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We study the solution of fractional Fredholm integrodifferential equation. Amodified version of the fractional power seriesmethod
(RPS) is presented to extract an approximate solution of the model. The RPS method is a combination of the generalized fractional
Taylor series and the residual functions. To show the efficiency of the proposed method, numerical results are presented.

1. Introduction

Fractional Fredholm integrodifferential equations have sev-
eral applications in sciences and engineering.The closed form
of the exact solution of such problems is difficult to find and in
most of the cases is not available. For this reason, researchers
are looking for the numerical solutions of such problems.
Irandoust-Pakchin andAbdi-mazraeh [1] used the variational
iteration method for solving fractional integrodifferential
equations with the nonlocal boundary conditions. Adomian
decomposition method is used in [2, 3] while the homotopy
perturbation method is used in [4, 5]. Wazwaz [6–8] studied
the Fredholm integral equations of the form

𝑢 (𝑥) = 𝑓 (𝑥) + 𝜆 ∫𝑏
𝑎

𝐾 (𝑥, 𝑡) 𝑢 (𝑡) 𝑑𝑡, (1)

where 𝑎 and 𝑏 are constants, 𝜆 is a parameter, 𝑢(𝑥) is a
smooth function as the discussion required, and 𝐾(𝑥, 𝑡) ∈𝐶(R × [𝑎, 𝑏]) is the kernel. In this paper, we study the
generalization of the above problem. We study the following
class of fractional Fredholm integrodifferential equations of
the form

𝐷𝛼𝑢 (𝑥) = 𝑓 (𝑥) + 𝜆 ∫𝑏
𝑎

𝐾 (𝑥, 𝑡) 𝑢𝑚 (𝑡) 𝑑𝑡,
0 < 𝛼 ≤ 1, 𝑥 ∈ R, 𝑎 ≤ 𝑡 ≤ 𝑏, (2)

subject to

𝑢 (𝑎) = 𝑎0. (3)

The fractional derivative in (2) is in theCaputo sense. If𝛼 = 0,
we do not need the initial condition (3) and we return back
to the problem which is discussed by Wazwaz [8]. In the
following definition and theorem, we write the definition of
Caputo derivative aswell as the power rulewhichwe are using
in this paper. For more details on the geometric and physical
interpretation for Caputo fractional derivatives, see [9].

Definition 1. For 𝑚 to be the smallest integer that exceeds 𝛼,
the Caputo fractional derivatives of order 𝛼 > 0 are defined
as𝐷𝛼𝑢 (𝑥)

= {{{{{{{
1Γ (𝑚 − 𝛼) ∫𝑥

0
(𝑥 − 𝜏)𝑚−𝛼−1 𝑑𝑚𝑢 (𝜏)𝑑𝜏𝑚 𝑑𝜏, 𝑚 − 1 < 𝛼 < 𝑚,𝑑𝑚𝑢 (𝑥)𝑑𝑥𝑚 , 𝛼 = 𝑚 ∈ N.

(4)

Theorem 2. The Caputo fractional derivative of the power
function satisfies

𝐷𝛼𝑥𝑝
= {{{{{

Γ (𝑝 + 1)Γ (𝑝 − 𝛼 + 1) 𝑥𝑝−𝛼, 𝑚 − 1 < 𝛼 < 𝑚, 𝑝 > 𝑚 − 1, 𝑝 ∈ R,
0, 𝑚 − 1 < 𝛼 < 𝑚, 𝑝 ≤ 𝑚 − 1, 𝑝 ∈ N.

(5)
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Definition 3. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 of 𝑢(𝑥) ∈ 𝐶𝛾, 𝛾 > −1, is defined as

𝐼𝛼𝑢 (𝑥)
= {{{

1Γ (𝛼) ∫𝑥
0

(𝑥 − 𝜏)𝛼−1 𝑢 (𝜏) 𝑑𝜏, 0 ≤ 𝑚 − 1 < 𝛼 < 𝑚,
𝑢 (𝑥) , 𝛼 = 𝑚 ∈ N,

(6)

where 𝐶𝛾 is the space of real functions 𝑢(𝑥), 𝑥 ∈ R, such
that, for each 𝑢(𝑥), there exists a real number 𝜌 > 𝛾 such that𝑢(𝑥) = 𝑥𝜌𝑢1(𝑥) where 𝑢1(𝑥) ∈ 𝐶(R).

