility of resting EEG in dementia and 

mild cognitive impairment (MCI) is still not sufficient to establish this method for the initial 
evaluation of subjects with cognitive impairment in the routine clinical practice.  In 
addition, AD EEG studies have been done at the group level.  Much work has been done 
showing group differences, i.e. AD brains differ from those of the normal brains, but 
differences are not sufficient to categorize individuals. In this work, participants are 
classified at the individual level, which is the case when a patient comes into a doctor’s 
office. Individualized analysis allows these EEG markers to be tested against known 
biomarkers for Alzheimer's disease and with cognitive tests. A goal of future work is to be 
able to use easy neural indicators to diagnose and predict cognitive decline pre-clinically, 
such as among people with subjective memory complaints. 

Previous researchers have attempted to identify globally-averaged spectral features 
which appear to demonstrate significant robustness in discriminating normal individuals 
from those with dementia. Unfortunately, dementia can cause different neurological 
changes in different individuals—especially in the case of more enigmatic diagnoses such 
as MCI. Such differences may lead to the failure in the generalization of globally-averaged 
measures to other data sets. While most of the features employed here have been used 
before on either a global or individual channel basis, here differences in the features' values 
on a topographical regional basis are examined. The topographical regions do not 
necessarily correspond to the cortical location of the source of the brain activity; e.g., 
activity recorded at a central electrode site may reflect a source from the frontal cortex. 
One goal of this work is to discover regional differences in common EEG features to be 
potential indicators for cognitive degeneration. In addition, the discriminating power of 
different features for different protocols, including resting protocols—eyes open and eyes 
closed—and a simple cognitive task are examined. 

 
This study explores differences in common spectral and complexity measures of 

EEG on a regional and global basis for the discrimination of preclinical dementia from the 
normal aging condition. The successful discrimination between the three groups of EEG 
records (NC, MCI, and AD) are the result of differences in regional electrical activity in 
specific frequency bands in resting states and during a simple cognitive task.  

 
The observation of increased theta activity and decreases in alpha and beta activity 

for MCI and AD participants compared to normal controls during the REC condition are 
consistent with expected trends from the literature [37]. MCI participants demonstrate 
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increased gamma activity on a global level (G-  
 ), coupled with increases in theta activity 

in the left temporal (LT) and central (C) sites. The AD group demonstrate increased theta 
activity in the central (C) site coupled with an increase in activity ( ) and total power in the 
central region (C-      ). The alpha waves are typically produced by anyone sitting quietly 
with eyes closed in the resting state. 

 
The MCI participants demonstrate greater total power (      ) and activity ( ) in the 

central (C) regions, and increased lower frequency activity in the first derivative during the 
eyes open condition and counting task. When resting with eyes open, the AD group 
demonstrate few significant differences, however increased theta activity and decreased 
beta activity compared to normal controls are observed. When counting backwards, AD 
data demonstrate significant increases in the total power of EEG in the frontal region (F-
      ) and its first derivative in the right frontal region (RF-(      ) ). In addition, increased 
theta activity is observed in the left temporal (LT) and parietal (P) regions.  

 
The results of this pilot study suggest the potential for the use of regional and global 

spectral and complexity features representing scalp electrical activity as a means for 
objectively discriminating between normal older, MCI, and AD participants. The results 
suggest that a simple discrimination model utilizing SVM and the features presented here 
may be a viable basis for future development of a diagnostic screening tool for early MCI 
and early AD with applicability in the primary care setting. Such a rapid, simple, and cost-
effective tool could also prove useful in the drug discovery process.  
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CHAPTER 6 
NER DISCRIMINATION OF MCI AND AD 

USING INTER-CHANNEL COHERENCE GRAPHICAL NETWORKS 
 
 

In this Chapter, a method for quantifying differences in EEG inter-channel 
synchronization for MCI and AD is presented. The method developed involves analyzing 
inter-channel coherence measures via graph theory. The method is applied toward the 
discrimination of MCI and early AD using EEG recorded during resting states and a simple 
cognitive task (NER Dataset); see Chapter 1 for more details regarding data collection 
procedures. This Chapter begins with a brief introduction to graphical networks. Next, the 
methodology for developing coherence-based graphical networks of EEG activity and 
extracting meaningful features capable of characterizing differences in MCI and AD is 
described. Finally, results obtained for discrimination of MCI and AD EEG records are 
presented and discussed. 

 
 
 

Introduction to Graphical Networks 
 
Graphical Networks in Dementia 
 

Symptoms of dementia are caused by the death of cortical neurons and cholinergic 
deficits (among other concomitants) that subsequently cause a loss of local and global 
neuronal connectivity in the brain [25,70,122,127]. The neurons of the brain constitute an 
extremely complex structural network responsible for phenomena as abstract as 
consciousness, emotion, and memory. The organization of neurons in the brain provides 
the physiological basis for information processing. One means of attempting to quantify the 
structural and functional organization of the brain is the application of graph theory to 
electromagnetic measures of physiological brain activity such as functional MRI (fMRI) and 
EEG.  

 
Recent research has demonstrated that the behavior in complex systems (e.g., the 

human brain) is shaped by the interactions among the network’s constituent elements [27]. 
Brain networks characteristically demonstrate small-world behavior, or clustering 
[17,47,112,129,133]. Small-world behavior is the occurrence of highly connected clusters 
of nodes within a larger network. Brain network connections are known to exist on a 
microscopic level (neurons) and macroscopic level (inter-regional) [27]. Connections 
between nodes in a graphical network are typically based on some measure of association 
between nodes. In the brain, the probability of connections existing between nodes in a 
network representing structural (neuronal) connectivity is highly negatively correlated 
with the physical spatial distance between nodes [10,23,56].  For network models of 
functional connectivity, however, the relationship between functional connectivity and 
physical spatial distance is more weakly correlated, as nonadjacent regions of the brain 
may function in concert during certain cross-modal tasks. For example, previous 
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investigations of network graphs derived from fMRI measures have revealed that 
functionally- and anatomically-related brain regions are more densely connected, 
suggesting that connection density between nodes is likely a function of both physical 
spatial distance (anatomical relationships) and level of functional codependence 
[43,92,116]. 

 
In analyzing changes in human brain organization in dementia, fMRI and EEG 

networks have clear differences. Functional MRI has the best spatial resolution (on the 
order of millimeters) but poor temporal resolution (on the order of seconds), which 
restricts measurable bandwidth. Functional MRI measures response-related 
hemodynamics rather than directly measuring neuronal activity. The nodes used in fMRI 
networks are anatomically localized regions or voxels in fMRI images. Such nodes allow for 
various physiological measures for which the association of time series data may be 
capable of assessing both structural and functional connectivity [27]. Conversely, scalp EEG 
has poor spatial resolution, but is capable of larger bandwidths (e.g., 0-500 Hz). Typically, 
EEG electrodes are used as nodes in network graphs. EEG is not well suited to the study of 
structural organization in the brain. EEG also has its own inherent limitations as a method 
of quantifying functional brain organization due to diffusion of voltage in EEG—namely, 
different electrodes at different locations across the scalp may be affected by similar 
sources. For example, eye blink and other muscular artifacts are commonly found in 
electrodes’ signals regardless of position on the scalp. Despite these limitations, EEG is still 
capable of measuring patterns in neuronal electrical activity more directly than fMRI [27]. 
 
Construction of Graphical Networks 
 
 Graphical networks are constructed via the following four steps. First, network 
nodes are defined. Network nodes can be defined as anatomically defined regions of 
histological, MRI, or diffusion tensor imaging data. They can also be defined as 
electroencephalography electrodes in the case of EEG [113]. Defining network nodes is the 
most essential aspect of creating a graphical network, so care should be taken in choosing 
nodes that have physiological significance. Time series data should be collected for each 
node. 

 
Second, a measure of association between the time series of the nodes is defined. 

The measure of association could be spectral coherence, a causality measure, or simply a 
correlation coefficient between the two time series. Other examples include connection 
probability between two regions of diffusion tensor imaging data or a measure of the 
accuracy in reconstruction one of the node’s time series using the other node’s time series 
[113]. The measure of association should be computed for all pairwise combinations of 
nodes in order to form an association matrix, where each row and column corresponds to a 
given node. The association matrix will thus be a symmetric (two-way connections) or 
antisymmetric (one-way connections) matrix and its diagonal will generally be composed 
of ones (perfect association between a node’s time series and itself). 

 
Third, a threshold for the measure of association indicating significantly strong 

associations should be applied to the association matrix. If an element in the association 
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matrix is greater/lower than the threshold, then the connection between the two nodes 
corresponding to that element is said to exist; otherwise, the connection between the two 
nodes is said to be “severed.” If the choice of measure of association allows for positive and 
negative values, the threshold can also be applied to the absolute value. The choice of 
threshold is critical, as too lax a threshold allows for a network with potentially many 
connections while too strict a threshold may cause too few connections for meaningful 
information to be extracted from the network. Ideally, the choice of threshold value is 
motivated by other information; however, often a variety of threshold values are tested and 
a value is chosen empirically. The existing connections (those passing the threshold 
criterion) may be thought of as roadways in a city map, with nodes being buildings or other 
landmarks in the city. 

 
Fourth, weights should be assigned to all existing connections in the network. The 

weight of a connection may simply be the corresponding value of the association matrix or 
may be a value based on other information. If the weights for the existing connections in a 
network can have different sign, then the signs are generally interpreted as one-way 
connections, with positive signs indicating the direction of travel (information flow). Thus, 
if the weights vary in sign, then the weight matrix will be antisymmetric. If all weights have 
the same sign, all connections are generally assumed to be two-way and the weight matrix 
will be symmetric. Using the analogy of the city map, the weights may be interpreted as 
mileage, toll fees, etc. After having constructed the network, network parameters of 
interest may by calculated.  
 
 
 

Methodology 
 
Coherence Measures 
 
 The data used in this analysis include NC, MCI, and AD EEG records from the NER 
Dataset. As described in Chapter 1, the NER Dataset consisted of three separate protocol 
conditions: the REO condition, the counting task, and the REC condition. For each protocol 
condition, samples of 2 min duration are extracted for analyses. Each record contains 30 
electrodes (32 channels with 2 ocular channels excluded). 
 
 Inter-channel coherence is computed for all pairwise combinations of the 30 
electrodes for all 3 protocol conditions using coherence functions in MATLAB™ [88]. 
Magnitude squatted coherence is defined by Equation (6.1): 
 

    
|   ( )|

 

   ( )   ( )
      (   ) 

 
where     is the cross-power spectral density,     and      are the auto-power spectral 

densities of electrodes   and  , respectively, and   is frequency. Coherence was computed 
using the Welch Modified Averaged Periodogram Method with windows of 2 s and 50% 
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overlap. A 50% cosine taper is applied to each window. Choice of window length and 
tapering window are based on methods for computing other common spectral features of 
EEG presented by previous researchers [124]. 
 

