309 research outputs found

    Patch-based Hybrid Modelling of Spatially Distributed Systems by Using Stochastic HYPE - ZebraNet as an Example

    Full text link
    Individual-based hybrid modelling of spatially distributed systems is usually expensive. Here, we consider a hybrid system in which mobile agents spread over the space and interact with each other when in close proximity. An individual-based model for this system needs to capture the spatial attributes of every agent and monitor the interaction between each pair of them. As a result, the cost of simulating this model grows exponentially as the number of agents increases. For this reason, a patch-based model with more abstraction but better scalability is advantageous. In a patch-based model, instead of representing each agent separately, we model the agents in a patch as an aggregation. This property significantly enhances the scalability of the model. In this paper, we convert an individual-based model for a spatially distributed network system for wild-life monitoring, ZebraNet, to a patch-based stochastic HYPE model with accurate performance evaluation. We show the ease and expressiveness of stochastic HYPE for patch-based modelling of hybrid systems. Moreover, a mean-field analytical model is proposed as the fluid flow approximation of the stochastic HYPE model, which can be used to investigate the average behaviour of the modelled system over an infinite number of simulation runs of the stochastic HYPE model.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Design and Performance Analysis of Genetic Algorithms for Topology Control Problems

    Full text link
    In this dissertation, we present a bio-inspired decentralized topology control mechanism, called force-based genetic algorithm (FGA), where a genetic algorithm (GA) is run by each autonomous mobile node to achieve a uniform spread of mobile nodes and to provide a fully connected network over an unknown area. We present a formal analysis of FGA in terms of convergence speed, uniformity at area coverage, and Lyapunov stability theorem. This dissertation emphasizes the use of mobile nodes to achieve a uniform distribution over an unknown terrain without a priori information and a central control unit. In contrast, each mobile node running our FGA has to make its own movement direction and speed decisions based on local neighborhood information, such as obstacles and the number of neighbors, without a centralized control unit or global knowledge. We have implemented simulation software in Java and developed four different testbeds to study the effectiveness of different GA-based topology control frameworks for network performance metrics including node density, speed, and the number of generations that GAs run. The stochastic behavior of FGA, like all GA-based approaches, makes it difficult to analyze its convergence speed. We built metrically transitive homogeneous and inhomogeneous Markov chain models to analyze the convergence of our FGA with respect to the communication ranges of mobile nodes and the total number of nodes in the system. The Dobrushin contraction coefficient of ergodicity is used for measuring convergence speed for homogeneous and inhomogeneous Markov chain models of our FGA. Furthermore, convergence characteristic analysis helps us to choose the nearoptimal values for communication range, the number of mobile nodes, and the mean node degree before sending autonomous mobile nodes to any mission. Our analytical and experimental results show that our FGA delivers promising results for uniform mobile node distribution over unknown terrains. Since our FGA adapts to local environment rapidly and does not require global network knowledge, it can be used as a real-time topology controller for commercial and military applications

    Space-Time Continuous Models of Swarm Robotic Systems: Supporting Global-to-Local Programming

    Get PDF
    A generic model in as far as possible mathematical closed-form was developed that predicts the behavior of large self-organizing robot groups (robot swarms) based on their control algorithm. In addition, an extensive subsumption of the relatively young and distinctive interdisciplinary research field of swarm robotics is emphasized. The connection to many related fields is highlighted and the concepts and methods borrowed from these fields are described shortly

    Randomized Robot Trophallaxis

    Get PDF

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Coordination schemes for distributed boundary coverage with a swarm of miniature robots:synthesis, analysis and experimental validation

    Get PDF
    We provide a comparison of a series of original coordination mechanisms for the distributed boundary coverage problem with a swarm of miniature robots. Our analysis is based on real robot experimentation and models at different levels of abstraction. Distributed boundary coverage is an instance of the distributed coverage problem and has applications such as inspection of structures, de-mining, cleaning, and painting. Coverage is a particularly good example for the benefits of a multi-robot approach due to the potential for parallel task execution and additional robustness out of redundancy. The constraints imposed by a potential application, the autonomous inspection of a jet turbine engine, were our motivation for the algorithms considered in this thesis. Thus, there is particular emphasis on how algorithms perform under the influence of sensor and actuator noise, limited computational and communication capabilities, as well as on the policies about how to cope with such problems. The algorithms developed in this dissertation can be classified into reactive and deliberative algorithms, as well as non-collaborative and collaborative algorithms. The performance of these algorithms ranges from very low to very high, corresponding to highly redundant coverage to near-optimal partitioning of the environments, respectively. At the same time, requirements and assumptions on the robotic platform and the environment (from no communication to global communication, and from no localization to global localization) are incrementally raised. All the algorithms are robust to sensor and actuator noise and gracefully decay to the performance of a randomized algorithm as a function of an increased noise level and/or additional hardware constraints. Although the deliberative algorithms are fully deterministic, the actual performance is probabilistic due to inevitable sensor and actuator noise. For this reason, probabilistic models are used for predicting time to complete coverage and take into account sensor and actuator noise calibrated by using real hardware. For reactive systems with limited memory, the performance is captured using a compact representation based on rate equations that track the expected number of robots in a certain state. As the number of states explode for the deliberative algorithms that require a substantial use of memory, this approach becomes less tractable with the amount of deliberation performed, and we use Discrete Event System (DES) simulation in these cases. Our contribution to the domain of multi-robot systems is three-fold. First, we provide a methodology for system identification and optimal control of a robot swarm using probabilistic models. Second, we develop a series of algorithms for distributed coverage by a team of miniature robots that gracefully decay from a near-optimal performance to the performance of a randomized approach under the influence of sensor and actuator noise. Third, we design an implement a miniature inspection platform based on the miniature robot Alice with ZigBee ready communication capabilities and color vision on a foot-print smaller than 2 Ă— 2 Ă— 3 cm3
    • …
    corecore