In addition, 𝑢(𝑥) ∈ 𝐶𝑚𝛾 if 𝑢(𝑚)(𝑥) ∈ 𝐶𝛾 where 𝑚 ∈ N.
We present the following definition and some properties of
the fractional power series which are used in this paper. More
details can be found in [10].

Definition 4. A power series expansion of the form

∞∑
𝑚=0

𝑐𝑚 (𝑥 − 𝑥0)𝑚𝛼 = 𝑐0 + 𝑐1 (𝑥 − 𝑥0)𝛼 + 𝑐2 (𝑥 − 𝑥0)2𝛼
+ ⋅ ⋅ ⋅ ,

(7)

where 0 ≤ 𝑚 − 1 < 𝛼 ≤ 𝑚, is called fractional power series
FPS about. 𝑥 = 𝑥0.
Theorem 5. Suppose that 𝑓 has a fractional FPS representa-
tion at 𝑥 = 𝑥0 of the form

𝑔 (𝑥) = ∞∑
𝑚=0

𝑐𝑚 (𝑥 − 𝑥0)𝑚𝛼 , 𝑥0 ≤ 𝑥 < 𝑥0 + 𝛽. (8)

If 𝐷𝑚𝛼𝑔(𝑥), 𝑚 = 0, 1, 2, . . ., are continuous on R, then 𝑐𝑚 =𝐷𝑚𝛼𝑔(𝑥0))/Γ(1 + 𝑚𝛼).
Theorem 6. Let 𝑢(𝑥) ∈ 𝐶([𝑥0, 𝑥0 + 𝑅)) and 𝐷𝑖𝛼𝑢(𝑥) ∈𝐶((𝑥0, 𝑥0+𝑅)) for 𝑖 = 0, 1, . . . , 𝑚+1where 0 ≤ 𝑚−1 < 𝛼 ≤ 𝑚.
Then,

𝐼(𝑚+1)𝛼𝐷(𝑚+1)𝛼𝑢 (𝑥)
= 𝐷(𝑚+1)𝛼 (𝜛)Γ ((𝑚 + 1) 𝛼 + 1) (𝑥 − 𝑥0)(𝑚+1)𝛼+1 ,

𝑥0 ≤ 𝜛 ≤ 𝑥 < 𝑥0 + 𝑅.
(9)

Theorem7. Let 𝑢(𝑥) ∈ 𝐶([𝑥0, 𝑥0+𝑅)),𝐷𝑖𝛼𝑢(𝑥) ∈ 𝐶((𝑥0, 𝑥0+𝑅)), and 𝐷𝑖𝛼𝑢(𝑥) can differentiate (𝑚 − 1) with respect to 𝑥 for𝑖 = 0, 1, . . . , 𝑚 + 1 where 0 ≤ 𝑚 − 1 < 𝛼 ≤ 𝑚. Then,

𝑢 (𝑥) = 𝑚∑
𝑘=0

𝐷𝑘𝛼 (𝜛)Γ (𝑘𝛼 + 1) (𝑥 − 𝑥0)𝑘𝛼

+ 𝐷(𝑚+1)𝛼 (𝜛)Γ ((𝑚 + 1) 𝛼 + 1) (𝑥 − 𝑥0)(𝑚+1)𝛼+1 ,
𝑥0 ≤ 𝜛 ≤ 𝑥 < 𝑥0 + 𝑅.

(10)

Theorem 8. Let |𝐷(𝑚+1)𝛼𝑢(𝑥)| ∈ 𝐴 on 𝑥0 ≤ 𝑥 < 𝑠 where𝑚 − 1 < 𝛼 ≤ 𝑚. Then, the reminder 𝑅𝑚 satisfies
󵄨󵄨󵄨󵄨𝑅𝑚󵄨󵄨󵄨󵄨 ≤ 𝐴Γ ((𝑚 + 1) 𝛼 + 1) (𝑥 − 𝑥0)(𝑚+1)𝛼 ,

𝑥0 ≤ 𝑥 < 𝑠. (11)

This paper is organized as follows. A description of
the modified fractional power series method (MFPS) for
approximating the fractional Fredholm integrodifferential
equations problem (2)-(3) is presented in Section 2. Several
numerical examples are discussed in Section 3. Conclusions
and closing remarks are given in Section 4.