Mean coherence values (  ̅ ) are determined for 4 physiologically relevant 

frequency bands: (1) delta-theta ( , 0—7.5 Hz), (2) alpha ( , 7.5—12.5 Hz), (3) beta ( , 
12.5—25 Hz), and gamma ( , 25—40 Hz). These four mean coherence values are used to 
determine connections in graphical network representations of inter-channel coherence. 

 
Inter-Channel Coherence Networks 
 
 A graphical network representation of inter-channel coherence is constructed for 
each of the four frequency bands. Nodes in each network are defined as the EEG electrode 
channels. Mean coherence values for coherence values for corresponding frequencies are 
used as measures of associations between nodes. Weights are assigned to all pairwise 
connections in the networks and are equal to the complement of the mean coherence 
values. For example, for a mean coherence value between channels   and   among   band 
frequencies (  ̅ 

 ), the corresponding weight    
      ̅ 

 . Thus, the lower the weight, the 

stronger the coherence of the given frequency activity between two electrodes. Thresholds 
of 0.567, 0.481, 0.402, and 0.303 are applied to weights of the  ,  ,  , and   band networks, 
respectively. Connections with weights below these thresholds are included while 
connections with weights greater than these thresholds are severed. The choice of 
thresholds is based on the observation that 75% of weights among all participants are 
above the thresholds. 
 
 Sixteen features are computed for each of the 4 network graphs corresponding to 
the 4 frequency bands for a total of 64 features; see Table 6.1 for a list of network features 
computed. The set of features includes 4 global network features and 12 regional network 
features.  
 
Global Network Features 

The first global network feature is connection density ( ). Connection density is 
defined as the percentage of possible connections that passed the threshold significance 
criterion and are actually present in the network (existing connections). Other global 
features include statistical features summarizing the distribution of existing connections’ 
weights. Specifically, the maximum likelihood estimates of the scale ( ) and shape ( ) 
parameters for a Weibull distribution fit of the weights’ probability density function (PDF) 
are determined. These parameters allow for analysis of the general trends in the strength 
of coherence between significant (existing) connections. 
 

An additional global network feature is the mean number of nodes ( ̅) in the 
shortest existing pathways between nodes. Given the severing of connections via the 
threshold criterion, a pathway did not necessarily exist between any two given nodes. 
Furthermore, given that the length of a pathway is equal to the sum of the weights of 
connections in a pathway and that the weights are equal to the complement of the  
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Table 6.1. Inter-Channel Coherence Graphical Network Features 
 

(1)   Connection density 
(2)   Scale parameter of Weibull distribution fit of weights 
(3)   Shape parameter of Weibull distribution fit of weights 
(4)  ̅ Mean number of nodes in shortest existing pathways 
(5)    Mean hub order in central (C) region 
(6)    Mean hub order in frontal (F) region 
(7)    Mean hub order in left temporal (L) region 
(8)    Mean hub order in occipital (O) region 
(9)    Mean hub order in parietal (P) region 
(10)    Mean hub order in right temporal (R) region 
(11)    Mean clustering coefficient in central (C) region 
(12)    Mean clustering coefficient in frontal (F) region 
(13)    Mean clustering coefficient in left temporal (L) region 
(14)    Mean clustering coefficient in occipital (O) region 
(15)    Mean clustering coefficient in parietal (P) region 
(16)    Mean clustering coefficient in right temporal (R) region 

 
 

 
coherence between nodes, the shortest pathway between two nodes is also the pathway of 
strongest coherence between constituent nodes in the pathway. Because coherence is a 
measure of the correlated general trends of two time series at a given frequency, it is also a 
measure of mutual information between frequency activities of the two time series. Viewed 
in this context, the shortest pathway between two nodes is both the pathway of strongest 
coherence and the pathway of greatest mutual information in the specific frequency band 
for the given start and end nodes. The mean number of nodes in the shortest existing 
pathways is therefore an average measure of the interdependence of mutual information 
among connected nodes in the given frequency range. 
 
Regional Network Features 

In addition to the four global network features just described, hub order and 
clustering coefficients are also examined on a regional basis. Hub order ( ) for a given 
node is defined as the number of existing shortest pathways that include the node while 
excluding pathways that begin or end at the given node. Clustering coefficient ( ) for a 
given node is a measure of the connection density among local nodes. In this study, 
clustering coefficient for a given node is defined as the number of direct connections 
between the directly connected nodes divided by the number of possible connections 
between directly connected nodes. Both hub order and clustering coefficients are 
computed for each of the 30 nodes and are averaged over the same 6 scalp regions used in 
the event-related Tsallis entropy analyses: central (C), frontal (F), left temporal (L), parietal 
(P), occipital (O), and right temporal (R). See Fig. 2.1 for a diagram of the region 
boundaries. 
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Implications of Network Features’ Values 
The implications of the values of the chosen network features regarding the EEG 

electrical activity are summarized in Table 6.2, where the superscript ( ) denotes the 
frequency band and the subscript ( ) denotes the region (if applicable). A low connection 
density ( ) value is indicative of low global coherence and implies diverse sources for the 
recorded electrical activity in the given frequency band. Conversely, high   is indicative of 
high global coherence and greater uniformity in the electrical activity in the given 
frequency band.  

 
The weight’s PDF scale parameter ( ) has the opposite relationship, with a low 

value implying high coherence and a high value implying low coherence. The PDF shape 
parameter ( ) is indicative of the variation in coherence values, with a low value 
suggesting low variation and a high value suggesting high variation. The mean number of 
 
 
 

Table 6.2. Implications of Inter-channel Coherence Graphical Network Features’ Values 
 

 
Feature 

 
Value 

Direct implications 
for coherence 

Implications for 
  band electrical activity 

(1)     low low global coherence lower uniformity 
  high high global coherence greater uniformity 
(2)     low high mean coherence greater uniformity 
  high low mean coherence &/OR 

high variation in coherence 
low uniformity 

(3)     low low variation in coherence -- 
  high high variation in coherence -- 
(4)   ̅  low high interdependence of 

coherence 
greater uniformity 

  high low interdependence of 
coherence 

low uniformity 

(5)-(10)   ̅ 
 
 low coherence  in region   has low 

interdependence of with other 
regions 

low uniformity &/OR  
possible localized source of   
band activity near/ within 
region   

  high coherence in region   has high 
interdependence of with other 
regions 

greater uniformity 

(11)-(16)  

 ̅ 
 

 

low low coherence within region   -- 

  high high coherence within region   possible localized source of   
band activity near/within region 
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nodes in the shortest existing pathways ( ̅), as mentioned previously, serves as a measure 
of the interdependence of coherence values, with a larger mean number of nodes indicating 
lower interdependence. Generally, low interdependence in coherence values can be 
interpreted as implying low uniformity in electrical activity in the given frequency band.  

 

Regional mean hub orders ( ̅ 
 

) also indicate interdependence of coherence, but on 
a regional rather than global scale. These values can be interpreted as indicating the 
relative interdependence of the given region’s coherence with the other regions. Thus, low 

 ̅ 
 

 could imply low global uniformity in electrical activity or a possible localized source of 

electrical activity in the given frequency band near or within the specific region. High  ̅ 
 

 is 
indicative of greater global uniformity in the given frequency band activity.  

 

Finally, regional mean clustering coefficients ( ̅ 
 

) serve as indicators of 
intraregional coherence, with high values suggesting the possibility of a localized source for 
given frequency activity. 
 
Discrimination of EEG Records 
  
Feature Selection 

The three groups of participants (NC, MCI, and AD) in the NER Dataset provided 
three binary discrimination problems: MCI vs. NC, AD vs. NC, and MCI vs. AD. Sixteen 
network features are computed for four network graphs based on mean inter-channel 
coherence for  ,  ,  , and   frequency bands. Thus, a total of 64 features are computed for 
each subject for each protocol condition. Feature selection is performed in order to assess 
the contribution of individual features to discrimination performance for each binary 
discrimination problem and each protocol condition. Feature selection is performed as 
follows. For each discrimination problem and each condition, combinations of up to 8 of the 
64 features are tested using SVM functions in MATLAB™ [88]. Quadratic kernel functions 
are used in all discriminations and the cost coefficient is held constant at unity. To help 
avoid overfitting, nested LOOCV loops are used to suggest and test different combinations 
of features. The inner loop is used to generate a list of suggested combinations of features. 
The outer loop determined the LOOCV accuracy of the combinations of features suggested 
by the inner loop. The contribution of individual features is then assessed based on how 
often they appear in the best 200 performing combinations tested in the outer loop 
simulations. Ultimately, the six features that appear most often are then tested in 
combination. 
 
Statistical Significance 

The statistical significance of results obtained using the six selected features chosen 
via feature selection is assessed using Monte Carlo permutation testing. Random samples of 
10,000 permutations of shuffled labels are used to estimate 95% confidence intervals for 
the probabilities that the LOOCV accuracies obtained are due to chance. The p-values 
presented are determined using this method. For more on Monte Carlo permutation 
testing, see work by Thomas and Holmes [143]. 
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Results for Discrimination of MCI and AD  
Using Inter-channel Coherence Graphical Network Features 

 
A summary of the feature selection results is presented in graphical form in Fig. 6.1, 

where a color scale is used to indicate the inclusion of given features in the 200 best 
performing combinations. For example, 100% would indicate that a given feature is 
included in all of the 200 best performing combinations; 50% indicates inclusion in half of 
the 200 best performing combinations; etc. As can be seen in Fig. 6.1, for most binary 
classification problems and conditions, a few features are clearly highlighted as being 
highly discriminatory (highly inclusive). One notable exception is the discrimination of MCI 
vs. NC participants while counting backwards with eyes closed. As seen in Fig. 6.1, no set of 
features is capable of clearly distinguishing the two groups’ EEG frequency activity during 
the given task. Statistical analyses reveal that this failure is due to high variability among 
feature values within each group, suggesting that the task of counting backwards with eyes 
closed may be ill-suited for discriminating between MCI and NC participants based patterns 
on inter-channel coherence relationships. 

 
For each protocol condition and discrimination problem, the six features with the 

highest inclusivity among feature selection results are selected for further analyses. Firstly, 
all six features are tested in combination. The results are summarized in Table 6.3. Ninety-
five percent confidence intervals for corresponding p-values of the resulting LOOCV 
accuracies are estimated using Monte Carlo permutation testing.  

 
Additionally, two-sample student t-distribution tests (unequal variance) are 

performed on group means of individual features in order to determine whether 
differences between the given samples are great enough to statistically infer linear 
separability in the groups’ populations (90% confidence). Features for which such an 
inference can be made are indicated with † in Table 6.3. Given the small sample sizes, such 
inference require large differences between group means and small variation within 
groups. It should be noted that such tests are dependent on the assumption of 
representative samples.  

 
Finally, the potential implications of differences in EEG electrical activity between 

groups are assessed for each feature for which differences in population means could be 
inferred with statistical significance. These observations are summarized in Table 6.3.  

