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Abstract

With the rapid growth of the number of wireless communications devices in the last
two decades, device-to-device networks are becoming increasingly important. One
sub-group of these are networks of autonomous entities where there is no centralised
controller and users actions are based solely on local interactions. The question
of connectivity is of paramount importance and is often seen as a pre-requisite of
such systems. This thesis will concentrate on this question for two such networks:
Vehicular Ad-hoc NETworks (VANETs) and Swarm Robotics.

Connectivity is crucial in VANETs due to the safety critical nature of the infor-
mation being broadcast. The current state of the art is to model them using a spatial
stochastic network model called a one-dimensional hard Random Geometric Graph
(RGG). Using a Poisson point process to represent the vehicles in the network, pairs
of points are connected if their mutual distance is less than a specified radius. We
analyse an extension of this model which incorporates the randomness of the wire-
less medium by now using a distance dependent, probabilistic connection function
to determine the existence of edges: a 1-D soft RGG.

We derive bounds on the probability that this graph is fully connected for a
large class of connection functions by analysing two key barriers to full connectivity:
isolated nodes and uncrossed gaps. Firstly, analytic expressions are derived for the
mean and variance of the number of isolated nodes, and a sharp threshold established
for their occurrence. At this threshold we show that the number of isolated nodes
can be well approximated by a Poisson random variable. Bounds are then derived
for uncrossed gaps, and it is shown analytically that uncrossed gaps have negligible
probability in the scaling at which isolated nodes appear. The critical scaling for the
occurrence of uncrossed gaps is also investigated.

Connectivity is also also a key feature in robotic swarms since it enables them to
complete tasks as a group which would be impossible for individual robots. We derive
an algorithm, implemented on virtual robots, to mimic the behaviour of a group of
spiders whose social interactions determine their disposition to travel to a dangerous,
unknown area. Simulations of the proposed algorithm demonstrate that this social
behaviour improves the swarms ability to explore an unknown environment whilst
maintaining suitable levels of connectivity.
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Chapter 1

Introduction

Connectedness has fast become an indispensable part of modern life. Whether this

means simply connecting to the public Wi-Fi at your local coffee shop, or it means

that a sensor in a pipeline is able to communicate a critical failure back to a central

computer. Although these have differing levels of importance, they both rely on the

same underlying technologies and fundamental framework. Communication networks

have allowed for the rapid geographical expansion of our everyday lives as well as

advancements in technologies that improve our safety, help us to stay connected, and

even enable us to watch endless reruns of our favourite TV shows from the comfort

of our bedrooms.

Wireless communication networks give a way for data to be transferred between

machines or users without the need for expensive cabling to every end user in the

network. The traditional cellular network set up consists of base stations (BSs) and

end users or devices. To transfer data between end users, one must firstly transfer

that data to the nearest BS where it is then routed via the backhaul network to the

nearest BS to the destination user where it can be sent wirelessly to the intended

target. This is the same idea as the Wi-Fi network one may have at home in which

devices wirelessly connect to a central router. This router is then connected to the

backhaul network via some form of Ethernet connection. In the traditional set up, one

BS will service many users over a large geographical area. Maintaining a connected

network requires an incredibly robust and well designed network architecture. The

large number of users connected to one BS means that there is a large amount of

strain on this infrastructure due to factors such as interference in which the data

the users wish to transfer collide, leading to lost data. To address this issue, more

sophisticated network protocols can be implemented at the Media Access Control
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(MAC) layer to only permit certain subsets of users to attempt to communicate with

the BS at the same time or one could simply build more BSs. However, the MAC

layer changes will unlikely be able to cope with exponential growth in network users

and building more BSs is an incredibly costly process as well as introducing the issue

of interference between BSs [Pra19]. Due to the large physical distances involved in

these networks, the ability for the network to transfer at large data rates can be a

challenge. In the design of 5G networks for example, the use of pico and femto cells

(which act as mini BSs) have been utilised to improve capacity at a more local level.

These types of traditional wireless networks are of crucial importance to everyday

life, whether that be socially, in business, or even in use by emergency services.

However, due to their reliance on fixed infrastructure, they are not always the best

choice of network topology. To alleviate the issues involved with the set up of these

networks, other system designs have been implemented.

We will now introduce the types of network which will be considered in this

thesis before introducing the mathematical framework which we will use to model

these networks and analyse their performance.

1.1 Wireless Ad-hoc Networks

The class of wireless communication networks considered in this thesis are so-called

ad-hoc networks. Here, rather than users being connected to some central router,

they are connected to each other directly. They have been utilised in a wide variety of

applications such as in search and rescue operations, disaster recovery, wireless sensor

networks [HMD+04], along with the two main application topics within this thesis

of swarm robotics [LLZ+08], and vehicular networks [TML+08]. With the birth

of millimetre wave communications, short-range device to device communication is

likely to play a major role in the deployment of 5G networks. Alongside the rise

in number of Internet of Things (IoT) devices and the large scale deployment of

wireless sensor networks, the use of ad-hoc networks in every day life will only grow.

The three main benefits they have over centralised communication networks are

robustness, scalability, and improved mobility and flexibility:

Robustness: this is the ability of the network to withstand node failures and per-

turbations, thus meaning it is still able to operate even if nodes are removed from

the network or there is a change in the environment. The absence of a central point

of failure as there is in a centralised network (e.g. a base station or Wi-Fi router)
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improves the robustness of these networks.

Scalability: this is the ability of the network to be able to handle an increased

number of users being added into the system. This improvement is facilitated by

the fact that new users can join anywhere in the network and hence the issues

of overloading associated with all new users connecting to the central router are

alleviated.

Mobility and Flexibility: these networks can be set up without any infrastructure

already being in place and are able to more easily adapt to topology changes allowing

for greater mobility: the users don’t have to remain connected to a single centralised

machine, they simply have to remain connected to any other member of the network.

The decentralising of the network means that devices can simply react to their local

environment without having to use up vital resources in finding out information

about areas of the network that don’t affect them.

However, these networks are not without their downfalls. Although they scale

well in terms of computational cost, the increased topological complexity leads to

additional routing costs i.e. finding the best route for a message to be sent through

the network. Furthermore, providing Quality of Service (QoS) is very difficult due

to the rapid changes in network configurations and topology, and the potential for

large amounts of interference between nodes. Included in the QoS metrics is latency

(the time taken for data or a request to go from source to destination) which is of

vital importance to safety critical applications such as vehicular networks as will be

discussed in more detail in Section 1.1.1. Ad-hoc networks are also susceptible to

security attacks due to their low computational power and the fact that it is very

difficult to maintain secure connections due to their dynamic nature. Finally, due

to their use of battery power to allow for mobility, power control becomes a very

important issue. If one of the nodes in the network loses power, this could fragment

the network into disconnected clusters, leading to a disconnected network [HA14].

1.1.1 Vehicular Ad-Hoc Networks

One of the main applications of these networks is in the area of vehicular ad-hoc

networks (VANETs) which has rapidly become a very important area of research

due to the idea of self-driving vehicles becoming more of a reality. Here, the users

or devices in the network are the vehicles. They will be equipped with some form of

on-board radio enabling them to transmit messages either between each other (V2V

communication), with Road Side Units (RSUs), or with other infrastructure (V2I

3



communication). These networks can be used for entertainment purposes: streaming

videos, sending emails etc. whilst on the move, as well as for safety purposes: acci-

dent information, intersection management, and traffic flow for example [TML+08].

Ensuring the best possible design of the network infrastructure is thus crucial due

to the necessity for low latency and high connectivity and has many challenges. For

example the high level of mobility of the nodes in the system can easily lead to a

more sparse network, increasing the chances of it becoming disconnected. The fact

that drivers are constrained to the roads for travel introduces predictability into users

movements which can make routing easier since node locations are more predictable

but it also reduces the possible path redundancy. Alongside these issues, security

is a crucial factor to consider due to the high risk nature of these networks. Thus,

large areas of the literature focus on this issue, for example see [YOW08; MBH14;

EBP+14; HSB+17] for more in depth discussion.

Whilst there are many challenges involved with this new technology, one of the

main challenges is designing a network in which these vehicles will be able to ef-

fectively communicate. This communication is paramount for these vehicles to be

safe, and hence incorporating this into their design is of utmost importance. There-

fore, the full connectivity of these networks is where the research in this thesis is

concentrated. Having a fully connected network means that it is possible for every

vehicle in the network to communicate with every other vehicle either via a single-

or multi-hop path. In a vehicular network, this means that it is possible to relay

any information (safety or otherwise) to every vehicle that is on the road. This kind

of communication is not only for the future application of driverless cars, but also

for improving safety and efficiency in current vehicular networks. For example, it

will be possible for cars to receive information about crashes ahead, causing the car

to automatically slow down, and it will be possible to get a better understanding

of areas of congestion and update driver’s routes accordingly. It will also be pos-

sible to use tools such as platooning where groups of vehicles that are nearby will

accelerate and brake at the same time. This will mean that they can drive closer

together and remain safe since the factor of human reaction time is taken out of the

equation [ADC+15]. This will both decrease route times in areas of high congestion

and reduce the number of crashes.

With the question of connectivity in mind, it is useful to model these networks

mathematically to develop an understanding of their behaviour without the need

to physically build and test them, or run simulations which require a high number

of parameters. The level of tuning needed to build accurate simulations can lead
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to a lack of reproducibility as results become nearly impossible to compare with

each other. Mathematically, the current state of the art is to model them using a

spatial stochastic network model called a one-dimensional hard Random Geometric

Graph (RGG)[HM06]. In this set-up, nodes are placed on a line segment and an

edge placed between nodes that are within a certain distance of each other. Here,

the nodes represent the vehicles in the network, the line segment represents the road

on which they are driving, and an edge between two nodes signifies that the vehicles

are able to communicate with each other. This model, and its associated results, will

be discussed in more detail in Section 1.2.

1.1.2 Swarm Robotics

A second important application of ad-hoc networks is to Swarm Robotics, an area

that has been of interest to researchers for many years. In the early 1980s there was

a lot of interest in the topic of cellular automota [Wol02]. Here, seemingly simple

initial rules can lead to highly complex patterns being formed. The idea of “cellular

robots” [FN88; Ben88] was then introduced in the late 1980s as a way of describing

systems of robots which could work co-operatively to complete a task and to self

organise, an extension of the idea of cellular automata in which the units of the

automaton interact dynamically [Ben04]. The inspiration for these groups of robots

was the observation of social insects such as ants, termites, wasps, and bees [Şah04].

In these biological systems, the insects are able to complete tasks as a group which

they would not be able to as individuals. Although these types of networks can be

used to simulate biological systems to understand them better [HJW+20], they also

have real-world applications such as exploration, surveillance, and search and rescue

[BFB+13; BGN17].

To emulate the biological systems, there are three key properties of which these

multi robot swarms must have. These are almost identical to those which are desir-

able for ad-hoc networks [Şah04]:

Robustness: the individual robots should have low complexity and be dispensable

via redundancy with the large number of users meaning that there is multiplicity

of sensing leading to increased Signal-to-Noise Ratio (SNR). They should also co-

ordinate in a decentralised fashion thus removing the central point of failure.

Flexibility: they should have the flexibility to respond to changes in the environ-

ment and offer solutions to the tasks at hand by utilising different co-ordination

strategies.
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Scalability: they should be able to complete these tasks and operate under different

system sizes which are generally of the order of around 102 − 1023 [Ben04]. The co-

ordination mechanisms used should be undisturbed by changes in the system size

since co-ordination should be based on local interactions and self-organisation.

One of the key ideas to note here is the importance of the underlying co-ordination

system to allow for these properties to be possible. The use of local interactions

in the design means that the robots can be low powered and low complexity, but

most importantly, low cost. In this scenario, the robots are the users and they

communicate with each other via short range communication channels (sometimes

of the order of centimetres). Therefore, for information to be distributed throughout

the network, there is the necessity for almost constant contact with the rest of the

swarm and hence swarm cohesion comes from minimising the time that the individual

robots are disconnected from the rest of the swarm [HWZ+08].

The reduction in cost in terms of producing these robots has been one of the

main drivers to move away from small groups and allowing for much larger swarms

to now be possible. One example of these low cost, scalable robots is the Kilobot

[RAN12]. They cost just $14 per robot and take around 5 minutes to assemble.

They are relatively small, with a diameter of 33mm and height of 34mm, and have

two vibrating motors instead of wheels, reducing the cost of production but also

leading to noisy trajectories. They have a communication range of up to 10cm

via an isotropic infrared LED transmitter and an isototropic infrared photodiode

receiver. Since all the robots will be communicating over the same infrared channel,

a standard carrier sense multiple access with collision avoidance (CSMA/CA) method

is used to mitigate this interference. They also have limited sensing and localisation

capabilities. Their low cost and ease of set up allow for large scale simulations using

actual robots and are thus the motivation behind the use of the Kilobox [JSH+18]

simulator for the work done in this thesis which has been shown to give fast and

accurate simulations of Kilobots [RAN12].

As with VANETs, connectivity in a swarm network is highly important: it is what

allows the swarm to complete tasks which would be impossible for an individual

robot and hence must be integrated into their design. One way to aid with this

design is to model them mathematically, with the most popular approach being

to model them as a random graph. In this set up, the robots are represented by

nodes on the graph and an edge between two nodes means that those two robots

are able to communicate with each other and therefore send information across this

communication channel. One way to generate these graphs is by constructing an

6



Figure 1.1: An Erdős–Rényi random graph with n = 30 nodes and edge probability
p = 0.2. This is denoted by R(30, 0.2).

Erdős–Rényi graph. To construct this graph, one has n nodes and an edge is placed

between any pair of nodes with a fixed probability, p. (p is often a function of the

system size and so written as p = p(n).) We will denote this graph by R(n, p).

As an example, Figure 1.1 shows the graph R(30, 0.2). These have been used to

study the stability of swarm beliefs in which half of the agents have one belief and

half have another [BKB+13; BSB15]. The edge probability, p, and thus the level of

intercommunication between the agents, is then tweaked to see how this effects the

stability of the final outcome. Other random graph models have also been used to

investigate the optimal population topologies for various tasks [KM02]. Here, the

key aspects of the networks to understand are the numbers of neighbours that each

agent has, how much clustering (when an agents neighbours are neighbours of each

other) occurs in the network, and finally, the average shortest hop count between any

two nodes in the graph. This work has been extended to real world communications

applications [DBS12], and also to look at geometric settings [LC08; FCH+20]. In

these final two examples, the underlying graph has a geometric structure meaning

that it is a more accurate representation of the real world since communication

between agents depends on the distance between them. This type of random graph

is called a Random Geometric Graph (RGG) and will be the focus of the following

section.
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1.2 Random Geometric Graphs

When investigating these varying types of ad-hoc communication networks and at-

tempting to understand them, it is important to be able to mathematically model

them in such a way that they are simple enough to achieve tractable mathematical

results but also realistic enough that these results help us to understand the real-

world networks and not just some theoretical object. One such way of modelling an

ad-hoc communication network is by using Random Geometric Graphs (RGGs). A

RGG is created by firstly defining a space in which the graph will be defined (thus

adding additional geometric structure). This could be a unit square, or the infinite

real line for example. Points, or nodes, are then generated within this space accord-

ing to some probability distribution. An edge is then placed between any pairs of

points which are within a certain distance of each other. An example of a RGG is

shown in Figure 1.2. RGGs have been used to model a plethora of different real

world situations. For example, they have been used to model disease spread in social

networks [EGK+04], the climate [DZM+09], infrastructure [RBJ+14], and neuronal

networks [NVS+13].

One area of particular interest in recent years has been wireless networks [Hae12]

in which the nodes represent users in a communications network and an edge between

two nodes means that they are able to communicate with each other. This is not a

new idea and has been around since the early 1960s [ER60; Gil61]. In Erdős–Rényi

random graphs, all nodes within a network have the same probability of being con-

nected to each other, independent of the distance between them and hence there is no

geometry present in the model. In a RGG, a geometric layer is added into the model

by implementing the rule that the existence of an edge between two nodes is based on

the distance between them. The application of this to the study of wireless networks

can be seen immediately, and was hence the main focus of Gilbert’s 1961 paper on

random plane networks where he studied the idea of network criticality. Here, nodes

are distributed on the 2-dimensional infinite plane uniformly at random with a fixed

density per unit area and an edge placed between two nodes if their mutual dis-

tance is less than a certain radius, termed here as the connection radius. Within this

setting, the paper develops an understanding of when the network transitions from

being comprised of connected clusters of finite size into a network in which there is

almost surely an infinite size (giant) component [Pra19]; a phenomenon known as

percolation. This work finds an upper bound for the critical radius by using a hexag-

onal tiling of the plane (a technique widely used in the mathematical modelling of
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communication networks) and uses results from bond percolation.

However, especially when studying communication networks, a more appropriate

question to ask may be whether the network is fully connected. I.e. when is there a

single- or multi-hop path between any pair of nodes in the network. In the context of

Erdős–Rényi random graphs, it is well known that the question of full connectivity

is equivalent to asking whether there are isolated nodes in the network [ER60]. In

this context, in the limit as the number of nodes in the graph grows to infinity,

there is a sharp transition from having a system in which an isolated node is present

almost surely to one in which there are no isolated nodes almost surely. This occurs

when the mean degree (average number of edges of each node) is close to the natural

logarithm of the number of nodes in the graph. An analogous result has also been

shown to be true for RGGs [Pen97]. However, for random plane network as described

in Gilbert’s work, a connectivity transition does not occur since, with probability 1,

an isolated node will exist somewhere in the network. In Penrose’s work, the nodes

are distributed uniformly at random random in a unit square and this model is

studied in the regime in which the density tends to infinity with the connection

radius decreasing as a function of the density. Once again, the limiting factor with

regards to connectivity is whether an isolated node exists and it is shown that a mean

degree close to the natural logarithm of the number of nodes in the graph defines

a critical threshold for the almost sure existence (non-existence) of isolated nodes

and hence for the network (not) being fully connected almost surely. This result was

also extended to higher dimensional models and a more general collection of point

distributions [Pen03], however the result that isolated nodes are the only barrier to

full connectivity is one that doesn’t hold true in dimension one.

In the 1-dimensional version of the RGG, the graph can split into separate, dis-

connected clusters due to a large gap occurring between two nodes somewhere in

the graph. Defining an uncrossed gap to be the event that there is a gap between

two nodes on the line which is greater than the connection radius of the RGG, we

note that an isolated node cannot occur without the presence of an uncrossed gap.

Therefore, in the case of the 1-D RGG, the critical event for full connectivity becomes

uncrossed gaps rather than isolated nodes. This 1-D version has been a well-studied

problem for a long time once again with origins in continuum percolation [Sha81;

Dom89; MR96; Dro97]. With regards to the question of connectivity, much of the

original work in this area was based around understanding the largest spacing be-

tween any pair of nodes in the network: if the largest spacing between any pair of

nodes in the graph is less than the connection radius, then the graph is fully con-
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nected. One of the foremost works in this area being that of Devroye [Dev81] in

which it was shown that the largest gap scales roughly with the natural logarithm

of the number of nodes in the graph. This idea has been used in most studies of the

application of this work to 1-D ad-hoc networks such as 1-D MANETs [FL04], and

to (quasi-1-D) wireless sensor networks [BBS+07]. However, the most prominent

application of 1-D RGGs has been to VANETs. Here, the vehicles are represented

by the vertices of the graph and an edge represents a reliable communication chan-

nel. It is generally assumed that nodes are distributed uniformly at random along

the line, hence the underlying vertex set constitutes a Poisson point process (PPP).

The PPP has been shown to be a good approximation for traffic in its free-flow state

[RPM04], but is also used due to its mathematical tractability which, in general,

is thought to outweigh its possible inaccuracies for real-world networks [HBS+21].

Under this model, it has been shown that a sharp threshold for the network to be

fully connected occurs when the connection radius is such that the mean degree of

the graph is close to the natural logarithm of the number of nodes in the graph

[HM06; HM07; HM08]. In Han and Makowski’s work, they build on the work done

by Devroye but also derive another important result: the distribution of the number

of so-called breakpoint nodes (i.e. nodes that signify an uncrossed gap) can be well

approximated by a Poisson distribution. This fact can then be used to reconstruct

the critical threshold discussed.

However, this model doesn’t take into account the random nature of the wireless

medium. One way to include this randomness in the model is by using soft RGGs

[Pen16]. The construction of a soft RGG begins in the same way as the original

RGG by defining a space and generating the points in this space according to some

probability distribution. However, once the points have been generated, an edge is

now placed between two points with a probability that is a function of their mutual

distance. This probability is called the connection function and is denoted by H(r),

where r is the distance between the two nodes in the graph. The connection function

itself is a very general object and can take on many forms (discussed in more detail in

Section 2.1.3), but it is generally assumed to be monotonically decreasing (especially

in the context of wireless communications) and integrable (to avoid triviality). These

graphs have been variously termed a random connection model [MR96; MA13], a soft

RGG [Pen16; DG16], or a Waxman graph [Wax88]. For this work we will call them

soft RGGs and we will call the original RGG model a hard RGG. (The hard RGG

is a special case of the soft RGG where the connection function is the indicator that

the distance between two nodes is less than the connection radius.) They have been
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Figure 1.2: A random geometric graph generated on the unit square with nodes
placed uniformly at random and an edge placed between any two nodes within a
distance of r = 0.2 of each other. The colours of the nodes represent the mean
degree (average number of edges) of the node.

widely used to model the randomness of wireless communication systems in 2- and

3-dimensional models, for example in [MA13; MZA10; MA11a; MA11b; GDC14;

DG16]. The main discovery of these works was that the dominant contribution to

lack of connectivity in confined geometries is that of isolated nodes (a node that is

not connected to any other within the network) and hence the probability of full

connectivity (the probability of the whole network being connected) can be well

approximated by the probability of not finding an isolated node. These results will

be discussed in more detail in Chapter 2.

No work as of yet, however, has looked at the connectivity of the one-dimensional

version of the soft RGG and the properties of this graph. Other properties of

these graphs have been analysed such as their diameter [DF14], and with respect

to VANETS, the “average connectivity distance” (i.e. the expected length of the

connected path from a node) and “average platoon size” (i.e. expected number of

nodes in a cluster) were calculated in [CA12] using a queuing theoretic approach.

Furthermore, the number of nodes (vehicles) which have two-hop connectivity (i.e.

are either connected directly or can connect via a single relay node) to a fixed RSU is

analysed in [KKL+20] with its expectation being calculated and a Normal approxi-

mation derived. Although interesting results, none tackle the problem of calculating

the probability that the graph is fully connected. The connectivity of this model has
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been mentioned in other work, for example [Han07], but wherever mentioned, either

the author remarks on the difficulty of the problem and hence doesn’t attempt to

understand it in more detail, or the approach given in the work is not satisfactory.

With this in mind, the work done on understanding the connectivity of the 1-D soft

RGG is, as far as the author is aware, all novel and is where the main body of re-

search within this thesis is concentrated. In depth analysis of this model is given in

Chapters 3, 4, and 5.

1.3 About this thesis

The main idea that all of the applications described thus far have in common is the

importance of maintaining a fully connected network. In other words, a network in

which every user in the network is connected to every other via a single- or multi-hop

path. This allows for the dissemination of information throughout the whole network

even if users aren’t connected to each other directly. In VANETs, this means that if

there is an accident, all other vehicles will know about the incident causing nearby

vehicles to slow down to avoid collision, and rerouting vehicles further away in the

network to avoid congestion and reduce danger to those users. In a swarm of robots,

full connectivity ensures that the swarm is able to act as one coherent group, enabling

them to more efficiently search an area or to complete a foraging task. The idea of

full connectivity is what underpins this thesis .

In Chapters 3, 4, and 5, we investigate the 1-dimensional soft RGG. Within these

three chapters, we firstly state the conjecture that there are only two main causes

of disconnection in this model: isolated nodes and uncrossed gaps (as defined in

Definitions 3.2.1 and 3.2.2). This claim is backed up by simulation data. Under

fairly loose constraints on our connection function, we then calculate, for the first

time, a threshold for the existence of isolated nodes in this graph by calculating their

expectation and variance. Placing the condition on the connection function that

it is monotonically decreasing, we are able to prove that at this critical threshold

the number of isolated nodes converges in total variational distance to a Poisson

random variable as the system size tends to infinity: a novel proof for the 1-D soft

RGG. We are then able to show that in an infinite sized system that uncrossed gaps

appear with negligible probability in the scaling at which isolated nodes appear. This

means that in an infinite sized system, the isolated nodes are the main barrier to

full connectivity: a new and very interesting result since in the 1-D hard RGG, it
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has been shown that it is the uncrossed gaps that are more important. Reasons as

to why this is the case, along with an investigation into the critical scaling for the

appearance of uncrossed gaps, are also given.