2. Algorithm of the MFPS Method

Consider the following class of fractional Fredholm integrod-
ifferential equations of the form

𝑢 (𝑥) = 𝑓 (𝑥) + 𝜆 ∫𝑏
𝑎

𝐾 (𝑥, 𝑡) 𝑢 (𝑡) 𝑑𝑡, 0 < 𝛼 ≤ 1 (12)

subject to

𝑢 (𝑎) = 𝑎0. (13)

Using theMFPSmethod, the solution problem (2)-(3) can be
written the fractional power series form as

𝑢 (𝑥) = ∞∑
𝑛=0

𝑓𝑛 (𝑥 − 𝑎)𝑛𝛼Γ (1 + 𝑛𝛼) . (14)

To obtain the approximate values of the above series (14), the𝑘th truncated series 𝑢𝑘(𝑥) is written in the form

𝑢𝑘 (𝑥) = 𝑘∑
𝑛=0

𝑓𝑛 (𝑥 − 𝑎)𝑛𝛼Γ (1 + 𝑛𝛼) . (15)

Since 𝑢(𝑎) = 𝑓0 = 𝑎0, we rewrite (14) as
𝑢𝑘 (𝑥) = 𝑎0 + 𝑘∑

𝑛=1

𝑓𝑛 (𝑥 − 𝑎)𝑛𝛼Γ (1 + 𝑛𝛼) , 𝑘 = 1, 2, . . . , (16)

where 𝑢0(𝑥) = 𝑎0 is considered to be the 0th MRPS
approximate solution of 𝑢(𝑥). To find the values of the
MFPS-coefficients 𝑓𝑘, 𝑘 = 1, 2, 3, . . ., we solve the fractional
differential equation

𝐷(𝑘−1)𝛼Res𝑘 (𝑢 (𝑎)) = 0, 𝑘 = 1, 2, 3, . . . , (17)

where Res𝑘(𝑢(𝑎)) is the 𝑘th residual function and is defined
by

Res𝑘 (𝑢 (𝑥)) = 𝐷𝛼𝑢𝑘 (𝑥) − 𝑓 (𝑥)
− 𝜆 ∫𝑏
𝑎

𝐾 (𝑥, 𝑡) 𝑢𝑘 (𝑡) 𝑑𝑡. (18)
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To determine the coefficient 𝑓1 in the expansion (15), we
substitute the 1st RPS approximate solution

𝑢1 (𝑥) = 𝑎0 + 𝑓1 (𝑥 − 𝑎)𝛼Γ (1 + 𝛼) (19)

into (18) to get

Res1 (𝑢 (𝑎))
= (𝐷𝛼𝑢1 (𝑥) − 𝑓 (𝑥) − 𝜆 ∫𝑏

𝑎
𝐾 (𝑥, 𝑡) 𝑢1 (𝑡) 𝑑𝑡)

𝑥=𝑎

= 𝑓1 − 𝑓 (𝑎) − 𝜆 ∫𝑏
𝑎

𝑎0𝐾 (𝑎, 𝑡) 𝑑𝑡
− 𝜆𝑓1 ∫𝑏

𝑎

(𝑡 − 𝑎)𝛼Γ (1 + 𝛼) 𝐾 (𝑥, 𝑡) 𝑑𝑡 = 0.

(20)

Then, we solve Res1(𝑎) = 0 to get

𝑓1 = 𝑓 (𝑎) + 𝜆 ∫𝑏
𝑎

𝑎0𝐾 (𝑎, 𝑡) 𝑑𝑡
1 − 𝜆 ∫𝑏

𝑎
((𝑡 − 𝑎)𝛼 /Γ (1 + 𝛼)) 𝐾 (𝑎, 𝑡) 𝑑𝑡 . (21)

