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Abstract
The Internet traffic volume continues to grow at a great rate, now driven by video and TV distribution.
For network operators it is important to avoid congestion in the network, and to meet service level
agreements with their customers.  This thesis presents work on two methods operators can use to reduce
links loads in their networks: traffic engineering and content caching.

This thesis studies access patterns for TV and video and the potential for caching.  The investigation
is done both using simulation and by analysis of logs from a large TV-on-Demand system over four
months.

The results show that there is a small set of programs that account for a large fraction of the requests
and that a comparatively small local cache can be used to significantly reduce the peak link loads during
prime time. The investigation also demonstrates how the popularity of programs changes over time and
shows that the access pattern in a TV-on-Demand system very much depends on the content type.

For traffic engineering the objective is to avoid congestion in the network and to make better use of
available resources by adapting the routing to the current traffic situation. The main challenge for traffic
engineering in IP networks is to cope with the dynamics of Internet traffic demands.

This thesis proposes L-balanced routings that route the traffic on the shortest paths possible but make
sure that no link is utilised to more than a given level L. L-balanced routing gives efficient routing
of traffic and controlled spare capacity to handle unpredictable changes in traffic.  We present an L-
balanced routing algorithm and a heuristic search method for finding L-balanced weight settings for
the legacy routing protocols OSPF and IS-IS. We show that the search and the resulting weight settings
work well in real network scenarios.
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Abstract

The Internet traffic volume continues to grow at a great rate,now driven by
video and TV distribution. For network operators it is important to avoid con-
gestion in the network, and to meet service level agreementswith their cus-
tomers. This thesis presents work on two methods operators can use to reduce
links loads in their networks: traffic engineering and content caching.

This thesis studies access patterns for TV and video and the potential for
caching. The investigation is done both using simulation and by analysis of
logs from a large TV-on-Demand system over four months.

The results show that there is a small set of programs that account for a
large fraction of the requests and that a comparatively small local cache can
be used to significantly reduce the peak link loads during prime time. The
investigation also demonstrates how the popularity of programs changes over
time and shows that the access pattern in a TV-on-Demand system very much
depends on the content type.

For traffic engineering the objective is to avoid congestionin the network
and to make better use of available resources by adapting therouting to the cur-
rent traffic situation. The main challenge for traffic engineering in IP networks
is to cope with the dynamics of Internet traffic demands.

This thesis proposes L-balanced routings that route the traffic on the short-
est paths possible but make sure that no link is utilised to more than a given
level L. L-balanced routing gives efficient routing of traffic and controlled spare
capacity to handle unpredictable changes in traffic. We present an L-balanced
routing algorithm and a heuristic search method for finding L-balanced weight
settings for the legacy routing protocols OSPF and IS-IS. Weshow that the
search and the resulting weight settings work well in real network scenarios.
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Sammanfattning

Trafiken på Internet fortsätter att växa i snabb takt nu p˚adrivet av TV- och
videodistribution över nätet. För nätverksoperatörer är det viktigt att förstå och
hantera trafikbeteendet för att undvika överlast i nätetoch för att kunna tillhan-
dahålla kommunikationstjänster av god kvalitet. Den här avhandlingen handlar
om två olika tillvägagångssätt för att undvika överlast i nätet: lastbalansering
och lokal mellanlagring.

I den här avhandlingen undersöks användarbeteendenochefterfrågemönster
för TV och video och potentialen för lokal mellanlagring.Undersökningen
görs dels med simulering och dels genom analys av loggar fr˚an ett stort TV-
system.

Resultaten visar att det är en liten andel av programmen somstår för en stor
del av efterfrågan. I många fall kan man hantera 50% av efterfrågan genom att
lagra 5% av utbudet. Studien visar också att programutbud och genre har stor
inverkan på efterfrågemönster och på hur snabbt programmen avtar i popular-
itet. Det är också stora dygnsvariationer i efterfråganoch det är viktigt att lagra
rätt program för att hantera toppar i efterfrågan under kvällstid.

För lastbalansering i IP-nätverk är målet att kunna anpassa vägvalet efter
den aktuella trafiksituationen och balansera trafiken överflera vägar genom
nätverket om det behövs. Man kan på så vis utnyttja nätverket mer effektivt
och undvika överlast. Utmaningen ligger i att Internettrafik ofta är skurig med
stora variationer i trafikens mängd och riktning.

I den här avhandlingen föreslås så kallat L-balanseratvägval där trafiken
skickas kortast möjliga väg men man ser till att ingen länk lastas till mer än
en given nivå L. L-balanserat vägval ger en kontrollerad reservkapacitet för att
hantera oförutsägbara förändringar i trafiken. Vi presenterar en L-balanserad
vägvalsalgoritm samt en heuristisk sökmetod för att hitta L-balanserade vikt-
sättningar i vägvalsprotokollen OSPF och IS-IS. Vi visaratt sökmetoden och
de resulterande viktinställningarna fungerar väl i verkliga nätverkscenarier.
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Chapter 1

Introduction

The Internet is a worldwide communication network that today serves billions
of Internet users [1]. It is a giant infrastructure of optical fibres, copper wires
and wireless connections that via packet switches connect awide variety of
end-hosts: ranging from servers in data centers to PC:s and laptop computers,
to mobile phones and smaller devices embedded in our homes, in cars and in
the environment around us. The Internet is also an infrastructure that supports a
diversity of applications like the web, mail, file sharing, social networking ser-
vices, telephony, radio, video and TV distribution, games,banking and com-
merce of many kinds; and where new applications constantly are developed
and deployed.

Internet traffic volumes continue to grow at a great rate. Fornetwork opera-
tors it is important to avoid congestion in the network, and to meet service level
agreements with their customers. This thesis presents workon two methods op-
erators can use to reduce links loads and avoid congestion intheir networks:
traffic engineering and caching of video and TV content.

1.1 Internet – a network of networks

The Internet is a network of networks. It consists of a large number of inde-
pendently managed networks of different sizes, different capacities, and un-
der different administrations. When you click on a link in your web browser
the requested webpage often travels over many different networks, sometimes
worldwide, on the way to your computer. The view point in thisthesis is often

3



4 Chapter 1. Introduction

from one operator network and the challenge of understanding and handling
traffic demands to avoid overload in the network.

The structure of the Internet and how traffic flows between networks are
changing over time [2], often driven by commercial interests and business
agreements. The traditional view is that the networks that constitute the In-
ternet are Internet Service Provider (ISP) networks connected together in a
loose hierarchy. At the top there are a small number of tier-1operators (for
instance AT&T, Level 3, and TeliaSonera International carrier [3]) with large
international high-capacity networks, that directly connect to each other. The
tier-1 operators have peering agreements that allow data toflow between the
networks without charging each other for the data transmitted. A tier-2 network
is typically a regional or national network. It can have peering agreements with
other tier-2 networks to exchange traffic but it is also a customer to one or more
tier-1 operators and need to buy transit to reach some parts of the Internet. At
the bottom of the network hierarchy are the access networks that connect the
end hosts to the Internet. These are typically local telephone companies, uni-
versity or company networks that in turn are customers to upper-tier networks
to be able to communicate worldwide. The hierarchical network structure is
also complemented by a very large number of peering connections between
networks of different types at Internet exchange points (IXPs) [4, 5]. Networks
make peering agreement and exchange traffic based on commercial or other
interests, irrespective of network size and tier structure.

In addition to traditional ISP networks, content delivery networks (CDNs)
like Akamai and Limelight are well-established since a decade back, and today
deliver a large share of the Internet content [6, 7, 8]. More recently, large con-
tent providers like Google and Netflix have started to build their own content
delivery networks [9, 10, 11, 12, 13].

1.2 Traffic characteristics and access patterns

The traffic characteristics in a network depend on when and where on the Inter-
net the traffic is measured. The traffic behaviour in a large backbone network
differs from that in a small company network, and the traffic characteristics
change with new applications, new types of networks and withchanging user
behaviour.

The Internet traffic volumes are constantly increasing but both the growth
rate and the traffic mix very much depend on where on the Internet the mea-
surements are done. Recent measurements of traffic volumes from large ISPs,



1.3 Television and video over IP 5

peering routers and Internet exchange points report annualgrowth rates of 35-
100% [2, 5, 14, 15]. Figure 1.1 shows an example of traffic volumes at the
Netnod Internet exchange point in Stockholm.

The Internet traffic over the last 15 years has been dominatedby web traf-
fic (transfered with the HTTP protocol) and peer-to-peer (P2P) traffic [2, 4,
14, 15, 17, 18, 19, 20, 21]. The share of the traffic volume thatis P2P or
HTTP traffic differs between different parts of the Internetand has changed
over time. Fifteen years ago, measurements on the Internet backbone showed
that 70-75% of the traffic was web traffic [22]. After that P2P file sharing
applications became popular and contributed to a large share of the traffic vol-
ume [14, 15, 17, 20, 21], but many reports from the last coupleof years show
that HTTP traffic is again increasing. Measurements from large ISPs and peer-
ing routers [2, 14], show a decline in the share of P2P traffic and a growth
in HTTP to more than 50% of the traffic. Measurements at a largeEuropean
IXP [4] also show that HTTP accounts for more than 50% of the bytes, but the
amount of HTTP traffic varies greatly between different participating AS:es.

Maier et al [18], monitoring 20000 residential DSL customers in 2009,
report that HTTP and not P2P dominates the traffic with 57% of the transfered
bytes, while other measurements of residential user trafficshow that P2P is still
dominant but not growing [15, 17].

A large part of the Internet traffic is delivery of video content in different
ways: P2P file sharing, P2P streaming services, and much of the increase in
web traffic is video that is transfered with HTTP, for instance from sites like
Youtube. Video and TV-on-Demand streaming services like Netflix are also
becoming increasingly popular. There are reports that Netflix alone represents
more than 30% of peak downstream traffic in the US [11, 23].

1.3 Television and video over IP

Television and video distribution over IP networks is an area with fast develop-
ment. There are many terms that describe slightly differentaspects of the area:
IPTV, Internet television, web TV, TV-on-Demand, time-shifted TV, start-over
TV, restart TV, catch-up TV, and so on. Some of these terms canalso have
different meanings in different contexts.

Internet television is a general term that here means TV programs that are
available via the Internet. This includes TV services wheretraditional TV
broadcasters (or others) make TV programs available for on-demand viewing.
It also includes live broadcasts of individual programs or entire TV channels
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Figure 1.1: Example of Internet traffic at the Netnod Internet exchange point
in Stockholm [16] (reprinted with permission). The top graph shows variation
over a week (30 minute average) and the bottom graph shows howthe traffic
volume has increased over two years (one day average).
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Figure 1.2: IPTV network architecture.

over the Internet.
From an Internet service provider perspective much of the TVand video

(for instance from Youtube or Netflix) is so called over-the-top (OTT) content.
This means that the operator just delivers the IP packets anddoes not control
the TV and video services.

There are also operator managed services where TV is delivered over an IP
network to subscribers. This is usually termed IPTV (Internet Protocol Televi-
sion). The IPTV service includes traditional TV channels that usually are dis-
tributed using IP multicast. The operators often also introduce new on-demand
services where viewers can control when to watch the programs. These ser-
vices differ slightly depending on when the programs becomeavailable and
for how long they are available. We here use the terms TV-on-Demand and
time-shifted TV as general terms for programs that can be viewed decoupled
from the traditional TV schedule. Start-over TV and restartTV more specifi-
cally means that the viewer can restart and choose to watch anongoing broad-
cast program from the beginning. Catch-up TV usually means that programs
become available for on-demand viewing some time after the broadcast. An
IPTV service often have a mix of these features for differentprograms depend-
ing on agreements with content providers. It is also often combined with a
traditional Video-on-Demand service with streaming of rental movies.

When distributing broadcast TV channels using IP multicastthere is only
one data stream per channel, while for TV-on-Demand there can be one stream
per customer. Distributing dedicated TV streams to each viewer requires a lot
of bandwidth and server capacity.

One branch of a typical IPTV architecture with a hierarchical tree-like net-
work structure is illustrated in Figure 1.2. The TV content is delivered from
content providers and comes into the network at a central distribution center
from where it is transmitted to Video Hub Offices (VHO). A Video Hub Office
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has storage and video streaming equipment to serve a district or a city. Under
the VHO there can be intermediate levels of storage and videoservers. Differ-
ent operators try and use different structures of varying complexity. The figure
also shows a TV subscriber with a home network where the TV andthe set-
top box (STB) is connected via a residential gateway to a Digital Subscriber
Line Access Multiplexer (DSLAM). The TV channels are distributed using IP
multicast from the distribution center to the set-top boxes. TV programs re-
quested outside the schedule are streamed with unicast fromthe VHO (or from
an intermediate server if available) to the set-top box.

1.4 Overload avoidance

1.4.1 Traffic management

Internet traffic management means handling the traffic situation in the net-
works; avoiding congestion and making good use of availablenetwork re-
sources.

Traffic management involves both the end hosts and the network operators.
It involves the end hosts in that they for many applications run TCP congestion
control and adapt the send rate to what the network can handle. TCP increases
the send rate to find out the available network capacity. Whena packet is lost
this is interpreted as network congestion and the transmission rate is decreased.
From a network operator perspective traffic management involves monitoring
and controlling the traffic behaviour in the network. It alsoincludes traffic
engineering where the routing of traffic through the networkis adapted to the
current traffic situation.

For network operators it is important to manage the traffic situation in the
network and meet service level agreements (SLAs) made with their customers.
The traffic demands in a network may fluctuate and change over time. Traffic
engineering mechanisms can then be used to adapt to the changes in traffic de-
mand and distribute traffic in order to benefit from availablenetwork resources.

The first step in the traffic engineering process is to collectthe necessary
information about network topology and the current traffic situation. Most traf-
fic engineering methods need as input a traffic matrix describing the demand
between each pair of nodes in the network. The traffic matrix is then used as
input to the routing optimization.

Network operators today have different alternatives for coping with traf-
fic variability: ranging from just over-dimensioning network capacity a lot, to
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occasionally tuning the configuration of the routing protocols in order to post-
pone upgrades of network equipment, to more active use of traffic monitoring
and traffic engineering mechanisms to manage the traffic situation.

