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ABSTRACT

During the last three decades, a considerable amount of research has been directed

toward understanding the influence of time delays on the stability and stabilization

of dynamical systems. From a control perspective, these delays can either have a

compounding and destabilizing effect, or can actually improve controllers’ perfor-

mance. In the latter case, additional time delay is carefully and deliberately intro-

duced into the feedback loop so as to augment inherent system delays and produce

larger damping for smaller control efforts. While delayed-feedback algorithms have

been successfully implemented on discrete dynamical systems with limited degrees of

freedom, a critical issue appears in their implementation on systems consisting of a

large number of degrees of freedom or on infinite-dimensional structures. The reason

being that the presence of delay in the control loop renders the characteristic poly-

nomial of the transcendental type which produces infinite number of eigenvalues

for every discrete controller’s gain and time delay. As a result, choosing a gain-

delay combination that stabilizes the lower vibration modes can easily destabilize

the higher modes. To address this problem, this Dissertation introduces the concept

of filter-augmented delayed-feedback control algorithms and applies it to mitigate

vibrations of various structural systems both theoretically and experimentally. In

specific, it explores the prospect of augmenting proper filters in the feedback loop

to enhance the robustness of delayed-feedback controllers allowing them to simulta-

neously mitigate the response of different vibration modes using a single sensor and

a single gain-delay actuator combination. The Dissertation goes into delineating

the influence of filter’s dynamics (order and cut-off frequency) on the stability maps

and damping contours clearly demonstrating the possibility of effectively reducing

multi-modal oscillations of infinite-dimensional structures when proper filters are

augmented in the feedback loop. Additionally, this research illustrates that filters

may actually enhance the robustness of the controller to parameter’s uncertainties

at the expense of reducing the controller’s effective damping.
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To assess the performance of the proposed control algorithm, the Dissertation presents

three experimental case studies; two of which are on structures whose dynamics can

be discretized into a system of linearly-uncoupled ordinary differential equations

(ODEs); and the third on a structure whose dynamics can only be reduced into

a set of linearly-coupled ODEs. The first case study utilizes a filter-augmented

delayed-position feedback algorithm for flexural vibration mitigation and external

disturbances rejection on a macro-cantilever Euler-Bernoulli beam. The second deals

with implementing a filter-augmented delayed-velocity feedback algorithm for vibra-

tion mitigation and external disturbances rejection on a micro-cantilever sensor. The

third implements a filter-augmented delayed-position feedback algorithm to suppress

the coupled flexural-torsional oscillations of a cantilever beam with an asymmetric

tip rigid body; a problem commonly seen in the vibrations of large wind turbine

blades.

This research also fills an important gap in the open literature presented in the lack

of studies addressing the response of delay systems to external resonant excitations;

a critical issue toward implementing delayed-feedback controllers to reduce oscilla-

tions resulting from persistent harmonic excitations. To that end, this Dissertation

presents a modified multiple scaling approach to investigate primary resonances of

a weakly-nonlinear second-order delay system with cubic nonlinearities. In contrast

to previous studies where the implementation is confined to the assumption of linear

feedback with small control gains; this effort proposes an approach which alleviates

that assumption and permits treating a problem with arbitrarily large gains. The

modified procedure lumps the delay state into unknown linear damping and stiff-

ness terms that are function of the gain and delay. These unknown functions are

determined by enforcing the linear part of the steady-state solution acquired via

the Method of Multiple Scales to match that obtained directly by solving the forced

linear problem. Through several examples, this research examines the validity of the

modified procedure by comparing its results to solutions obtained via a Harmonic
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Balance approach demonstrating the ability of the proposed methodology to pre-

dict the amplitude, softening-hardening characteristics, and stability of the resulting

steady-state responses.
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Chapter 1

Introduction

1.1 Brief History and Overview of Delay Systems

Time-delay, hereditary, retarded, or time-lag represent different descriptions of dy-

namic systems that do not react instantaneously to actuation signals or whose tem-

poral evolution is based on retarded communications or depends on information

from the past. In order to accurately capture their response, mathematical models

used to describe these systems must include information about the past dynamics of

the states. In general, retardation can arise in many different disciplines including

biology, engineering, economics, and ecology; and can be introduced to a dynamic

system through one or a combination of the following phenomena [2]:

• Communication and transport: Delays can be introduced while information is

being transferred from one subsystem through an interconnection to another

subsystem. Examples include recycle streams [3, 4], heat exchanger dynam-

ics [5], combustion models [6, 7], congestion dynamics [8, 9, 10], and neural

networks [11].

• Feedback measurements: These occur in control systems and refer to the pe-
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riod of time between the instant the feedback signal is measured and actual

system actuation. It is well-understood that within digital circuits, actua-

tion mechanisms, filters, and controllers’ processing time; intrinsic time-delays

unavoidably bring an unacceptable and possibly detrimental delay period be-

tween the controller input and real-time system actuation [12, 13].

• Biological and population dynamics: In general, models describing these sys-

tems include time delays because the future state not only depends on the

current value but also depends on temporal variations occurring in the past.

Examples include population growth models [14], pulse circulation models [15],

and ecological models [16].

The first systematic work on delay systems is presented in the early 1900’s with the

epidemiological studies on the prevention of Malaria by Ross [17] followed by the

work of Lotka [18] in 1923, who indicated the importance of including time-delays

to account for the Malaria incubation times in Ross’s model. In 1927, Volterra [19]

introduced the retarded forms of predator-prey models used to describe population

dynamics; while Minorski, in 1942, was among the first to address the presence of

delays in mechanical systems [20]. Since those days, there has been a substantial

increase of research activities and funding directed towards understanding the ef-

fects of time delays on the stability of various dynamical systems. This established

a flourishing new branch of mathematics primarily concerned with stability and

stabilization of Delay-Differential Equations (DDEs). Consequently, a variety of

analytical, graphical, and numerical methodologies have been proposed and imple-

mented to capture and assess the stability of systems operating with single, multiple,

discrete, or continuous time delays.

The effect of time delays can also be seen in our daily life. Consider, for instance, con-

trolling the temperature of shower water. The problem of delayed-feedback becomes

evident when the desired comfortable temperature is sought. When the temperature
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is too cold or too hot, the shower faucet is turned towards increasing or decreasing

the flow of hot/cold water. However, the water temperature does not react instantly

to the user input. The delay depends on the pipe length, water pressure, and mix-

ing methods. After a certain amount of time, the user feels the water and decides

whether to continue increasing the flow of hot/cold water or to reverse its direction.

This temperature control process is usually oscillatory due to the presence of time

delay in the feedback perception. Another example lies in the human driving habits

of vehicles. Any time delay in the response to road obstacles, sudden changes in

the environment, stormy and snowy weather can become destabilizing and of fatal

consequences.

1.2 Effect of Delays on Feedback Control Algo-

rithms

It is well-understood that digital circuits, actuation mechanisms, filters, and con-

troller’s processing time unavoidably bring about an unacceptable and possibly detri-

mental delay period between the controller’s input and real-time system actuation.

If unaccounted for, these inherent and compounding delays might inadvertently

channel energy into or out of the system at incorrect time intervals, producing in-

stabilities and rendering the controllers’ performance ineffective.

From a mathematical perspective, the presence of delays in the feedback loop renders

the characteristic equation associated with the system dynamics of the transcenden-

tal type. This transforms the system from a finite to an infinite-dimensional state.

In other words, associated with every discrete time delay, the characteristic equation

yields infinite number of eigenvalues in the complex plane. In order to create a bet-

ter understanding of this concept1, we shall consider the linear stability analysis of

1The linear stability analysis presented herein is only meant to build upon and is necessary to
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Figure 1.1: Stability map of the equilibrium solutions of Equation (6.1) for ωn = 1,
µ = 0.005, and T = 2π/ωn. Shaded regions represent asymptotically-stable equilibria.

a second-order dynamic oscillator subjected to delayed-acceleration feedback. The

equation of motion governing the dynamic behavior of the system is given by

d2u

dt2
+ 2µ

du

dt
+ ω2

nu = −Kd2u(t− τ)

dt2
, (1.1)

where u ∈ R, µ ∈ R+ is a linear damping term, ωn ∈ R+ is the natural frequency,

K ∈ R is the coefficient of the linear-delayed state, loosely referred to as the linear

gain, and τ ∈ R+ is a discrete feedback delay.

The characteristic equation associated with Equation (1.1) can be written as

(ω2
n + λ2) + 2µλ+Kλ2e−λτ = 0, (1.2)

where λ ∈ C is the eigenvalue. Note that, due to the presence of the term e−λτ

in Equation (1.2), the characteristic polynomial becomes a quasi-polynomial of the

transcendental type having infinite number of solutions associated with every set

of fixed parameters (K,τ). Hence, by virtue of Equation (1.2), the trivial solutions

create a better understanding of the value of this work.
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of Equation (1.1) are locally-asymptotically stable if all the eigenvalues, λ, have

negative real parts and are unstable if at least one eigenvalue has a positive real

part. The fact that the system has infinite number of eigenvalues complicates the

stability analysis and requires tracking the location of all these eigenvalues in the

complex plan as the system parameters are varied. Considering the case K < 1 to

guarantee the stability of the delayless system, one can find the stability boundaries

in the (K,τ) space by setting the real part of the eigenvalues equal to zero, i.e.

letting λ = ±iω in Equation (1.2), then separating the real and imaginary parts of

the outcome. This yields

τcr =
1

ωcr

(
tan−1 ωcrµ

ω2
cr − 1

+ nπ

)
, n = 0, 1, 2, ...

Kcr = ±
√
ω2
crµ

2 + ω4
cr − 2ω2

cr + 1

ω2
cr

(1.3)

where τcr, Kcr, and ωcr denote, respectively, the delay, gain, and response frequency

at the stability boundaries. For a given frequency, ωcr, Equations (1.3) can be solved

for the delay τcr and the associated gain at the boundary, Kcr. To better visualize the

stability of the equilibrium solutions, the gain-delay space is mapped into stable and

unstable regions as depicted in Fig. 1.1, where shaded regions represent gain-delay

combinations leading to asymptotically stable equilibria. It is clear from the figure

that the presence of delay in the closed-loop system introduces different stability

pockets. As the delay increases, the gain that stabilizes the system decreases initially

then increases again then decreases (in a periodic manner). The size of the stability

pockets shrinks as the delay increases.

The preceding technique for the stability analysis of delay systems is known as the

graphical approach or the D-decomposition technique [21]. This approach works well

when the system has one or two states at most. For larger number of states, many

stability analysis techniques have been proposed and implemented. Among those

are the frequency-domain techniques which have been analyzed in the manuscripts

5



by Stepan [22], Niculescu [2], Kamen [23], and Gu [21]. These techniques include,

but are not limited to, the two variable criterion, the polynomial elimination meth-

ods [24, 25, 26], the pseudo-delay techniques [27], and the iterative approach [28]. In

addition, time-domain methodologies have also been implemented to estimate the

stability margins of delay systems. These include the constant matrix approach [29],

the robust control approach [30, 2], and, most recently, the Lambert function approx-

imation [31]. More details on the stability techniques used in this work is available

in Chapter 2.

1.3 Motivations

The motivation behind this work are two folds: the first is associated with the

implementation of delayed-feedback controllers to suppress harmful oscillations of

structures using a single sensor single actuator approach. The second deals with the

adaptation of the Method of Multiple Scales [32] to construct analytical solutions

that aid in understanding primary resonances of externally-excited weakly-nonlinear

delay systems. Following is a detailed discussion of these motivations:

1.3.1 Implementation of delayed-feedback control algorithms

on structures:

Despite the fact that delays in the feedback are thought to be detrimental to con-

trollers’ performance and are usually associated with instabilities; large number

of research efforts are currently directed towards implementing delayed-feedback

control algorithms for vibration mitigation and external disturbances rejection on

various dynamical systems [33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. Delayed-position,

-velocity and -acceleration feedback are some examples of such algorithms. This idea

6



arguably started with the work of Abdallah et al. [43] who showed that delayed-

positive feedback can actually stabilize oscillatory systems. Since then, this same

concept has received significant attention in the open literature because of the ability

of such controllers to augment inherent system delays resulting from filters, proces-

sor’s dynamics, computations, and feedback loops into a larger and stabilizing delay

period. Furthermore, it has been shown that delayed feedback algorithms are capa-

ble of producing larger damping in systems for smaller control efforts.

Many researchers have explored these advantageous characteristics to augment the

inherent destabilizing feedback delay into a fixed and possibly larger and stabilizing

delay period. This started with a series of studies by Jalili and Olgac [33, 34, 35], who

illustrated that, by choosing a proper gain-delay combination, the effective quality

factor of the system can be decreased considerably producing larger damping which

can be effectively utilized to mitigate vibrations of externally-excited systems. In

other demonstrations, Hosek et al. [44] and Olgac et al. [40] implemented time-

delayed velocity feedback control on torsional mechanisms. Robinett et al. [45] also

employed a lag-stabilized force-feedback controller for damping initial and residual

oscillations of a planar, cantilevered, flexible arm. In recent years, Masoud et al.

[36, 37, 38, 39] successfully implemented delayed-acceleration feedback control to

reduce pendulations of suspended cargo on ship-mounted cranes, structural boom

cranes, and telescopic cranes. They showed that delayed-feedback controllers have

a superior performance over traditional feedback algorithms.

Despite all the previously mentioned examples, a major concern remains in the im-

plementation of these controllers on multi-degree-of-freedom (MDOF) and distributed-

parameters structural systems. Specifically, as seen in Equation (1.2), due to the

transcendental nature of the resulting characteristic quasi-polynomial associated

with the delay-differential equation that describes the dynamics of every vibration

mode, [46, 47, 48]; a gain-delay combination that stabilizes a given vibration mode

can easily destabilize other vibration modes. Therefore, as the number of modes
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increases, the stability pockets in the gain-delay space shrink significantly and the

complexity of finding a gain-delay combination that can simultaneously stabilize

multiple vibration modes increases [49].

As an example, consider the problem of utilizing a delayed-feedback algorithm to

mitigate the vibrations of a homogeneous, uniform thin beam due to some initial

conditions. Using Euler-Bernoulli’s beam theory, the partial differential equation

that describes the response characteristics can be written as

EI
∂4w(x, t)

∂x4
+ c

∂w(x, t)

∂t
+m

∂2w(x, t)

∂t2
= Kw(s0, t− τ),

w(x, 0) = f(x), ẇ(x, 0) = g(x).

(1.4)

with some boundary conditions depending on the type of support at either end of

the beam. Here, w(x, t) represents the beam deflection in space x, and time t; E

is the beam’s modulus of elasticity, I is the area moment of inertia, c is a viscous

damping coefficient, andm is the mass per unit length of the beam. The terms on the

left-hand side of the equations are, respectively, the stiffness, damping, and inertia

terms. The term on the right-hand side represents the delayed-position feedback

control law, which is obtained by measuring the deflection of the beam at a distance

s0, multiplying it by a proper gain K, and delaying it by a period τ . A Galerkin

expansion of the form
∑∞

i=1 φi(x)qi(t) can be used to discretize Equation (1.4) into

an infinite number of linear second-order oscillators in the form

q̈n + 2ζnωnq̇n + ω2
nqn = Kαn

∞∑
i=1

φi(s0)qi(t− τ), n = 1, 2, 3, ..,∞, (1.5)

where ωn and ζn are, respectively, the modal frequencies and damping ratios; and αn

are constants describing the relative projection of the control effort on the different

vibration modes. Keeping a single mode in the series expansion, the characteristic
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quasi-polynomial of the response can be written as

λ2 + 2ζ1ω1λ+ ω2
1 −Kα1φ1(s0)e−λτ = 0, (1.6)

where λ represents the eigenvalue. Equation (1.6) is transcendental and has infi-

nite number of solutions (eigenvalues) associated with every single gain and delay

combination. It has been shown by various researchers that a gain-delay combi-

nation can be easily found to not only stabilize system (1.6) (all λ’s are in the

left-hand side of the complex plane) but also increase the effective damping in the

response. However, it was noted that, this same gain-delay combination can become

destabilizing if the second or higher modes are kept in the expansion [50, 51]. The

higher the number of modes included, the harder it is to find a single gain-delay

combination that stabilizes the response. Figure 1.2 presents the rightmost eigen-

values for the first and second modes. It can be clearly seen that for the same

first-mode stabilizing control parameters (K and τ), the emergence of the second

mode dynamics renders the time-delayed feedback response unstable (i.e., the right-

most eigenvalue is now located on the right half of the complex plane). As such, one

of the main objectives of this Dissertation is to derive methodologies that permit

implementation of delayed-feedback algorithms to suppress multi-modal oscillations

od infinite-dimensional structures. Details of this objective are available in Section

1.4.

1.3.2 Primary resonances of weakly-nonlinear delay systems:

Despite the significant body of research that deals with the stability and stabiliza-

tion of delay systems, most of these efforts are directed towards characterizing the

stability of the free response by proposing various methodologies to predict and es-

timate the location of the eigenvalues relative to the imaginary axis [52, 53]. Little

attention has been paid to understand the effect of time delays on the response of
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Figure 1.2: Rightmost eigenvalues of the first and second modes of a cantilevered beam
for K=0.2 and τ=0.2.

nonlinear externally-excited systems [54, 55]. In particular, the nonlinear response

of a delayed system to primary-resonance excitations has yet to be addressed com-

prehensively. Such studies were not necessary in the past due to the limited number

of applications in which time delays and external excitations coexist in the operation

of a dynamic system. Currently, and due to the emergence of micro and nanodevices

as the next generation sensors and actuators, this type of analysis is becoming more

imperative. For instance, to realize large dynamic responses, microdevices are usu-

ally excited at one of their resonant frequencies. Further, to enhance their dynamic

characteristics, feedback control algorithms are being implemented to close the loop

and provide real-time information about the states. However, due to their high nat-

ural frequencies, the presence of the infinitesimal measurement delays in the control

loop can be of the order of magnitude of the response period, thereby channeling

energy into or out of the system at incorrect time intervals producing instabilities
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that render traditional controllers’ performance ineffective [56].

To resolve these issues, there is a growing interest in the control and dynamic commu-

nities to utilize delayed-feedback controllers for vibration mitigation and control of

microsystems. It has been shown that augmenting the system delay into a carefully

and deliberately selected delay period (shaded regions in Fig. 1.1) is capable of pro-

ducing substantial damping that can actually augment controllers’ design [43]. Most

recently, this idea was also adapted to control microcantilevers in dynamic force mi-

croscopy [57], to eliminate chaotic motions in taping-mode atomic force microscopy

[58], for sensor sensitivity enhancement in nanomechanical cantilever sensors [59, 60],

and to control the quality factor in dynamic atomic force microscopy [56]. Successful

implementation of these controller on nonlinear delay systems, especially when the

objective is to control an externally-excited system requires a deep analytical under-

standing of the primary resonance phenomenon in time-delayed systems. As such,

it is the objective of this Dissertation to derive analytical techniques that permit

investigation primary resonances of weakly-nonlinear delay systems. Further details

are available in next Section.

1.4 Dissertation Contributions

The contributions of the conducted research can be summarized as follows:

• Augmentation of low-pass filters into time-delay control algorithms to suppress

vibrations in multi-degree-of-freedom and structural systems using a single-

input single-output control approach: The Dissertation introduces the con-

cept of filter-augmented delayed-feedback algorithms and applies it to differ-

ent structural systems both theoretically and experimentally. In specific, it

explores the prospect of augmenting proper filters in the feedback loop to

enhance the stability and robustness of delayed-feedback controllers; thereby
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allowing them to simultaneously mitigate the response of different vibration

modes using a single sensor and a single gain-delay actuator combination. The

thesis goes into understanding the effect of filter dynamics (order and cut-off

frequency) on the stability maps and damping contours of single-degree-of-

freedom (SDOF) and multi-degree-of-freedom (MDOF) systems. Results from

this work has been published in the 2009 American Institute of Aeronautics

and Astronautics (AIAA) Conference [61].

• Implementation of filter-augmented delay-feedback algorithms on structural sys-

tems that can be discretized into a system of linearly-uncoupled ODEs: The

concept is implemented to reduce the multi-modal oscillations of a linearly-

uncoupled system of modal equations resulting from the discretization of a

linear PDE and its associated boundary conditions. As an example, we con-

sidered two problems that involve reducing large-amplitude oscillations of an

Euler-Bernoulli macro-cantilever beam, and a micro-cantilever sensor. We

studied, both theoretically and experimentally, the influence of low-pass filters

on the stability of the closed-loop system in the gain-delay space and on the

robustness of the controller to parameter’s uncertainties. (Note that this Dis-

sertation marks the first implementation of a delayed-feedback controller on

the micro-scale). Results form this work has been published in the Journal of

Smart Materials and Structures [62].

• Implementation of filter-augmented delayed-feedback algorithms on structural

systems that can only be discretized into a set of linearly-coupled ODEs: The

third implementation considers a structure whose equations of motion are rep-

resented by two PDEs coupled through the boundary conditions, and hence,

can only be discretized into an infinite set of linearly-coupled modal equations.

The coupling complicates the stability analysis and makes it even more diffi-

cult to find a gain-delay combination that stabilizes all modes simultaneously.
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As an example, we considered the problem of utilizing a delayed-position feed-

back controller to mitigate the linearly-coupled flexural-torsional oscillations

of a cantilever beam with an asymmetric tip rigid body. This research is mo-

tivated by recent developments in the fields of turbomachinery, light-weight

flexible space structures, and wind turbine blades. (Note that this Disserta-

tion marks the first implementation of a delayed-feedback controller on systems

with linearly-coupled modes). Results form this work have been submitted for

publication in the AIAA Journal.

• Adaptation of the “Partial Differential Equation Representation of the Delay

Differential Equation” to obtain the damping contours of delayed-feedback con-

trollers: This approach is used for the first time to generate damping contours

within the stability pockets of the closed-loop system. The adapted approach

is proven to be beneficial for systems consisting of a large number of linearly-

coupled modes as it significantly reduces computational cost. The resulting

damping contours are used throughout this study to facilitate the choice of

the optimal controller’s gain-delay combinations.

• Investigating primary resonances of weakly-nonlinear delay systems: This Dis-

sertation also provides a modified Method of Multiple Scales approach to char-

acterize the nonlinear response of a delay system near primary resonance exci-

tations. Unlike previous research efforts, the modified approach can describe

the response behavior for large control gains and near multiple delay frequen-

cies. It can also, for the first time, predict variations in the softening-hardening

characteristics of the response due to variations in the controller’s time delay.

Results from this research have been published in the Journal of Nonlinear

Dynamics [63].
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1.5 Dissertation Outline

The rest of the Dissertation is organized as follows:

Chapter 2 presents an overview of linear time-invariant time-delay systems with

constant delays. It provides a brief description, some classification, and the com-

mon methods used to analyze the stability of such systems. Chapter 3 investigates

the role of low-pass filters in the stability and stabilization of MDOF systems us-

ing delayed-feedback algorithms. The Chapter starts by formulating the response

of a general structural system as a series of a second-order oscillators subjected to

an external excitation and a delayed control actuation force obtained by low-pass

filtering a feedback signal. Subsequently, the Chapter provides a general stability

analysis of the closed-loop system and investigates the influence of filter’s cut-off

frequency and order on the stability of the system in the gain-delay space for SDOF

and MDOF systems. To validate the theoretical concepts, Chapter 4 discusses two

different experimental implementations on systems with linearly-uncoupled modes.

