166 research outputs found

    Research Article An Improved Particle Swarm Optimization Based on Deluge Approach for Enhanced Hierarchical Cache Optimization in IPTV Networks

    Get PDF
    Abstract: In recent years, IP network has been considered as a new delivery network for TV services. A majority of the telecommunication industries have used IP network to offer on-demand services and linear TV services as it can offer a two-way and high-speed communication. In order to effectively and economically utilize the IP network, caching is the technique which is usually preferred. In IPTV system, a managed network is utilized to bring out TV services, the requests of Video on Demand (VOD) objects are usually combined in a limited period intensively and user preferences are fluctuated dynamically. Furthermore, the VOD content updates often under the control of IPTV providers. In order to minimize this traffic and overall network cost, a segment of the video content is stored in caches closer to subscribers, for example, Digital Subscriber Line Access Multiplexer (DSLAM), a Central Office (CO) and Intermediate Office (IO). The major problem focused in this approach is to determine the optimal cache memory that should be assigned in order to attain maximum cost effectiveness. This approach uses an effective Grate Deluge algorithm based Particle Swarm Optimization (GDPSO) approach for attaining the optimal cache memory size which in turn minimizes the overall network cost. The analysis shows that hierarchical distributed caching can save significant network cost through the utilization of the GDPSO algorithm

    Ontwerp en evaluatie van content distributie netwerken voor multimediale streaming diensten.

    Get PDF
    Traditionele Internetgebaseerde diensten voor het verspreiden van bestanden, zoals Web browsen en het versturen van e-mails, worden aangeboden via één centrale server. Meer recente netwerkdiensten zoals interactieve digitale televisie of video-op-aanvraag vereisen echter hoge kwaliteitsgaranties (QoS), zoals een lage en constante netwerkvertraging, en verbruiken een aanzienlijke hoeveelheid bandbreedte op het netwerk. Architecturen met één centrale server kunnen deze garanties moeilijk bieden en voldoen daarom niet meer aan de hoge eisen van de volgende generatie multimediatoepassingen. In dit onderzoek worden daarom nieuwe netwerkarchitecturen bestudeerd, die een dergelijke dienstkwaliteit kunnen ondersteunen. Zowel peer-to-peer mechanismes, zoals bij het uitwisselen van muziekbestanden tussen eindgebruikers, als servergebaseerde oplossingen, zoals gedistribueerde caches en content distributie netwerken (CDN's), komen aan bod. Afhankelijk van de bestudeerde dienst en de gebruikte netwerktechnologieën en -architectuur, worden gecentraliseerde algoritmen voor netwerkontwerp voorgesteld. Deze algoritmen optimaliseren de plaatsing van de servers of netwerkcaches en bepalen de nodige capaciteit van de servers en netwerklinks. De dynamische plaatsing van de aangeboden bestanden in de verschillende netwerkelementen wordt aangepast aan de heersende staat van het netwerk en aan de variërende aanvraagpatronen van de eindgebruikers. Serverselectie, herroutering van aanvragen en het verspreiden van de belasting over het hele netwerk komen hierbij ook aan bod

    Network overload avoidance by traffic engineering and content caching

    Get PDF
    The Internet traffic volume continues to grow at a great rate, now driven by video and TV distribution. For network operators it is important to avoid congestion in the network, and to meet service level agreements with their customers. This thesis presents work on two methods operators can use to reduce links loads in their networks: traffic engineering and content caching. This thesis studies access patterns for TV and video and the potential for caching. The investigation is done both using simulation and by analysis of logs from a large TV-on-Demand system over four months. The results show that there is a small set of programs that account for a large fraction of the requests and that a comparatively small local cache can be used to significantly reduce the peak link loads during prime time. The investigation also demonstrates how the popularity of programs changes over time and shows that the access pattern in a TV-on-Demand system very much depends on the content type. For traffic engineering the objective is to avoid congestion in the network and to make better use of available resources by adapting the routing to the current traffic situation. The main challenge for traffic engineering in IP networks is to cope with the dynamics of Internet traffic demands. This thesis proposes L-balanced routings that route the traffic on the shortest paths possible but make sure that no link is utilised to more than a given level L. L-balanced routing gives efficient routing of traffic and controlled spare capacity to handle unpredictable changes in traffic. We present an L-balanced routing algorithm and a heuristic search method for finding L-balanced weight settings for the legacy routing protocols OSPF and IS-IS. We show that the search and the resulting weight settings work well in real network scenarios

