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Research Article 

An Improved Particle Swarm Optimization Based on Deluge Approach for Enhanced 

Hierarchical Cache Optimization in IPTV Networks 
 

M. Somu and N. Rengarajan 
KSR College of Engineering, KSR Kalvi Nagar, Tiruchengode, Tamil Nadu 637215, India 

 

Abstract: In recent years, IP network has been considered as a new delivery network for TV services. A majority of 
the telecommunication industries have used IP network to offer on-demand services and linear TV services as it can 
offer a two-way and high-speed communication. In order to effectively and economically utilize the IP network, 
caching is the technique which is usually preferred. In IPTV system, a managed network is utilized to bring out TV 
services, the requests of Video on Demand (VOD) objects are usually combined in a limited period intensively and 
user preferences are fluctuated dynamically. Furthermore, the VOD content updates often under the control of IPTV 
providers. In order to minimize this traffic and overall network cost, a segment of the video content is stored in 
caches closer to subscribers, for example, Digital Subscriber Line Access Multiplexer (DSLAM), a Central Office 
(CO) and Intermediate Office (IO). The major problem focused in this approach is to determine the optimal cache 
memory that should be assigned in order to attain maximum cost effectiveness. This approach uses an effective 
Grate Deluge algorithm based Particle Swarm Optimization (GDPSO) approach for attaining the optimal cache 
memory size which in turn minimizes the overall network cost. The analysis shows that hierarchical distributed 
caching can save significant network cost through the utilization of the GDPSO algorithm. 
 
Keywords: Digital Subscriber Line Access Multiplexer (DSLAM), Grate Deluge (GD) algorithm, IPTV, PSO, 

Video on Demand (VOD) 

 
INTRODUCTION 

 
Internet Protocol Television (IPTV), in which TV 

channels are distributed through IP multicast, has 
become one of the widely used techniques (Henrik and 
Mats, 2010). IPTV is considered as an essential aspect 
in the upcoming IP convergence networks and a new 
promising approach for telecommunication in which 
they identify a saturated market in terms of the number 
of broadband subscribers and residential penetration 
ratio (Won et al., 2008). 

A majority of telecom and broadband industries 
have become TV providers and distribute TV channels 
via multicast over their backbone network. IPTV is also 
considered as a development to time-shifted TV in 
which viewers can select to observe the programs at 
anytime (Henrik and Mats, 2010). The main benefits of 
the IPTV are its flexibility to support personalized 
service as it transmits the user requests to the manage 
center immediately and it easily distinguishes the user 
identity. On the other hand, all data on IPTV are 
encoded as a sequence of IP packets and communicated 
to the viewers via the residential broadband access 
network. This characteristic feature removes the 
conventional constraints of watching TV and 
furthermore, any Internet connectable digital devices 

provided with a multimedia player could be a “TV”. 
These unique features offer more chances for 
generating new services on the next generation TV 
industry (Hsuan et al., 2011). 

The basis for IPTV network architecture is to bring 
QoS guaranteed video services to the end user at the 
lowest network cost possible. Multicast and several of 
its associated protocols, is an apparent option by many 
telecommunications; but, it is still in an experimental 
phase prior to large-scale deployment in several places 
(Won et al., 2008). 

In spite of the supreme effort Quality of Service 
(QoS) of the Internet, IPTV service providers have yet 
to offer better user Quality of Experience (QoE) than 
conventional TV technology (Prasad et al., 2012). 
Furthermore, the main factor which is to be focused in 
the deployment of the IPTV is the network cost.  

A number of researchers have dealt with most of 
the technical issues of implementing IPTV service in 
existing or redesigned infrastructures (Agrawal et al., 
2007). A variety of data delivery techniques, such as 
multicast (Imran et al., 2007; Smith, 2007) and Peer-to-
Peer (P2P) (Sentinelli et al., 2007) style bartering are 
examined to lessen the network traffic at the backbone 
while preventing Quality of Experience (QoE) 
degradation. 
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Fig. 1: Hierarchical caching in IPTV network 

 
Caching is a well examined and promising 

approach for web content and video (Liu and Xu, 2004; 
Eager et al., 1999) and have been extensively used in 
the context of IPTV (Krogfoss et al., 2008). 

Caching of video contents can be a prominent 
solution that lessens the problems of the users in 
IPTV’s on-demand services (De Vleeschauwer and 
Laevens, 2009; Sarhan and Das, 2008; Almeida et al., 
2001) Generally, as a segment of popular movies are 
mostly requested by several users, if certain popular 
video contents are cached, the load of storage servers 
can be lightened. Moreover, cached video contents can 
be streamed directly to users without any start-up delay. 