 
 
MCI vs. NC Results 

When resting with eyes open, MCI participants demonstrate greater 
interdependence of   activity in the central region with other regions, greater 
interdependence of   activity of the frontal region with other regions, and greater 
localization of   activity in the occipital region compared to normal controls. These 
observations suggest overall greater uniformity in   activity and greater localization in   
activity for MCI participants compared to NC participants. The REO condition also 
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Fig. 6.1. Inter-Channel Coherence Graphical Networks’ Feature Selection Results. Color scale indicates the inclusion of given 
features in the 200 best performing combinations for the given protocol condition and binary discrimination problem. 
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demonstrated the greatest accuracy in MCI vs. NC discrimination, with a LOOCV accuracy of 
93.6% (p<0.0003) using 6 selected features. Results for MCI vs. NC discrimination while 
counting backwards with eyes closed are inconclusive, with feature selection failing to 
suggest likely discriminating features among those tested. While resting with eyes closed, 
MCI participants as a whole demonstrated higher mean coherence in   activity and greater 
localization of   activity in the frontal region. A LOCV accuracy of 87.1% (p<0.0012) is 
achieved during the REC condition using 6 selected features. 
 
AD vs. NC Results 

A LOOCV accuracy of 81.3% (p<0.0042) is achieved for AD vs. NC discrimination 
during the REO condition. Group differences in selected features indicate greater 
interdependence of   activity of the frontal region with other regions and higher mean 
coherence in   activity for AD participants. LOOCV accuracies of 93.8% (p<0.0003) and 
90.6% (p<0.0003) are achieved using 6 selected features for the counting task and REC 
conditions, respectively. Lower global uniformity of   activity and lower coherence of   
activity in the occipital region is observed for the AD participants during the counting task. 
When resting with eyes closed, AD participants clearly demonstrate greater localization of 
  activity in the left temporal region and significantly higher variability in   activity. 
 
MCI vs. AD Results 

The highest discrimination accuracy for MCI vs. AD is observed during the REO 
condition, with a LOOCV accuracy of 97.0% (p<0.0003) using 6 selected features. Statistical 
analyses of the selected features indicate greater uniformity in   activity and lower 
uniformity in   and   activity in AD participants compared to MCI participants. AD 
participants also demonstrate greater localization of   activity in the central region. A 
LOOCV accuracy of 87.9% (p<0.0008) is achieved for the counting backward task using 6 
selected features. Those features point to lower uniformity in   and   activity and greater 
uniformity in   activity in AD participants compared to MCI participants. Gamma activity 
features also appeare to have greater discriminatory power for the REC closed condition. A 
LOOCV accuracy of 87.9% (p<0.0007) is also achieved for the REC condition using 6 
selected features. 
 
 
 

Discussion and Conclusions 
 

In this study, inter-channel coherence graphical network features of scalp EEG 
recorded during resting state conditions and a simple cognitive task are explored as a 
means of effectively and accurately NC, MCI and AD groups. Resting state protocols and 
simple cognitive tasks (e.g., counting backwards) have several benefits compared to 
working memory tasks, including more efficient data collection procedures and robustness 
of analyses regarding patients’ state of mind. Interestingly, while the best discrimination 
between AD and NC participants is achieved during the counting backward condition, the 
best results in discriminating MCI from NC and AD participants is achieved during the REO 
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Table 6.3. Group Comparisons and Implications of Selected Inter-Channel Coherence Graphical Network Features 
 

 MCI vs. NC  AD vs. NC  MCI vs. AD 

 Selected 
Feature

s 

Group 
Means 

 
Implications 

 Selected 
Feature

s 

Group 
Means 

 
Implications 

 Selected 
Feature

s 

Group 
Means 

 
Implications 

REO 

 ̅ 
  MCI>NC† greater uniformity 

in  ,   activity;  
greater localization 
of   activity in O 
region 

    AD<NC greater uniformity 
in  ,   activity 
 

  ̅ 
  MCI<AD† greater uniformity 

in   activity in AD; 
lower uniformity 
in  ,   activity in 
AD; greater 
localization of   
activity in C region 
in AD 

 ̅ 
  MCI>NC   ̅ 

  AD>NC†     MCI<AD† 

 ̅ 
  MCI>NC   ̅ 

  AD<NC   ̅ 
 

 MCI>AD 

 ̅ 
 

 MCI>NC†   ̅ 
  AD>NC     MCI>AD† 

 ̅ 
 

 MCI<NC†   ̅ 
  AD<NC   ̅  MCI>AD 

 ̅ 
 

 MCI>NC     AD>NC†   ̅ 
 

 MCI>AD† 

acc. (sens., spec.): 93.6% (93.8%, 93.3%)  acc. (sens., spec.): 81.3% (82.4%, 80.0%)  acc. (sens., spec.): 97.0% (93.8%, 100%) 

95% CI for p-value: (0, 0.0003)  95% CI for p-value: (0.0020, 0.0042)  95% CI for p-value: (0, 0.0003) 

counting 
task 

no dominant 
 features available 

results 
inconclusive 

  ̅ 
  AD<NC† lower uniformity in 

  activity; 
lower coherence of 
  activity in P 
region; 
lower coherence of 
  activity in O 
region 

    MCI<AD† lower uniformity 
of  ,   activity in 
AD; 
greater uniformity 
of   activity in AD; 
greater 
localization of   
activity in F, P 
regions in AD 

  ̅ 
  AD<NC†   ̅ 

  MCI<AD 

  ̅ 
  AD>NC   ̅ 

 
 MCI<AD† 

  ̅ 
  AD<NC     MCI>AD† 

  ̅ 
 

 AD<NC†   ̅ 
 

 MCI>AD† 

    AD>NC   ̅ 
 

 MCI>AD† 

 acc. (sens., spec.): 93.8% (100%, 86.7%)  acc. (sens., spec.): 87.9% (81.3%, 94.1%) 

 95% CI for p-value: (0, 0.0003)  95% CI for p-value: (0.000008, 0.0008) 

REC 

   MCI<NC† greater uniformity 
in   activity; 
greater localization 
of   activity in F 
region 

  ̅ 
  AD<NC† greater localization 

of   activity in L 
region; 
higher variation in 
coherence of   
activity 

    MCI<AD lower uniformity 
in   activity in AD    MCI<NC   ̅ 

  AD<NC   ̅ 
 

 MCI>AD 

 ̅ 
 

 MCI<NC   ̅ 
  AD<NC     MCI<AD 

 ̅ 
 

 MCI<NC   ̅ 
 

 AD<NC     MCI<AD† 

 ̅ 
 

 MCI>NC†     AD>NC†   ̅ 
 

 MCI>AD† 

 ̅ 
 

 MCI>NC   ̅  AD>NC   ̅ 
 

 MCI>AD 

acc. (sens., spec.): 87.1% (93.8%, 80.0%)  acc. (sens., spec.): 90.6% (94.1%, 86.7%)  acc. (sens., spec.): 87.9% (81.3%, 94.1%) 

95% CI for p-value: (0.0007, 0.0012)  95% CI for p-value: (0, 0.0003)  95%CI for p-value: (0, 0.0007) 

† p-value <0.10 for two-sample student t-distribution test (unequal variance) of difference in population means 
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condition, suggesting that cognitively taxing tasks may indeed be unnecessary for eliciting 
detectable differences in EEG activity for MCI diagnosis. 
 

Previous studies have observed that EEG features that appear to discriminate AD 
from normal controls well, do not necessarily perform well when applied to MCI 
participants [42,63,100]. Often, MCI individuals appear to be spread across boundaries that 
otherwise clearly discriminate AD from normal participants. These difficulties are likely 
due to the nature of MCI diagnoses. By definition, neurological symptoms caused by 
amnestic MCI do not significantly interfere with normal daily activities. In contrast, when 
patients are diagnosed with AD, their symptoms have generally progressed significantly. 
Thus, the diagnosis of MCI constitutes a gray area between normal, age-related cognitive 
decline (NC) and AD. The high accuracy achieved here in discriminating between MCI and 
AD on the basis of   activity is encouraging as there is great interest in being able to 
distinguish between these two related cognitive disorders. 

 
Previous studies have also demonstrated the applicability of synchronization, 

coherence, and other association measures between scalp EEG electrodes in the 
discrimination of normal individuals and those with dementia [37]. Typically, researchers 
have attempted to identify individual local association measures (e.g., coherence between 
two specific channels at a specific frequency) or a few globally averaged association 
measures that appear to demonstrate significant robustness in discriminating normal 
individuals from those with dementia. Unfortunately, dementia can cause different 
neurological changes in different individuals—especially in the case of more enigmatic 
diagnoses such as MCI. Such differences may lead to the failure in the generalization of local 
or globally averaged association measures to other data sets. 

 
This study presents a method for analyzing coherence measures between EEG 

electrodes via graphical analysis. The success of SVM discrimination between binary 
groupings of the three groups of EEG records (NC, MCI, and AD) are the result of 
differences in uniformity of electrical activity in specific frequency bands during resting 
states and a simple cognitive task. Specifically, MCI participants demonstrate greater 
uniformity in   and   activity than NC participants when resting with eyes open. AD 
participants also demonstrate greater uniformity in   and   activity when resting with eyes 
open. When counting backwards, differences between MCI and NC participants are 
inconclusive; however, AD participants demonstrate lower uniformity of   and   activity in 
the parietal and occipital regions, respectively, compared to NC participants. When resting 
with eyes closed, MCI participants demonstrate greater uniformity in   activity and greater 
localization in   activity in the frontal region while AD participants demonstrate greater 
localization of   activity in the left temporal region and higher variation in   coherence. 
Differences between MCI and AD participants are primarily observed with regards to   
activity in all three conditions. It is possible that these differences may be the results of 
characteristic changes in brain network functional organization (e.g., compensatory 
mechanisms) as a result of neurological degeneration.  

 
The results of this work suggest the potential for the use of network graphs 

representing scalp electrical activity relationships as a means for objectively discriminating 
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between normal, MCI, and AD patients. Results suggest that a simple discrimination model 
utilizing SVM and the network features presented here may be a viable basis for future 
development of a diagnostic screening tool for MCI and early AD with applicability in the 
primary care setting.  
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CHAPTER 7 
CHANNEL RECONSTRUCTION OF BIOMEDICAL SIGNALS  

USING ARTIFICIAL NEURAL NETWORKS 
 
 

Signal corruption or loss of data—for example, due to the loss electrode adhesion—
is a common issue in biomedical signal acquisition and analysis. Thus, the ability to 
accurately predict/reconstruct lost signals could greatly impact medical research and 
application. In this Chapter, methods for reconstruction missing data in multivariate 
biomedical signals using artificial neural networks are presented.  This Chapter begins with 
a brief introduction to artificial neural networks. Next, a method for reconstructing missing 
data in ICU machine signals using artificial neural networks is presented. Similar methods 
to those applied to the reconstruction of ICU signals are then adapted for the 
reconstruction of normal aged EEG. A method of applying neural network models designed 
for the reconstruction of normal aged EEG to MCI and AD EEG records as a means of 
detecting dementia is presented. Finally, results obtained for ICU channel reconstruction 
and discrimination of MCI and AD EEG records is presented and discussed.  