In the first demonstration, a filter-augmented delayed-position feedback algorithm

is used to mitigate the vibrations of a macrocantilever beam. In the second demon-

stration, a filter-augmented delayed-velocity feedback algorithm is used to mitigate

the vibrations of a microcantilever sensor.

Chapter 5 investigates the implementation of similar filter-augmented delayed-feedback

control algorithms on a structural system that can only be discretized into a set of

linearly-coupled modal equations. As an example, the Chapter considers the prob-

lem of suppressing the coupled flexural-torsional oscillations of a cantilever beam

with an asymmetric tip rigid body using a single input (piezoelectric patch) and

a single output (laser sensor). Chapter 6 presents a novel implementation of the

Method of Multiple Scales to investigate primary resonances of weakly-nonlinear

second-order delay systems with cubic nonlinearities. In contrast to previous stud-

ies where the analysis is confined to the assumption of linear delay terms with small
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gains, the Chapter proposes a modified approach which alleviates that assumption

and permits treating a problem with arbitrarily large gains. Chapter 6 also provides

a validation of the modified procedure by comparing its results to solutions obtained

via a Harmonic Balance approach. Several examples are discussed demonstrating the

ability of the proposed methodology to predict the amplitude, softening-hardening

characteristics, and stability of the resulting steady-state responses. Finally, Chap-

ter 7 provides our conclusions and recommendations for future work.
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Chapter 2

Stability of Time-Delay Systems

This Chapter provides a brief overview of linear time-invariant time-delay systems

with constant delays. It provides a brief description, some classification, and the

common methods used to analyze the stability of such systems. Some of these meth-

ods will be utilized in later chapters of this proposal. As such, a general understand-

ing of some of these concepts is necessary to grasp the research presented later in

the manuscript.

2.1 Classification of Linear Time-Invariant Delay

Systems

Typically, time-delay systems are divided into two main groups: retarded and neu-

tral. A time-delay system is said to be retarded when it does not contain delays in

its highest-order derivatives. On the other hand, a system in which there is delay

associated with the highest-order derivative is called neutral. The stability of both

systems is determined by the location of the infinite number of eigenvalues associ-

ated with the characteristic equation in the complex plane. The system is said to

16



be asymptotically stable when all eigenvalues are located in the left hand-side of the

complex plane and is unstable when at least one eigenvalue is located in the right-

hand side of the complex plane. Nevertheless, there is a main peculiarity between

retarded and neutral delay systems in terms of the distribution of the character-

istic eigenvalues in the complex plane. In retarded delay systems, the number of

eigenvalues crossing over to the right-half plane when a certain parameter changes is

always finite. Therefore, it is possible to keep track of the number of right-half plane

eigenvalues. However, this does not apply to a neutral delay system. To overcome

this obstacle, the stability criterion is usually made stricter in the case of neutral

systems by forcing the eigenvalues to strictly lie to the left of a specific line in the

left-hand side of the complex plane [21, 2, 64].

Based on the type of delay present in the equations, time-delay systems can also

be classified as commensurate or incommensurate. If the time delays are integer

multiples of a common positive number, τ , then the delay system is called com-

mensurate. Otherwise, it is called incommensurate. Because of the nature of the

resulting quasi-polynomial associated with commensurate delay systems, their sta-

bility analysis tends to be much simpler [65, 66].

2.2 Common Methods for the Stability Analysis

of Linear Time-invariant Delay Systems:

This Section describes some of the numerical techniques that are used to approx-

imate or solve the characteristic quasi-polynomial associated with time-delay sys-

tems. To that end, we start by considering the following general linear retarded

system

ẋ(t) = Ax(t) + Adx(t− τ); t ≥ 0, (2.1)
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where x ∈ Rn is the state vector, A is the state matrix, and Ad is the delay coefficient

matrix. Both A and Ad ∈ Cm×m. To solve Equation (2.1), we define the initial

function

x(t) = φ(t); −τ ≤ t ≤ 0, (2.2)

where φ(t) ∈ C([−τ, 0], Cm). We then apply Laplace transform (denoted by L[∗]) to

transform Equation (2.1) into the frequency domain. This yields

sX(s)− φ(0) = AX(s) + Ad

eτsX(s) +

τ∫
0

e−sτφ(t− τ)dt

 ; X(s) = L(x(t)).

(2.3)

Rearranging and simplifying Equation (2.3), we have

X(s) =
(
sI − A− Ade−τs

)−1

φ(0) + Ad

τ∫
0

e−sτφ(t− τ)dt

 . (2.4)

The poles of the transfer function given by Equations (2.4) represent the eigenvalues

of the characteristic quasi-polynomial. These poles can be obtained by solving

Det
[
sI − A− Ade−τs

]
= 0. (2.5)

In general, Equation (2.5) can be solved numerically for the infinitely many char-

acteristic roots [65, 21, 66]. However, such solutions can be cumbersome and time

consuming especially for systems with large dimensions. To circumvent this prob-

lem, many techniques have been proposed in the open literature to approximate

the roots of the characteristic polynomial. Of special interest is the search for the

dominant pole (closest eigenvalue to the imaginary axis) which is necessary to char-

acterize the stability of the system. Next, we provide an overview of some of most

common and important techniques available.
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2.2.1 The Padé approximation

The Padé approximation provides a finite-dimensional rational approximation of the

exponential term in the characteristic equation [67]. Specifically, the approximation

expands the term (e−sτ ) as

e−sτ ≈ Nn(τs)

Dn(τs)
, (2.6)

where

Nn(−τs) =
n∑
j=0

(2n− j)!
j!(n− j)!(−τs)

j and Dn(−τs) =
n∑
j=0

(2n− j)!
j!(n− j)!(τs)

j, (2.7)

where n is the approximation order. The method can be very accurate for some

small delays but diverges as the time delay is increased requiring higher-order ap-

proximation in order to obtain accurate results. Furthermore, in some cases, the

technique yields spurious roots. In other words, roots that are not even a solution

of the original quasi-polynomial. Such roots can be problematic because they might

affect the stability results. Additionally, the step-response of this approximation

exhibits a jump at t = 0 due to the equal numerator and denominator degree. In

other words, an output at time t=0 appears in the response, where it is supposed

to show a delay output at t = τ . Having said that, Padé approximation has many

advantageous properties in the frequency domain and, when carefully implemented,

can be used for model-order reduction [68].

2.2.2 Lambert function approach

Based on the definition of Lambert and Euler in 1758, a Lambert W function ,

W (s), satisfies the equation

W (s)eW (s) = s. (2.8)
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The Lambert W function has an infinite number of branches and the zeroth branch

is called the principle branch. In 2000, Asl et al. [69] showed that the principle

branch of the Lambert W function can be related to the rightmost pole (dominant

eigenvalue) of the characteristic quasi-polynomial of a time-delay system. Followed

by this work, several researchers [70, 71, 72, 73, 74, 75] explored different aspects of

employing the Lambert W function in the stability evaluation of time delay systems.

To explain this approach, we start with the characteristic equation

sI + A+ Ade
−sτ = 0, (2.9)

and multiply both sides by τeAτ , then rearrange, to obtain

τ(sI − A)eτ(sI−A) = −Adτe−Aτ . (2.10)

The matrices A and Ad may not necessarily commute and neither do A or sI.

However, it can be shown that when A and Ad commute, then sI and Ad also

commute. Thus, in general

τ(sI − A)eτsIe−τA 6= τ(sI − A)eτ(sI−A). (2.11)

As a result, to write the solution in terms of the matrix Lambert function, we

introduce an unknown matrix Q that satisfies,

τ(sI − A)eτ(sI−A) = −AdτQ. (2.12)

Using Equation (2.8), one can write

W (−AdτQ)e−W (AdτQ) = −AdτQ. (2.13)
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Now, comparing Equation (2.12) to Equation (2.13), it can be realized that

τ(sI − A) = W (−AdτQ). (2.14)

According to Lambert, Equation (2.14) have infinite branches of solution. The

solution associated with kth branch can be written as

sk =
1

τ
Wk(−AdτQ) + A, (2.15)

where sk is the kth eigenvalue. Note that s0 represents the dominant pole. Substi-

tuting Equation (2.15) into Equation (2.10) to solve for the Q matrix, we obtain

Wk(AdτQk)e
(Wk(AdτQk)+Aτ) = Adτ. (2.16)

Equations (2.15) and (2.16) represent a system of two nonlinearly-coupled algebraic

equations, with two unknown parameters (Qk, sk) of the kth branch. The zeroth

branch of Lambert function W0 corresponds to the rightmost pole [75]. Some math-

ematical modeling packages like Maple, Matlab, and Mathematica have predefined

Lambert function installed and ready to use. The numerical command “fsolve” is

used to solve for the stability exponents of the time-delay systems by defining an

initial condition on Q0. However, for higher-dimensional problems, the solution for

Q0 depends entirely on the initial guesses used, and hence, it is a very tedious and

cumbersome task to find the proper initial condition.

2.2.3 Discretization of the PDE representation of the DDE

In the year 2000, Bellen and Maset [76] presented an approach for the numerical

solution of DDE’s in the form of an abstract Cauchy problem. The core of the

technique is to transform the DDE into a PDE then descritizing it into a set of linear
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Ordinary Differential Equations (ODEs) using the method of lines. The eigenvalues

resulting from the solution of the system of ODEs represent the eigenvalues of the

characteristic quasi-polynomial. Obviously, the number of eigenvalues resulting from

this approach is finite and will increase as the number of ODEs resulting from the

discretization is increased. Furthermore, the accuracy of the resulting eigenvalues

increases with the number of ODEs resulting from the discretization. The important

characteristic of this scheme is that the resulting eigenvalues can always be ordered

in terms of their closeness to the imaginary axis which allows for identifying the

dominant eigenvalue necessary for the stability analysis. Various researchers have

demonstrated the asymptotic convergence of the proposed approach [77, 78].

To better demonstrate how to implement this approach to a DDE, we consider

Equation (2.1) with the initial function as defined in Equation (2.2). If one con-

siders the delay as another variable, say θ, defined over the interval [−τ, 0], then

it becomes possible to introduce a function of two different variables u(t, θ) to de-

scribe the dynamics of the DDE. The trick here is to find an equivalent PDE whose

characteristic equation resembles that of the DDE. To that end, let us consider the

following first-order Hyperbolic PDE:

∂u

∂t
(t, θ) =

∂u

∂θ
(t, θ), t ≥ 0, −τ ≤ θ ≤ 0, (2.17)

with the boundary condition

∂u

∂θ
(t, 0) = Au(t, 0) + Adu(t,−τ), t ≥ 0, (2.18)

and the initial condition

u(0, θ) = φ(θ), θ ∈ [−τ, 0] (2.19)

A solution of Equation (2.17) with the associated boundary and initial conditions

22



can be obtained using the Laplace transform. Taking the Laplace transform of both

sides and substituting the initial condition, one obtains

dU

dθ
(s, θ)− sU(s, θ) = φ(θ). (2.20)

A solution of Equation(2.20) can be obtained by integrating and substituting the

boundary conditions. This yields the following eigenvalue problem for s

Det[sI − A− Ade−τs] = 0, (2.21)

which is identical to Equation (2.5). Hence, the two problems are equivalent. Now,

that the problem has been transformed into a set of PDEs, one can use a discretiza-

tion algorithm to solve it. Here, we use the method of lines (which is a form of the

finite difference approach) to discretize the dependence on θ in Equation (2.17). To

that end, we introduce the mesh ΩN given by
ΩN = {θn|n = 0, 1, ..., N}),

θn = −nh, n = 0, 1, ..., N,

h = τ
N
,

(2.22)

on the interval [−τ, 0]. Further, we substitute the partial derivative by a forward

first-order approximation as

∂u

∂θ
≈ 1

h
(u(t, θ + h)− u(t, θ)) . (2.23)

This yields the following linear system of m(N + 1)×m(N + 1) ODEs


d
dt
uN(t) = ANuN(t), t ≥ 0,

uN(0) = φN

(2.24)
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where

AN =

BN ⊗ I

A 0 . . . Ad

 ∈ C(1+N)m×(1+N)m, (2.25)

where I is m×m identity matrix, φN = (φ(−τ), . . . , φ(−h), φ(0)), and

BN =
1

h



−1 1

. .

. .

. .

−1 1

−1 1


∈ RN×(1+N) (2.26)

The eigenvalues of the matrix AN represent the first N eigenvalues of the quasi-

polynomial. It is worth noting that the accuracy of the resulting solution increases

as N increases and as the delay decreases. However, the method has been shown

to have very fast convergence with small values of N especially when it comes to

approximating the dominant root of the characteristic quasi-polynomial [79, 80].
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Chapter 3

Filter-Augmented

Delayed-Feedback Control

Algorithm

This Chapter explores augmenting proper filters in the feedback loop to enhance the

stability and robustness of delayed-feedback controllers; thereby allowing them to si-

multaneously mitigate the response of different vibration modes using a single sensor

and a single gain-delay actuator combination. However, it is known that filters in-

troduce their own dynamics into the system and can also produce additional delays.

As such, it is the purpose of this Chapter to investigate the role that low-pass filters

can play in the stability and stabilization of multi-degree of freedom systems us-

ing delayed-feedback algorithms. We start by formulating the response of a general

structural system as a series of a second-order oscillators subjected to an external

excitation and a delayed control actuation force obtained by low-pass filtering a feed-

back signal. We then carry out a general stability analysis on the closed-loop system

and study the effect of the filter’s cut-off frequency and order on the stability of the

system in the gain-delay space for single- and multi-degree of freedom systems.
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3.1 Problem Formulation

We consider a general MDOF linear system representing a reduced-order model of

a structural system. The governing dynamics is represented by a series of linear

second-order oscillators as follows:

ẍi(t
∗) + 2ζiωiẋi(t

∗) + ω2
i xi(t

∗) = a∗iF (t∗) + d∗i δ(t
∗),

xi(0) = xi0, ẋi(0) = vi0 i = 1, 2, ..., n,
(3.1)

where xi are dimensionless modal terms, t∗ denotes time, ωi are modal frequencies,

ζi are modal damping ratios, F (t∗) is the actuation control signal, δ(t∗) is an exter-

nal disturbance, and a∗i and d∗i are constants representing, respectively, the relative

projection of the control signal and external disturbance onto the different modes.

The goal here is to choose a control signal F (t∗) which can augment system delays

while simultaneously mitigating system vibrations resulting from the external dis-

turbance δ or the initial conditions. For this purpose, it is assumed that a feedback

signal can be obtained using a sensor that measures a linear combination of the

modal terms as

yf (t
∗) =

n∑
i=1

cixi, (3.2)

where ci are constants.

In common practice, the feedback signal yf (t
∗) is usually passed through a low-

pass filter to remove noise, signal interferences, and other higher-order dynamic

distortion. For that purpose, a general kth order Butterworth low-pass filter (BLPF)

is utilized, see Fig. 3.1. The Butterworth filter is usually used for its simplicity and

ability to have a flat frequency response up to the desired cut-off frequency after

which the response dies rapidly with a roll-off slope depending on the filter’s order.

The filter output can be related to the sensor’s signal through the following filter
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dynamics:
bk
ωkcf

y
(k)
1 +

bk−1

ωk−1
cf

y
(k−1)
1 + ...+

b1

ωcf
ẏ1 + b0y1 = yf (t

∗), (3.3)

where y1 is the filter output, ωcf is the filter’s cut-off frequency and bk are the

coefficients of the polynomials obtained by evaluating either one of the following

Equations [81, 82]:

bk(s) =

k
2∏
j=1

{(
s

ωcf

)2

− 2

(
s

ωcf

)
cos

(
2j + k − 1

2k
π

)
+ 1

}
, for k even (3.4a)

bk(s) =

((
s

ωcf

)
+ 1

) k−1
2∏
j=1

{(
s

ωcf

)2

− 2

(
s

ωcf

)
cos

(
2j + k − 1

2k
π

)
+ 1

}
,

for k odd

(3.4b)

where k is the order of the filter.

yfy1

K

δ

Filter

Plant
input output

τ

Controller

−+
+

+

Figure 3.1: Block diagram of a delayed-position feedback control algorithm.

The control signal is chosen as the filtered sensor’s signal amplified by a proper gain,

K∗, and delayed by a deliberately-introduced delay period τ ∗ such that

F (t∗) = K∗y1(t∗ − τ ∗) (3.5)

27



Using Equation (3.5), the closed-loop system dynamics can be written as

ẍi(t
∗) + 2ζiωiẋi(t

∗) + ω2
i xi(t

∗) = k∗i y1(t∗ − τ ∗) + d∗i δ(t
∗) (3.6a)

bk
ωkcf

y
(k)
1 +

bk−1

ωk−1
cf

y
(k−1)
1 + ...+

b1

ωcf
ẏ1 + b0y1 =

n∑
i=1

cixi (3.6b)

where k∗i = a∗iK
∗ and i = 1, 2, 3, ..., n.

To non-dimensionalize Equations (3.6a) and (3.6b), we introduce the non-dimensional

time t = t∗ω1, delay period τ = τ ∗ω1, modal damping µi = ζiωi/ω1, and the fre-

quency ratio ε = ω1/ωcf . With that, Equations (3.6a) and (3.6b) become

ẍi + 2µiẋi +
ω2
i

ω2
1

xi = kiy1(t− τ) + diδ (3.7a)

bkε
ky

(k)
1 + bk−1ε

k−1y
(k−1)
1 + ...+ b1εẏ1 + b0y1 =

n∑
i=1

cixi (3.7b)

where ki =
k∗i
ω2

1
and di =

d∗i
ω2

1
.

3.2 Stability Analysis

As mentioned previously, delayed-feedback control algorithms, similar to Equation

(3.5), have been widely utilized as effective means for vibration mitigation and oscil-

lation reduction on various systems [33, 34, 35, 36, 37, 38, 39, 40]. Although low-pass

filters, similar to the one adopted here, are usually used to augment controllers’ de-

sign in practice; their effect on the stability margins of delayed-feedback algorithms

has never been investigated. To elucidate the role of augmenting such filter in the

stability of delayed-feedback algorithms, we obtain the gain, K, and delay period,

τ , that render the closed-loop system of Equations (3.7a) and (3.7b) stable. To that
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end, we assume that these equations admit a solution of the form: xi

y1

 =

 Xi

Y

 eλt, i = 1, 2, ..., n, (3.8)

where [Xi Y ] is the eigenvector associated with the system eigenvalue, λ. Substitut-

ing Equation (3.8) into Equations (3.7a) and (3.7b) yields in matrix form

A(λ)

 Xi

Y

 = 0, (3.9)

where

A(λ) =



λ2 + 2µ1λ+ 1 0 · · · 0 k1e
−λτ

0 λ2 + 2µ2λ+
(
ω2

ω1

)2

· · · 0 k2e
−λτ

...
...

...
...

...

0 0 · · · λ2 + 2µnλ+
(
ωn

ω1

)2

kne
−λτ

−c1 −c2 · · · −cn η(λ)


(3.10)

and η(λ) =
(
bkε

kλk + bk−1ε
k−1λk−1 + ...+ b1ελ+ b0

)
To obtain the eigenvalues, λ, we set the determinant of the coefficient matrix A(λ) to

zero. The result is a transcendental characteristic equation in λ. This equation has

infinite number of eigenvalues. For an asymptotically stable closed-loop response,

all the λi’s must be located in the left-hand side of the complex plane.

3.2.1 Filter’s influence on the stability of a Single-Degree-

of-Freedom (SDOF) system

We begin by trying to understand how the filter dynamics affect the stability of a

SDOF system in the presence of a delayed-position feedback controller. We inves-
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tigate the effect of the filter’s cut-off frequency and order on the stability pockets.

In the SDOF case, the stability is governed by the sign of the infinite roots of the

following quasipolynomial:

(λ2 + 2µ1λ+ 1)η(λ) + c1k1e
−λτ = 0. (3.11)

To find the stability boundaries, we set λ = ±iω and obtain

(−ω2 + 2iµ1ω + 1)η(iω) + c1k1e
−iωτ = 0. (3.12)

In the case we have a first-order filter (bn = 0, n > 1), it is easy to parameterize the

space of K−τ into stable and unstable regions using the D-decomposition approach

[83, 84]. To that end, we separate the real and imaginary parts of Equation (3.12)

and obtain the following equations:

b0(1− ω2)− 2b1εµ1ω
2 + c1k1 cos[τω] = 0;

− 2b0µ1ω + b1ε(ω
2 − 1) + c1k1 sin[τω] = 0.

(3.13)

The previous equations can be solved for the critical gain and delay at the stability

boundary as

k1 = ± 1

c1

√
(b2

0 + b2
1ε

2ω2)(1 + (4µ2
1 − 2)ω2 + ω4),

τ =
1

ω

{
arctan

(
ω(−2µ1b0 + b1ε(ω

2 − 1))

(b0 + 2b1εµ1)ω2 − b0

)
+ nπ

}
, n = 1, 2, . . . ,∞

(3.14)

Equations (3.14) represents the value of the gain and delay at the stability boundary.

These equations can be used to generate a stability map of the system by varying

ω and plotting the corresponding values of k1 and τ in the gain delay space. The

stability of a given pocket is assessed by choosing a gain-delay combination within

each pocket, solving Equation (3.11) for the eigenvalues λ and assuring that the

dominant roots have a negative real part. With that, we construct the stability
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Table 3.1: Numerical values used for simulations.

First modal frequency, ω1 [rad/s] 1
First modal damping ratio, µ1 0.005
First modal force projection constant, a1 1
First modal feedback projection gain, c1 1
Second modal frequency, ω2 [rad/s] 7
Second modal damping ratio, µ2 0.005
Second modal force projection constant, a2 0.5
Second modal feedback projection gain, c2 1
Third modal frequency, ω3 [rad/s] 12
Third modal damping ratio, µ3 0.005
Third modal force projection constant, a3 0.25
Third modal feedback projection gain, c3 1

maps shown in Fig. 3.2(a).

The influence of the filter’s cutoff frequency ωcf with respect to ω1 (i.e. ε = ω1/ωcf )

on the stability pockets is shown in Figs. 3.2(a)-3.2(d) for the numerical values listed

in Table 3.1. We choose a first-order BLPF and plot the stability boundaries for four

values of ε, namely, ε = 0, 0.1, 0.5, 0.667, and 1. We observe that, as ε increases, i.e.,

ωcf is chosen closer to ω1, the stability boundaries shift to the left along the delay

axis. This is also evident in Equations (3.14) which demonstrate that, for a given

ω, the value of the critical τ is always smaller when compared to the unfiltered case

(ε → 0, b0 = 1). This causes the first and largest stability pocket to shrink which,

in turn, can reduce the robustness of the controller to variations in the system’s

and control design parameters. The shift can be attributed to the additional delay

introduced by the filter which depends on the input signal frequency. In addition,

we observe that, for very small values of ε, the effect of the cut-off frequency is small

and can be neglected. Further, it is observed that the cut-off frequency can increase

the size of the second and third stability pockets because, as seen in Equation (3.14),

increasing ε will increase the value of k1 which shifts the curves upwards along the

gain axis.
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(a) (b)

(c) (d)

Figure 3.2: Theoretical stability pockets for a SDOF system. Results compare a) no
filter to first-order filter with ε = 0.1, b) no filter to first-order filter with ε = 0.5, c) no
filter to first-order filter with ε = 0.667, and d) no filter to first-order filter with ε = 1.
Circles represent stability boundaries in the presence of a low-pass filter and shaded regions
represent stable gain-delay combinations.