In Chapter 6, a novel decentralised algorithm is proposed to model the behaviour

of social spiders using Kilobots (a type of cheap, simple robot). The algorithm uses

inter-node connectivity (i.e. social interactions between robots/spiders) as a way

of increasing an individuals propensity to explore an unknown environment. This

algorithm was tested in software to analyse its performance against less complex al-

gorithms for different swarm sizes and the results of these simulations are discussed in

this chapter. Furthermore, the simulations investigated how well the swarm adapted

to sharp drops in population size thus examining its robustness. This is the first time

that this natural social behaviour has been tested in the context of swarm robotics

and in a decentralised control system. The results give a good indication that this

algorithm could be used in real-world field trials in hazardous environments where

there is a high risk of loss or destruction of robots.

Each chapter is summarised below:

Chapter 2: An overview of the mathematical tools used in this thesis are given,

along with some important results associated with this work.

Chapter 3: The 1-dimensional soft RGG model is introduced. Analytic expressions

for the mean and expectation of the number of isolated nodes in this graph are

derived before calculating a threshold for the existence of isolated nodes.

Chapter 4: The behaviour of the isolated nodes is analysed at the critical thresh-

old. A theorem stating that, at this threshold, the number of isolated nodes

converges in total variational distance to a Poisson random variable is proven.

Chapter 5: Uncrossed gaps are investigated in more detail and it is shown that

they appear with negligible probability in the scaling at which isolated nodes

appear. Reasons for this, along with an investigation into the critical scaling

for the appearance of uncrossed gaps, are also given.

Chapter 6: An algorithm used to model social spiders is introduced. A scoring

mechanism is then defined to analyse how well this algorithm performs in the

context of exploring an unknown environment.

Chapter 7: The conclusions of the work discussed in this thesis are given along

with potential future questions that have come out of this project.
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Chapter 2

Mathematical Preliminaries

In this chapter, an overview of the more general mathematical topics in this thesis

will be given. The aim being to give the reader an introduction to the ideas used

along with making the thesis as self-contained as possible. As was discussed in the

previous chapter, many real-world systems can be modelled by spatial networks,

with one of the main applications being to communication networks. In the study

of these networks, mathematical tools enable us to study their properties without

the costs associated with physically building and testing them. For example, one

of the main concerns in their design is the Signal-to-Noise-Ratio (SNR) or more

importantly the Signal-to-Interference-plus-Noise-Ratio (SINR) which is seen as the

performance limiting metric in the design of communication networks [Hae12]. In

fact since Claude Shannon’s work around the middle of the 20th century [Sha48], the

SNR has been the main quantity of interest to communication engineers. However in

wireless communication networks, this doesn’t give the full picture when analysing

the network since concurrent transmissions from users within the network complicate

the problem, and SINR becomes the key metric. To study this, we need to be able

to model the random spatial locations of users and objects within the network which

will lead to shadowing (fluctuations in received signal power due to obstructions) and

fading (attenuation of signals). To understand how they interact with each other and

thus enable us to answer questions, we look to Stochastic Geometry as a tool for us

to model and study these networks.
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2.1 Stochastic Geometry

Stochastic geometry is the study of random spatial patterns, with random point

patterns, or point processes, being the most basic object studied. Initially used as

a way to understand fields such as material science, astronomy, and biology [Sos00;

TSZ08; BB10], more recently stochastic geometry (and in particular point processes)

has also been used to study areas such as computational neuroscience [Joh96], ecology

[LIB+09], crime [MSB+11], disease spread [MH+14], and even machine learning

[SD19]. One of the main areas of application is to the world of wireless networks (see

e.g. [NBK07; BB10; Hae12; EHH13] to name a few) and this is where our research

lies.

2.1.1 Point Processes

We begin this section by formally defining a Point process.

Definition 2.1.1 (Point process, [Hae12] Defn 2.1). A point process is a countable

random collection of points that reside in some measure space, usually the Euclidean

space Rd. The associated σ-algebra consists of the Borel sets Bd, and the measure is

the Lebesgue measure.

Borel sets are the sets that can be constructed from open (or closed) sets and

repeatedly taking the countable unions and intersections of these sets. The collection

of all such sets forms the Borel σ-algebra, and all singletons are contained within this.

All sets and functions referred to in this thesis are assumed to be Borel measurable,

even if not explicitly stated.

It is important to note that a point process can be described in two different

formalisms: a random set formalism and a random measure formalism. Since we will

use both descriptions in this thesis, it is important to gain an understanding of each

of them. Once again taking the descriptions from [Hae12], we describe these two

ideas as follows.

Random set formalism: the point process is regarded as a countable random set

Φ = {x1, x2, ...} ⊂ Rd consisting of random variables xi ∈ Rd as its elements.

Random measure formalism: the point process is characterised by counting the

number of points falling in sets B ⊂ Rd. Denoting by N(B) the number of points in

B, N(B) is a random variable that assumes values from the non-negative integers,

N0. N is called a (random) counting measure.
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This duality gives two different ways of talking about point processes as it enables

one to define them as random sets or as random counting measures. There is a one-

to-one mapping between Φ and N . If Φ is given, N is obtained from

N(B) = # {Φ ∩B} ,

where #{·} gives the number of elements in the set. In reverse, Φ can be retrieved

if N is known from

Φ =
{
x ∈ Rd : N({x}) = 1

}
.

In this thesis, we will make the assumption that all point processes are simple i.e.

only one point can exist at a specific location. More formally,

N({x}) ∈ {0, 1} a.s. x ∈ Rd.

For simple point processes both formalisms are identical and hence allow us to write

the following equivalence statement,

Φ(B) = N(B), ∀B ∈ Bd.

For simplicity, within this thesis we will use the notation Φ(B) to denote the number

of points in the point process, Φ, lying within some (Borel-measurable) set, B. Along

with this, we also make the assumption that our point processes are locally finite i.e.

for any finite area, there are only finitely many points. More formally,

|B| <∞ =⇒ Φ(B) <∞.

Finally, this brings us to the definition of the intensity measure, i.e. the expected

number of points within a set.

Definition 2.1.2 (Intensity Measure). The intensity measure Λ is defined as

Λ(B) := E[N(B)], ∀B ∈ Bd,

or equivalently

Λ(B) := E[Φ(B)], ∀B ∈ Bd.

A key result from point process theory is Campbell’s theorem for sums which

tells us that the sum of a measurable function f over the point process is a random
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variable [CSK+13] by relating the expectation of a function summed over a point

process to an integral of the function involving the mean measure of the point process.

This allows us to take a spatial average over all possible node locations.

Theorem 2.1.1 (Campbell’s Theorem for Sums, [CSK+13] Thm. 4.1). The sum of

a measurable function f : Rd 7→ R over the point process Φ is a random variable with

mean

E

[∑
x∈Φ

f(x)

]
=

∫
Rd
f(x)Λ(dx),

provided that the right hand side is finite. If Φ has an intensity function λ, then we

can rewrite this as

E

[∑
x∈Φ

f(x)

]
=

∫
Rd
f(x)λ(x)dx.

So far we have only described point processes as very general objects, but we wish

to be able to compare them. The main way to do this is via the Laplace functional

of a point process.

Definition 2.1.3 (Laplace Functional, [LP17] Def. 2.8, [Hae12] Def. 4.5). For a

point process Φ on Rd, and letting F be the set of all bounded non-negative measurable

functions f of bounded support, the Laplace functional of Φ is given by

LΦ(f) = exp

(
−
∫
Rd

(
1− e−f(x)

)
Λ(dx)

)
, for f ∈ F . (2.1)

An interesting result is that the Laplace functional of a point process determines

its distribution. This is expressed in Proposition 2.10 of [LP17] in which the following

equivalence is stated: For point processes Φ and Φ′, the following are equivalent

(a) Φ
d
= Φ′,

(b) LΦ(f) = LΦ′(f),

where
d
= denotes that two random objects are equal in distribution. If our Point

process is simple, then we also have two more ways in which to compare the distri-

butions of point process, namely the void probabilities and finite-dimensional (fidi)

distributions.

Definition 2.1.4 (Void Probability). The void probability, V , of a simple point

process Φ is given by

V (K) := P(Φ(K) = 0),
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Figure 2.1: Figure taken from [Hae12] (with some edits) showing the different types
of point process based on the level of interaction between the points with the
Poisson PP having zero interaction between points. As we move to the left, the
repulsion between points increases forming more regular point processes such as
hard-core PPs. To the right, we see point processes in which the points are
attracted to each other and hence form clustered processes such as Cox processes.

for K compact.

Definition 2.1.5 (Finite-Dimensional (Fidi) Distributions, [Hae12], Def. 2.21). The

fidi distributions of a point process, Φ are the joint probability distributions of

(Φ(K1),Φ(K2), ...,Φ(Km))

for all finite integers m and all K1, K2, ..., Km compact.

This leads us to the following theorem.

Theorem 2.1.2 (Fidi distributions and void probabilities, [Hae12], Thm. 2.23).

(a) If the fidi distributions of two point processes are identical, then they have the

same distribution.

(b) If the void probabilities of two simple point processes are identical, then they have

the same distribution.

Point processes are able to describe phenomena in which objects can be mapped

to some space and hence are very general objects. This has incredibly wide reaching

applications [BBS07] such as statistical ecology [LR88], astrostatistics [BF96], neu-

roscience [BZG18], and epidemiology [Dig00; PSS+12]. For a wider review of their

applications see for example [CSK+13], and for an overview on the use of spatial net-

works to model real-world systems see [Bar11]. Using a useful pictorial description

of point processes (Figure 2.1) from [Hae12], we are able to see them on a spectrum

in terms of how much interaction there is between the points within the model.
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For this thesis, we will focus our attention on a small subsection of them, with

special attention being given to the Poisson point process (PPP). We will also in-

troduce other point processes for comparison and discussion of applications, namely

the Binomial, Cox, and Matérn PPs.

Poisson Point Processes

One of the most widely used point processes is the Poisson point process (PPP)

which we define formally.

Definition 2.1.6 (Poisson Point Process).

Let λ : Rd → R+ be a function whose integrals on bounded subsets of Rd are finite.

A Poisson point process (PPP) P on Rd with intensity λ(·) is a random set of points

such that P(B), the number of points in B ⊂ Rd, has a Poisson distribution with

mean Λ(B) =
∫
B
λ(x)dx, while the numbers of points in a (finite) collection of dis-

joint subsets are mutually independent random variables. If λ(x) is identically equal

to a constant λ, we say that the PPP is homogenous with intensity λ.

Its wide use in the literature is in part due to the fact that its spatial independence

property simplifies the analysis of many problems, but also due to its ability to

accurately model many real world systems. Most importantly for this work, a simple

PPP has been shown to be a reasonably good approximation for the locations of

base stations in dense urban environments [LD15] as well as being realistic for traffic

in its free flow state [RPM04], and hence for VANETs. An important idea when

designing communication networks is that of a “typical user” which is formalised

mathematically in Palm probability, or the Palm measure of a point process, which

defines the probability of an event given that a point exists at some location. We

denote this by

Px(Y ) := P(P ∈ Y |x ∈ P),

where P ∈ Y is the event that the point process, P , has some property, Y . In

addition, we denote by P!
x the reduced Palm measure where the point on which we

have conditioned is not included in the distribution. More formally,

P!
x(Y ) := P(P\{x} ∈ Y |x ∈ P).

Due to its spatial independence property, the PPP has many very nice properties.

One such example being that if we condition on there being a point at some location
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{x} within our space, this does not change the distribution of the rest of the process.

This is formalised in Slivnyak’s theorem.

Theorem 2.1.3 (Slivnyak’s Theorem, [Hae12], Thm. 8.10). For the Poisson point

process with intensity function λ, Pλ,

P (Pλ ∈ Y |x ∈ Pλ) = P (Pλ ∪ {x} ∈ Y ) , ∀x ∈
{
y ∈ Rd : λ(y) > 0

}
.

More compactly,

P!
x = P.

Writing this in terms of (reduced) Palm measures tells us that if we condition on

there being a point at some location, and then remove this point, the distribution

of the point process is not affected. We leave out the the details of the proof of this

theorem, but the general idea follows from the fact that (as described in Theorem

2.1.2 of Section 2.1.1) if the void probabilities of two simple point processes are the

same, then they have the same distribution.

Using Def. 2.1.4, we can define the void probability for the PPP on some Borel

measurable space S ∈ Rd.

Definition 2.1.7 (Void Probability of a PPP). For a PPP on Rd with intensity

function λ, Pλ, the void probability is given by

P (Pλ(S) = 0) = exp

(
−
∫
S

λ(x)dx

)
.

This idea, along with Campbell’s Theorem (Thm. 2.1.1) is used in Chapters 3 and

4 when analysing node isolation within our graph. Although this thesis solely focuses

on RGGs constructed on Poisson point processes, within the wireless communications

literature there are some further examples of point processes used to model these

systems. These will also be useful to understand when discussing the future directions

in which this work could be taken in Chapter 7.

Binomial Point Processes

The first of these is the Binomial point process (BPPs). This is where a fixed

number of points, say n, are distributed uniformly at random within a compact

(Borel-measurable) set V ⊂ Rd. A BPP can also be constructed from a Poisson

point process by conditioning on the number of points within the point process. This
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conditioning results in a loss of complete spatial randomness since if the number of

points within a subset of the space is known, then number of points outside of this set

is also known, and hence not independent. However, the BPP still produces simple

formulas for the void probabilities and nearest neighbour distances and results for

the BPP are very similar to those of the PPP when the number of points is large

[DGP18].

Cox Point Processes

A Cox point process, also known as a doubly stochastic Poisson process, allows for

the intensity measure itself to also be random, where the intensity measure is the

realisation of non-negative, locally finite random measure [Hae12]. One such example

is the mixed Poisson point process. Let L be a non-negative random variable, then

given L = λ, the mixed Poisson point process, PM, is a homogeneous PPP of intensity

λ. For a single realisation of this process, it is impossible to distinguish it from the

PPP. The Cox point process is used in Chapter 5 when analysing the number of

nodes which have an edge across the origin to determine the scaling for the existence

of uncrossed gaps.

Another important example is the Poisson line Cox process [CD18]. A Poisson

line process (PLP) is constructed by firstly generating a Poisson point process in

the representation space, [0,∞) × [0, 2π]. These x− and y−co-ordinates can then

be mapped back to Euclidean space and give the perpendicular distance of the line

from the origin and its angle respectively [Che20]. A 1-D PPP is then generated on

each line. The point process generated from this construction is itself a Cox process.

This has been used by Chetlur and Dhillon as a way of modelling VANETs in which

the PLP resembles the road and the points on these lines represent either a vehicle

or a RSU.

Matérn (hard-core) Point Processes

Hard-core processes can be used to model networks in which points are not allowed

to be close together. A Matérn (hard-core) point process [Mat13] of type I and II

are defined as [Hae12]:

Definition 2.1.8 (Matérn hard-core process of type I). Starting with a homogeneous

PPP Pb of rate λb, then remove all points which have a neighbour within a distance,

r0.
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Definition 2.1.9 (Matérn hard-core process of type II). Starting with a homogeneous

PPP Pb of rate λb, add a mark to each point which is a value uniformly picked from

[0, 1]. Then remove all points that are within a distance r0 of a point with a larger

mark than themselves.

These types of processes can be used to model communication networks in which

users have to be separated by a set distance. A modified version of the Matérn type

II in which the marks are drawn uniformly from {0, 1, ...,W}, where W is typically

taken as 15, has been used to model the use of 802.11p for VANETs [TLH+16]. The

mark here is used to represent the random back-off counter employed by the standard

(i.e. if a channel is idle, a message is sent, otherwise the user waits a random time

before trying again).

Now that we have a general understanding of Point processes of different kinds,

we can begin to construct network models using these processes as the basis.

2.1.2 Hard Random Geometric Graphs

In his 1961 paper [Gil61], Gilbert introduced the idea of a random plane network in

which points are picked from the infinite plane according to a Poisson process with

some fixed density per unit area and edges are then placed between any two points

which are separated by a distance of less than some connection radius. The work used

this construction to model a communication network and to study how information

flowed through the system. More recently, these types of networks are more generally

known as Random Geometric Graphs (RGG), or Gilbert graphs, and in this thesis

will be termed hard RGGs to avoid confusion with their soft counterpart. More

formally [Pen03], a hard RGG is constructed by firstly defining a space (generally

Rd), then defining a norm ‖ · ‖ (e.g. the Euclidean norm) on this space. Then for the

positive parameter r0, the so-called connection radius, and a (point) set Φ ⊂ Rd, we

denote by G(Φ, r0) the undirected graph with vertex set Φ and (undirected) edge set

containing all pairs {x, y} if ‖y−x‖ ≤ r0. An excellent monograph on this subject is

that of Penrose [Pen03] in which a much deeper study of these objects is given than

is feasibly possible here, however we will discuss some key results from the field.

One such result is that of connectivity. Denoting by P2
n the points of a unit rate

Poisson process on R2 that lie within a square of area n (i.e. the expected number of

points of P2
n is n), and connect any points within distance r(n) of each other. Then

the associated hard RGG, G(P2
n, r(n)), has the following property [Pen97]:
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Theorem 2.1.4. If nπr(n)2 = lnn+ α, then

lim
n→∞

P(G(P2
n, r(n)) is connected) = e−e

−α
, α ∈ R.

In particular, this probability tends to 1 if α = α(n)→∞ in this limit.

A similar result was also proved independently by Gupta and Kumar [GK99] a

few years later. This result has an exact analogue in the theory of classical random

graphs (see [Bol01; BSB08]) and the main idea for both of these is that in the limit

as n grows to infinity, the only obstruction to connectivity is isolated nodes. To

arrive at Theorem 1, one has to prove that isolated nodes are the only barrier to

connectivity and then also gain an understanding of the behaviour of these isolated

nodes. This understanding is gained by showing that the isolated nodes themselves

form a Poisson process of rate e−α via a technique called the Chen-Stein method for

Poisson approximation [Che75; AGG+89; BHJ92]. (This will be discussed in much

more detail in Section 2.2.2.) The probability that this Poisson process is empty (i.e.

that there are no isolated nodes) is then given by e−e
−α

.

However, the idea that isolated nodes are the main barrier to connectivity does not

carry into the 1-dimensional case since, in this special case, there is also the potential

for the graph to split into two or more large components. This low dimensional model

has been widely studied, originally in the context of 1-D continuum percolation

[Sha81; Dom89; MR96; Dro97] but more recently it has become of keen interest

to the wireless communications community due to its use as a way of modelling

networks over “linear highways” and in particular to VANETs (see e.g. [HM07;

ANB11; KKG+16]). When studying the low-dimensional version of this model, it

is key to notice that studying the connectivity of the network is the identical to

understanding the size of the largest gap between any two points distributed on the

line. In the context of a uniform distribution of points, Devroye’s paper [Dev81] is

one of the key works studying this problem. In this paper, the main result is given

as follows (Eqn. (1.1) in [Dev81]):

Lemma 2.1.1. For the sequence X1, ..., Xn−1 of independent, uniformly distributed

random variables on [0, 1] and their associated order statistics, X(1) < X(2) < ... <

X(n−1), we define the maximal gap as

Mn = max
i∈{1,...,n}

Si,

where S1 = X(1), Si = X(i)−X(i−1), and Sn = 1−X(n−1). Under this definition, Mn
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has the following property,

lim sup (nMn − lnn) /2 ln lnn = 1, almost surely.

In other words, the largest gap in the network grows as lnn
n

(with variations of

order ln lnn
n

). This result was a tightening of earlier results from Sukhatme [Suk37],

Lévy [Lév39], Darling [Dar53] and others from which the following Lemma was de-

rived (Lemmas 2.4 and 2.5 in [Dev81]):

Lemma 2.1.2. For n points distributed uniformly at random on the line segment

[0, 1],

lim
n→∞

P(nMn < lnn+ α) = e−e
−α
, α ∈ R,

and

lim
n→∞

P
(∣∣∣∣nMn

lnn
− 1

∣∣∣∣ ≤ δ

)
= 1, for any fixed δ > 0.

If we denote by Pn the points of a unit rate Poisson process falling within the line

segment [0, n], these previous two Lemmas are summarised in the following Theorem

[GJ96]

Theorem 2.1.5. If nr(n) = lnn+ α + o(1), then

lim
n→∞

P (G(Pn, r(n)) is connected ) = e−e
−α
.

We remark here that Theorems 2.1.4 and 2.1.5 are the 1- and 2-D analogues

of each other, however the reasons for which they are both true are different. For

the 2-D version (as was discussed) the cause of this lack of connectivity is isolated

nodes, whereas in the 1-D model, it is due to a splitting of the network into separate

(disconnected) clusters. This occurs when there is a large physical gap between two

consecutive nodes and hence in this thesis is termed an uncrossed gap. Defining an

uncrossed gap in this way, we note that an isolated node cannot occur without the

presence of an uncrossed gap since, in the bulk of the system, an isolated node is

equivalent to two consecutive uncrossed gaps.

The main application of this 1-D model has been to 1-D mobile ad-hoc networks

(MANETs) [FL04] and to VANETs. The nodes in the 1-D hard RGG represent vehi-

cles (or users) in the network, the ability of two users to communicate is represented

by an edge between the two nodes, and the road which the vehicles are on is repre-

sented by a line segment. It is important to clarify the assumptions made through
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the use of this model (and specifically in this thesis) with respect to a real-world

VANET:

Snapshot in time: we assume that we are looking at the model at a single moment

and hence no mobility is considered. Mobility has been considered by many authors

including [ANB11; AOE13], and will also be discussed in Chapter 7.

Free-flow traffic: We assume that the vehicles are in a free-flow state and hence

the distribution of their positions along the road are independent and can be well

approximated by a Poisson distribution [RPM04].

“Narrow” roads: Finally, we make the assumption that the communication range

of the vehicles is much wider than the road and hence we are able to ignore the width

of the road in our analysis, reducing the problem to a 1-D model.

With this application in mind the work of Han and Makowski [HM08] looks at

this critical scaling for connectivity and reproves the result of Theorem 2.1.5 in two

different ways. The first of which once again uses the idea of maximal spacings,

but the second looks at so-called breakpoint nodes. A breakpoint node is defined as

a node which is not the leftmost node in the network and there is no node within

communication range of the node to its left hand side. In other words, it is the

right hand node of an uncrossed gap. They are then able to show (via the Chen-

Stein method) that the number of breakpoint nodes can be well approximated by a

Poisson distribution and once again return to the result that the critical scaling of

the connection radius for an almost surely fully connected network occurs when the

connection radius is such that the mean degree of the graph is close to the natural

logarithm of the number of nodes. Breakpoint nodes don’t make sense as an object

in higher dimensions in which instead isolated nodes are the object of investigation.

With the application of wireless networks in mind, it is important to note that

the hard RGG is not able to adequately capture the randomness associated with the

wireless communication medium, hence we must turn to a different way of modelling

the communication channel between nodes in our network.

2.1.3 Soft Random Geometric Graphs

One way to include this randomness is to instead model the wireless network using a

soft RGG in which a probabilistic function is used to determine the existence of an

edge between two nodes in our graph, rather than the deterministic function used in

the construction of a hard RGG. To do this, we introduce the idea of a connection

function, H : R+ → [0, 1]. The connection function maps the distance between two
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nodes to a probability, i.e. the connection function tells us the probability that two

nodes are connected. The hard RGG is therefore a special case of the soft RGG in

which H is defined as

H(r) =

1, if r ≤ r0,

0, otherwise,

where r denotes the (Euclidean) distance between the two nodes. Although many

different forms of this connection function have been used in the literature (see

[DG16] for a summary of those used in the wireless communications literature), the

results in this thesis hold for a very general class of connection functions. In Chapter

3, the only condition placed on the connection function is that it is integrable (and

non-zero), i.e.