 
 
 

Introduction to Artificial Neural Networks 
 

Artificial neural networks (ANNs) are mathematical models that are designed to 
function similar to the human nervous system. ANNs consist of interconnected layers of 
nodes, known as neurons, emulating the functional organization of human nervous tissue. 
Neurons are the basic processing units of a network and their functionalities are derived 
from observations of the biological neuron, the basic building block of nervous tissue. Each 
neuron constitutes a simple mathematical model (function) comprised of three simple 
steps: (1) multiplication, (2) summation, and (3) activation [78]. In the first step of each 
artificial neuron’s function, the inputs to the neuron are weighted (multiplied by a 
weighting factor). The weights for the inputs are known as synaptic weights, being based 
on the responsiveness (weighting) biological neurons attribute to stimulation (inputs) 
from adjacent neurons. During the second step, the weighted inputs are summed along 
with a bias. The last step consists of passing the sum of weighted inputs and bias through a 
specified transfer function. The transfer function defines the properties of an artificial 
neuron and can be any mathematical function. The most common transfer functions are the 
step function, a linear function (purelin), and nonlinear sigmoid function (tansig) [78]. 
This process is presented in mathematical form in Equation (7.1): 

 

   (∑    

 

   

  )       (   ) 

 
where   is the output from the neuron,   is the transfer function,    are the inputs to the 
neuron,    are the input weights, and   is the bias of the neuron [78].  
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Although the working principles of an individual artificial neuron may seem trivial, 
the potential computational power of artificial neurons cannot truly be appreciated until 
multiple neurons are interconnected in order to construct an ANN; see Fig. 7.1 for a 
schematic of a simple artificial neural network. In order to take full advantage of the 
benefits of the mathematical complexity inherent in ANNs, artificial neurons are generally 
not connected randomly. Previous researchers have developed several standardized 
topographies, which can be divided into two major categories: feed-forward neural 
networks, where information is transferred from inputs to outputs in only one direction, 
and neural networks with recurrent topologies, where some of the information flows from 
input to outputs as well as from outputs to inputs. Here, discussion is limited to feed-
forward ANNs; for more information regarding recurrent topographies, see work by 
Gurney [53]. 
 

Feed-forward ANNs (ffANNs) are designed on the premise that information must 
flow from input to output in only one direction. There are no limitations to the number of 
layers, type of transfer function used in individual neurons, or the number of connections 
between individual neurons. When multiple layers of neurons are used, a simple ffANN can 
lead to highly nonlinear functions between inputs and outputs.  

 
Before an ANN can be applied to a specific problem, it must be trained. ANNs may be 

trained in a supervised or unsupervised fashion. The method of training is typically chosen 
on the same basis as the topography in order to best fit a given application [78]. Supervised 
learning is a machine learning technique that sets parameters of an ANN based on example 
training data. The training data consist of pairs of input and desired output values. Various 
optimization techniques exist for adjusting weights and biases of ANNs in order to 
accurately map inputs to outputs. Unsupervised learning is a machine learning technique 
that adjusts the weights and biases of ANNs based on given data and a cost function, which 
is to be minimized [78]. The cost function is generally based on the formulation of the task 
for which the ANN is being trained. Generally, unsupervised learning is used to train ANNs 
for applications of estimation, such as statistical modeling, compression, filtering, and 
clustering. The primary difference in unsupervised learning is that the provided training 
data is unlabeled. A common form of unsupervised learning is clustering, where data is 
categorized into different clusters based on similarities. The most commonly used 
unsupervised learning algorithm is self-organizing maps [78].  

 
Neural networks can be trained to perform a wide variety of tasks. Previous 

research has demonstrated their capabilities in application modeling, prediction, 
classification, control, function approximation, data preprocessing, filtering, clustering, 
compression, robotics, regulations, and decision making, to name a few [78*,89]. 
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Fig. 7.1. Schematic of Simple Feed-Forward Artificial Neural Network (ffANN). Neurons’ 
nonlinear transform functions are indicated by the plot of the sigmoid function within each 
neuron. Note that output  ̂ has a hat above it, indicating that it is an approximation of the 
true output   based on training. 
 
 
 
 

Reconstruction of ICU Signals Using Artificial Neural Networks 
 
PhysioNet 2010 Challenge 
 
 In the Computing in Cardiology/PhysioNet 2010 Challenge: Mind the Gap 
(http://physionet.org/challenge/2010), participants were asked to reconstruct segments 
of signals that had been artificially removed from multi-parameter recordings of patients in 
ICUs, using any combination of available prior and concurrent information. Data for the 
Challenge were selected from ICU patient monitor recordings collected by the MIMIC II 
project [49,115]. Each record was 10 min long and contained 6 to 8 simultaneous and 
continuous signals, which were discretized at 125 Hz. Thus, each record contained 75,000 
observations for each signal. Different records contained different signals. The possible 
signals included ECG, arterial blood pressure (ABP), central venous pressure (CVP), 
respiration (RESP), raw fingertip plethysmogram outputs (PLETH), and occasionally other 
signals. In each 10-minute record, the final 30 s (3750 observations) of a randomly chosen 
signal were replaced by a flat line signal. Fig. 7.2 shows an example of the last minute of a 
record. The goal of the Challenge was to reconstruct this missing 30-s target signal in each 
record. 
 

The Challenge provided 300 records, which were randomly assigned to 1 of 3 
datasets such that each dataset contained 100 records. Set A was used for training. The 
target signals were provided for records in this set. Participants in the Challenge were able 
to obtain quality scores for reconstructions of records in this set at any time, which allowed 
participants to tune their algorithms. The scores for set A were not included in the final 
rankings of Challenge entries. Target signals for set B were withheld from participants;  
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Fig. 7.2. Last Minute of a Typical Record in PhysioNet2010 Challenge; Figure Copied from 
[93]. From top to bottom, the signals are RESP, PLETH, BP, ECG lead II, ECG lead “V” (an 
unspecified precordial lead), ECG lead VR, and CVP. Note that PLETH is the target signal, 
the final 30 s of which is replaced by a flat line.  
 
 
 
however, participants were able to obtain scores for set B reconstructions at any time using 
the PhysioNet website. Like set A, set B scores were not included in the final rankings of 
Challenge entries. Target signals in set C were withheld from the participants. Set C scores 
were used to determine the final rankings and the winners of the Challenge [93]. 
 
 Two quality scores were used in the Challenge to evaluate the accuracy of 
reconstructions. The first quality score    is defined by Equation (7.2): 
 

      [  
   

  
  ]       (   ) 

 
where   represents the standard deviation of the actual data  ( ) and     represents the 
mean squared error (i.e., the average of the squared difference between the reconstructed 
signal  ̂( ) and the actual data  ( )). Thus,    is the larger value between the R-squared 
value and zero. The second quality score    is defined by Equation (7.3): 
 

      *
   , ( )  ̂( )-

  ̂
  +       (   ) 

 
where  ̂ represents the standard deviation of the reconstructed signal  ̂( ) and 
   , ( )  ̂( )- represents the covariance between the actual data  ( ) and the 
reconstructed signal  ̂( ). In other words,    is the larger value between the correlation 
coefficient and zero. 
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 The method presented in this study achieves outstanding scores for all three 
datasets [89]. Since target signals were only available for set A, data in set A is used to 
illustrate the efficacy of the methodology presented here. 
 
Methodology 
 
Formulation of Reconstruction Problem for ffANN 

The methodology presented here is based on application of ffANNs. The channel 
containing the target signals (missing information) are treated as the output and the 
remaining channels of a record are treated as input channels. Thus the output channel can 
be represented by a scalar time series *  + and the input channels by a vector time series 
*  +, where the vector    contains signals from all input channels at observation  . The 
goal is thus to find a mapping function that relates a target signal to input signals as 
presented in Equation (7.4): 

 
    (     

      
        

)         (   ) 

 
where   is the mapping function and              represent delays in the input 
channels. For later convenience, a delay vector is introduced as follows: 
  *          + . For example, a delay vector   *     +  corresponds to the input 
consisting of the observations   ,     , and     . The notation                  is here 
introduced to represent a vector whose elements increase at an increment from       to 
    in steps of length     . Note that the delay vector is unitless and represents sample 
indices. Recall that the sampling frequency was 125 Hz. Thus, the delay vector          
means data up to 0.08-s old is used. To convert Equation (7.4) into a feed-forward form, an 
augmented vector   is introduced in Equation (7.5): 
 

  
  {     

       

         

 }       (   ) 

 
Using the augmented vector, it follows that Equation (7.4) can be rewritten as a function 
between    and    with a new mapping function  : 
 

    (  )        (   ) 
 
The relationship presented in Equation (7.6) is the framework of a ffANN. 
 
Structure and Design of ffANN 

Simulations in this study are carried out using the neural network toolbox in 
MATLAB™ [88]. The computer programs are executed on a high performance computing 
cluster located at the University of Tennessee [96]. Default parameters listed in Table 7.1 
are used in all simulations unless otherwise stated. A ffANN with two hidden layers is used 
(input layer and output layer). A hyperbolic tangent sigmoid transfer function (tansig) is 
used in neurons in the first layer (input layer), and a linear transfer function (purelin) 
for neurons in the second hidden layer (output layer). The first layer has 10 neurons and 
the second layer has 1 neuron. The 5 min of data immediately prior to the missing signal  
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Table 7.1. Default Parameters Used in Neural Network Simulations 
For PhysioNet 2010 Challenge 

Number of hidden layers 2 
Number of neurons 10 for the 1st hidden layer and 1 for the 2nd hidden layer 
Transfer functions Tansig for 1st hidden layer and purelin for 2nd hidden layer 
Training data 5 minutes of data immediately prior to the missing signals 
Training epochs 40 
Performance function Mean squared normalized error (MSNE) 
Delay vector d 0:10:100 (numbers from 0 to 100 in steps of 10) 

 
 
 

are used to train the network for 40 epochs. The mean squared normalized error (MSNE) is 
used as the performance function of the network model. A default delay vector of 
           is used. All other parameters adopt their default values in MATLAB. 
 
Iterative Retraining and Accumulated Averaging 
 Based on ffANNs, an iterative retaining technique and an accumulated averaging 
technique are developed in order to improve the accuracy of reconstructions. Recall that 
each record was 10 min long and sampled at 125 Hz. Thus, each record consisted of 75,000 
observations for every signal. First, a 10-minute record is divided into 20 segments, each 
30 s long (3750 observations). Input data in each segments are denoted by   ,   ,…,    . 
Note that the notation    represents a vector time series. Likewise, the corresponding 
output channel data in each segment are denoted by   ,   ,…,    . Note that the notation    
represents a scalar time series. Thus, time series     was the target signal to be predicted. 
The iterative retraining process is carried out for a given record via the following steps: 
 

(1) An ffANN is trained using a training set, where the input data consist of    , 
   ,…,     and the corresponding output data consist of    ,    ,…,    . 
 