The influence of the filter’s order on the stability pockets is shown in Figs. 3.3(a)-

3.3(c). Similar to the effect of the cut-off frequency, increasing the filter’s order leads

to a shift in the stability pockets towards the left along the delay axis. This again

has a negative influence on the stability margins, and, hence, the robustness of the

controller. It also influences the size of the pockets. For instance, the first-order

BLPF slightly enlarges the second and third pockets. As the order of the filter
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increases, the size of these pockets starts to shrink again. As such, in general, it

can be concluded that, augmenting a low-pass filter to a delayed-position control

algorithm applied to a SDOF system has a negative influence on the stability margins

in the gain-delay space.

(a) (b)

(c)

Figure 3.3: Theoretical stability pockets for a SDOF with ε = 1/3. Results are obtained
when a) no filter is used versus first-order BLPF, b) no filter is used versus second-order
BLPF, and c) no filter is used versus third-order BLPF. Circles represent stability bound-
aries in the presence of a low-pass filter and shaded regions represent stable gain-delay
combinations.
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3.2.2 Filter’s influence on the stability of a 2-DOF system

Next, we take into account an additional vibration mode such that ω2 is arbitrarily

chosen as seven times ω1. We investigate the influence of the second-mode dy-

namics on the stability in the gain-delay space for various orders of the BLPF.

Figures 3.4(a)-3.4(d) depict the stability pockets corresponding to the two-mode

response for different orders of the BLPF and a fixed cut-off frequency. The cut-off

frequency is chosen such that it is three times the first modal frequency. It can be

seen that, as a result of the second-mode dynamics, within each stability pocket

associated with the first mode, seven new stability pockets appear. Consequently,

the shaded areas which provide gain-delay combinations that yield a stable response

shrink significantly affecting the overall stability margins of the controller. A closer

look at the resulting stable pockets reveals that the new stability diagram can be

constructed by simply mapping the stability pockets of the second mode (which can

be obtained by scaling the delay axis with respect to the second-mode frequency)

on top of the stability pockets of the first mode with the new stable pockets being

those representing only the intersection of the stable pockets of both modes. With

this finding, adding more modes to the dynamics is expected to cause the stability

pockets to shrink even further. Figure 3.5 shows clearly that by considering a third

mode in the system, the stable pockets shrink even further due to the additional

dynamics.

Figures 3.4(a)-3.4(d) reveal that, increasing the BLPF order, yields two distinct

shifts in the stability diagram. The first moves the whole stability diagram to the
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(a) (b)

(c) (d)

Figure 3.4: Theoretical stability pockets for a 2-DOF system augmented with a BLPF
(ε = 1/3). Results are obtained when a) no filter is used, b) first-order filter, c) second-
order filter, and d) fourth-order filter.

left along the delay axis and corresponds to the delay in the filter dynamics which

increases with the order of the filter. Again, this shift causes the first and largest

stable pocket to shrink. The second shift is associated with the stable boundaries

corresponding to the second-mode dynamics. It is observed that by increasing the

order of the filter, those boundaries move up along the gain axis until their effect

is totally rejected from the stability diagram when a fourth-order filter is used, as
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shown in Fig. 3.4(d). It is clearly seen from these results that, by augmenting a

proper filter, the influence of the higher modes’ on the stability map can be com-

pletely avoided. This increases the stability margins of the controller significantly.

For instance, if we were to use Fig. 3.4(a) to pick a gain-delay combination that

stabilizes the first two modes simultaneously; any small uncertainties or variations

in the control or design parameters can destabilize the response. This, however, can

be avoided if we were to augment a fourth-order filter with the controller. It is also

worth noting that, even when the cut-off frequency is chosen well below the second

modal frequency, the effect of the second mode can still be seen for lower-order

filters. This is attributed to the small roll-off slope. In the case presented here, a

fourth-order filter is required to completely reject the effect of the second mode from

the stability diagram.

Similar conclusions can be extended to 3-DOF or even a general MDOF system.

Specifically, if a high-order filter which can reject the influence of the second vibra-

tion mode completely from the stability diagram is implemented, then one would

correctly expect that it will also prevent the higher vibration modes from influencing

the stability of the closed-loop system. However, in the case that a low-order filter

with a large cut-off frequency is used, then higher modes can have a detrimental

influence on the stability of the controller.

3.2.3 Damping characteristics

For vibration mitigation purposes, stability alone is not a sufficient measure of the

controller’s performance. The effective damping is actually an essential measure

for the controller’s ability to mitigate vibrations and reject external disturbances.

Hence, within each stable pocket, we pick a given gain, vary the delay and plot the

real part of the dominant root (the root closest to the imaginary axis) for three

different filters. The dominant root governs the dynamic response and represents
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Figure 3.5: Theoretical stability pockets for a 3-DOF system without filtering.

a measure of the damping characteristics. Figure 3.6 shows variation of the real

part of the dominant root with the delay for a gain, K = 0.4. Results illustrate

that, for the three filters, the magnitude of the real part of the dominant root varies

harmonically with the delay exhibiting a series of minima and maxima within a

given stability pocket. Hence, for some delays, the damping can be increased and

for some others it can actually be decreased. What is even more interesting is

that these variations become less prominent as the filter’s order is increased for the

chosen gain. This implies that higher-order filters that can reject higher modes from

the feedback can actually reduce the maximum effective damping in the system by

shifting the dominant roots closer to the imaginary axis.

This can also be illustrated by simulating the response of the first two modes to

some initial conditions as depicted in Figs. 3.7. Three delay values were chosen

from Fig. 3.6 such that, for every BLPF, the chosen delay will produce the maxi-

mum damping. It is clear that, when compared to the free response, the first-order

BLPF yields the fastest settling time and best performance characteristics. The

reason being that the dominant pole of the closed-loop system produces an effective

damping ratio of about ζ = −0.015 which is approximately one and a half times
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Figure 3.6: Theoretical damping (real part of the dominant eigenvalues) with K = 0.4.
Results are obtained for a first-order BLPF (squares), second-order BLPF (circles), and
third-order BLPF (stars).

that resulting from the second-order filter and three times that resulting from a

third-order filter. It should be noted, however, that in the case of the first-order

BLPF, small variations in the delay around the chosen design value due to parameter

uncertainties or the slightest additional and unaccounted for delays can destabilize

the system. Such issue is avoided when using the third-order BLPF filter.

While Fig. 3.6 reveals interesting conclusions about the effect of the filter order on the

damping characteristics of the controller, it does not provide sufficient information

about the damping contours within the stable pockets. Part of the proposed future

work, see Chapter 5, deals with implementing a new method to obtain these essential

damping contours.
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Figure 3.7: Time histories of a 2-DOF system subjected to the initial conditions (x1(0) =
0.01, x2(0) = 0.01, ẋ1(0) = 0, ẋ2(0) = 0). Results are obtained for (a, b) first-order BLPF
with τ = 0.17, and K = 0.4, (c, d) second-order BLPF with τ = 0.14, and K = 0.4, and
(e, f) third-order BLPF with τ = 0.07, and K = 0.4.
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Chapter 4

Experimental Implementation on

a Macro-Cantilever Beam and a

Micro-Cantilever Sensor

In this Chapter, we carry two different experimental implementations on systems

with uncoupled frequencies to validate the theoretical concepts and demonstrate the

ability of filter-augmented delayed-feedback algorithms to simultaneously reduce the

vibrations of multiple vibration modes using a single gain-delay combination. In the

first demonstration, we use a filter-augmented delayed-position feedback algorithm

to mitigate the vibrations of a macrocantilever beam. In the second demonstration,

we implement a filter-augmented delayed-velocity feedback algorithm to mitigate the

vibrations of a microcantilever sensor.
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4.1 Experimental Implementation

To demonstrate the influence of augmenting low-pass filters on the ability of delayed-

feedback algorithms to mitigate vibrations of continuous systems and the stability

margins of the controller, we consider two experimental implementation. The first

treats the reduction of a macro-cantilever’s beam vibrations using a single-input

single-output filter-augmented delayed-position feedback controller. The second in-

volves rejecting external disturbances on a micro-cantilever sensor using a single-

input single-output delayed-velocity feedback controller.

4.1.1 Reduction of a macro-cantilever beam’s vibrations us-

ing a filter-augmented delayed-position feedback

We consider a stainless-steel cantilever beam subjected to external base excitations,

Fig. 4.1. The control effort is applied as an external moment exerted by a piezo-

electric layer attached to the beam’s surface. To model the system, we assume an

isotropic inextensible Euler-Bernoulli beam and consider only planar motions. With

these assumptions, the equations of motion and associated boundary conditions can

be written as [50]

ρAv̈ + cv̇ + EIviv = q(s, t∗) + ρAab(t
∗), (4.1)

v = 0 and v
′
= 0 at s = 0, v

′′
= 0 and v

′′′
= 0 at s = l, (4.2)

where v is the displacement component along the y-axis, s is the neutral axis, t?

is time, ρ is the density; l, tb, and w are the beam length, thickness, and width,

respectively; A = tbw is the beam cross-sectional area; c is the coefficient of linear

viscous damping per unit length; E is the beam Young’s modulus of elasticity; I is

the area moment of inertia about the neutral axis, ab is the transversal acceleration of
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the supported end which is assumed to be harmonic of the form h0 cos(Ω∗t∗), where

h0 and Ω∗ are its amplitude and frequency, respectively; and the primes and overdots

represent derivatives with respect to s and t∗. Finally, q(s, t∗) is a distributed

moment applied by the piezoelectric layer to mitigate the beam vibrations and is

given by

q(s, t∗) =
∂2M

∂s2
, (4.3)

where

M = bd31Ea(ta + tb)Va(t
∗)[H(s− s1)−H(s− s2)], (4.4)

where b and ta are the width and thickness of the piezoelectric layer, respectively;

d31 is a piezoelectric constant; Ea is the actuator Young’s modulus; Va(t
∗) is the ac-

tuation voltage; H(s) is the Heaviside step function; and s1 and s2 are, respectively,

the starting and ending coordinates of the piezoelectric layer.

laser sensor

piezoelectric patch

sensing point

Base

ab(t∗)

Figure 4.1: A schematic drawing of a piezoelectrically-actuated cantilever beam.

The feedback signal yf (t
∗) is obtained by measuring the deflection at a point s3
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along the beam using a laser sensor, see Fig. 4.2 for the actual experimental setup,

yf (t
∗) = Ksv(s3, t

∗), (4.5)

where Ks is the gain of the sensor. The controller’s actuation voltage, Va(t
∗), is

obtained by passing the sensor’s signal through a BLPF according to Equation (4.5),

then amplified by a proper gain, K, delayed by a proper delay, τ ∗, and supplied to

the piezoelectric patch as a input voltage which can be written as

Va(t
∗) = Ky1(t∗ − τ ∗). (4.6)

Figure 4.2: Setup of the cantilever beam experiment.

Substituting Equation (4.6) into Equation (4.7), the moment exerted by the piezo-

electric patch on the beam becomes

M = Kbd31Ea(ta + tb)y1(t∗ − τ ∗)[H(s− s1)−H(s− s2)] (4.7)
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To discretize Equation (4.1), we use a Galerkin expansion in which we express the

beam’s deflection, v(s, t∗) as a linear combination of an infinite set of spatial mode

shapes, φi(s), multiplying some generalized temporal coordinates, wi(t
∗), such that

φi(s) = Ci

(
cosh(ris)− cos(ris)−

cosh(riL) + cos(riL)

sinh(riL) + sin(riL)
× [sinh(ris)− sin(ris)]

)
,

(4.8)

and

v(s, t∗) =
∞∑
i=1

φi(s)wi(t
∗), (4.9)

where ri is obtained via the solution of 1+cos(ris) cosh(ris) = 0. Substituting Equa-

tions (4.7) and (4.9) into Equation (4.1), taking the inner product of the outcome

with φj(s), integrating over the length of the beam, and imposing the orthogonality

conditions on the linear mode shapes, we obtain the following set of linearly-coupled

ordinary-differential equations for the wj(t
∗)

ẅj(t
∗) + 2µ∗j ẇj(t

∗) + ω∗2j wj(t
∗) = M∗

j y1(t∗ − τ ∗) + f ∗j cos (Ω∗t∗),

j = 1, 2, ...,∞
(4.10)

where ω∗j is the j-th modal frequency of the beam, µ∗j is the j-th modal viscous

damping coefficient; f ∗j is the amplitude of excitation, and the M∗
j is a constant

describing the projection of the external excitation and the piezoelectric actuation

onto the j-th vibration mode. M∗
j , µ∗j and f ∗j can be written as

M∗
j = K

bd31EaKs(ta + tb)

ρA
[φ
′

j(s1)− φ′j(s2)], µ∗j =
c

ρA
,

f ∗j =
h0

ρA

l∫
0

φj ds, ω
∗2
j =

EI

ρA
r4
j .

(4.11)

We non-dimensionalize Equation (4.10) using the nondimensional time t = t∗ω∗1,

delay period τ = τ ∗ω∗1, and the generalized coordinate x∗j(t) = wj(t
∗)/l. This yields
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Table 4.1: Geometric and material properties of the beam and piezoelectric actuator.

Beam
Modulus of elasticity, E[GPa] 210
Density, ρ[kg/m3] 7500
Length, l[mm] 300
Width, w[mm] 15
Thickness, tb[mm] 0.783
PZT patch starting point distance, s1[mm] 20
PZT patch ending point distance, s2[mm] 48
Laser sensor measuring point distance, s3[mm] 290
MFC (MFC M4010)
Electromechanical coupling coefficient, d31[m/V ] −210× 10−12

Modulus of elasticity, Ea[GPa] 30
Thickness, ta[mm] 0.3
Length, s2 − s1[mm] 28
Width, b[mm] 15

equations that are identical to Equations (3.7a) and (3.7b) with

Mj = K
bd31EaKs(ta + tb)

ρA
[φ
′

j(s1)− φ′j(s2)], µj =
µ∗j

ρAω∗1
,

fj =
f ∗j

ρAω∗1l
, cj = Ksφj(s).

(4.12)

With this formulation, the stability analysis can be performed using Equation (3.9).

Stability Pockets

We perform several sets of experiments to validate the theoretical results pertaining

to the effect of the filter’s dynamics on the stability pockets. Table 4.1 lists the

geometric and material properties of the cantilever beam and Micro Fiber Composite

(MFC) actuator used in the experiments.

We start by generating the stability maps for different filters. The stability bound-

aries are generated by choosing a given controller gain then increasing the delay
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incrementally. At each gain-delay combination, the beam is subjected to an initial

condition and the response is monitored using a laser sensor. If the response decays

with time then the gain-delay combination is stable, otherwise, it is unstable. In the

first experiment, no filter is used. As such, small-amplitude high-frequency excita-

tions due to noise were allowed into the feedback signal. In that case, even using the

smallest feedback gains, higher-modes’ oscillations were always excited for any value

of the delay. Therefore, we could not generate any stability pockets. Subsequently,

we added a first-order BLPF with a cut-off frequency that is seven times the first

modal frequency (ε = 0.1429). This cut-off frequency permits the second-mode’s

dynamics (ω2 = 6.93ω1) into the feedback signal. Figure 4.3(a) depicts the stability

pockets in that case clearly indicating a very good agreement between the exper-

imental and theoretical results. We also observe the clear influence of the second

mode on the stability of the closed-loop system. However, due to filter augmenta-

tion, the influence of the third and higher modes, at least for the range of controller’s

gain considered, is not apparent in the stability pockets.

In Fig. 4.3(b), the cut-off frequency of the first-order BLPF is decreased to four

times the first-modal frequency. Although the cut-off frequency is almost half that

of the second-mode frequency, we observe very little effect on the stability pockets

as they are only slightly shifted along the gain axis. This indicates that choosing

the cut-off frequency such that it is smaller than a given vibration mode does not

guarantee that the influence of that vibration mode can be neglected.

In Fig. 4.3(c), we keep the cut-off frequency constant but increase the order of the

filter to third order. Now, we observe two distinct shifts, a shift of the whole stability

diagram to the left along the delay axis due to the delay introduced by the filter,

and a shift of the stability pockets associated with the second mode up along the

gain axis. This illustrates that the order of the filter has a significant influence on

the stability of the response. Choosing a fifth-order BLPF as shown in Fig. 4.3(d)

completely eliminates the effect of the second mode on the response stability. This
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provides a larger stability pocket in the gain-delay domain which increases the ro-

bustness to variations in the delay, control gain, and system parameters. It is also

worth mentioning, that due to restriction on the maximum moment exerted by the

MFC, the maximum gain achieved by the controller is limited to K = 0.29 as shown

in the figures.

(a) (b)

(c) (d)

Figure 4.3: Gain-delay stability maps using the theoretical model (solid lines) and ex-
perimental data (circles). Results are obtained for a) first-order BLPF with ε = 0.1429,
b) first-order BLPF with ε = 0.25, c) third-order BLPF with ε = 0.25, and d) fifth-order
BLPF with ε = 0.25
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Performance in mitigating external disturbances

We evaluate the effectiveness of the controller to mitigate oscillations resulting form

an external disturbance by subjecting the beam to an impulse at the base using

the electrodynamic shaker shown in Fig. 4.2. Figures 4.4(a)-4.4(d) depict time

histories of the beam response corresponding to different control parameters K and

τ . Since, as demonstrated previously, the damping intensity which is governed

by the dominant eigenvalue varies within a stability pocket, the performance of the

controller depends on the gain delay chosen in the feedback. For a third-order BLPF

filter with ε = 0.25, the control parameters (K = 0.2, τ = 0.1) showed excellent

disturbance rejection properties.

Performance in mitigating persistent harmonic excitations

We also investigate the forced-response of the cantilever beam to an external har-

monic excitation applied at the base using the electrodynamic shaker. Figures 4.5(a)-

4.5(b) show the frequency-response curves for the first and second modes. It is

observed that a filter-augmented delayed-position feedback controller is capable of

reducing the beam vibrations for both the first and second mode simultaneously us-

ing the same gain-delay combinations and one piezoelectric patch. This represents

excellent performance characteristics of the controller as one can now mitigate large

beam oscillations at different frequencies using a single input and a single output

and the same control parameters.

4.1.2 Reduction of a micro-cantilever sensor vibration using

a filter-augmented delayed-velocity feedback

One important area where such delayed-feedback control algorithms can prove very

beneficial is microsystems. Microdevices are subjected to a myriad of low and high
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Figure 4.4: Experimental time history of the beam’s response to an input impulse using
a third-order BLPF with ε = 0.25. a) Response without control, b) controlled response
with K = 0.08 and τ = 0.1, c) controlled response with K = 0.2 and τ = 0.1, and d)
controlled response with K = 0.08 and τ = 0.25

frequency external excitations emanating from external package vibrations, shock,

impact, and electrical interferences. If not suppressed, such disturbances could be

very detrimental to the system’s performance and are usually responsible for de-

creased fatigue life and device failure. To overcome these issues, there is a growing

interest in implementing feedback control algorithms to mitigate the effect of exter-

nal excitations on the response of microdevices.

49



6 6.5 7 7.5 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Frequency (Hz)

v
(s

3
)(

cm
)

 

 

No Control

(K=0.02,!=0.1)

(K=0.10,!=0.1)

(K=0.29,!=0.1)

(a)

44.5 45 45.5 46 46.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Frequency (Hz)

v
(s

3
)

(c
m

)

No Control
(K=0.10,!=0.1)

(K=0.29,!=0.1)

(b)

Figure 4.5: Frequency-response curves of the beam with first-order BLPF. a) First-mode
response and b) second-mode response.

Micro-cantilever beams represent one of the most widely utilized structures at the

micro-scale and has significant applications in atomic force microscopy, scanning

force microscopy, and micro-mechanical sensing. At that scale, the implementation

of feedback control can be a very formidable task. Issues related to the complexity

and availability of feedback signals, sampling rates, as well as data storage pose

significant obstacles. In addition, due to the extremely high natural frequency as-

sociated with microdevices (10 kHz-10 MHz), the presence of the infinitesimal mea-

surement delays in the control loop could be of the same order of the response period

channeling energy into and out of the system at incorrect time intervals, thereby

producing instabilities and rendering controllers’ performance ineffective.

Delayed-feedback algorithms offer unique advantages at the microscale. System de-

lays due to filtering, processing, sampling, and input actuation can be successfully

augmented into a larger delay period which when combined with a proper feedback

gain and augmented with a proper filter can be utilized as an effective mechanism

for vibration mitigation at the microscale. Note that this marks one of the initial
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experimental implementations of such algorithms at the microscale. In this work, we

conduct two sets of experiments to investigate the effectiveness of a filter-augmented

delayed-velocity feedback controller for real-time reduction of a microcantilever sen-

sor’s vibration. The geometric and material properties of the beam are listed in

Table 4.2.

Table 4.2: Geometric and material properties of the micro-cantilever sensor.

Silicon modulus of elasticity, E[GPa] 185
Silicon density, ρ[kg/m3] 2350
Length, l[µm] 460
Width, w[µm] 50
Thickness, tb[µm] 2
Primary modal frequency, ω?1[Hz] 11750
Quality factor, Q 87.8
Geometric non-linearity coefficient, α? 2.43× 1020

Inertia non-linearity coefficient, β? 2.360883× 1010

Figure 4.6: (1) CSC17/Cr-Au micro-cantilever fabricated by MikroMasch [1] (2)
CSC17/Cr-Au microcantilever tip (3) CSC17/Cr-Au micro-cantilever backside.

The feedback signal is measured using a microsystem analyzer, the MSA-400 man-
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ufactured by Polytech [85]. The analyzer which implements a combination of laser-

doppler vibrometry, stroboscopic video microscopy, and white light interferometry,

was utilized to measure the velocity of the micro-cantilever tip with a sub-picometer

resolution. A digital signal processing board receives the feedback signal, multiplies

it by the appropriate gain, and then delays it by a period sufficient to augment

the inherent system delay without destabilizing the beam response. The feedback

loop is closed when the conditioned and filtered signal is applied to a piezoelectric

actuator mounted beneath the cantilever base, thus providing a base-excitation type

feedback signal. A schematic of the experimental setup is shown in Fig. 4.7.

Figure 4.7: Schematic diagram of the experimental setup.

Using the stability analysis of Section 3.2, we map the controller gain-delay domain

into stable and unstable regions as illustrated in Fig. 4.8(a) where the shaded regions

represent combinations that yield an asymptotically stable cantilever response. In

the experiments, we considered a third-order BLPF with ε = 0.3333 as shown in

Fig. 4.8.