To find 𝑓2, we substitute the 2nd RPS approximate solution

𝑢2 (𝑥) = 𝑎0 + 𝑓1 (𝑥 − 𝑎)𝛼Γ (1 + 𝛼) + 𝑓2 (𝑥 − 𝑎)2𝛼Γ (1 + 2𝛼) (22)

into the 2nd residual function Res2(𝑢(𝑥)) such that

Res2 (𝑢 (𝑥)) = 𝐷𝛼𝑢2 (𝑥) − 𝑓 (𝑥) − 𝜆 ∫𝑏
𝑎

𝐾 (𝑥, 𝑡)
⋅ 𝑢2 (𝑡) 𝑑𝑡 = 𝑓1 + 𝑓2 (𝑥 − 𝑎)𝛼Γ (1 + 𝛼) − 𝑓 (𝑥)
− 𝜆 ∫𝑏
𝑎

𝐾 (𝑥, 𝑡)
⋅ (𝑎0 + 𝑓1 (𝑡 − 𝑎)𝛼Γ (1 + 𝛼) + 𝑓2 (𝑡 − 𝑎)2𝛼Γ (1 + 2𝛼) ) 𝑑𝑡.

(23)

Then, we solve 𝐷𝛼Res2(𝑢(𝑎)) = 0 to get

𝑓2 = 𝐷𝛼𝑓 (𝑎) + 𝜆𝑎0 ∫𝑏𝑎 𝐷𝛼𝑥𝐾 (𝑎, 𝑡) 𝑑𝑡 + 𝜆𝑓1 ∫𝑏𝑎 ((𝑡 − 𝑎)𝛼 /Γ (1 + 𝛼)) 𝐷𝛼𝑥𝐾 (𝑎, 𝑡) 𝑑𝑡
1 − 𝜆 ∫𝑏

𝑎
((𝑡 − 𝑎)2𝛼 /Γ (1 + 2𝛼)) 𝐷𝛼𝑥𝐾 (𝑥, 𝑡) 𝑑𝑡 . (24)

To find 𝑓3, we substitute the 3rd RPS approximate solution

𝑢3 (𝑥) = 𝑎0 + 𝑓1 (𝑥 − 𝑎)𝛼Γ (1 + 𝛼) + 𝑓2 (𝑥 − 𝑎)2𝛼Γ (1 + 2𝛼)
+ 𝑓3 (𝑥 − 𝑎)3𝛼Γ (1 + 3𝛼)

(25)

into the 3rd residual function Res3(𝑢(𝑥)) such that

Res3 (𝑢 (𝑥)) = 𝐷𝛼𝑢3 (𝑥) − 𝑓 (𝑥) − 𝜆 ∫𝑏
𝑎

𝐾 (𝑥, 𝑡)

⋅ 𝑢3 (𝑡) 𝑑𝑡 = 𝑓1 + 𝑓2 (𝑥 − 𝑎)𝛼Γ (1 + 𝛼) + 𝑓3 (𝑥 − 𝑎)2𝛼Γ (1 + 2𝛼)
− 𝑓 (𝑥) − 𝜆 ∫𝑏

𝑎
𝐾 (𝑥, 𝑡) (𝑎0 + 𝑓1 (𝑡 − 𝑎)𝛼Γ (1 + 𝛼)

+ 𝑓2 (𝑡 − 𝑎)2𝛼Γ (1 + 2𝛼) + 𝑓3 (𝑡 − 𝑎)3𝛼Γ (1 + 3𝛼) ) 𝑑𝑡.
(26)

Then, we solve 𝐷2𝛼Res3(𝑢(𝑎)) = 0 to get

𝑓3 = 𝑓2 + 𝐷2𝛼𝑓 (𝑎) + 𝜆 ∑2𝑘=0 𝑓𝑘 ∫𝑏
𝑎

((𝑡 − 𝑎)𝑘𝛼 /Γ (1 + 𝑘𝛼)) 𝐷2𝛼𝑥 𝐾 (𝑎, 𝑡) 𝑑𝑡
1 − 𝜆 ∫𝑏

𝑎
((𝑡 − 𝑎)3𝛼 /Γ (1 + 3𝛼)) 𝐷2𝛼𝑥 𝐾 (𝑎, 𝑡) 𝑑𝑡 . (27)

To find 𝑓4, we substitute the 4th RPS approximate solution

𝑢4 (𝑥) = 𝑎0 + 𝑓1 (𝑥 − 𝑎)𝛼Γ (1 + 𝛼) + 𝑓2 (𝑥 − 𝑎)2𝛼Γ (1 + 2𝛼)
+ 𝑓3 (𝑥 − 𝑎)3𝛼Γ (1 + 3𝛼) + 𝑓4 (𝑥 − 𝑎)4𝛼Γ (1 + 4𝛼)

