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Abstract

In this article, we present an efficient numerical methodology to solve second-order linear Volterra
integro-differential equations. Further, the modified Chebyshev collocation method is used at the
Gauss-Lobatto collocation points. In that context, some theoretical investigation related to error
analysis is suggested through residual function. Numerical examples are also encountered to study
the applicability of the present method. In order to get a vivid illustration of the efficiency, we
present a comparative survey with three existing collocation methods.

Keywords: Volterra integro-differential equations; Collocation method; Gauss-Lobatto colloca-
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130 N. Sarkar et al.

1. Introduction

In recent years, a large community of mathematicians has put their attention on the development
of effective numerical methods to deal with various kinds of integral equations, differential equa-
tions, and most prominently integro-differential equations. Specifically different types of integro-
differential equations occur in numerous branches of scientific phenomenons and engineering
problems, such as population dynamics (Yuzbasi et al. (2013); Bonnefon et al. (2014)), evolu-
tion theory (Caraballo et al. (2009)), spreading of the epidemic (Medlock et al. (2003); Kumar et
al. (2020); Gao et al. (2020)), heat conduction (Dehghan et al. (2010)), potential theory (Caffarelli
et al. (2009)), electrostatics (Hildebrandt et al. (2004)), radiative transfer (Bellman et al. (1966);
Phillip et al. (1969)), mechanical engineering (Indiaminov et al. (2020)), control theory (Jothimani
et al. (2019)), and many other sectors of mathematical physics. Extensive efforts have been engaged
on the solvability and uniqueness of exact solutions for several types of integro-differential equa-
tions, see the literature by Sarkar and Sen (2021), Saha et al. (2020), Ravichandran et al. (2019)
and references therein. Consequently, the approximate solutions are the immediate requirement
once the analytical methods fail.

To investigate approximate solutions of complex models, a good number of techniques were pro-
posed in the past, such as the finite element method (Chen et al. (2016); Chen et al. (2019)),
the finite difference technique (Zhao et al. (2006)), the boundary element method (Sarkar et al.
(2020)), the iterative method (Ghasemi et al. (2007); Yousefi et al. (2009)), successive approxi-
mation method (Ronto and Ronto (2009)), standard integral collocation method (Karamete et al.
(2002); Yalcinbas et al. (2002); Darania et al. (2008)), Chebyshev collocation method (Akyuz-
Dascioglu and Sezer (2005)) and other polynomial collocation methods found in the literature
(Mohsen and El-Gamel (2010); Sarkar et al. (2021); Turkyilmazoglu (2014)).

In this present work, our main objective is to produce a simpler and efficient methodology to solve
the considered class of equations. For that purpose, we have adopted power series along with the
collocation scheme at modified Chebyshev-Gauss-Lobatto collocation points.

This article aims to apply an efficient method for solving the second-order integro-differential
equation. The present work suggests that the proposed scheme is comparatively simpler to apply
than many other existing methods, whereas the numerical results and graphical illustration depict
the accuracy and superiority of the presented method. The prime attraction of present technique
is displayed by the comparative study. The superior results for different input values suggest the
novelty of present work and it is worthy to solve the considered type equations approximately.

The manuscript is arranged in the following manner. In Section 2, the considered class of equation
is introduced and the methodology is elaborately described. Section 3 deals with the illustration of
the numerical scheme through some problems, also the outcomes are compared with other existing
methods. Finally, in Section 4 some concluding remarks are mentioned.
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2. Main Results

In this study, the hybridization of power series approximation and collocation method is adopted
to investigate the approximate solution of the considered class of equations. In the connection of
numerical solution, the current article develops a hybridized numerical technique for the linear
counterpart of following equation

A2(x)w
′′
(x) + A1(x)w

′
(x) = f

(
x,w(x),

∫ x

x0

K(x, s)w(s)ds
)
, (1)

with initial conditions

w(x0) = w0, w
′
(x0) = w1

0, (2)

where w(x) is the unknown function, the kernel K(x, s) is non singular function and S =
{
(x, s) :

x0 ≤ s ≤ x ≤ T
}

. Our main focus is to apply the proposed methodology to the linear counterpart
of the equation (1).

2.1. Description of the methodology

We proceed with the linear counterpart of (1) as the following equation:

A2(x)w
′′
(x) + A1(x)w

′
(x) + A0(x)w(x) = F (x) +

∫ x

x0

K(x, s)w(s)ds. (3)

In this study, the approximate solution is investigated under the consideration that the solution of
considered class of equation is analytic on the prescribed domain. We assume that approximate
solution of (3) is of the following form,

wM(x) =
M∑
i=0

αix
i, i ≥ 0, (4)

where xis are monomial bases and αis are real coefficients. Implementing (4) and its derivatives
in both sides of Equation (3) we have the following estimates,

A2(x)
M∑
i=0

i(i− 1)αix
i−2 + A1(x)

M∑
i=0

iαix
i−1 + A0(x)