In the first experiment, we investigate the ability of the controller to reject external
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(a) (b)

Figure 4.8: Stability maps of the delayed velocity-feedback controller. Shaded regions
represent stable solutions. a) No filter is used, and b) third-order filter with ε = 0.3333.

disturbances. Towards that end, we utilize the piezoelectric actuator to generate a

periodic square wave with a very low frequency fs = 20Hz. Compared to the first

modal frequency of the beam under consideration, fb ≈ 11170Hz, this frequency

is very small, and, hence can be considered as a discrete disturbance event. The

response of the uncontrolled beam to the square wave is shown in Fig. 4.9(b). It

is clear that the beam undergoes large velocities at the disturbance point. When

compared to the beam period, these oscillations have a very large settling time. On

the other hand, when a delayed-velocity feedback signal (K = 0.085, τ = 0.1) is

applied, the beam deflection remains within the noise level, Fig. 4.9(c).

In the second set of experiments, we investigate the ability of the controller to

mitigate external periodic excitations near its first modal frequency. The excitation

frequency is varied around the first modal frequency of the beam and the steady-

state tip velocity is recorded at 1000Hz steps. In the first experiment, 5 V olt input

voltage is applied to the piezoelectric actuator and the uncontrolled response is

shown in Fig. 4.10. When a filter-augmented delayed-velocity feedback algorithm

(K = 0.085, τ = 0.1) is incorporated in the feedback, the tip velocity is reduced

significantly and the peak response is shifted towards larger values of the excitation

53



Figure 4.9: a) Input disturbance, b) Tip velocity of the beam without control, and c)
Tip velocity with third-order filter and ε = 0.3333 using control parameters (K = 0.085,
τ = 0.1).

frequency, Fig. 4.10(a). Another experiment was carried out for a larger input

voltage of 9 V olt, Fig. 4.10(b). Again, we can see that by selecting the controller

gain and delay based on the pockets shown in Fig. 4.8(b), we are capable of reducing

the amplitude of the response velocity significantly.
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Figure 4.10: Microcantilever frequency-response curves before and after applying the
designed controller with third-order filter and ε = 0.3333. Controlled output is obtained
using K = 0.085, and τ = 0.1. Results are obtained for a) input voltage of 5 V olts, and
b) input voltage of 9 V olts.

55



Chapter 5

Suppression of The Coupled

Flexural-Torsional Vibrations of

Cantilever Beams Using

Filter-Augmented

Position-Feedback Control

Algorithms

This Chapter investigates the implementation of delayed-feedback control algorithms

on a continuous system that can only be discretized into a system of linearly-coupled

equations. As an example, the Chapter considers the problem of suppressing the

coupled flexural-torsional oscillations of a cantilever beam with an asymmetric tip

rigid body using a single piezoelectric patch and a single laser sensor. Following

Euler-Bernoulli’s beam theory, a system’s model consisting of two Partial Differ-

ential Equation (PDEs) and the associated boundary conditions is developed and
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subsequently validated. To implement the controller and analyze the stability of the

closed-loop system, the resulting system of PDEs and boundary conditions is re-

duced into a set of linearly-coupled Ordinary Differential Equations (ODEs) using

a Galerkin discretization scheme. The stability of the closed-loop system in the

gain-delay space and in the presence of low-pass filters is also investigated using a

numerical technique that involves transforming the resulting set of Delay Differential

Equations (DDEs) into an equivalent PDE followed by a discretization of the PDE

in the delay space into a set of equivalent ODEs. Using the resulting stability maps,

the effectiveness of the controller in rejecting external disturbance and suppressing

large-amplitude oscillations resulting from harmonic-base excitations is investigated

theoretically and experimentally for different tip rigid bodies, filters, and piezoelectric

patch orientations.

5.1 Introduction

In the previous Chapter, we considered the implementation of delayed-position feed-

back algorithms to reduce the multi-modal oscillations of a linearly-uncoupled sys-

tem of equations resulting from the discretization of one linear PDE and its associ-

ated boundary conditions. As an example, we analyzed the problem of suppressing

large-amplitude oscillations of an Euler-Bernoulli cantilever beam and studied the

influence of low-pass filters on the stability of the closed-loop system in the gain-

delay space and on the robustness of the controller to parameter’s uncertainties. In

this Chapter, we investigate the implementation of similar delayed-feedback con-

trol algorithms on a continuous system that can only be discretized into a set of

linearly-coupled equations. As an example, we consider the problem of suppressing

the coupled flexural-torsional oscillations of a cantilever beam with an asymmetric

tip rigid body using a single piezoelectric patch and a single laser sensor. Following

Euler-Bernoulli’s beam theory, we develop and validate a system’s model consisting
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of two PDEs and the associated boundary conditions. To implement the controller

and analyze the stability of the closed-loop system, we reduce the resulting system of

PDEs and boundary conditions into a set of linearly-coupled ODEs using a Galerkin

discretization scheme. We also investigate the stability of the closed-loop system in

the gain-delay space and in the presence of low-pass filters using a numerical tech-

nique that involves transforming the resulting set of DDEs into an equivalent PDE

followed by a discretization of the PDE into a set of equivalent ODEs in the delay

space. Using the resulting stability maps, we investigate theoretically and exper-

imentally the effectiveness of the controller in rejecting external disturbance and

suppressing large-amplitude oscillations resulting from harmonic-base excitations

for different tip rigid bodies, filters, and piezoelectric patch orientations.

While the problem at hand marks one of the first implementations of a delayed-

feedback algorithm on an infinite-dimensional system that can only be discretized

into a set of linearly-coupled ODEs, the research is also motivated by recent devel-

opments in the fields of turbomachinery, thin-walled sections, light-weight flexible

space structures, and wind turbine blades that have undoubtedly propelled the re-

search interest in the coupled flexural-torsional vibrations of structures. Such sys-

tems are known to experience large-amplitude coupled torsional-bending vibrations

due to (i) linear geometric coupling as a result of asymmetries in the structure, (ii)

non-uniform stiffness distribution, (iii) linear elastic coupling due to anisotropies,

and (iv) nonlinear geometric coupling of linear in-plane and out-of-plane flexural

modes due to large-amplitude vibrations and internal resonances [86].

Research studies addressing this important problem can be divided into two parts:

some dealing with the modeling and vibration analysis aspects of it, while oth-

ers investigating the development of control algorithms to mitigate large-amplitude

coupled flexural-torsional vibrations that could arise due to external disturbances

and/or persistent base excitations. From a modeling perspective, different meth-

ods were proposed to approximate the vibration response by utilizing the well-
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established beam or plate theories including Euler–Bernoulli Theory, Vlasov Theory,

and Timoshenko Theory [87, 88].

Many attempts have also been made to understand the vibratory response of many

beam configurations. Adam [89] analyzed the coupled flexural–torsional vibrations

of distributed–parameter beams . Eslimy–Isfahany [90] investigated the free vibra-

tory motion of coupled bending–torsional beams and studied the dynamic response

characteristics under random bending and torsional loads. Low [91] evaluated the

eigenfrequency equation of a beam carrying multiple concentrated masses at arbi-

trary locations. Oguamanam [92] examined the free vibration of an Euler-Bernoulli

beam with a rigid tip mass whose center of gravity does not coincide with its point of

attachment to the beam. Banerjee [93] developed an exact dynamic stiffness matrix

for a twisted Timoshenko beam in order to investigate its free vibration character-

istics. Shubov [94] compared the asymptotic behavior of coupled Euler-Bernoulli

and Timoshenko beam models. Gokdag and Kopmaz [95] studied coupled flexural-

torsional free and forced vibrations of a beam with tip or in-span attachments.

In other demonstrations, Paolone et al. [96] analyzed the stability of narrow rectan-

gular cross-section beams with thin walls under simultaneous action of conservative

and nonconservative loads. Salarieh and Ghorashi [97] analyzed the free vibrations

of a cantilevered Timoshenko beam with a rigid tip mass. They also compared the

results obtained using the Timoshenko model with those of three other beam models

(Euler-Bernoulli, shear, and Rayleigh). Rudavskii and Vikovich [98] addressed the

forced flexural–torsional vibrations of a cantilever beam of constant cross section.

Many research efforts were also directed towards implementing different control

techniques to suppress and mitigate harmful vibrations induced by external distur-

bances. Sun and Mills [99] described combining a proportional derivative feedback

algorithm with a distributed piezoelectric polymer actuator for vibration suppres-

sion. They also investigated a control algorithm based on Lyapunov approach to
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control a single-link flexible manipulator. Pai et al. [100] investigated the suppres-

sion of steady-state vibrations of a cantilevered and skewed aluminum plate using

the nonlinear saturation phenomenon. Morita et al. [101] implemented a robust

control algorithm for suppression of the bending–torsional vibrations of a flexible

arm with a non-symmetric rigid tip mass. Jalili et al. [102] proposed an adaptive,

non model-based controller for tracking control of a flexible cantilever beam with a

translational base support. A piezoelectric patch actuator was bonded on the top

surface of the beam to apply a controlled moment for vibration suppression. Park

[103] presented a general approach for utilizing a resonant shunt–dampers for vibra-

tion suppression on a beam using a piezoelectric sensor/actuator combinations. He

observed that additional damping can be introduced to the system using the shunt

damping effect.

5.2 Model Development

We consider the linear dynamics of a cantilever beam of length, L, width w, and

thickness, tb with a rigid body attached to its free end as shown in Fig. 5.1. The

center of gravity of the attached rigid body does not coincide with the neutral axis

of the beam, thereby producing a moment which can excite torsional oscillations. As

a result, the beam undergoes coupled flexural-torsional motions. The flexural and

torsional dynamics are described, respectively, via the spatio-temporal functions,

v(x, t∗), and ψ(x, t∗).

To describe the response behavior, we consider four coordinate systems as shown in

Fig. 5.1. The first of which, the â− frame, is an inertial frame located at point O′.

The second, the b̂ − frame is located at the tip of the beam on the neutral axis,

points S, and is formed by rotating the â − frame with an angle ∂v(x, t∗)/∂x|x=L

about â3. The third frame, ĉ− frame, is also located at point S and is formed by
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rotating the b̂ − frame with an angle ψ(L, t∗) about b̂1. Finally, the d̂ − frame is

a body-coordinate frame located at the center of gravity, G, of the tip rigid body.

Figure 5.1: Schematic of the cantilever beam with a tip rigid body and the coordinate
frames used to describe its motion.

To derive the equations of motion, we adopt the linear Euler-Bernoulli’s beam theory

and write the total kinetic energy as

T =
1

2

∫
mb

ṙb · ṙb dmb +
1

2

∫
mt

ṙm · ṙm dmt, (5.1)

where the overdot represents a derivative with respect to time, t∗, mb denotes the

mass of the beam, mt denotes the mass of the rigid body;

rb = xâ1 + v(x, t∗)â2 − zψ(x, t∗)b̂2 + yψ(x, t∗)b̂3 (5.2)

is the position vector to a differential beam element; and

rm = Lâ1 + v(L, t∗)â2 + ro + rg (5.3)
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is the position vector to a differential element of the rigid body, all measured with

respect to point O′. Here, ro = oxĉ1 + oy ĉ2 + oz ĉ3. The velocity of the beam element

as described in the inertial frame can be written as

ṙb = v̇â2 − zψ̇b̂2 + yψ̇b̂3 + v̇′Lb̂3 × (−zψb̂2 + yψb̂3), (5.4)

where the prime denotes a derivative with respect to the spatial coordinate x, × rep-

resents the cross product, and v̇′L ≡ v̇′(L, t). Similarly, the velocity of the differential

tip-mass element can be described as

ṙm = v̇Lâ2 + (v̇′Lâ3 + ψ̇Lĉ1)× ro + ṙg. (5.5)

Substituting Equation (5.5) and Equation (5.4) into Equation (5.1), we obtain

T =
1

2
ρA

L∫
0

v̇2dx+
1

2
ρκ2

L∫
0

ψ̇2dx+mt[v̇L(v̇′Lox + ψ̇Loz)]

+
1

2
mt[v̇

2
L + (o2

x + o2
y)v̇
′2
L + 2oxozψ̇Lv̇

′
L + (o2

y + o2
z)ψ̇

2
L]

+
1

2

∫
mt

ṙg · ṙgdmt +H.O.T,

(5.6)

where ρ is the mass density of the beam, A is its cross-sectional area, H.O.T is used

to represent higher order terms that yield nonlinearities in the equations of motion,

and

κ2 =

tb/2∫
−tb/2

w/2∫
−w/2

(y2 + z2)dydz (5.7)

is the radius of gyration of the beam’s cross section. The last term in Equation (5.6)

can be further simplified to

1

2

∫
mt

ṙg · ṙgdmt =
1

2
(I11ψ̇

2 + I33v̇
′2
L ) + I13v̇′Lψ̇ +H.O.T (5.8)
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where I11, I33, and I13 are the principle and product mass moment of inertias of the

rigid body as calculated in the body rotating frame.

Substituting Equation (5.8) into Equation (5.6) and rearranging, we obtain

T =
1

2
ρA

L∫
0

v̇2dx+
1

2
ρκ2

L∫
0

ψ̇2dx+
1

2
mtv̇

2
L +mtv̇L(v̇′Lox + ψ̇Loz)

+
1

2
(I11 +mt(o

2
y + o2

z))ψ̇
2
L +

1

2
(I33 +mt(o

2
x + o2

z))v̇
′2
L

+ (I13 +mtoxoz)ψ̇Lv̇
′
L +H.O.T.

(5.9)

The potential energy of the system, U, can be written as

U =
1

2
EIz

L∫
0

v′′
2
dx+

1

2
GJ

L∫
0

ψ′′
2
dx+mtgoy sinψL, (5.10)

where E is the Young’s modulus of the beam, G is its Shear modulus, Iz = 1
12
wt3b

is the second moment of area of the beam’s cross-section around the z − axis,

J = 16w4

3

[
1− 192(w/tb)

π5

∑∞
n=0

1
(2n+1)5

tanh (2n+1)5

2(w/tb)

]
is the polar moment of inertia of

the beam accounting for cross-sectional warping effects, and g is the gravitational

acceleration.

To apply the control effort, a piezoelectric actuator is attached to the surface of the

beam as shown in Fig. 5.2. The work done by applying a voltage to this actuator

can be written as

Wa =
1

2

L∫
0

Mzv
′′dx+

1

2

L∫
0

Tψ′dx, (5.11)

where Mz and T represent, respectively, the bending moment and torque exerted by

the actuator on the beam. These are given by

Mz = α∗1Va(t
∗)[H(x− s1)−H(x− s2)] cos β, (5.12a)
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Figure 5.2: Schematic of a cantilever beam with attached tip rigid body and piezoelectric
actuator.

T = α∗2Va(t
∗)[H(x− s1)−H(x− s2)] sin β, (5.12b)

where β is the angle that the patch makes with the x− axis and

α∗1 = bad31Ea(ta + tb), α∗2 = bad31Ga(ta + tb). (5.13)

Here, ba and ta are the width and thickness of the piezoelectric patch, Ea and Ga are

its Elastic and Shear modulii, d31 is the piezoelectric constant, si are the starting and

ending position of the actuator, Va is the applied voltage, and H(x) is the heaviside

function. When β is equal zero, the actuation voltage yields a pure moment around

the z − axis.

The non-conservative virtual work done by the external damping forces and an
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external base excitation can be written as

δWnc = −
L∫

0

ρAv̈bδvdx−
L∫

0

(Cbv̇δv + Ctψ̇δψ)dx, (5.14)

where Cb and Ct are viscous damping terms associated with the damping and tor-

sional dynamics, and v̈b is the base acceleration.

With these definitions, the partial differential equation of motion and the associated

boundary conditions can be derived using Hamilton’s principle which states that

t2∫
t1

δ(T− U) + δ(Wa + Wnc)dt = 0. (5.15)

This yields

ρAv̈ + Cbv̇ + EIzv
′′′′ = M ′′

z − ρAv̈b, (5.16a)

ρκ2ψ̈ + Ctψ̇ −GJψ′′ = T ′, (5.16b)

v(0, t∗) = v′(0, t∗) = 0, (5.17a)

mtv̈(L, t∗) +mtoxv̈
′(L, t∗) +mtozψ̈(L, t∗)− EIzv′′′(L, t∗) = 0, (5.17b)

mtoxv̈(L, t∗) + (I33 +mt(o
2
x + o2

y))v̈
′(L, t∗) + (I13 +mtoxoz)ψ̈(L, t∗)

+ EIzv
′′(L, t∗) = 0,

(5.17c)

ψ(0, t∗) = 0, (5.17d)

mtozv̈(L, t∗) + (I13 +mtoxoz)v̈
′(L, t∗) + (I11 +mt(o

2
y + o2

z))ψ̈(L, t∗)

+GJψ′(L, t∗) = −mtgoy.
(5.17e)

Note that the resulting system dynamics are coupled only through the boundary con-

ditions at the free end. To homogenize the last boundary condition, Equation 5.17e,
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we introduce the following:

γ(x, t∗) = ψ(x, t∗) +
mtg

GJ
oyx. (5.18)

This yield the following homogeneous boundary conditions:

v(0, t∗) = v′(0, t∗) = 0, (5.19a)

mtv̈(L, t∗) +mtoxv̈
′(L, t∗) +mtozγ̈(L, t∗)− EIzv′′′(L, t∗) = 0, (5.19b)

mtoxv̈(L, t∗) + (I33 +mt(o
2
x + o2

y))v̈
′(L, t∗) + (I13 +mtoxoz)γ̈(L, t∗)

+ EIzv
′′(L, t∗) = 0,

(5.19c)

γ(0, t∗) = 0, (5.19d)

mtozv̈(L, t∗) + (I13 +mtoxoz)v̈
′(L, t∗) + (I11 +mt(o

2
y + o2

z))γ̈(L, t∗)

+GJγ′(L, t∗) = 0.
(5.19e)

5.3 Mode Shapes and The Frequency Equation

For simplicity, we introduce the following set of scaling parameters

ζ := x
L
, w := v

L
, wb := vb

L
, ai := oi

L
, i ∈ [x, y, z],

λ4
i :=

ρAL4ω2
i

EIz
, X 2 := EIz

GJ
, µ2 := κ2

AL2 ,

Mt := mt

ρAL
, Iij :=

Iij
ρAL3 i, j ∈ [1, 2, 3],

t := t∗ω1, Ωi := ωi

ω1
,

cb := Cb

ρAω1
, ct := Ct

ρκ2ω1
, α1 :=

α∗1
ρAL3ω2

1
, α2 :=

α∗2
ρL2κ2ω2

1
,

(5.20)

where ω1 is the frequency of the fundamental vibration mode. With these definitions,

the resulting partial differential equations and boundary conditions can be re-written
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as:

ẅ + cbẇ +
Ω2
i

λ4
i

w′′′′ = α1Va cos β[H ′′(ζ − s1/L)−H ′′(ζ − s2/L)]− ẅb,

ψ̈ + ctψ̇ −
Ω2
i

X 2µ2λ4
i

ψ′′ = α2Va sin β[H ′(ζ − s1/L)−H ′(ζ − s2/L)],

(5.21)

w(0, t) = w′(0, t) = 0, (5.22a)

ẅ(1, t) + axẅ
′(1, t) + azγ̈(1, t)− 1

λ4
1Mt

w′′′(1, t) = 0, (5.22b)

axẅ(1, t) +
1

Mt

[I33 +Mt(a
2
x+a2

y)]ẅ
′(1, t) +

1

Mt

[I13 +Mtaxaz]γ̈(1, t) +
1

λ4
1

w′′(1, t) = 0,

(5.22c)

γ(0, t) = 0, (5.22d)

azẅ(1, t)+
1

Mt

[I13+Mtaxaz]ẅ
′(1, t)+

1

Mt

[I11+Mt(a
2
y+a2

z)]γ̈(1, t)+
1

λ4
1X 2

γ′(1, t) = 0.

(5.22e)

Now, the primes represent derivatives with respect to the spatial variole ζ and

the dots represent derivatives with respect to the temporal variable t. To find

the system’s characteristic equation and the associated mode shapes, we solve the

unforced undamped eigenvalue problem associated with Equations (5.21)- (5.22e).

To that end, we express the beam’s deflection and rotation angle in terms of the

following sparable solutions:

w(ζ, t) = V (ζ)eıωit, and γ(ζ, t) = Γ(ζ)eıωit, (5.23)

where V (ζ) and Γ(ζ) are the mode shapes associated with the flexural and torsional

motions, respectively. Substituting Equation (5.23) back into Equations (5.21-5.22e)

yields

V ′′′′ − λ4
iV = 0, (5.24a)

Γ′′ + λ4
iµ

2X 2Γ = 0, (5.24b)
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V (0) = V ′(0) = 0, (5.25a)

λ4
iMt[V (1) + axV

′(1) + azΓ(1)] + V ′′′(1) = 0, (5.25b)

λ4
i

[
MtaxV (1) + [I33 +Mt(a

2
x + a2

y)]V
′(1) + [I13 +Mtaxaz]Γ(1)

]
− V ′′(1) = 0,

(5.25c)

Γ(0) = 0, (5.25d)

X 2λ4
i

[
MtazV (1) + [I11 +Mt(a

2
y + a2

z)]Γ(1) + [I13 +Mtaxaz]V
′(1)
]
− Γ′(1) = 0.

(5.25e)

The solution of Equations (5.24a) and (5.24b) subjected to the boundary conditions

(5.25a) and (5.25d) takes the form

V (ζ) = C1[sin(λiζ)− sinh(λiζ)] + C2[cos(λiζ)− cosh(λiζ)], (5.26)

Γ(ζ) = C3 sin(λ2
iXµζ). (5.27)

Substituting Equations (5.26) and (5.27) back into Equations (5.25b), (5.25c), and

(5.25e), we obtain the following eigenvalue problem

F3×3C3×1 = 0, C = [C1 C2 C3]T . (5.28)

For a non-trivial solution of Equation (5.28), we set the determinant of the coeffi-

cient matrix equal to zero, Det(F) = 0, this yields a transcendental characteristic

equation which can be solved for the infinite eigenvalues, λi. Associated with each

eigenvalue, an eigenvector Ci is obtained using Equation (5.28). It is worth noting

that with every eigenvalue (frequency), a coupled mode shape consisting of V (ζ)

and Γ(ζ) can be constructed with the relative contribution of both components de-

termined by the associated eigenvector. This eigenfunction are the normalized using
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the following orthogonality condition [92]:

1∫
0

(ViVj + µ2ΓiΓj)dζ +MtVi(1)Vj(1) + I11tΓi(1)Γj(1)

+Mtax(V
′
i (1)Vj(1) + Vi(1)V ′j (1)) + I33tV

′
i (1)V ′j (1)

+Mtaz(Vi(1)Γj(1) + Γi(1)Vj(1)) + I13t(V
′
i (1)Γj(1) + Γi(1)V ′j (1)) = δij,

(5.29)

5.4 Model Validation

To validate the theoretical model and the resulting frequency equation, we consid-

ered two cantilever beams with two rigid bodies as listed in Tables 5.1 and 5.2. The

first three modal frequencies were obtained experimentally by subjecting the sys-

tem to a coupled torsion-bending initial conditions at the beam tip, then recording

the fast fourier transform (FFT) of the resulting time history. For the purpose of

verification, the experiment was also repeated by subjecting the beam to a chirp

base-acceleration signal spanning the range between 1 and 200 Hz. The base accel-

eration was supplied to the beam through an electrodynamic shaker as depicted in

Fig. 5.4. The peak frequencies in the FFT spectrum and the chirp response were

averaged and recorded in Table 5.4. The frequency equation is then solved numeri-

cally for the parameters listed in Table 5.1 and 5.2 and the results are compared in

Table 5.4.