    Survey on QoE/QoS Correlation Models for Video Streaming over Vehicular Ad-hoc Networks

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) are a new emerging technology which has attracted enormous interest over the last few years. It enables vehicles to communicate with each other and with roadside infrastructures for many applications. One of the promising applications is multimedia services for traffic safety or infotainment. The video service requires a good quality to satisfy the end-user known as the Quality of Experience (QoE). Several models have been suggested in the literature to measure or predict this metric. In this paper, we present an overview of interesting researches, which propose QoE models for video streaming over VANETs. The limits and deficiencies of these models are identified, which shed light on the challenges and real problems to overcome in the future

    Evolutionary Algorithm Optimization of Edge Delivery Sites in Next Generation Multi-Service Content Distribution Networks

    Get PDF
    Abstract. In the past decade or so we have been experiencing an extraordinary explosion of data volumes first in wireline networks and recently even in mobile wireless networks. Optimizing bandwidth utilization is critical for planning and deploying efficient networks that are capable of delivering new services like IPTV over cost-oriented implementations. Models of distributed content caching in the access network have been employed -for example -as analytical optimization tools in order to tackle associated problems. A modified capacitated quality-of-service network (QoS) model is proposed herein in order to optimize the placement of the sites of surrogate media servers (central offices-COs) on the access part of a content distribution network (CDN). The novelty of the proposed approach lies in the fact that capacitated quality-ofservice network optimization is cast as an optimization problem over two rather than one optimization variables-objectives. Implementation cost and link delay as determined by capacity/utilization requirements are the optimization functionals-objectives. Optimization of the network architecture is carried out via a multiobjective evolutionary algorithm that encodes all possible edges between the first level aggregation points of the access network. Proper priorities are assigned to different types of traffic according to class of service. Two main services are considered, namely live broadcast/IPTV and video on demand services (VoD). The media servers/COs are incorporated into the infrastructure of the access nodes in a step-by-step fashion modifying the traffic requirements between source and sink nodes of the optimal configurations of the access network. The evolution of the Pareto front is investigated in each case

    Energy Efficient Content Distribution in an ISP Network

    Get PDF
    International audienceWe study the problem of reducing power consump- tion in an Internet Service Provider (ISP) network by designing the content distribution infrastructure managed by the operator. We propose an algorithm to optimally decide where to cache the content inside the ISP network. We evaluate our solution over two case studies driven by operators feedback. Results show that the energy-efficient design of the content infrastructure brings substantial savings, both in terms of energy and in terms of bandwidth required at the peering point of the operator. Moreover, we study the impact of the content characteristics and the power consumption models. Finally, we derive some insights for the design of future energy-aware networks

    Architecture for Cooperative Prefetching in P2P Video-on- Demand System

    Full text link
    Most P2P VoD schemes focused on service architectures and overlays optimization without considering segments rarity and the performance of prefetching strategies. As a result, they cannot better support VCRoriented service in heterogeneous environment having clients using free VCR controls. Despite the remarkable popularity in VoD systems, there exist no prior work that studies the performance gap between different prefetching strategies. In this paper, we analyze and understand the performance of different prefetching strategies. Our analytical characterization brings us not only a better understanding of several fundamental tradeoffs in prefetching strategies, but also important insights on the design of P2P VoD system. On the basis of this analysis, we finally proposed a cooperative prefetching strategy called "cooching". In this strategy, the requested segments in VCR interactivities are prefetched into session beforehand using the information collected through gossips. We evaluate our strategy through extensive simulations. The results indicate that the proposed strategy outperforms the existing prefetching mechanisms.Comment: 13 Pages, IJCN
    corecore