In an IPTV network, Video on Demand (VoD) 
creates vast unicast traffic from the Video Head Office 
(VHO) to subscribers and, thus, necessitates added 
equipment resources in the network. In order to 
minimize this traffic (overall network cost), segment of 
the video content may be accumulated in caches closer 
to subscribers (DSLAMs, COs and/or in IOs) which is 
shown in Fig. 1. The main issue focused is to find the 
optimal size and localities of the cache memory in 
IPTV networks and to determine the appropriate titles 
and services which should be cached at the suitable 
locations to attain the maximum cost effectiveness (Bill 
et al., 2008). 

Several of the existing video caching approaches 
do not dynamically cache the files based on individual 
client requests; instead these approaches make use of 
replication of segments of the videos based on a pre-
estimated access pattern of each video. Practically, the 
request rate for a specific video may differ with time 
and the relative importance of the videos may differ 
from proxy to proxy (Anna and Michael, 2006). Hence, 
Hierarchical cache optimization technique is used in 
this study for better performance. 

The relationship between cache hit rates and the 
popularity distribution of VoD titles is briefly examined 
in this approach to set the stage. Bill et al. (2009) 
described two modeling approaches for hierarchical 
cache optimization in IPTV networks in order to 
determine the optimal cache architecture using a 
heuristic algorithm. As an extension of the Bill et al. 
(2009) approach, this study uses an efficient 
intelligence algorithm for identifying optimal cache 

memory size and content distribution at every layer to 
minimize the overall network costs. Particle Swarm 
Optimization (PSO) approach is observed to be very 
effective in determining the optimal cache memory size 
which in turn minimizes the network cost (Somu and 
Rengarajan, 2012). In this approach, in order to provide 
better performance to the PSO, Great Deluge (GD) 
algorithm based PSO has been utilized for providing 
effective optimized results. 
 

LITERATURE REVIEW 
 

A more advanced feature is the use of co-operative 
proxy caching (Chae et al., 2002), where a better 
performance than with independent proxies can be 
achieved through load balancing and improved system 
scalability. In this case it is important to continuously 
keep track of cache states. Note that contrary to 
standard co-operative proxy caching, there is no need to 
switch to segments on other proxies when using co-
operative proxy caching with sliding intervals. Similar 
peer-to-peer caching techniques have also been 
introduced in streaming CDNs, where whole files are 
stored instead of segments (Turrini and Panzieri, 2002).  

WiMAX radio Resource Allocation (WRA) issue 
is studied in the framework of IPTV broadcasting over 
mobile WiMAX Multicast, Broadcast Services (MBS) 
channels. The main aim is to enhance the quality 
of services, in terms of number of subscribers served; 
number of IPTV channels carried and perceived video 
qualities of individual viewers, subject to constraints 
on multicast channel capacities and space-time channel 
quality variations. Po-Han and Yu-Hen (2011) 
presented an effective heuristic technique depending on 
the Pareto principle that obtains near-optimal results in 
polynomial time complexity. The simulation results 
show that the performance of this approach is very 
significant when compared with other existing heuristic 
algorithms. 

Caching of video content facilitates minimization 
of bandwidth and IPTV network cost. An algorithm that 
optimally partitions a cache between several video 
services with different traffic characteristics and content 
sizes  is  described  in  Krogfoss et al. (2008). Sofman 
et al., proposed the concept of content cacheability and 



 

 

Res. J. App. Sci. Eng. Technol., 7(19): 4018-4028, 2014 

 

4020 

introduced a fast algorithm that utilizes cache-ability to 
optimally partition a cache between several video 
services with various traffic characteristics and content 
sizes. The main focus of the optimization is to serve 
maximum (in terms of bandwidth) amount of 
subscribers' requests subject to constraints on cache 
memory and throughput. 

There are various problems and issues that are to 

be overcome in the existing techniques present in the 

IPTV environment. Identifying an optimal (in terms of 

network cost) placement and amount of cache memory 

is a complex optimization problem (Somu and 

Rengarajan, 2012). Though most of the processors for 

IPTV set-tops using hardware-based built-in decoders 

exhibit good performance in processing high-resolution 

compressed video, they have drawbacks in running 

general purpose software as their embedded RISCs 

provide relatively low computing capability for 

minimized product costs (Xin et al., 2008). 