In general, there is a good agreement between the theoretical and experimental

results in the three cases considered. Visual inspection of the mode shapes during

the experimental testing, revealed that the first coupled mode is dominated by a

bending component which is essentially associated with the first bending mode of

a cantilever beam. The second coupled mode shape is dominated by a bending

component associated with the second bending mode of the beam. However, in

this case, torsional oscillations were more prevalent. The third mode was observed
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Table 5.1: Geometric and material properties of the beam and tip mass (refer to
Fig. 5.3).

Property Beam I: Steel Beam II: Steel
Modulus of elasticity, E[GPa] 200 210
Density, ρ[kg/m3] 7500 7500
Length, l[mm] 270 250
Width, w[mm] 24.8 19.05
Thickness, tb[mm] 0.7366 0.4445

Table 5.2: Geometric and material properties of the rigid body (refer to Fig. 5.3).

Property Rigid Body I Rigid Body II
Density, ρt[Kg/m3] 7550 7550
Diameter, D[mm] 15.875 6.350
Height, h1[mm] 3.099 25.4
Height, h2[mm] 18.923 25.4

Table 5.3: Geometric and material properties of the piezoelectric actuator.

MFC (MFC M8528)
Electromechanical coupling coefficient, d31[m/V ] −210× 10−12

Modulus of elasticity, E[GPa] 30
Thickness, ta[mm] 0.3
Length, s2 − s1[mm] 84
Width, b[mm] 24
piezoelectric actuator start point, s1[mm] 20
piezoelectric actuator end point, s2[mm] 104
position measurement point, s3[mm] 260

to be torsion dominated (first torsional mode of a cantilever beam) with a small

second-mode bending component. These results agree with the theoretical findings

of the mode shapes shown in Figs. 5.5, 5.6 and 5.7 for the two beams and two rigid

bodies considered. Indeed, similar to what is observed experimentally, the first and

the second coupled mode shapes are bending dominated in the three cases. On the

other hand, the third mode shape is torsion dominated.
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Figure 5.3: Schematic of the beam and rigid body used in the experiments.

Table 5.4: Comparison of the first three theoretical and experimental modal fre-
quencies of the beam.

Experimental Freq. [Hz] Analytical Freq. [Hz] Error [%]

4.2 4.5 6.7
Beam I–Rigid Body I 39.4 39.4 0.0

59.0 60.6 2.6
2.1 2.06 1.9

Beam II–Rigid Body I 25.5 27.25 6.4
33.8 35.92 5.9
3.0 3.0 0.0

Beam II–Rigid Body II 25.9 28.7 9.8
37.1 36.6 1.4

5.5 Reduced-Order Model

To implement the control algorithm, we discretize the system of PDEs into a finite

set of coupled linear ODEs using the following Galerkin expansion:

v(ζ, t) =
m∑
i=1

Vi(ζ)qi(t), γ(ζ, t) =
m∑
i=1

Γi(ζ)qi(t), (5.30)
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Figure 5.4: Experimental setup of the tip-loaded cantilever beam.

(a) (b)

Figure 5.5: The first three mode shapes of Beam I–Rigid Body I. a) flexural component
of the mode shape, and b) torsional component of the mode shape.

where Vi(ζ) and Γi(ζ) are the flexural and torsional components of the mode shapes

obtained in the previous section, qi(t) are generalized temporal coordinates, and m is

the number of modes kept in the series expansion. To obtain a reduced-order model
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(a) (b)

Figure 5.6: The first three mode shapes of Beam II–Rigid Body I. a) flexural component
of the mode shape, and b) torsional component of the mode shape.

(a) (b)

Figure 5.7: The first three mode shapes of Beam II–Rigid Body II. a) flexural component
of the mode shape, and b) torsional component of the mode shape.

of the system, we substitute Equation (5.30) into Equations (5.21), and obtain

m∑
i=1

(
Viq̈i + cbViq̇i +

Ω2
i

λ4
i

V ′′′′i qi

)
= α1Va[H

′′(ζ − s1/L)−H ′′(ζ − s2/L)] cos β − ẅb,

(5.31)
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m∑
i=1

(
Γiq̈i + ctΓiq̇i −

Ω2
i

X 2µ2λ4
i

Γ′′i qi

)
= α2Va[H

′(ζ−s1/L)−H ′(ζ−s2/L)] sin β, (5.32)

Pre-multiplying Equation (5.31) by Vj and Equation (5.32) by Γj, integrating over

the length of the domain, and adding the resulting equations, yields

m∑
i=1

 1∫
0

(VjVi + ΓjΓi)dζq̈i +

1∫
0

(cbVjVi + ctΓjΓi)dζq̇i +
Ω2
i

λ4
i

1∫
0

(VjV
′′′′
i −

1

X 2µ2
ΓjΓ

′′
i )dζqi


= α1Va cos β

1∫
0

Vj[H
′′(ζ − s1/L)−H ′′(ζ − s2/L)]dζ

+ α2Va sin β

1∫
0

Γj[H
′(ζ − s1/L)−H ′(ζ − s2/L)]dζ − ẅb

1∫
0

Vjdζ.

Using the following integral simplifications

1∫
0

VjV
′′′′
i dζ = λ4

i

1∫
0

VjVidζ,

1∫
0

ΓjΓ
′′
i dζ = −λ4

iX 2µ2

1∫
0

ΓjΓidζ, (5.33)

and rearranging, we obtain in matrix form

Mq̈ + Cq̇ + Kq = α1Va cos β[V′(s2/L)−V′(s1/L)]

+ α2Va sin β[Γ(s2/L)− Γ(s1/L)]− fẅb.
(5.34)

Here, q is an m× 1 vector representing the systems temporal evolution; M, C, and

K are fully-populated m × m inertia, damping, and stiffness matrices, and f is a

m× 1 vector characterizing the projection of the base excitation onto the different
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vibration modes. The element of these matrices are given by

Mij =

1∫
0

(VjVi + ΓjΓi)dζ,

Cij = cb

1∫
0

VjVidζ + ct

1∫
0

ΓjΓidζ,

Kij = Ω2
i

1∫
0

(VjVi + ΓjΓi)dζ,

fi =

1∫
0

Vidζ.

(5.35)

Additionally, V′ = [V ′1 V
′

2 . . . V ′m]T , Γ = [Γ1 Γ2 . . . Γm]T are m× 1 vectors.

Figure 5.8 depicts time histories of the free tip response to an initial condition

as the number of modes is increased. Because of the linear coupling between the

modes, the addition of more modes in the Galerkin expansion has a clear influence

on the response behavior, especially the flexural component. For bending, seven

modes were kept in the series before the addition of any more modes did not have a

clear influence on the time history. For torsion, seven modes were also necessary to

converge to the actual response. As such, unlike the case where the beam’s dynamics

consist only of flexural motions and the discretized system yields a linearly-decoupled

system of equations where the higher modes can be safely neglected unless they are

directly excited; higher modes in this scenario seem to have a clear influence on the

response. As such, extreme care should be taken in the process of neglecting the

higher vibration modes.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Time histories of the beam’s tip response (Beam II–Rigid Body I) to an
initial condition (q1(0) = 0.001) (a, b) three-mode reduced-order model; (c, d) five-mode
reduced-order model; and (e, f) seven-mode reduced-order model.
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5.6 Delayed-Position Feedback:

To suppress the linearly-coupled multi-modal dynamic responses of the beam, we

consider a delayed-position feedback controller that measures and feeds back a com-

bination of the beam’s deflection and torsion. Experimentally, the vertical deflection

at a point located on the neutral axis as well as the torsional angle of the beam at a

distance s3 are measured using two laser sensors, then delayed in time and fedback

to the piezoelectric actuators, see Fig. 5.4 for the actual experimental setup. The

feedback signal takes the form

yf (t) = ks1w(s3/L, t) + ks2γ(s3/L, t) = (ks1V
T (s3/L) + ks2Γ

T (s3/L))q, (5.36)

where ks1 and ks2 are the gains of the sensors. To reject the effect of the higher modes

and eliminate the effect of noise, the feedback signal is filtered using a Butterworth

low-pass filter (BLPF). The filtered signal, y1 can be related to the sensors signal,

yf via

bkε
ky

(k)
1 + bk−1ε

k−1y
(k−1)
1 + ...+ b1εẏ1 + b0y1 = yf (t), (5.37)

where k is the order of the filter, bk are constants that can be obtained using Equa-

tions (3.4a and 3.4b) in Chapter 3, ε = ω1/ωcf , and ωcf is the cut-off frequency

of the filter. The controller’s actuation voltage is obtained when the filtered signal

is amplified by a proper gain, delayed by a proper delay, and then supplied to the

piezoelectric actuator as an input voltage which can be written as

Va = −Ky1(t− τ), (5.38)

where τ is a non-dimensional time delay, τ := τ ∗ω1. Substituting Equations (5.37)

and (5.38) into Equation (5.34), we obtain in state-space matrix form

dp

dt
= Ap + Adp(t− τ), (5.39)
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where p = [q1 q2 . . . qm q̇1 q̇2 . . . q̇m y11 y12 . . . y1k], y1k = y
(k−1)
1 , and A and Ad are

2m+ k × 2m+ k matrices given by

A =


0m×m Im×m 0m×k

−M−1Km×m −M−1Cm×m 0m×k

0k−1×m 0k−1×m Ik−1×k

1
bkεk

(ks1V
T (s3) + ks2Γ

T (s3))1×m 01×m F1×k

 , and

Ad =


0m×m 0m×m 0m×1 0m×k−1

0m×m 0m×m LLm×1 0m×k−1

0k×m 0k×m 0k×1 0k×k−1.


(5.40)

Here, F = [−b0/(bkε
k) − b1/(bkε

k−1) . . . − bk−1/(bkε)], and

LL = −α1K cos βM−1[V′(s1/L)−V′(s2/L)]− α2K sin βM−1[Γ(s1/L)− Γ(s2/L)].

5.7 Linear Stability Analysis:

To assess the stability of the closed-loop system in the gain-delay space, we imple-

ment the numerical scheme explained earlier in Section (2.2.3) in which the DDEs

of Equation (5.39) are transformed into an equivalent PDE. The PDE is then dis-

cretized into a set of ODEs in the delay space using the method of lines. To that end,

we substitute Equation (5.39) into Equation (2.25), then find the eigenvalues of the

resulting matrix AN which represent the eigenvalues of the closed-loop system for a

given K and τ . Obviously, in this approximation scheme, the number of eigenvalues

is finite and increases as the number of lines considered in the discretization of the

equivalent PDE is increased. Furthermore, the closeness of the resulting eigenvalues

to the actual eigenvalues increases with the number of ODEs resulting from the

discretization of the equivalent PDE.

To illustrate these facts, we consider a three-mode reduced-order model of the beam
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dynamics. In other words, m is chosen to be equal to three in Equation (5.39).

We also choose a first-order BLPF filter with ε = 50 and only include flexural

feedback, the piezoelectric parameters listed in Table 5.3. The number of lines in

the discretization of the equivalent system is then increased from N = 5 to 10, 20,

40 and the eigenvalues of the matrix in Equation (2.25) are obtained. The process

is repeated for values of −1 ≤ K ≤ 1 and 0 < τ ≤ 1, then the gain-delay space is

mapped into stable and unstable regions as depicted in Figs. 5.9(a), 5.9(b), 5.9(c),

and 5.9(d). The shaded regions represent stable gain-delay combinations and the

resulting contours represent the magnitude of the real part of the eigenvalue closest

to the imaginary axis which can be used as a measure of the effective damping of

the system for a given controller gain and delay.

When comparing the stability maps shown in Fig. 5.9, it becomes evident that the

approximation improves as the number of lines N is increased. When the number

of lines used to discretize the equivalent PDE is small, N = 5, the stability maps

are only accurate for very small delays τ < 0.1, see Fig. 5.9(a). However, as the

number of lines is increased to N = 10, almost half of the first stability pocket is

well approximated. By carrying this convergence analysis for the system at hand,

we concluded that at least 40 lines are necessary to accurately predict the first

two stability pockets as shown in Fig. 5.9(d). The same convergence study was

repeated for higher values of m and k. Again, we found that 40 lines are sufficient

to approximate the first two stability pockets.

5.8 Effect of Filters on the Performance of the

Controller

In this section, we analyze the influence of the filter’s order and cut-off frequency

on the stability of the closed-loop system. Towards that end, we generate the sta-
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(a) (b)

(c) (d)

Figure 5.9: Theoretical stability maps using a three-mode reduced-order model of the
tip-loaded beam. Results are obtained for Beam II–Rigid body I. (a) Discretization using
5 lines (N = 5), (b) discretization using 10 lines (N = 10), (c) discretization using 20 lines
(N = 10), and (d) discretization using 40 lines (N = 40).

bility maps for different filter orders and cut-off frequencies as depicted in Fig. 5.10.

We limit the analysis to only flexural feedback and use a three-mode reduced-order

model to generate the stability pockets. While a higher-order model is expected to

produce more accurate predictions, generation of the stability maps is very com-

putationally intensive prompting the inclusion of only the first three modes in the

numerical analysis. The effect of the higher modes on the controlled response will
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be addressed in Section 5.10.

As can be seen in Fig. 5.10(a), when no filter is implemented, all the vibration

modes are permitted into the feedback. This has the adverse influence of shrink-

ing the stability pockets as it becomes very challenging to find a single gain-delay

combination that stabilizes all modes simultaneously. Usually, for systems that can

be represented by a single-mode approximation, two large stability pockets can be

attained between 0 < τ < 1 (Note that the delay is normalized with respect to

the first modal period, i.e., 0 < τ ∗ < T ). The first stability pocket only exists for

positive gains and spans the region between 0 < τ ∗ < T/2, while the second exists

for negative gains and spans the region between T/2 < τ ∗ < T . When inspecting

Fig. 5.10(a), it becomes evident that the inclusion of the higher modes leads to the

generation of about thirteen unstable pockets within these two first pockets. This

number is not arbitrary and is resulting from the inclusion of the second mode dy-

namics which has a frequency that is about thirteen times the frequency of the first

mode, see Table 5.5. As the gain is increased, the width of these unstable pockets

increases because of the influence of the third mode. If higher modes are included

in the stability analysis, one would expect that the stable regions will shrink even

further making it even harder to find a gain-delay combination that stabilizes all

modes simultaneously when no filter is included.

When a first-order filter with a cut-off frequency that is five times the first modal

frequency is implemented, we notice an increase in the size of the stability pockets,

see Fig. 5.10(b). Specifically, we can clearly see that the width of the stable pockets

increases especially for large gains. This stems from the rejection of the third mode

dynamics from the feedback. Note that, although the cut-off frequency is chosen

such that it is smaller than the second modal frequency of the beam, see Table 5.5;

we still observe that, within every large pocket of stability, there still exists almost six

smaller unstable pockets resulting from the second-mode dynamics passing through

the feedback due to the large roll-off slope of the first-order filter. When the cut-off
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(a) (b)

(c) (d)

(e)

Figure 5.10: Theoretical stability maps using a three-mode reduced-order model. Results
are obtained for Beam II–Rigid body I, and β = 0 using (a) no filter, (b) first-order filter
with ε = 1/5, (c) first-order filter with ε = 1, (d) second-order filter with ε = 1/5, and (e)
second-order filter with ε = 1.

frequency is decreased such that its equal to the first modal frequency, we observe

three distinct variations in the stability maps. Firstly, the whole stability diagram
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h!

Table 5.5: First five modal frequencies of the beam.

ω1 [Hz] ω2 [Hz] ω3 [Hz] ω4 [Hz] ω5 [Hz]
Beam II–No rigid body 10.3 64.4 180.4 353.5 584.3
Beam II–Rigid body I 2.06 27.25 35.92 76.34 128.4
Beam II–Rigid body II 3.0 28.7 36.6 87.4 171.4

shifts to the left due to the increased delay introduced by the filter. This has the

adverse influence of shrinking the first and larger pocket of stability. Secondly, the

smaller unstable pockets resulting from the higher modes shift upwards toward larger

gains and outside the first stability pocket. As a result, the controller becomes more

robust to variations in its gain and delay. Finally, it is observed that the magnitude

of the effective damping within the stability pockets decreases to almost half of its

original value making the controller less effective in rejecting external disturbances.

When compared to the first-order filter, a second-order filter has a sharper roll-

off slope and is more effective in rejecting the higher modes from the feedback.

Figure 5.10(d) illustrates that, when a second-order filter is implemented, the smaller

unstable pockets associated with the second mode shift even further toward larger

gains increasing the robustness of the controller. However, this comes at the cost of

decreasing the effective damping in the system. Indeed, as shown in Fig. 5.10(e), by

using a second-order filter and decreasing the cut-off frequency such that it is equal

to that of the first mode, one can completely reject the influence of the higher order

modes and obtain one large stabilizing pocket. However, it is clear again, that this

comes at the expense of the effective damping which is significantly reduced.

These finding can be further demonstrated by inspecting time histories of the beam’s

tip response to an initial condition as depicted in Figs. 5.11 and 5.12. The beam

was perturbed at the tip with a first mode initial condition. Since the first mode

is bending dominated, the uncontrolled response is clearly dominated by a bend-
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ing component at a frequency equal to the first modal frequency, with the higher

modes having lesser influence on the beam’s response. However, due to the linear

coupling, torsional motion of the beam can still be excited. When compared to

the uncontrolled response, it is evident that the controller is capable of suppressing

both flexural and torsional oscillations of the beam and significantly enhancing the

vibrations settling time.

The effect of the filter on the effectiveness of the controller is deduced by com-

paring the response settling time and the amplitude of residual oscillations for the

same gain-delay combinations. This can be clearly seen by inspecting Figs. 5.11(a)-

5.11(f). Since increasing the order of the filter and decreasing its cut-off frequency

reduces the effective damping of the controller for the same gain-delay combina-

tions, the controller is clearly more effective in suppressing beam’s oscillations for

the lower-order filters. However, in a real life scenario, where there are modeling

uncertainties, this comes at the expense of the controller’s robustness to variations

in its parametric gain and delay. In the case of lower-order filters, any small varia-

tions of the controller’s parameters around their nominal values can destabilize the

controller because of the smaller size of the stability pockets in the gain-delay space.

Within each stability pocket, varying the gain and delay can significantly increase or

decrease the effective damping introduced by the controller as evident by the color

shadings of the damping contours. For instance, when the gain is increased to K =

0.8 for the same delay τ = 0.02, the effective damping increases significantly in the

case of the first-order filter with ε = 1/5, see Fig. 5.10(b). This significantly improves

the ability of the controller to reject external disturbances as shown in Figs. 5.12(a)

and 5.12(a). However, when ε is increased to one, this same gain-delay combination

which now lies very close to the stability boundary of the closed-loop system as

shown in Fig. 5.10(b) yields little enhancement in the response characteristics of the

beam as shown in Figs. 5.12(c) and 5.12(d).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Time histories of the beam’s (Beam II–Rigid Body I) tip response for an
initial condition q1 = 0.01. Uncontrolled (gray line) and controlled (black line). Results
are obtained for a gain-delay combination of (K = 0.2, τ = 0.08) and (a, b) first-order
filter with ε = 1/5, (c, d) first-order filter with ε = 1; and (e, f) second-order filter with
ε = 1.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12: Time histories of the beam’s (Beam II–Rigid Body I) tip response to an
initial condition q1 = 0.01. Uncontrolled (gray line) and controlled (black line). Results
are obtained for a gain-delay combination of (K = 0.8, τ = 0.08) and (a, b) first-order
filter with ε = 1/5, (c, d) first-order filter with ε = 1; and (e, f) second-order filter with
ε = 1.
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5.9 Influence of the Piezoelectric Patch Orienta-

tion on the Performance and Stability of the

Controller

Up to this point, we only considered the response of the system to an initial condi-

tion in the first mode, i.e., q1, which is bending dominated. We illustrated that, by

using a proper gain-delay combination, the controller is very effective in suppressing

the resulting multi-modal oscillations. In this section, we try to investigate the ef-

fectiveness of the controller in rejecting oscillations resulting from initial conditions

in the higher modes, especially torsional initial conditions. Previous research ex-

periences [104] have indicated that a controller would be most effective in rejecting

torsional responses when the piezoelectric patch is oriented at a 45 degree angle with

respect to the horizontal axis of the beam (x − axis in this case). To understand

how the piezoelectric patch orientation influences the performance of the controller,

we generate the stability pockets of the closed-loop system for different orientation

angles, β, as shown in Fig. 5.13.

When comparing the stability diagrams at different angles, we observe striking sim-

ilarities between the stability pockets along the delay axis. The only difference

between the resulting diagrams is that the stable regions get stretched along the

gain axis. In other words, as the orientation angle is increased from zero, larger

controller gains are necessary to destabilize the closed-loop system for the same

controller delay. This is expected because, as the angle increases, the controller

effort gets distributed among two components, bending and torsion, as can be de-

duced from Equation (5.34). Since the projection of the controller’s input voltage

onto the bending component is larger as the orientation angle is increased, the net

influence of the controller on the beam decreases, requiring larger controller gains

to generate the same effort.
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(a) (b)

(c) (d)

Figure 5.13: Theoretical stability maps using a three-mode reduced-order model of the
tip-loaded beam. Results are obtained for Beam II–Rigid body I and (a) β = 30o, (b)
β = 45o, (c) β = 60o, and (d) β = 75o. A first-order filter with ε = 1/5 is implemented in
these simulations.

In Figs. 5.14 and 5.15, we simulate the response of the system to an initial condition

in the first mode and different patch orientations. The controller gain is increased in

each case such that the gain-delay combination produces almost the same amount

of maximum effective damping in the closed-loop system. It is evident that the

controller is capable of suppressing the beam’s oscillations with similar effectiveness

using different patch angles as long as the gain is altered in each case to produce

the same amount of damping in the system.

88



(a) (b)

(c) (d)

Figure 5.14: Bending time histories of the beam’s (Beam II–Rigid Body I) tip response
to an initial condition q1 = 0.01. Uncontrolled (gray line) and controlled (black line).
Results are obtained for (a) β = 30o and a gain-delay combination K = 1.0, τ = 0.075,
(b) β = 45o and a gain-delay combination K = 1.7, τ = 0.075, (c) β = 60o and a gain-
delay combination K = 2.0, τ = 0.075, and (d) β = 75o and a gain-delay combination
K = 12.0,τ = 0.075. A first-order filter with ε = 1/5 is implemented in these simulations.