One of the main alternatives for traffic engineering within an IP network [24,
25] is to use different methods for setting the link costs, and so decide upon the
shortest paths, in the routing protocols OSPF (Open Shortest Path First) and
IS-IS (Intermediate System to Intermediate System). Theseare both link-state
protocols where the routing decisions are based on link costs and a shortest
(least-cost) path calculation. With the equal-cost multi-path (ECMP) extension
to the routing protocols the traffic can also be distributed over several paths that
have the same cost. These routing protocols were designed tobe simple and
robust rather than to optimise the resource usage. They do not by themselves
consider network utilisation and do not always make good useof network re-
sources. The traffic is routed on the shortest path through the network even if
the shortest path is overloaded and there exist alternativepaths. It is up to the
operator to find a configuration of the protocol, a set of link costs, that is best
suited for the current traffic situation and that avoids congestion in the network.

There are also many other alternatives for how to do traffic engineering. For
instance, Multi-Protocol Label Switching (MPLS) [26] has been widely used to
control network traffic flows by setting up label-switched paths through the net-
work. More recently, much focus has been on OpenFlow and Software-defined
Networking (SDN) with the possibility of fine-grained, flow-based manage-
ment and control, and the separation of control plane and data plane function-
ality [27, 28, 29, 30, 31, 32, 33].

1.4.2 Caching

One way to reduce the network load is to use caching, where copies of content
are stored in local server nodes closer to the clients. By serving requests from
the local cache instead of from a central server, repeated transfers of popular
content over the network can be avoided.

Caching can be used to reduce network traffic and server load.It can also
be used with other objectives: to lower access latency or to increase availability
and robustness of a service.

Caching has been widely studied and used for web content [34,35, 36, 37],
for video and TV-on-demand [38, 39, 40, 41, 42] and for content distribution
network [6, 7, 8, 9, 10, 11, 12]. Caching, integrated into thenetwork architec-
ture, is also a fundamental component in much of the long termresearch on
future Internet architectures, like Information-centricnetworking [43, 44].
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If we consider caching in a simple hierarchical system, as outlined in Fig-
ure 1.2 for IPTV, then a request from a client first goes to the cache, and if the
program is not available there it is instead transfered fromthe central server.
The system design parameters include: on what level in the network should the
cache be placed, the size of the cache, and what caching policy to use.

The hit ratio, the share of requests that can be served by the cache, depends
on the request pattern and on what content is placed in the cache. Given a lim-
ited cache size, and content that change in popularity over time, a strategy is
needed to decide what should be put in the cache and what should be evicted.
Many different cache replacement policies have been proposed in the litera-
ture [35, 37]. Two classic eviction policies are Least Recently Used (LRU) and
Least Frequently Used (LFU). With the LRU strategy the program that has not
been requested for the longest time is deleted from the cache. With LFU the
program that is requested least often is discarded.

For the design of a caching system and for the choice of caching strategy,
it is important to understand demand and access patterns.

1.5 Outline of thesis

This thesis has two parts: an introductory part (Chapters 1 to 5) followed by
a collection of five papers. Chapter 2 describes the researchissues that this
thesis deals with and the scientific contributions of the thesis. Chapter 3 sum-
marizes the papers included in the thesis and their contributions. Chapter 4
discusses related work and put the research into context. InChapter 5 there are
conclusions and future work.



Chapter 2

Research Issues and
Scientific Contributions

This thesis presents work on traffic engineering and on caching as means to
avoid link overload in the network. For traffic engineering the purpose is to
develop methods to control and steer the traffic. For cachingthe idea is to
store popular content closer to the users to avoid repeated transfers of identical
content. The work is done by simulation and by empirical studies and analysis
of access patterns using logs from a real system.

2.1 Robust traffic engineering

The objective of traffic engineering is to avoid congestion in the network and
to make better use of available resources by adapting the routing to the current
traffic situation. The main challenge for traffic engineering is to cope with the
dynamics of traffic demands and topology. Traffic is often bursty and there
can be unpredictable changes and shifts in traffic demand, for instance due to
hotspots and flash crowds, or because a link goes down, there are changes in the
inter-domain routing, or because traffic in an overlay is re-directed. For future
networks more variability in traffic demands is also expected due to mobility of
nodes and networks and more dynamic on-demand service levelagreements.

The traffic variability means that, even if we could measure the current
traffic situation exactly, it would not always correctly predict the near future
traffic situation. Traffic engineering mechanisms need to berobust and able to

11
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handle traffic variability and uncertainties in input traffic data.

2.1.1 Contributions

The Papers A and B in this thesis cover different aspects of robust traffic en-
gineering. We proposel-balanced routings as a way for an operator to handle
traffic variability and uncertainties in input traffic data.An l-balanced solution
routes the traffic on the shortest paths possible but makes sure that no link is
utilised to more than a given levell. The contributions are anl-balanced routing
algorithm based on multi-commodity flow optimisation and a heuristic search
method for findingl-balanced weight settings for the legacy routing protocols
OSPF and IS-IS.

L-balanced routing gives the operator possibility to applysimple rules of
thumb for controlling the maximum link utilisation and control the amount
of spare capacity needed to handle sudden traffic variations. It gives more
controlled traffic levels than other cost functions and moreefficient routing for
low traffic loads when there is no need to spread traffic over longer paths.

2.2 Understanding TV-on-Demand access patterns
and their impact on caching

Today video and TV distribution dominate Internet traffic. The increasing de-
mand for high-bandwidth multimedia services put pressure on Internet service
providers. It is therefore essential for traffic and cache management to under-
stand TV program popularity and access patterns in real networks.

2.2.1 Contributions

The Papers C, D and E in this thesis cover different aspects ofTV-on-Demand
access patterns and the potential for caching. In Papers C and D we simulate
TV distribution with time-shift and investigate what impact TV program popu-
larity, program set size, cache replacement policy and other factors have on the
caching efficiency. The simulation results show that introducing a local cache
close to the viewers significantly reduces the network load from TV on-demand
services. By caching 4% of the program volume we can decreasethe peak load
during prime time by almost 50%. We also show that the TV program type and
how program popularity changes over time can have a big influence on cache
hit ratios and the resulting link loads.
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For the models in Papers C and D we rely to a large extent on statistics
from traditional scheduled TV. In Paper E we study access patterns in a real
TV-on-Demand system over four months. We study user behaviour and pro-
gram popularity and its impact on caching. We show how the popularity of
TV-on-Demand programs changes over time. We see that the access pattern in
a TV-on-Demand system very much depend on what type of content it offers.
Furthermore, we find that the share of requests for the top most popular pro-
grams grows during prime time, and the change rate among themdecreases.
The cacheability is very high and the cache hit ratio increases during prime
time when it is needed the most.





Chapter 3

Summary of the Papers and
Their Contributions

This thesis is a collection of five papers. Papers A-B study different aspects
of robust traffic engineering. Papers C-E investigate TV-on-Demand access
patterns and the potential for caching. The papers are all published at refereed
international conferences.

In Paper A we look at robust traffic engineering as an optimisation prob-
lem. In Paper B we build upon the work in Paper A by applying theideas to
the legacy routing protocols OSPF and IS-IS. We study searchheuristics for
finding weight-settings, and evaluate how different cost functions manage to
handle faults in input traffic data due to traffic hotspots.

In Paper C we use an empirical IPTV workload model to simulateIPTV
distribution with time-shift and investigate the benefit ofintroducing a local
cache closer to the TV subscribers. In Paper D we extend the work by looking
at how TV program popularity changes over time. For the simulations in Paper
C and D we use TV schedules and statistics from linear broadcast TV. In Paper
E we analyse logs from a large TV-on-Demand system over four months.

15
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3.1 Paper A: A Multi Path Routing Algorithm for
IP Networks Based on Flow Optimisation

Henrik Abrahamsson, Juan Alonso, Bengt Ahlgren, Anders Andersson and
Per Kreuger. A Multi Path Routing Algorithm for IP Networks Based on Flow
Optimisation. InProceedings of Third COST 263 International Workshop on
Quality of Future Internet Services (QoFIS 2002), Zurich, Switzerland, Octo-
ber 2002.

Summary:
Intra-domain routing in the Internet normally uses a singleshortest path to
forward packets towards a specific destination with no knowledge of traffic de-
mand. We present an intra-domain routing algorithm based onmulti-commodity
flow optimisation which enables load sensitive forwarding over multiple paths.
It is neither constrained by weight-tuning of legacy routing protocols, such
as OSPF, nor requires a totally new forwarding mechanism, such as MPLS.
These characteristics are accomplished by aggregating thetraffic flows des-
tined for the same egress into one commodity in the optimisation and using a
hash based forwarding mechanism. The aggregation also results in a reduction
of computational complexity which makes the algorithm feasible for on-line
load balancing. Another contribution is the optimisation objective function
which allows precise tuning of the tradeoff between load balancing and total
network efficiency.

Contribution:
There are two contributions in this paper: the modelling of the problem as
an optimisation problem, and the definition of an optimisation objective func-
tion for l-balanced solutions. In the modelling of the optimisation problem
we aggregate all traffic destined for a certain egress into one commodity in a
multi-commodity flow optimisation. It is this definition of acommodity that
both makes the computation tractable, and the forwarding simple.

L-balanced solutions allows the network operator to choose amaximum
desired link utilisation level. The optimisation will thenfind the most efficient
solution, if it exists, satisfying the link level constraint. Our objective function
thus enables the operator to control the trade-off between minimising the net-
work utilisation and balancing load over multiple paths.

My contribution:
This is joint work with Bengt Ahlgren, Juan Alonso, Anders Gunnar and Per
Kreuger. Juan Alonso did most of the mathematical work for this paper. In
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discussion with Juan I contributed to the idea of only looking at the destination
of the traffic when formulating the optimisation problem. I co-authored the
paper.

3.2 Paper B: Robust Traffic Engineering using L-
balanced Weight-Settings in OSPF/ISIS

Henrik Abrahamsson and Mats Björkman. Robust Traffic Engineering using
L-balanced Weight-Settings in OSPF/ISIS. In:Sixth International Conference
on Broadband Communications, Networks, and Systems (BROADNETS 2009),
September 2009, Madrid, Spain.

Summary:
The focus of this work is on robust traffic engineering for thelegacy routing
protocols OSPF and IS-IS. The idea is to use thel-balanced solutions proposed
in Paper A to make sure that there are enough spare capacity onall links to
handle sudden hotspots and traffic shifts. Search heuristics are used to find the
set of weights that avoid loading any link to more thanl and the resulting rout-
ings are evaluated using real topologies and traffic scenarios.

Contribution:
The contributions are the idea ofl-balanced weight-settings for robust traf-
fic engineering, the search heuristics for finding such weight-settings, and the
evaluation of how different cost functions (includingl-balanced) manage to
handle faults in input traffic data due to traffic hotspots.

My contribution:
The idea of using thel-balanced solution for robust weight-settings was mine.
I implemented the search heuristics and did the evaluationsand wrote most of
the paper.

3.3 Paper C: Simulation of IPTV caching strate-
gies

Henrik Abrahamsson and Mats Björkman. Simulation of IPTV caching strate-
gies. In: International Symposium on Performance Evaluation of Computer
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and Telecommunication Systems (SPECTS’10), 11-14 July 2010, Ottawa, Canada

Summary:
In this paper we use an empirical IPTV workload model to simulate IPTV dis-
tribution with time-shift and investigate the benefit of introducing a local cache
closer to the TV subscribers. The simulations are based on real TV schedules,
and statistics about TV program popularity and viewer activity. We simulate a
large number of TV viewers that, when active, request scheduled or on-demand
programs and we investigate the resulting bandwidth requirements on the down
link for different cache sizes and caching strategies.

Contribution:
The contributions of this paper are: We present an empiricalIPTV workload
model. We simulate a realistic scenario for IPTV distribution and compare the
Least Recently Used (LRU) and Least Frequently Used (LFU) caching strate-
gies. We show that time-shifted TV can be very capacity demanding and that
considerable amounts of bandwidth can be saved by caching the most popular
programs closer to the viewers.

My contribution:
I designed and implemented the simulator, did the evaluations and wrote most
of the paper.

3.4 Paper D: Caching for IPTV distribution with
time-shift

Henrik Abrahamsson and Mats Björkman. Caching for IPTV distribution with
time-shift. In: International conference on Computing, Networking & Com-
munications (ICNC’13), 28-31 January 2013, San Diego, USA.

Summary:
In this paper we simulate TV distribution with time-shift and investigate what
impact TV program popularity, program set size, cache replacement policy and
other factors have on the caching efficiency. The simulationresults show that
introducing a local cache close to the viewers significantlyreduces the network
load from TV on-demand services. By caching 4% of the programvolume we
can decrease the peak load during prime time by almost 50%. Wealso show
that the TV program type and how program popularity changes over time can
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have a big influence on cache hit ratios and the resulting linkloads.

Contribution:
In this paper we extend the work in Paper C by looking at how TV program
popularity changes over time. Many programs such as news programs and
weather forecasts quickly become outdated and lose their popularity when
available on-demand. Other programs, typically drama TV-shows, retain in-
terest from some viewers even a long time after their first release and initial
peak in popularity. We show that the TV program type and how program pop-
ularity changes over time can have a big influence on cache hitratio and the
resulting link loads.

My contribution:
I did the analysis of program popularity, implemented the simulator, did the
evaluations and wrote most of the paper.

3.5 Paper E: Program popularity and viewer be-
haviour in a large TV-on-Demand system

Henrik Abrahamsson and Mattias Nordmark. Program popularity and viewer
behaviour in a large TV-on-Demand system. In:Internet Measurement Con-
ference (IMC’12), 14-16 November 2012, Boston, USA.

Summary:
In this paper we analyse the access patterns in a large TV-on-Demand system
and study the potential for caching. We characterize accesspatterns for differ-
ent program categories, we show how program popularity changes over time
and how this differs between different program types. We then use the request
sequence in the data set for trace-driven simulation and study cache hit ratios
for different cache sizes, cache replacement policies and population sizes.