 

METHODOLOGY 

 

Hit rate in hierarchical networks: Hit rate is the 

percentage of all requests that are contented by the data 

in the cache. The effectiveness of the cache is 

illustrated by hit rate. The discrete version of hit 

rate, �(�), denotes a segment of service requests that 

may be served by the n “most popular” titles stored in 

the cache. The continuous version of hit rate, �(�), is 

a function of cache memory size m. Hit rate is based on 

the statistical characteristic features of traffic and on the 

efficiency of the caching algorithm to update the cache 

content (Vanichpun and Makowski, 2004). 

Zipf-Mandelbrot (1999) (ZM) distribution (Breslau 
et al., 1999) is used in this approach, even though any 
alternative distribution could also be used. The ZM 
Probability Mass Function is described by: 

 

 �(�) =  
 
(� � 
)� 

 
where, C is a normalization constant, k is the rank of 
the object, q is the shift factor, α is a power parameter 
that find out the steepness of the curve. In the ideal 
scenario, when the caching algorithm has complete data 
about the statistical characteristic features of the traffic, 
the hit rate is equal to the cumulative popularity 
distribution.  

In multiple services, the hit rate is based on the 
popularity distribution and other characteristic features 
of individual services as illustrated in Krogfoss et al. 
(2008). In the following, traffic symmetry is assumed 
for nodes at each level (i.e., the hit rate is the same at 
each node of every level). It is also assumed that no 
redundant caching, which means that if certain title is 
cached at a certain level (e.g., IO), this title is not 
cached again in downstream nodes (e.g., CO and 
DSLAM).  

The model of “cumulative memory effect” of 
hierarchical caching, or “virtual” cache (De-
Vleeschauwer and Laevens, 2007) is shown in Fig. 2. 
The “virtual” cache in any node of the tree is the actual 
cache at that node augmented by the caches in deeper 
nodes (downstream) of the tree. Video content 
positioned in the “virtual” cache of the node reduces the 
unicast traffic on the upstream link of the node (and all 
links added upstream right up to the root of the tree). 

 

 
 

Fig. 2: Traffic flow in hierarchical network with cache memory 
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For instance, if the cache size per DSLAM is ��, the 
cache size per service switch at CO is �� and the cache 
size per service router at IO is ��, then the caching 
related traffic reduction (hit rate) at the DSLAM level is 
�(��), at the CO level is �(�� + ��) and at the IO 
level is �(�� + �� + ��). 
 
Heuristic model: 
Assumptions: The cache optimization model illustrated 
below may be applied to any type of tree topology. But, 
in the following the tree is assumed to be symmetrical 
and network topology is defined by the following 
parameters: 
 

• Number of subscribers per DSLAM 

• Number of DSLAMs per to CO 

• Number of COs per IO 

• Number of IOs per VHO 
 

There is an option in this model to dual-home COs, 
i.e., connect every CO to two IOs. It is to be observed 
that the COs is associated directly to the VHO in small 
IPTV networks and there is no IO level; the model can 
support this network topology as well. 

One multicast and one or more unicast services are 
considered. Parameters of the multicast service (for 
busy hour) are:  
 

• Number of offered High Definition (HD) and 
Standard Definition (SD) channels 

• Bandwidth per HD and per SD channel 

• % of multicast viewers that view HD channels 

• % of Set-Top Boxes (STB) tuned to multicast 
channels 

 
Parameters of every unicast service are: 
 

• Number of titles in the service 

• Average memory size per title 

• Average traffic per title 

• Hit rate 
 

In this model, the cache may be positioned at any 
mixture of the following layers such as DSLAM, CO, 
or/and IO. It is to be assumed that there is one 
equipment shelf per DSLAM and one or several 
equipment shelves per CO and IO.  

The cache in each location consists of one or 
several cache modules and each cache module engage 
one slot of the equivalent equipment shelf. Each cache 
module can accumulate a limited quantity of data (e.g., 
up to 3,000 GB) and can support a limited amount of 
traffic throughout (e.g., up to 20 Gbps). The amount of 
memory per cache module is a multiple of the memory 
granularity parameter (e.g., 100 GB). Cache cost 
comprises of cost per cache module and cost per unit of 
memory. 