0 <

∫ ∞
0

H(r)dr <∞.

This is generally considered as a necessary condition to make the problem non-trivial

since this quantity is related to the mean degree of the system. In Chapters 4 and 5,

we introduce the additional constraints that the connection function is monotonically

decreasing. This condition is widely applied to the connection function when this

model is applied to wireless networks since it makes sense that if two users are further

apart, they are less likely to be able to communicate with each other. Also with this

context in mind, in the simulations in Chapter 3 and in the analysis at the end

of Chapter 5, we pay particular attention to the generalised Rayleigh connection

function. This is calculated as the probability that the signal-to-interference-plus-

noise ratio (SINR) of a received signal from a node a distance r away is greater than

some threshold, q, when the channel gain follows a Gaussian distribution. We denote

by GTj and GR the antenna gains of transmitter j and receiver respectively, s denotes

the channel gain, and N the noise power. The path-loss is given by r−η where η is the

path-loss exponent, a quantity that depends on the environment in which the network

exists. η = 2 is used for free space path loss (i.e. line-of-sight communication) but η

can take values in the range from 1 (no absorption) to around 6 (very dense urban

environments such as Manhatten) [DG16]. The signal-to-interference-plus-noise ratio

(SINR) is thus defined as

SINR =
GTiGR|si|2r−η

N + γ
∑

k 6=iGTkGR|sk|2r−ηk
.

26



The parameter γ ∈ [0, 1] is used to apply a random thinning to the set of interfering

signals, as would be present in an ALOHA transmission scheme (devices are active

with probability γ) [DGP18]. We have assumed that the channel gain follows a

Gaussian distribution, hence its magnitude is Rayleigh distributed and thus |s|2

follows an Exponential distribution. We also assume that there is no interference

within the network (i.e. γ = 0), hence we return to the signal-to-noise ratio (SNR).

Therefore, we can derive the generalised Rayleigh connection function as

H(r) = P(SNR > q)

= P
(
GTGR|s|2r−η

N
> q

)
= P

(
|s|2 > qN

GTGR

rη
)

= P
(
|s|2 >

(
r

rc

)η)
= exp

(
−
(
r

rc

)η)
,

(2.2)

where rc = (GTGR/qN )1/η. Therefore, we have that the probability of an edge

between two nodes a distance r apart is given by

H(r) = exp

(
−
(
r

rc

)η)
. (2.3)

An illustration of edge probabilities as a function of distance for different connection

functions of this class is given in Figure 3.1. To note the topological differences

between the soft and hard RGGs, we show an example (Figure 2.2) of both edge

sets created on the same point process. We also remark that the edge set in the

hard RGG is deterministic once the points have been generated whereas this is just

one realisation of the edge set for the soft RGG. In these figures we can see that

some of the shorter edges present in the hard RGG are not there in the soft RGG

(e.g. bottom right hand corner) however some longer edges appear in the soft RGG

that aren’t present in the hard RGG (e.g. top right hand corner) leading to two

quite different network topologies even on the same underlying point process. From

a wireless network design perspective, this demonstrates the importance of the use

of the soft RGG.

Eqn.(2.3) has an infinite connection range, which may seem to be an unrealistic

assumption when discussing communication networks since they will live in some

27



(a) Hard RGG (b) Soft RGG

Figure 2.2: A side by side comparison of a soft and hard RGG both defined on the
same point process. For (a), the connection function is given by H(r) = 1{r ≤ 0.2},
and for (b), the connection function is given by H(r) = exp(−(r/0.2)2).

bounded space, however, it possibly allows for better insights into the behaviour of

such networks. The main reason being that it removes the need to place a prede-

fined cut-off on the connection range. This is very difficult to quantify since it will

depend in some complex manner on the local topography of the network and hence

assumptions will have to be made in defining this. To avoid this, we make the as-

sumption of infinite range whilst being conscious of the fact that at large distances,

the probability of connectivity becomes arbitrarily close to zero.

The connectivity of soft RGGs in dimensions 2 and higher has been studied by

many different authors. In the work of Coon, Dettmann, and Georgiou [CDG12],

isolated nodes are analysed via a cluster expansion approach as a way to average

over all node and edge configurations, thus allowing the authors to understand how

the boundaries affect the connectivity of the network. This work gives a better

understanding of finite sized systems by taking these boundary conditions into con-

sideration. In Mao and Anderson’s work [MA11b; MA12] they investigate the con-

nectivity of soft RGGs by looking at the points of a PPP with density ρ which fall

in the unit square and connect nodes with a probability that is inversely propor-

tional to the density, i.e. a scaled connection function. The critical scaling for the

threshold at which isolated nodes exist (or don’t exist) almost surely was shown

to be Hρ(r) = H(r/rρ), where rρ =
√

(ln ρ+ b)/(‖H‖1ρ) for some b > 0, and

‖H‖1 =
∫∞

0
H(z)dz. Therefore, the scaling is insensitive to the connection function

and depends only on its integral. In this work, they showed that if the connection
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function satisfies H(r) = o(1/(x2 lnx)), then in the limit as ρ → ∞ that (via the

Chen-Stein method) the number of isolated nodes in the network follows a Poisson

distribution with mean e−b and that asymptotically almost surely there is no fixed

and finite order strictly greater than one (i.e. either a node is part of the giant

component or it is an isolated node). Therefore, a sufficient and necessary condition

for the graph to be fully connected is that there are no isolated nodes which occurs

if b = b(ρ) → ∞ as ρ → ∞. Penrose [Pen16] then continued this investigation by

looking at a large class of exponentially decaying connection functions and proving

this result for dimensions greater than or equal to 2 along with a de-Poissonised

version of the result for any locally finite (point) set X ⊂ Rd. Denoting by K the

class of connected graphs, and Niso(G) the number of isolated nodes in the graph G,

then for a large number of nodes in the graph, the main result from these papers is

neatly summarised in Penrose’s paper as

P[G ∈ K] ≈ P[Niso(G) = 0] ≈ exp(−E[Niso(G)]).

However, as with the hard RGG, when discussing the 1-D soft RGG there is still

the disparity between the two models in understanding where the main barrier to

connectivity comes from since we are once again in a position where it is not obvious

that this obstruction will be isolated nodes. As before, this comes from the fact that

there is the potential for the graph to split into two large clusters. No work as of

yet has been done on investigating the connectivity of the 1-D model and any work

where this problem has been mentioned has either remarked on its difficulty, or has

not been satisfactory. Therefore, any results on the 1-D soft RGG given in this thesis

are novel and hence this model is the main focus of Chapters 3, 4, and 5.

2.1.4 A Brief Note on the Domain

Before continuing, it is important to make a quick note on the domain within which

we will be working in this thesis. With respect to the results within this thesis for

one-dimensional soft RGGs, we are generally interested in a line segment of length L,

i.e. [0, L] ∩R. However, the results given in Chapters 3 and 4 on isolated nodes will

instead look at a torus of length L, i.e. R/LZ (or a line segment of length L for which

the end points are identified). The use of the torus is to remove the issue of dealing

with the boundary conditions which add a large amount of technical complexity

without much insight, especially in the regime considered here in which L tends to
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infinity. In Chapter 5, we will instead once again consider the line segment [0, L].

The reason here being that when discussing uncrossed gaps, the existence of a single

uncrossed gap does not necessarily fragment the graph. To ensure that the network

is not fully connected requires two uncrossed gaps rather than one. Therefore it

makes sense to consider the line segment and analyse the event of the existence of

at least one uncrossed gap.

2.2 Probabilistic Tools

In addition to the construction of the graphs as described in the previous sections, we

must also introduce some tools to understand the mathematics involved in analysing

them. We begin by introducing the Markov and Chebyshev inequalities before mov-

ing on to the Chen-Stein method for Poisson approximation.

2.2.1 Concentration Inequalities

Two of the most widely concentration inequalities when analysing random variables

are the Markov and Chebyshev inequalities. Although they only give very weak

bounds on the behaviour of these random quantities, since they only depend on their

first two moments, they are able to give good insight in a relatively simple way.

Theorem 2.2.1 (Markov’s Inequality). Let X be a non-negative random variable

with finite mean E[X]. Then for all a > 0,

P(X ≥ a) ≤ E[X]

a
. (2.4)

In particular, if X is a non-negative integer valued random variable,

P(X = 0) ≥ 1− E[X]. (2.5)

Chebyshev’s inequality puts a bound on the probability that the random variable

X is far from its mean and is given by:

Theorem 2.2.2 (Chebyshev’s Inequality). Let Y be a random variable with finite

mean, E[Y ], and finite variance, Var(Y ). Then for all a > 0,

P (|Y − E[Y ]| ≥ a) ≤ Var(Y )

a2
. (2.6)
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In particular,

P(Y = 0) ≤ V ar(Y )

(E[Y ])2
. (2.7)

A corollary of Markov’s inequality is Chernoff’s inequality (also known as the

Bernstein inequality) which is given by:

Theorem 2.2.3 (Chernoff’s Inequality). For a non-negative random variable X and

any t > 0,

P
(
etX ≥ eta

)
≤ e−taE[etX ].

2.2.2 Poisson Approximations and the Chen-Stein method

When analysing RGGs, our aim is to understand the underlying behaviour of these

random objects. One way to do this is to try to work out whether their properties

can be approximated by a known probability distribution. As discussed above, one

approach is to see whether such a property can be approximated by a Poisson distri-

bution; for example the number of isolated nodes in the network. The most widely

used tool when making this approximation is the Chen-Stein method for Poisson

approximation (see e.g. [AGG+89; BHJ92]). These references give a very in depth

study of the method, but here we will simply aim to give the reader a brief overview

of the method to enable them to follow the work done in this thesis. This method

places a bound on the total variational distance, dTV, between a sum of (almost)

independent indicator functions and a Poisson random variable (or more formally

between their distributions). Therefore, since total variation is a distance metric

and hence non-negative, the general method is to find an upper bound on dTV and

show that this tends to 0 in some limit. This therefore proves that the distribution

of the sum of indicator functions converges in total variational distance to that of a

Poisson random variable. We also note that convergence in total variational distance

is stronger than weak convergence and hence implies convergence in distribution.

The total variational distance is a measure of the distance between two probability

distributions and is defined as:

Definition 2.2.1. (Total variational distance) Let B denote the set of all Borel

sets. For two integer valued probability distributions, P and Q, defined on the same

probability space,

dTV(P,Q) = sup
A∈B
|P (A)−Q(A)| ,
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i.e. the maximum possible difference that the two probability distributions can assign

to the same event.

We begin with a the graph G = (V,E), i.e. a graph with vertex set V , and edge set

E. For i ∈ V , denote by Ii a Bernoulli random variable with pi := E[Ii] = P(Ii = 1)

and pij = E[IiIj] = P(Ii = 1, Ij = 1). Let W =
∑

i∈V Ii and ζ = E[W ] ∈ (0,∞).

The indicator Ii defines whether the vertex i ∈ V has some particular property. For

example, within the context of this work, Ii = 1 may denote the fact that vertex i is

isolated. By this notation, W then denotes the total number of vertices within our

vertex set, V , which have this property. Continuing the previous example, W would

therefore denote the total number of vertices within V which are isolated, i.e. how

many isolated nodes are there in the graph G = (V,E).

For each i ∈ V , we define a neighbourhood of dependence, Bi, such that Ii is

(nearly) independent of all the Ij for j outside of Bi. Define

b1 :=
∑
i∈V

∑
j∈Bi

pipj,

b2 :=
∑
i∈V

∑
i 6=j∈Bi

pij,

b3 :=
∑
i∈V

E [|E [Ii|(Ij : j ∈ V \Bi)]− pi|] .

As described in [AGG+89], b1 measures the neighbourhood size, b2 measures the

expected number of neighbours of a given occurrence, and b3 measures the depen-

dence between an event and the number of occurrences of that event outside of its

neighbourhood. Denoting by Po(λ), a Poisson random variable of rate λ, we state

the main result of this section ([BHJ92, Th. 1.A], and [MA12, Th. 12]):

Theorem 2.2.4. For bi, i = 1, 2, 3 and W defined as above,

dTV (W,Po (E[W ])) ≤ min

(
1,

1

E[W ]

)
(b1 + b2 + b3).

A derivation of this result can be found in many books and papers (see e.g.

[Che75; BHJ92] or Chapter 2 of [Pen03]) but will be skipped in this thesis for the

sake of brevity. Theorem 2.2.4 therefore places a bound on the total variational

distance between the (distribution of the) sum of (almost) independent indicator

functions, W , and a Poisson random variable with mean E[W ] in terms of the bi as

defined above. Thus, to prove that W converges in total variational distance (and
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hence in distribution) to Po (E[W ]), one simply has to show that these bi terms tend

to zero in some limit. One of the main benefits of this method, is that it depends

only on the first two moments of W (unlike e.g. the method of moments approach).

When applying this method to RGGs, it is obvious to see that for a hard RGG,

if the size of the neighbourhood is set to be sufficiently larger than the connection

radius, then the b3 term is zero and this term can be ignored. However, when

analysing the soft RGG, this cut off does not exist and hence some care must be

taken in the calculation of this term. We will use this approach in Chapter 4 to

show that the number of isolated nodes in our 1-D soft RGG model (under certain

conditions) can be well approximated by a Poisson distribution.

2.3 Mobility Models: Random Waypoint

The two main applications of the work done in this thesis are to vehicular networks

and swarm robotics, two types of communication network in which mobility is a

key component. Although the mathematical analysis done here on VANETs looks

at a snapshot in time, the work done on swarms incorporates mobility into the

research. To allow for a baseline to test the efficacy of our algorithm against, we

used completely random motion by modelling the movements of the robots via the

Random Waypoint (RWP) mobility model.

2.3.1 Random Waypoint Model

In the RWP mobility model, each node chooses a destination uniformly at random

in some deployment region Q with each node’s choice being completely independent

of each other. The node then travels to this destination with constant velocity

v ∈ [vmin, vmax], where v is chosen Uniformly at random, and vmin > 0 and vmax <∞.

Once the node arrives at this location it remains static for a random pause time tp

chosen from [0, tp,max] with tp,max < ∞. Once an original distribution of the node

locations is defined, this model completely describes the movement of all of the users

in the network. Figure 2.3 shows an example of the first six movements of a single

node in a 2-dimensional state space.
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Figure 2.3: Example of node’s first six movements in a 2-dimensional RWP
mobility model.

One object of interest is the distribution of the node locations in space. This

will aid in the understanding of how the nodes will interact with each other and also

which areas will have higher densities of nodes. It was shown in [BRS03] that under

the assumption of no pause time (i.e. tp = 0) and no nodes that remain static forever,

whatever the starting deployment of the nodes (whether it be uniform or some other

distribution) the node locations become non-uniform over time. This behaviour can

be understood through the following:

• Nodes tend to cross the centre of Q with relatively high frequency.

• For a long running time, the stochastic distribution of the nodes converges to

an asymptotically stable distribution with the maximum node density in the

middle of Q.

In [BRS03], under the assumptions of no pause time and no permanently static

nodes, the asymptotically stable pdf of the location of a mobile node moving on a

line segment [0, a] and on the unit square [0, 1]2 were calculated. The 1-dimensional

case gives this pdf to be

fX(x) =

− 6
a3
x2 + 6

a2
x, for 0 < x < a,

0, otherwise.

The pdf’s for the 1- and 2-D cases are illustrated in Figure 2.4.
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Figure 2.4: The asymptotically stable pdf of the location of a mobile node moving
on (a) the unit line segment [0, 1], and (b) on the unit square [0, 1]2, under the
assumptions of no pause time and no permanently static nodes.

2.3.2 Markovian Random Waypoint Model

The RWP mobility model as a baseline for comparing against, however in the con-

text of swarm robotics, it is not a very realistic one due to the completely random

destination choice. One extension of this model is to allow for the destination choice

of the user to be weighted such that certain areas have a higher probability of be-

ing chosen. Such examples are the Markovian Random Waypoint model [HLV06] in

which the waypoints constitute a Markov process and given the current waypoint,

the next waypoint is chosen according to a conditional pdf. The application stated in

this work is to the creation of “typical routes” of the users in the network. Another

(almost identical) model, which the authors called the Weighted Random Waypoint

model, was studied in [HMS+05]. Here, the space was broken down into a discrete set

of potential locations and probabilities assigned to the movement between any two

pairs of locations which depended on both their geographical position as well as the

time at which the user arrived into a segment. Here the authors were comparing this

model with the RWP mobility model to see how this effected network performance

at a University campus. Both of these extensions allow for a more accurate model of

how users in a swarm network may move around an area: rather than choosing their

destinations at random, a decision would be made based upon where they currently

are and what their task is.
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Chapter 3

Soft Random Geometric Graphs:

Isolation

When studying connectivity in graphs, the natural first hurdle is to understand

isolated nodes i.e. nodes which have no edges to any other nodes in the network. If

a node in a communication network is isolated, then it is unable to send messages

to other users as well as being unable to receive them, thus leading to the network

not being fully connected. In higher dimensional versions of this model it has been

shown that, under certain constraints on the connection function, in the ultra-dense

limit isolated nodes are the only obstruction to having a fully connected network

[MA12; Pen16].

In this chapter, we begin by defining the model upon which our work is based,

namely the one-dimensional soft RGG. Simulations are then studied to give an under-

standing of the connectivity properties of this graph as well as introduce a conjecture

on what is causing the lack of full connectivity. This then leads to us deriving bounds

on the probability of isolated nodes occurring in the network and finding the scaling

regime in which isolated nodes occur with high probability.

The work in this chapter is based on the paper [WDG20] for which I was a co-

author. This paper was written in collaboration with Professor Carl Dettmann and

Dr. Ayalvadi Ganesh. All of the simulation work was conducted by myself using the

NetworkX [HSS08] package within Python along with some of my own code1. The

theoretical analysis was primarily conducted by myself with CD and AG contributing

ideas to this analysis along with checking calculations and suggesting proof methods.

1This code along with the data analysed can be found in my GitHub repository here
https://github.com/mw12747/1D Soft RGG.
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3.1 The Model

Node locations in RGGs are typically modelled by point processes [Hae12], and most

commonly by a Poisson point process, as defined in Chapter 2. In our model, the

nodes of the RGG are the points of a homogenous PPP, P , of intensity λ = 1 on an

interval [0, L], where L ∈ (0,∞). The edge between points x and y in P is present

with probability H(|x− y|), independent of the point configuration and of all other

edges, thus defining a soft RGG. Here, |x−y| denotes the Euclidean distance between

x and y, and H : R+ → [0, 1] is the connection function.

The model is parametrised by the scalar L and the function H(·). We impose mild

restrictions on H in Section 3.3 as well as in Chapters 4 and 5, but do not assume

a specific functional form. There is no loss of generality in assuming that λ = 1 as

this simply defines the unit of length. Consequently, λL is a dimensionless quantity

rather than having units of length. Another common scaling in the literature is to

set L = 1, while making λ a free parameter. These are equivalent up to a suitable

rescaling of H(·) [MA11b].

The choice of a Poisson process is made primarily for analytical tractability, but

is realistic for traffic in its free flow state [RPM04], and hence for VANETs. The

most widely used connection functions in the wireless communications literature are

of the form

H(r) = exp (−(r/rc)
η) , (3.1)

as was derived in Eqn. (2.2). As before, rc > 0 specifies the link range, while η > 0 is

related to the path loss exponent. The most common examples are the Waxman and

Rayleigh connection functions, which correspond to η = 1, and η = 2 respectively:

HWax(r) = e−(r/rc), HRay(r) = e−(r/rc)2 . (3.2)

The hard RGG is recovered in the limit of η tending to infinity. Figure 3.1 depicts

edge probabilities as a function of distance, for different connection functions from

this class. More general connection functions, many of which have the same general

shape, may be found in [DG16].

Our goal is to derive expressions for the probability that a soft RGG generated by

our model is fully connected. This appears intractable, so we restrict attention to two

specific modes of disconnection, namely isolated nodes and uncrossed gaps. These are

defined in the next section, and shown to account for most disconnections in exten-

sive simulations. But even for these events, exact expressions for their probabilities
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Figure 3.1: The probability that two nodes, a distance r apart, are connected for
different values of η as defined in Eqn. (3.1) with rc = 1.

cannot be obtained in closed form. Hence, we study an asymptotic regime where L

tends to infinity while the connection function is rescaled as HL(·) = H(·/RL); we

seek to identify a scaling regime RL, tending to infinity at a specified rate with L,

which is critical for the emergence of isolated nodes or uncrossed gaps.

It is known in two or more dimensions that, for natural analogues of our model,

the existence of isolated nodes exhibits a sharp change at a scaling of RL = lnL

(as discussed in Section 2.1.3). That is, for RL growing significantly faster than

lnL there are longer range connections and no isolated nodes with high probability,

whilst for RL growing significantly slower than lnL there are infinitely many isolated

nodes in the limit. We show in Section 3.3 that a similar change at a lnL scaling

is also observed in 1-D if the connection function is integrable. In Section 5.1, we

show, under the additional condition that the connection function is monotonically

decreasing and has unbounded support, that uncrossed gaps have a vanishingly small

probability of occurring in this scaling regime. This is true even for rapidly decay-

ing connection functions, and is in stark contrast to the hard RGG model, where

uncrossed gaps are at least as likely as isolated nodes.

3.2 Simulations

A soft RGG in one dimension may fail to be connected in many ways. We conjecture

that the two main obstructions to full connectivity are the presence of isolated nodes

or uncrossed gaps, defined below. In the following, V denotes a realisation of P , i.e.,

a point configuration comprising the node set of the graph.
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(b) Uncrossed Gap

(c) Split

Figure 3.2: Three different disconnection modes.

Definition 3.2.1 (Isolated Node).

A node x ∈ V is said to be isolated if there is no edge between the point x and any

point y ∈ V \ {x}.

Definition 3.2.2 (Uncrossed Gap).

An uncrossed gap is said to occur at x ∈ V if V ∩ (x, L] is non-empty and there are

no edges between V ∩ [0, x] and V ∩ (x, L].

Notice that in a hard RGG, if v ∈ V is isolated and u is the rightmost point of

V in [0, v) (if there is one), then there is an uncrossed gap at u, and another one

at v. Thus, a hard RGG may have uncrossed gaps without isolated nodes but not

conversely; it is disconnected exactly when there is an uncrossed gap. The situation

for soft RGGs is more complicated. It may be disconnected even if there are no

isolated nodes or uncrossed gaps, as illustrated in Figure 3.2c. Nevertheless, we

conjecture that isolated nodes and uncrossed gaps together account for most of the

probability of the graph being disconnected, converging to all of it in a suitable

limiting regime. While we have been unable to prove this, we present some evidence

below from simulations.

In order to gain an understanding of the causes of disconnection, simulations

were run for different system sizes and link ranges, for both Waxman and Rayleigh

connection functions. We denote by Piso the proportion of simulation runs (for a

fixed set of parameter values) in which the graph contained an isolated node, by Pucg

the proportion with an uncrossed gap and by Piso∪ucg the proportion with either.

Comparing these with Pdis, the proportion of simulation runs in which the network

fails to be fully connected, yields insights into the primary causes of disconnection.

The simulations were run for two different system sizes, L = 1 000 and L = 10 000;

since the Poisson process of node locations has unit intensity, L is the expected
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number of nodes. The link range rc is varied, and the proportions of simulations

exhibiting isolated nodes, uncrossed gaps or disconnection are plotted against the

mean node degree (i.e. the average number of edges per node) corresponding to

that value of rc. (We chose not to plot the results against rc as the meaning of this

parameter is somewhat opaque, whereas the mean node degree is intuitive.) The

findings are displayed in Figure 3.3 for Waxman and Rayleigh connection functions

as described in Eqn. (3.2). The plots are based on 5 000 simulations for each set of

parameter values. In both figures, we observe a fairly sharp transition between mean

degrees for which disconnection (and its individual causes) have probability close to

1 and those for which it has probability close to 0. For isolated nodes, this transition

occurs close to a mean degree of lnL, exactly as for Erdős-Rényi random graphs.