Contribution:
Our contribution in this paper is three-fold. As a first-order result, we pro-
vide reconfirmation of known observations with an independent dataset. We
demonstrate that there is a small set of programs that account for a large part
of the requests. The program popularity conforms with the Pareto principle,
or 80-20 rule. The demand follows a diurnal and weekly pattern, and there
are large peaks in demand on Friday and Saturday evenings that need to be
handled.
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Second, we provide systematic evidence of TV-on-Demand access pattern
characteristics that are intuitive yet unconfirmed in the literature. We show that
news programs have a very short lifespan and are often only requested for a few
hours, childrens programs are top ranked in the mornings andearly evenings,
and movie rentals are concentrated over weekends.

Finally, we also provide novel insights into access patterns that have not
been reported previously to the best of our knowledge. We show how the pop-
ularity of TV-on-Demand programs changes over time. We see that the access
pattern in a TV-on-Demand system very much depend on what type of con-
tent it offers. Furthermore, we find that the share of requests for the top most
popular programs grows during prime time, and the change rate among them
decreases. The cacheability is very high and the cache hit ratio increases dur-
ing prime time when it is needed most.

My contribution:
I did the analysis with help from Mattias Nordmark. I did the simulations and
I wrote the paper.
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Related Work

4.1 Traffic engineering in IP networks

Many different approaches for dynamic routing and traffic engineering have
been proposed and used in telecommunication [45] and computer networks.
For instance, the early ARPANET routing algorithms were based on measured
link delay but had problems with traffic shifts and oscillations [46, 47].

The IETF Network Working Group presented a taxonomy of Internet traf-
fic engineering methods in RFC3272 [48] in 2002. But for much of the traf-
fic engineering research at that time the existing routing protocols were fixed.
The challenge was to find configurations that adapted the routing to the cur-
rent traffic situation. Traffic engineering by finding a suitable set of weights in
OSPF/IS-IS is now a well studied area of research and it is described in text-
books in the area [25, 49]. When we in Paper B revisited the weight setting
approach to traffic engineering we were most inspired by the pioneering works
by Fortz and Thorup [50, 51] and Ramakrishnan and Rodrigues [52], in that
we use a piece-wise linear cost function and search heuristics to find suitable
weight settings.

Several studies [50, 53, 54, 55] have shown that even though we limit the
routing of traffic to what can be achieved with weight-based ECMP shortest
paths, and not necessarily the optimal weights but those found by search heuris-
tics, it often comes close to the optimal routing for real network scenarios. How
the traffic is distributed in the network very much depends onthe objectives,
usually expressed as a cost function, in the optimisation. An often proposed
objective function is described by Fortz and Thorup [50]. Here the sum of the

21
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cost over all links is considered and a piece-wise linear increasing cost function
is applied to the flow on each link. The basic idea is that it should be cheap
to use a link with small utilisation while using a link that approaches 100%
utilisation should be heavily penalised. Thel-balanced cost function used in
Papers A and B is similar in that it uses a piecewise linear cost function to ob-
tain desirable solutions. Additionally, it gives the operator the opportunity to
set the maximum wanted link utilisation. Cost functions fortraffic engineering
is further investigated by Balon et al. [56]

Paper B added to existing work on weight settings by focusingon robust-
ness and the objective of achieving a controlled spare capacity for handling
unpredictable traffic shifts. For robust traffic engineering much of the focus
has been on handling multiple traffic matrices and traffic scenarios [51, 57, 58,
59, 60, 61] and handling the trade-off between optimising for the common case
or for the worst case. Nucci et al. [62] investigate link weight assignments that
take into account SLA requirements and link failures. Xu et al. [63] describe a
method to jointly solve the flow optimisation and the link-weight approxima-
tion using a single formulation resulting in a more efficientcomputation. Their
method can also direct traffic over non-shortest paths with arbitrary percent-
ages. Their results should also be directly applicable to our problem of pro-
viding robustness to changes, by just substituting their piece-wise linear cost
function with our cost function. In a continuation on this work Xu et al. [64]
propose a new link-state routing protocol. The protocol splits traffic over mul-
tiple paths with an exponential penalty on longer paths and achieves optimal
traffic engineering while retaining the simplicity of hop-by-hop forwarding.

There are also several proposed traffic engineering protocols such as MATE
[65], TeXCP [66] and REPLEX [67], that can balance traffic over several
paths between ingress and egress nodes in the network, for instance by us-
ing MPLS [26]. Recently, much research focus has also been onOpenFlow
and Software-defined Networking (SDN) with the possibilityof fine-grained,
flow-based management and control, and the separation of control plane and
data plane functionality [27, 30, 31, 32, 33].

The advantage of optimising the weights in OSPF and IS-IS is of course
easy deployment of the traffic engineering mechanism. However, the disad-
vantage is the difficulties and constraints imposed by usinglegacy routing. The
general problem of finding the best way to route traffic through a network can
be mathematically formulated as a multi-commodity flow (MCF) optimisation
problem. In Paper A we present a routing algorithm based on multi-commodity
flow optimisation. By aggregating the traffic flows destined for the same egress
into one commodity in the optimisation we reduce the computational complex-
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ity. The same approach was later used for instance by Sridharan et al. [68] and
Fu et al. [69]. MCF optimisation is also used by many other research groups to
address traffic engineering problems including [50, 70]. See also the book by
Pioro and Medhi [49] and references therein.

4.2 Access patterns and potential for caching for
TV and video on-demand

The recent growth and popularity of IPTV services have led toan increasing
interest from researchers to measure and model IPTV viewingbehavior. Cha
et al. [71] present an extensive study of viewing behavior including channel
popularity and channel switching in an operational IPTV network. Ramos et
al. [72] present work on constructing an IPTV workload modelcapturing the
way viewers change channels and watch live TV. Yu et al [73] study user activ-
ity and channel zapping in a municipal network. Qiu et al. model TV channel
popularity [74] and user activities [75] in a large IPTV system and present the
SimulWatch workload generator. These studies are similar to ours in that they
model IPTV viewer behavior – but they study traditional liveTV, and model
channel popularity and not the popularity of individual programs. In Papers
C and D we also simulate TV channels but our focus is on investigating time-
shifted TV and the potential for caching. For this the popularity of individual
programs is a fundamental part of the model. In this sense ourwork is closer
to studies of traditional VoD systems.

Yu et al. [76] present a large measurement study of the Chinese PowerInfo
Video-on-Demand system. This work is similar to ours in thatthey investigate
many aspects of user behaviour and content access patterns.The PowerInfo
system is a traditional VoD system. The videos in the libraryare old TV shows
and movies and there are usually only a few new movies introduced to the sys-
tem per day. This is different from the TV-on-Demand system that we study
where there is a large inflow of new programs from the TV-schedule, time-
shifted viewing, and programs with a very short life-span. Our work in Paper
E is also different in other aspects in that we investigate how the access pat-
tern depend on genre, we study cacheability and use trace-based simulation to
investigate what impact the access patterns have on caching.

There are many other interesting studies of VoD systems and video popu-
larity. Griwodz et al. [77] model long-term popularity of videos on the time
scale of days based on VHS rental statistics. Lou et al. [78] give examples of
the popularity evolution of video files from a Chinese television station. Tang
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et al. [79] analyse and model many aspects of media server access. Avramova
et al. [80] model the popularity evolution of TV-on-demand and video traces.
Dan and Carlsson [81] measure and analyse BitTorrent content popularity. Guo
et al. [82] study the probability distributions of Internetmedia workloads and
analyse caching using a mathematical model. Yin et al. [83] study live VoD
workloads from the 2008 Beijing Olympics. There are also many studies of
Youtube and user generated videos [84, 85, 86, 87]. Szabo andHuberman [88]
predict the long-term popularity of online content at Digg and Youtube based
on early measurements of user accesses. Much research and many measure-
ment studies have also focused on peer-assisted techniquesfor TV and VoD
including [89, 90, 91, 92, 93, 94]. Ager et al. [95] study the cacheability for
HTTP- and P2P-based applications.

Gopalakrishnan et al. [96] study user behaviour in a large IPTV system.
This is similar to our work but their focus is on modeling the interactive user
behaviour in an IPTV environment, including how users fast-forward, pause
and rewind to control their viewing.

In Papers C and D we use an empirical IPTV workload model to simulate
IPTV distribution and study caching. The simulations are based on real TV
schedules, and statistics about TV program popularity and viewer activity. In
Paper E we use trace-driven simulation, and utilize the sequence of requests in
logs from a real TV-on-Demand system. There is also a lot of related work that
use analytical models and simulations to study the performance of caching in-
cluding [39, 40, 41, 42, 97, 98]. These studies have a more theoretical approach
and is in this sense complementary to our work.

Seen in a broader perspective, a vast amount of research has been done on
caching architectures, algorithms and protocols for instance for web, video and
content distribution networks, as described in Section 1.4.2.

Another important issue for traffic and cache management is the interac-
tion between traditional traffic engineering and content distribution in operator
networks. What techniques and optimisations are possible here depend on the
level of knowledge and control that the operator can have of the content dis-
tributed [99, 100, 101].



Chapter 5

Conclusions and Future
Work

5.1 Conclusions

The Internet traffic volume continues to grow at a great rate,now pushed on by
video and TV distribution in the networks. Increasing traffic volumes and the
introduction of delay and loss sensitive services makes it crucial for operators
to understand and manage the traffic situation in the network. More traffic also
necessitate upgrades of network equipment and new investments for operators,
and keep up-to-date the question of over-dimensioning network capacity versus
using mechanisms for better handling the traffic.

This thesis deals with two approaches for avoiding network overload: traf-
fic engineering and caching. We study traffic engineering mechanisms for
adapting the routing to the current traffic situation and to steer traffic away
from overloaded links. We study TV-on-Demand access patterns and the pos-
sible benefits of using caching mechanisms to avoid loading links with repeated
transfers of popular content.

This thesis proposesl-balanced routings as a way for an operator to handle
traffic variability and uncertainties in input traffic data.An l-balanced routing
algorithm based on multi-commodity flow optimisation was presented in Pa-
per A. A heuristic search method for findingl-balanced weight settings for the
legacy routing protocols OSPF and IS-IS was presented in Paper B.L-balanced
routing gives the operator possibility to apply simple rules of thumb for con-

25



26 Chapter 5. Conclusions and Future Work

trolling the maximum link utilisation and control the amount of spare capacity
needed to handle sudden traffic variations. It gives more controlled traffic lev-
els than other cost functions and more efficient routing for low traffic loads
when there is no need to spread traffic over longer paths. The evaluation in
Paper B shows that the search and the resulting weight settings work well in
real network scenarios.

In Papers C-E we study TV-on-Demand access pattern and the potential for
caching. We observe that there is a small set of programs thataccount for a
large part of the requests. The program popularity conformswith the Pareto
principle, or 80-20 rule. The demand follows a diurnal and weekly pattern, and
there are large peaks in demand on Friday and Saturday evenings that need to
be handled.

The popularity of rental movies, news, and TV shows changes over time
in very different ways. News programs are often only requested for a few
hours, movies are popular for months and increase in rank during weekends,
TV shows increase in rank when the next episode is shown, and children’s
programs are top ranked in the mornings and early evenings. This means that
programs jumps in and out of the top list of most popular programs. This can
have implications for the choice of caching strategy. It is important to have
the right programs in the cache in the evenings when the totaldemand is the
highest. Another conclusion is that the access pattern in a TV-on-Demand sys-
tem very much depend on what type of content it offers. We alsoobserve that
the request pattern for different episodes of the same show,and for programs
within the same genre, often are very similar.

Another conclusion, from studying the cache friendliness of the TV-on-
Demand workload, is that the potential for caching is high. The cacheability
is very high, and in many scenarios the cache hit ratio with basic replacement
policies is above 50% when caching 5% of the daily demand. We also observe
that the hit ratio increases during prime time. The share of requests for the top
most popular programs grows during prime time, and the change rate among
them decreases.

5.2 Future work

It is an interesting time to work on issues related to television and video distri-
bution over IP networks and the Internet. It is an area with fast development.
Even with a view limited to Sweden in autumn 2012, as of this writing, a lot of
things happen on many levels.
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The way we are watching TV is slowly changing towards IP distributed
television with more opportunities to choose what we want towatch, and when
and where we watch TV. This thesis studies TV-on-Demand access patterns
and the impact on caching. But the media consumption patternis a moving
target, it changes when the TV and video services evolve, andfor future work
there is a need to continuously study user behaviour and access patterns.

There is a trend towards start-over TV and TV-on-Demand where the viewer
can choose to watch broadcast programs from the beginning orlater after its
scheduled time. Perhaps this is the beginning of a development in which the
TV schedule becomes more a part of a recommendation system ora personal-
ized playlist with a mix of live and pre-recorded content.

The devices are changing. More and more TV is watched on Internet con-
nected smart TVs, and on smaller devices such as phones and tablets.

Another trend is that the TV and video market is changing. Newplayers
appear and compete with existing services. Many telecom andbroadband oper-
ators have become TV distributors and offer new TV services in their own net-
works. HBO and Netflix, American providers of on-demand Internet streaming
media, were launched in Sweden during the autumn 2012.

Traditional TV broadcasters are now also starting to distribute the sched-
uled TV via the web. It is also common with web exclusive content. One ex-
ample of TV content that is often sent over the Internet todayis sports events.
SVT, the Swedish public service television company, showed1600 hours from
the London Olympics in two traditional broadcast channels and in six web
channels [102]. A lot of the content was exclusively shown onthe the web.
But the change in viewing behaviour is still at an early stageand it takes time.
The vast majority of viewing continues to be via traditionalbroadcast.

Television is a big thing. Although it is so commonplace thatwe might not
think about it. When the way we are watching TV changes it can have a big
impact on the distribution networks. In Sweden more than 70%of the popula-
tion watch something on television on an average day, more than 40% of the
people are watching TV during primetime, and individual TV shows can some-
times assemble 30-45% of the population [103]. If the TV viewing shifts from
traditional broadcast to on-demand, personalized viewingon mobile devices,
then it also gives rise to interesting future technical challenges.

The increasing demand for high-bandwidth streaming media services, both
operator managed and OTT services, puts a big load on the networks. Caching
seems to be a promising part of the solution. But there are many open issues
for future work about caching, for instance what should be stored and on what
level in the network should the caching be done.
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In Papers C-E in this thesis we study many aspects of the access patterns
in TV-on-Demand systems. We look at the cache friendliness of the workload
in terms of cacheability and hit ratios for basic replacement policies. An im-
mediate future work is to try to design and evaluate a cachingstrategy that is
customized for the TV-on-Demand access patterns and investigate the extent to
which it can reduce the network load.

