39 research outputs found

    Numerical Solution of Fractional Volterra-Fredholm Integro-Differential Equation Using Lagrange Polynomials

    Get PDF
    في هذا البحث، ستراتيجيات جديدة لإيجاد الحل العددي للمعادلات الخطية الكسورية التفاضلية - التكاملية فولتيرا- فريدهولم (LFVFIDE) تم دراستها. الطرق المتبعه على ثلاث انواع من متعددات الحدود لاكرانج وهي: متعددة حدود لاكرانج الأصلية (OLP) ، متعددة حدود لاكرانج ذات الدعامة المركزية (BLP) و متعددة حدود لاكرانج المعدلة  (MLP).كما تم اقتراح خوارزمية عامة واعطاء  أمثلة لبرهنة فعالية الطرق وتنفيذها. وأخيرًا ، تم استخدام مقارنة بين الطرق المقترحة والطرق الأخرى لحل هذا النوع من المعادلات.In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal method in solving these problems

    Solving fractional Fredholm integro-differential equations by Laguerre polynomials

    Get PDF
    The main purpose of this study was to present an approximation method based on the Laguerre polynomials to obtain the solutions of the fractional linear Fredholm integro-differential equations. This method transforms the integro-differential equation to a system of linear algebraic equations by using the collocation points. In addition, the matrix relation for Caputo fractional derivative of Laguerre polynomials is also obtained. Besides, some examples are presented to illustrate the accuracy of the method and the results are discussed

    (SI10-077) A Novel Collocation Method for Solving Second-order Volterra Integro-differential Equations

    Get PDF
    In this article, we present an efficient numerical methodology to solve second-order linear Volterra integro-differential equations. Further, the modified Chebyshev collocation method is used at the Gauss-Lobatto collocation points. In that context, some theoretical investigation related to error analysis is suggested through residual function. Numerical examples are also encountered to study the applicability of the present method. In order to get a vivid illustration of the efficiency, we present a comparative survey with three existing collocation methods

    A Novel Representation of the Exact Solution for Differential Algebraic Equations System Using Residual Power-Series Method

    Get PDF
    We implement a relatively new analytic iterative technique to get approximate solutions of differential algebraic equations system based on generalized Taylor series formula. The solution methodology is based on generating the residual power series expansion solution in the form of a rapidly convergent series with easily computable components. The residual power series method (RPSM) can be used as an alternative scheme to obtain analytical approximate solution of different types of differential algebraic equations system applied in mathematics. Simulations and test problems were analyzed to demonstrate the procedure and confirm the performance of the proposed method, as well as to show its potentiality, generality, viability, and simplicity. The results reveal that the proposed method is very effective, straightforward, and convenient for solving different forms of such systems

    A New Computational Method Based on Integral Transform for Solving Linear and Nonlinear Fractional Systems

    Get PDF
    In this article, the Elzaki homotopy perturbation method is applied to solve fractional stiff systems. The Elzaki homotopy perturbation method (EHPM) is a combination of a modified Laplace integral transform called the Elzaki transform and the homotopy perturbation method. The proposed method is applied for some examples of linear and nonlinear fractional stiff systems. The results obtained by the current method were compared with the results obtained by the kernel Hilbert space KHSM method. The obtained result reveals that the Elzaki homotopy perturbation method is an effective and accurate technique to solve the systems of differential equations of fractional order

    Research Article On the Homotopy Analysis Method for Fractional SEIR Epidemic Model

    Get PDF
    Abstract: This study investigates the accuracy of solution for fractional-order an SEIR epidemic model by using the homotopy analysis method. The homotopy analysis method provides us with a simple way to adjust and control the convergence region of the series solution by introducing an auxiliary parameter. Mathematical modeling of the problem leads to a system of nonlinear fractional differential equations. Indeed, we find the analytical solution of the proposed model by Homotopy analysis method which is one of the best methods for finding the solution of the nonlinear problem. Numerical simulations are given to illustrate the validity of the proposed results
    corecore