Figure 5.15 investigates the controller’s effectiveness in rejecting external distur-

bances that are not bending dominated and resulting from a combination of initial

conditions. The controller is still capable of suppressing beam’s oscillations in both

bending and torsion but is more effective in controlling the bending component of

motion. Even when changing the patch orientation, the performance of the con-

troller remains almost the same provided that the gain is chosen in each case to
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(a) (b)

(c) (d)

Figure 5.15: Torsion time histories of the beam’s (Beam II–Rigid Body I) tip response
to an initial condition q1 = 0.01. Uncontrolled (gray line) and controlled (black line).
Results are obtained for (a) β = 30o and a gain-delay combination K = 1.0, τ = 0.075,
(b) β = 45o and a gain-delay combination K = 1.7, τ = 0.075, (c) bending response when
β = 60o and a gain-delay combination K = 2.0, τ = 0.075, and (d) β = 75o and a gain-
delay combination K = 12.0,τ = 0.075. A first order filter with ε = 1/5 is implemented in
these simulations.

produce the maximum possible damping. However, when comparing the actuator’s

input voltage in each scenario, we note that the controller requires less voltage (x-

axis) to produce the same output when the patch is oriented at 45o in reference

to the horizontal axis of the beam. This is in agreement with the results of Park

and Chopra [104] who illustrated that the piezoelectric patch is most effective in

producing torsional moments when it is oriented at or near 45o.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.16: Time histories of the beam’s (Beam II–Rigid Body I) tip response and
controller’s input voltage to an initial condition (q1 = 0.001, q2 = 0.001 and q3 = 0.0001).
Uncontrolled (gray line) and controlled (black line). Results are obtained for (a, b ,c)
β = 0, K = 0.8, and τ = 0.02; (d, e, f) β = 45o, K = 1.7, and τ = 0.02; and (g, h, i)
β = 75o, K=10.0, and τ = 0.02.
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5.10 Influence of the Higher Modes on the Per-

formance of the Controller

In this section, we investigate the influence of higher modes on the performance of

the controller. To that end, we choose a stabilizing gain-delay combination from

the stability pockets that are based on the three-mode reduced-order model and use

them to simulate the tip response to initial conditions using three-mode and seven-

mode reduced-order models as depicted in Figs. 5.17 and 5.18. Results illustrate

that the performance of the controller is not significantly altered by the addition of

the higher modes. The gain-delay combination remains a stabilizing one with the

effectiveness slightly sacrificed as the settling time of the flexural motion is increased.

These results are further confirmed in our experimental results presented in section

5.12 which illustrate that gain-delay combinations chosen based on the three-mode

reduced-order model are capable of stabilizing the actual infinite-dimensional beam’s

response.

5.11 Reduction of Beam’s Response Amplitude

Under Persistent Harmonic Base Excitations

Next, we investigate the effectiveness of the controller in suppressing the response of

the beam to harmonic base excitations. To that end, the steady-state frequency re-

sponse curves are generated near the first three modal frequencies with and without

control. Figures 5.19(a) and 5.19(b) depict variation of the steady-state response

amplitude, flexural and torsional, near the first modal frequency when the piezo-

electric patch is oriented at zero angle. By increasing the effective damping of the

system, the controller is capable of significantly reducing the response amplitude

over a wide bandwidth of frequencies near the fundamental mode. Furthermore, for
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(a) (b)

(c) (d)

Figure 5.17: Time histories of the beam’s (Beam II–Rigid Body I) tip response to initial
condition q3 = 0.0001 and β = 45o. Uncontrolled (gray line) and controlled (black line).
Results are obtained for (a, b) K = 0.9 and τ = 0.02 using a three-mode approximation,
and (c, d) K = 0.9 and τ = 0.02 using a seven-mode approximation.

this gain-delay combination, the controller shifts the first peak frequency to the left

toward smaller frequencies. Since, in general, the location of the peak frequency in

the frequency spectrum has a periodic dependance on the delay, other values of the

controller’s parametric delay can shift the peak frequency toward higher frequencies.

The influence of the delay on the peak frequency is discussed in significant details

in Chapter 4.

The same gain-delay combination can also significantly reduce the response ampli-
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(a) (b)

(c) (d)

Figure 5.18: Time histories of the beam’s (Beam II–Rigid Body I) tip response to initial
condition q1 = 0.01 and β = 0o. Uncontrolled (gray line) and controlled (black line).
Results are obtained for (a, b) K = 0.5 and τ = 0.25 using a three-mode approximation,
and (c, d) K = 0.5 and τ = 0.25 using a seven-mode approximation.

tude near the second modal frequency as depicted in Figs. 5.19(c) and 5.19(d).

This constitutes one of the most important characteristics of the controller, which

is evidently capable of reducing the response near multiple modes without the need

to change the gain-delay combination of the controller. In Figs. 5.19(e) and 5.19(f),

the response of the controller is simulated near the third mode, a torsion-dominated

mode. Since the base excitation is perpendicular to the axis of the beam along the

bending direction, it was difficult to excite large amplitude responses near the third

modal frequency using the same levels of input acceleration. As such, we simulated
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the response for a base acceleration that is 100 times larger. Simulations shown

in Figs. 5.19(e) and 5.19(f) reveal that the same gain-delay combination can actu-

ally amplify the response amplitude by reducing the effective damping associated

with the third mode. However, the response remains stable and the amplification

constant is relatively small.

Next, we repeat the same simulations with the piezoelectric patch oriented at 45o

angle. When compared to the pervious scenario, it is evident in Fig. 5.20 that the

controller is now less effective in reducing the amplitude of the response near the

first mode. This stems from the fact that, for the same gain-delay combination,

the controller produces less damping when the piezoelectric patch is oriented at

45o as can be seen in Fig. 5.13. On the other hand, orienting the patch at 45o

increases the effectiveness of the controller in mitigating the vibration of the torsional

component of the third torsion-dominated mode. This can be attributed to the larger

input torque that the patch can provide for the same gain-delay combinations when

oriented at 45o angle.

5.12 Experimental Implementation

Throughout this experimental study, we limit the investigation to only bending

feedback and use one piezoelectric patch oriented at zero degree angle (single-input

single-output). In Fig. 5.21, we compare the stability diagrams of the controller

as obtained experimentally to those obtained theoretically in the previous sections.

Two cases are considered using first-order filters with different cut-off frequencies,

namely ε = 0.1 and ε = 0.2. The experimental results are generated by choosing

a certain controller delay then increasing the gain slowly until the system loses

stability. For every gain-delay combination, the beam is subjected to an initial

condition and the response is monitored. If the response dies out and returns to the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.19: Frequency-response curves of the beam’s tip (Beam II–Rigid body I). The
controller is applied using a first-order filter (ε = 1/50) and a piezoelectric patch oriented
at β = 0o. Results are obtained near (a, b) the first mode using ẅb = 0.1; (c, d) the second
mode using ẅb = 0.1; and (e, f) the third mode and ẅb = 10.0.

stable fixed point, then the gain-delay combination is considered stable. Otherwise,

if the response grows exponentially to infinity or to a limit cycle then the gain-delay

combination is considered linearly unstable. The process in repeated to generate

the stability boundaries shown in Fig. 5.21.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.20: Frequency-response curves of the beam’s tip (Beam II–Rigid body I). The
controller is applied using a first-order filter (ε = 1/50) and a piezoelectric patch oriented
at β = 45o. Results are obtained near (a, b) the first mode using ẅb = 0.1; (c, d) the
second mode using ẅb = 0.1; and (e, f) the third mode and ẅb = 10.0.

Since it was very difficult to relate the controller gains obtained experimentally to

those used in the theoretical study because of various modeling uncertainties, a scal-

ing factor was implemented to shift the stability boundaries obtained experimentally

until they coincide with those obtained theoretically. The delay axis however is kept

the same without any scaling (Note that the scaling factor is kept constant in all
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(a) (b)

Figure 5.21: Stability maps of the controller using the theoretical model (solid line) and
experimental data (circles). Results are obtained for Beam I–Rigid body I using (a) a
first-order BLPF with ε = 0.1; and (b) a first-order BLPF with ε = 0.2 .

experiments). After implementing the correct scaling factor, one can observe ex-

cellent qualitative agreement between the theory and experiments. The stability

boundaries are well estimated and the effect of adding a filter on the stability dia-

gram is well reflected. Furthermore, in agreement with the theoretical findings, the

influence of increasing the cut-off frequency of the filter on the first stability pocket

is clear in that it shifts the unstable pockets toward larger gains creating one large

pocket of stability, thereby enhancing the robustness of the controller to parameter

uncertainties.

To investigate the effectiveness of the controller in rejecting external disturbances,

the beam is subjected to an impulse using the electrodynamic shaker and the re-

sponse is subsequently monitored using a laser sensor. Figure 5.22 compares the

controlled and uncontrolled responses of the beam’s tip deflection using different

gain-delay combinations. Results demonstrate that, for all gain-delay combinations

utilized in the experiments, the settling time of the controlled response is much

shorter than the natural response of the beam. Additionally, in agreement with the

theoretical damping contours depicted in Fig. 5.21 (b), the gain-delay combination
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(a) (b)

(c) (d)

(e)

Figure 5.22: Experimental time histories of the beam’s response to an impulse (Beam-I
Rigid Body-I). (a) Natural decay, (b) controlled response using a first-order BLPF with
ε= 0.2, K = 0.4, and τ = 0.07, (c) controlled response using a second-order BLPF with
ε= 0.2, K = 0.2, and τ = 0.07, (d) controlled response using a first-order BLPF with ε=
0.2, K = 0.4, and τ = 0.33, (e) controlled response using a second-order BLPF with ε=
0.2, K = 0.2, and τ = 0.33.
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K = 0.4 and τ = 0.33 seems to produce larger damping when compared to K = 0.4

and τ = 0.07 as evident from the shorter settling of the response, see Figs. 5.22

(b) and (d). Most importantly, none of the gain-delay combinations chosen from

the stability pockets has a destabilizing influence on the impulse response of the

beam which contains a wide spectrum of frequencies, further demonstrating the ef-

fectiveness of the controller in stabilizing the infinite linearly-coupled modes of this

structure.

The effectiveness of the controller in reducing the beam’s response amplitude under

persistent harmonic base excitations is also investigated experimentally in Fig. 5.23.

In the case of the first mode, two different gain-delay combinations are chosen from

Fig. 5.21 (b). Both of these combinations are very effective in significantly reducing

the bending component of the tip response as shown in Fig. 5.23(a). Since, as

mentioned previously, the delay has a periodic influence on the location of the peak

frequency. One of these combinations shifts the peak frequency to the left while the

other shifts it to the right. For the beam considered and the base acceleration used

in this experiment (0.084 m/sec2), the torsion component associated with the first

mode was very small (within the noise limit of the sensors).

The bending and torsion components of the beam’s tip response near the second

vibration mode are shown in Fig. 5.23 (b) and (c). The controller is capable of

reducing the tip response of the beam near the second mode using the same gain-

delay combination used for the first mode. As such, the gain-delay combination

of the controller need not be changed to suppress large amplitude oscillations near

multiple vibration modes constituting an important characteristic of the controller.

It can also be noted that the frequency-response curves are bent slightly to the left,

a characteristic of a nonlinear softening behavior usually associated with the second-

mode dynamics of cantilever beams. The influence of such nonlinearities have been

neglected in the theoretical part of this investigation.
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(a)

(b) (c)

(d)

Figure 5.23: Frequency-response curves of Beam I–Rigid body I. (a) First mode response
using a base acceleration of 0.084 m/sec2, (b,c) second mode response using a base accel-
eration of 0.53 m/sec2, (d) third mode response using a base acceleration of 7.07 m/sec2.
Controlled results are obtained using a first-order BLPF and ε = 0.2.
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As mentioned previously, since the base excitation is perpendicular to the axis of

the beam along the bending direction, it was very difficult to excite large amplitude

responses near the third, torsion–dominated modal frequency using the same levels

of input acceleration. As such, we increased the base acceleration by almost a

hundred times to about 7.07 m/sec2. Using the same gain-delay combinations and

a piezoelectric patch that is oriented at zero degree angles with respect to the axis

of the beam, the controller was not effective in reducing the torsional vibrations

near the third mode. This is in agreement with the theoretical findings depicted in

Fig. 5.19 (f). In agreement with figure 5.19(f) the bending component of this mode

was very small to be effectively measured using the laser sensors.
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Chapter 6

On Primary Resonances of Weakly

Nonlinear Delay Systems With

Cubic Nonlinearities

This Chapter discusses the theoretical implementation of the Method of Multiple

Scales to investigate primary resonances of a weakly-nonlinear second-order delay

system with cubic nonlinearities. In contrast to previous studies where the imple-

mentation is confined to the assumption of linear delay terms with small coefficients

[54, 55]; in this chapter, we propose a modified approach which alleviates that as-

sumption and permits treating a problem with arbitrarily large gains. The modified

approach lumps the delay state into unknown linear damping and stiffness terms

that are function of the gain and delay. These unknown functions are determined

by enforcing the linear part of the steady-state solution acquired via the Method of

Multiple Scales to match that obtained directly by solving the forced linear prob-

lem. We examine the validity of the modified procedure by comparing its results

to solutions obtained via a Harmonic Balance approach. Several examples are dis-

cussed demonstrating the ability of the proposed methodology to predict the ampli-
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tude, softening-hardening characteristics, and stability of the resulting steady-state

responses. Analytical results also reveal that the system can exhibit responses with

different nonlinear characteristics near its multiple delay frequencies.

6.1 Introduction

Despite the large number of research studies on delay systems, most of the previ-

ous efforts were directed towards characterizing the stability of the free response

by proposing various methodologies to predict and estimate the location of the

eigenvalues relative to the imaginary axis [52, 53]. Little attention has been paid

to understanding the effect of time delays on the response of nonlinear externally-

excited systems [54, 55]. In particular, the nonlinear response of a delayed system to

primary-resonance excitations has yet to be addressed comprehensively. Such stud-

ies were not very prevalent in the past due to the limited number of applications in

which time delays and external excitations coexisted in the operation of a dynamic

system. Currently, and due to the the emergence of microdevices as the next gener-

ation sensors and actuators, this type of analysis is becoming more imperative. For

instance, to realize large dynamic responses, microdevices are usually excited at one

of their resonant frequencies. To enhance their dynamic characteristics, feedback

control algorithms are being implemented to close the loop and provide real-time

information about the states. However, due to their high natural frequencies, the

presence of the infinitesimal measurement delays in the control loop can be of the

same order of magnitude of the response period, thereby channeling energy into or

out of the system at incorrect time intervals and producing instabilities that render

traditional controllers’ performance ineffective [56].

To resolve this issue, there is a growing interest in the control and dynamic commu-

nities to utilize delayed-feedback controllers for vibration mitigation and control of
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dynamic systems. In such controllers, system’s delays are carefully augmented into

a larger delay period to enhance the damping characteristics [43]. In one demon-

stration, delayed-feedback algorithms have been successfully implemented at the

macroscale to mitigate potentially hazardous oscillations of suspended objects on

various types of cranes [36, 38, 105] and active vibration control of externally-excited

macrobeams [106, 107, 35, 33, 108, 109, 62, 110, 111]. Most recently, the same idea

was also adapted to control microcantilevers in dynamic force microscopy [57], to

eliminate chaotic motions in taping-mode atomic force microscopy [58], for sensor

sensitivity enhancement in nanomechanical cantilever sensors [112] and to control

the quality factor in dynamic atomic force microscopy [56]. Successful implementa-

tion of these controllers, especially when the objective is to mitigate large amplitude

oscillations resulting from external excitations requires a deep analytical understand-

ing of the primary resonance phenomenon in time-delayed systems.

In this Chapter, we investigate the response of a second-order weakly nonlinear

delay system with cubic nonlinearities to primary resonance excitations. One way

to achieve this understanding is to analytically construct an approximate solution

using the Method of Multiple Scales (MMS) [113]. However, the implementation of

this method is not trivial especially when the linear delay terms have large coeffi-

cients. As such, previous studies were restricted to the assumption that the linear

delay terms have small coefficients [54, 55]. In such a case, the MMS can be di-

rectly implemented to attack the problem because the gains can be scaled at the

same order of the perturbation problem as the nonlinearities, internal damping, and

external excitation. For many applications, however, especially feedback control,

these coefficients, referred to as gains, can be large. In that scenario, direct imple-

mentation of the MMS as demonstrated in [54, 55] yields solutions that can deviate

significantly from the actual system’s response. By scaling the linear gains at the

higher order of the perturbation problem, one implicitly assumes that the response

of the system can be approximated by one eigenfrequency that is very close to the
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system’s natural frequency. This assumption is clearly invalid when the gains are

large.

To alleviate this problem, this Dissertation presents a modified approach that per-

mits implementing the MMS to a weakly nonlinear delay system with large gains. To

explain the proposed methodology, we will consider a second-order weakly nonlinear

system whose equation of motion take the form:

d2u

dt2
+ 2µ

du

dt
+ ω2

nu = −Kdju(t− τ)

dtj
− αu3 − 2βu

[
u
d2u

dt2
+

(
du

dt

)2
]

+ F cos(Ωt)

j = 0, 1, 2

(6.1)

where u is the state, µ is a linear damping term, ωn is the natural frequency, K is

the coefficient of the linear-delayed state, loosely referred to as the linear gain, τ is a

discrete time delay, F is the level of external excitation, Ω is the excitation frequency,

j is the order of the derivative associated with the linear delay term, and α and β are

respectively the coefficients of geometric and inertia nonlinearities. When β is set

to zero, Equation (6.1) represents an externally-excited duffing oscillator subjected

to delayed-feedback control. Whereas, for nonzero values of β, the system can be

used to represent the single-mode dynamics of an externally-excited cantilever beam

subjected to delayed-feedback control.

To clarify the basis for the modified procedure, we first analyze the response of

the linear, free and forced, system (Section 6.2). We obtain the linear steady-state

solution and use it to create a distinction between the peak and delay frequencies.

Subsequently, in Section 6.3, we analyze the primary resonance of the nonlinear

system. We show through comparisons with the Method of Harmonic Balance that

direct implementation of the MMS may result in erroneous predictions especially

when the linear delay terms have large coefficients. We present the modified ap-
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proach and demonstrate its ability to capture the nonlinear response and stability

of the system. We implement the modified approach to analyze the response of i)

a weakly nonlinear duffing oscillator with linear delayed feedback; ii) a weakly non-

linear system with geometric and inertia nonlinearities subjected to linear delayed

feedback.

6.2 Linear Analysis:

6.2.1 Free Response:

Before the modified approach is presented and implemented, it is imperative to

develop a good understanding of the linear response characteristics as they will

define the regions of gain and delay wherein the modified approach is capable of

presenting the response of the forced nonlinear system. As such, the local stability

of the equilibrium solutions of the unforced system is determined by finding the

eigenvalues, λ, of the linearized equation when F is equal to zero. These eigenvalues

are obtained by substituting a homogeneous solution of the form, uh = c exp(λt),

into Equation (6.1) and obtaining

(ω2
n + λ2) + 2µλ+Kλje−λτ = 0, j = 0, 1, 2. (6.2)

Due to the presence of delay in the linear state, Equation (6.2) takes the form of

a quasi-polynomial having infinite number of solutions associated with every set of

fixed parameters (K,τ). By inspecting the form of the homogeneous solution, uh, it

becomes evident that the stability of the equilibrium solutions is determined by the

sign of the real part of the eigenvalues (λ = ζd± iωd). In particular, the equilibrium

solutions are locally asymptotically stable if all the eigenvalues have negative real
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(a) j = 0 (b) j = 1

(c) j = 2

Figure 6.1: Stability maps of the equilibrium solutions of Equation (6.1) for a) j = 0, b)
j = 1, and c) j = 2. Shaded regions represent asymptotically stable equilibria. Results
are obtained for ωn = 1 and µ = 0.005.

parts, ζd < 0, and unstable if at least one eigenvalue has a positive real part, ζd > 0.1

Thus, to determine the stability boundaries, we set the real part of the eigenvalue

ζd equal to zero and substitute λ = iωd into Equation (6.2), then separate the real

and imaginary parts of the outcome to obtain

(ω2
n − ω̂2

d) + (−1)jK̂
dj

dτ̂ j
[cos(ω̂dτ̂)] = 0, (6.3a)

1When j = 2, the delay system is of the neutral type requiring stronger conditions for stability.
For more details, we refer the reader to [2].
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2µω̂d − (−1)jK̂
dj

dτ̂ j
[sin(ω̂dτ̂)] = 0, j = 0, 1, 2. (6.3b)

where the hat denotes the gain, delay, and response frequency at the stability

boundaries. For a given gain K̂, Equations (6.3) can be solved for the delay τ̂ and

the associated frequency at the boundary, ω̂d. To better visualize the stability of

the equilibrium solutions, the gain-delay space is mapped into stable and unstable

regions as depicted in Fig. 6.1, where shaded regions represent gain-delay combina-

tions leading to asymptotically stable equilibria.

It is worth noting that Equations (6.3) are invariant under the transformation

ω̂d ↔ −ω̂d and have no solution when ω̂d = 0. This implies that, at the stabil-

ity boundaries, Equation (6.2) has a pair of complex conjugate eigenvalues, while all

of its other eigenvalues have nonzero real parts. If these eigenvalues have a traver-

sal or nonzero-speed crossing of the imaginary axis, then the stability boundaries

represent Hopf Bifurcation curves [114, 115]. To check if the transversality condi-

tion is satisfied, we let the analytic continuation of the eigenvalues ±iω̂d be λ1 and

λ2. We differentiate all the terms in Equation (6.2) with respect to the bifurcation

parameter, say K, then evaluate the resulting equation at (K̂,τ̂ ,ω̂d) and ±iω̂d to

obtain

Re

{
dλ1,2

dK

}∣∣∣∣
(K̂,ω̂d,τ̂)

=


2ω̂dK̂

(K̂2+4µ4−4µ2ω2
n)

η0
j = 0

2ω̂3
d
(K̂4−(8µ2−4ω2

n)K̂2+16µ2(1−ω2
n))

η1
j = 1

2ω̂5
d
(4ω2

nK̂
2+(4µ2−2ω2

n)2−4ω2
n))

η2
j = 2

(6.4)

where

ηj =− 4K̂µω̂d(ij + τ̂ ω̂d) cos(τ̂ ω̂d)(iω̂d)
j + 4K̂ω̂2

d(ij + τ̂ ω̂d) sin(τ̂ ω̂d)(iω̂d)
j

− j2K̂2(iω̂d)
2j + K̂2τ 2ω̂2

d(iω̂d)
2j + 2jK̂2τ̂(iω̂d)

2j+1 + 4ω̂4
d + 4µ2ω̂2

d, j = 0, 1, 2.

Because the real parts of dλ1,2

dK
are nonzero except for the points where the numerator

of Equation (4) vanishes. The transversality condition is satisfied everywhere except
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at the points corresponding to the roots of
K̂2 + 4µ4 − 4µ2ω2

n = 0 j = 0

K̂4 − (8µ2 − 4ω2
n)K̂2 + 16µ2(1− ω2

n) = 0 j = 1

4ω2
nK̂

2 + (4µ2 − 2ω2
n)2 − 4ω2

n = 0 j = 2

(6.5)

At these points, the linear analysis is incapable of determining whether the stability

boundary represents a Hopf Bifurcation curve. It turns out that the singular points

of Equation (5) are the points of intersection between different critical frequency

curves, ω̂d.