When studying the cache friendliness of the request stream in Papers C-
E we used the basic LRU and LFU cache replacement policies. With these
the last requested program is always cached and the choice ofwhat to evict
from the cache is between the least recently and the least frequently requested
program. A more advanced system could use more knowledge about access
patterns and program popularity to decide what program to put in the cache
and what program to evict.

One such strategy could be to keep track of all programs in thesystem,
also those that are not currently in the cache. One could monitor the popularity
by counting requests, let the programs age over time and for each program
keep a value that describes the probability that it will be requested. There are
a number of observations about the access patterns in this thesis that can be
useful for such an informed caching strategy:

Give preference to new programsThe broadcast of the traditional TV sched-
ule has a marketing effect and with time-shifted TV ongoing scheduled
programs immediately get a lot of requests. Some programs, like TV-
news, also have a very short life-span. The value of a programshould
not have to be built up by requests over a long time.

Categorize programs by genre to predict change in popularity over time
We see in Papers D and E that the access pattern very much depends on
the type of program. A news program that is top-ranked the first evening
age quickly and has a very low probability for being requested the next
evening. A rental movie however is popular for months and increase in
rank during weekends. By categorizing programs by genre theprobabil-
ity for future requests can be predicted. The categorization of programs
can also be more detailed. The request patterns for different episodes
of the same show are often surprisingly similar. For a new episode of
a show it is a reasonable assumption that the popularity of the program
will change over time in a way similar to that of the previous episodes.

Focus on prime time The value of a program should reflect the probability
that it will be requested during prime time. There are large peaks in
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demand in the evenings and at the weekends that need to be handled. If
caching is used to limit the maximum link load then it is essential to have
the right programs in the cache on Friday and Saturday evenings. There
are program like cartoons that are top-ranked in the mornings and early
evenings that probably should never be in the cache.

The observations and the predictions outlined above can be used to optimise
the caching performance. However, the basic monitoring of request frequency
is still needed as a basis, and to handle unexpected changes and sudden peaks
in program demand for instance due to large news events.

In Papers C-E we see that the cacheability and cache hit ratios for the TV-
on-Demand workload are high even for small populations. Introducing a com-
paratively small local cache could significantly reduce thepeak link loads. But
for operators the monetary cost (both the capital expenditures and operational
costs) of introducing memory into the network versus providing the bandwidth
needed is essential. This is an important aspect to considerin future work.
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the Effects of Caching in Access Aggregation Networks. InProceed-
ings of the second edition of the ICN workshop on Information-centric
networking, Helsinki, Finland, 2012.

[99] Wenjie Jiang, Rui Zhang-Shen, Jennifer Rexford, and Mung Chiang.
Cooperative Content Distribution and Traffic Engineering in an ISP Net-
work. In Proceedings of ACM SIGMETRICS’09, Seattle, USA, June
2009.

[100] Ingmar Poese, Benjamin Frank, Bernhard Ager, Georgios Smaragdakis,
and Anja Feldmann. Improving Content Delivery Using Provider-aided
Distance Information. InProceedings of Internet Measurement Confer-
ence (IMC’10), Melbourne, Australia, November 2010.

[101] Ingmar Poese, Benjamin Frank, Georgios Smaragdakis,Steve Uhlig,
Anja Feldmann, and Bruce Maggs. Enabling Content-aware Traf-
fic Engineering.ACM SIGCOMM Computer Communication Review,
42(5):21–28, October 2012.

[102] Datorn ger OS-tittandet ett lyft. Dagens Nyheter, 24 July 2012.
http://www.dn.se/sport/datorn-ger-os-tittandet-ett-lyft.

[103] Mediamätning i Skandinavien (MMS). On–line: http://www.mms.se.





II

Included Papers

43





Chapter 6

Paper A:
A Multi Path Routing
Algorithm for IP Networks
Based on Flow Optimisation

Henrik Abrahamsson, Bengt Ahlgren, Juan Alonso, Anders Andersson, and
Per Kreuger. InProceedings of the Third International Workshop on Quality
of Future Internet Services (QoFIS), Zürich, Switzerland, October 2002.
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Abstract

Intra-domain routing in the Internet normally uses a singleshortest path to
forward packets towards a specific destination with no knowledge of traffic de-
mand. We present an intra-domain routing algorithm based onmulti-commodity
flow optimisation which enable load sensitive forwarding over multiple paths.
It is neither constrained by weight-tuning of legacy routing protocols, such
as OSPF, nor requires a totally new forwarding mechanism, such as MPLS.
These characteristics are accomplished by aggregating thetraffic flows des-
tined for the same egress into one commodity in the optimisation and using a
hash based forwarding mechanism. The aggregation also results in a reduction
of computational complexity which makes the algorithm feasible for on-line
load balancing. Another contribution is the optimisation objective function
which allows precise tuning of the tradeoff between load balancing and total
network efficiency.
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6.1 Introduction

As IP networks are becoming larger and more complex, the operators of these
networks gain more and more interest intraffic engineering[1]. Traffic en-
gineering encompasses performance evaluation and performance optimisation
of operational IP networks. An important goal with traffic engineering is to
use the available network resources more efficiently for different types of load
patterns in order to provide a better and more reliable service to customers.

Current routing protocols in the Internet calculate the shortest path to a des-
tination in some metric without knowing anything about the traffic demand or
link load. Manual configuration by the network operator is therefore necessary
to balance load between available alternate paths to avoid congestion. One way
of simplifying the task of the operator and improve use of theavailable network
resources is to make the routing protocol sensitive to traffic demand. Routing
then becomes a flow optimisation problem.

One approach taken by others [2, 3, 4] is to let the flow optimisation re-
sult in a set of link weights that can be used by legacy routingprotocols, e.g.,
open shortest path first (OSPF), possibly with equal cost multi-path (ECMP)
forwarding. The advantage is that no changes are needed in the basic routing
protocol or the forwarding mechanism. The disadvantage is that the optimisa-
tion is constrained by what can be achieved with tuning the weights. Another
approach is to use MPLS [5], multi-protocol label switching, for forwarding
traffic for large and long-lived flows. The advantage is that the optimisation is
not constrained, but at the cost of more complexity in the routing and forward-
ing mechanisms.

Our goal is to design an optimising intra-domain routing protocol which
is not constrained by weight-tuning, and whichcanbe implemented with mi-
nor modifications of the legacy forwarding mechanism based on destination
address prefix.

In this paper we present a routing algorithm for such a protocol based on
multi-commodity flow optimisation which is both computationally tractable
for on-line optimisation and also can be implemented with a near-legacy for-
warding mechanism. The forwarding mechanism needs a modification similar
to what is needed to handle the ECMP extension to OSPF.

The key to achieve this goal, and the main contribution of this paper, is in
the modelling of the optimisation problem. We aggregate alltraffic destined for
a certain egress into one commodity in a multi-commodity flowoptimisation.
This reduces the number of commodities to at mostN , the number of nodes,
instead of beingN2 when the problem is modelled with one commodity for
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each pair of ingress and egress nodes. As an example, the computation time
for a 200 node network was in one experiment 35 seconds. It is this definition
of a commodity thatbothmakes the computation tractable,andthe forwarding
simple.

Another important contribution is the definition of an optimisation objec-
tive function which allows the network operator to choose a maximum desired
link utilisation level. The optimisation will then find the most efficient solu-
tion, if it exists, satisfying the link level constraint. Our objective function thus
enables the operator to control the trade-off between minimising the network
utilisation and balancing load over multiple paths.

The rest of the paper is organised as follows. In the next section we de-
scribe the overall architecture where our optimising routing algorithm fits in.
Section 6.3 presents the mathematical modelling of the optimisation problem.
We continue with a short description of the forwarding mechanism in Sect. 6.4.
After related work in Sect. 6.5 we conclude the paper.

6.2 Architecture

In this work we take the radical approach to completely replace the traditional
intra-domain routing protocol with a protocol that is basedon flow optimisa-
tion. This approach is perhaps not realistic when it comes todeployment in real
networks in the near future, but it does have two advantages.First, it allows
us to take full advantage of flow optimisation without being limited by current
practise. Second, it results in a simpler overall solution compared to, e.g., the
metric tuning approaches [2, 3, 4]. The purpose of taking this approach is to
assess its feasibility and, hopefully, give an indication on how to balance flow
optimisation functionality against compatibility with legacy routing protocols.

In this section we outline how the multi-commodity flow algorithm fits
into a complete routing architecture. Figure 6.1 schematically illustrates its
components. Flow measurements at all ingress nodes and the collection of the
result are new components compared to legacy routing. The measurements
continuously (at regular intervals) provide an estimate ofthe current demand
matrix to the centralised flow optimisation. The demand matrix is aggregated
at the level of all traffic from an ingress node destined for a certain egress node.

If a more fine-grained control over the traffic flows are desired, for instance
to provide differentiated quality of service, a more fine-grained aggregation
level can be chosen. This results in more commodities in the optimisation,
which can be potential performance problem. One approach isto introduce two
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Figure 6.1: Routing architecture with flow optimisation.

levels in the optimisation, one with a longer time-scale forquality of service
flows.

The demand matrix is input to the flow optimiser together witha model
of the network. The result of the optimisation is a set of valuesyt

ij , which
encode how traffic arriving at a certain node (i), destined for a certain egress
node (t) should be divided between the set of next hops (j). These values are
used at each node together with a mapping between destination addresses and
egress nodes to construct forwarding tables. Finally, the packet forwarding
mechanism is modified to be able to distinguish packets destined for a certain
egress node, and to forward along multiple paths toward those egresses.

The computation of the multi-commodity flow optimisation algorithm is
inherently centralised. In this paper we also think of the computation as im-
plemented in a central server. If a so-called bandwidth broker is needed or
desired for providing a guaranteed quality of service, it isnatural to co-locate
it with optimisation. We however see the design of a distributed mechanism
implementing flow optimisation as an important future work item.

The timescale of operation is important in an optimising routing architec-
ture. There are several performance issues that put lower bounds on the cycle
flow measurement–optimisation–new forwarding tables. Theflow measure-
ment need to be averaged over a long enough time to get sufficiently stable
values. Our current research as well as others [6] indicate that the needed sta-
bility exists in real networks at the timescale of a few, maybe five to ten, min-
utes. Other performance issues are the collection of the flowmeasurements, the
computation of the optimisation algorithm, and the distribution of the optimi-
sation result. Our initial experiments indicate that a new optimisation cycle can
be started in approximately each five minutes for typical intra-domain sizes.

An issue that we have identified is how to handle multiple egresses for a
destination injected into the domain by BGP, the border gateway protocol. A
straightforward way to solve this is to introduce additional virtual nodes in
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the network to represent a common destination behind both egresses. This
approach may however introduce a large number of additionalnodes. This will
need to be more carefully considered in the future.

6.3 Optimisation

The routing problem in a network consists in finding a path or multiple paths
that send traffic through the network without exceeding the capacity of the
links. When using optimisation to find such (multiple) paths, it is natural to
model the traffic problem as a (linear) multi-commodity network flow problem
(see, e.g., Ahuja et al. [7]), as many authors have done.

First, the network is modelled as a directed graph (this gives the topology,
i.e., the static information of the traffic problem), and then the actual traffic
situation (i.e., the dynamic part of the problem, consisting of the current traffic
demand and link capacity) as a linear program. In modelling the network as a
graph, a node is associated to each router and a directed edgeto each directional
link physically connecting the routers. Thus, we assume a given graphG =
(N, E), whereN is a set of nodes andE is the set of (directed) edges. We will
abuse language and make no distinction between graph and network, node and
router, or edge and link.

Every edge(i, j) ∈ E has an associated capacitykij reflecting the band-
width available to the corresponding link. In addition, we assume a givende-
mand matrixD = D(s, t) expressing the traffic demand from nodes to node
t in the network. This information defines the routing problem. In order to
formulate it as a multi-commodity flow (MCF) problem we must decide how
to model commodities. In the usual approach [7, 2, 8] commodities are mod-
elled as source-destination pairs that are interpreted as “all traffic from source
to destination”. Thus, the set of commodities is a subset of the Cartesian prod-
uctN×N ; consequently, the number of commodities is bounded by the square
of the number of nodes. To reduce the size of the problem and speed-up com-
putations, we model instead commodities as (only destination) nodes, i.e., a
commodityt is to be interpreted as “all traffic tot”. Thus, our set of commodi-
ties is a subset ofN and, hence, there are at most as many commodities as
nodes. The corresponding MCF problem can be formulated as follows:

min {f(y) | y ∈ P12} (MCF 12)

wherey = (yt
ij), for t ∈ N, (i, j) ∈ E, andP12 is the polyhedron defined by
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the equations:

∑

{j|(i,j)∈E}

yt
ij −

∑

{j|(j,i)∈E}

yt
ji = d(i, t) ∀i, t ∈ N (6.1)

∑

t∈N

yt
ij ≤ kij ∀(i, j) ∈ E (6.2)

where

d(i, t) =











−
∑

s∈N

D(s, t) if i = t

D(i, t) if i 6= t

.

The variablesyt
ij denote the amount of traffic tot routed through the link(i, j).

The equation set (1) state the condition that, at intermediate nodesi (i.e., at
nodes different fromt), the outgoing traffic equals the incoming traffic plus
traffic created ati and destined tot, while att the incoming traffic equals all
traffic destined tot. The equation set (2) state the condition that the total traffic
routed over a link cannot exceed the link’s capacity.

It will also be of interest to consider the corresponding problemwithoutre-
quiring the presence of the equation set (2). We denote this problem (MCF 1).
Notice that every pointy = (yt

ij) in P12 or P1 represents a possible solution
to the routing problem: it gives a way to route traffic over thenetwork so that
the demand is met and capacity limits are respected (when it belongs toP12),
or the demand is met but capacity limits are not necessarily respected (when it
belongs toP1). Observe thaty = (0) is in P12 or in P1 only in the trivial case
when the demand matrix is zero.

A general linear objective function for either problem has the formf(y) =
∑

t,(i,j) bt
ij yt

ij . We will, however, consider only the case when allbt
ij = 1

which corresponds to the case where all commodities have thesame cost on
all links. We will later use different objective functions (including non-linear
ones) in order to find solutions with desired properties.