Figure 3.3a shows that in a system with 1 000 nodes on average and a Waxman

connection function, isolated nodes and uncrossed gaps are approximately equally

prevalent. But as the system size increases to 10 000 nodes on average, Figure 3.3b

shows that isolated nodes become dominant. We also see that Piso∪ucg is almost

exactly the same as Pdis, supporting our intuition that node isolation and uncrossed

gaps are the dominant modes of disconnection.

Figures 3.3c and 3.3d show that, for a Rayleigh connection function, the main

obstruction to full connectivity appears to be uncrossed gaps. As the hard RGG

is obtained in the limit as η tends to infinity, and uncrossed gaps are the cause of

disconnection in hard RGGs, it seems intuitive that they should dominate for large

enough values of η. This intuition is supported by the simulations. Nevertheless, it is

at odds with the analysis presented in Section 5.1, which shows that isolated nodes

dominate asymptotically whenever the connection function, H(r), has unbounded

support, i.e. it has infinite range. It appears then that the asymptotics don’t kick in

even at the large system sizes simulated. This includes simulations not shown in this

thesis looking at networks with up to 100 000 nodes. This discrepancy is discussed

in further detail in Chapter 5 with some more detailed calculations given in Section

5.3 with a more detailed discussion about finite system sizes, especially with respect

to communication networks, being given in Section 7.1.2. Very large system sizes

appear to be necessary to see this behaviour and hence it remains an open question

to resolve this apparent discrepancy. Once again, comparing Piso∪ucg with Pdis shows

that the main contribution to disconnection comes from isolated nodes and uncrossed

gaps. This thesis will therefore focus on a theoretical analysis of these two events.
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Figure 3.3: The proportion of simulations in which the network is disconnected
(Pdis), compared with the proportion of simulations suffering from isolated nodes
(Piso), uncrossed gaps (Pucg), or either of the two (Piso∪ucg). Each plot is based on
5 000 simulations of a soft RGG whose nodes are generated according to a unit rate
PPP on a line segment of length L = 1 000 or L = 10 000, and whose edges are
created according to a Waxman or Rayleigh connection function (Eqn. (3.2)).
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3.3 Scaling Regimes

In this section, we derive bounds on the probability that there are isolated nodes,

namely, nodes which have no edge to any other node. We then explore an asymptotic

regime in which L, the expected number of nodes in the system, tends to infinity,

while the range of the connection function grows as a function of L. We seek to

identify a scaling regime for the connection function at which a sharp threshold for

the existence of isolated nodes can be discerned.

In order to eliminate boundary effects and simplify calculations, we modify our

model slightly by identifying the endpoints of the line segment [0, L], thereby en-

forcing periodic boundary conditions (PBCs). This is equivalent to modifying the

line segment to be a one-dimensional torus (or a circle). The effect of this modifica-

tion on the number of isolated nodes is negligible, as it only affects nodes close to

the boundary. We do not formalise this assertion here as this would add significant

complexity but without much insight.

Denote by ρ(x, y) the circular (or toroidal) distance between x and y, and by

ρ∞(x, y) = |x− y| the Euclidean distance between them. Define

h = H ◦ ρ,

where ◦ denotes composition of functions; h(x, y) is the probability that two points

at locations x and y on the line segment with PBCs are connected. Note that h(x, y)

is symmetric, and invariant to translations on this line segment, i.e. h(x, y) = h(y, x)

and h(x, y) = h(x− t, y− t) for some translation t. Denote by Px the Palm measure

conditional on the Poisson process having a point at x, i.e., Px(E) is the probability

of an event E conditional on there being a node at x. The Palm measures conditional

on any finite set of points are denoted analogously. We write Ex,Ex,y etc. for the

corresponding expectations. We make the following assumption about the connection

function throughout this section.

Assumption A: The function H : R+ 7→ [0, 1] is integrable, i.e.,

‖H‖1 =

∫ ∞
0

H(x)dx <∞.

We now derive expressions for the expectation and variance of the number of

isolated nodes. We will use these, along with Markov’s and Chebyshev’s inequalities,

to obtain probability bounds on the existence of isolated nodes. (See Sec 2.2.1 for
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more on this topic).

We start with the expected number of isolated nodes. Let χ(x) denote the indi-

cator that there is a point of the Poisson process at x and that it is isolated. Now,

conditional on there being a point at x, the remaining points constitute a unit rate

Poisson process on [0, L] by Slivnyak’s theorem (Theorem 2.1.3). Consequently, the

set of neighbours of x (the points to which an edge is present) constitute an inho-

mogenous Poisson process, with intensity measure H(ρ(x, ·)) = h(x, ·). The event

that the point at x is isolated is the event that this Poisson process is empty. Recall

(Defn. 2.1.7) that for a Poisson process Xν with intensity ν(·) on [0, L], the proba-

bility that this process is empty is given by P(Xν = ∅) = e−
∫ L
0 ν(x)dx. The probability

that the node at x is isolated is the expectation of the indicator of this event:

Ex[χ(x)] = Px(χ(x) = 1)

= e−
∫ L
0 h(x,y)dy = e−

∫ L
0 h(0,y)dy,

(3.3)

which does not depend on x, as expected by the symmetry in the model.

Let Niso denote the number of isolated nodes. By integrating Eqn. (3.3) over

x ∈ [0, L] with respect to the intensity of the Poisson process, which was assumed to

be unity, we get

E[Niso] =

∫ L

0

Ex(χ(x))dx = Le−2
∫ L/2
0 H(y)dy, (3.4)

where the last equality holds because we are working with toroidal distance. As L

tends to infinity, the exponent tends to −2‖H‖1, which is a finite constant. Hence,

E[Niso] scales linearly in L. This leads us to ask if the random variable Niso does so

as well, i.e., if it behaves as an extensive quantity, in the language of thermodynam-

ics. The answer depends on whether correlations decay quickly enough, and can be

addressed by calculating the variance of Niso.

As a first step towards computing the variance, we condition on there being points

at x and y; by Slivnyak’s theorem again, the Palm measure Px,y corresponds to a

unit rate Poisson process on [0, L] \ {x, y}. For any finite A ⊂ R and any y ∈ R with

y /∈ A we denote

φh(y,A) = 1−
∏
x∈A

(1− h(x, y))

= P(y is non-isolated in A)

(3.5)

The set of points that are neighbours of either x or y constitute an inhomogenous
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Poisson process of intensity φh(·, {x, y}). The event that the points at both x and y

are isolated is the event that this point process is empty, and that there is no edge

between x and y. Hence,

Ex,y[χ(x)χ(y)] = (1− h(x, y))e−
∫ L
0 φh(z,{x,y})dz

≤ e−
∫ L
0 φh(z,{x,y})dz,

(3.6)

since 0 ≤ h(x, y) ≤ 1. Using that the expected number of ordered pairs of distinct

isolated nodes is found by integrating Eqn. (3.6) with respect to x and y weighted

by the joint density of the node pairs (equal to unity here), along with translation

invariance,

E[Niso(Niso − 1)] =

∫ L

0

∫ L

0

Ex,y[χ(x), χ(y)]dxdy

= L

∫ L

0

E0,x[χ(0)χ(x)]dx

≤ L

∫ L

0

e−
∫ L
0 φh(z,{0,x})dzdx.

(3.7)

Recall that the squared coefficient of variation of a random variable, denoted c2
V ,

is defined as the ratio of its variance to its squared mean. Hence, we obtain from

Eqns. (3.3), (3.4), (3.6), (3.7) that

c2
V (Niso)− 1

E[Niso]
=

1

L

∫ L

0

E0,x[χ(0)χ(x)]

E0[χ(0)]2
dx− 1

≤ 1

L

∫ L

0

(
e−

∫ L
0 φh(z,{x,y})dz

e−2
∫ L
0 h(0,z)dz

− 1

)
dx.

(3.8)

Since this holds for any y, we set y to be 0 for arithmetic ease. Expanding out

φh(z, {x, 0}), Eqn. (3.8) becomes

c2
V (Niso)− 1

E[Niso]
=

1

L

∫ L

0

(
e−

∫ L
0 [h(0,z))+h(x,z)−h(0,z)h(x,z)]dz

e−2
∫ L
0 h(0,z)dz

− 1

)
dx.

Finally, due to the periodic boundary conditions,
∫ L

0
h(x, z)dz =

∫ L
0
h(0, z)dz and
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we finally arrive at

c2
V (Niso)− 1

E[Niso]
=

1

L

∫ L

0

(
e−2

∫ L
0 h(0,z)+

∫ L
0 h(0,z)h(x,z)dz

e−2
∫ L
0 h(0,z)dz

− 1

)
dx

=
1

L

∫ L

0

(
e
∫ L
0 h(0,z)h(x,z)dz − 1

)
dx.

(3.9)

Since h is bounded above by 1, we have∫ L

0

h(0, z)h(x, z)dz ≤
∫ L

0

h(0, z)dz

≤ 2

∫ ∞
0

H(z)dz <∞.

In other words, the above integral is bounded, uniformly in x. Hence, there is a finite

constant C, which does not depend on x or L, such that

e
∫ L
0 h(0,z)h(x,z)dz ≤ 1 + C

∫ L

0

h(0, z)h(x, z)dz.

It follows that

1

L

∫ L

0

(
e
∫ L
0 h(0,z)h(x,z)dz − 1

)
dx ≤ 1

L

∫ L

0

(
C

∫ L

0

h(0, z)h(x, z)dz

)
dx

=
C

L

∫ L

0

h(0, z)

(∫ L

0

h(x, z)dx

)
dz

=
4C

L

∫ L/2

0

H(z)dz

∫ L/2

0

H(y)dy

≤ 4C

L
‖H‖2

1.

The interchange of the order of integration in the third line is justified by Tonelli’s

theorem. Substituting the above in Eqn. (3.9), we obtain that

c2
V (Niso) ≤ 1

E[Niso]
+

4C

L
‖H‖2

1. (3.10)

We already noted that E[Niso] scales linearly in L. Therefore, the right hand side

above tends to zero as L tends to infinity. Now, by Chebyshev’s inequality (Theorem
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2.2.2), we have for any ε > 0 that

P (|Niso − E[Niso]| > εE[Niso]) ≤ c2
V (Niso)

ε2
,

which tends to zero as L tends to infinity. Thus, Niso concentrates around its expected

value, and scales linearly with L, making it an extensive quantity. Therefore, as we

let L tend to infinity there will asymptotically almost surely be an isolated node in

the graph.

We now turn to the question of identifying a scaling regime where the probability

of seeing isolated nodes in the graph exhibits a sharp transition.

3.3.1 Scaled Connection Function

Consider a family of 1-D soft RGGs as above, indexed by L, and with scaled connec-

tion functions HL(z) = H(z/RL), where RL is an increasing function of L. For now,

the only assumption we make is that RL tends to infinity and RL/L tends to zero as

L tends to infinity. Let hL = HL ◦ ρ. We shall study these graphs in the asymptotic

regime L→∞.

We begin by rewriting Eqn. (3.4) as

E[Niso] = L exp

(
−2

∫ L/2

0

HL(y)dy

)

= L exp

(
−2

∫ L/2

0

H(y/RL)dy

)

Making the change of variables u = y/RL, we get

E[Niso] = L exp

(
−2RL

∫ L/2RL

0

H(u)du

)
. (3.11)

Since RL/L was assumed to tend to zero,
∫ L/2RL

0
H(u)du tends to ‖H‖1 as L tends

to infinity, and we get

lim
L→∞

E[Niso] = lim
L→∞

Le−2RL‖H‖1 ,

provided the limit on the right exists.

We see from the above expression that the scaling required is RL growing loga-
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rithmically in L. Indeed, taking RL = γ lnL, we get

E[Niso]
L→∞−−−→


0, if 2γ‖H‖1 > 1,

1, if 2γ‖H‖1 = 1,

∞, if 2γ‖H‖1 < 1.

(3.12)

Thus, the mean number of isolated nodes exhibits a sharp transition at γ = 1/2‖H‖1.

We wish to show that the random variable denoting the number of isolated nodes

does so as well.

It is immediate from Markov’s inequality (Theorem 2.2.1), which states that

P(X ≥ 1) ≤ E[X] for any non-negative random variable X, that

P(Niso ≥ 1)
L→∞−−−→ 0 if 2γ‖H‖1 > 1. (3.13)

In words, such a choice of γ ensures that large networks have a vanishingly small

chance of containing isolated nodes.

To investigate the behaviour for γ smaller than this threshold, we must return to

the coefficient of variation. We can rewrite Eqn. (3.9) as

c2
V (Niso)− 1

E[Niso]
≤ 1

L

∫ L

0

(
e
∫ L
0 hL(0,z)hL(x,z)dz − 1

)
dx. (3.14)

Defining

gL(x) =

∫ L

0

hL(0, z)hL(x, z)dz,

we have ∫ L

0

gL(x)dx =

∫ L

0

∫ L

0

hL(0, z)hL(x, z)dzdx

=

∫ L

0

hL(0, z)

(∫ L

0

hL(x, z)dx

)
dz

=

(∫ L

0

hL(0, y)dy

)2

=

(
2

∫ L/2

0

H

(
y

RL

)
dy

)2

=

(
2RL

∫ L/2RL

0

H(y)dy

)2

≤ 4R2
L‖H‖2

1.

(3.15)
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The interchange of the order of integration in the second line is justified by Tonelli’s

theorem. For α > 0, define the set Ψα = {x ∈ [0, L) : gL(x) > α}. Since gL is

non-negative, it follows from Eqn. (3.15) that the Lebesgue measure of the set Ψα,

denoted m(Ψα), is bounded as follows:

m(Ψα) ≤ 4R2
L‖H‖2

1

α
. (3.16)

Now, if x is not in Ψα, then gL(x) ≤ α, and so there is a constant Cα > 0 such that

eg
L(x) ≤ 1 + Cαg

L(x). Hence,∫
Ψcα

(
eg
L(x) − 1

)
dx ≤ Cα

∫
Ψcα

gL(x)dx

≤ 4CαR
2
L‖H‖2

1,

(3.17)

where Ψc
α denotes the complement of Ψα in [0, L]. We have used Eqn. (3.15) and the

non-negativity of gL to obtain the last inequality.

Integrating eg
L(x) − 1 over Ψα, we have∫

Ψα

(
eg
L(x) − 1

)
dx =

∫
Ψα

(
exp
(∫ L

0

hL(0, z)hL(x, z)
)
− 1
)
dx

≤
∫

Ψα

(
exp
(∫ L

0

hL(0, z)
)
− 1
)
dx

=

∫
Ψα

(
exp
(

2RL

∫ L/2RL

0

H(z)dz
)
− 1
)
dx

≤ m(Ψα)
(
e2RL‖H1‖ − 1

)
≤ 4R2

L‖H‖2
1

α

(
e2RL‖H1‖ − 1

)
.

(3.18)

We have used the fact that hL(·, ·) ≤ 1 to obtain the inequality on the third line, and

Eqn. (3.16) to obtain the last inequality. Now, substituting Eqns. (3.17) and (3.18)

into eqn. (3.14), and noting that Ψα ∪Ψc
α = [0, L], we get

c2
V (Niso) ≤ 1

E[Niso]
+

4CαR
2
L‖H‖2

1

L
+

4R2
L‖H‖2

1

αL

(
e2RL‖H1‖ − 1

)
.

Thus, for the scaling RL = γ lnL, we have

c2
V (Niso) ≤ 1

E[Niso]
+

4Cαγ
2‖H‖2

1 ln2 L

L
+

4γ2‖H‖2
1 ln2 L

αL

(
e2γ‖H1‖ lnL − 1

)
.
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Suppose 2γ‖H‖1 < 1. Then, as L tends to infinity, E[Niso] tends to infinity by

Eqn. (3.12), while the second and third terms in the sum on the RHS tend to zero.

Hence,

c2
V (Niso)

L→∞−−−→ 0, if 2γ‖H‖1 < 1. (3.19)

But, by Chebyshev’s inequality,

P(Niso = 0) ≤ P(|Niso − ENiso| ≥ ENiso) ≤ c2
V (Niso),

and so, it tends to zero as L tends to infinity, for γ < 1/2‖H‖1. Combining this with

the result established in Eqn. (3.13), we conclude that

P(Niso = 0)
L→∞−−−→

0, if 2γ‖H‖1 < 1,

1, if 2γ‖H‖1 > 1.
(3.20)

Remarks.

1. The mean degree of the nodes, given by
∫ L

0
hL(0, z)dz, is asymptotic to 2γ‖H‖1 lnL,

while the mean number of nodes in the interval [0, L] is equal to L. Thus, the

theorem states that there is a sharp threshold for the existence of isolated nodes

when the mean degree is equal to the natural logarithm of the mean number of

nodes. This is shown in Figures 4.1(a) and (b) by the dashed vertical line. This

threshold is exactly the same as for the hard RGG (see, e.g, [AR02; HM06]).

2. As was stated above, a superficially different scaling is seen in the densification

regime. Here, the line segment remains fixed as [0, 1], whilst the intensity λ

of the PPP increases to infinity, and the scaling parameter R(λ) decreases to

zero. The results given here can be translated to this regime using a suitable

rescaling of H(.). See [MA11b] for a more detailed discussion.

3. The threshold for the emergence of isolated nodes is insensitive to the connec-

tion function H and depends only on its integral, which is the expected number

of connections. This is demonstrated in Figures 4.1(a) and (b) by the fact that

the simulations for both the Waxman and Rayleigh connection functions over-

lap with each other. This lack of sensitivity is also seen in the threshold for

soft RGGs in two dimensions which depends only on the integral of H as was

shown in [MA11b].
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3.4 Concluding Remarks

In this chapter, we presented empirical evidence from simulations that the main

modes of disconnection of our graphs are the presence of isolated nodes, and the

presence of uncrossed gaps which partition the network into two or more disjoint

clusters. Motivated by this evidence, in the next two chapters we provided a rigor-

ous mathematical analysis of the probabilities of isolated nodes or uncrossed gaps

being present, in a suitable asymptotic scaling regime. Our random graph model is

restricted to point sets generated according to a homogeneous Poisson process, but

allows for very general connection functions with the only assumption being that the

connection function is integrable.

The analysis in this chapter showed that the probability of the occurrence of

isolated nodes shows an abrupt transition from nearly 1 to nearly 0 as the mean

node degree increases. The transition is insensitive to the connection function, and

occurs when the mean node degree is close to the natural logarithm of the mean

number of nodes.

The threshold phenomenon arises in the limit of large system sizes (with the

connection function scaling suitably). It does not provide explicit probabilities for

the occurrence of isolated nodes in finite-sized networks. Moreover, the bounds

provided by Markov’s and Chebyshev’s inequalities are rather weak. Finally, the

limit result does not say what happens at γ = 1/2‖H‖1.

The behaviour at this critical value of γ will be the focus of the following chapter.
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Chapter 4

Soft Random Geometric Graphs:

Poisson Approximation

A naturally occurring phenomenon in random graphs is that the number of isolated

nodes can be well approximated by a Poisson distribution [ER60; Pen97; Pen16].

Since this appears in almost all random graph models, and especially since it has

been shown to be true in the higher dimensional analogues of our model, there is no

reason to believe that this will not also be the case in the 1-D model.

In [Pen16], it was shown for soft RGGs in two or more dimensions with an under-

lying vertex set generated from a PPP, and for a large class of connection functions,

that the number of isolated nodes can be well approximated by a Poisson random

variable. In particular, it was proven that the probability that there are no isolated

nodes is well approximated by e−λ, where λ is the mean of this Poisson distribution.

Evidence in support of this phenomenon also being true in our model is presented in

Figure 4.1, where we have compared the proportion of simulations with no isolated

nodes with this Poisson approximation for systems with L = 1 000 and L = 10 000.

The proportion of 5 000 simulations in which at least one isolated node was present

is plotted against the mean node degree, for both the Waxman (blue circles) and

Rayleigh (red circles) connection functions. The plots demonstrate that the proba-

bility of isolated nodes appearing in the network is insensitive to whether the con-

nection function is Waxman or Rayleigh, and depends only on the mean degree.

(This can be seen by the fact that the simulations for both connection functions

overlap with each other in the figures.) The plots also show that the probability of

occurrence of isolated nodes rises sharply as the mean degree falls below lnL, and

that the transition becomes sharper as the system size grows. Finally, the solid black
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Figure 4.1: Probability of isolated nodes being present: comparison of simulations
(circles) with Poisson approximation (black solid line). Each circle is a proportion
from 5 000 simulation runs.

line in the plots depicts the function 1− exp
(
−Le−k̄

)
, where k̄ is the mean degree.

This function is the Poisson approximation for the probability of at least one isolated

node being present. The plots show that the Poisson approximation is very close to

the observed prevalence of isolated nodes in the simulations. This simulation based

evidence therefore gives us reason to believe that the number of isolated nodes in

our model can be well approximated by a Poisson distribution.

This chapter presents a more formal statement of the theorem of a Poisson ap-

proximation which is followed by a proof based on the Chen-Stein method for Poisson

approximation. The work in this chapter is as yet unpublished. Most of the theoret-

ical analysis was conducted by myself with CD and AG aiding in the proof methods

and finalising the technical details of the calculations.

4.1 The Model

As before, we will concentrate on the unit rate (λ = 1) homogeneous Poisson point

process on an interval [0, L] for L ∈ (0,∞). We denote by PL the points of this PPP

which lie within the line segment [0, L] which defines our underlying vertex set. An

edge between two nodes x and y ∈ PL is present with probability

HL(|x− y|) = H

(
|x− y|
RL

)
,
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where RL = ln(τL)/2‖H‖1 for some positive constant τ , and ‖H‖1 =
∫∞

0
H(z)dz.

We denote by GHL(PL) the graph with vertex set PL and edges created according to

the connection function HL. To avoid triviality of the problem, we assume that H(·)
is not identically 0 everywhere and hence ‖H‖1 > 0. We define the set of connection

functions H such that for any H ∈ H:

Condition A: The function H : R+ → [0, 1] is strictly monotonically decreasing

and continuous, i.e.,

H(x) > H(y) for all x < y,

and in particular, for any constant δ > 0 there exists some ε > 0 such that

H(δ) ≤ 1− ε.

Condition B: The function H : R+ → [0, 1] has unbounded support, i.e.,∫ ∞
r

H(x)dx > 0 for all r ≥ 0.

Condition C: The function H : R+ → [0, 1] is integrable, i.e.,

‖H‖1 =

∫ ∞
0

H(z)dz <∞.

We now define the toroidal line segment; this alleviates the difficulties in analysing

the boundary effects which add significant complexity without much insight. We de-

note by ρ(x, y) the circular (or toroidal) distance between x and y, and by ρ∞(x, y) =

|x − y| the Euclidean distance between them. A point x in the torus can connect

to y either directly or via the identification of the end points. This means that

ρ(x, y) = min(ρ∞(x, y), L− ρ∞(x, y)). Define

h = H ◦ ρ,

and

hL = HL ◦ ρ,

where ◦ denotes composition of functions; h(x, y) is the probability that two points

at locations x and y on the torus are connected. Note that h(x, y) is symmetric, and

invariant to translations on this line segment, i.e. h(x, y) = h(y, x) and h(x, y) =

h(x− t, y − t) for some translation t. We are now able to state the main theorem of
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this chapter.

Theorem 4.1.1. Fix τ ∈ R+ and consider the soft RGG GhL(PL), where RL =

ln(τL)/2‖H‖1. Let Niso denote the number of isolated nodes in GhL(PL), whose

dependence on L is implicit but omitted for notational simplicity. Then, in the limit

as L tends to infinity, the quantity Niso converges in total variational distance to a

Poisson random variable with mean 1/τ . In particular, P(Niso = 0) tends to e−1/τ .

4.2 Proof of Theorem 4.1.1

We begin this section by introducing a truncated version of the connection function.

We claim that in the limit as L tends to infinity, the total variational distance between

the number of isolated nodes in the original graph, and the number of isolated nodes

in the truncated version tends to 0. We write the total variational distance between

two random variables X and Y (or more formally between their distributions) as

dTV (X, Y ).

Lemma 4.2.1. Truncate hL by setting h̃L = hL(x, y)1{ρ(x, y) ≤ R
1+1/α
L }. Denote

by Niso the number of isolated nodes in GhL(PL), and by Ñiso the number of isolated

nodes in Gh̃L(PL). Then,

lim
L→∞

dTV (Niso, Ñiso) = 0.