It is to be observed that the equipment 
configuration  and  cost  structure  can  produce  certain 

modularity consequences. For instance, fairly small 
variations in traffic volume may result in a considerable 
change in the number of network elements (e.g., ports, 
MDAs, IOs and even shelves) and, thus, results in 
considerable change in network cost. With more cache 
modules and total cache memory per shelf, titles stored 
in the cache would be more and the more unicast traffic 
requests will be served from this cache and thus, lesser 
resources such as bandwidth, ports, equipments, etc., 
will be necessary upstream from this cache location (De 
Vleeschauwer and Laevens, 2009). Alternatively, there 
are a limited number of slots in the equipment, so when 
more slots are utilized for cache then only fewer slots 
are available for ports. The main focus is to determine 
the optimal cache memory size and content distribution 
at every layer to minimize the overall network costs 
(i.e., transport, equipment and cache cost). 
 
Cache optimization modes and heuristics: This 
approach considers three optimization modes such as 
Adhoc optimization, Layered optimization and Global 
optimization. 

It is to be considered that in Adhoc optimization, 
the cache configuration (i.e., number of cache modules 
and the cache memory per shelf at every layer-
DSLAM, CO, IO) is given. The main purpose of Adhoc 
optimization is to determine the optimal distribution of 
content between caches. It means that the number of 
titles of each service that should be cached at each 
layer.  

Adhoc optimization also facilitates evaluation of 
the cost of the network without any cache. The other 
two modes of optimization namely Layered 
optimization and Global optimization facilitates the 
simultaneous optimization of both cache configuration 
and distribution of the content. These two modes of 
optimization are built on top of the Adhoc optimization. 
These two modes of optimization also permits to 
constrain the layers for cache deployment, e.g., 
DSLAM only, CO only, IO only, DSLAM and CO 
only, etc. This can be very valuable in scenarios where 
the caches can only be deployed at specific layers of the 
network. 

It is to be noted that due to memory granularity 
(model’s parameters) and the finite number of cache 
modules per shelf, there are a finite number of various 
cache configurations that should be considered. In case 
of Global optimization, all probable cache 
configurations are itemized and Adhoc optimization is 
executed for every cache configuration. The cache 
configuration that provides the best Adhoc optimization 
outcome will be the solution of the Global optimization 
technique. Generally, Global optimization needs long 
processing times. Layered optimization provides fairly 
good solution in lesser time. 

The fundamental building block of Layered 
optimization is optimizing the cache for one specific 
layer (e.g., CO) whereas the cache configuration for the 
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other layers (e.g., DSLAM and IO) are kept as fixed. In 
Layered optimization, an ordered subset of layers is 
first chosen (in one particular scenario, all three layers-
DSLAM, CO and IO-could be chosen). Cache 
optimization is carried out for the 1st chosen layer and 
the optimal cache configuration for this layer is fixed. 
Then, cache optimization is carried out for the 2nd 
chosen layer and so on. After cache optimization has 
been carried out for the last chosen layer, the process is 
repeated with the 1st chosen layer. This process ceases 
when no further improvement results from the 
optimization of any of the chosen layers cost. Different 
to Global optimization, the Layered optimization 
solution is a local optimum. But, in all the scenarios 
considered, the results of Global and Layered 
optimization  were  close  or  identical (Vleeschauwer 
et al., 2009). In this approach, PSO algorithm is used 
for optimizing the cache memory size and content 
distribution at every layer. 
 
Particle swarm optimization: PSO process is initiated 
with a collection of random particles (solutions), N. The 
ith particle is denoted by its position as a point in S-
dimensional space, where S denotes the number of 
variables. All through the process, each particle 
i observes three values namely its current position (X�), 
the best position it arrived in previous cycles (P�), its 
flying velocity (V�). These three values are denoted as 
follows: 
 

Current position �� = (���, ���, … , ���) 
Best previous position �� = (���, ���, … , ���)       (1) 
Flying velocity �� = ( ��,  ��, … ,  ��) 

 
In each time interval (cycle), the position (�!) of 

the best particle (g) is computed as the best fitness of all 
particles. 

Therefore, each particle updates its velocity �� to 
get closer to the best particle g, as follows (Bill et al., 
2009): 
 

"#$ �� = % × '())#�* �� + '� × )+�,() ×
(�� − ��) + '� × .+�,() × (�� − ��)                 (2) 

 
As such, the particle’s updated position by means 

of the new velocity �� becomes: 
 

"#$ �/01*1/� �� 
= '())#�* �/01*1/� �� +  "#$ �� 
�234 ≥ �� ≥ −�234                                              (3) 

 
where '� and '� denote two positive constants named 
learning factors (usually '� = '� = 2); rand ( ) and 
Rand ( ) denotes two random functions in the range (0, 
1), �234 is an upper limit on the maximum change of 
particle velocity (Kennedy and Eberhart, 1995) and % 
denotes an inertia weight employed as an enhancement 
proposed by Shi and Eberhart (1998) to manage the 
influence  of  the  previous  history  of  velocities on the 

 
 

Fig. 3: Pseudo code for PSO 

 
current velocity. The operator % balances the global 
search and the local search; and was introduced to 
minimize linearly with time from a value of 1.4-0.5. In 
such case, global search starts with a great weight and 
then decreases with time to favor local search over 
global search (Eberhart and Shi, 1998). 

