150 research outputs found

    Analysis of Impact Chattering

    Get PDF
    In this paper, mechanical models with Newton's Law of impacts are studied. One of the most interesting properties in some of these models is chattering. This phenomenon is understood as the appearance of an infinite number of impacts occurring in a finite time. Conclusion on the presence of chattering is made exclusively by examination of the right hand side of impact models for the first time. Criteria for the sets of initial data which always lead to chattering are established. The Moon-Holmes model is subject to regular impact perturbations for the chattering generation. Using the chattering solutions, continuous chattering is generated. To depress the chattering, Pyragas control is applied. Illustrative examples are provided to demonstrate the impact chattering.Comment: 16 pages, 8 figure

    Implementation of Delayed-Feedback Controllers on Continuous Systems and Analysis of their Response under Primary Resonance Excitations

    Get PDF
    During the last three decades, a considerable amount of research has been directed toward understanding the influence of time delays on the stability and stabilization of dynamical systems. From a control perspective, these delays can either have a compounding and destabilizing effect, or can actually improve controllers\u27 performance. In the latter case, additional time delay is carefully and deliberately introduced into the feedback loop so as to augment inherent system delays and produce larger damping for smaller control efforts. While delayed-feedback algorithms have been successfully implemented on discrete dynamical systems with limited degrees of freedom, a critical issue appears in their implementation on systems consisting of a large number of degrees of freedom or on infinite-dimensional structures. The reason being that the presence of delay in the control loop renders the characteristic polynomial of the transcendental type which produces infinite number of eigenvalues for every discrete controller\u27s gain and time delay. As a result, choosing a gain-delay combination that stabilizes the lower vibration modes can easily destabilize the higher modes. To address this problem, this dissertation introduces the concept of filter-augmented delayed-feedback control algorithms and applies it to mitigate vibrations of various structural systems both theoretically and experimentally. In specific, it explores the prospect of augmenting proper filters in the feedback loop to enhance the robustness of delayed-feedback controllers allowing them to simultaneously mitigate the response of different vibration modes using a single sensor and a single gain-delay actuator combination. The dissertation goes into delineating the influence of filter\u27s dynamics (order and cut-off frequency) on the stability maps and damping contours clearly demonstrating the possibility of effectively reducing multi-modal oscillations of infinite-dimensional structures when proper filters are augmented in the feedback loop. Additionally, this research illustrates that filters may actually enhance the robustness of the controller to parameter\u27s uncertainties at the expense of reducing the controller\u27s effective damping. To assess the performance of the proposed control algorithm, the dissertation presents three experimental case studies; two of which are on structures whose dynamics can be discretized into a system of linearly-uncoupled ordinary differential equations (ODEs); and the third on a structure whose dynamics can only be reduced into a set of linearly-coupled ODEs. The first case study utilizes a filter-augmented delayed-position feedback algorithm for flexural vibration mitigation and external disturbances rejection on a macro-cantilever Euler-Bernoulli beam. The second deals with implementing a filter-augmented delayed-velocity feedback algorithm for vibration mitigation and external disturbances rejection on a micro-cantilever sensor. The third implements a filter-augmented delayed-position feedback algorithm to suppress the coupled flexural-torsional oscillations of a cantilever beam with an asymmetric tip rigid body; a problem commonly seen in the vibrations of large wind turbine blades. This research also fills an important gap in the open literature presented in the lack of studies addressing the response of delay systems to external resonant excitations; a critical issue toward implementing delayed-feedback controllers to reduce oscillations resulting from persistent harmonic excitations. To that end, this dissertation presents a modified multiple scaling approach to investigate primary resonances of a weakly-nonlinear second-order delay system with cubic nonlinearities. In contrast to previous studies where the implementation is confined to the assumption of linear feedback with small control gains; this effort proposes an approach which alleviates that assumption and permits treating a problem with arbitrarily large gains. The modified procedure lumps the delay state into unknown linear damping and stiffness terms that are function of the gain and delay. These unknown functions are determined by enforcing the linear part of the steady-state solution acquired via the Method of Multiple Scales to match that obtained directly by solving the forced linear problem. Through several examples, this research examines the validity of the modified procedure by comparing its results to solutions obtained via a Harmonic Balance approach demonstrating the ability of the proposed methodology to predict the amplitude, softening-hardening characteristics, and stability of the resulting steady-state responses

    A preliminary investigation into the effects of nonlinear response modification within coupled oscillators