(2) The ffANN trained in step (1) is applied to the input data     to predict the target 
signal    . For later convenience, the predict signal is denoted by  . 

 
 

(3) A new ffANN is trained using a training set, where the input data consisted for    , 
   ,…,     and the corresponding output data consisted of    ,…,    ,  . 
 

(4) The ffANN trained in step (3) is applied to the input data     to generate new 
predictions.   is then updated using the new predicted target signal computed in 
this step. 
 

(5) Steps (3) and (4) are repeated until the desired number of iterations is reached. 
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To illustrate the method of accumulated averaging, suppose the   iterations of 
retraining have been conducted and denote the predictions from each of these iterations by 
 ( ),   ( ),…,  ( ). This sequence of predictions is averaged accumulatively to generate a 
new sequence:  ( ),   ( ),…,  ( ). Here,  ( ) is the average of the first   iterations:  ( ), 
  ( ),…,  ( ). 
 
Results for ICU Machine Signal Reconstruction 
 
Results for Various Techniques 

The techniques described in the previous section are applied to PhysioNet records 
in set A. Aggregate    and    scores for all 100 records in set A obtained using the default 
parameters listed in Table 7.1 are presented in Fig. 7.3. In Fig. 7.3, results marked with 
triangles (blue) are obtained using straightforward simulation of ffANNs. Note that 
computations are repeated for 25 trials. In most trials, the aggregate    scores are within 
the range 73 to 75 whereas the aggregate    scores are in the range of 85.5 to 86.5. Results 
marked with stars (black) are obtained using the iterative retraining mechanism. The 
retraining algorithm is applied for 25 iterations. Note that the retraining algorithm starts 
from the first iteration that is obtained from a straightforward prediction using the ffANN. 
In subsequent iterations, predictions from the previous iteration are used to retrain a new 
network, which is then used to produce prediction for the current iteration. As seen in Fig. 
7.3, the results from retraining are consistently more accurate than those from 
straightforward simulations. Nevertheless, both aggregate    and    scores of retraining 
results demonstrate fluctuations from iteration to iteration. On average, the retraining 
mechanism improves the aggregate    score by about 3 points and the aggregate    score 
by about 1.5 points. It is interesting to note that the retraining results are further improved 
using accumulated averaging; see circles (red) in Fig. 7.3. Here the average of predictions of 
the first   iterations is computed. Thus, the average accumulates when   increases. 
Moreover, aggregate    and    scores of the accumulated averaging mechanism smoothly 
converge as the number of iterations is increased. The converged    score is improved by 
about 2.5 points and the converged    score is improved by about 1.5 points compared to 
results of iterative retraining. Extensive simulations are conducted using various 
parameters and it is consistently observed that iterative retraining and accumulated 
averaging significantly improve the accuracy of the predictions. Trends are similar to those 
shown in Fig. 7.3. 
 
Results for Different Types of Target Signals 
 The results from straightforward simulations, iterative retraining, and accumulated 
averaging are further compared by examining their scores for different types of targets; see 
Table 7.2. The 100 records in set A included 5 different types of target signals: blood 
pressure (BP), CVP, ECG, PLETH, and RESP. Note that the BP targets included nine ABP 
targets and one pulmonary arterial pressure target. First, the scores for each record are 
averaged using 25 trials (for straightforward ffANN simulations) or 25 iterations (for 
iterative retraining). The scores for accumulated averaging are computed using the 
reconstructions from the accumulated averaging of the first 25 iterative retraining 
predictions as described in previously. The mean and standard deviations for scores of  
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Fig. 7.3. Aggregate Scores for Records in Set A [89]. Straightforward simulations 
(triangles), iterative retraining mechanism (stars), and accumulated averaging (circles). 
 
 
 

Table 7.2. Results for Set A Records for Different Target Signals 
 

Target 
types 

Straightforward 
 simulation 

Iterative 
retraining 

Accumulated  
averaging No.  

Rec. Q1 Q2 Q1 Q2 Q1 Q2 
BP 0.888 ± 

0.104 
0.957 ± 
0.046 

0.906 ± 
0.090 

0.963 ± 
0.039 

0.924 ± 
0.082 

0.972 ± 
0.037 

10 

CVP 0.638 ± 
0.340 

0.830 ± 
0.177 

0.684 ± 
0.304 

0.848 ± 
0.164 

0.729 ± 
0.266 

0.870 ± 
0.145 

10 

ECG 0.910 ± 
0.187 

0.945 ± 
0.146 

0.925 ± 
0.157 

0.954 ± 
0.135 

0.934 ± 
0.154 

0.958 ± 
0.133 

44 

PLETH 0.608 ± 
0.283 

0.758 ± 
0.249 

0.637 ± 
0.282 

0.775 ± 
0.242 

0.666 ± 
0.281 

0.794 ± 
0.237 

15 

RESP 0.446 ± 
0.313 

0.727 ± 
0.153 

0.485 ± 
0.306 

0.748 ± 
0.147 

0.551 ± 
0.304 

0.794 ± 
0.138 

21 

All 0.738 ± 
0.312 

0.861 ± 
0.191 

0.763 ± 
0.292 

0.874 ± 
0.181 

0.792 ± 
0.274 

0.892 ± 
0.169 

100 

Averages ± standard deviations of scores using different techniques. 
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different types of target signals are then calculated. 
 
 For all types of target signals, accumulated averaging produces the best scores and 
straightforward simulations produce the worst scores. The differences among scores for 
different methods are most dramatic in CVP, PLETH, and RESP signals. For example, 
relative to the results of straightforward simulations, the accumulated average technique 
improves the scores of CVP by 14.3% in    and 4.8% in   ; the cores of PLETH are 
improved by 9.5% in    and 4.8% in   ; and the scores of RESP are improved by 23.5% in 
   and 9.2% in   . On the other hand, the improvements of scores by retraining and 
averaging are minimal in ECG and BP signals. Overall, when comparing between 
straightforward simulations and accumulated averaging, aggregate scores are improved by 
5.4% in    and 3.6% in   . Moreover, retraining and averaging also had reduced 
magnitudes of standard deviations for all signals. The results of accumulated averaging are 
extremely accurate for BP and ECG target signals. The reconstructions of RESP signals are 
the worst, with average scores being    = 0.564 and    = 0.778. This was likely due to the 
fact that the frequency of RESP is much lower than those of other signals. Thus, the high 
frequency variations in signals such as ECG appear as spikes in the reconstructed signals. 
 
 
 
 

 
Fig. 7.4. Selected Examples of Target Signals and Reconstructions [89]. CVP (top-left,    
=0.8095 and    = 0.9042); ECG (top-right,    =0.9512 and    = 0.9756); PLETH (bottom-
left,    =0.8688 and    = 0.9344); and RESP (bottom-right,    =0.7085 and    = 0.8444). 
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 Figure 7.4 shows the time histories of the actual targets and the predicted targets of 
a few selected records. All reconstructions in Fig. 7.4 are obtained from accumulated 
averaging. The top-left panel shows a CVP target. Here, the recordings in the actual target 
are flattened out by the upper limit of the machine used to record the signal. Although the 
network model is not able to recover the flat saturation in the signal, it faithfully captures 
the overall trend, producing scores of    =0.8095 and    = 0.9042. The top-right panel 
shows the time history of an ECG target, which showed a transition from normal rhythms 
to abnormal rhythms. The second half of the record clearly shows saturation in reading and 
chaotic patterns of arrhythmias. The model produces a strikingly accurate reconstruction 
with    =0.9512 and    = 0.9756. The bottom-left panel shows a PLETH signal, which 
exhibited a quasiperiodic behavior, where a high frequency oscillation is modulated by a 
low frequency envelope. An accurate reconstruction is obtained with    =0.8688 and    = 
0.9344. The bottom-right panel shows a RESP signal. The dominant frequency of the RESP 
signal (reflecting the breathing rate) is lower than the frequency of the other signals in the 
record (e.g., ECG signals). Therefore, while the true RESP signal was a smooth curve, the 
predicted RESP signal exhibits artificial fluctuations induced by fast rhythms in other 
signals used to construct the prediction. It is noted, however, that increasing the length of 
the delay vector to cover an entire cycle of the RESP signal improves the accuracy of the 
prediction; see Fig. 7.6. Although the target signal shows very irregular patterns the 
reconstruction achieved good accuracy with    =0.7085 and    = 0.8444. It is interesting to 
note that the ffANN models are capable of accurately reconstructing physiological records 
even when the signals were highly random and irregular. 
 
 Influence of Various Parameters 
 
Influence of the Delay Vector 
 The delay vector proves to be an important parameter in signal reconstructions. A 
good choice of delay vector has the potential to significantly improve the accuracy of 
predictions. The default delay vector is selected because it is a mix of short-term memory—
data points immediately prior to the target—and long-term memory—data points that are 
relatively far from the target. To illustrate the influence of the delay vector, simulations are 
conducted using a different delay vector         . This delay vector is termed the short-
term memory delay vector because all delays are close to the target and they only 
represent what occurred in the near past. Aggregate scores using the short-term memory 
delay vector are presented in Table 7.3, where statistical analyses for different target types 
are presented. Here, scores for straightforward simulations are the average of the scores 
for 25 trials. The scores for iterative retraining are the average scores from the first 25 
iterations. The scores for accumulated averaging are the scores computed using the 
reconstructions from the accumulated averaging of the first 25 iterations. Comparing 
Tables 7.2 and 7.3 shows that the mixed memory (default delay) performs better than the 
short-term memory delay in almost all types of target signals, with the exception of ECG. In 
particular, reconstructions of PLETH and RESP targets are significantly improved using the 
mixed memory delay vector. Moreover, the improvement of scores is consistent for all 
three different techniques (straightforward simulations, iterative retraining, and 
accumulated averaging). 
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Table 7.3. Results for Set A Records Using Short-Term Memory Delay 
 

Target 
types 

Straightforward 
 simulation 

Iterative 
retraining 

Accumulated  
averaging No.  

Rec. Q1 Q2 Q1 Q2 Q1 Q2 
BP 0.851 ± 

0.118 
0.941 ± 
0.048 

0.863 ± 
0.111 

0.946 ± 
0.047 

0.884 ± 
0.100 

0.956 ± 
0.042 

10 

CVP 0.633 ± 
0.349 

0.820 ± 
0.183 

0.652 ± 
0.335 

0.833 ± 
0.171 

0.698 ± 
0.295 

0.860 ± 
0.152 

10 

ECG 0.931 ± 
0.157 

0.959 ± 
0.121 

0.938 ± 
0.153 

0.963 ± 
0.115 

0.943 ± 
0.151 

0.966 ± 
0.113 

44 

PLETH 0.546 ± 
0.294 

0.721 ± 
0.265 

0.556 ± 
0.289 

0.723 ± 
0.269 

0.582 ± 
0.289 

0.738 ± 
0.273 

15 

RESP 0.327 ± 
0.271 

0.612 ± 
0.197 

0.348 ± 
0.261 

0.628 ± 
0.196 

0.411 ± 
0.248 

0.676 ± 
0.184 

21 

All 0.709 ± 
0.334 

0.835 ± 
0.222 

0.721 ± 
0.326 

0.842 ± 
0.218 

0.747 ± 
0.303 

0.860 ± 
0.204 

100 

Averages ± standard deviations of scores using different techniques. 