It is to be observed that the second term in Eq. (2) 
denotes cognition, or the private judgment of the 
particle when comparing its current position to its own 
best position. The third term in Eq. (2), alternatively, 
denotes the social collaboration among the particles, 
which compares a particle’s current position to that of 
the best particle (Kennedy, 1997). Moreover, in order to 
control the change of particles’ velocities, upper and 
lower bounds for velocity change is limited to a user-
specified value of �234. Once the new position of a 
particle is computed using Eq. (3), the particle, then, 
flies towards it (Shi and Eberhart, 1998). Thus, the 
main parameters used in the PSO are: the population 
size (number of birds); number of generation cycles; the 
maximum change of a particle velocity �234 and %. 
Figure 3 shows the pseudo code for the PSO. 

In the original PSO, the velocity and position 
updating rule is given by Eq. (4) to (5): 
 

 �7
8�� =  �7

8 + '�)� 

(�9#0*�7
8 − ��7

8 ) + '�)�(:9#0*7
8 − ��7

8 )               (4) 
 

��7
8�� = ��7

8 +  87
8��, 1 = 1,2, … . , �               (5) 

 
where, '� and '� represent constants named 
acceleration coefficients. )� and )� are two independent 
random numbers uniformly distributed in the range of 
(0, 1).  � ∈ >− 234 ,  234? where  234is a problem-
dependent   constant   defined   in   order  to  clamp  the 
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Fig. 4: Pseudo-code of GDPSO 

 
excessive roaming of particles. �9#0*�7

8  is the best 
previous position along the dth dimension of particle 1 in 
iteration * (memorized by every particle); :9#0*7

8  
represents the best priorlocation among all the particles 
along the dth dimension in iteration t (memorized in a 
general store house) (Sajjad et al., 2012). 

The original PSO is improved by Shi and Eberhart 
(1998) by modifying Eq. (6): 
 

 �7
8�� +  �7

8 + '�)�(�9#0*�7
8 − ��7

8 ) +
'�)�(:9#0*7

8 − ��7
8 )                                            (6) 

 
where w > = 0 is defined as inertia weight factor. The 
thorough experimental investigations of PSO with 
inertia weight have shown that a relatively large w have 
more global search capability while a relatively small w 
results in a faster convergence. 
 
Convergence criterion of PSO: In general, 
convergence is a phenomenon in which a system or 
process reaches a stable state. For the population based 
optimization approach, the convergence of algorithm 
can be considered via individual or the entire swarm. 
For instance, there are two convergence definitions for 
Genetic Algorithm. The convergence definition of PSO 
was suggested by Van Den Bergh (2002) gave, which is 
explained below. 

Provided a particle position �(*) and an arbitrary 
position p in search space, the convergence is defined 
by the following Eq. (7): 
 

lim �(*)8→∞ = �                                                  (7) 
 

This definition shows that the convergence of 
particles is that the particle eventually stops at a certain 

position p in search space. By examining the 
trajectories of particles, Van Den Bergh (2002) suggests 
that all the particles are convergent to the positions of 
the global best solutions. This aspect is very important, 
as it reveals a key characteristic aspect of PSO, i.e., 
gbest is the attractor of the whole swarm. Evidently, 
gbest itself alters the algorithm runs. 

If the entire particles attain the convergence, no 
further alteration exists and the stable state is obtained. 
Thus, the PSO algorithm has attained convergence. As 
a result, gbest will not alter. Thus, another convergence 
definition of PSO can be given which is discussed 
below. 
 
Definition 2: Given that the best position of PSO in 
time t or in tth generation is gbest (t), gbest* is a fixed 
position in search space, the convergence definition is 
written as Eq. (8): 

 

lim :9#0*(*)8→4 = :9#0*∗                             (8) 

 

Definition 2 suggests that, if gbest constructed by 
PSO does not alter any more, then convergence is 
attained. If the gbest is the global best solution, then the 
algorithm achieves the global best convergence. Or 
else, the algorithm is stuck in local optima. 
 