(28)

into the 4th residual function Res4(𝑢(𝑥)) such that

Res4 (𝑢 (𝑥)) = 𝐷𝛼𝑢4 (𝑥) − 𝑓 (𝑥) − 𝜆 ∫𝑏
𝑎

𝐾 (𝑥, 𝑡)
⋅ 𝑢4 (𝑡) 𝑑𝑡 = 𝑓1 + 𝑓2 (𝑥 − 𝑎)𝛼Γ (1 + 𝛼) + 𝑓3 (𝑥 − 𝑎)2𝛼Γ (1 + 2𝛼)
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+ 𝑓4 (𝑥 − 𝑎)4𝛼Γ (1 + 4𝛼) − 𝑓 (𝑥) − 𝜆 ∫𝑏
𝑎

𝐾 (𝑥, 𝑡) (𝑎0
+ 𝑓1 (𝑥 − 𝑎)𝛼Γ (1 + 𝛼) + 𝑓2 (𝑥 − 𝑎)2𝛼Γ (1 + 2𝛼) + 𝑓3 (𝑥 − 𝑎)3𝛼Γ (1 + 3𝛼)

+ 𝑓4 (𝑥 − 𝑎)4𝛼Γ (1 + 4𝛼) ) 𝑑𝑡.
(29)

Then, we solve 𝐷3𝛼Res4(𝑢(𝑎)) = 0 to get

𝑓4 = 𝑓3 + 𝐷3𝛼𝑓 (𝑎) + 𝜆 ∑3𝑘=0 𝑓𝑘 ∫𝑏
𝑎

((𝑡 − 𝑎)𝑘𝛼 /Γ (1 + 𝑘𝛼)) 𝐷2𝛼𝑥 𝐾 (𝑎, 𝑡) 𝑑𝑡
1 − 𝜆 ∫𝑏

𝑎
((𝑡 − 𝑎)4𝛼 /Γ (1 + 4𝛼)) 𝐷2𝛼𝑥 𝐾 (𝑎, 𝑡) 𝑑𝑡 . (30)

Using similar argument, we find that

𝑓𝑛 = 𝑓𝑛−1 + 𝐷(𝑛−1)𝛼𝑓 (𝑎) + 𝜆 ∑𝑛−1𝑘=0 𝑓𝑘 ∫𝑏
𝑎

((𝑡 − 𝑎)𝑘𝛼 /Γ (1 + 𝑘𝛼)) 𝐷(𝑛−1)𝛼𝑥 𝐾 (𝑎, 𝑡) 𝑑𝑡
1 − 𝜆 ∫𝑏

𝑎
((𝑡 − 𝑎)𝑛𝛼 /Γ (1 + 𝑛𝛼)) 𝐷(𝑛−1)𝛼𝑥 𝐾 (𝑎, 𝑡) 𝑑𝑡 , 𝑛 = 1, 2, 3, . . . . (31)

Thus,

𝑢𝑘 (𝑥) = 𝑎0 + 𝑘∑
𝑛=1

( 𝑓𝑛−1 + 𝐷(𝑛−1)𝛼𝑓 (𝑎) + 𝜆 ∑𝑛−1𝑘=0 𝑓𝑘 ∫𝑏
𝑎

((𝑡 − 𝑎)𝑘𝛼 /Γ (1 + 𝑘𝛼)) 𝐷(𝑛−1)𝛼𝑥 𝐾 (𝑎, 𝑡) 𝑑𝑡
1 − 𝜆 ∫𝑏

𝑎
((𝑡 − 𝑎)𝑛𝛼 /Γ (1 + 𝑛𝛼)) 𝐷(𝑛−1)𝛼𝑥 𝐾 (𝑎, 𝑡) 𝑑𝑡 ) (𝑥 − 𝑎)𝑛𝛼Γ (1 + 𝑛𝛼) . (32)

For 𝑘 = 1, 2, . . ..
3. Numerical Results

In this section, we present three examples to show the
efficiency of the proposed method. We use Mathematica
software to generate the results in this section.