 
 
 

In addition, comparisons are made of results obtained using six different delay 
vectors: 0:10:100, 0:10:200, 0:10:300, 0:10:400, 0:10:500, and 0:10:600. Figure 7.5 shows 
the aggregate scores of various target signal types under the variation of delay vector. It 
can be seen that the best scores are obtained at different delays for different types of target 
signals. Overall, a short delay vector is preferred for BP, CVP, and ECG targets whereas a 
long delay vector improves prediction accuracies for PLETH and RESP targets. Thus, a 
delay vector chosen according to the type of the target signal is capable of leading to better 
results. 
 
Influence of the Number of Neurons 
 The influence of the number of neurons on the accuracy of predictions is also 
studied. In order to reduce computational time, the length of training data is reduced to 2 
min, the number of epochs to 20, and number of iterations to 10. The number of neurons in 
the second hidden layer is kept fixed while the number of neurons in the first hidden layer 
(the input layer) is varied. All other parameters are the same as the default parameters. 
Figure 7.6 shows the influence of the number of neurons. When the number of neurons is 
decreased, the aggregate scores do not change significantly until the number of neurons is 
fewer than five. It is interesting to note that with only one neuron in the first hidden layer, 
the ffANN is still able to produce reasonably good results with aggregate    > 70 and 
aggregate    > 82. Indeed, these scores are comparable to those obtained by other 
participants in the PhysioNet Challenge who employed Kalman filters and adaptive filters 
[93]. The advantage of fewer neurons is increased computational efficiency. The right panel 
in Fig. 7.6 shows that the average computational time (for 10 iterations) for a record 
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increases linearly as the number of neurons increases. When the number of neurons is 
decreased from 10 to 1, the computational time is decreased by several folds. Specifically, it 
takes less than 40 s to finish 10 iterations when 1 neuron is used. This observation is of 
great significance for real-time application of data reconstruction. 
 
 

 
Fig. 7.5. Comparison Between Six Different Delay Vectors [89]. Delay vectors include 
0:10:100, 0:10:200, 0:10:300, 0:10:400, 0:10:500, and 0:10:600. All other parameters are 
identical. 
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Fig. 7.6. Influence of the Number of Neurons [89]. Number of neurons in the first hidden 
layer (input layer) was varied. Left panel: variation of aggregate    and   ; right panel: 
variation of the average computational time for each record (10 iterations). 
 
 
 
 

 
Fig. 7.7. Comparison Between Aggregate Scores Using 1 and 10 Neurons in Input Layer 
[89]. Left panel: 1 neuron in first hidden layer; right panel: 10 neurons in first hidden layer. 
Straightforward simulations (triangles); iterative retraining (stars); accumulated averaging 
(circles). Results obtained using 2 min of training data and 10 training epochs.  
 
 
 

Figure 7.7 shows a comparison between results obtained using 1 neuron and 10 
neurons in the first hidden layer, respectively left to right. It is interesting to note that even 
with just one neuron in the first hidden layer, the iterative retraining and the accumulated 
averaging techniques are still capable of improving the accuracy of reconstructions, though 
to a minor degree. As seen in Fig. 7.7, the effect of iterative retraining and accumulated 
averaging depends on the underlying model. Nevertheless, the accumulated averaging of 
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retraining shows consistent convergence, indicating that the technique is robust against 
different models and parameters. 
 
Influence of Nonstationary Properties of Physiological Data 
 Physiological data are often nonstationary signals with time-varying characteristics 
[41,105]. The nonstationarity properties of the data in set A are examined by analyzing the 
dependence of the accuracy of reconstructions on the relative time lapse between training 
data and target signals. Specifically, the 10 min records are divided into 20 segments of 30 s 
each. Network models are then trained using data of the first 5 min and applied to predict 
30 s segments of target signals in the next 10 segments. The target channels are the same 
as those chosen by the PhysioNet Challenge. The    and    scores are computed for each 
30 s target segment. This process is repeated 50 times. Box plots of aggregate    and    
scores are shown for each target segment in Fig. 7.8. As can be seen in Fig. 7.8, segments 
that immediately followed the training data are predicted with much greater accuracy than 
those that were farther away. Thus, data close to the target of reconstruction are better for 
training than data from the more distant past. The implication of this observation in 
practice is that a new model would need to be constructed for each time period with 
missing signals since the model essential becomes “out of date” after a certain time. 
 
 
 

 
Fig. 7.8. Dependence of Accuracy of Prediction on Nonstationarity Properties of Data [89]. 
Top: organization of data, where S1, S2,…, S20 denote 30 s segments of last 5 min of data. 
Bottom: aggregate scores for segments based on 50 repetitions. Boxplots show the 25th 
percentile, median, and 75th percentile of scores; whiskers indicate lower and upper 
extremes; crosses indicate outliers (those greater than 1.5 times the standard deviation 
from the median). Curves connect means of scores. 
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Detection of Dementia Using EEG Signal Reconstruction  
via Artificial Neural Networks 

 
Motivation and Synopsis 

This study investigates a new method for detecting the differences in EEG associated 
with changes in neurological functional organization due to MCI and early AD by applying 
the concept of Sugihara causality to EEG. In contrast to Granger causality, Sugihara 
causality is based on theory of nonlinear state space reconstruction to study the causation 
that characterizes deterministic dynamics of the system. Sugihara causality indicates that 
nearby points on the manifold of one variable can be used to estimate nearby points on the 
manifold of another variable [137]. Here, Sugihara causality analysis is employed to 
estimate the time series in one EEG channel using the other channels of the same EEG 
record.  

 
The results of the study of the PhysioNet 2010 Challenge data presented in the 

previous section demonstrate that in the case of multi-channel physiological signal 
recordings, there exists an inherent relationship between channels that can be modeled 
using ANNs [89]. This relationship is a real-world example of the theory of Sugihara 
causality [54].  

 
Motivated by the successful application of neural network models for the 

reconstruction of missing ICU machine data, in this study ANN models are developed for 
the reconstruction of artificially deleted information from EEG recordings of normal aged, 
MCI, and AD individuals. This study explores scalp-EEG based biomarkers for MCI and early 
AD. Results of this work are based on data from the NER Dataset. As described in Chapter 1, 
the NER Dataset consisted of three separate protocol conditions: the REO condition, the 
counting task, and the REC condition. Each record contained 30 electrodes (32 channels 
with 2 ocular channels excluded).  

 
First, a reconstruction model is developed for each channel of the EEG record, 

predicting the signal in the current channel using concurrent data of the other 29 channels. 
A reconstruction model can be trained using records in the NC, MCI, and AD groups, 
respectively, which produce corresponding NC, MCI, and AD models. 

 
Next NC, MCI, and AD models ware then applied to an EEG record and quality scores 

are computed to measure the closeness between the predicted signal and the original 
signal in a given channel. To avoid information leak, the reconstruction models are trained 
based on the leave-one-out principle.  

 
Finally, the quality scores are studied for their potential as biomarkers to 

distinguish between the different cognitive groups. The dimension of the quality scores is 
reduced to two principal components. A three-way classification scheme using the 
principal components demonstrates accuracies of 95.8%, 95.8%, and 97,9% for the REO 
condition, counting task, and REC conditions, respectively. The quality scores based on 
Sugihara causality analysis captures characteristic changes in EEG activity due to cognitive 
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deficits and demonstrates potential in the detection of pathophysiological changes in early 
AD. 

 
Methodology 
 
Networks for EEG Reconstruction 

Neural network models are developed for the reconstruction of artificially “deleted” 
information from EEG records for each of the three groups of participants (i.e., NC, MCI, and 
AD). The procedure for training models for a given group is detailed for the NC-based 
model as follows. Thirty neural networks are constructed, one for each of the 30 EEG 
channels used in analyses. Each network consists of a single hidden layer of five neurons, 
each with a tansig transfer function, and a single output node with a purelin transfer 
function; see Table 7.4 for a list of all default parameters. A schematic of the network 
structure is presented in Fig 7.9. For each network, concurrent data from the remaining 29 
channels is used to generate a reconstruction for the given channel. The 30 neural 
networks thus constitute a collection of networks, or model, designed to reconstruct 
missing data from any of the 30 channels. A different model is developed for each protocol 
condition. All neural network simulations in this work are carried out using the neural 
network toolbox in MATLAB™ [88]. 

 
Each model is trained using 2-min samples from NC records taken during the given 

protocol condition. In order to avoid the potential for intra-participant bias, (information 
leak) a different collection of neural networks is trained for each NC participant using data 
from all other NC participants via the leave-one-out principle. A pseudo code for this leave-
one-out approach is presented below. In addition, a separate collection of networks is 
trained using 2-min samples for all available NC participants during the given protocol 
condition. This set of networks is then applied to MCI and AD, for which intra-participant 
bias is not a concern. An analogous procedure was used to develop models based on MCI 
and AD participants. 

 
 
 

% pseudo code for NC-based models applied to NC participants 

for i in 1,2, ...,30 % there are 30 channels 

    for j in 1,2, ..., 15 % there are 15 NC subjects 

       assemble training set using data of NC subjects except j 

       % reconstruct channel i from other channels 

       train the reconstruction model using training set 

       apply the model to channel i of participant j 

       evaluate quality of reconstruction 

    end 

end 

% pseudo code for NC-based models applied to MCI/AD subjects 

for i in 1,2, ...,30 % there are 30 channels 

    assemble training set using data of all NC subjects 

    for j in 1,2, ..., 33 % there are 16 MCI, 17 AD subjects 

       % reconstruct channel i from other channels 

       train the reconstruction model using training set 
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       apply the model to channel i of participant j 

       evaluate quality of reconstruction 

    end 

end 

 
 
 

Quality Scores for Reconstructions 
The models just described are used to reconstruct 2-min samples of artificially 

“deleted” data for each participant for each protocol condition. The reconstructed channel 
 ̂( ) is then compared to the actual data for the given channel  ( ) and the quality of the 
reconstruction is evaluated using the    quality score implemented in the PhysioNet 2010 
Challenge. The quality score used is defined by Equation (7.2), where   represents the 
standard deviation of the actual data  ( ) and     represents the mean squared error (i.e., 
the average of the squared differences between the reconstructed signal  ̂( ) and the actual 
data  ( )). Thus, the quality score,  , is the larger value between the R-squared value and 0.  