Proof. We are able to naturally couple GhL(PL) and Gh̃L(PL) by firstly generating

GhL(PL), and then removing any edges of Euclidean length at least R
1+1/α
L . Denoting

by Ñiso the number of isolated nodes in Gh̃L(PL), we observe that Ñiso ≥ Niso since

we are only removing edges. Therefore, it is immediate from Markov’s inequality,

which states that for any non-negative random variable X, P(X ≥ 1) ≤ E[X], that

P(|Niso − Ñiso| ≥ 1) ≤ E[|Niso − Ñiso|] = E[Ñiso]− E[Niso]. (4.1)

From Eqn. (3.4), we can calculate the asymptotic expectation of Niso as

E[Niso] = L exp

(
−2RL

∫ L/2RL

0

H(r)dr

)

= L exp

(
− ln(τL)

‖H‖1

∫ L/2RL

0

H(r)dr

)
L→∞−−−→ 1

τ
.

(4.2)
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And that of Ñiso as

E[Ñiso] = L exp

(
−2RL

∫ L/2RL

0

H̃(r)dr

)

= L exp

(
− ln(τL)

‖H‖1

∫ R
1+1/α
L

0

H(r)dr

)
L→∞−−−→ 1

τ
.

(4.3)

The total variational distance between two random variables is defined as the

maximal possible difference that the two probability distributions can assign to the

same event. Therefore, to complete the proof, we combine, Eqns. (4.1) - (4.3) to see

P(|Niso − Ñiso| ≥ 1)
L→∞−−−→ 0.

We will henceforth only be working with the truncated connection function, h̃. To

prove Theorem 4.1.1 we will use the Chen-Stein method of Poisson approximation

[AGG+89; BHJ92; MA12; Pen16]. We discretise the torus into mL segments of

width 1/m and denote the ith segment by Ai. We denote by Γ = {1, 2, ...,mL} the

complete set of index values that i can take. Let PL denote the points of a unit rate

Poisson point process which fall within the line segment [0, L], and let I denote the

set of isolated nodes in the (truncated) graph Gh̃L(PL). We define

Ji := 1 {PL(Ai) = 1} ,

Ii := 1 {PL(Ai) = 1 and this point is in I} ,

for i ∈ Γ. We denote the centre of the segment Ai by xi. (Although Ai, Ii, Ji, and

xi all implicitly depend on m, this dependence is omitted for notational simplicity.)

We will make use of the following asymptotic notation:

f(x) ∼x g(x) if lim
x→∞

f(x)

g(x)
= 1.

For any finite A ⊂ R and any y ∈ R with y /∈ A we denote

φh̃(y,A) = 1−
∏
x∈A

(
1− h̃(x, y)

)
= P(y is non-isolated in A)

(4.4)
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Lemma 4.2.2. For fixed x, y ∈ [0, L], we denote by Ai and Aj, respectively, the

segments in which they live. The probability that exactly one node exists within Ai

satisfies

P(Ji = 1) ∼m
1

m
. (4.5)

The probability that exactly one isolated node exists within Ai satisfies

P(Ii = 1) ∼m
1

m
exp

(
−2

∫ L/2

0

H̃L(z)dz

)
. (4.6)

The probability that exactly one isolated node exists within both Ai and Aj satisfies

P(IiIj = 1) ∼m
1

m2
(1− h̃L(x, y)) exp

(
−
∫ L

0

φh̃L(z, {x, y})dz
)
. (4.7)

The proof of Lemma 4.2.2 is given in Section 4.3. For a set of indicator random

variables Ii, i ∈ Γ, we define

pi := E[Ii], pij := E[IiIj],

Wm,L :=
∑
i∈Γ

Ii.

For each i ∈ Γ, we choose Bi ⊂ Γ such that Ii is (nearly) independent of all Ij for

j /∈ Bi. We think of Bi as being a “ball of dependence” for i [AGG+89]. Let xi

denote the centre of the segment Ai, then for α > 0 we define

Bi =
{
j ∈ Γ : ρ(xi, xj) ≤ 3R

1+1/α
L

}
,

and,

b1 :=
∑
i∈Γ

∑
j∈Bi

pipj, b2 :=
∑
i∈Γ

∑
j∈Bi\{i}

pij, b3 :=
∑
i∈Γ

E [|E [Ii|(Ij : j ∈ Γ\Bi)]− pi|] .

As described in [AGG+89], b1 measures the neighbourhood size, b2 measures the ex-

pected number of neighbours of a given occurrence, and b3 measures the dependence

between an event and the number of occurrences outside of its neighbourhood.

Lemma 4.2.3. For h continuous and denoting by S
(
x,R

1+1/α
L

)
the line segment of
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width 2R
1+1/α
L and centred at x, define the integral K by

K := 2

∫ L

0

∫
S
(
x,R

1+1/α
L

) exp

(
−
∫ L

0

φh̃L(z, {x, y})dz
)
dydx.

Then,

dTV

(
Ñiso, Po

(
E[Ñiso]

))
≤ min

(
1, 1/E[Ñiso]

)
K.

Proof. From [BHJ92, Th. 1.A], and [MA12, Th. 12]) we have the following bound

on the total variational distance between a sum of indicator functions and a Poisson

random variable,

dTV (Wm,L, Po (E[Wm,L])) ≤ min

(
1,

1

E[Wm,L]

)
(b1 + b2 + b3), (4.8)

where Po(E[Wm,L]) denotes a Poisson random variable with mean E[Wm,L]. The b3

term is describing the dependence between the event that a node at location xi is

isolated and the event that a node outside of the ball of dependence around xi is

isolated. By the definition of Wm,L there are no edges of length greater than R
1+1/α
L .

Therefore, in the limit as m → ∞ there is no dependence between the event that a

node in segment Ai is isolated and the event that a node outside of Bi is isolated

and hence limm→∞ b3 = 0.

Following from Eqns. 4.6 and 4.7,

b2 :=
∑
i∈Γ

∑
i 6=j∈Bi

pij =
∑
i∈Γ

∑
i 6=j∈Bi

P(JiJj = 1)P(IiIj = 1|JiJj = 1)

∼m
1

m2

∑
i∈Γ

∑
i 6=j∈Bi

P(IiIj = 1|JiJj = 1)

∼m
∫ L

0

∫
S
(
x,R

1+1/α
L

)
(

1− h̃L(x, y)
)
e−

∫ L
0 (φh̃L (z,{x,y})dzdydx.

Therefore,

K2 := lim
m→∞

b2 =

∫ L

0

∫
S
(
x,R

1+1/α
L

)
(

1− h̃L(x, y)
)
e−

∫ L
0 (φh̃L (z,{x,y})dzdydx

≤
∫ L

0

∫
S
(
x,R

1+1/α
L

) e− ∫ L0 (φh̃L (z,{x,y})dzdydx =: K/2.

(4.9)
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In a similar vein, we can derive

K1 := lim
m→∞

b1 =

∫ L

0

∫
S
(
x,3R

1+1/α
L

) exp

(
−
∫ L

0

h̃L(x, z)dz −
∫ L

0

h̃L(y, z)dz

)
dydx.

(4.10)

By the union bound,

φh̃L(z, {x, y}) ≤ h̃L(x, z) + h̃L(y, z), (4.11)

and hence K1 ≤ K2 ≤ K. Recalling Eqn. 4.6, and noting that since we are working

on the torus, the indicator Ii does not depend on the subscript i,

lim
m→∞

E[Wm,L] = lim
m→∞

∑
i∈Γ

1

m
E[Ii] = L lim

m→∞
E[Ii]

= L exp

(
−2

∫ L/2

0

H̃L(z)dz

)
= E[Ñiso],

(4.12)

where the final equality comes from Eqn. (4.3). Thus combining Eqns. (4.8)-(4.12)

and the fact that limm→∞ b3 = 0,

lim
m→∞

min

(
1,

1

E[Wm,L]

)
(b1 + b2 + b3) = min

(
1,

1

E[Ñiso]

)
(K1 +K2)

≤ min

(
1,

1

E[Ñiso]

)
K.

(4.13)

Wm,L counts the number of segments for which there is exactly one node of PL
and this node is isolated. Therefore, there is no way for Wm,L to over count the

number of isolated nodes in Gh̃L(PL), it can only under count, hence Ñiso ≥ Wm,L.

Combining Eqns. (4.3) and (4.12) with Markov’s inequality once again,

lim
m→∞

P(|Ñiso −Wm,L| ≥ 1) ≤ lim
m→∞

E[Ñiso]− E[Wm,L] = 0.

Thus,

lim
m→∞

dTV (Niso,Wm,L) = 0. (4.14)

Noting that total variational distance adheres to the triangle inequality, we see that
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for all m,

dTV

(
Ñiso, Po

(
E[Ñiso]

))
≤ dTV

(
Ñiso,Wm,L

)
+ dTV

(
Wm,L, Po

(
E[Ñiso]

))
.

Since this holds for all m, we can look at the right hand side of this inequality in

the limit as m tends to infinity, which, combining Eqns. (4.8), (4.13), and (4.14), is

bounded above by min
(

1, 1/E[Ñiso]
)
K. Therefore,

dTV

(
Ñiso, Po

(
E[Ñiso]

))
≤ min

(
1,

1

E[Ñiso]

)
K.

Lemma 4.2.4. Under the assumption that h̃ is monotonically decreasing, there exists

an ω > 0 such that for all x ∈
[
0, 3R

1+1/α
L

]
and for L sufficiently large,

∫ L

0

h̃L(x, z)(1− h̃L(0, z))dz ≥ ωRL. (4.15)

Proof. Since the connection function, h̃, is monotonically decreasing and continuous

up to the cut off point of R
1+1/α
L , for any constant δ > 0 there exists an ε > 0 such

that for L sufficiently large, h̃(0, δ) ≤ 1− ε, and hence

h̃L(0, δRL) ≤ 1− ε. (4.16)

For L sufficiently large, there also exists a constant c ∈
(
δ, R

1+1/α
L

)
such that

H̃(c) > 0.

Since h̃L(x, z)− h̃L(0, z)h̃L(x, z) ≥ 0,∫ L

0

(
h̃L(x, z)− h̃L(0, z)h̃L(x, z)

)
dz ≥

∫ L/2

δRL

h̃L(x, z)
(

1− h̃L(0, z)
)
dz

≥ ε

∫ L/2

δRL

h̃L(x, z)dz

= ε

∫ L/2

δRL

H̃

(
|z − x|
RL

)
dz,

(4.17)

where the second inequality follows from Eqn. (4.16). For x ∈ [0, δRL], we note that
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z ≥ x and make the substitution s = z−x
RL

in Eqn. (4.17),

ε

∫ L/2

δRL

H̃

(
z − x
RL

)
dz = εRL

∫ L
2RL
− x
RL

δ− x
RL

H̃ (s) ds. (4.18)

For L sufficiently large, L/2RL − δ ≥ R
1+1/α
L > c, hence

εRL

∫ L
2RL
− x
RL

δ− x
RL

H̃ (s) ds ≥ εRL

∫ c

δ

H̃(s)ds ≥ ω1RL, (4.19)

where ω1 = ε(c− δ)H̃(c) > 0.

For x ∈ [δRL, 3R
1+1/α
L ],

ε

∫ L/2

δRL

H̃

(
|z − x|
RL

)
dz = ε

∫ x

δRL

H̃

(
x− z
RL

)
dz + ε

∫ L/2

x

H̃

(
z − x
RL

)
dz

≥ ε

∫ L/2

x

H̃

(
z − x
RL

)
dz.

(4.20)

As before,

ε

∫ L/2

x

H̃

(
z − x
RL

)
dz = εRL

∫ L
2RL
− x
RL

0

H̃ (s) ds

≥ εRL

∫ c

0

H̃ (s) ds ≥ ω2RL,

(4.21)

where ω2 = εcH̃(c) > 0. Setting ω = min{ω1, ω2} = ω1, we complete the proof.

We are now able to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. Using the triangle inequality, we see that for all L,

dTV (Niso, Po(1/E[Niso])) ≤ dTV (Niso, Ñiso) + dTV

(
Ñiso, Po (1/E[Niso])

)
.

Therefore, combining Eqns. (4.2) and (4.3) with Lemmas 4.2.1 and 4.2.3,

lim
L→∞

dTV (Niso, Po(1/τ)) ≤ lim
L→∞

dTV (Niso, Ñiso) + dTV

(
Ñiso, Po (1/τ)

)
≤ min (1, τ) lim

L→∞
K,

where K := 2
∫ L

0

∫
S
(
x,R

1+1/α
L

) exp
(
−
∫ L

0
φh̃L(z, {x, y})dz

)
dydx. Without loss of gen-

erality, since we are working on the torus, we can assume that x is at the origin.
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Thus by the definition of K,

K = 2L

∫
S
(

0,R
1+1/α
L

) exp

(
−
∫ L

0

φh̃L(z, {0, y})dz
)
dy

= 4Le−2
∫ L/2
0 H̃L(z)dz

∫ 3R
1+1/α
L

0

exp

(
−
∫ L

0

(
h̃L(y, z)(1− h̃L(0, z))

)
dz

)
dy

≤ 12Le−2
∫ L/2
0 H̃L(z)dzR

1+1/α
L exp (−ωRL) dy,

where this final line comes from Lemma 4.2.4. Thus, by Eqn. (4.3),

lim
L→∞

K ≤ lim
L→∞

12

τ
R

1+1/α
L exp(−ωRL) = 0. (4.22)

4.3 Additional Calculations

In this section, we prove Lemma 4.2.2 by obtaining the asymptotic expressions seen

in Eqns. (4.5) - (4.7).

Proof of Lemma 4.2.2. We begin with Eqn. (4.5). PL is a unit rate Poisson point

process defined on [0, L] and hence the probability that there is exactly one point of

this process within Ai ∈ [0, L] is given by

P(Ji = 1) =
1

m
e−1/m ∼m

1

m
. (4.23)

Now, notice that, conditional on JiJj = 1, and on the locations x and y of the

single nodes in the segments Ai and Aj respectively, the set of all nodes with an edge

to either the node at x or y comprise a Poisson point process (PPP) on [0, L] \ Ai,
with intensity φh̃L(·, {x, y}). The event that the nodes at x and y are isolated is the

event that this PPP is empty and the nodes at x and y are not connected to each

other. Thus, denoting by Ai,j(x, y) the event that the node in Ai is located at x and

the node in Aj is located at y,

P(IiIj = 1|JiJj = 1, Ai,j(x, y)) = (1− h̃L(x, y))e−λx,y , (4.24)
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where

λx,y =

∫
[0,L]\(Ai∪Aj)

φh̃L(z, {x, y})dz

=

∫ L

0

φhL(z, {x, y})dz −
∫
Ai

φhL(z, {x, y})dz −
∫
Aj

φhL(z, {x, y})dz.
(4.25)

By the assumed monotonicity of H,∫
Ai

h̃L(x, z)dz ≤ H(0)

m
,

which tends to zero as m tends to infinity. Hence,

lim
m→∞

∫
Ai

φh̃L(z, {x, y})dz = lim
m→∞

∫
Ai

(
h̃L(x, z) + h̃L(y, z)− h̃L(x, z)h̃L(y, z)

)
dz

= 0.

(4.26)

An equivalent statement can be made for
∫
Aj
φh̃L(z, {x, y})dz. It is well-known for

a PPP that, conditional on Ji = 1, the single node in Ai is uniformly distributed

within this interval. Hence, it follows from (4.24) that

P(IiIj = 1|JiJj = 1) = m2(1− h̃L(x, y))

∫
Ai

∫
Aj

e−λx,ydxdy. (4.27)

It is straightforward from (4.25), (4.26) and (4.27) that

P(IiIj = 1|JiJj = 1) ∼m (1− h̃L(x, y)) exp

(
−
∫ L

0

φh̃L(z, {x, y})dz
)
. (4.28)

Combining this with the fact that

P(JiJj = 1) =
1

m2
e−2/m ∼m

1

m2
,

we obtain the expression for P(IiIj = 1) given in Eqn. (4.7). The expression for Eqn.

(4.6) is found in a very similar fashion and hence is omitted for brevity.
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4.4 Concluding Remarks

In this chapter, we used the Chen-Stein method for Poisson approximation to show

that the distribution of the number of isolated nodes in our (toroidal) 1-D soft

RGG converges in total variational distance to a Poisson random variable (Theorem

4.1.1). Our work is constricted to the underlying point process being a homogeneous

Poisson point process but allows for very general connection functions with our only

assumptions being that the connection function is continuous, strictly monotonically

decreasing with unbounded support, and integrable.

The main result of this chapter is not unexpected due to the fact that it has been

shown to be true in higher dimensional versions of the model as well as in the 1-D

original (hard ) RGG. However, this is the first time it has been proven for the 1-D soft

RGG. One reason for this is due to the previous lack of proof that isolated nodes are

a dominant factor in the connectivity of these graphs in the lower dimensional model.

This is a consequence of the fact that the graph can split into two large disconnected

clusters. However, in the following chapter, we will see that the isolated nodes (or

a lack thereof) are more important in determining the connectivity of the network

than an uncrossed gap in the limit as the system size grows to infinity. It is therefore

conjectured that isolated nodes are in fact the dominant mode of disconnection in

this regime even in the lower dimensional model; hence the analysis given in this

chapter is crucial to understanding the connectivity of these graphs.

Through this and the previous chapter, we have developed a good understanding

of the behaviour of the isolated nodes within a one-dimensional soft RGG. However,

as mentioned, we know that they are not the only barrier to full connectivity. There-

fore the subsequent chapter investigates uncrossed gaps in order to develop a deeper

understanding of this object and its effect on the connectivity of these graphs.
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Chapter 5

Soft Random Geometric Graphs:

Uncrossed Gaps

In Chapter 3, we showed that the probability that isolated nodes exist exhibits a

sharp transition, from being close to 1 to being close to 0, as the mean degree is

increased. Moreover, the point at which this transition occurs depends only on the

mean degree, and is insensitive to the connection function.

Our primary interest is in the probability of disconnection, not just in whether

isolated nodes exist. We noted in Section 3.2 that there are other modes of discon-

nection (Figure 3.2), and conjectured that uncrossed gaps are the other main mode.

Hence, we now turn to estimating the probability that there are uncrossed gaps. We

will focus on the scaling regime identified in the Chapter 3, namely RL = γ lnL, and

HL(·) = H(·/RL).

The work in this chapter is based on the paper [WDG20] for which I was a co-

author. This paper was written in collaboration with Professor Carl Dettmann and

Dr. Ayalvadi Ganesh. The theoretical analysis was primarily conducted by myself

with CD and AG contributing ideas to this analysis along with checking calculations

and suggesting proof methods.

5.1 Uncrossed gaps at the critical scaling for iso-

lated nodes

In this section, we need to assume the following about the connection function.
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Assumption A: The function H : R+ 7→ [0, 1] is integrable, i.e.,

‖H‖1 =

∫ ∞
0

H(x)dx <∞.

Assumption B The connection function H : R+ → [0, 1] is monotone decreasing

and has unbounded support, i.e.,

H(x) ≥ H(y) for all x ≤ y,

and ∫ ∞
r

H(x)dx > 0 for all r ≥ 0.

Our main result in this section is that the probability of seeing uncrossed gaps

becomes negligible as L tends to infinity, forRL = γ lnL and any γ > 0. In particular,

it holds for γ = 2‖H‖1, when isolated nodes begin to emerge. Consequently, the

main cause of disconnection of soft RGGs in 1-D is isolated nodes, just as in higher

dimensions; 1-D hard RGGs are anomalous in this regard.

We remark that, while we believe the assumption about unboundedness of the

support of H to be essential (indeed, our result does not hold for hard RGGs), the

assumption of monotonicity appears to be an artefact of our proof technique.

In order to avoid boundary effects near 0 and L, we extend the Poisson process

from [0, L] to the infinite real line. (In this case, it is less convenient to work with the

circle, since the existence of a single uncrossed gap on the circle does not guarantee

disconnection.) We want to calculate the probability that there are no edges crossing

the origin, under the Palm measure corresponding to having a point of the Poisson

process at the origin. We denote probabilities and expectations under this measure

by P0 and E0 respectively, as before.

Let P denote a Poisson point process on R of unit intensity. For A ⊂ R, we write

PA to denote the restrictions of P to A. Denote by X0 the indicator of the event

that there is a point at the origin and that it marks an uncrossed gap, i.e., there are

no edges between P(−∞,0)∪{0} and P(0,∞). We wish to compute E0[X0]. As it is not

amenable to exact calculation, we obtain a bound on it below.

Fix α, δ > 0 and set nL = bδRLc. Denote by Xα
0 the indicator of the event that

there are no edges between P(−αRL,0)∪{0} and P(0,∞). Clearly, X0 ≤ Xα
0 . Moreover,

conditional on P(−αRL,0), the set of points on (0,∞) which have an edge to some
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point in (−αRL, 0] constitute a Poisson process with intensity

λP(−αRL,0)
(y) = 1− h̄L(0, y)

∏
z∈P(−αRL,0)

h̄L(z, y)

= 1− H̄L(y)
∏

z∈P(−αRL,0)

H̄L(y − z),
(5.1)

where h̄L(0, y) = 1 − hL(0, y) and H̄L(y) = 1 − HL(y). Hence, the number of such

points is a Poisson random variable with mean
∫∞

0
λP(−αRL,0)

(y)dy. Since Xα
0 is the

indicator that this random variable takes the value zero, we obtain that

E0

[
Xα

0

∣∣ P(−αRL,0)

]
= exp

(
−
∫ ∞

0

λP(−αRL,0)
(y)dy

)
. (5.2)

We also have by Eqn. (5.1) and Assumption B that

λP(−αRL,0)
(y) ≥ 1− H̄L(y + αRL)1+|P(−αRL,0)|, (5.3)

where |PA| denotes the number of points of P in the set A. Hence, if we condition

further on there being at least nL points of P in (−αRL, 0), then we obtain by

substituting Eqn. (5.3) in Eqn. (5.2) that

E0

[
Xα

0

∣∣ |P(−αRL,0)| ≥ nL

]
≤ exp

(
−
∫ ∞

0

(
1− H̄L(y + αRL)1+nL

)
dy
)

= exp
(
−RL

∫ ∞
0

(
1− H̄(z + α)1+nL

)
dz
)
.

(5.4)

We have used the change of variables z = y/RL to obtain the last equality.

Define H−1(x) = sup{z : H(z) ≥ x} to be the generalised inverse of H; H−1

maps (0, H(0)] to [0,∞). To see this more clearly, an example of this function is

illustrated below in Figure 5.1.

Since RL = γ lnL and nL = bδRLc for fixed constants γ, δ > 0, nL tends to

infinity as L tends to infinity. Consequently,

H−1

(
1

1 + nL

)
→∞ as L→∞, (5.5)

because the support of H is unbounded by Assumption B. Since H is monotone de-

creasing, we have for all y ≤ H−1
(

1
1+nL

)
that H(y) ≥ 1

1+nL
, and hence, H̄(y)1+nL ≤
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Figure 5.1: An example of an original connection function, H(z) in (a) and its
inverse in H−1(z) in (b). The horizontal green line in (a) represents an example x
value, and the vertical line represents the corresponding H−1(x) value. It is
important to note that the inverse function is decreasing in x and tends to infinity
as x tends to 0.

e−1. Therefore,

RL

∫ ∞
0

(
1− H̄(z + α)1+nL

)
dz ≥ RL

∫ H−1( 1
1+nL

)

0

(
1− H̄(z + α)1+nL

)
dz

≥ (1− e−1)γH−1

(
1

1 + nL

)
lnL

= ω(lnL),

where the last equality follows from Eqn. (5.5). We use the notation f(x) = ω(g(x))

to denote, for functions f, g : R+ → R+, that g(x)/f(x) tends to infinity as x tends

to infinity. Substituting the above expression into Eqn. (5.4), we obtain that

E0

[
Xα

0

∣∣ |P(−αRL,0)| ≥ nL

]
= o(L−κ), (5.6)

for arbitrary κ > 0.

Next, we bound the probability of the event that |P(−αRL,0)| is smaller than nL.