Example 1. Consider the following fractional Fredholm inte-
grodifferential equation:

𝐷1/2𝑢 (𝑥) = 323√𝜋 𝑥1.5 + 163√𝜋 𝑥2.5 − 2𝑥 + ∫1
0

𝑥𝑡𝑢 (𝑡) ,
𝑥 ∈ R

(33)

subject to

𝑢 (0) = 0. (34)

The exact solution is

𝑢 (𝑥) = 4𝑥2 + 5𝑥3. (35)

Using the same argument described in the previous section,
we find that

𝑓0 = 𝑓1 = 𝑓2 = 𝑓3 = 0,
𝑓4 = 8,

𝑓5 = 0,
𝑓6 = 30,
𝑓𝑛 = 0, 𝑛 = 7, 8, . . . .

(36)

Thus,

𝑢6 (𝑥) = 4𝑥2 + 5𝑥3 (37)

which is the exact solution.

Example 2. Consider the following fractional Fredholm inte-
grodifferential equation:

𝐷1/4𝑢 (𝑥) = ∞∑
𝑘=0

𝑥𝑘+3/42𝑘+1Γ (𝑘 − 1/4) − (4 − 2√𝑒) 𝑥2
+ ∫1
0

𝑥2𝑡𝑢 (𝑡) , 𝑥 ∈ R

(38)

subject to

𝑢 (0) = 1. (39)

The exact solution is

𝑢 (𝑥) = 𝑒(1/2)𝑥. (40)
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Using the same argument described in the previous section,
we find the first few terms which are

𝑓0 = 1,
𝑓1 = 𝑓2 = 𝑓3 = 0,
𝑓4 = 12 ,
𝑓5 = 𝑓6 = 𝑓7 = 0,
𝑓8 = 14 .

(41)

Continuing in this process, we find that

𝑓𝑛 = {{{
12𝑘 , 𝑛 = 4𝑘, 𝑘 = 0, 1, 2, . . . ,

0, otherwise. (42)

Thus, if 𝑛 = 4𝑘 for some positive integer 𝑘,
𝑢𝑛 (𝑥) = 𝑛∑

𝑚=0

𝑓𝑚 𝑥𝑚/4Γ (1 + 𝑚/4) = 𝑘∑
𝑚=0

12𝑚 𝑥4𝑚/4Γ (1 + 4𝑚/4)
= 𝑘∑
𝑚=0

12𝑚 𝑥𝑚𝑚! .
(43)

Hence,

lim
𝑛→∞

𝑢𝑛 (𝑥) = lim
𝑛→∞

𝑘∑
𝑚=0

12𝑚 𝑥𝑚𝑚! = ∞∑
𝑚=0

12𝑚 𝑥𝑚𝑚! = 𝑒(1/2)𝑥 (44)

which is the exact solution.

Example 3. Consider the following fractional Fredholm inte-
grodifferential equation:

𝐷1/3𝑢 (𝑥) = Γ (4/3)Γ (11/3) − 5𝑒𝑥 + 4 ∫1
0

𝑒𝑥𝑡𝑢 (𝑡) 𝑑𝑡,
𝑥 ∈ R

(45)

subject to

𝑢 (0) = 1. (46)

The exact solution is

𝑢 (𝑥) = 1 + 𝑥3. (47)

Using the same argument described in the previous section,
we find that the first few terms are

𝑓0 = 1,
𝑓1 = 𝑓2 = 𝑓3 = 𝑓4 = 0,
𝑓5 = 𝑓6 = 𝑓7 = 𝑓8 = 0,
𝑓9 = 6,
𝑓9 = 𝑓10 = 0.

(48)

Continuing in this process, we find that

𝑓𝑛 = {{{{{{{{{
1, 𝑛 = 0,
6, 𝑛 = 9,
0, otherwise.

(49)

Thus,

𝑢9 (𝑥) = 1 + 𝑥3 (50)

which is the exact solution.

4. Conclusions and Closing Remarks

In this paper we employed the MFPS method to handle
the fractional Fredholm integrodifferential problems. The
method showed reliability in handling these ill-posed prob-
lems. It is worth mentioning that we get the exact solution in
the above three examples. We test the prosed method and we
get very accurate results. Although the MRPS method is not
commonly used for such problems, it gives us very accurate
results. This technique can be extended to other applications
in science and engineering.
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