6.3.1 Desirable Solutions

In short, the solutions we consider to be desirable are thosewhich areefficient
andbalanced. We make these notions precise as follows.

We use the objective function considered above,f(y) =
∑

t,(i,j) yt
ij , as

a measure of efficiency. Thus, giveny1, y2 in P12 or P1, we say thaty1 is
more efficientthany2 if f(y1) ≤ f(y2). To motivate this definition, note that



52 Paper A

whenever traffic between two nodes can be routed over two different paths of
unequal length,f will choose the shortest one. In case the capacity of the
shortest path is not sufficient to send the requested traffic,f will utilise the
shortest path to 100% of its capacity and send the remaining traffic over the
longer path.

Given a pointy = (yt
ij) as above, we letYi,j =

∑

t∈N yt
ij denote the

total traffic sent through(i, j) by y. Every suchy defines autilisationof edges
by the formulau(y, i, j) = Yij/kij , andu(y, i, j) = 0 whenkij = 0. Let
u(y) denote the maximum value ofu(y, i, j) where(i, j) runs over all edges.
Given anℓ > 0, we say thaty ∈ P12 (or y ∈ P1) is ℓ-balancedif u(y) ≤ ℓ.
For instance, a solution is (0.7)-balanced if it never uses any link to more than
70 % of its capacity.

6.3.2 How to Obtain Desirable Solutions

Poppe et al. [8] have proposed using different linear objective functions in order
to obtain traffic solutions that are desirable with respect to several criteria (in-
cluding balance, in the form of minimising the maximum utilisation of edges).
Fortz and Thorup [2, 3], on the other hand, considers a fixed piece-wise linear
objective function (consisting of six linear portions for each edge) which makes
the cost of sending traffic along an edge depend on the utilisation of the edge.
By making the cost increase drastically as the utilisation approaches 100 %,
the function favours balanced solutions over congested ones. As the authors
express it, their objective function “provides a general best effort measure”.

Our contribution is related to the above mentioned work in that we use
different objective functions to obtain desirable solutions, and the functions are
piece-wise linear and depend on the utilisation. In contrast, our work defines
different levels of balance (namely,ℓ-balance). For each such level, a simple
piece-wise linear objective function consisting of two linear portions for each
edge isguaranteedto find ℓ-balanced solutions provided, of course, that such
solutions exist. Moreover, the solution found is guaranteed to be more efficient
than any otherℓ-balanced solution.

Another distinctive feature of our functions is that they are defined through
a uniform, theoretical “recipe” which is valid for every network. We thus elim-
inate the need to use experiments to adapt our definitions andresults to each
particular network. Finally, the fact that our functions consist of only two linear
portions, shorten the execution time of the optimisation.
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Figure 6.2: The link cost functionCℓ,λ.

6.3.3 The Result

To formulate our result we need to introduce some notation. Let y = (yt
ij) be

a point ofP12 or P1, and suppose given real numbersλ > 1 andℓ > 0. We
define the link cost function (illustrated in Fig. 6.2)

Cℓ,λ(U) =

{

U if U ≤ ℓ

λ U + (1 − λ) ℓ if U ≥ ℓ
.

We use this function in the definition of the following objective function:

f ℓ,λ(y) =
∑

(i,j)∈E

kij Cℓ,λ(u(y, i, j))

We also need to define the following constants:

v = min {f(y) | y ∈ P12} and V = max{f(y) | y ∈ P12}

Notice thatv > 0 sinceD(s, t) > 0, andV < ∞ since the network is finite
and we are enforcing the (finite) capacity conditions. At a more practical level,
v can be computed by simply feeding the linear problem min{f(y) | y ∈ P12}
into CPLEX and solving it. Then, to computeV , one changes the same linear
problem to a max problem (by replacing ”min” by ”max”) and solves it.

Finally, let δ > 0 denote the minimum capacity of the edges of positive
capacity. We can now state the following theorem whose proofis given in a
technical report [9]:

Theorem 1. Let ℓ, ǫ be real numbers satisfying0 < ℓ < 1 and0 < ǫ < 1 − ℓ.
Suppose thaty ∈ P1 is ℓ-balanced, and letλ > 1 + V 2

vδǫ
. Then any solutionx

of MCF 1 with objective functionf ℓ,λ is (ℓ+ ǫ)-balanced. Moreover,x is more
efficient than any other(ℓ + ǫ)-balanced point ofP1.

Observe that, sinceℓ < 1 andy ∈ P1 is ℓ-balanced, we can useMCF 1

instead ofMCF 12. Informally, the theorem says that if there areℓ-balanced
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solutions, thenf ℓ,λ will find one. The numberǫ > 0 is a technicality needed
in the proof. Notice that it can be chosen arbitrarily small.

Theorem 1 can be used as follows. Given a target utilisationℓ, sayℓ =

0.7, computeV 2

vδǫ
, choose aλ as in Theorem 1, and chooseǫ > 0, sayǫ =

0.01. Finally, compute a solution, sayx, of MCF 1 with objective function
f ℓ,λ. Then there are two exclusive possibilities: eitherx is 0.71-balanced or
there is no such solution. In the last case,x can be thought of as a “best
effort” solution since we have penalised all utilisation above0.7 (which forces
traffic using edges to more than 70 % of capacity to try to balance) but no0.71-
balanced solution exists. At this point we can either acceptthis best effort
solution or iterate, this time setting the balance target to, say,0.85, etc. After
a few iterations we arrive at a solution which is “sufficiently” balanced or we
know that there is no solution that isℓ-balanced for the current value ofℓ which,
we may decide, is so close to1 that it is not worthwhile to continue iterating.

6.3.4 A Generalisation

Theorem 1 has a useful generalisation that can be described as follows. Par-
tition the set of edgesE into a family (Ei) of subsets, and choose a target
utilisation ℓi for eachEi. The generalised theorem says that for smallǫ > 0
we can define a function corresponding tof ℓ,λ in Theorem 1, such that solv-
ing MCF 1 with this objective function will result in efficient solutions that are
(ℓi + ǫ)-balanced onEi provided, of course, that such solutions exist. The
generalised theorem is more flexible in that it allows us to seek solutions with
different utilisation in different parts of the network.

6.3.5 Quantitative Results

We have used CPLEX 7.11 on a Pentium laptop to conduct numerical exper-
iments with a graph representing a simplified version of a real projected net-
work. The graph has approximately 200 nodes and 720 directededges. If we
had modelled MCF with source-destination pairs as commodities, the linear
problem corresponding toMCF 12 would consist of some 8 million equations
and 30 million variables. Modelling commodities as traffic to a node,MCF 12

contains, in contrast, “only” about 40 000 constraints and 140 000 variables.
SolvingMCF 1 with objective functionf ℓ,λ takes approximately 35 seconds.

Solving the same problem with the objective function considered by Fortz
and Thorup [2, 3] takes approximately 65 seconds. Our experiments suggest

1ILOG CPLEX 7.1 http://www.ilog.com
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Figure 6.3: Address lookup data structure for multiple pathforwarding.

that this function picks solutions that minimise balance. In contrast, withf ℓ,λ

we can choose any desired level of balance (above the minimum, of course).

6.4 Multi-Path Forwarding

By modelling the routing problem as “all traffic tot”, as described in the pre-
vious section, we get an output from the optimisation that iswell suited for
packet forwarding in the routers. The result from the optimisation, theyt

ij val-
ues, tells how packets at a certain node (i) to a certain egress node (t) in the
network should be divided between the set of next hops (j). We thus need a for-
warding mechanism that can distinguish packets destined for a certain egress,
and that can forward along multiple paths.

To enable forwarding along multiple paths, we introduce onemore step in
the usual forwarding process. An egress data structure is inserted in the address
lookup tree just above the next hop data structure as illustrated in Fig. 6.3. A
longest prefix match is done in the same manner as in a standardforwarding
table, except that it results in the destination egress node. The egress data
structure stores references to the set of next hops to which traffic for that egress
should be forwarded, as well as the desired ratios (theyt

ij for all js) between
the next hops.

In order to populate the forwarding tables a mapping has to becreated
between destination addresses and egress nodes. The neededinformation is the
same as a regular intra-domain routing protocol needs, and is obtained in much
the same way. For destinations in networks run by other operators (i.e., in other
routing domains), the mapping is obtained from the BGP routing protocol. For
intra-domain destinations, the destination prefix is directly connected to the
egress node.
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Mechanisms for distributing traffic between multiple linkshave been thor-
oughly evaluated by Cao et al. [10]. We propose to use a table based hashing
mechanism with adaptation, because it can distribute the load according to
unequal ratios, is simple to compute, and adapts to the properties of the ac-
tual traffic.

Similar mechanisms already exist in commercial routers in order to handle
the equal cost multi-path extension to OSPF and similar protocols.

6.5 Related Work

With the prospect of better utilising available network resources and optimis-
ing traffic performance, a lot of research activity is currently going on in the
area of traffic engineering. The general principles and requirements for traffic
engineering are described in the RFC 3272 [1] produced by theIETF Internet
Traffic Engineering working group. The requirements for traffic engineering
over MPLS are described in RFC 2702 [5].

Several researchers use multi-commodity flow models in the context of
traffic engineering. Fortz and Thorup [2, 3] use a local search heuristics for op-
timising the weight setting in OSPF. They use the result of multi-commodity
flow optimisation as a benchmark to see how close to optimal the OSPF routing
can get using different sets of weights. Mitra and Ramakrishnan [11] describes
techniques for optimisation subject to QoS constraints in MPLS-supported IP
networks. Poppe et al. [8] investigate models with different objectives for cal-
culating explicit routes for MPLS traffic trunks. Multi-commodity flow and
network flow models in general have numerous application areas. A compre-
hensive introduction to network flows can be found in Ahuja etal. [7].

A somewhat controversial assumption when using multi-commodity flow
optimisation is that an estimate of the demand matrix is available. The prob-
lem of deriving the demand matrix for operational IP networks is considered by
Feldmann et al. [12]. The demand matrix only describes the current traffic situ-
ation but, for an optimisation to work well, it must also be a good prediction of
the near future. Current research in traffic analysis by Bhattacharyya et al. [6]
and Feldmann et al. [12] indicate that sufficient long term flow stability ex-
ists on backbone links in timescales of minutes and hours andin manageable
aggregation levels to make optimisation feasible.
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6.6 Conclusions

We have taken the first steps to introduce flow optimisation asa routing mech-
anism for an intra-domain routing protocol. We have presented a routing algo-
rithm based on multi-commodity flow optimisation which we claim is compu-
tationally tractable for on-line routing decisions and also only require a small
modification to the legacy packet forwarding mechanism. More work is how-
ever needed on other components in order to design and implement a complete
routing protocol using our algorithm.

The key issue, and our main contribution, is the mathematical modelling
of commodities. Traffic destined for a certain egress node isaggregated into
a single commodity. This results in computational requirements an order of
magnitude smaller than in the traditional models where the problem is mod-
elled with one commodity for each flow from one ingress to one egress node.

Multi-path forwarding of the aggregates produced by the optimiser is then
handled by a hash based forwarding mechanism very similar towhat is needed
for OSPF with ECMP.

Another contribution is the design of a generic objective function for the
optimisation which allows the network operator to choose a desired limit on
link utilisation. The optimisation mechanism then computes a most efficient
solution given this requirement, when possible, and produces a best effort so-
lution in other cases. The process can be iterated with, e.g., binary search to
find a feasible level of load balance for a given network load.
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Abstract

Internet traffic volumes continue to grow at a great rate, nowpushed by video
and TV distribution in the networks. This brings up the need for traffic engi-
neering mechanisms to better control the traffic. The objective of traffic engi-
neering is to avoid congestion in the network and make good use of available
resources by controlling and optimising the routing function. The challenge for
traffic engineering in IP networks is to cope with the dynamics of Internet traf-
fic demands. Today, the main alternative for intra-domain traffic engineering
in IP networks is to use different methods for setting the weights in the routing
protocols OSPF and IS-IS.

In this paper we revisit the weight setting approach to traffic engineering
but with focus on robustness. We proposel-balanced weight settings that route
the traffic on the shortest paths possible but make sure that no link is utilised to
more than a given levell. This gives efficient routing of traffic and controlled
spare capacity to handle unpredictable changes in traffic. We present a heuristic
search method for findingl-balanced weight settings and show that it works
well in real network scenarios.
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7.1 Introduction

Internet traffic volumes continue to grow at a great rate, nowpushed on by
video and TV distribution in the networks. Increasing traffic volumes neces-
sitate upgrades of network equipment and new investments for operators, and
keep up-to-date the question of over-dimensioning networkcapacity versus us-
ing traffic engineering mechanisms for better handling the traffic. In addition,
as new bandwidth demanding and also delay and loss sensitiveservices are
introduced, it is even more important for the operator to manage the traffic
situation in the network.

The main challenge for traffic engineering is to cope with thedynamics of
traffic demands and topology. How to best model and describe aggregated In-
ternet traffic is still an open area of research. On short timescales up to seconds
the traffic is very bursty and on long timescales there are often predictable daily
and weekly cycles. In between there can be unpredictable changes and shifts
in traffic demand, for instance due to hotspots and flash crowds, or because a
link goes down, there are changes in the inter-domain BGP routing, or because
traffic in an overlay is re-directed. For future networks more variability in traf-
fic demands is also expected due to mobility of nodes and networks and more
dynamic on-demand service level agreements (SLA:s).

The traffic variability means that, even if we could measure the current
traffic situation exactly, it would not always correctly predict the near future
traffic situation and this needs to be taken into account whendoing traffic en-
gineering. Network operators often handle this by relying on simple well-tried
techniques (like OSPF and IS-IS routing), over-dimensioning of network ca-
pacity, and simple rules of thumb (i.e upgrade the link capacity when mean
utilisation reaches 70-80%) rather than introducing complex traffic engineer-
ing techniques.

In this paper we take this need for spare capacity and simple rules of
thumb as our starting point. We revisit the approach of usingweight settings
in OSPF/IS-IS for traffic engineering but now with focus on robustness. We
propose weight settings that we calll-balancedwhere the operator, by setting
the parameterl (to say 80%), control the maximum utilisation level in the net-
work and how much spare capacity is needed to handle unpredictable traffic
changes. With anl-balanced routing the traffic takes the shortest paths possible
but makes sure that no link is utilised to more than a given level l, if possible.