Since |P(−αRL,0)| is a Poisson random variable with mean αRL, a standard use of

the Bernstein inequality (also known as Chernoff’s inequality, Corollary 2.2.3) yields
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that
P(|P(−αRL,0)| < nL) ≤ P(|P(−αRL,0)| ≤ δRL)

≤ inf
θ≤0

e−θδRLE
[
eθ|P(−αRL,0)|

]
= exp

(
− sup

θ≤0

[
θδRL − αRL(eθ − 1)

])
= exp(−γIα(δ) lnL),

(5.7)

where Iα(δ) = −δ ln α
δ

+ α − δ. It is easy to see that, for fixed α > 0, Iα(δ) tends

to α as δ decreases to zero. Hence, given arbitrary κ, γ > 0, we can choose α and δ

such that γIα(δ) > κ. Then,

P(|P(−αRL,0)| < nL) ≤ e−κ lnL

= L−κ.
(5.8)

Combining Eqns. (5.6) and (5.8), and noting that Xα
0 is a {0, 1}-valued random

variable, we obtain that

E0[Xα
0 ] = E0

[
Xα

0

∣∣ |P(−αRL,0)| ≥ nL
]
P(|P(−αRL,0)| ≥ nL)

+ E0

[
Xα

0

∣∣ |P(−αRL,0)| < nL
]
P(|P(−αRL,0)| < nL)

≤ E0

[
Xα

0

∣∣ |P(−αRL,0)| ≥ nL
]

+ P(|P(−αRL,0)| < nL)

≤ L−κ(1 + o(1)).

Finally, the expected number of uncrossed gaps on [0, L], which we denote E[Nucg], is

obtained by integrating E0[X0] over [0, L] with respect to the unit intensity measure

of the Poisson process of node locations. Since X0 ≤ Xα
0 , we conclude that

E[Nucg] = LE0[X0] ≤ L1−κ(1 + o(1)).

As κ > 0 is arbitrary, we see by choosing κ > 1 that E[Nucg] tends to zero as L

tends to infinity. Thus, the probability of an uncrossed gap is vanishing in the limit

L→∞ for any choice of γ > 0 and RL = γ lnL. This implies in particular that, at

the critical scale of the connection function at which isolated nodes begin to appear,

the probability of seeing an uncrossed gap is negligible. In other words, the primary

mechanism responsible for causing disconnection in 1-D soft RGGs is the isolation

of individual nodes.

As this is in sharp contrast to the situation for 1-D hard RGGs, in which discon-

nection is always due to uncrossed gaps, we comment briefly on the intuition behind
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the result. When the connection function is scaled as above, the isolation of a node

is primarily determined by what happens in an interval of order RL around it. In

the case of a hard RGG, this interval has to be empty. In the case of a soft RGG,

it is not empty, but contains fewer nodes than expected, only εRL, for some ε much

smaller than 1. Isolation is then achieved by all εRL of these potential edges being

absent. Both these events (having fewer nodes in the interval, and having no edges

to these nodes) have probability which is exponentially small in RL; at the scaling

RL = γ lnL, this works out to a probability of order 1/L (of isolation per node).

However, for there to be an uncrossed gap at the index node, (εRL/2)2 potential

edges between the εRL/2 nodes on each side of the index node have to be absent.

This event has probability decaying exponentially in R2
L, and is hence much less

likely than the event of node isolation. The intuition sketched out above is fleshed

out in the following sections.

5.2 Conditional probability of uncrossed gaps

We now look at the intuition behind why isolated nodes dominate uncrossed gaps

as the cause of disconnection in soft RGGs, whereas the opposite is true of hard

RGGs. We do this by conditioning on there being an isolated node at the origin, and

computing the conditional probability that it also marks an uncrossed gap. In order

to simplify calculations, we work with the Poisson process on the infinite real line.

Denote by P0 the Palm probability corresponding to the presence of a point at

the origin, and by P̂0 the measure obtained by conditioning further on this point

being isolated. The corresponding expectations are denoted E0 and Ê0. Then, under

P̂0, the remaining points constitute an inhomogenous Poisson process, with intensity

function

µ(x) = h̄(0, x) = H̄(|x|), x ∈ R,

where h̄(x, y) = 1 − h(x, y), and H̄(x) = 1 −H(x) respectively. We now follow the

same approach as in the previous section. Conditional on P(−∞,0), the point process

restricted to the negative real line, the set of points on (0,∞) which are connected
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to some point in P(−∞,0) constitute an inhomogenous Poisson process with intensity

Λ(x) = H̄(x)
(

1−
∏

z∈P(−∞,0)

h̄(z, x)
)
,

= H̄(x)
(

1− exp
( ∑
z∈P(−∞,0)

g(z, x)
))
,

(5.9)

where g(x, y) = ln(h̄(x, y)). The total number of points is thus a Poisson random

variable, with mean equal to
∫∞

0
Λ(x)dx. The event that the origin marks an un-

crossed gap is the event that this Poisson random variable takes the value zero, which

has probability

P(0 is uncrossed) = Ê0

[
exp
(
−
∫ ∞

0

Λ(x)dx
)]

≥ exp
(
−
∫ ∞

0

Ê[Λ(x)]dx
)
.

(5.10)

We have used Jensen’s inequality to obtain the inequality above and the interchange

of integral and expectation is justified by Tonelli’s theorem. We have also replaced

Ê0 by Ê, as the conditioning on having a point of the PPP at the origin has been

taken into account in the expression for Λ.

Now, by invoking Campbell’s formula for the Laplace functional of the inhomoge-

nous Poisson process P(−∞,0) (Theorem 2.1.1 and Defn. 2.1.3), we obtain from Eqn.

(5.9) that, for x > 0,

Ê[Λ(x)] = (1−H(x))
(

1− exp
(∫ 0

−∞

(
eg(z,x) − 1)

)
(1− h(0, z))dz

))
= (1−H(x))

(
1− exp

∫ 0

−∞
−h(z, x)(1− h(0, z))dz

)
= (1−H(x))

(
1− exp

(
−
∫ ∞

0

(1−H(z))H(x+ z)dz
))
,

(5.11)

where we have now returned to the original notation of (1−H(·)) rather than H̄ to

make the derivation clearer. In the scaling regime in which the connection function

H(·) is replaced by HL(·) = H(·/RL), with the substitution s = z/RL we can rewrite

the above as

Ê[Λ(x)] = (1−H(x/RL))
(

1− exp
(
−RL

∫ ∞
0

(1−H(s))H((x/RL) + s)ds
))
,
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and so with the substitution y = x/RL,∫ ∞
0

Ê[Λ(x)]dx = RL

∫ ∞
0

(1−H(y))
(
1− e−RL

∫∞
0 (1−H(s))H(y+s)ds

)
dy. (5.12)

Define H−1(x) = inf{y ≥ 0 : H(y) ≤ x}, and note that H is integrable. By the

assumption that H is monotone decreasing, 1 − H(s) ≥ 1 − x for all s > H−1(x).

Hence,∫ ∞
0

(1−H(s))H(y + s)ds =

∫ H−1(x)

0

(1−H(s))H(y + s)ds

+

∫ ∞
H−1(x)

(1−H(s))H(y + s)ds

≥
∫ H−1(x)

0

(1−H(s))H(y + s)ds+

+ (1− x)

∫ ∞
H−1(x)

H(y + s)ds

≥ (1− x)

∫ ∞
H−1(x)

H(y + s)ds.

By setting x = 1/2,∫ ∞
0

(1−H(s))H(y + s)ds ≥ 1

2

∫ ∞
H−1(1/2)

H(y + s)ds.

Substituting this in Eqn. (5.12), invoking the inequality 1 − H(y) ≥ 1/2 for all

y ≥ H−1(1/2) once more, and using the monotonicity of H(·), we get∫ ∞
0

Ê[Λ(x)]dx ≥ RL

∫ ∞
H−1(1/2)

1

2

(
1− e−(RL/2)

∫∞
H−1(1/2)

H(y+s)ds)dy
≥ RL

2

∫ 2H−1(1/2)

H−1(1/2)

(
1− exp

(
−RL

2

∫ ∞
3H−1(1/2)

H(s)ds
))
dy.

(5.13)

Now, the integral in the exponent is a strictly positive constant, by the assumption

that H has unbounded support. Hence,

exp
(
−RL

2

∫ ∞
3H−1(1/2)

H(s)ds
)
→ 0 as RL →∞,
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and it follows that

lim inf
RL→∞

1

RL

∫ ∞
0

Ê[Λ(x)]dx ≥ 1

2

∫ 2H−1(1/2)

H−1(1/2)

1dy

=
1

2
H−1(1/2) = ν.

(5.14)

Since H has unbounded support, ν is a strictly positive constant, and we conclude

that
∫∞

0
Ê[Λ(x)]dx, the expected number of nodes in [0,∞) which have a neighbour

in (−∞, 0), tends to infinity as RL tends to infinity. This does not prove that there is

at least one such node with high probability, but it is at least strongly suggestive of it.

Thus, Eqn. (5.14) gives us strong reason to believe that the point at the origin, which

was conditioned to be isolated, has very small probability of marking an uncrossed

gap. This provides some partial intuition for why uncrossed gaps are rare in soft

RGGs at the scaling threshold for the emergence of isolated nodes, whereas they are

more prevalent that isolated nodes in hard RGGs.

5.3 Scaling for emergence of uncrossed gaps

In Section 5.2, we provided intuition for why uncrossed gaps are rare in the scaling

regime at which isolated nodes emerge in 1-D soft RGGs. Here, we seek to identify

the scaling regime at which uncrossed gaps emerge. We begin by calculating a bound

on the expected number of uncrossed gaps within an interval [0, L], in a soft RGG

whose nodes are placed according to a unit rate PPP on the infinite real line; edges

are then created independently, with probability H(r) for nodes that are distance

r apart. We suppose that Assumption B (monotone decreasing and unbounded

support) from Section 5.1 continues to hold.

Define X0 to be the indicator that there is a point at the origin and that it marks

an uncrossed gap, i.e., there are no edges between P(−∞,0) ∪ {0} and P(0,∞). We

wish to calculate E0[X0], where E0 denotes expectation under the Palm measure

conditional on the PPP having a point at the origin; thus, E0[X0] is the probability

that the point at the origin constitutes an uncrossed gap. The expected number of

uncrossed gaps in [0, L] is then given by E[Nucg] =
∫ L

0
E0[X0]dx = LE0[X0].

The set of points on (0,∞) which have an edge to some point in (−∞, 0] constitute

a Cox process, which we denote by C(·); conditional on P(−∞,0), they constitute a
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Poisson process with intensity

Λ(y) = 1− (1− h(0, y))
∏

z∈P(−∞,0)

(1− h(z, y)) = 1− exp
(
g(0, y) +

∑
z∈P(−∞,0)

g(z, y)
)
,

(5.15)

where g(x, y) = log(1 − h(x, y)). We use a capital letter to denote the intensity

to make it explicit that the intensity is random, as it is a function of the random

measure P .

Now, the event that there are no edges from (−∞, 0] to (0,∞) is precisely the

event that the Cox process of points in (0,∞) reached by such edges is empty, i.e.,

that |C((0,∞))| = 0. This is exactly the event whose indicator we defined as X0.

Hence, we obtain using the tower rule (law of iterated expectation) that

E0[X0] = E0[E0[X0|P(−∞,0)]] = E0

[
exp
(
−
∫ ∞

0

Λ(y)dy
)]
, (5.16)

where Λ(·) is given by Eqn. (5.15).

A lower bound on this expectation is easy to compute using Jensen’s inequality,

which states that, if X is a random variable and f is a convex function, then

f(E[X]) ≤ E(f(X)).

Applying this to Eqn. (5.16) with f(x) = e−x, we get

E0[X0] ≥ exp
(
−E0

[∫ ∞
0

Λ(y)dy
])

= exp

(
−
∫ ∞

0

E[Λ(y)]dy

)
, (5.17)

where, as in Eqn. (5.10), the interchange of integral and expectation is justified by

Tonelli’s theorem and we have replaced E0 by E, as the conditioning on having a

point of the PPP at the origin has been taken into account in the expression for Λ.

The expectation of Λ(y) can now be calculated using Campbell’s formula for the

characteristic functional of the Poisson point process [Hae12, Definition 4.7]. Letting
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g(x, y) = ln(1− h(x, y)), we obtain from Eqn. (5.15) that

E[Λ(y)] = 1− (1− h(0, y))E
[
exp
(∑

z∈P(−∞,0)
g(z, y)

)]
= 1− (1− h(0, y)) exp

(∫ 0

−∞

(
eg(z,y) − 1

)
dz

)
= 1− (1− h(0, y)) exp

(
−
∫ 0

−∞
h(z, y)dz

)
= 1− (1−H(y)) exp

(
−
∫ ∞
y

H(z)dz

)
.

(5.18)

Integrating this over y ∈ (0,∞), we obtain∫ ∞
0

E[Λ(y)]dy =

∫ ∞
0

1− (1−H(y)) exp

(
−
∫ ∞
y

H(z)dz

)
dy

=

∫ ∞
0

(
1− e−

∫∞
y H(z)dz

)
dy +

∫ ∞
0

H(y)e−
∫∞
y H(z)dzdy

=

∫ ∞
0

(
1− e−

∫∞
y H(z)dz

)
dy + 1− e−

∫∞
0 H(z)dz.

(5.19)

Now, considering the scaled version of the connection function, HL(z) = H(z/RL),

we can rewrite the above as∫ ∞
0

E[Λ(y)]dy =

∫ ∞
0

(
1− e−

∫∞
y HL(z)dz

)
dy + 1− e−

∫∞
0 HL(z)dz

=

∫ ∞
0

(
1− e−

∫∞
y H(z/RL)dz

)
dy + 1− e−

∫∞
0 H(z/RL)dz

≤
∫ ∞

0

(
1− e−RL

∫∞
y/RL

H(z)dz
)
dy + 1.

(5.20)

Note that 1− e−x ≤ x for all x ∈ R, and so,

1− e−RL
∫∞
y/RL

H(z)dz ≤ min
{

1, RL

∫ ∞
y/RL

H(z)dz
}
.
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Hence, for arbitrary x > 0, we have∫ ∞
0

1− e−RL
∫∞
y/RL

H(z)dz
dy ≤ RLx+

∫ ∞
RLx

RL

∫ ∞
y/RL

H(z)dzdy

= RLx+RL

∫ ∞
x

∫ RLz

RLx

H(z)dydz

≤ RLx+R2
L

∫ ∞
x

zH(z)dz.

(5.21)

We shall henceforth restrict attention to the generalised Rayleigh connection func-

tion, H(r) = β exp(−(r/rc)
η), for a fixed η > 0. For this connection function, we

rewrite the last integral on the right hand side of Eqn. (5.21) as∫ ∞
x

zH(z)dz =

∫ ∞
x

βze−(z/rc)ηdz

=
βr2

c

η

∫ ∞
( x
rc

)
η
u

2
η
−1e−udu

=
βr2

c

η
Γ

(
2

η
,

(
x

rc

)η)
,

(5.22)

where the second line comes from the substitution u =
(
z
rc

)η
and Γ(α, y) denotes

the incomplete Gamma function,

Γ(α, y) =

∫ ∞
y

zα−1e−zdz.

Observe that

Γ(α, y)

yα−1e−y
=

∫ ∞
y

(x
y

)α−1

e−(x−y)dx

=

∫ ∞
0

(
1 +

z

y

)α−1

e−zdz,

which tends to 1 as y tends to infinity, by the Dominated Convergence Theorem.

Hence, taking x = rc(lnRL)1/η in Eqn. (5.22), we see that

∫ ∞
rc(lnRL)1/η

zH(z)dz =
βr2

c

η
Γ

(
2

η
, lnRL

)
∼RL

βr2
c

η

(lnRL)
2
η
−1

RL

.

Here, for functions f and g on R+, we write f(x) ∼x g(x) as x→∞ to denote that

f(x)/g(x) tends to 1 as x tends to infinity. Substituting the above in Eqn. (5.21),
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we get∫ ∞
0

1− e−RL
∫∞
y/RL

H(z)dz
dy ≤ rcRL(lnRL)1/η + (1 + o(1))

βr2
c

η
RL(lnRL)

2
η
−1.

Combining the above with Eqns. (5.17) and (5.20), we obtain the following lower

bound on the probability that there is an uncrossed gap at the origin:

E0[X0] ≥ exp
(
−CRL(lnRL)max{ 1

η
, 2
η
−1}
)
,

where C > 0 is a fixed constant that does not grow with RL.

The expected number of uncrossed gaps in [0, L] is given by E[Nucg] = LE0[X0].

Hence, it follows from the equation above that

E[Nucg] ≥ L exp
(
−CRL(lnRL)θ

)
where θ = max

{
1

η
,

2

η
− 1

}
. (5.23)

The above expression motivates us to consider the scaling regime

RL = γ
lnL

(ln lnL)θ
. (5.24)

A straightforward calculation shows that

CRL(lnRL)θ = γC lnL
(

1 +
θ ln ln lnL+ ln γ

ln lnL

)θ
= γC lnL(1 + o(1)).

If we conjecture that the inequality in Eqn. (5.23) is an approximate equality, then

it follows that the expected number of uncrossed gaps exhibits a sharp threshold at

γ = 1/C, in the sense that

E[Nucg]→

0, γ > 1/C,

+∞, γ < 1/C,

as L tends to infinity.

Thus, our calculations lead us to conjecture that uncrossed gaps appear when the

connection range scales as RL = lnL/(C(ln lnL)θ); here θ is the related to the power

law in the exponent, η of the generalised Rayleigh connection function, while C is

a constant that depends in a complicated way on the parameters of the connection
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function. We now make a few remarks about this scaling regime. Firstly, C and

θ depend on details of the connection function, and are not universal, in contrast

to the threshold for isolated nodes. Secondly, RL is significantly smaller than the

lnL threshold for isolated nodes, confirming that uncrossed gaps appear only when

connection functions are of much shorter range than required for the appearance of

isolated nodes. Finally, the hard RGG model is a limiting case of the generalised

Rayleigh connection function as η tends to infinity; correspondingly, θ = 1/η tends

to zero, and the threshold value of RL tends to a constant multiple of lnL. Thus,

we recover the lnL scaling for the emergence of uncrossed gaps in the hard RGG in

the limit.

We also comment here on the statements made at the end of Section 3.2 regarding

the fact that we don’t expect to see these results in simulations unless very large

system sizes are analysed. For clarity, we will denote by Rucg
L the scaling regime in

which there is a sharp threshold for the appearance of uncrossed gaps, and we denote

by Riso
L the relevant scaling regime for isolated nodes. These have been shown in this

thesis to be

Rucg
L =

lnL

C(ln lnL)θ
,

and

Riso
L =

lnL

2‖H‖1

.

Therefore, to find the value of L (i.e the system size) at which there is a crossover

between uncrossed gaps being the more important factor when discussing connectiv-

ity and when isolated nodes are more important, we need to find the value of L for

which Rucg
L = Riso

L , which we denote by L∗. This occurs at

lnL∗

2‖H‖1

=
lnL∗

C(ln lnL∗)θ
.

Rearranging this we see that

L∗ = exp

(
exp

((
2‖H‖1

C

)1/θ
))

.

For η ≥ 1, θ = 1
η

and hence this becomes

L∗ = exp

(
exp

((
2‖H‖1

C

)η))
. (5.25)
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The calculation of the value of C is an interesting problem in its own right and is

hence left as future work. However, Eqn. (5.25) is able to tell us that L∗ is delicately

related to this value of C, and could be extremely large.

The analysis in this chapter showed that uncrossed gaps have negligible prob-

ability in the scaling regime in which isolated nodes exhibit their transition. In

other words, if any uncrossed gaps are present, then isolated nodes are present in

abundance, but not conversely. Consequently, between the two, it is the presence of

isolated nodes that is pivotal for determining connectivity. This was shown, not just

for specific connection functions, but any function satisfying the mild assumptions of

monotonocity, integrability, and unbounded support. The assumption of unbounded

support is crucial to our method of proof as it is necessary in both Eqns.(5.3) and

(5.5), however, we believe that this is due to our method of proof, rather than being

a necessity when analysing this problem.

We also analysed the conditional probability of uncrossed gaps to understand the

intuition behind why isolated nodes dominate the uncrossed gaps as the cause of

disconnection. Although this analysis is not rigorous it gives the reader hints as to

why this is the case. Following from this, the scaling for the emergence of uncrossed

gaps is also investigated for a specific form of the connection function, namely the

generalised Rayleigh connection function. Via this analysis an appropriate scaling

is conjectured. It is noted that for smaller system sizes, it appears that uncrossed

gaps are more important for determining connectivity and so a “crossover” system

size for which isolated nodes become more important is also conjectured. A more de-

tailed discussion about finite system sizes, especially with respect to communication

networks, is given in Section 7.1.2.

For the final chapter of the thesis, we now move to a different application of

networks of autonomous entities, namely Swarm Robotics.
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Chapter 6

Swarm Robotics

Another application of ad-hoc communication networks is to Swarm Robotics. These

swarms can solve tasks that are impossible or too hazardous for single robots. For

example, following a nuclear radiation leak, a user may wish to establish a distributed

communication chain that partly extends into the most dangerous areas to gather

new information. The benefit of using a swarm for this task being that the robots

are low cost and the network is designed in such a way that it is robust to the loss

of users. The challenge is to create long chains while maintaining chain connectivity

(‘connected reach’), where those at the distant end of the chain are more likely to

be disconnected. The ideas of isolation and connectivity in these networks will raise

different questions depending on the type of application that they are being used for.

It may be that having a continuously fully connected network is not as important

since the aim is to explore a large area, or it may be that the goal of the network is to

remain fully connected at all costs if the area to be covered is small but continually

changing and hence an up-to-date knowledge of the environment is necessary.

In this chapter we look at a specific example of utilising these swarms of robots to

model a biological system: social spiders. Here, we look at dynamic ‘boldness’ levels

of a group of spiders to explore such a risky environment for which this behaviour

adapts dependent on the size of the group. This is behaviour that has been seen

to occur within clusters of Stegodyphus social spiders. Boldness is implemented as

a variable associated with the risk appetite of individuals to explore regions more

distant from a central base. We present a decentralised mechanism for robots, based

on the frequency of their social interactions, to adaptively take on ‘bold’ and ‘shy’

behaviours, with lower interaction rates leading individuals to remain close to a cen-

tral base, and higher interaction rates leading to riskier exploratory behaviour that
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may result in disconnection from the swarm. Using this new bio-inspired algorithm,

which we call SPIDER, swarms are shown to adapt rapidly to the loss of bold individ-

uals by regenerating a suitable shy–bold distribution, with fewer bolder individuals

in smaller groups. This allows them to dynamically trade-off the benefits and costs

of long chains (information retrieval versus loss of robots) and demonstrates the

particular advantage of this approach in hazardous or adversarial environments.

This work is taken from the paper [HJW+20] for which I was a co-author. My

contribution to the work was to aid in both the understanding of mathematically

defined mobility models such as the Random Waypoint movement (RWP) model and

in helping to create the scoring algorithm used to test the algorithm performances. I

also helped in editing the final paper that was submitted and have made more edits to

the work in the process of including it in this thesis. The main edits made here were

to enhance the clarity of the work and expand on concepts that had to be shortened

for the original submission of the paper. The work was done in collaboration with

George Jenkinson, Dr. Edmund Hunt, and Dr. Sabine Hauert with the simulation

work all being done by GJ and EH.

6.1 SPIDER: A bio-inspired swarm algorithm for

adaptive risk taking

In biology there is increasing awareness of the ecological and evolutionary significance

of individual differences in behaviour within groups; such differences include that ow-

ing to ‘personality’ variation [DHM04]. The social spider Stegodyphus dumicola lives

in shared nests and engages in collection predation; group living helps their survival

[BCB+07]. Recent research found that social interactions between group members

shape individual ‘personality’ types (shy or bold) such that colonies can regener-

ate a suitable distribution of behaviours within the group following a perturbation

[HMF+18]. Essentially, the density of the group provides a proxy for how much risk

the group can afford to take – how many bold individuals it ought to sustain. This

is an example of phenotypic plasticity which could be instructive for minimal robot

swarms [Hun20]. Here, we take bio-inspiration from S. dumicola to develop swarm

robot controllers that can achieve a decentralised assignment of individual-level risk

appetite that is appropriate to swarm-level capacity to sustain potential losses. We

present a new algorithm which we call SPIDER (Swarm PersonalIty for DEnsity

Response), for allocating risk appetite – propensity to explore – to a swarm of agents
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in a hazardous environment. This responds to a risk–return trade-off, whereby robots

on the periphery of a swarm are both more likely to gain new environmental infor-

mation, while also being more likely to become disconnected from the swarm or

encounter hazards.