Great Deluge based PSO (GDPSO): This study 
presents an enhanced version of the Particle Swarm 
Optimization algorithm using the Great Deluge 
algorithm called GDPSO (GDPSO). In the general 
PSO, after attaining a new result, the obtained result is 
compared with the best solution identified so far and if 
it is found to be better, it will be accepted. But, in this 
proposed approach, the achieved solution is compared 
with both, the best identified solution so far and with 
another parameter called “Water Level” or WL. If it is 
better than the both, it is accepted as new solution. 

Actually, there is a level of acceptance inside the 
PSO for new solutions and this process provides a 
second chance to particles to get rid of the trap, if it is 
trapped in the local optimum. 

The proposed algorithm is fundamentally different 
with the basic PSO so that it tries to utilize the basic 
technique of Great Deluge local search in the PSO 
algorithm. 

The basis of this technique is the PSO algorithm 
and some alterations have been made to the PSO. The 
WL parameter is used as an acceptance level and UP 
parameter of the great deluge algorithm is used to find 
out the permissible range of the answers. UP parameter 
is used in increasing or decreasing the WL. Novel 
approach has been evaluated on certain standard 
functions and performance of the algorithm compared 
with PSO standard. Test results show that the proposed 
algorithm extensively raises the capability of PSO to 
escape from the local optimum and the accuracy and 
the convergence rate. Pseudo-code of MPSO algorithm 
is shown in Fig. 4 (Sajjad et al., 2012). 
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Analytical model: 
Assumptions: In order to analytically resolve the cache 
optimization issue, certain assumptions are to be 
considered. Initially, in this analysis, granularity factors 
are eliminated. Especially, it is to be considered that the 
cost of cache memory is proportional to the size of the 
cache and equipment cost is proportional to the amount 
of traffic that traverses the equipment. In particular, the 
equipment cost is evaluated based on the amount of 
traffic obtained by this equipment from top levels of 
network hierarchy (r-traffic) and from the quantity of 
traffic sent by this equipment to subordinate levels of 
the network hierarchy (s-traffic). For instance, the cost 
of a CO node may be evaluated based on:  
 

• The amount of traffic this CO node sends to 
DSLAMs (or s-traffic) and the cost per unit of this 
traffic  

• The amount of traffic that this CO node receives 
from IO (or r-traffic) and the cost per unit of this 
traffic 

 
To compute a total network cost, a cost per unit of 

cache memory and a cost per unit of s-and r-traffic are 
defined for each level of the network hierarchy 
(DSLAM, CO, IO).  

It is to be assumed that the tree topology structure 
is completely symmetric, i.e., the “fan-out” at each 
level is the same. Moreover, all contents are 
downloaded only once to the caches during off-peak 
time, so the network cost associated with these 
downloads can be ignored.  

The next consideration to be made is regarding the 
hit rate, �(�), as a function of cache memory �. It is 
clear that the hit rate, �(�), increases with memory �. 
Moreover, �(�) is assumed to have a continuous 
derivative �’(�) and this derivative is decreasing 
(effect of diminishing returns for hit rate). Thus, �(�) 
is strictly concave.  

It is to be assumed that out of the two cache 
resources namely cache size and cache throughput, 
cache size is a limiting factor and the only resource to 
be considered. This assumption can be justified for the 
cache in DSLAMs by setting a maximum cache size 
that assures that traffic from the cache does not go 
beyond the cache throughput. 

In the analytical model, only the unicast traffic is 
taken into consideration. Because of replication, 
multicast traffic is a fairly small segment of the total 
traffic between the VHO, IO, CO and DSLAM levels 
and, thus, does not make a huge influence on equipment 
costs at those levels. 
 
Mathematical formulation: In the case of tree 
topology with K levels of hierarchy, the total network 
cost, "*$�G/0*, may be computed as: 

 

"*$�G/0*(��, ��, … . , ��) = ∑ "�'�
2���I� +

J'�K
8 + J ∑ (('�L

8 + '���K
8 ) M1 − �N∑ �O

�
OI� PQ�

�I�       (9) 

The following parameters are used in (9). 
 