The main contributions in this paper are:

• We proposel-balanced weight settings in OSPF/IS-IS for robust traffic
engineering.
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• We present a heuristic search method for findingl-balanced weight set-
tings and show that it works well in real network scenarios.

• We evaluatel-balanced routing and compare it with other proposed traf-
fic engineering objectives for several real network topologies and traffic
data sets.

If traffic levels continue to grow then of course network capacity needs to
be added at some point. But traffic engineering withl-balanced routing can
extend the upgrade cycle and postpone the investment, or be applied to better
use the existing resources in the network until the highly utilised links have
been upgraded.

The paper is organized as follows. Section 7.2 gives a short introduction
to traffic engineering in IP networks and Section 7.3 discusses related work.
We then present thel-balanced cost function in Section 7.4 and describe the
search heuristic used for findingl-balanced weight settings. In Section 7.5
we evaluate the proposed methods. We show that the search heuristic works
well for finding l-balanced weight settings in real traffic scenarios. Further,
we compare the robustness of different weight-setting methods and investigate
what happens to link utilisations in the network if a traffic demand suddenly
increases. Finally, in Section 7.6 we make some concluding remarks about our
findings.

7.2 Traffic Engineering in IP networks

The objective of traffic engineering is to avoid congestion in the network and
to make better use of available network resources by adapting the routing to
the current traffic situation. The traffic demands in a network changes over
time and for network operators it is important to tune the network in order
to accommodate more traffic and meet service level agreements (SLAs) made
with their customers. This means that a network operator cannot rely only on
long-term network planning and dimensioning that are done when the network
is first built. Robust traffic engineering mechanisms are needed that can adapt
to changes in traffic demand and distribute traffic to benefit from available re-
sources.

The first step in the traffic engineering process is to collectthe necessary
information about network topology and the current traffic situation. Most traf-
fic engineering methods need as input a traffic matrix describing the demand
between each pair of nodes in the network. The traffic matrix is then used as
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input to the routing optimization step, and the optimized parameters are finally
used to update the current routing.

Today, the main alternative for intra-domain traffic engineering in IP net-
works is to use different methods for setting the weights (and so decide upon
the shortest paths) in the routing protocols OSPF (Open Shortest Path First)
and IS-IS (Intermediate System to Intermediate System). These are both link-
state protocols and the routing decisions are based on link costs and a shortest
(least-cost) path calculation. With the equal-cost multi-path (ECMP) extension
to the routing protocols the traffic can also be distributed over several paths that
have the same cost. These routing protocols were designed tobe simple and
robust rather than to optimize the resource usage. They do not by themselves
consider network utilisation and do not always make good useof network re-
sources. The traffic is routed on the shortest path through the network even if
the shortest path is overloaded and there exist alternativepaths. It is up to the
operator to find a set of link costs (weights) that is best suited for the current
traffic situation and that avoids congestion in the network.

The general problem of finding the best way to route traffic through a net-
work can be mathematically formulated as a multi-commodityflow (MCF)
optimization problem (see, e.g., [1, 2, 3]). The network is then modeled as a
graph. The problem consists of routing the traffic, given by ademand matrix,
in the graph with given link capacities while minimizing a cost function. With
no limitations on how the traffic flows can be divided over the network links
the MCF optimal routing problem can be formulated and efficiently solved as
a linear program. Introducing integer weights and ECMP shortest paths con-
straints, where the traffic no longer can be split arbitrarily, makes the problem
computationally much harder. For reasonably sized networks one usually has
to rely on search heuristics for determining the set of weights, rather than cal-
culating the optimal weights.

7.3 Related work

Traffic engineering by finding a suitable set of weights in OSPF/IS-IS is a well
studied area of research and it is described in recent textbooks in the area [3, 4].
When we now revisit the weight setting approach to traffic engineering we are
most inspired by the pioneering works by Fortz and Thorup [2,5] and Ramakr-
ishnan and Rodrigues [6], in that we use a piece-wise linear cost function and
search heuristics to find suitable weight settings.

Several studies [2, 7, 8, 9] have shown that even though we limit the routing
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of traffic to what can be achieved with weight-based ECMP shortest paths,
and not necessarily the optimal weights but those found by search heuristics,
it often comes close to the optimal routing for real network scenarios. How
the traffic is distributed in the network very much depends onthe objectives,
usually expressed as a cost function, in the optimisation. An often proposed
objective function is described by Fortz and Thorup [2] (andwe will refer to
it as the FT cost function further on). Here the sum of the costover all links
is considered and a piece-wise linear increasing cost function is applied to the
flow on each link. The basic idea is that it should be cheap to use a link with
small utilization while using a link that approaches 100% utilisation should
be heavily penalized. Thel-balanced cost function [1, 10] used in this paper
is similar in that it uses a piecewise linear cost function toobtain desireable
solutions. Additionaly, our cost function gives the operator the opportunity to
set the maximum wanted link utilisation. Cost functions fortraffic engineering
is further investigated by Balonet.al [11].

This paper add to existing work on weight settings by focusing on robust-
ness and the objective of achieving a controlled spare capacity for handling
unpredictable traffic shifts. For robust traffic engineering much of the focus is
on handling multiple traffic matrices and traffic scenarios [5, 12, 13, 14, 15, 16]
and handling the trade-off between optimising for the common case or for the
worst case. There are also several works on finding weight settings that are
robust to link failures [17, 18, 19].

Xu et.al [20] describe a method to jointly solve the flow optimizationand
the link-weight approximation using a single formulation resulting in a more
efficient computation. Their method can also direct traffic over non-shortest
paths with arbitrary percentages. Their results should also be directly appli-
cable to our problem of providing robustness to changes, by just substituting
their piece-wise linear cost function with our cost function. In a continuation
on that work Xuet.al [21] propose a new link-state routing protocol. The pro-
tocol splits traffic over multiple paths with an exponentialpenalty on longer
paths and achieves optimal traffic engineering while retaining the simplicity of
hop-by-hop forwarding.
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7.4 L-balanced solutions

7.4.1 Optimal l-balanced routing

A routing is said to bel-balancedif the utilisation is less than or equal tol on
every link in the network. For instance a solution is (0.7)-balanced if it never
uses any link to more than 70% of its capacity.

The l-balanced cost function, its theoretical foundation, and use in MCF
optimisation is described in [1, 10]. The idea is to use a simple piece-wise
linear cost function as shown in Figure 7.1 and apply it to theutilisation of
each link in the network. The cost function consists of two linear portions
where the slope of the second line segment should be large enough to penalise
utilisation abovel and balance traffic over longer paths.

The work in [1, 10] present a formula to calculate the cost function, for
a given network topology and traffic situation, that guarantees to find al-
balanced optimal routing (provided, of course, that such solutions exist) that
takes the shortest paths possible and makes sure that no linkis utilised to more
thanl.
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Figure 7.1: The link cost function.

7.4.2 Search for l-balanced weight settings

To apply thel-balanced routing in real OSPF/IS-IS networks we need to find
l-balanced weight settings. For weight settings we dont havethe guarantee to
find an l-balanced routing in the same way as described for optimal routing
above. But we want to use thel-balanced cost function to find weights settings
that achieve the same effect of taking the shortest paths possible while routing
the traffic so that no link is utilised to more than a given level l.

The problem of finding the optimal weight setting is NP-hard [2, 3]; and
so the optimal weights are often too computationally hard and time consuming
to calculate for real networks and traffic scenarios. Instead we use a problem
specific local search heuristic to determine the set of weights. An overview of
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local search methods can be found in [22]. Our search method can be placed
under the Tabu search meta-heuristic in that we allow cost-increasing solutions
to direct the search away from local minima, and use a tabu list to prevent
from looping back to old solutions. A solution is a vectorw = {w1, .., wn}
of weights, with one weight per directed link in the network.We have a solu-
tion spaceW where each weight can take integer values between1 and65535.
We generate a neighboring solutioni ∈ N(w) by increasing one weight in the
current solutionw to divert traffic from the most utilised link(s, t) or change
weights to create paths with the same cost to get ECMP routingof traffic over
several links froms. We use al-balanced cost function (as described in the
previous section) calculated for the given topology, traffic matrix and required
utilisation levell. The costf(w) for a given weight vector is determined by
calculating the shortest paths routing with these weights using Dijkstra’s algo-
rithm, adding the traffic matrix, and applying the cost function to the resulting
link loads.

The starting point is to set all weights to the same value, forinstancewi =
10. The search terminates either when we find a solution with utilisation under
the thresholdl or it stops after a fixed number of iterations.

At the core of our search method is a simple descent search [22] where we:

1. choose an initial weight vectori ∈ W

2. find the neighborj ∈ N(i) with lowest cost i.e.f(j) <= f(k) for any
k ∈ N(i).

3. If f(j) >= f(i) then stop. Else seti = j and go to step 2.

This type of search may stop at a local minimum. We therefore allow the
search to continue by doing new descents starting from weight sets with higher
cost. We use information that becomes available during the search to build a
candidate list of weight sets that are used as starting points, and a tabu list of
weight sets are used to avoid cycling.

We start by setting all weights to the same value. This gives the shortest
paths in number of hops which probably is a good starting point for most real
networks; if the link capacities are uniform and the networkwas built with
OSPF/IS-IS routing in mind. Given the network topology, traffic matrix and
initial weights, we calculate the ECMP shortest paths, add the traffic matrix,
and find the most loaded link(s, t) in the network. If the utilisation is less than
l then we are done. We have a routing that takes the shortest paths possible
and makes sure that no link is utilised to more than the limitl. If the link is
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utilised to more thanl we start searching for a better weight setting using two
strategies:

• the first search strategy is to increase the weight on the overloaded link
in controlled steps so to divert more and more demands (or part of de-
mands) from the link. See details in 7.4.3.

• the second search strategy is to find weights to get ECMP routing froms
for the demands over(s, t), and so balance the traffic over the outgoing
links froms. See details in 7.4.4.

In each iteration of a descent we have a number of neighbor weight settings
that we evaluate (one for each weight step and ECMP set described above).
If a neighbor weight setting gives a lower cost than the current best (in this
iteration) it is saved and used as the starting point in the next iteration. If a
candidate weight setting gives a routing with a higher cost than the current best
but with a different link than(s, t) as most utilised, then that weight-setting
is saved in the candidate list and used as a starting point foranother descent
search later on.

7.4.3 How to determine weight increments for a link?

If a link (s, t) is over-utilised we want to increase the weight on the link in
controlled steps so to divert more and more traffic demands from the link.

To decide the steps in which to increase the weight on(s, t) we first deter-
mine the current total weight-cost for each demand routed over (s, t). We then
temporarily take away the link(s, t) from our representation of the topology
and calculate a new shortest-path routing. For all demands that before were
routed over(s, t) we then check how much the weight cost have increased and
use this for determining the steps with which to increase theweight on(s, t).

In the example in Figure 7.2, we assume that the two demandsD(1, 2) and
D(4, 2) overload the link(1, 2). We thus want to divert traffic from the link
(1, 2) by increasing the weightw(1, 2).

We start by determining the increase steps in which to increase the weight
w(1, 2):

The total weight costs forD(1, 2) andD(4, 2) are 10 and 40, respectively.
If we take away the link(1, 2), we get total weight costs of 30 and 50, an
increase by 20 and 10 units respectively. From this we decideon the increase
steps 10, 15 (mid-point between 10 and 20), 20 and 21 units. Weadd this to
the originalw(1, 2) = 10 and get the candidate weightsw(1, 2)= 20, 25, 30
and 31 to evaluate.
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Figure 7.2: Example with an overloaded link (1,2) where traffic can be diverted
to other paths by increasing the weight on (1,2) in controlled steps w(1,2)= 20,
25, 30 and 31. With the first increment w(1,2)=20 we divert half of demand
D(4,2) by ECMP. The next increment w(1,2)=25 diverts all of D(4,2), and with
w(1,2)=30 we route also half of D(1,2) on another path. Finally, w(1,2)=31
diverts all traffic from (1,2).

With the first incrementw(1, 2) = 20 we divert half of demandD(4, 2) by
ECMP while the other half ofD(4, 2) and all of demandD(1, 2) is still routed
on (1, 2). The next incrementw(1, 2) = 25 diverts all ofD(4, 2) but keeps all
of D(1, 2). With w(1, 2) = 30 we also route half ofD(1, 2) on another path
and withw(1, 2) = 31 we divert all traffic from(1, 2).

7.4.4 How to determine ECMP weight settings?

If we have a weight set that results in an overloaded link(s, t) then we want to
also evaluate neighbor weight settings where we split traffic demands evenly
over the outgoing links froms using ECMP. In order to split a traffic demand
ECMP the total weight for each path froms to the demand destinationd need
to be the same.

Consider, as in Figure 7.3, a nodes, the next hopsti, and the shortest path
Pi from eachti to the destinationd. Also consider the corresponding weights
w(s, ti) and total weight costw(Pi) for a pathPi from ti to d. One way to
achieve ECMP weights is to adjust the weightsw(s, ti) on the outgoing links
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Figure 7.3: Determining ECMP weights

from s such that:

w(s, ti) = 1 + maxj=1,..,n{w(Pj)} − w(Pi)

This gives the same total cost for each path from s to d.
A possible extension to this is to not always spread the traffic over all pos-

sible links but also evaluate different subsets of ECMP weights setting with
varying number of outgoing links froms.

7.4.5 Increment weight on a less utilised link in a path

With high traffic load in the network, link weights can becomesensitive to
change after some iterations in the search. For instance if we on an overloaded
link already have adjusted the weight to split a large demandwith ECMP then
we can not easily increase the link weight to divert yet another flow without
disturbing the existing load balancing.

In order to divert traffic demands to other paths but without disturbing ex-
isting splits on the most utilised link we extend the neighborhood in the search.
We evaluate weight sets where we instead of changing the weight on the over-
loaded link(s, t) increment the link weight some step away closer to the de-
mand destination. In the example in Figure 7.4, assume that the link (1,3) is
overloaded. With our search (as described in 7.4.3) we wouldin this example
evaluate a weight setting where the demandD(1, 4) is diverted to the path 1-
5-4 by increasing the weightw(1, 3) to 21. But increasing the weightw(1, 3)
will also send all ofD(1, 2) on the link(1, 2), possibly creating overload on
that link and a higher cost solution.