 
For each protocol condition, the three group-based models are applied and quality 

scores are computed for each channel for all participants. The 30 channels used in analyses 
are grouped into 6 scalp regions based on their arrangement and location on the scalp. The 
regions include: (1) central (C); (2) frontal (F); (3) left temporal (L); (4) occipital (O); (5) 
parietal (P); and (6) right frontal (R); see Fig.2.1 for regional boundaries. For each group-
based model, the quality scores are averaged over each scalp region, for a total of 18 (3 
group-based models and 6 regions) regional average quality scores for the each protocol 
condition. 

 
Principal Component Analysis 

For each protocol condition, a 48 x 18 matrix   of regional average quality scores 
for all participants is arranged as shown in Equation (7.7): 
 

  [
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  - is a row vector of regional average quality scores for participant   

(        ), superscripts denote the model-basis group, and subscripts denote region. 
The mean is subtracted from the matrix   and the resulting matrix   is then decomposed 
via singular value decomposition into the three matrices  ,  , and  , as shown in Equation 
(7.8): 
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Table 7.4. Default Parameters Used in Neural Networks for EEG Channel Reconstruction 
 

Number of hidden layers 2 
Number of neurons 5 for the first hidden layer and 1 for the second hidden 

layer 
Transfer functions tansig for 1st hidden layer and purelin for 2nd hidden 

layer 
Training data 
      For Group A participants 
       
      For other participants 

 
2 minutes of data from all but current Group A 
participants for given protocol condition 
2 minutes of data from all Group A participants for given 
protocol condition 

Training epochs 40 
Performance function Mean squared normalized error (MSNE) 
 
Delay vector d 

No delay vector will be used; only concurrent data 

 
 
 

 
Fig. 7.9. Schematic of Neural Network Used in Reconstructing EEG. Note that inputs to the 
network are concurrent data (data at time   ) from all EEG channels except channel   (  = 
30 channels – 1 = 29 inputs; output of the network is a reconstruction  ̂ of actual data    

from channel  ). 
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             (   ) 
 
where   and   are unitary matrices such that       and       and   is a diagonal 
matrix, the diagonal of which is comprised of singular values    that indicate the relative 

energy (       ∑    ) in the corresponding principal components   ,         . The 

principal components    of the regional average quality score matrix   are then defined by 

Equation (7.9), where    is the  th column of  . For each protocol condition, the first two 

principal components (  , and   ) of the matrix   were used as features in a three-way 
classification scheme based on binary SVM models. 
 

             (   ) 

 
Three-way Classification via Binary Classifiers 

For each protocol condition, a three-way classification scheme ss constructed based 
on binary SVM classifiers using the pairwise coupling approach proposed by Hastie and 
Tibshirani [54]. For a given record, binary SVM classifiers (i.e., MCI vs. NC, AD vs. NC, and 
MCI vs. AD) are trained using all other available records and then applied to the given 
record via the leave-one-out principle. If two out of three of the SVM binary classifiers 
classify a record as belonging to class  , then the final decision of the three-way classifier is 
to classify the record as belonging to class  . Otherwise, the probability that a record 
belongs to each class,   ,        , is then estimated as follows, and the final decision of the 
three-way classifier is to chose the class corresponding to the largest probability, 
       (  ). 
 
Results for Discrimination of MCI and AD Using EEG Channel Reconstruction Quality 
Measures 

 
LOOCV accuracies for binary model-basis group vs. other groups for individual 

regional averages are summarized in Table 7.5. As can be seen in Table 7.5, the LOOCV 
accuracies appear to be relatively consistent across protocol conditions for most regional 
averages. Higher LOOCV accuracies may be interpreted as indicating greater within-group 
similarity for the model-basis group. This is perhaps more clearly seen in Fig. 7.10, where 
group average quality scores for each model and protocol condition are plotted. 

 
The energies corresponding to principal components for all three conditions are 

presented in Fig.7.11. The first two principal components account for 37.4-38.4% of the 
total energy. The entries of vectors    and    corresponding to the 18 regional quality 
scores are presented in Fig.7.12. Interestingly, the entries in    corresponding to NC- or 
MCI-based regional quality scores have opposite sign to those corresponding to AD-based 
regional quality scores. This pattern suggests that the first principal component somehow 
reflects differences between AD-based regional averages from NC- or MCI-based regional 
averages. The entries in    corresponding to NC-based regional averages have opposite 
sign to those entries corresponding to MCI- or AD-based regional averages, suggesting that 
the second principle component reflects differences between NC-based regional averages 
and MCI- or AD-based regional averages.  
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NC, MCI, and AD participants’ data are plotted on principal component axes in 

Fig.7.13, Fig.7.14, and Fig.7.15 for the REO condition, counting task, and REC condition, 
respectively. As can be seen in the figures, the groups are clearly separable in the 2D space, 
with the exception of one normal participant whose data appears in the AD regions for all 
three conditions. 

 
Three-way classification results for the REO condition are presented in Table 7.6. Of 

those records classified as NC, 93.3% are NC; of those records classified as MCI, 93.8% are 
MCI; and of those classified as AD, 100% are AD. Of all the normal participants, 93.3% of 
them are correctly identified; of all the MCI participants, 93.8% are correctly identified; and 
of all the AD participants, 100% are correctly identified. Overall, the prediction accuracy is 
95.8%. 
 
 

 
Table 7.5. Discriminatory Power of Individual Regional Average 

EEG Reconstruction Quality Scores 
NC-Based Model Regional Averages'  

NC vs. MCI/AD Leave-one-out Cross-Validation Accuracies 

 
  

     
     

     
     

     
   

Resting Eyes Open 83.3% 75.0% 68.8% 85.4% 83.3% 64.6% 
Counting Eyes Closed 89.6% 72.9% 75.0% 91.7% 91.7% 85.4% 

Resting Eyes Closed 85.4% 83.3% 75.0% 87.5% 89.6% 75.0% 

       MCI-Based Model Regional Averages'  
MCI vs. NC/AD Leave-one-out Cross-Validation Accuracies 

 
  

      
      

      
      

      
    

Resting Eyes Open 75.0% 87.5% 77.1% 83.3% 77.1% 77.1% 
Counting Eyes Closed 85.4% 95.4% 79.2% 79.2% 70.8% 81.3% 

Resting Eyes Closed 77.1% 89.6% 75.0% 72.9% 68.8% 85.4% 

       AD-Based Model Regional Averages'  
AD vs. NC/MCI Leave-one-out Cross-Validation Accuracies 

 
  

     
     

     
     

     
   

Resting Eyes Open 79.2% 70.8% 81.3% 81.3% 75.0% 79.2% 

Counting Eyes Closed 81.3% 64.6% 70.8% 64.6% 64.6% 77.1% 
Resting Eyes Closed 72.9% 81.3% 58.3% 70.8% 72.9% 75.0% 

LOOCV accuracies obtained using SVM classifiers with quadratic kernel function.   = regional average quality 
scores, where superscripts denote the model-basis group, and subscripts denote region 
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Fig. 7.10. Regional Average Quality Scores. Blue circles correspond to average of NC participants, green diamonds correspond 
to average of MCI participants, and red stars correspond to average of AD participants. Each row of plots presents the regional 
average quality scores for one of the three protocol conditions. Each Column of plots corresponds to a different group used to 
generate the reconstruction models. For example, the first column of plots presents regional averages obtained using a 
reconstruction model trained on data from normal participants. Note that, on average, the qualities of reconstructions for 
participants other than those belonging to the group used to train the model are significantly lower. Recall that models were 
trained in a leave-one-out manner. 
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Fig.7.11. Energies of Principal Components of Regional Averages. Note that for all three 
protocol conditions the first two principal components account for approximately 37% of 
the energy. 
 
 
 

Three-way classification results for the counting task are presented in Table 7.7. Of 
those records classified as normal, 93.3% are normal; of those classified as MCI, 100% are 
MCI; and of those classified as AD, 94.4% are AD. 93.3% of normal participants, 93.8% of 
MCI participants, and 100% of AD participants are correctly identified. Overall, the 
prediction accuracy is 95.8%. 

 
Three-way classification results for the REC condition are presented in Table 7.8. Of 

those records classified as normal, 100% are normal; of those classified as MCI, 100% are 
MCI; and of those classified as AD, 94.4% are AD. 93.3% of normal participants are 
classified as normal, and 100% of MCI and AD participants are classified as MCI or AD 
correctly. The overall accuracy is 97.9%.  
 

The REO and counting task three-way classifiers perform equally well in overall 
accuracy while the REC classifier performed the best. Misclassified NC participants are 
classified as MCI or AD, misclassified MCI participants are classified as NC, and no AD 
participants are misclassified. 
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Fig.7.12. Entries of Vectors Used to Compute Principal Components. Indices 1- 6 
correspond to regional averages using NC models; indices 7-12 correspond to regional 
averages using MCI models; indices 13-18 correspond to regional averages using AD 
models.  Note that entries in    (circles) used to compute the first principal component 
have opposite and/or lesser magnitude sign for NC- and MCI-based regional averages 
compared to AD-based regional averages; entries in    (diamonds) have opposite sign for 
NC-based regional averages compared to MCI- and AD-based regional averages 

 
 
 

Discussion and Conclusions 
 

 Application of ANNs for Physiological Signal Reconstruction  
Earlier in this Chapter, methods for the reconstruction of physiological signals using 

iterative retraining and accumulated averaging of artificial neural networks are developed. 
Extensive numerical investigations using physiological records from the PhysioNet 2010 
Challenge demonstrate that these techniques can significantly improve the accuracy of 
reconstructions. To the author’s best knowledge, these techniques have not been applied to 
neural networks before.  
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Fig.7.13. 2D Representation of Regional Average Quality Scores for REO Condition.  

 
 
 
 

Table 7.6. Confusion Table of 3-Way Results for REO Condition 
 

  
Predicted Classes 

 

  
NC MCI AD 

 

T
ru

e 
C

la
ss

es
 NC 

 
14 1 0 93.3% 

MCI 
 

1 15 0 93.8% 

AD 
 

0 0 17 100% 

  
93.3% 93.8% 100% 

Overall Acc.: 
95.8% 
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Fig.7.14. 2D Representation of Regional Average Quality Scores for Counting Task. 

 
 
 

Table 7.7. Confusion Table of 3-Way Results for Counting Task 
 

  
Predicted Classes 

 

  
NC MCI AD 

 

T
ru

e 
C

la
ss

es
 NC 

 
14 0 1 93.3% 

MCI 
 

1 15 0 93.8% 

AD 
 

0 0 17 100% 

  
93.3% 100% 94.4% 

Overall Acc.: 
95.8% 
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Fig.7.15. 2D Representation of Regional Average Quality Scores for REC Condition.  

 
 
 
 

Table 7.8. Confusion Table of 3-Way  Results for REC Condition 

  
Predicted Classes 

 

  
NC MCI AD 

 

T
ru

e 
C

la
ss

es
 NC 

 
14 0 1 93.3% 

MCI 
 

0 16 0 100% 

AD 
 

0 0 17 100% 

  
100% 100% 94.1% 

Overall Acc.: 
97.9% 
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Empirical studies demonstrated that the iterative retraining and the accumulated 
averaging techniques are effective for various target signals and are robust under 
variations of network parameters. It is shown that short-term memory works the best for 
ECG targets while mixed memory can improve the accuracy for other signals. Furthermore, 
it is demonstrated that increasing the length of the delay vector may lead to better 
reconstructions for some targets.  