Decision variables:  
 
�� : Cache memory size per node at k-th level, 

1 ≤ � ≤ S (GB) 
T : Total amount of traffic requested by subscribers 

(Mbs) 
�(�) : Hit rate as a function of cache memory m 
"� : Number of nodes at k-th level of hierarchy, 

1 ≤ � ≤ S 
T� : Maximum cache size per node at k-th level, 

1 ≤ � ≤ S, (GB) 
'�

2 : Cost of cache memory at k-th level, 1 ≤ � ≤ S 
($/GB) 

'�K
8  and '�L

8  : Cost of traffic at k-th level sent to (k-1) -th 
(straffic)  

 
and received from (k+1) -th level (r-traffic), 1 ≤ � ≤
S + 1, ($/Mbs). 

The goal is to minimize network cost subject to 
constraints on cache memory size: 
 

"*$�G/0*(��, ��, … . , ��) →min 

such that 0 ≤ �� ≤ T� , 1 = 1 ≤ � ≤ S 
 

EXPERIMENTAL RESULTS 
 

A large metropolitan DSL based ISP network is 
used in this reference scenario. A 4-level network is 
assumed with DSLAMs at the lowest level that are 
aggregated at COs by routers. In large metros there are 
often intermediate aggregation points, known as 
Intermediate Offices (IOs) that aggregate several COs. 
The IOs all terminate at a VHO that can be collocated 
with a Point of Presence (PoP). These topology 
assumptions are: 

 

• The total number of DSLAMs in the network, is 
9,600 

• The total number of service switches in all COs, is 
100 

• The total number of service routers in all IOs, is 16 
 

The following maximum storage limits per cache 
location are assumed: 
 

• The maximum cache size per DSLAM is 100 GB 

• The maximum cache size per service switch at CO 
is 12,000 GB (12TB) 

• The maximum cache size per service router at IO is 
24,000 GB (24TB) 

 
The cost assumptions are: 
 

'�
2, � = 1, 2, 3, the cost of flash memory is 

$22/GB. 

'�L
8 ; the cost of traffic that a DSLAM receives from 

a CO is $1.5/Mbps. 
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Fig. 5: Optimal cache solution for varying traffic 

 
'�K

8  and '�L
8 ; the cost of traffic that a CO sends to a 

DSLAM and receives from a IO, respectively, is 
$2.5/Mbps. 

'�K
8  and '�L

8 ; the cost of traffic that a IO sends to a 
CO and receives from the VHO, respectively, is 
$4/Mbps. 

 
Number of the particles in the algorithms is 

considered 50. The amount of increasing Water Level 
(WL) is averaged as 0.0002 (Sajjad et al., 2012). 

The total traffic T is varied to investigate the 
impact of increasing traffic on different caching 
solutions. Ultimately, Zipf-Mandelbrot (1999) 
distribution is considered for popularity with a power 
parameter alpha = 1 for the reference scenario. These 
numbers were chosen based on empirical data and 
industry averages; nevertheless, a variety of sensitivity 
analyses was done to investigate the degree to which 
the results and conclusions would depend on specific 
values of these parameters. In the following sections, all 
parameters (unless mentioned specifically) have values 
from this reference scenario. 
 
Sensitivity to traffic variation: The modeling results 
of the reference scenario are shown in Fig. 5. The graph 
shows the optimal cache solution in terms of cost gain 
as traffic volume is varied.  

It is clear from the graph that the cost gain of the 
proposed Hierarchical Cache optimization with GDPSO 
attains better cost gain with varying traffic per 
DSLAM. 

According to the graph, for a traffic volume of 400 
Mbps at the DSLAM, a cost gain of 52 and 59% is 
obtained for the Hierarchical Cache optimization 
approach and hierarchical cache optimization technique 
with PSO approach. But, the proposed hierarchical 
cache optimization technique with GDPSO attains a 
cost gain of 64%.  

It is observed that the solution becomes 
hierarchical (as opposed to single level caching) with 
increase in traffic volume. As traffic volume increases, 
caches are first deployed at the IO, then at the CO and 
ultimately at the DSLAM too. 

Impact of network topology: This section considers 
the impact of network topology on caching solutions 
and cost gain. The topologies of the network operators 
vary due to differences in loop lengths, number of COs 
per region and broadband technique (VDSL, ADSL, 
GPON, etc.). For a particular number of COs, longer 
loop networks necessitate distributed and smaller 
DSLAMs and more DSLAMs per CO, while shorter 
loop networks facilitate centralized and larger DSLAMs 
and lesser DSLAMs per CO. 