M∑
i=0

αix
i

= F (x) +
M∑
i=0

αi

∫ x

x0

siK(x, s)ds, (5)

with

F (x) =
M∑
i=0

αi

(
A2(x)i(i− 1)xi−2 + A1(x)ix

i−1 + A0(x)x
i −

∫ x

x0

siK(x, s)ds
)
, (6)

where F (x), A0(x), A1(x), A2(x) and K(x, s) are prescribed smooth functions. Thus, for fixed
M, above illustration gives rise to a system of M + 1 linear algebraic equations,

ΣM
k=0αkσk(xl) = F (xl), l = 0, 1, 2, ...,M (7)

3
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where σk(xl) is given by

σk(xl) = A2(xl)k(k − 1)xl
k−2 + A1(xl)kxl

k−1 + A0(xl)xl
k −

∫ xl

x0
siK(xl, s)ds.

Afterwards, collocation method is used at the modified Chebyshev-Gauss-Lobatto points,

xl =
1

2

[
1 + cos

(
(M − l)π

M

)]
, l = 0, 1, 2, ...,M. (8)

The system (7) is written in matrix notation as

UD = F, (9)

where

U =


σ0(x0) σ1(x0) σ2(x0) ... σM(x0)
σ0(x1) σ1(x1) σ2(x1) ... σM(x1)

...
...

...
...

...
σ0(xM−1) σ1(xM−1) σ2(xM−1) ... σM(xM−1)
σ0(xM) σ1(xM) σ2(xM) ... σM(xM)

 ,

D =


α0

α1
...

αM−1

αM

 and F =


F (x0)
F (x1)

...
F (xM−1)
F (xM)

 .

The consistency of (9) is assured by rank(U) = rank(U|F) = M + 1 and subsequently D is
determined. Finally, the approximate solution follows from (4).

Now we establish a brief description on the upper bound of error estimation.

2.2. Boundedness of error estimation

In this section, we develop the residual error and the classical absolute error methods. After sub-
stituting the approximate solution in equation (3), the resulting relation is obtained as,

RM(xl) = w
′′

M(xl) +
1

A2(xl)

(
A1(xl)w

′

M(xl) + A0(xl)wM(xl)

−
∫ xl

x0

K(xl, s)w(s)ds− F (xl)
)
, (10)

where xl’s are given by (8). Consider RM(xl) ≤ 10γl such that γl is any positive number. If
maximum of 10−γl = 10−γ, then the truncation limit M is increased until RM(xl) at each point is
smaller than the desired accuracy 10−γ. For sufficiently large M, RM(xl) → 0; in that case, error
decreases rapidly.
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However, the boundedness of residual function can be estimated as follows. Adopting standard
inequality from integral calculus, we have∣∣∣ ∫ x

x0
RM(t)dt

∣∣∣ ≤ ∫ x

x0
|RM(t)|dt,

and implementing integral mean value theorem, the upper bound of mean error is obtained as

RM(θ) ≤
∫ x

x0
|RM (t)|dt
x−x0

; x0 < θ < x.

3. Numerical Results

In this section the proposed methodology has been employed to solve two sample problems. The
absolute error is defined by

|w(xl)− wM(xl)|, l = 0, 1, 2, ....,M, (11)

where w(xl) and wM(xl) stand for exact and approximate solution at x = xl, respectively. More-
over, the representative tables demonstrate comparative study among the developed method and
the other three standard methods.

Example 3.1.

w
′′
(x)− w

′
(x) = −

(
1 + xex+1

)
(x+ 1)2

+

∫ 1

0

textw(t)dt, (12)

with initial conditions, w(0) = 1 and w
′
(0) = 2− e+

∫ 1

0
w(t)dt.

Table 1. Solution for M = 2

input(xl) 0 0.2 0.4 0.6 0.8 1.0
Exact solution 1.10e-2 1.18e-2 1.28e-2 1.40e-2 1.55e-2 1.73e-2

M-I 1.10e-2 1.03e-2 0.73e-2 0.05e-2 0.03e-2 0.02e-2
M-II 0.01e-2 0.37e-2 0.95e-2 0.07e-2 0.67e-2 0.39e-2
M-III 0.01e-2 0.18e-2 0.41e-2 0.70e-2 1.05e-2 1.49e-2

Proposed method 1.10e-2 1.19e-2 1.31e-2 1.46e-2 1.60e-2 1.76e-2

For the first example, Table 1 through Table 3 (and for the second example, Table 6 through Table
8), illustrate that the approximate solution is compatible with the exact solution. A comparative
study with M-I (Legendre polynomial collocation method), M-II (Chebyshev polynomial collo-
cation method), M-III (Laguree polynomial collocation method) suggests the superiority of the
proposed method. Table 5 and Table 4 are there in support of the error analysis for the developed
scheme.
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Table 2. Solution for M = 3

input(xl) 0 0.2 0.4 0.6 0.8 1.0
Exact solution 1.10e-2 1.18e-2 1.28e-2 1.40e-2 1.55e-2 1.73e-2