Engineering a robot swarm with the ability to dynamically set a risk appetite

(boldness) role distribution that is adaptive to the task at hand has real-world ap-

plications, especially for difficult and dangerous scenarios [SUS+20]. These include

the establishment of ad-hoc networks in, or exploration of, unknown, unpredictable,

dangerous areas. E.g. following a natural disaster like an earthquake or an anthro-

pogenic disaster such as a nuclear radiation leak.

In our scenario a swarm begins with a deployment around a central ‘base’ area.

The swarm task is to establish connected chains of robots (with only very limited

communication range) into more radially distant areas. With very simple robots that

have severely limited navigation abilities, as robots become more radially distant they

are more likely to become isolated from the swarm, or even lost altogether. Chain

formation is a common mechanism in swarm robotics for searching the environment

and facilitating navigation [ND06; STN11; GB18].

A homogeneous swarm may be able to perform its tasks more effectively if its

members have a division of labour into different work roles. Pre-allocating roles to a

proportion of the swarm as suitable to the given task can be an appropriate approach

[KB00; YR14]. However, this compromises the ability of the swarm to generalise to

unexpected environments, or to adapt to robot failure or malfunction. Thus, methods

by which decentralised agents can coordinate desired emergent distributions of roles

adaptive to the task at hand are desirable. Here, our algorithm adapts boldness

dynamically to achieve an allocation of near or distant ‘place roles’ in an emergent

communication chain.

Exchange of information within a swarm relies on individuals maintaining regular,

if not constant, contact with the bulk of the swarm; minimising the time that agents

spend disconnected from the bulk of the swarm ensures a high level of swarm cohesion

[HWZ+08; HZF09]. Maintaining connectivity is usually achieved by attaching a cost

to becoming disconnected: varying this cost over swarm agents stratifies the swarm

with individuals who occupy different functional niches or roles. The cost can be

adapted online to reflect the depletion of energy or battery levels [BR14; LSB19]. All

of this poses a crucial trade-off for exploratory swarms: new areas are best discovered

by robots that actively seek areas they have not covered yet. This may however lead

to them losing communication with the swarm. Exploration–connectivity trade-offs
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are a common challenge for swarm robotics [HMK+14].

We develop a decentralised swarm algorithm that approaches the exploration–

connectivity trade-off in a novel way, using local swarm density as a proxy for the

capacity of the swarm to engage in risky behaviour. Our approach may be particu-

larly suited to hazardous environments where agents are removed either temporarily

or permanently.

6.2 Methods

6.2.1 Robots and experimental arena

The Kilobot [RAN12] has become a popular swarm robotics research platform that al-

lows conceptual demonstration of swarm algorithms in very large numbers of robots.

It is relatively small, with a diameter of 33mm and height of 34mm, and has two

vibrating motors instead of wheels. It has a communication range of up to 10cm,

and very limited sensing and localisation capabilities. Therefore, for the purposes

of facilitating radial navigation the arena is marked with a series of concentric rings

the width of a Kilobot that the robots can detect as being labelled 1, 2, or 3. This

provides a gradient to count up or down to a desired travel distance, which ranges in

our experiments from 0 to 26 rings. An example layout is illustrated in Fig. 6.1. In

real-world environments, an environmental gradient could be provided by received

signal strength intensity (RSSI) from a base station radio beacon or other robots

(e.g. [MWT+19]).

Robots are initialised in a ring around a central ‘base’ robot and move radially

inwards or outwards depending on their boldness.

Kilobox [JSH+18] is a 2-Dimensional simulator adapted from Box2D written

in C++ demonstrated to give accurate and fast simulations of Kilobots [RAN12].

All experimental data presented in this study has been obtained through Kilobox

simulations.

Experimental trials were all simulated for the equivalent of 5000s. This provides

ample time for the swarm to reach a steady state, and is a realistic amount of time

for an experiment on real Kilobots with respect to battery life.
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6.2.2 Task and performance metric

Main Task

The task for the swarm is to arrange connected chains of robots from a central

‘base’ area into more radially distant positions in the arena. It does this by arriving

at a stable distribution of boldness-related roles that balances the need to occupy

the ‘safe’ central region with the opportunity to cover more distant regions at and

beyond the periphery of the swarm. It is important to manage the risk that peripheral

robots lose contact with the swarm for extended periods of time, which would impair

swarm cohesion. To manage this risk, the dynamic, self-organised swarm boldness

distribution is associated with a spatial swarm distribution over a circular arena. The

key principle is that a larger swarm can afford to be more risky in how it allocates

boldness roles, because the disconnection of one robot (temporarily or permanently)

is on balance less likely to compromise the swarm’s connected reach.

Performance metric: maximum ‘connected reach’

We assign a reward to connected chains of robots reaching into distant regions, which

is inherently penalised (reduced) if robots become disconnected from the swarm.

To assess the performance of the task we measure the maximum distance reading

received at the swarm centre from peripheral robots. Each member of the swarm

broadcasts its current distance from the central circle as a message towards the centre

of the swarm, which percolates inwards via connected robots. Every 0.5s, the robots

reset their broadcast message to convey their current distance, and overwrite this

if they receive a message from another robot that conveys a larger distance, such

that they act as a signal repeater for any robot that is further out. In a given time

frame, the base robot at the centre of the swarm records the distance of the message

which has arrived from the furthest point to the centre (Figure 6.1). This simple

performance metric can be recorded on-board the ‘base’ Kilobot for experimental

analysis, though it is not required for the controller.

Shy, medium and bold behaviours

For the purposes of our analysis, it is useful to stratify swarm members into 3 cat-

egories: shy, medium, and bold, as in [HMF+18]. The three behaviours can be

differentiated as follows: shy behaviour manifests as remaining within a region that

has a very low chance of becoming disconnected, and the geometry of the arena and
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Figure 6.1: Swarm attempting to optimise ‘connected reach’ in 2D arena (left) and
network graph representation (right) of this example swarm layout. The green,
yellow and red regions are indicative of the risk of disconnection from the swarm
for a given swarm size. Coloured lines show different connected clusters of Kilobots.
The blue numbers on the right hand side show the gradient available to the
Kilobots’ sensors as they move between the grey-scale rings, which they use to
track their position. The ‘base’ Kilobot (black) increments the performance metric
(furthest connected reach) every 0.5s for the duration of the experiment, which in
this instance would add 5 to the score total.
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the dynamics of the boldness mean that in general this is in the central region. Bold

robots venture beyond the periphery of the group, into regions that are unlikely to

be connected, but that result in a higher incremental performance score (successful

transmission of a distant message back to base) if they are connected at any time.

Medium boldness robots straddle these two behaviours, often contributing a mod-

erately high score increment themselves and also enabling bolder robots to score

occasionally by providing a semi-stable link to the central cluster.

In larger swarms robots are more likely to be connected to the central region

even at larger radial distances. This is because there tend to be higher densities

in the central region, and hence the swarm would benefit from shifting its boldness

distribution to include more bolder robots. In smaller swarms, even at a moderate

distance a robot has a risk of being disconnected from the swarm. Therefore, a larger

swarm is expected to be able to accommodate more bold individuals because this

poses little risk to its connected reach, whereas a small swarm will require a higher

proportion of shy individuals in order to remain connected with the base station at

all.

We now introduce the two main (and novel) algorithms used in this work to

incorporate social interactions into the swarm behaviour, namely, SPIDER-density

and SPIDER-boldness.

6.2.3 A basic boldness mechanism: SPIDER-density

The boldness-based movement behaviour of the SPIDER algorithm is described in

pseudo-code in Algorithm 1. We describe two variants of the algorithm, a simple,

density-based version (SPIDER-density) and a refined version of the algorithm that

includes sensitivity to neighbour boldness (SPIDER-bold).

The desired radial distance (measured in number of rings) from the centre rd

relates to an individual robot’s boldness, which ranges from 0 to 255. This radial

distance is then given by

rd =

⌊
bold

10

⌋
.

For example, a bolder robot with boldness 150 will have a travel distance of 15 rings

from the centre, whereas a shy robot of boldness 53 will seek a distance of 5. The

current ring is denoted by rc. Note that rd cannot be updated unless and until the

destination is reached. To calibrate boldness levels to the arena geometry, distances

were specified such that a robot with maximum boldness set its distance goal to
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Algorithm 1 SPIDER-density algorithm pseudo-code

1: procedure SPIDER-density(a, b) . input parameters Setup: (for individual
robots separately)

2: rc ← robots placed in ring formation
3: bold← set random boldness ∈ [0, 255]
4: rd ← floor(bold/10)
5: Loop: (every 0.5s)
6: density← number of neighbours within range
7: bold = bold+ a× density − b
8: bold = limitrange(bold, [0, 255])
9: rc ← travel according to gradient ascent/descent
10: if rc == rd
11: rd ← floor(bold/10)
12: endif

the outermost region, and a robot with minimum boldness set its travel distance to

the distance with index 0. The intermediate boldness levels are then linearly spaced

between them.

A simple way to introduce a density-induced boldness dynamic to the swarm is to

have a boldness that increases when a robot experiences a ‘social interaction’ (receives

a message at close proximity), and otherwise decreases at a fixed rate. Because the

Kilobots send messages with the same constant frequency, the message reception

frequency is proportional to how many neighbours are within communication range,

and therefore the local density.

Following Algorithm 1, robots move outwards from densely populated central

areas towards the outer regions, which are likely to be more sparsely populated,

resulting in a drop in their boldness level. Due to the steadily applied boldness

decrease, robots are always drawn back toward the centre of the swarm until they

encounter at least one other robot. These countervailing behaviours ensure the main-

tenance of a good level of connectivity throughout the swarm, and avoid over-packing

of the central region. The boldness score changes over time in the following way: it

increases proportionally to the constant a at each time-step according to how many

neighbours are within its communication range, and decreases at each time step by

the constant b (as seen in line 7 of Algorithm 1). These can be optimised for swarm

performance according to different user requirements, as discussed in Section 6.2.7.
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6.2.4 A refined boldness mechanism: SPIDER-boldness

In this section, additional refinements are made to the controller, which we refer to as

SPIDER-boldness. Its mechanism is very similar to the pseudo-code of Algorithm 1

but with the changes as described in the following sections. This controller includes

each of following four features, which variously make the swarm controller more or

less responsive to certain environmental conditions.

Feature 1: Boldness increase with bold neighbours

Following behaviour observed in S. dumicola [HMF+18], the controller was adapted

so that robots only increase their boldness when in the presence of bolder individuals.

This was set to take effect when a Kilobot’s boldness level was below the mean of

all its neighbours within communication range. As in all other trials, the robots are

initialised with random boldness and boldness is dynamic.

Feature 2: ‘Addictive’ boldness increases

Also inspired by behaviour observed in S. dumicola [HMF+18], the behaviour was

updated to include an ‘addictive’ term, where robots that had recently increased

their boldness were more likely to increase it again by a larger amount. Feature 1

means that a robot’s boldness can only increase if it is more bold than its immediate

neighbours. Therefore, within a cluster it is harder for the boldness levels of the

robots to increase too quickly before they inevitably move away from their current

cluster. However, the addictive increases in boldness provides a way for the swarm

to avoid a falling ceiling on its overall boldness.

Feature 3: Relative boldness increase/decrease

To stabilise the distribution of shy and bold individuals over the swarm, the rate

at which an individual altered its boldness level was set to be a function of the

individual’s current boldness level.

In relation to Algorithm 1, the boldness update was amended in SPIDER-boldness
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to be:

if mean(neighbour boldness) > boldness then:

bold = bold+ f(bold)× addict− g(bold)

addict = addict× c

else:

bold = bold− g(bold); addict = 1,

where, for positive constants a, b, and c, f and g are given by

f(bold) =
a

bold
,

and

g(bold) =
b

bold
.

a and b relate to the rate of boldness increase and decay, and c gives the robot’s

‘addiction rate’. The choices of f and g presented here meant that individuals had a

tendency to remain bold for longer once their boldness level was significant. Choosing

other forms for these functions would yield different behaviour. The values for a and

b can be interpreted as having the effect of changing the rate at which the boldness

of a robot changes. a >> 1 and b << 1 result in stability when the robot is bold,

a << 1 and b >> 1 when it is shy, and intermediate combinations resulting in

different stable boldness levels. Higher values for a and b tend to manifest in faster

changing and more variable boldness scores.

Feature 4: Updating desired distance en-route

As a robot moves throughout the arena, it will continue to receive information on

its changing local neighbourhood density and could act on this to prevent it from

straying too far from the swarm and into a very sparse region, or persisting in

attempting to reach the centre of the swarm when it is prohibitively crowded. In

order to update its behaviour dynamically, we allow the robot to change its desired

distance from the centre in transit to accommodate new information. This may

increase the cohesion of the swarm and stops overcrowding in the centre as the

robots are not bound to completing the task of reaching their waypoint destination.

We set a threshold difference between the travel distance and the current boldness,

which when exceeded causes it to update the desired distance based on the current
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Figure 6.2: The probability density for robot locations, across the 4 controllers, for
a swarm size of 64. Curves are fitted to data collected from 10 simulations using
Matlab’s Gaussian fit function with 1 peak or 2 peaks for the SPIDER controllers
(central bulk and congestion effects). Distance from the centre is measured in
navigational ring widths (33mm). It is important to note that in the RWP model,
the robots are randomly assigned a number between 0 and 26 (minimum and
maximum ring values) and aim to travel to this ring directly (e.g. to the nearest
part of the 10th ring to them). Therefore, rather than the peak of the curve being
at the centre of the arena (ring 0), it is now at the central ring between 0 and 26
(i.e. ring 13).

boldness. In these experiments the threshold was set to update the distance when

the boldness had diverged from the that associated with the goal by more than 2.

6.2.5 Swarms without a boldness mechanism

Two movement behaviours were used to provide a baseline against which to test

the effectiveness of the SPIDER algorithm. These had no boldness dynamic or

communication between agents, and are random waypoint choice (RWP), where each

robot sets a random travel distance which is reset upon arrival [APR+18]; and a

‘huddling’ behaviour where all agents had their distance goal fixed at the centre of

the arena.

6.2.6 Testing adaptability and robustness

Balancing connectivity and reach

Different tasks, or robots with different capabilities, may prioritise the stable con-

nectivity of chains over the extent of their reach into distant areas, or vice versa. For

example, maintaining a communication network for emergency services in a difficult

to reach, unknown terrain demands a constant, stable, connection, whereas a team

of robots searching a less dangerous environment for a resource can operate using
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only infrequent communication. For this reason it is important that the swarm can

easily be adapted to suit the balance of connectivity and reach required.

We anticipate that a swarm prioritising connectivity over exploration is likely to

have a boldness that decays very fast when in the presence of few or no neighbours,

such that bold robots are infrequent and quickly become shy again; with a slow

boldness decay for a swarm that prioritises exploration over constant connectivity.

This hypothesis is readily tested by comparing a short scoring period for the central,

‘base’ robot, to a long one. We examined a scoring period of 20s rather than 0.5s.

This meant that the swarm would increment its score by the most distant connection

made between the centre and the periphery at any point over the 20s period. This

rewards less stable, but more distant connections. This is discussed in more detail

in Section 6.3.5.

Robustness testing – population catastrophes

A desired advantage of a decentralised role distribution mechanism is that it should

be robust and consistent in a changing or even hazardous environment. Therefore, for

a given environment, the distribution of roles throughout the swarm should stabilise

to a similar state that optimises the reach–connectivity trade-off from a variety of

starting conditions. This ensures that the swarm is resilient to noise and can be

decentralised in its operation. The swarm should also act to redistribute its roles

as appropriate to a changing population, for example following the destruction of

agents.

To examine whether the swarms were resilient to extreme change, they underwent

a simulated catastrophic population event. This could correspond to the malfunction,

removal, or destruction of a significant section of the robots. This motivates the need

for a control mechanism suitable for simple, expendable (replaceable) agents. Such

an event is simulated by programming half of the swarm to cease communication with

the rest of the robots and remove themselves from the arena after a given amount

of time. This catastrophe was repeated over the swarm twice over the course of an

experiment, changing the population from 128 to 64 to 32, at intervals of 1500s. In

a robust system, the remaining swarm should redistribute itself over the boldness

space to optimise for connectivity and reach after each catastrophe.

Because the boldness distribution changes depending on the swarm size, 20 re-

peats of 5000 second simulations were run in order to find the stable sub-population

distribution that each swarm size converged towards given enough time. The same
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values of a, b, and c were used for each population size and were those that had proven

to be effective for a population of 64 Kilobots (how these were obtained is explained

in Section 6.2.7). The results of these simulations were then used as a measure of

how well the swarm recovered from catastrophic failure by comparing how the sub-

population densities (namely those of the shy, medium, and bold populations) varied

over time after each catastrophe. A measure of the distance of the swarms behaviour

from equilibrium is calculated as the difference between the current sub-population

density and the stable sub-population density at 50s intervals. A measure of the

volatility of the swarm behaviour is calculated by firstly calculating the standard

deviation of each of the sub-population densities over a 50 second period and then

summing these together. The time taken for the swarm to settle after a population

catastrophe is then given by the time taken for the distance measure to fall below

0.3 and remain there, and for the volatility measure to fall below 0.1 and 0.2 and

remain there for the first and second catastrophes respectively. This change in the

volatility threshold is implemented in order to reflect the reduced population size.

Random waypoint choice

In order to have a base level algorithm to make comparisons with, a random waypoint

mobility model is also introduced. Here, the target distances were chosen randomly,

rather than according to a boldness level. Each individual chooses its destination

as a random distance from the centre, roughly corresponding to a 1-Dimensional

Random Waypoint (RWP) Mobility Model in which the agents in the network choose

a random location along a line as their destination; the distribution of agent locations

over a line segment is well described in [BRS03]. Although swarm agents are in a

2-D environment, the controllers presented here act in the radial direction with no

consideration for azimuthal distribution, and hence the 1-D model is relevant. In

practise, an individual Kilobot chooses a ring to travel to uniformly at random. It

then begins its journey towards this ring as described in Section 6.2.1. The fact

that it simply travels to its destination ring and not to a specific location in space is

why the 1-dimensional version of the RWP mobility model is more relevant to this

scenario. By keeping track of individual agent’s locations along the radial line, we are

able to produce a probability density function (pdf) of where an individual would be

at a random time. This is done by integrating the agent’s locations over time. This

distribution is bell shaped and symmetric about the distance halfway between the

centre and the circumference, as is to be expected when analysing the RWP mobility
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model. This can be intuitively understood by considering that the random choice of

waypoint is expected to give a uniform distribution of distances along the radius, but

as the individual has to travel from its current position to its target, it must cross

all of the distances between its current location and its destination, which is likely

to include regions near the half-radius distance, and unlikely to include regions near

the centre or edge of the circle.

As more individuals are introduced, collisions become more likely near the central

regions compared to the regions near the edge, because the circular geometry means

that regions closer to the centre cannot accommodate as many robots as those regions

that are further out. The collisions significantly slow the robots, and so for higher

populations of swarms choosing their destination randomly, the spatial distribution

of the swarm skews towards the centre of the arena. This skewed distribution of

the swarm at high populations suggests that the emergent behaviour of the group

will maintain good connectivity at the centre of the arena, however the exploration

of the arena beyond the central cluster is likely to be carried out by disconnected

individuals in a fashion similar to the particles described in [LTH+92].

6.2.7 Automated parameter optimisation

Given the complex relationship between input model parameters for individual-level

robot behaviour, and overall swarm performance for different swarm sizes and user

connection stability requirements, we optimise parameters a, b and c using an evo-

lutionary algorithm (EA) [FM08]. A simple EA was developed using a population

size of 40 where an individual in the population is a chosen combination of values of

a, b and c. Rank-based selection on swarm-level performance was used as measured

in Section 6.2.2.

The EA worked over 20 generations on the 3 ‘genes’ (i.e. a, b, and c) with elitism,

and a combination of crossover without contamination, and crossover with contami-

nation (the ‘genes’ are broken down and mixed up), all performed with small consis-

tent mutations (value jitter of ±10%). Elitism in this scenario was implemented by

only using the top ten performing ‘genes’ to generate the the pool of 40 for the sub-

sequent generation, meaning that the worst performing ‘genes’ are discarded. The

scores here are calculated by running simulations as described in Section 6.2 with

all 40 combinations of the input parameters. Contamination is used here as a way

to pseudo-randomly explore the state space in more detail such that the algorithm

explores solutions far away from those that have performed well along with solutions
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close to those that have performed well. This is explained in the following example.

If the first generation includes the combinations of a, b, and c given by

{a1 = 5, b1 = 2, c1 = 17}

{a2 = 12, b2 = 9, c2 = 24}.

If crossover is implemented without contamination, then the second generation may

include something like

{a1 = 5, b1 = 9, c1 = 17}

{a2 = 12, b2 = 2, c2 = 24},

in which crossover has meant that the values associated with b1, and b2 from the first

generation have been switched for the second generation. If crossover is implemented

with contamination, then the second generation may instead have included

{a1 = 5, b1 = 18, c1 = 17}

{a2 = 12, b2 = 1, c2 = 24},

where this time as well as the swapping of the inputs, they have also been multiplied

by a random factor.

The second generation of input parameters is thus made up of the top ten perform-

ing ‘genes’ replicated with jitter, then ten ‘genes’ constructed from these but with

crossover without contamination implemented, and the final 20 being constructed

with crossover with contamination being implemented. This is shown pictorially in

Figure 6.3.

Since we are working under the assumption that our algorithm does not get stuck

in a sub-optimal local maxima, we are unable to claim that the values produced using

this implementation provide globally optimal solutions. However, the EA provides

a reliable method by which to find input parameters that produce swarm-level be-

haviour that scores well on the performance metric. The performance metric itself

can be adjusted depending on the nature of the swarm task. The standard perfor-

mance metric scored the distance of the furthest connected node every 0.5 seconds,

but a slower scoring frequency allows for less reliable connectivity, as examined in

Section 6.3.5.
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Figure 6.3: A pictorial example of what the algorithm is doing at each generation.
The 40 combinations of input parameters are firstly scored and ranked, with only
the top ten being kept. The top ten are kept for the following generation (with a
value jitter of ±10%) as well as being used to create 20 more combinations, ten
from crossover without contamination (marked by a tilde) and ten from crossover
with contamination (marked with a star). A final ten combinations are also created
by performing crossover with contamination on the combinations previously being
constructed from crossover without contamination (marked with a tilde and a star).
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6.3 Results1

For the purpose of analysis swarm density is calculated by dividing the combined

area reached by the robots’ (here, Kilobots’) communication range by the area of the

arena with overlapping of communication ranges being ignored. The swarms were

scored for populations of 8, 16, 32, 64, and 128, corresponding to densities of 0.0329,

0.0657, 0.1315, 0.2630, and 0.5260 respectively.

6.3.1 Random waypoint choice

Up to a certain population density, robots randomly choosing their desired distance

produced a symmetric bell shaped probability density function (pdf) when the indi-

viduals’ positions were concatenated and integrated over time (Figure 6.2). As the

population approached a swarm density of 0.5 (population size approaching 128), col-

lisions and crowding at the centre significantly skewed the distribution towards the

centre of the arena. Due to this skew and higher robot density, the performance score

of larger populations of robots following the RWP behaviour continued to increase

as the number of robots in the swarm increased, thus leading to the performance not

differing significantly from swarms with a boldness dynamic (Figure 6.4). Thus, at

high swarm densities, more complex control strategies are no more effective than a

simple approach as was also noted in [HJH19].

6.3.2 Huddling behaviour

With robot boldness set to a minimum, there was consistent connectivity in the

central arena region at the expense of not reaching into further radial distances.