From the analytical solution, consider the case in 
which the optimum cache has a moderate (or “non 
boundary”) solution. �� for each location is: 

 

 0 < ��, < T�; 1 = 1, 2, 3  

 

The corresponding equations are (Somu and 
Rengarajan, 2012): 

 

�′(��
Z) = [\]\̂ _[`]`̂

aK\
                                          (10) 

 

�′(��
Z + ��

Z) = [`]`̂ _[b]b̂
aK`

                           (11) 

 

�′(��
Z + ��

Z + ��
Z) = [b]b̂

aKb
                           (12) 

 
where, 0�, 0� and 0� are traffic cost parameters: 
 

0� = '��
8 + '��

8  
 
0� = '��

8 + '��
8                                           (13) 

 
0� = '��

8 + 'c�
8  

 
From Eq. (10), as N� (# of DSLAMs) increases for 

a given amount of traffic T the total memory at the 
DSLAM m� must decrease. From Eq. (11), it is to be 
observed that the total storage m� + m� does not 
depend on the number of DSLAMs (N�), thus if N� 
increases and m� decreases, m� must increase by a 
sufficient amount so as to satisfy both equations. 
Therefore if the number of COs is fixed and the number 
of DSLAMs can be changed, all other things being 
equal, whatever storage is removed from the DSLAM 
will be added to the CO. 

Figure 6 shows the result of varying the number of 
DSLAMs. Figure 6a shows that the cost gain achieved 
for the varying DSLAM. The cost gain achieved by the 
Hierarchical caching Algorithm approach and 
Hierarchical caching Algorithm with PSO approach is 
65 and 71%, respectively. But, the proposed MPSO 
approach, the cost gain achieved is 77%. 

In Fig. 6b, the solution is limited to DSLAM only 
and it is clearly observed that the savings decrease as 
the number of DSLAMs increase. The cost gain 
achieved by the proposed GDPSO approach is observed 
to be better than the other approaches considered. 
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(b) 

 

Fig. 6: Optimal cache solution for varying topology 

 

 
 

Fig. 7: Comparison of objective function 

 
Table 1: Performance comparison of the optimization techniques 

Optimization algorithms Processing time (sec) 

Genetic algorithm 16 
Memtic algorithm 21 
PSO 15 
GDPSO 11 

Performance of the optimization algorithms: The 
GDPSO algorithm outperformed the Genetic 
Algorithm, Memtic Algorithm and the PSO algorithm 
in attaining the optimal cache memory size in terms of 
the processing time. 

It is observed from the Table 1 that the proposed 
GDPSO optimization technique takes processing time 
of 11 sec, where as the other optimization techniques 
such as GA, MA and PSO takes longer processing time 
such as 16, 21 and 15 sec, respectively. 

Figure 7 shows the comparison of the objective 
function of the GA, MA, PSO and the proposed 
GDPSO approach. It is observed from the figure that 
the GDPSO converges in lesser iterations (i.e., 40 
iterations) when compared with the other optimization 
techniques such as GA, MA and PSO. Thus the 
proposed GDPSO technique is very significant when 
compared with the other optimization approaches taken 
for consideration. 

 

CONCLUSION 

 
This study focuses on the hierarchical cache 

optimization in an IPTV network using swarm 
intelligence approach. Great Deluge based Particle 
Swarm Optimization (GDPSO) is presented in this 
study for better optimized results. In the proposed 
optimization approach, the range for obtained answers 
is defined that is the same parameter used in the GD 
algorithm called “water level”. Amount of this range 
reduces or increases regarding to algorithm’s property 
being used in terms of minimum or maximum during 
the time. The main aspect of the proposed GDPSO 
algorithm is that the particles are given a second 
opportunity using GD algorithm. Therefore, if a particle 
is trapped in the local optimum they can get rid of it 
very soon. Optimization algorithm is used for attaining 
the optimal cache memory size which in turn minimizes 
the overall network cost. A number of key parameters 
such as network topology, traffic volume, hit rate and 
cost are taken into consideration to compute optimal 
cache sizes in DSLAM, CO and IO nodes. The heuristic 
model considers more detailed information about 
equipment configuration and cost; this model is 
appropriate when caching architectures in a specific 
IPTV network is need to be optimized. But, due to 
multiple levels of cost modularity in the heuristic 
model, it is hard to identify factors that influence the 
solution using this approach. The analytical technique 
exploits a simpler cost structure and certain reasonable 
assumptions, which facilitates to recognize basic factors 
that affect this solution. A sensitivity examination based 
on the analytical model facilitated to calculate the 
influence of several parameters on the optimal cache 
configuration and illustrated that for several typical 
cases the optimal cache configuration involves caches 
at two (CO and IO) or all three levels of the network 
hierarchy. 
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