6.2.2 Forced Response:

The Steady-State Solution:

Throughout this Chapter, we limit the analysis to gain-delay combinations leading

to stable equilibrium solutions. In other words, we only consider gain-delay values in

the shaded regions depicted in Fig. 6.1. This, however, is not equivalent to the small

gain assumption as stable solutions can exist even when the gain is large. Based on

this assumption, the homogeneous solution of Equation (6.1), uh, decays with time

and does not affect the steady-state response. Next, to determine the steady-state

linear response of the forced system, we retain the linear terms in Equation (6.1)

and assume a solution of the form

uss(t) =
1

2
aei(Ωt+γ) + cc (6.6)

where a and γ are respectively the steady-state amplitude and phase of the response

and cc is the complex conjugate of the preceding term. Substituting Equation (6.6)
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into the linearized version of Equation (6.1), we obtain

{(
(ω2

n − Ω2) + (−1)jK
dj

dτ j
[cos(Ωτ)]

)
a− F cos γ

}
+ i

{(
2µΩ− (−1)jK

dj

dτ j
[sin(Ωτ)]

)
a+ F sin γ

}
= 0

j = 0, 1, 2.

(6.7)

Now, setting the real and imaginary parts of Equation (6.7) equal to zero yields

(
(ω2

n − Ω2) + (−1)jK
dj

dτ j
[cos(Ωτ)]

)
a = −F cos γ (6.8a)

(
2µΩ− (−1)jK

dj

dτ j
[sin(Ωτ)]

)
a = F sin γ, j = 0, 1, 2 (6.8b)

Squaring and adding Equations (6.8) and solving the resulting equation for a gives

a =
F√(

ω2
n − Ω2 + (−1)jK dj

dτ j [cos(Ωτ)]

)2

+

(
2µΩ− (−1)jK dj

dτ j [sin(Ωτ)]

)2

j = 0, 1, 2

(6.9)

Equation (6.9) represents the linear steady-state amplitude of the response. The

corresponding steady-state phase, γ, can be obtained by using either one of Equa-

tions (6.8). By inspecting Equations (6.3) and (6.9), it becomes evident that, for

gain-delay combinations at the stability boundary (K̂, τ̂), the linear response ap-

proaches infinity when the excitation frequency, Ω, approaches the corresponding

delay frequency, ω̂d. This singularity occurs regardless of the value of the system

internal damping, µ.
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Using Equations (6.6) and (6.9), the steady-state response can be written as

uss(t) =
F√(

ω2
n − Ω2 + (−1)jK dj

dτ j [cos(Ωτ)]

)2

+

(
2µΩ− (−1)jK dj

dτ j [sin(Ωτ)]

)2

× cos(Ωt+ γ), j = 0, 1, 2

(6.10)

where

γ = − arctan
2µΩ− (−1)jK dj

dτ j [sin(Ωτ)]

ω2
n − Ω2 + (−1)jK dj

dτ j [cos(Ωτ)]
(6.11)

Peak Versus Delay Frequencies:

When analyzing the primary resonance of a delay system, it is essential to create a

distinction between the delay and peak frequencies. While a delay system possesses

infinite delay frequencies, not every delay frequency yields a resonance peak in the

frequency response. The presence of a response peak depends on the amount of

damping associated with that delay frequency. To further illustrate this important

notion, we determine the peak frequencies of the response by minimizing the denom-

inator of Equation (6.9). At the local extrema, the derivative of the denominator

with respect to Ω vanishes yielding the following equation:

R =− (−1)2jjK2Ω2j
p − 2Ω4

p − 4µ2Ω2
p + 2ω2

nΩ2
p

+ (−1)jKΩj
p

(
(j + 2µτ + 2)Ω2

p − jω2
n

)
cos
(
πj

2
+ τΩp

)
+ (−1)jKΩj+1

p

(
2(j + 1)µ+ τ

(
ω2
n − Ω2

p

))
sin
(
πj

2
+ τΩp

)
= 0, j = 0, 1, 2.

(6.12)

For local minima, we impose the condition

d2R

dΩ2
p

> 0 (6.13)
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where Ωp denotes the peak frequency. Equations (6.12) and (6.13) do not yield a unique

solution. As such, the frequency-response curves of the forced response may exhibit more

than one peak. The location and number of these peaks are influenced by the gain-delay

parameters and the order of the linear derivative, j. To illustrate this fact, we consider

the assumption of small internal damping, gain, and delay. In other words, we let µ = εµ,

K = εK, and τ = ετ , then eliminate terms having higher orders of ε to obtain

cos
(
πj

2
+ τΩp

)
=

2(−1)−jΩ2−j
p

(
Ω2
p − ω2

n

)
K
(
j(Ω2

p − ω2
n) + 2Ω2

p

) , j = 0, 1, 2. (6.14)

or

cos
(
πj

2
+ τΩp

)
−O

(
Ω2−j
p

K

)
= 0 j = 0, 1, 2. (6.15)

where O denotes “the order of ”. The number of peak frequencies can be approximated

by the number of real solutions of Equation (6.15) subjected to Equation (6.13). By

examining Equation (6.15), it becomes evident that the number of peak frequencies is

directly proportional to both j and the magnitude of K. For example, when j = 0,

Equation (6.15) comprises of two functions: a bounded function represented by cos (τΩp)

and a quadratically varying (increasing/decreasing) function represented by Ω2
p/K. The

number of intersections between these curves and hence the number of peak frequencies

is directly proportional to K.

Increasing the order of the derivative to j = 1 while keeping K constant yields a larger

number of peak frequencies. In this situation, Equation (6.14) comprises of a bounded

sinusoidal function, cos
(
π
2 + τΩp

)
, and a linearly varying function, Ωp/K. These functions

can intersect a larger number of times because of the slower rate of change of Ωp/K when

compared to Ω2
p/K. When j = 2, Equation (6.14) consists of two bounded curves, a

sinusoid and a constant, 1/K. For large values of K, these curves can intersect infinite

number of times, thusly producing an infinite number of peak frequencies.

These findings are also demonstrated numerically in Table 1 which lists the first three

peak frequencies at τ = 1.2π and different values of j and K. For a given j, the gains were
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Table 6.1: The first three peak frequencies as calculated via Equation (6.12). Results are
obtained for ωn = 1, µ = 0.005, and τ = 1.2π.

j = 0

K = 0.05 K = 0.2 K = 0.3
Ωp1 Ωp2 Ωp3 Ωp1 Ωp2 Ωp3 Ωp1 Ωp2 Ωp3

0.9766 – – 0.884345 – – 0.833409 – –

j = 1
K = −0.05 K = −0.2 K = −0.4

Ωp1 Ωp2 Ωp3 Ωp1 Ωp2 Ωp3 Ωp1 Ωp2 Ωp3

1.01703 – – 1.1133 – – 0.721655 1.23672 –

j = 2
K = −0.05 K = −0.2 K = −0.4

Ωp1 Ωp2 Ωp3 Ωp1 Ωp2 Ωp3 Ωp1 Ωp2 Ωp3

0.977379 – – 0.906992 3.1689 4.90623 0.841806 1.61982 3.29911

chosen such that the gain-delay combination always lies inside the shaded regions depicted

in Fig. 6.1. For small gains, there is only one peak frequency regardless of the order of the

linear derivative, j. When the order of the linear derivative is increased to j = 1, and the

magnitude of the gain is increased to K = 0.4 a new peak frequency appears at a smaller

value of Ω.

When j = 2, the frequency response has only one peak for small gains but exhibits a very

large number of peaks when K = −0.2 and −0.4 (only the first three are listed in Table

1). It is also worth noting that, in general, the smaller the gain is, the closer is the first

peak frequency to the system’s natural frequency.

Similar to delay-free systems, where the existence and convergence of the peak frequency to

the natural frequency is characterized by the system’s internal damping; in delay systems,

the existence and convergence of a given peak frequency to the associated delay frequency is

characterized by the absolute value of the damping parameter ζd, Fig. 6.2(b). Figure 6.2(a)

illustrates the relation between the peak frequencies, Ωp, and the imaginary parts of the

eigenvalues, ωd. The figure, which displays variation of the first four peak and delay

frequencies with the gain, demonstrates that the first delay frequency, ωd1, coincides with

the the first peak frequency, Ωp1, over the whole gain range. The second peak frequency,
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Figure 6.2: a) Variation of the first four delay frequencies, ωd, (solid lines) and the
associated peak frequencies, Ωp, (dashed lines) with the gain K. b) Variation of the
associated damping ratios ζd/ωd with the gain K. Results are obtained for a fixed delay
τ = 0.2π, ωn = 1, µ = 0.005 and j = 2.

ωp2, however exists only for values of K greater than K ≈ 0.5 and approaches the second-

delay frequency, ωd2, only when the gain is large.

These results clearly indicate that the peak frequencies exist over a wider range of the

gain and converge to the associated delay frequencies as the magnitude of ζd decreases.

For example, consider the second-delay frequency, ωd2. For small gains, ζd2 is very large

and there is no peak frequency associated with ωd2. However, as the gain increases and

approaches K ≈ 0.5, the peak frequency appears because ζd2 decreases beyond a critical

value.

By the preceding discussion, we meant to illustrate that delay systems can exhibit primary

resonances at a large number of frequencies. Depending on the gain and delay values,

these resonances may occur at frequencies that are far from the natural frequency ωn.

Furthermore, not every delay frequency, ωd, obtained via the linear unforced eigenvalue

problem yields a peak frequency. This can be realized by simply noting that, while the

free response always yields infinite number of eigenfrequencies, ωd, associated with every

nonzero set of parameters (K, τ), the forced response might exhibit only one peak for the

same parameter set. As such it is safe to conclude that not every delay frequency yields a

peak frequency, but every peak frequency is associated with a delay frequency.
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6.3 Nonlinear Analysis:

6.3.1 Analytical Solution of The Nonlinear Problem

Direct Application of The Method of Multiple Scales:

Throughout this Chapter, we will try to analyze the primary resonance of Equation (6.1)

near the resulting multiple peak frequencies discussed in the previous section. Previously,

Hu et al. [54] and Ji and Leung [55] utilized the MMS to study the primary resonance of

a duffing system with linear delay terms. Both studies were confined to the assumption

of very weak gains. As such, the resulting analytical solutions only predicted the response

behavior near the natural frequency and obviously cannot predict the response near the

multiple resonances of delay systems. To understand the limitations of the direct approach,

we first attack the problem in a manner similar to [54, 55]. We limit the analysis to linear

delay terms (i.e., G = 0), and seek a second-order nonlinear solution in the form

u(T0, T1) = u0(T0, T1) + εu1(T0, T1) +O(ε2), (6.16)

where Tn = εnt and ε is a small bookkeeping parameter. In terms of the Tn, the time

derivative becomes
d

dt
= D0 + εD1, (6.17)

where Dn = ∂/∂Tn. We order the amplitude of excitation, F , and the feedback gain, K,

so that they appear in the same perturbation equation as the damping, µ, and nonlinear

terms described by the coefficients α and β. As such, we let

µ = εµ, F = εF, K = εK, α = εα, β = εβ. (6.18)

To investigate the response near the primary resonance (Ω ≈ ωn), we introduce a detuning

parameter, σ, that characterizes the nearness of the excitation frequency, Ω, to the natural

frequency, and let

Ω = ωn + εσ. (6.19)
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It is worth noting that Equation (6.19) is invalid when the response has more than one

peak frequency or when the response frequency is not very close to ωn. These conditions

are satisfied only when the gain is very small. Substituting Equations (6.16–6.19) into

Equation (6.1) and equating coefficients of like powers of ε, we obtain

O(1) : D2
0u0 + ω2

nu0 = 0, (6.20)

O(ε) : D2
0u1 + ω2

nu1 =− 2D0D1u0 − µD0u0 + F cos(ωnT0 + σT1)− αu3
0

− 2β(u0(D0u0)2 +D2
0u0u

2
0)−KD(j)

0 u0(T0 − τ, T1), j = 0, 1, 2.

(6.21)

The solution of the first order equation, Equation (6.20), can be written as

u0 = A(T1)eiωnT0 + Ā(T1)e−iωnT0 , (6.22)

where A(T1) is an unknown complex function that will be determined by imposing the

solvability conditions at the next level of approximation and Ā(T1) is its complex conju-

gate. Substituting Equation (6.22) into Equation (6.21) and eliminating the secular terms

(i.e., terms leading to e±iωnT0) yields

−2iωnD1A− 2µiωnA+
F

2
eiσT1 + (4βω2

n − 3α)A2Ā−K(iωn)jAe−iωnτ = 0. (6.23)

In solving Equation (6.23), we find it convenient to express A(T1) in the polar form

A(T1) =
1
2
a(T1)eiψ(T1), Ā(T1) =

1
2
a(T1)e−iψ(T1), (6.24)

where a and ψ are real functions of time. Substituting Equation (6.24) into Equation

(6.23) and separating the real and imaginary parts of the resulting equation, we obtain

ωna′ = −µeffωna+
F

2
sin γ, (6.25a)

ωnaγ′ = (σωn + Σ)a−Neffa
3 +

F

2
cos γ, (6.25b)

117



where the primes are derivatives with respect to T1, γ = σT1 − ψ,

Neff =
3α
8
− ω2

nβ

2
, (6.26)

is the coefficient of effective nonlinearity which determines the softening-hardening char-

acteristics of the response, and

µeff = (µ− (−1)j
K

2ωn
dj

dτ j
[sin(ωnτ)]), j = 0, 1, 2, (6.27)

is a measure of the effective damping in the system which is clearly dependent on the gain,

K, and the delay, τ . Consequently, depending on the sign of (−1)jK dj

dτ j [sin(ωnτ)] which

is periodic in τ , the presence of delays can increase or decrease the amount of damping

introduced into the system. Further, the term

Σ = (−1)j+1K

2
dj

dτ j
[cos(ωnτ)], j = 0, 1, 2, (6.28)

represents a linear shift in the response frequency from ωn. Equations (6.25a) and (6.25b)

represent the modulation equations of the response and are used to study time evolution

of the response amplitude and phase. For steady-state solutions, we set a′ = γ′ = 0, which

corresponds to the singular points of Equations (6.25a) and (6.25b) that are obtained by

solving

µeffωna0 =
F

2
sin γ0, −(σωn + Σ)a0 +Neffa

3
0 =

F

2
cos γ0. (6.29)

Squaring and adding Equations (6.29), one obtains the following frequency-response equa-

tion:

µ2
effω

2
na

2
0 +

(
(σωn + Σ)a0 −Neffa

3
0)
)2

=
F 2

4
. (6.30)

For given system parameters and certain level of external excitation, F , Equation (6.30)

can be solved for the steady-state response amplitude, a0. The corresponding phase, γ0,

can be obtained by utilizing either one of Equations (6.29).

The stability of the resulting steady-state solutions is assessed by finding the eigenval-

ues of the Jacobian of the modulation equations evaluated at the roots (a0, γ0). Using
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Equations (6.25a) and (6.25b), the characteristic equation can be written as

s2 + 2µeffs+ µ2
eff +

1
ω2
n

(
σωn + Σ−Neffa

2
0

) (
σωn + Σ− 3Neffa

2
0

)
= 0. (6.31)

The roots (a0, γ0) are asymptotically stable, if all the eigenvalues, s, have negative real

parts and are unstable if at least one eigenvalue has a positive real part. Using the Routh-

Hurwitz criterion, one can easily show that Equation (6.31) admits solutions with negative

real parts if and only if the following two conditions are satisfied:

µeff > 0, µ2
eff +

(
σωn + Σ−Neffa

2
0

) (
σωn + Σ− 3Neffa

2
0

)
> 0. (6.32)

Under the small gain assumption, i.e., when ω̂d ≈ ωn, the first condition in Equation (6.32)

is equivalent to Equation (6.3b).

To validate the steady-state analytical solution, the frequency-response curves are gener-

ated and compared to those obtained using the Method of Harmonic Balance [32]. In the

Method of Harmonic Balance, the number of harmonics kept in the series is increased until

the solution converges to that obtained via long-time integration of Equation (6.1). Since

Equation (6.1) only has cubic nonlinearities, only odd harmonics contribute to the solu-

tion. We found that, even for large response amplitudes, two odd harmonics are sufficient

to yield accurate results. The stability of solutions acquired via the Method of Harmonic

Balance was further assessed using the Floquet Theory. Since the details of this analysis

is beyond the scope of this work, we refer the reader to [32]2.

For small gains, Equations (6.25a) and (6.25b) represent a good approximation of the

response as illustrated in Fig. 6.3(a) and demonstrated previously in [54, 55]. When β = 0

and α > 0 (hardening response), the perturbation solution closely predicts the response

obtained using the Method of Harmonic Balance. On the other hand, when β = 0 and

α < 0 (softening response), the perturbation solution slightly underestimates the numerical

solution. To understand the source of the discrepancy, it is necessary to realize that for

2Implementation of the Method of Harmonic Balance and the Floquet Theory to study the
response and stability of Time-Delay Systems has been comprehensively studied in the literature.
For example, the reader can refer to the work by Nayfeh et al. on chatter tool dynamics [116].
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Figure 6.3: Nonlinear frequency-response curves obtained using the Method of Harmonic
Balance (circles) and the approximate perturbation solution (solid line). Results are ob-
tained for a) K = 0.05, τ = 0.2π, j = 2, and F = 0.013 and b) K = 0.2, τ = 0.2π, j = 2,
and F = 0.04.

the gain-delay combination considered, the first peak frequency, Ωp1, occurs at a value

very close to but less than ωn = 1. As a consequence, when α > 0, the frequency-response

curves bend to the right towards larger values of Ω and closer to ωn. As such, by virtue

of Equation (6.19), the perturbation solution is expected to closely predict the numerical

response near ωn. For softening-type responses however, large amplitude motions occur at

smaller values of Ω and further away from ωn. As a result, the approximate perturbation

solution underestimates the actual response.

As the gain is increased to K = 0.2, Fig. 6.3(b), the perturbation solution deviates signifi-

cantly from the actual solution. This basically stems from the large deviation between the

peak frequency and the natural frequency. In addition, since Equation (6.30) is invariant

under the transformation

σωn + Σ⇐⇒ −(σωn + Σ), Neff ⇐⇒ −Neff , (6.33)

the frequency-response curves obtained using the perturbation solution are mirror images

around an axis passing through σωn + Σ, as shown in Figs. 6.3(a) and 6.3(b). However,

solutions acquired via the Method of Harmonic Balance yield frequency-response curves
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that are not mirror images around that axis. Consequently, one may conclude that, for

large gains, Neff , µeff , and Σ cannot be accurately described by Equations (6.26), (6.27),

and (6.28).

The Modified Approach

The preceding discussion motivates a new approach to study primary resonances of delays

systems near peak frequencies that are not necessarily close to ωn. Towards that end, we

propose a modification to the approach presented earlier. Again, we make use of the MMS

but this time we extract the delay from the linear states and write Equation (6.1) in the

following form:

d2u

dt2
+ 2|f1(K, τ)|du

dt
+ |f2(K, τ)|u = F cos(Ωt)− αu3 − 2βu

[
u
d2u

dt2
+
(
du

dt

)2
]
, (6.34)

where G is taken to be zero, and f1 and f2 are unknown nonzero functions of K and τ that

will be determined at a later stage in the perturbation analysis. The motivation behind

lumping the delayed state into stiffness and damping terms stems from previous knowledge

that the linear delay will affect the effective stiffness and damping of the system. For the

times being, we will assume that this influence is unknown and yet to be determined.

As mentioned earlier, since the analysis is limited to asymptotically stable free responses,

absolute values of the unknown functions are used to guarantee this condition. Next, we

express the solution of Equation (6.34) in the form

u(T0, T1) = u0(T0, T1) + εu1(T0, T1) +O(ε2). (6.35)

We order the amplitude of excitation and nonlinearities so that they appear in the same

perturbation equation as the effective unknown damping function, f1. In other words, we

let

f1 = εf1, F = εF, α = εα, β = εβ. (6.36)

121



We express the nearness of the excitation frequency, Ω, to the unknown frequency function,

f2, by introducing a detuning parameter and letting

Ω2 = |f2|+ εσ. (6.37)

For small ε, Equation (6.37) can be written as

Ω ≈
√
|f2|+

1
2
√
|f2|

εσ. (6.38)

Substituting Equation (6.35), (6.36), and (6.38) into Equation (6.34) and equating coeffi-

cients of like powers of ε, we obtain

O(1) : D2
0u0 + |f2|u0 = 0, (6.39)

O(ε) : D2
0u1 + |f2|u1 =− 2D0D1u0 − 2|f1|D0u0 + F cos(

√
|f2|T0 + σ

√
|f−1

2 |T1)− αu3
0

(6.40)

− 2β(u0(D0u0)2 +D2
0u0u

2
0).

The solution of the first order equation, Equation (6.39), can be written as

u0 = A(T1)ei
√
|f2|T0 + Ā(T1)e−i

√
|f2|T0 . (6.41)

Substituting Equation (6.41) into Equation (6.40) and eliminating the secular terms yield

−2i
√
|f2|D1A− 2i|f1|

√
|f2|A+

F

2
eiσ
√
|f−1

2 |T1 − (3α− 4β|f2|)A2Ā = 0. (6.42)

To construct the modulation equations, we substitute Equation (6.24) into Equation (6.42),

then separate the real and imaginary parts of the outcome to obtain

√
|f2|a′ = −(|f1|

√
|f2|)a+

F

2
sin γ, (6.43a)

√
|f2|aγ′ =

(Ω2 − |f2|)
2

a−
(

3α
8
− |f2|β

2

)
a3 +

F

2
cos γ, (6.43b)
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where γ = σ
√
|f−1

2 |T1 + β. Now, substituting T1 = εt into Equations (6.43), then setting

the bookkeeping parameter ε equal to 1 yields

√
|f2|ȧ = −(|f1|

√
|f2|)a+

F

2
sin γ, (6.44a)

√
|f2|aγ̇ =

(Ω2 − |f2|)
2

a−
(

3α
8
− |f2|β

2

)
a3 +

F

2
cos γ, (6.44b)

where the dot denotes derivative with respect to time, t. For the steady-state response,

ȧ = γ̇ = 0. It follows from Equations (6.44a) and (6.44b) that

f2
1 |f2|a2

0 +
(

(|f2| − Ω2)
2

a0 −
(

3α
8
− |f2|β

2

)
a3

0

)2

=
F 2

4
, (6.45)

and

tan γ0 =
|f1|
√
|f2|a0

(|f2|−Ω2)
2 a0 −

(
3α
8 −

|f2|β
2

)
a3

0

, (6.46)

where a0 and γ0 are, respectively, the steady-state amplitude and phase of the response.

Setting α and β equal to zero in Equations (6.45) and (6.46), one expect to obtain the linear

steady-state amplitude and phase of the response as given by Equations (6.9) and (6.11).