Nevertheless, this was sufficient for performance scores comparable with boldness-

dependent behaviours at very low populations. As swarm size grew, the performance

of risk-taking exploratory behaviours quickly overtook this ‘huddling’ strategy. How-

ever, it is a reasonable approach to reaching a small amount of the area if connectivity

is paramount to the task and only a small population is available. It outperforms

the random waypoint behaviour up to a swarm density of approximately 0.25 (Fig-

ure 6.4). We suspect that this is owing to the stable connectivity facilitated by the

increased density about the centre of the arena.

1All data analysed here is available on GitHub: https://github.com/geojenks/adaptive-risk-
appetite
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Figure 6.4: Performance metric score comparison for the 4 controllers with the
shaded regions showing the 95% confidence intervals (assuming a normal
distribution of the simulation results). See Fig. 6.1 for the scoring method: it
rewards successful transmission of distant messages back to base. At interim
densities the boldness-based controllers outperform huddling and RWP strategies,
but this advantage diminishes as the density increases.

Performance Metric Scores of SPIDER Algorithms
Population Huddling RWP SPIDER-density SPIDER-boldness

mean s.d. mean s.d. mean s.d. mean s.d.
8 18800 2100 10500 2590 30600 2580 30700 4110
16 33000 1580 15600 1380 35500 1670 35000 4100
32 42800 1470 28000 2480 55100 2010 55800 3300
64 54900 1250 51600 2290 70100 2600 70200 3100
128 72600 904 84100 2170 85300 4130 91500 3140

Table 6.1: Scores of performance metrics for the four different control algorithms
and varying population sizes with the highest score for each population size given in
bold. Recall that every 0.5s the scores for a particular swarm are calculated and this
happens for the 5000s for which the simulations are running, giving a total of 10,000
time periods. The scores from each of these time periods are then summed together
to give the overall score for a simulation run.
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6.3.3 SPIDER-density controller performance

The controller parameters selected by the EA for small swarms tended to favour low

risk strategies whereby robots remain close to the central region where they are likely

to be connected to the main cluster. As the population grew, the selected parameters

produced swarms containing robots much more likely to be found in riskier regions

further from the arena centre (N=64 shown in Figure 6.2).

Performance metric score

The SPIDER-density controller outperforms the random waypoint (RWP) behaviour

beyond a confidence level of 95% up to and including a population size of 64 robots.

Beyond this, the RWP and SPIDER-density behaviours score more closely. At a

population density of 0.5, the mean score of the SPIDER-density swarm does not

fall outside of a single standard deviation of that of the RWP. However, it did out-

perform the huddling behaviour across the higher range of population densities but

not significantly at the lowest densities (Figure 6.4). This indicates that for small

populations, the strategy that the EA evolves is rather risk-averse.

Population catastrophe

The SPIDER-density controller sometimes resulted in moderately fluctuating sub-

populations of each boldness class, as can be seen in the initial stages of Figure 6.5A.

This may have had the effect of increasing the speed at which the swarm can react to

a change such as a population catastrophe; being the fastest controller to stabilise,

the swarm took an average of 542.9s to stabilise at a new distribution (Figures 6.5A

and B).

6.3.4 SPIDER-boldness controller performance

The SPIDER-boldness controller was particularly effective for larger swarms. This

is likely because as the population increases, it becomes more difficult to travel to

or from the central region due to blocking, so being able to abandon the destination

and select a new desired distance allowed robots to leave the overcrowded central

area. The distribution of the robots over the environment is less positively skewed

into distant regions than for the more simple SPIDER-density controller. This is

a reflection of the decaying local swarm density (Figure 6.2), as a robot will not

continue to move outwards far beyond the periphery of the swarm if it does not
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encounter another agent. The peak of the pdf of the agent locations moves through

3.88, 4.21, 5.52, 8.41, as the population redoubles from 16 to 128, thus indicating that

as the population size increases the most visited regions are increasingly far away

from the centre of the arena. The regions toward the edge of the arena are relatively

unexplored, despite the swarm having a considerable bold proportion. This is likely

because as robots travel toward far regions, their boldness falls and so they adjust

their distance to be closer to the centre before they reach their previous distance

goal. This can be seen in Figure 6.2 when comparing the pdf of SPIDER-density

with SPIDER-boldness and noticing the much more rapid decay seen in SPIDER-

boldness as the distance from the centre of the arena becomes more extreme.

Performance metric score

The SPIDER-boldness controller allows the swarm to significantly outperform ran-

dom waypoint (RWP) behaviour up to a population density of 0.5. For low pop-

ulations, the swarm-wide behaviour was similar to a swarm of minimal boldness,

as most robots were required to be close to the centre to maintain any connection

at all. The swarms controlled by this behaviour outperformed the RWP behaviour

beyond a confidence level of 95% up to a density of 0.5, with its mean score outper-

forming RWP by a factor of 2.9, 2.2, 2.0, 1.4 at the respective population densities.

Once the population size reached 128 robots, its scores were only slightly better than

those of completely random choice, its mean score outperforming that of the RWP

behaviour by a factor of 1.1 and a confidence level of 90%. The SPIDER-boldness

behaviour significantly outperformed the huddling behaviour with a confidence level

above 95% for population sizes above 16, its mean score being better by a factor of

approximately 1.3 at each of the swarm densities tested (Figure 6.4).

Population catastrophe

The sub-populations gradually approached their stable proportion after a catastro-

phe and did not overshoot or oscillate heavily (Figure 6.5C). The swarm stabilised

after an average of 615s following the population being halved (Figure 6.5C and D).

We believe that this reliable recovery is due to the combination of the stabilising ef-

fects of increasing robots’ boldness levels only when they were surrounded by bolder

neighbours at a rate relative to their current level, and the ability adapt their goal

en-route.
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Distance Travelled by Kilobot
Population Huddling RWP SPIDER-density SPIDER-boldness

mean s.d. mean s.d. mean s.d. mean s.d.
16 2.31 0.26 9.57 0.96 5.22 0.43 2.98 1.07
32 2.30 0.14 9.67 0.46 4.47 0.18 4.11 0.27
64 2.31 0.07 9.04 0.22 8.23 0.32 6.40 0.44
128 2.33 0.05 7.37 0.15 4.95 0.15 6.12 0.05

Table 6.2: Distance travelled by the Kilobots for each behaviour over the range of
populations. Each data point is from 10 repeat experiments. Identifying the most
energy-efficient behaviour is not possible from this data without introducing more
parameters.

Population Catastrophe Recovery Time (s)
N=Pre:Post SPIDER-density SPIDER-boldness

mean s.d. success mean s.d. success
128:64 62.5 76.8 100% 361.5 89.3 100%
64:32 40.0 21.0 100% 110.5 49.9 100%

128:64:32 51.3 48.9 100% 236.0 69.6 100%

Table 6.3: Swarms’ abilities to stabilise their shy-medium-bold distribution after
two population catastrophes. Means are from 10 repeat experiments. Both SPIDER
controllers stabilised the role distribution after a catastrophe. The fastest recovery
times are emboldened.

6.3.5 Suitability for less connection-critical tasks

The EA was used to optimise the SPIDER controllers at a longer scoring time interval

of 20s. By recording the furthest successfully relayed message over this longer time

period, there was scope to tolerate longer interim time periods where less distant

or no messages were received at the central base. This resulted in a distribution of

roles which was bolder than when scoring over a shorter time interval of 0.5s (Table

6.5). This demonstrates that the boldness dynamic can be altered to be suitable

for different tasks, or for robots with different capabilities, depending on how the

user prioritises connectivity of chains or further reach – exploration and information

gathering – from peripheral regions. This is an important finding when considering

the applications of this work since it shows that our algorithm is able to adapt to

different tasks with differing end goals.
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Average Boldness of SPIDER Algorithms
Population SPIDER-density SPIDER-boldness

mean s.d. mean s.d.
16 0.19 0.088 0.19 0.045
32 0.20 0.008 0.21 0.036
64 0.25 0.057 0.25 0.070
128 0.25 0.040 0.31 0.046

Table 6.4: Average boldness scores of the Kilobots sustained over the last 1500s of
5000s simulations, from the best scoring swarms for SPIDER-density and SPIDER-
boldness. Both controllers increase the mean boldness over the swarm for higher
populations.

Boldness in Swarms of Size N=64 For Two Scoring Periods
Score Period SPIDER-density SPIDER-boldness

mean 95% range mean 95% range
0.5s (fast) 0.243 0.231:0.255 0.262 0.239:0.284
20s (slow) 0.30 0.273:0.327 0.342 0.319:0.365

slow/fast 1.23 1.31

Table 6.5: When scoring the swarm performance metric over longer time periods, the
boldness dynamics are optimised for a more risk-taking swarm, because it permits
short-term connectivity in the pursuit of a further reach.

6.3.6 Overall comparison of SPIDER variations

Both the SPIDER-density and SPIDER-boldness controllers increased the average

boldness scores over the swarm as the population grew (Table 6.4). The similar stable

boldness distributions for the two mechanisms show that the boldness dynamic is a

reliable way to reach a role distribution. It also allows the swarm to effectively react

to its current state in order to stabilise or alter its role distribution.

The SPIDER-density controller was capable of adapting to population changes far

more quickly than the SPIDER-boldness controller (Table 6.3). The robots controlled

by SPIDER-boldness changed their boldness levels relative to their current level,

meaning that bold robots remained bold – and in isolation – for much longer than the

simple density-based behaviour. Therefore they took longer to react to population

reduction and the need for more shy robots. This is also why SPIDER-boldness was

able to regain its stable population when recovering from an all-shy population very

quickly, but not as fast from an all-bold population (Table 6.3). The utility of swarm

role stability versus adaptability is task-specific, and having an unstable, but highly

adaptive role distribution, as demonstrated by the basic behaviour, is indicated as
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more energetically demanding (Table 6.2).

The two controller variants achieve similar scores up to a swarm density of 0.263,

yet the SPIDER-boldness controller executes the task while consistently travelling

significantly less distance, on average covering 85% of the linear distance, and so

expending less energy (Table 6.2). The en-route updating means that an agent’s be-

haviour was closely linked to its boldness. By comparison agents using the SPIDER-

density controller often had long periods where their behaviour had been set at a

time when their boldness was significantly different to its present level. Therefore, it

is likely that using a SPIDER-boldness controller with input parameters a, b, c that

have been evolved, or otherwise developed, to minimise boldness while achieving a

high score, provides a path to minimising the swarm’s energy consumption. The

fact that SPIDER-boldness was able to out score SPIDER-density whilst having a

much smaller proportion of ‘bold’ Kilobots (as seen in Figure 6.5) and noting that

the Kilobots travelled significantly less distance is a good indication of this.

6.4 Concluding Remarks

Our bio-inspired boldness dynamic provides the foundational theory for a computa-

tionally cheap, decentralised mechanism by which a swarm of robots can arrive at

a stable distribution of roles in relation to risk appetite (boldness or willingness to

explore). This boldness dynamic, which we call the SPIDER algorithm, significantly

improves the swarm’s ability to reach from a base into a potentially hazardous distant

area with suitable levels of connectivity.

Demonstrating these boldness mechanisms in real robots – Kilobots – is a poten-

tial next step in validating their effectiveness. Equally, although we have examined

very simple robots, the SPIDER algorithm could be implemented in robots with more

sophisticated navigational and localisation abilities. There is also an opportunity to

deploy the SPIDER algorithm in real-world field trials in hazardous environments, to

demonstrate the effectiveness of a density-based risk appetite controller for optimis-

ing the connectivity–reach trade-off. This decentralised swarm approach is especially

relevant when significant numbers of agents are at risk of loss or destruction, such

as in adversarial or disaster response scenarios.
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Figure 6.5: Example trials of the SPIDER-density (panes A and B) and
SPIDER-boldness (C and D) controllers with a ‘population catastrophe’. The
population is halved twice from 128 to 64 to 32 robots at 1500s and 3000s. Dotted
lines show the sub-population proportions towards which longer simulations
converge.
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Chapter 7

Conclusions and future work

Due to their low-cost, or even non-existent infrastructure, and their ability to adapt

to a wide range of different applications ad-hoc networks are fast becoming a ma-

jor part of modern day communication networks. Vehicular networks and swarm

robotics are just two examples in which they have been used but are also highly

important areas for future technologies. With autonomous vehicles fast becoming

a reality with road tests and new advancements being announced all the time, the

design and manufacture of the networks and infrastructure needed to support their

development is becoming increasingly important. For large swathes of the public to

begin using this technology, there also has to be wide-spread belief in the safety and

efficiency of these systems. The work done in this thesis gives a mathematical frame-

work for modelling and beginning to understand the behaviours of these networks

using probabilistic tools. The work gives insight into how and why these networks

may become disconnected, leading to important information not reaching its desired

target.

Furthermore, as humans we are constantly trying to deepen our understanding

of the world around us. Natural systems have evolved to be extremely efficient and

bio-inspired computing aims to replicate these efficient behaviours to solve laborious

tasks. Swarm robotics is one of the major tools in our arsenal to model these natural

systems through its ability to accurately imitate large groups of living creatures. In

this thesis we have outlined how the use of a decentralised algorithm can be used to

imitate one such natural system in which social interactions between agents inflates

their confidence and allows them to explore an environment more freely. The ability

to mimic this behaviour allows for us to use these evolutionary advantages in human

activities such as exploring unknown or dangerous environments.
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In this chapter, we discuss the work done in this thesis with respect to its math-

ematical discoveries but also its applications to communication networks. We then

discuss the future directions in which this work can be taken to further these discov-

eries.

7.1 1-D Soft Random Geometric Graphs

Although soft RGGs have been widely studied, and especially in the context of

communication networks, the 1-Dimensional model has been widely overlooked. This

is in part due to the technical difficulties involved in understanding the uncrossed

gaps, but also in part due to the fact that many networks inhabit higher dimensional

space. However, both as a mathematical object as well as in their application to

vehicular networks, there are still myriad unsolved problems and new directions in

which to take the work.

7.1.1 Future work: Mathematical directions

In Chapter 3 of this thesis, we began by conjecturing that the two key barriers to full

connectivity are isolated nodes and uncrossed gaps and this conjecture was backed up

by simulation data. We therefore began by studying isolated nodes in 1-D soft RGGs

and showed that their distribution can be well approximated by that of a Poisson

distribution. Along with the work done in Chapter 5 we showed that in the limit

as the system size grows to infinity, at the point at which uncrossed gaps begin to

appear, isolated nodes already exist within the network with high probability. This

lead us to conjecture that isolated nodes are the main barrier to connectivity in this

limit. However, there are still two key problems for which a deeper understanding is

needed.

Firstly, we want to understand how important other modes of disconnection, the

event that we have termed a split, are when discussing the full connectivity of the

network. In Section 3.2 we put forward the conjecture that the two main obstructions

to full connectivity are isolated nodes and uncrossed gaps. This is backed up by

simulation data however no formal proof of this is given. One way to approach this

would be to follow the same idea as in the higher dimensional version and show (as in

[Pen16]) that in the limit as the system size grows to infinity, either a vertex is part

of the giant component, or it is an isolated vertex. Unfortunately, a direct analysis

of all of the ways in which a network could split seems to be out of reach.
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Secondly, we want to understand the behaviour of the graph for finite system

sizes, a very important factor in the analysis of this problem in the context of real-

world communication networks. As was remarked at the end of Section 3.2 and then

discussed in more detail at the end of Section 5.3, the question of whether isolated

nodes or uncrossed gaps are more important with respect to full connectivity is not so

clear for finite sized systems, and in particular it seems that for smaller systems with

faster decaying connection functions that uncrossed gaps become more important.

Therefore, to get a full understanding of the behaviour of these systems, it is of

paramount importance to understand these uncrossed gaps. One way to do this

is to follow the same idea as that of our analysis of the isolated nodes and try to

calculate the probability of one existing in the network. If, as was the case for

the isolated nodes, the number of uncrossed gaps can be well approximated by a

Poisson distribution, then a good approximation of the probability of the absence of

an uncrossed gap only requires calculating the expected number of uncrossed gaps in

the network. In the 1-D hard RGG, it has been shown (e.g. [HM08]) that this Poisson

approximation holds, and so there is no reason to believe that this would not be the

case for the soft RGG. In Figure 7.1 the number of simulations in which an uncrossed

gap occurs (circle marked Pucg in the legend) is compared with 1− exp(−nucg) where

nucg is the total number of uncrossed gaps summed over all simulations for one set of

simulation parameters (i.e. an approximation of the expected number of uncrossed

gaps). The expression 1 − exp(−nucg) is used since this is the probability that a

Poisson process of rate nucg is empty. Each plot is based on 5 000 simulations where

the underlying point process is a unit rate (homogeneous) PPP. Figure 7.1a is for

a line segment of length L = 1 000 and Figure 7.1b for a line segment of length

L = 10 000. As can be seen in the figures, for both system sizes and for both

connection functions considered (Waxman and Rayleigh), the Poisson distribution

seems to be a good approximation for the distribution of the number of uncrossed

gaps and hence we conjecture that

P(Nucg = 0) ≈ 1− exp(−E[Nucg]),

whereNucg is the number of uncrossed gaps in our network. Along with the conjecture

that the two main obstructions to full connectivity are isolated nodes and uncrossed

gaps, we are able to completely describe the probability of connectivity via the

expectations of these two quantities. If full connectivity is defined only by the lack

of isolated nodes and uncrossed gaps and these quantities can be well approximated
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by Poisson distributions, then,

Pfc ≈ 1− P(Niso = 0)P(Nucg = 0)

≈ 1− exp (E[Niso] + E[Nucg]) .

Thus, the future mathematical work in this area should be focused on two main

ideas: understanding the behaviour of the uncrossed gaps in the network, and looking

at different point distributions and mobility. Uncrossed gaps are very technically

difficult to analyse directly as was shown in Chapter 5 in which we were only able to

derive a bound on the expectation of the number of uncrossed gaps. In this chapter,

the generalised Rayleigh connection function was analysed, and the critical scaling

for the emergence of uncrossed gaps was investigated. It was hypothesised that for a

1-D soft RGG on the line segment [0, L], uncrossed gaps appear when the connection

function scales as

Rucg
L =

lnL

C(ln lnL)θ
,

where C is a constant that depends in a complicated way on the parameters of the

connection function and θ is related to the path loss exponent, η. It was also noted

that this constant C gives information about the system sizes for which isolated nodes

or uncrossed gaps are more important for studying the connectivity of the network.

Therefore, studying the quantity C will give insights into network connectivity.

The second direction is to look at different point distributions. It has been shown

that when traffic is in its free-flow state that the distributions of the vehicles in

the network can be well approximated by a Poisson distribution [RPM04], however,

this is not always the most accurate way to model these networks. Other point

processes such as the Matérn hard-core point process (as introduced in Chapter 2)

have been used to model vehicular networks [TLH+16] along with Cox processes

[CD18]. An interesting question to ask would be how much of the insight gained

from investigating the PPP still holds in these more complex point processes. The

analysis given in this thesis assumes that the network is being looked at at a snapshot

in time and hence mobility is ignored. Applying the ideas of this work to different

point processes, as well as incorporating mobility into the models, will allow the use

of this research in real-world studies of vehicular networks.
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Figure 7.1: The proportion of simulations for which an uncrossed gap was present,
Pucg, compared with 1− exp(−nucg) where nucg is the total number of uncrossed
gaps summed over all simulations for one set of simulation parameters. The
comparisons are done for a Waxman connection function (green circles and red
crosses) and a Rayleigh connection function (blue circles and orange crosses) and
the underlying point processes are unit rate PPPs on a line segment of length (a)
L = 1000 and (b) L = 10000.

7.1.2 Results: Communication Networks

Within the context of real-world vehicular communication networks, the size of the

network is likely to be on the scale of 10s, or 100s (or possibly 1000s depending on

how the infrastructure is designed). This is much smaller than the scales simulated

in this thesis, where the minimum simulated network size was around 1000 nodes.

Having not done much work on these smaller scales, it is difficult to comment on the

behaviour of the systems, however we can make educated guesses based on the results

we have seen. It seems that as we look at smaller network sizes, the importance of

uncrossed gaps becomes more prevalent (with this even being evident in large network

simulations where η ≥ 2). Therefore, as mentioned, an understanding of uncrossed

gaps in soft RGGs will play a key role in analysing connectivity of these networks.

It also becomes unclear how things like Poisson approximations will be affected by

the smaller system size as in general these only hold in the limit of the system size

tending to infinity. But at these smaller scales it is also easier to do brute force

calculations due to the smaller number of nodes. Alongside this, the effects of the

boundaries will also become more important due to the larger proportion of nodes

being “close” to the boundary. Whilst a highly interesting topic, unfortunately this

will have to be left as future work as discussed in the following section.
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7.1.3 Future work: Communication Networks

The main aim of this work was to study full connectivity in communication networks

to understand where issues may arise in their design. The locations of road-side units

(RSUs) will be paramount to maintaining a robust and well-connected network and

the findings of this work will aid in this via an understanding of what causes discon-

nection in these networks. However full connectivity of the network may not always

be possible, and may also not always be necessary. One area of research currently

being considered in this field is assessing the k−hop connectivity between a vehicle

and a RSU. The k−hop connectivity between two users is the minimum number of

steps to get from one to the other via intermediate connected users. For example, if

two users are directly connected, they are said to have 1-hop connectivity. This idea

has been investigated in [KKL+20] in which the expected number of vehicles with

2-hop connectivity to a RSU under Rayleigh fading conditions is calculated.

Another future direction for this work could be to combine the investigations

into full connectivity to studies on how information propagates through VANETs.

Understanding how information is spread through these networks poses some very

interesting research questions: What effect does it have on the network if some users

have latent information? How long can a vehicle be disconnected from the network

and still act efficiently? How does the connectivity of the network affect the routing

of information? These types of questions are very important to understand for future

applications in which hybrid systems of both autonomous (self-driving cars) and non-

autonomous vehicles will combine.

7.2 Swarm Robotics

Swarms of robots are becoming a very widely used tool in the study of communica-

tion networks, especially in environments in which there is a lack of infrastructure

and even more so if this environment is too dangerous for humans to explore. They

offer a low cost way to explore unknown areas and carry out tasks previously impeded

by the high costs of the robots used. One such example of a low cost robot is the

Kilobot upon which the simulations examined in this thesis were based. The work

presented here was solely evaluated through simulations performed in the Kilobox

simulator. It was shown in Chapter 6 that the SPIDER-boldness algorithm described

significantly improves the swarm’s ability to reach from a base into a potentially haz-

ardous distant area with suitable levels of connectivity. The obvious next step would
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be to implement this code on a real Kilobot as a way of validating the effective-

ness of the boldness mechanisms. Equally, Kilobots are very simple robots and the

SPIDER algorithm could also be tested on much more complex robots with more

sophisticated navigational and localisation abilities. It would also be of interest to

deploy the SPIDER algorithm in real-world field trials in hazardous environments,

testing the effectiveness of a density-based risk appetite controller for optimising

the connectivity–reach trade-off. When in adversarial or disaster response scenarios

where it may be too dangerous for humans, or there is a high risk of loss or destruc-

tion of robots, this decentralised swarm approach is of particular interest. Therefore,

testing their performance in real-world trials will be highly important.

7.3 Closing Remarks

Full connectivity in ad-hoc networks is a highly desirable property, especially for

safety critical cases such as VANETs, and is often seen as a pre-requisite of these

systems. Random Geometric Graphs, and especially soft RGGs, allow for the in-

depth study of these networks without the costs associated with physically building

and testing them.

This thesis gives an in depth study of the properties of the 1-D soft RGG and

discusses its use as a tool for modelling vehicular networks to aid with the design

and implementation of this exciting technology. As well as being of interest to the

engineering world, the 1-D soft RGG inhabits a rare space in the mathematical

world since it appears to be a more complicated object than its higher dimensional

counterparts. It therefore also offers a challenge to mathematicians to understand

its behaviours and this thesis leaves many open questions for the interested reader.

Along with the promising work carried out to test a bio-inspired algorithm, we have

ventured into the world of autonomous systems: a crucial instrument for the future

of smart cities.

The future world of smart cities and interconnected devices offers incredible flexi-

bility and the potential for far reaching applications, but also needs as many tools as

possible at its disposal to plan and design these networks. Stochastic Geometry, and

RGGs in particular, offer a great mathematical toolbox to be used for this purpose

and also to understand the limitations and, more importantly, the great potential of

ad-hoc networks.
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