 
It is interesting to note that the reconstruction results depend on the number of 

neurons in the network. While more neurons may lead to more accurate reconstructions, 
the results using just a few neurons are still comparable with those obtained from many 
other techniques. Meanwhile, reducing the number of neurons can reduce computational 
time to a few seconds. This indicates the potential of the developed models for real-time 
reconstruction applications. 

 
Impressive reconstructions are obtained, even for signals with random fluctuations, 

chaotic features, and saturations. Further theoretical investigations on these algorithms 
will be useful in determining the full potentials and limitations. These techniques could see 
future application for detection of changes in patient state, recognition of intervals of signal 
corruption, and derivation critical physiological parameters when primary signals become 
unavailable or unreliable [93]. These methods have many applications in settings ranging 
from sleep studies to surgery to sports medicine to intensive care.  
 
Application of ANN Signal Reconstruction to Detection for Cognitive Deficits 

In the previous section of this Chapter, neural network models are developed to 
reconstruct missing information from EEG of cognitively normal older adults and those 
with MCI or early AD. Models are developed for each of the three groups (NC, MCI, and 
early AD) and applied to all participants in order to reconstruct artificially “deleted” 2-min 
samples of EEG taken during rest and a simple cognitive task. The qualities of 
reconstructions were evaluated for accuracy on a regional basis. Principal components of 
regional average quality scores for the three models are used as features in an SVM model 
in order to discriminate between groups. The nonlinear channel reconstruction metrics 
presented here allow for accurate discrimination between the three groups. 

 
The high discrimination accuracy achieved here is due to the fact that, on average, 

models perform more poorly in reconstructing EEG records of participants belonging to 
groups other than the model-basis group. For example, the NC-based model produces 
significantly more accurate reconstructions, on average, for NC participants than for MCI or 
early AD participants. While the reason for the poorer quality of reconstructions for MCI 
and AD participants is unclear, it may be hypothesized that the relationships between EEG 
channels mapped by neural network models trained on normal aged individuals are less 
applicable to MCI and AD EEG records. That is, EEG nonlinear inter-channel correlation 
patterns appear to exhibit greater within-group similarities than between-group 
similarities. The differences between groups’ relationships of EEG channels may reflect 
differences in functional organization of information processing in the brain. To the 
authors’ best knowledge, the application of neural networks designed to reconstruct 
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missing information from EEG has not been previously investigated as a potential 
diagnostic tool for detecting dementia. 

 
The high accuracy achieved here is possible through the use of relatively simple 

neural networks, comprised of only one hidden layer with five neurons. Choice of structure 
for the network is based on previous investigations by the authors who examined the 
reconstruction of missing ICU machine signals as presented in the second section of this 
Chapter. While the use of more neurons may lead to more accurate reconstructions, the 
results presented here using only a handful of neurons suggest that only a few neurons are 
sufficient for discriminating MCI and AD from normal controls and each other. 

 
Neuroimaging tools such as structural MRI can detect changes in the brain structure 

critical to cognitive ability long before clinical diagnosis of cognitive decline. Other 
biomarkers of the AD pathology cascade can signal early progression of the disease before 
MRI detection [37]. EEG technology is sensitive to cellular changes in brain functions that 
are likely earlier biomarkers compared to structural MRI indicators. The results of this 
work suggest the possible use of neural network reconstructions of scalp EEG as a means 
for objectively discriminating among normal, MCI, and AD participants and assessing an 
individual’s risk profile for cognitive impairment. Results suggest that a simple 
discrimination model utilizing SVM and the features presented here may be a viable basis 
for future development of a diagnostic screening tool for MCI and early AD with 
applicability in the primary care setting. Such a rapid, simple, and cost-effective tool could 
also prove useful in the drug discovery process.  
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CHAPTER 8 
SUMMARY, CONTRIBUTIONS, AND RECOMMENDATIONS  

FOR FUTURE WORK 
 

 
Chapter 1 

In Chapter 1, a detailed background is provided, including: an introduction to the 
physiological mechanisms involved in EEG; the pathology of TBI, MCI, and AD; current 
methods used to diagnose and evaluate these disorders; a summary of the current 
literature regarding diagnosis via EEG; and details of the EEG data used for the studies 
presented.  
 
Chapter 2 

In Chapter 2, an exploration of event-related Tsallis entropy measures as potential 
biomarkers of neurological disease is presented. The approach developed is applied toward 
the discrimination of TBI and MCI using EEG recorded during working memory tasks. En 
lieu of complex ERP analysis, which generally requires redundant protocols and multiple 
trials, the method presented here using event-related Tsallis entropy demonstrates that 
analysis of EEG data from a single trial has the potential to successfully discriminate TBI vs. 
NC and MCI vs. NC. The results in this work demonstrate a strong correlation between 
Tsallis entropy-based TEFs and the presence of moderate to severe TBI and MCI. 
 
Chapter 3 

In Chapter 3, an exploration of event-related MSE measures as potential indicators 
of neurological disease is presented. The approach developed is applied toward the 
discrimination of TBI, MCI, and AD using EEG recorded during working memory tasks. The 
method is also adapted for NER data in order to discriminate MCI and AD using EEG 
recorded during resting states and a simple cognitive task. The results in this work 
demonstrate a strong relationship between event-related MSE measures and the presence 
of cognitive deficits. For MCI and AD discrimination, the method appears to be significantly 
more effective using working memory compared to NER data. The high accuracy achieved 
here in discriminating between MCI and NC is encouraging as there is great interest in 
being able to detect cognitive decline that may be associated with AD at the earliest stages. 
The results of this work suggest the potential for the use of MSE complexity features 
representing scalp electrical activity as a means for objectively discriminating between 
normal, MCI, and AD participants. 
 
Chapter 4 

In Chapter 4, a methodology for developing intra- and inter-regional transfer 
entropy measures capable of characterizing differences in NER EEG of MCI and AD 
individuals is described. Specifically, the features proposed here are intended to represent 
trends in the delay of the transfer of the information present in EEG signals between major 
regions of the scalp. The successful discrimination between the three groups of EEG 
records (NC, MCI, and AD) are the result of differences in the dynamics of the information 
distribution in EEG voltages across the scalp in resting states and during a simple cognitive 
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task. It is possible the observed differences in these information dynamics may be 
influenced by alterations in the functional organization of the brain as a result of cognitive 
decline. The results for the three-way discrimination presented here are encouraging, 
especially those for MCI, as detection of AD at the earliest possible stage is currently of 
great interest in the field. The three-way classification scheme via binary classifiers 
presented here allows for the differentiation of the three groups without a priori 
knowledge that individuals fall into two of the three groups. 
 
Chapter 5 

In Chapter 5, a study explores differences in common spectral and complexity 
measures of EEG on a regional and global basis for the discrimination of preclinical 
dementia from normal aging during NER conditions. The successful discrimination 
between the three groups of EEG records (NC, MCI, and AD) are the result of differences in 
regional electrical activity in specific frequency bands in resting states and during a simple 
cognitive task. The observation of increased theta activity and decreases in alpha and beta 
activity for MCI and AD participants compared to normal controls during the REC condition 
are consistent with expected trends from the literature [37]. 
 
Chapter 6 

In Chapter 6, a method for quantifying differences in EEG inter-channel 
synchronization for MCI and AD is presented. The method involves analyzing inter-channel 
coherence measures via graph theory. The success of SVM discrimination between binary 
groupings of the three groups of EEG records (NC, MCI, and AD) are the result of 
differences in uniformity of electrical activity in specific frequency bands during resting 
states and a simple cognitive task. It is possible that these differences may be the results of 
characteristic changes in brain network functional organization (e.g., compensatory 
mechanisms) as a result of neurological degeneration. 
 
 
Chapter 7 

In Chapter 7, methods for reconstruction missing data in multivariate biomedical 
signals using artificial neural networks are presented. New techniques of signal 
reconstruction based on iterative retraining and accumulated averaging of neural networks 
are presented. The effectiveness and robustness of these techniques are demonstrated 
using data records from the Computing in Cardiology/PhysioNet Challenge 2010. The 
influences of a few important parameters on the accuracy of reconstructions are also 
explored. The developed techniques may be used to detect changes in patient state and to 
recognize intervals of signal corruption. 

 
Also in Chapter 7, novel EEG biomarkers for discriminating normal aging from MCI 

and early AD using Sugihara causality are presented. Sugihara causality extends to systems 
that are not covered by the current Granger causality paradigm. First, a reconstruction 
model is developed for each EEG channel, which predicts the signal in the current channel 
using data of the other available channels. The reconstruction model of the target channel 
is trained using NC, MCI, or AD records to generate a NC-, MCI-, or AD-specific model, 
respectively. To avoid information leak, the training is based on the leave-one-out 
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principle. When the reconstruction model is applied to an EEG record, a score is computed 
to represent the quality of prediction by comparing the predicted signal and the original 
signal. The quality scores capture characteristic changes in EEG activity due to cognitive 
deficits. Compared to other EEG biomarkers, the quality scores have excellent potential as 
individualized biomarkers in detection of pathophysiological changes in early AD. 
 
Contributions 
 Significant contributions of the work presented here include: 
 

(1) Novel entropy-based methods for analyzing event-related EEG data that may be 
applied toward the evaluation of neurological disorders.  
 

(2) Recommendations for which common spectral and complexity features currently 
used in characterizing EEG appear to best discriminate MCI and AD, including which 
scalp regions and data collection procedures provide the greatest benefit. 

 
(3) Development of novel artificial neural network techniques for the reconstruction of 

missing data in multivariate physiological that have a multitude of possible 
applications.  

 
(4) Presentation of an innovative design of EEG biomarkers using Sugihara causality as 

basis for detection of changes in functional organization of the brain due to 
dementia. To the author’s best knowledge, this is the first application of Sugihara 
causality in biomedical data. 

 
(5) Indexing of observations from current work may provide insight for future 

researchers.  
 
Limitations and Recommendations for Future Work 

The reported injuries in the TBI participants were widespread across the brain. One 
limitation of this study is the lack of access to data to allow evaluation of the correlation 
between the areas of brain injury with TEF results. In a future study, examining 
participants with acute damage in a known area of the brain may be able to provide further 
insights into area-specific TBI. 
 

The current methods cannot be readily applied to the clinical setting since they 
require 25-30 EEG channels and take about 30 min to collect the data (including setup time 
for working memory methods). A shorter protocol and fewer electrodes would be required 
for more convenient application. In addition, larger sample sizes and new test samples 
would also be needed to further validate the approaches before they could be applied in a 
private practice setting. 
 
 The goal of this work is to provide a meaningful addition to basic research in the 
current literature regarding the application of EEG for the detection, evaluation, and 
monitoring of cognitive deficits.  
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