Therefore, f1 and f2 are determined by enforcing the linear steady-state amplitude and

phase obtained via Equations (6.45) and (6.46) to equal those acquired via the linear

solution. Imposing these conditions, we obtain

f2 = ω2
n + (−1)jK

dj

dτ j
[cos(Ωτ)],

f1 =
1

2
√
|f2|

(2µΩ− (−1)jK
dj

dτ j
[sin(Ωτ)]) j = 0, 1, 2.

(6.47)

As one would expect, for small values of K and σ, f2 approaches ω2
n and f1 approaches µ.

It follows from Equation (6.47) that the effective damping and nonlinearity can be written
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Figure 6.4: Nonlinear frequency-response curves obtained using the Method of Harmonic
Balance (circles) and the modified perturbation solution (solid lines). Results are obtained
for a) K = 0.05, τ = 0.2π, j = 2, β = 0, and F = 0.013; and b) K = 0.2, τ = 0.2π, j =
2, β = 0, and F = 0.04.

as

µeff =
(µΩ− (−1)j K2

dj

dτ j [sin(Ωτ)])√
|f2|

, Neff =
3α
8
− ω2

n + (−1)jK dj

dτ j [cos(Ωτ)]
2

β, j = 0, 1, 2.

(6.48)

When compared to Equations (6.26) and (6.27), the new expressions for µeff and Neff

reflect the dependance of the response amplitude on the delayed state which, in turn, is a

function of the excitation frequency, Ω, that can be far from, ωn. As such, even when the

peak frequency is not close to ωn, the modified approach can still predict the nonlinear

response with significant accuracy.

To assess the stability of the resulting solutions, we find the eigenvalues of the Jacobian

of the modulation equations evaluated at the roots (a0, γ0). These eigenvalues can be

obtained by solving the following characteristic equation:

s2 + |µeff |s+ µ2
eff +

1
|f2|

( |f2| − Ω2
n

2
−Neffa

2
0

)( |f2| − Ω2
n

2
− 3Neffa

2
0

)
= 0. (6.49)
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Figure 6.5: Nonlinear frequency-response curves obtained using the Method of Harmonic
Balance (circles), the modified perturbation solution (solid line), and the direct approach
(dashed lines). Results are obtained for a) K = 0.02, τ = 0.1π, F = 0.014, α = 0.69, β =
0.48, and j = 2; and b) K = 0.3, τ = 0.8π, F = 0.1, α = 0.69, β = 0.48, and j = 2.

Again, by virtue of the Routh-Hurwitz criterion the roots (a0, γ0) are asymptotically stable,

if and only if

|µeff | > 0, µ2
eff +

1
|f2|

( |f2| − Ω2
n

2
−Neffa

2
0

)( |f2| − Ω2
n

2
− 3Neffa

2
0

)
> 0. (6.50)

In Fig. 6.4, we validate the modified perturbation solution by comparing the frequency-

response curves to solutions acquired via the Method of Harmonic Balance. To illustrate

the superiority of the modified approach, we first generate the frequency-response curves

for the same parameters utilized to generate Fig. 6.3. It is evident that the modified

approach yields results that are almost indistinguishable from those obtained using the

harmonic balance. It is also clear that the methodology closely predicts the frequency-

response curves even for large values of K and is capable of capturing the effect of damping

and nonlinearity on the amplitude of the response.

We also compare the modified approach to the traditional approach and the Method of

Harmonic Balance for nonzero values of β, Fig. 6.5. Again, it is obvious that for small

values of K, the three solutions are extremely close as expected. However, for larger gains,
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the traditional approach, dashed lines in Fig. 6.5(b), qualitatively misrepresents the actual

response behavior.

Primary Resonance of A Duffing Oscillator with Delayed Feedback

As a first example, we utilize the modified approach to analyze the effect of gain and

delay variations on the primary resonance of a duffing oscillator with feedback delays. To

that end, we set β = 0 in the modulation equations and analyze the response for different

values of j, K, and τ .

First, we consider the delayed-acceleration feedback, i.e., j = 2 and study variation of

the first peak frequency with K and τ as depicted in Fig. 6.6(a). When K = 0, and

regardless of the delay value, Ωp1 is equal to ωn. Increasing K for and value of τ ≤ 0.6π

shifts the peak frequency towards smaller values. As a result, large-amplitude responses

shift towards smaller values of Ω. For large delays however, e.g. τ > 0.6π, the first

peak frequency increases as the gain is increased, thereby large-amplitude responses shift

towards larger values of Ω. The frequency-response curves generated at K = 0.3 and

shown in Fig. 6.6(c) also demonstrate these findings.

Figure 6.6(b) displays variation of the effective damping associated with the peak frequen-

cies with the gain, K, for different delays. Since for a given gain-delay combination, large

amplitude motions occur near the associated peak frequency, the effective damping was

quantified by evaluating µeff at Ωp1. As expected, for K = 0 and any given delay, µeff

approaches µ. As the gain increases, τ determines variation of µeff . For τ ≤ 0.6π, the

effective damping increases with the gain. Surprisingly, the effective damping continues to

increase even when the chosen gain-delay combination approaches the stability boundary

of the equilibrium solutions of the free response. This trend can be misunderstood because

it suggests that the free response does not lose stability when the gain-delay combination

(K, τ) approaches that at the boundary (K̂, τ̂). However, one has to realize that by

evaluating µeff at Ωp1, we are only quantifying the amount of damping associated with

first peak frequency which in turn is related to the first delay frequency, ωd1. As such,
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Figure 6.6: (a) Variation of the first peak frequency, Ωp1 with the gain K for different
delays. (b) Variation of the effective damping, µeff , with the gain K for different delays.
(c) Nonlinear frequency-response curves obtained at K = 0.3 using the modified pertur-
bation approach. (d) Nonlinear frequency-response curves obtained at τ = 0.4π using the
modified perturbation approach. Results are obtained for j = 2, α = 0.5, β = 0, and
F = 0.1. Dashed lines represent unstable solutions.

the continuous increase of the effective damping associated with the first peak frequency

only implies that the damping associated with the first delay frequency is increasing. Since

delay systems have infinite number of frequencies, this does not by any means, prevent the

damping associated with another delay frequency from approaching zero at the stability

boundaries. This fact will also be discussed later in this section.

For τ = 0.8π, µeff increases initially as the gain is increased. However, when the gain

approaches K ≈ 0.18, µeff associated with the first peak frequency decreases approaching
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Figure 6.7: (a) Variation of the second peak frequency, Ωp2 with the gain K for different
delays. (b) Variation of the effective damping, µeff , with the gain K for different delays.
(c) Nonlinear frequency-response curves obtained at K = 0.6 and F = 0.1 using the
modified perturbation approach. Results are obtained for j = 2, α = 0.5, and β = 0.

zero near K ≈ 0.37. In this situation, the equilibrium solutions of the free response

lose stability through the first delay frequency. Such conclusion can also be confirmed

by examining Fig. 6.1(c) and noting that at τ/T = 0.4 or equivalently τ = 0.8π, the

equilibrium solutions lose stability near K = 0.37.

Figure 6.6(c) displays the frequency-response curves generated near the first peak fre-

quency for K = 0.3 and different delays. For τ = 0.1π, the response has a hardening-type

behavior, large amplitude motions, and regions of multivalued solutions. As the delay is

increased towards τ = 0.2π, the amplitude of the response drops and slightly shifts towards
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larger values of Ω. The drop in the amplitude is attributed to the increase in the effective

damping as illustrated in Fig. 6.6(b). Increasing the delay further towards τ = 0.3π yields

a smaller peak and additional shift in the peak frequency. The same behavior continues

until the delay approaches τ = 0.6π. Beyond this values (e.g., at τ = 0.8π), the response

amplitude increases significantly and the frequency-response curves shift suddenly towards

larger values of Ω. This is due to a sudden shift in the peak frequency and a significant

decrease in the effective damping as illustrated in Figs. 6.6(a) and 6.6(b).

Figure 6.6(c) displays the frequency-response curves near the first peak frequency for

increasing gains and a constant delay, τ = 0.4π. As evident from Fig. 6.6(a), when the

gain is small, e.g. K = 0.1, the peak frequency occurs very close to ωn. The amplitude

of the response is large and exhibits hysteretic jumps. As the gain is increased towards

K = 0.2, the response-amplitude drops significantly due to a significant increase in the

effective damping, Fig. 6.6(b). In addition, the region of multivalued solutions disappears

and the peak frequency shifts towards smaller values of Ω. As the gain is increased further,

the effective damping continues to increase and the amplitude of the response continues

to drop.

As discussed previously, for a given gain and τ ≤ 0.6π, the equilibrium solutions do not

seem to lose stability through the first delay frequency as evident from the continuous in-

crease in the effective damping associated with that frequency. Consequently, the modified

approach should be capable of predicting a decrease in the effective damping associated

with some other frequency. To illustrate this fact, we display variation of the second-

peak frequency and its associated effective damping with the gain for three delay values in

Figs. 6.7(a) and 6.7(b). Figure 6.7(b) demonstrates that, for a given delay, µeff associated

with the second-peak frequency decreases and approaches zero as the gain is increased.

For instance, for τ = 0.6π, the effective damping decreases with the gain and approaches

zero at K ≈ 0.63. This represents the same gain-delay combination at which the free

response loses stability in Fig. 6.1(c).

Fig. 6.7(b) demonstrates that the effective damping decreases as the delay is increased.

This is also reflected in the frequency-response curves depicted in Fig. 6.7(c). At τ = 0.6π,
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the response exhibits very large amplitude which decreases significantly as the delay is

decreased.
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Figure 6.8: (a) Variation of the first peak frequency with the gain K for different delays.
(b) Variation of the effective damping with the gain K for different delays. (c) Nonlin-
ear frequency-response curves obtained at K = −0.4 and F = 0.2 using the modified
perturbation approach. Results are obtained for j = 0, α = 0.5, and β = 0.

Next, we study the primary resonance of the duffing oscillator when j = 0 (delayed-position

feedback). Figure 6.8(a) displays variation of the first peak frequency with the gain for

different time delays. For K = 0 and any time delay, Ωp1 approaches ωn = 1. When

τ < 0.6π, increasing the gain causes the first peak frequency to decrease approaching

zero at a critical value. This implies that the first peak frequency no longer exists. At

these gains, the associated effective damping also approaches zero, Fig. 6.8(b). It is worth
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noting that, increasing the gains beyond these critical values, does not cause the effective

damping to cross zero. Hence, by approaching zero, the effective damping only indicates

that Ωp1 has vanished and by no means reflect that the equilibrium solutions of the free

response lose stability at these gains. Figure 6.8(c) displays the frequency-response curves

for the case K = −0.4 and different time delays.

Primary Resonance of A Delayed System with Geometric and Inertia

Nonlinearities

For a duffing oscillator, the effective nonlinearity does not seem to be influenced by the

presence of delay in the linear feedback as evident from Equation (6.48). However, when

the inertia nonlinearities are present, β 6= 0, the effective nonlinearity becomes a function

of the gain, delay, and the excitation frequency.

We study the effect of the inertia nonlinearities on the response behavior by investigating

the frequency-response characteristics. Figure 6.9(a) displays variation of the steady-

state response amplitude with the excitation frequency for different time delays. For the

purpose of comparison, the curves are generated for the same gain-delay values used earlier

in Fig. 6.7(c). For τ = 0.1π, the frequency-response curve exhibits a hardening behavior

because the effective nonlinearity is positive as shown in Fig. 6.9(b). As the delay is

increased, the response amplitude drops because of the increase in the effective damping.

In addition, the response becomes less and less hardening because the magnitude of the

effective nonlinearity decreases. As the delay is increased to τ = 0.8π, the behavior of the

frequency-response curve switches to the softening type.

This behavior can also be deduced by examining Fig. 6.9(b) which displays variation of

the effective nonlinearity coefficient with the gain for different delays. To quantify the

effective nonlinearity near a given peak frequency, Neff is evaluated at Ωp. For K = 0

and our choice of α and β, Neff is positive and the response is clearly hardening. As the

gain is increased, the delay determines the nonlinear response behavior. For small delays,

e.g., when τ < 0.1π, the effective nonlinearity remains positive and increases as the gain is
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Figure 6.9: (a) Nonlinear frequency-response curves obtained at K = 0.3 and F =
0.1 using the modified perturbation solution. (b) Variation of the effective nonlinearity
coefficient with the gain K . Results are obtained for j = 2, α = 0.69, β = 0.48, and
F = 0.1. Dashed lines represent unstable solutions.

increased. For τ = 0.6π however, the effective nonlinearity decreases initially and becomes

negative within the range 0.22 < K < 0.38 where the frequency response curves exhibit

a softening behavior. As the gain is increased further, the effective nonlinearity increases

and becomes positive. As such, the response regains its hardening characteristics. For

τ = 0.8π, the effective nonlinearity decreases as the gain is increased and is positive only

for very small gains, K < 0.08.

It is quite interesting to demonstrate that a linear-delayed feedback is capable of altering

the nonlinear characteristics of the response. For example, by a proper choice of the gain

and delay, it is possible to make the effective nonlinearity approach zero. This entails

that, in a local sense, a nonlinear system can be linearized using a linear feedback. Such

idea could find interesting applications in nonlinear control theory especially in feedback

linearization.
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Chapter 7

Conclusions and Future Work

7.1 Augmentation of Low-pass Filters into Time-

Delay controllers to Suppress Vibrations in

Multi-Degree-of-Freedom and Structural Sys-

tems Using a Single-Input Single-Output Con-

trol Approach

In Chapters 3 and 4, we evaluated the prospectus of purposefully augmenting filters to

enhance the stability margins of delayed-feedback algorithms utilized for mitigating vibra-

tions of single-, multi-degree-of-freedom, and structural systems. Specifically, we investi-

gated the effect of augmenting a Butterworth low-pass filter (BLPF) on the performance

of a delayed-position feedback algorithm by studying the influence of the filter’s order and

cut-off frequency on the stability margins in the controller’s gain-delay domain. It was

observed that, in the case of single-degree-of-freedom systems, as the order of the filter is

increased, the stable pockets shift to the left along the delay axis causing the largest stabil-

ity pocket to shrink significantly adversely affecting the stability margins of the controller.
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This was attributed to the filter’s inherent delay. In the case of multi-degree-of-systems,

increasing the filter’s order resulted in two distinct shifts. Again, the first shift reduces the

size of the first stability pocket due to the filter’s inherent delay. The second, on the other

hand, rejects the unstable pockets introduced by the higher modes from the stability maps.

This, in turn, has the influence of increasing the stability margins of the controller. As

such, it was concluded that a proper BLPF can aid in enhancing the stability margins of

delayed-feedback controllers applied to multi-degree-of-freedom systems. However, it was

also noted that a high-order BLPF can lower the effective damping of the controller for

the same controller gains. Therefore, a balance between increasing the stability margins

in the gain-delay space and the effective damping should always be sought.

To validate these findings, the controller is experimentally implemented on two structural

systems whose system’s model can be described by a set of linearly-uncoupled ordinary

differential equations. In the first experiment, a filter-augmented delayed-position feed-

back algorithm is applied to mitigate the multi-modal vibrations of a macrocantilever

beam using a piezoelectric patch and a laser sensor. First, the effect of the filter order and

cut-off frequency on the stability pockets was evaluated experimentally showing excellent

agreement with the theoretical findings. Subsequently, and using a single gain-delay com-

bination, the controller was shown to be capable of rejecting external disturbances and

significantly reducing the beam vibrations under persistent harmonic excitations.

In the second case study, a filter-augmented delayed-velocity feedback algorithm is applied

to mitigate the multi-modal vibrations of a microcantilever sensor. Throughout several

experimental studies, it was successfully illustrated that, system’s delays which are preva-

lent at the microscale may be augmented into a larger delay period, which when combined

with a proper velocity-feedback gain and a proper filter, can be utilized as an effective

mechanism for vibration mitigation at the micro-scale.
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7.2 Implementation of Filter-Augmented Delayed-

Feedback Algorithms on a Structural System

Which Can Only be Represented by a Set of

Linearly-Coupled ODEs

In Chapter 5, we took the implementation of delayed-feedback algorithms on structures

one step further by investigating their performance on a continuous system that can only

be discretized into a set of linearly-coupled ordinary differential equations (ODEs). As an

example, we considered the problem of suppressing the coupled flexural-torsional oscilla-

tions of a cantilever beam with an asymmetric tip rigid body using a single piezoelectric

patch and a single laser sensor. Following Euler-Bernoulli’s beam theory, we developed and

validated a system model consisting of two PDEs and the associated boundary conditions.

To implement the controller and analyze the stability of the closed-loop system, we re-

duced the resulting system of PDEs and boundary conditions into a set of linearly-coupled

ODEs using a Galerkin discretization scheme.

Once the model was obtained, validated, and discretized, we turned our attention into

investigating the stability of the closed-loop system in the gain-delay space and in the

presence of low-pass filters. Towards that end, we utilized a technique that involves trans-

forming the resulting set of Delay Differential Equations (DDEs) into an equivalent PDE

followed by a numerical discretization of the PDE in the delay space using the method of

lines. The resulting set of N ODEs was then utilized to obtain the first approximate N

eigenvalues of the closed-loop system. This technique reduced the computational intensity

required to solve a large set of transcendental equations numerically and allowed us to

treat a problem with a large number of coupled modal equations. For the problem at

hand, it was observed that N = 40 lines are necessary to accurately approximate the first

two stability pockets of the controller. Additionally, this numerical approach allowed us,

for the first time, to generate damping contours within the stability pockets to facilitate

obtaining the controller’s optimal gain delay combinations.
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Using the resulting stability maps, we investigated theoretically and experimentally the

effectiveness of the controller in rejecting external disturbances and suppressing large-

amplitude oscillations resulting from initial conditions and harmonic-base excitations for

different tip rigid bodies, filters, and piezoelectric patch orientations. It was observed that

a BLPF filter aids in rejecting the influence of the higher destabilizing vibration modes

from the feedback, thereby yielding larger regions of stability in the gain-delay space. This

has the influence of increasing the robustness of the controller to parameter’s uncertainties,

but comes at the expense of reducing the effective damping of the controller.

Using several gain-delay combinations from the developed stability maps based on a

three-mode approximation, it was clearly observed that the controller is capable of re-

jecting external disturbances and reducing the settling time significantly even when it was

implemented on a seven-mode reduced-order model or, experimentally, on the infinite-

dimensional structure. This was only possible when a proper BLPF filter is implemented

in the feedback. Without a filter, the stability pockets shrink significantly making it almost

impossible to find a gain-delay combination that stabilizes all modes simultaneously.

The influence of orientating the piezoelectric patch at different angles was also investigated

theoretically. It was observed that when the orientation angle is increased from 0o to 45o

with respect to the horizontal axis of the beam, larger controller gains were necessary to

destabilize the closed-loop system for the same controller delay. This was attributed to

the distribution of the control effort between torsion and bending as the angle is varied.

However, when comparing the effectiveness of the controller in rejecting initial conditions

using different orientation angles, it was observed that, gain-delay combinations that pro-

duce similar effective damping in the system, yield almost similar response behavior in

torsion and bending regardless of the angle. The only difference is that the control effort is

significantly reduced when the patch is oriented at 45◦ angle with respect to the horizontal

axis. A result that corroborates previous research efforts on the coupled flexural-bending

response of beams which indicate that 45◦ is the optimal angle for enhanced controller’s

performance [117].

Finally, an experimental verification of the theoretical results was carried out in the labo-
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ratory to illustrate the controller’s performance in rejecting harmful structural vibrations.

In all experiments, a piezoelectric patch oriented at zero angle and only bending feed-

back were utilized. In the first scenario, the tip-loaded beam was subjected to impulse

loadings using an electrodynamic shaker. Experimental results clearly indicated that a

delayed-feedback controller augmented with a proper BLPF filter and a proper gain-delay

combination can effectively reject external disturbances and reduce the settling time with-

out destabilizing the higher vibration modes. In the second scenario, the tip-loaded beam

was subjected to harmonic base inputs with an excitation frequency near the first, second,

and third modal frequencies of the coupled system. It was observed that the controller is

capable of reducing the steady-state response amplitude (torsion and bending) significantly

near the first two bending-dominated modes using the same gain-delay combination. Near

the third torsion-dominated mode, the controller was not effective in reducing the response

amplitude but did not destabilize the response either. We believe that this might be at-

tributed to either saturation of the controller input or the orientation of the piezoelectric

patch.

7.3 Primary Resonances of Weakly-Nonlinear De-

lay Systems

In Chapter 6, we presented a modified multiple scaling perturbation approach that allows

for investigating primary resonances of weakly nonlinear delay systems with arbitrarily

large coefficients of the delayed states. When these coefficients are large, the frequency-

response of the system can exhibit a large number of peak frequencies that are not nec-

essarily close to the natural frequency of the system. Under such conditions, direct im-

plementation of the method of multiple scales as demonstrated previously in [54, 55] is

incapable of predicting the qualitative behavior of the response near different peak frequen-

cies. This is due to the inability of the traditional approach to account for large deviations

between the response (peak) frequency and the system’s natural frequency. The modified

approach, on the other hand, extracts the delays from the linear states and lumps them
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into unknown damping and stiffness functions. These functions are then determined by

equating the linear solution acquired via the Method of Multiple Scales to that obtained

by directly attacking the linear problem. This, in turn, permits resolving the response

characteristics near frequencies that are far from the system’s natural frequency. After

verifying the steady-state solutions attained via the modified procedure against solutions

obtained using the Method of Harmonic Balance, we utilized the modified approach to

study primary resonances of a delayed duffing oscillator and a weakly nonlinear system

with geometric and inertia nonlinearities. Analytical results clearly illustrated that the

modified procedure can capture the effective damping, frequency-response characteristics,

effective nonlinearity, and stability near the multiple peak frequencies. They also demon-

strated that the nonlinear response can exhibit completely different characteristics near

different delay frequencies.

7.4 Recommendations for Future work

Based on the conclusions of this Dissertation, we believe that future research efforts should

be aimed to several directions that include:

• Implementation of filter-augmented delayed-feedback control algorithm along with

adaptive control techniques to change the gain-delay combinations in real time based

on the damping contours mentioned in Chapters 2, 3, and 4. This will allow the

controller to always maintain maximum damping as the design parameters or the

environmental conditions are varied.

• Extending the current approach into the Multi-Input Multi-Output (MIMO) sce-

nario especially when the purpose is to control multiple flexural and torsional modes

simultaneously. The controller performance can then be assessed through applica-

tion on an actual system, e.g., a wind turbine blade or an aircraft wing.

• Generalization of the proposed filter-augmented delayed-feedback control algorithms

to suppress oscillations in two-dimensional plates while paying more attention to
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the influence of the piezoelectric patch location and orientation as well as sensor’s

location on the resulting stability maps.

• Extending the implementation of the modified Method of Multiple Scales to sys-

tems containing other types of nonlinearities as well as nonlinear delayed feedback.

Additionally, experimental observation of the nonlinear resonant response near the

multiple delay frequencies mentioned in Chapter 6 is essential.
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