M-I 0.01e-2 0.75e-2 0.06e-2 0.75e-2 0.36e-2 0.20e-2
M-II 0.01e-2 0.47e-2 0.33e-2 1.54e-2 1.07e-2 0.38e-2
M-III 0.01e-2 0.80e-2 0.48e-2 1.55e-2 1.79e-2 1.20e-2

Proposed method 1.10e-2 1.18e-2 1.28e-2 1.41e-2 1.56e-2 1.74e-2

Table 3. Solution for M = 4

input(xl) 0 0.2 0.4 0.6 0.8 1.0
Exact solution 1.10e-2 1.18e-2 1.28e-2 1.40e-2 1.55e-2 1.73e-2

M-I 1.10e-2 1.08e-2 0.05e-2 0.08e-2 0.02e-2 0.87e-2
M-II 1.10e-2 0.46e-2 0.12e-2 0.62e-2 0.21e-2 0.57e-2
M-III 0.01e-2 0.56e-2 0.05e-2 0.50e-2 0.95e-2 0.44e-2

Proposed method 1.10e-2 1.18e-2 1.28e-2 1.40e-2 1.55e-2 1.73e-2

Example 3.2.

w
′′
(x) =

(
2 +

(x− 2)ex + s+ 2

x3

)
+

∫ 1

0

extw(t)dt, (13)

with initial conditions, w(0) = 0 and w
′
(0) = −1.

Table 4. Absolute error for M = 3, 4, 5

input(xl) M = 3 M = 4 M = 5

0 0.01e-2 0 0
0.2 0.01e-2 0 0
0.4 0.01e-2 0.01e-2 0
0.6 0.01e-2 0.01e-2 0
0.8 0.01e-2 0.01e-2 0
1.0 0 0.01e-2 0.01e-2

Figure 1 through Figure 6 represents a graphical illustration of the outcomes corresponding to
Table 1 through Table 7, respectively. The error estimations are shown in Figures 7 and 8.

4. Conclusion

This manuscript aims to apply an efficient method for solving the second-order integro-differential
equation. The present article suggests that the proposed scheme is comparatively simpler than
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many other existing methods, whereas the numerical results and graphical illustration depict the
accuracy and superiority of the presented method. The main benefit of this hybridized scheme is its
accuracy, particularly in the second-order class. Results obtained from considered two numerical
examples show that error reduces as M increases, which strongly supports the efficiency of the
present method in the considered class of integro-differential equation.
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Appendix

Table 5. Absolute error for M = 2, 3, 4

input(xl) M = 2 M = 3 M = 4

0 0 0 0
0.2 0.01e-2 0.01e-2 0
0.4 0.04e-2 0 0
0.6 0.05e-2 0.01e-2 0
0.8 0.06e-2 0.01e-2 0
1.0 0.02e-2 0.02e-2 0

Table 6. Solution for M = 3

input(xl) 0 0.2 0.4 0.6 0.8 1.0
Exact solution 0 -1.60e-2 -2.40e-2 -2.40e-2 -1.60e-2 0

M-I 0 -0.41e-2 -0.57e-2 -0.53e-2 -0.32e-2 0
M-II 0 -1.77e-2 -1.69e-2 -0.71e-2 -0.18e-2 0
M-III 0 -0.24e-2 -0.36e-2 -0.36e-2 -0.24e-2 0

Proposed Method 0 -1.6e-2 -2.4e-2 -2.4e-2 -1.59e-2 0.01e-2

Table 7. Solution for M = 4

input(xl) 0 0.2 0.4 0.6 0.8 1.0
Exact solution 0 -1.60e-2 -2.41e-2 -2.41e-2 -1.63e-2 0

M-I 0 -0.38e-2 -0.58e-2 -0.54e-2 -0.30e-2 0
M-II 0 -0.15e-2 -0.22e-2 -0.22e-2 -0.15e-2 0
M-III 0 -0.57e-2 -0.16e-2 -0.99e-2 -0.20e-2 0

Proposed Method 0 -1.61e-2 -2.43e-2 -2.42e-2 -1.61e-2 0
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Table 8. Solution for M = 5

input(xl) 0 0.2 0.4 0.6 0.8 1.0
Exact solution 0 -1.60e-2 -2.42e-2 -2.40e-2 -1.61e-2 0

M-I 0 -0.33e-2 -0.62e-2 -0.72e-2 -0.60e-2 0
M-II 0 -0.15e-2 -0.22e-2 -0.22e-2 -0.14e-2 0
M-III 0 -0.10e-2 -0.06e-2 -0.02e-2 -0.05e-2 0

Proposed Method 0 -1.60e-2 -2.40e-2 -2.41e-2 -1.63e-2 0

Figure 1. Graphical view for M = 2

Figure 2. Graphical view for M = 3
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Figure 3. Graphical view for M = 4

Figure 4. Graphical view for M = 3

Figure 5. Graphical view for M = 4
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Figure 6. Graphical view for M = 5

Figure 7. Error plot for example 1

Figure 8. Error plot for example 2
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