    Get PDF
    This thesis provides an account of an investigation into possible dynamic interactions between two coupled nonlinear sub-systems, each possessing opposing nonlinear overhang characteristics in the frequency domain in terms of positive and negative cubic stiffnesses. This system is a two degree-of-freedom Duffing oscillator coupled in series in which certain nonlinear effects can be advantageously neutralised under specific conditions. This theoretical vehicle has been used as a preliminary methodology for understanding the interactive behaviour within typical industrial ultrasonic cutting components. Ultrasonic energy is generated within a piezoelectric exciter, which is inherently nonlinear, and which is coupled to a bar-horn or block-horn to one, or more, material cutting blades, for example. The horn/blade configurations are also nonlinear, and within the whole system there are response features which are strongly reminiscent of positive and negative cubic stiffness effects. The two degree-of-freedom model is analysed and it is shown that a practically useful mitigating effect on the overall nonlinear response of the system can be created under certain conditions when one of the cubic stiffnesses is varied. It has also bfeen shown experimentally that coupling of ultrasonic components with different nonlinear characteristics can strongly influence the performance of the system and that the general behaviour of the hypothetical theoretical model is indeed borne out in practice

    Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber

    Full text link
    In a single degree-of-freedom weakly nonlinear oscillator subjected to periodic external excitation, a small-amplitude excitation may produce a relatively large-amplitude response under primary resonance conditions. Jump and hysteresis phenomena that result from saddle-node bifurcations may occur in the steady-state response of the forced nonlinear oscillator. A simple mass-spring-damper vibration absorber is thus employed to suppress the nonlinear vibrations of the forced nonlinear oscillator for the primary resonance conditions. The values of the spring stiffness and mass of the vibration absorber are significantly lower than their counterpart of the forced nonlinear oscillator. Vibrational energy of the forced nonlinear oscillator is transferred to the attached light mass through linked spring and damper. As a result, the nonlinear vibrations of the forced oscillator are greatly reduced and the vibrations of the absorber are significant. The method of multiple scales is used to obtain the averaged equations that determine the amplitude and phases of the first-order approximate solutions to primary resonance vibrations of the forced nonlinear oscillator. Illustrative examples are given to show the effectiveness of the dynamic vibration absorber for suppressing primary resonance vibrations. The effects of the linked spring and damper and the attached mass on the reduction of nonlinear vibrations are studied with the help of frequency response curves, the attenuation ratio of response amplitude and the desensitisation ratio of the critical amplitude of excitation. © 2009 Elsevier Ltd. All rights reserved

    Utilizing the time delayed PPF controller to suppress vibrations of a nonlinear system containing real power exponents in damping and restoring forces

    Get PDF
    The time delayed Positive Position Feedback (PPF) controller is utilized to suppress the primary resonance of vibrations of an excited base oscillator by real power exponents of the restoring and damping forces. Multiple scales method is conducted to get the frequency response equations. The stability of the system is studied by using the Lyapunov first method. The influences of system parameters and time delay on the system response are investigated to avoid the jump phenomenon for better system performance. Time margin is deduced for most possible values of controller gain. Analytic results are verified by numerical integration of the original system equations

    Cross-Correlation and Averaging: An Equivalence Based on the Classical Probability Density

    Get PDF
    The averaging method is a widely used technique in the field of nonlinear differential equations for effectively reducing systems with "fast" oscillations overlaying "slow" drift. The method involves calculating an integral, which can be straightforward in some cases, but can also require simplifications such as series expansions. We propose an alternative approach that relies on the classical probability density (CPD) of the "fast" variable. Further, we demonstrate the equivalence between the averaging integral and the cross-correlation product of the CPD and the target function. This equivalence simplifies handling many problems, particularly those involving piecewise-defined target functions. We propose an effective numerical method to calculate the averaged function, exploiting the well-known mathematical properties of cross-correlation products

    Vibrational resonance in an oscillator with an asymmetrical deformable potential

    Get PDF
    We report the occurrence of vibrational resonance (VR) for a particle placed in a nonlinear asymmetrical Remoissenet-Peyrard potential substrate whose shape is subjected to deformation. We focus on the possible influence of deformation on the occurrence of vibrational resonance (VR) and show evidence of deformation-induced double resonances. By an approximate method involving direct separation of the time scales, we derive the equation of slow motion and obtain the response amplitude. We validate the theoretical results by numerical simulation. Besides revealing the existence of deformation-induced VR, our results show that the parameters of the deformed potential have a significant effect on the VR and can be employed to either suppress or modulate the resonance peaks, thereby controlling the resonances. By exploring the time series, the phase space structures, and the bifurcation of the attractors in the Poincaré section, we demonstrate that there are two distinct dynamical mechanisms that can give rise to deformation-induced resonances, viz., (i) monotonic increase in the size of a periodic orbit and (ii) bifurcation from a periodic to a quasiperiodic attractor
    corecore