With the extended neighborhood we also evaluate alternative weight set-
tings where we increase the weight on other links in the path (not only on the
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Figure 7.4: Example with an overloaded link (1,3). With an extended neigh-
borhood in the search the demand D(1,4) can be diverted by increasing the
weight w(3,4) instead of w(1,3), and avoid disturbing the other flows on the
overloaded link (1,3).

most utilised link). In this example for demandD(1, 4) we increase the weight
w(3, 4) which diverts the demandD(1, 4) from the overloaded link(1, 3) while
keeping the needed ECMP split of demandD(1, 2).

7.4.6 Comments on the search method

As described above several different techniques are neededto get an efficient
search method to findl-balanced solutions.

When designing and implementing our search method we were inpart in-
spired by the works of Ramakrishnan and Rodrigues [6] and Fortz and Tho-
rup [2]. From the first we borrowed the idea of temporarily taking away the
overloaded link from the representation of the topology, and calculate a new
shortest-path routing, to find the weight increments for thelink. But apart from
this idea our approaches are different. Fortz and Thorup [2]use a Tabu local
search heuristic to find appropriate link weights, and from here we also bor-
rowed the idea on how to find ECMP weight-settings over many links.

But, for efficiency, we wanted a more problem-specific searchheuristic
rather than a generic Tabu search. Instead of searching at random, we start
with the shortest paths possible and directly look at the most loaded link. If the
utilisation is less thanl, then we are done and no search is needed. If the link
is utilised to more thanl, then we start to divert traffic from there.

The higher the traffic level the more difficult it is to find a weight setting,
that not only balances the traffic, but actually keeps it under a specified levell.
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We combined the existing techniques described above: weight increments and
ECMP traffic splits at the most utilised link. But with our direct approach and
at high traffic loads, it turned out not to be enough to findl-balanced routings.

Therefore, we also added our ideas with candidate lists and extended neigh-
borhoods. For the candidate list, we choose weight settingswith a higher cost
but where the overload has moved to another link, in order to diverse the search.
And for extended neighborhoods, we increment the weight on aless utilised
link in a path in order to not disturb the weight composition in sensitive, highly
loaded areas.

7.5 Evaluation

7.5.1 Method

In order to evaluate thel-balanced routing and our search method for find-
ing l-balanced weights we use real network topologies and trafficmatrix data
that we scale up to get high loads in the networks. First in Section 7.5.2 we
evaluate that the search method works well for findingl-balanced weight set-
ting in these scenarios and compare the resulting network loads with optimal
l-balanced routing and routing with other traffic engineering objectives. The
main objective ofl-balanced routing is to give a controlled amount of spare ca-
pacity to handle traffic changes. In Section 7.5.3 we investigate how different
weight settings handle hotspots where one traffic matrix entry increases.

For the evaluation we here use two different data sets that include network
topologies and traffic matrix data from the Geant network [23], and from the
American sub-network of a global IP network.

• Network I: the Geant network with 23 nodes, 74 links and 506 demands.

• Network II: the American network with 24 nodes, 110 links and552
demands.

The details of the global IP-network, the subnetwork topologies and traffic
demands, are described in [24]. For the Geant network we set all link capacities
to 10 Gb and scaled up the traffic data to create high loads in the network.

7.5.2 Static scenario: Evaluating the search method

The evaluation shows that thel-balanced objective and our search method for
finding l-balanced weight settings work well. Figure 7.5 shows comparisons
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Table 7.1: Performance of the search heuristic for network I
load- Min. hop routing L-balanced routing (L=0.8)
level links >L max util time max util descents sets

7 0 0.751 0.1 s 0.751 0 0
8 2 0.858 0.3 s 0.784 1 63
9 3 0.965 0.2 s 0.797 1 51
10 3 1.072 0.4 s 0.780 1 82
11 4 1.179 0.4 s 0.795 1 91
12 5 1.287 0.4 s 0.794 1 123
13 6 1.394 56.8 s 0.790 262 21451

Table 7.2: Performance of the search heuristic for network II
load- Min. hop routing L-balanced routing (L=0.8)
level links >L max util time max util descents sets

7 0 0.728 0.4 s 0.728 0 0
8 1 0.832 0.4 s 0.732 1 41
9 2 0.936 0.6 s 0.766 1 95
10 5 1.040 2.2 s 0.732 7 671
11 5 1.144 477.5 s 0.801 4390 200037

of optimal and weight-basedl-balanced routing (withl=80%) for increasing
levels of traffic demand in the Geant network (Network I) and the American
network (Network II). Thel-balanced routing sends the traffic on the shortest
paths as long as the utilisation is low in the network. The shape of the curves
shows that when we scale up the traffic demand thel-balanced method tries to
keep the utilisation underl=0.8. The figures also show that the weight-based
routing is close to the optimal routing which validates thatour search method
for setting the weights works well. Note that optimal routing minimises the
total cost when thel-balanced cost function is applied to the utilisation of each
link in the network. The utilisation for an individual link (and so the maximum
link utilisation) can be higher in the optimal solution if itfinds a shorter path
that still keeps the utilisation belowl.

Tables 7.1 and 7.2 describe the performance of our search method and
show that our search heuristic is fast. The left-hand side ofthe tables describes
the load situation in the networks. The increasing load levels (shown in the
first column) come from multiplying each entry in the traffic matrix with a
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Figure 7.5: Comparison of maximum link utilisations for optimal and weight-
based L-balanced routing for different scaled traffic demands in the Geant net-
work (top) and the American network (bottom). The utilisation is kept under
the chosen limitl and the weights found by the search heuristic gives a routing
close to optimal.
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higher and higher constant value. For both networks it holdsthat, up to level
7, no search is needed since the start weights (all set to 10) and the resulting
minimum-hop routing give a maximum link utilisation of lessthanl = 0.8.

The second and third columns show the number of links that areloaded to
more the levell = 0.8 and the maximum link utilisation, when all weights are
set to 10. This is the state from which the search start.

The right-hand side of the tables shows the performance of our search
method. The first column shows how long time it takes to find anl-balanced
solution for different levels of network load. The table also shows the number
of search descents (number of new starts) and the total number of neighbor
weight sets that were evaluated.

As an example, for Network I in Table 7.1, at scale 8 there are two links
that are utilized to more thanl = 0.80. The search heuristic investigate 63
different weight settings to find anl-balanced solution with a maximum link
utilisation of 0.784. This search took only 0.3 seconds on a standard laptop
with a 1.6GHz Intel Core 2 Duo CPU and 2 GB of memory.

At scale 13 there are 6 links utilized to more thanl = 0.80 and with a
maximum utilisation of 1.394. The search needs to find a weight setting that
diverts traffic and simultaneously pushes down all six link utilisations under
l = 0.8 (and without increasing any other link to more thanl, of course).
Our search heuristic evaluates 21451 weight settings and finds anl-balanced
solution at this level in less than a minute.

Figure 7.6 shows a comparison between thel-balanced routing and other
traffic engineering objectives. The minimum-hop routing (with all weights set
to 10), where no attempt is done to adapt the weight setting tothe current traffic
demand, quickly leads to overload in the network when the traffic demands are
increased. Thel-balanced method sends the traffic on the shortest paths as long
as the utilisation is less than the chosen valuel=0.8. With a low utilisation of
the network there is no reason to split the traffic over several paths. The FT
cost function used in [2], pushes down the maximum link utilisation already
at lower traffic levels. This piece-wise linear cost function consists of several
segments which is reflected in the shape of the curve with plateaus where the
maximum link utilisation is pushed down.

With minmax routing the objective is to minimise the maximumlink util-
isation in the network. This routing always balance the loadover the network
to keep the highest link utilisation down to a minimum. The optimal minmax
routing gives a lower bound on how much it is possible to keep down the max-
imum link utilisation.
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Figure 7.6: Comparison of maximum link utilisations for different traffic engi-
neering objectives in the Geant network.
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7.5.3 Dynamic scenario: Evaluation of robustness

The main purpose withl-balanced routing is to give a controlled traffic level
and spare capacity to handle uncertainties and sudden changes in the traffic
situation. To confirm that thel-balanced weight settings fulfil this, we added
hotspot traffic (in a magnitude that thel-balanced routing should be able to han-
dle) and investigated the resulting link utilisations. Figure 7.7 shows the max-
imum link utilisations for minimum hop routing,l-balanced and FT weight-
settings under assumed hotspot traffic in the Geant network scenario.

After determining the weights and the routing for a given traffic matrix each
of the 506 demands was increased one at a time by 20% of the linkcapacity.

The minimum hop routing, without any traffic engineering, gives link over-
load for all hotspot traffic at this demand level. The FT routing sometimes
results in overloaded links when the hotspot traffic is added. The l-balanced
routing (with l=0.8) on the other hand gives 20% spare capacity and so handle
the increase for any of the demands.

7.6 Conclusions

In this paper we proposel-balanced routing with OSPF/IS-IS for robust traf-
fic engineering. We present a heuristic search method for finding l-balanced
weight settings and show that the search and the resulting weight settings work
well in real network scenarios.

L-balanced weight settings give the operator possibility to apply simple
rules of thumb for controlling the maximum link utilisationand control the
amount of spare capacity needed to handle sudden traffic variations. It gives
more controlled traffic levels than other cost functions andmore efficient rout-
ing for low traffic loads when there is no need to spread trafficover longer
paths.

Our local search method can be placed under the Tabu search meta-heuristic
in that we allow cost-increasing solutions to direct the search away from local
minima, and use a tabu list to prevent from looping back to oldsolutions. But
for efficiency, rather than using a generic Tabu search, we implement a search
heuristic specific for the problem of findingl-balanced weight settings. We
start with minimum-hop routing and investigate the most loaded link. If the
utilisation is less thanl, then we are done and no search is needed. If the link is
utilised to more thanl, then we start the search from there, and we use several
different weight strategies for diverting traffic to other paths.
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Figure 7.7: Hotspot traffic scenario in the Geant network. Comparison of maxi-
mum link utilisations for three weight setting strategies.Minimum hop routing
and FT routing exceeds the link capacity whilel-balanced routing can avoid
overload.
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The higher the traffic level the more difficult it is to find a weight setting,
that not only balances the traffic, but actually keeps it under a specified level
l. We combine controlled weight increments and ECMP traffic splits to di-
vert traffic from the most utilised link. We also introduce candidate lists and
extended neighborhoods. Promising weight settings that move the overload
to other links are saved in the candidate list to be starting points for further
search. Extended neighborhoods means that, when divertinga traffic flow from
an overloaded link, we do not only try to increase the weight on the overloaded
link. We also evaluate weight settings where we increment the weight on a less
utilised link further down the path. This is done in order to not disturb already
achieved traffic splits in highly loaded areas.

We evaluate our search heuristic in several real network scenarios and show
that the search is fast and that it findsl-balanced weight-settings in seconds or
minutes depending on the traffic level.
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[19] A. Sridharan and R. Guérin. Making IGP Routing Robust to Link Fail-
ures. InProceedings of the 4th International IFIP Networking Confer-
ence, Waterloo, Ontario, Canada, May 2005.

[20] Dahai Xu, Mung Chiang, and Jennifer Rexford. DEFT: Distributed
exponentially-weighted flow splitting. InIEEE Infocom, Anchorage,
Alaska, USA, May 6–12, 2007.

[21] Dahai Xu, Mung Chiang, and Jennifer Rexford. Link-state routing with
hop-by-hop forwarding can achieve optimal traffic engineering. In IEEE
Infocom, Phoenix, Arizona, USA, April 2008.

[22] E. Aarts and J. K. Lenstra, editors.Local search in combinatorial opti-
mization. Princeton University Press, 2003.

[23] The Geant network. http://www.geant.net.

[24] A. Gunnar, M. Johansson, and T. Telkamp. Traffic Matrix Estimation on
a Large IP Backbone - a Comparison on Real Data. InProceedings of
ACM Internet Measurement Conference, Taormina, Sicily, Italy, October
2004.





Chapter 8

Paper C:
Simulation of IPTV caching
strategies

Henrik Abrahamsson and Mats Björkman.
In International Symposium on Performance Evaluation of Computer and Telecom-
munication Systems (SPECTS’10), 11-14 July 2010, Ottawa, Canada.

c©2010 The Society for Modeling and Simulation International(SCS). Reprinted
with permission.

85



Abstract

IPTV, where television is distributed over the Internet Protocol in a single oper-
ator network, has become popular and widespread. Many telecom and broad-
band companies have become TV providers and distribute TV channels using
multicast over their backbone networks. IPTV also means an evolution to time-
shifted television where viewers now often can choose to watch the programs at
any time. However, distributing individual TV streams to each viewer requires
a lot of bandwidth and is a big challenge for TV operators. In this paper we
present an empirical IPTV workload model, simulate IPTV distribution with
time-shift, and show that local caching can limit the bandwidth requirements
significantly.
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8.1 Introduction

IPTV, where TV channels are distributed using IP multicast,has become pop-
ular and widespread. Many telecom and broadband companies have become
TV providers and distribute TV channels using multicast over their backbone
network. IPTV also means an evolution to time-shifted TV where viewers can
choose to watch the programs at anytime.

When distributing the TV schedule using multicast there is only one TV
stream per channel, while for time-shifted TV there can be one stream per
customer. Distributing individual TV streams to each viewer requires a lot of
bandwidth and this is a big challenge for TV operators. The operators now
therefore only gradually introduce access to more and more time-shifted TV
programs, and try out different technical solutions.

TV statistics show that there is a small set of very popular programs that
most people are watching. A popular prime-time program thatis scheduled
and distributed with multicast at a given time, will most likely also have a lot
of viewer that choose to watch the program time-shifted a bitlater during the
evening. For an operator with many hundred thousands of TV subscribers there
can be a very large number of copies of the same popular content distributed
and putting load on the network.

The question we address in this work is:to what extent can we limit the
bandwidth requirements from time-shifted TV by caching themost popular pro-
grams closer to the viewers?The answer depends on several factors including
cache size, caching strategy, and the viewers’ request pattern for TV programs.

Caching is a well studied technique for web content and video[1, 2, 3, 4,
5, 6] and have started to attract interest also in the contextof IPTV [7, 8, 9, 10].

In order to develop and evaluate IPTV caching strategies good workload
models are needed. In this paper we use an empirical IPTV workload model to
simulate IPTV distribution with time-shift and investigate the benefit of intro-
ducing a local cache closer to the TV subscribers. The simulations are based
on real TV schedules, and statistics about TV program popularity and viewer
activity. We simulate a large number of TV viewers that, whenactive, request
scheduled or on-demand programs and we investigate the resulting bandwidth
requirements on the down link for different cache sizes and caching strategies.

The contributions of this paper are: We present an empiricalIPTV work-
load model. We simulate a realistic scenario for IPTV distribution and com-
pare the Least Recently Used (LRU) and Least Frequently Used(LFU) caching
strategies. We show that time-shifted TV can be very capacity demanding and
that considerable amounts of bandwidth can be saved by caching the most pop-
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Figure 8.1: IPTV network architecture.

ular programs closer to the viewers.
The rest of the paper is structured as follows: In section 8.2we describe

IPTV distribution and time-shifted TV. In section 8.3 we present the IPTV sim-
ulator, the workload model, and the simulation scenario. The caching strategies
LFU, LRU and Clairvoyant are described in section 8.4. The simulation results
and the evaluation of the caching strategies are presented in section 8.5. Re-
lated work is in section 8.6, future work in section 8.7 and weconclude the
paper in section 8.8.

8.2 IPTV and time-shifted TV

We consider IPTV distribution within in a single operator network, where the
operator controls the network and how the TV content is distributed.

IPTV operators distribute traditional scheduled TV channels but also grad-
ually introduce new TV services where the viewer can choose to watch a pro-
gram later after its scheduled time. This service is called time-shifted TV (or
sometimes TV on-demand or Catch-Up TV).

A typical IPTV architecture with a hierarchical tree-like network structure
is illustrated in Figure 8.1. The TV content is delivered from content providers
and comes into the network at a central distribution center from where it is
transmitted to Video Hub Offices (VHO). A Video Hub Office has storage and
video streaming equipment to serve a district or a city. Under the VHO there
can be intermediate levels of storage and video servers. Different operators try
and use different structures of varying complexity. The figure also shows a TV
subscriber with a home network where the TV and the set-top box (STB) is
connected via a residential gateway to a Digital SubscriberLine Access Multi-
plexer (DSLAM).
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The TV channels are distributed using IP multicast from the distribution
center to the set-top boxes. TV programs requested outside the schedule are
streamed with unicast from the VHO (or from an intermediate server if avail-
able) to the set-top box.

8.3 Simulation of IPTV

8.3.1 Workload model

We want to investigate the load that IPTV with time-shift canput on a network
and how caching can reduce the bandwidth requirements. For this we need a
model of the network, a model of how TV is distributed and how TV view-
ers request programs and put load on the network. We need a TV schedule
with channels and programs that is continuously updated, a set of on-demand
programs, and a number of viewers that choose programs to watch (either live
programs or time-shifted programs).

Our approach to this is to use an empirical model to simulate IPTV dis-
tribution. We have implemented a time-driven simulator that operates on the
time-scale of minutes. We simulate TV distribution by stepping through real
TV schedules and by using statistics about the TV programs’ popularity and
viewer activity.

8.3.2 Data set

We use a data set from traditional TV with 13 channels over 5 days from Me-
diamätning i Skandinavien (MMS) [11]. MMS together with Nielsen Audience
Measurement [12] measure the viewing habits of the TV audience in Sweden.
The measurements are done using a so called People Meter system where the
viewing habits of sample households are logged using electronic meters con-
nected to the remote control.

Our data set include 2225 TV programs from the most popular TVchannels
in Sweden. For each TV program we extracted the time it was scheduled, its
length and the number of viewers. There are a few programs that have a very
large number of viewers. The most popular program in this data set have more
than 2.3 million viewers (26% of the population) while many of the programs
only have a few thousand viewers. The graph in figure 8.2 showsthe number
of programs and their share of the total TV viewing time. The top 1% (22 of
2225 programs) most popular programs stand for 26% of the viewed TV time



90 Paper C

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

TV programs

sh
ar

e 
of

 to
ta

l v
ie

w
ed

 m
in

ut
es

Figure 8.2: TV program popularity.

in this data set. The 10% most popular programs stand for 64% of the viewed
minutes.

The data set also gives us information about the total numberof viewers
that are active and watch TV at any given time. Figure 8.3 shows the fraction
of the viewers that are active and how it varies over the five days (Monday to
Friday). There are distinct peaks in the evenings when 40-48% of the viewers
are active.
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Figure 8.3: Percentage of viewers that are active.
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8.3.3 TV programs

In the simulator we represent and step through real TV schedules. For the data
set described in 8.3.2 we have a schedule with 13 channels over 5 days. So,
there is a set of at most 13 ongoing channel programs available at any point in
time. The data set also gives us the number of viewers of each program.

In each time step in the simulation we move forward one minutein the
schedule, update the set of programs (add new programs and delete the ones
that ended), and re-calculate the relative popularity of each program. The latter
sets the probability that a viewer will choose to watch a particular TV program.

There is also a set of time-shifted programs that is updated in each step
of the simulation. All scheduled programs goes into the set of time-shifted
programs and can be requested on-demand. The first minute of aprogram that
is scheduled (and sent out with multicast) at timet is made available for time-
shifted viewing at timet + 1. The time interval that the programs are available
on-demand decides the size of the set of available programs.This a tunable
parameter in the simulation. For the experiments describedin section 8.5 we
used a default value of 24 hours.

The popularity of the programs at a given time step in the simulation is
illustrated in figures 8.4 and 8.5 for the scheduled and time-shifted programs
respectively. Here no attempt is made to fit the data to well-known distribu-
tions. Instead we generate values from the empirical probability distributions
using the inverse transformation method, for instance described in Jain [13]. To
choose which program to watch a viewer generate a random number between
0 and 1 from a uniform distribution. For the example in figure 8.4, if the value
is between 0 and 0.46 then program 1 is chosen, if the value is between 0.46
and 0.84 program 2 is chosen and so on.

8.3.4 TV viewers

Our TV viewers are either ON watching TV programs or OFF sleeping. In the
simulator we follow the graph from the viewer statistics in figure 8.3 closely
and in each time step adjust the fraction of the viewers that are active and
watch TV. A viewer that is activated chooses a program to request. He chooses
either to join the distribution of an ongoing scheduled program or to request
one of the time-shifted programs that are available on-demand. The particular
program to watch is then chosen randomly following the empirical probability
distribution for the popularity of the currently availableprograms.

Table 8.1 shows parameter settings for the simulations we present in this
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Table 8.1: Simulation parameters.
Number of viewers 1000

Number of TV channels 13
Number of TV programs 2225

Programs available time-shifted 24 hours
Simulated time 7200 minutes

Scheduled TV/Time-shifted TV 50/50
TV stream bit rate 2 Mbps

paper. The share of time-shifted viewing will most likely increase with time
when more programs becomes available on-demand and the viewers get used
to choosing programs outside the schedule. Here we use a 50% chance that an
active viewer chooses to watch a time-shifted program.
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Figure 8.6: IPTV network simulation scenario. Studying theeffect of intro-
ducing a local cache.

8.3.5 Network model and simulation scenario

In our simulator we can represent different topologies withcaching at different
levels in the network including in the set-top boxes. But in this work we delimit
the network structure to study the effect of introducing a local cache (in the
DSLAM) and the importance of cache size and caching strategyused at this
node.

For this, we study one branch of an IPTV network topology (as shown in
figure 8.6) with one server, a single local cache, and one thousand viewers
(TV set-top boxes). We assume that all programs are distributed to the TV
server and that all programs are stored there as long as they are available for
time-shifted viewing. For the local cache it is different: what is stored in a
local cache at a given moment in time depend on the size of the cache (which
is a parameter that we investigate in the simulations), the caching strategy in
use; and what programs the viewers under the cache have chosen to watch (the
request pattern). We monitor the load on the link from the server to the local
cache and we investigate how the bandwidth requirements varies with cache
size (including the case with no caching) and caching strategy.

The bit rate of a TV stream depends on the TV channel and codec used.
For simplicity we here assume that all TV streams require 2 Mbps.

If a viewer requests a scheduled program, and none of its neighbors is
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watching this channel, then a multicast stream is added to the load on the link
down from the server to the local cache. If someone is alreadywatching the
channel, then the new viewer joins the ongoing multicast distribution and no
additional load is added to the down link. Requests for time-shifted programs
first go to the local cache. If the program is not available there, it is instead
transferred with unicast from the server adding 2 Mbps to theload on the down
link to the local cache.

8.4 Caching strategies

When the cache is full, and a new program part arrives, a strategy is needed
to decide what should stay in the cache and what to delete. In this work we
simulate and compare three different strategies.

8.4.1 Least Recently Used

With the Least Recently Used (LRU) strategy we delete from the cache the
program that has not been requested for the longest time.

8.4.2 Least Frequently Used

With Least Frequently Used (LFU) we discard the program thatis requested
least often. This could be done by counting the number of viewers that join the
multicast distribution of a program and the number of on-demand requests. In
the simulation we here use the known popularity of all programs, and delete the
one with the least probability for being requested. In addition to that we only
consider to deleteinactiveprograms; that is programs that no one is watching
at this moment in time.

8.4.3 Clairvoyant

In the simulation we also implement a clairvoyant strategy with the ability to
look into the future and delete the program part that will notbe needed for the
longest time. This is done by running the simulations twice.In the first run all
viewer requests are logged; and in the second run this information is used to
determine which program part that will not be asked for for the longest time.
The purpose of this strategy is to get an optimal caching strategy and a lower
limit to which we can compare the LRU and LFU strategies.
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8.5 Evaluation

We simulate 5 days of TV distribution in a simple scenario as described in
section 8.3. There are 1000 viewers that, when active, request scheduled TV or
time-shifted TV. The scheduled TV channels are distributedwith multicast via
a server; and all programs available for time-shifted viewing are also available
from this node. The questions we address are:how much bandwidth can we
save by introducing a local cache (between the viewers and the server)? and
how does the result depend on cache size and caching strategyin the local
cache?

Figure 8.7 shows the link load on the down link during the 5 simulated days.
The top figure shows the case without a local cache, where all time-shifted TV
are distributed in unicast streams from the core. The middlegraph shows the
link load when a 25 GB local cache is introduced. The bottom figure shows
the result with a cache that is sufficiently large (250 GB) to hold all available
time-shifted programs.

The graphs in figures 8.8 and 8.9 show the maximum and mean linkloads
for different cache sizes during the last three days of the simulations. Here we
also see a comparison between different caching strategies. The steep slope of
the curves show that introducing even a small cache can decrease the load on
the down link considerably. The LFU strategy performs better than LRU and
is also close to the lower limit set by the Clairvoyant caching strategy.

With a sufficiently large cache, with room for all available time-shifted
TV programs, the traffic down from the core to the local cache is low, but
not zero. Some viewers are watching the scheduled TV channels that are dis-
tributed with multicast from the core. There are also still some unicast transfers
of time-shifted programs from the server. This is because, with the caching
strategies investigated, a program is only distributed andcached if someone is
requesting it. Scheduled programs that none of our 1000 viewers are watch-
ing (for instance during night when few viewers are active) are not distributed.
If this program is later requested on-demand then, the first time, it is trans-
fered with unicast from the server. This explains why, even with a sufficiently
large cache, the link load down to the cache, can exceed that of 13 multicast
channels (which would require 26 Mbps with the parameter setting used in the
simulations).

The use and efficiency of the local cache strategy depend on the request
pattern i.e what programs the viewers request and in what order. To compare
the impact on the LFU and LRU strategies we did 10 different simulation runs
for each cache size. The error bars in figure 8.10 and 8.11 showlower and
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Figure 8.7: Link loads over five days for the cases: no cache, 25 GB cache, and
250 GB cache. Here the LFU caching strategy is used.

upper values for the resulting maximum and mean link loads onthe down link.

The error bars are sometimes overlapping. A closer examination, as illus-
trated in figure 8.12, show that this is due to variation between simulation runs.
With the same request pattern the LFU strategy always performs at least as
good as the LRU strategy in our simulations.

8.6 Related Work

The recent growth and popularity of IPTV services have led toan increasing
interest from researchers to measure and model IPTV viewingbehavior. Cha
et al. [14] present an extensive measurement study of viewing behavior includ-
ing channel popularity and channel switching in an operational IPTV network.
Ramos et al. [15] present work on constructing an IPTV workload model cap-
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Figure 8.8: Comparing maximum bandwidth usage on the down link for dif-
ferent caching strategies and cache sizes.

turing the way viewers change channels and watch live TV. Qiuet al. model
TV channel popularity [16] and user activities [17] in a large IPTV system
and present the SimulWatch workload generator. Their modelinclude set-top
box on-times and off-times, channel popularity and channelswitching. These
studies are similar to ours in that they model IPTV viewer behavior – but they
study traditional live TV, and model channel popularity andnot the popular-
ity of individual programs. We also simulate TV channels butour focus is
on investigating time-shifted TV and caching, and for this the popularity of
individual programs is a fundamental part of the model.

Yu et al. [18] measure and model user behavior and content access pat-
terns in a large video-on-demand system. There has been a vast amount of re-
search on different server scheduling techniques and proxycaching strategies
and combinations of the two for video-on-demand systems andcontent distri-
bution networks [1, 2, 3, 4, 5, 6]. These works are similar to ours in that they
study methods for minimizing bandwidth requirements for media content dis-
tribution and investigate the trade-offs between network bandwidth and cache
storage resources. Time-shifted TV has many similarities to VoD but for time-
shifted TV the broadcasters’ schedules decide when programs are released and
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Figure 8.9: Comparing mean bandwidth usage on the down link for different
caching strategies and cache sizes.

influence when and what people watch.

The work closest to ours are the studies by Wauters et al. [9, 10], Vleeschauwer
et al. [8], and Krogfoss et al. [7]. They investigate the trade-off between band-
width usage and storage in scenarios with time-shifted IPTV. But these studies
have a more theoretical approach in that they do not use real TV schedules
or TV statistics. Wauters et al. present an analytical model[9] and simula-
tions [10] of time-shifted TV with a sliding-interval caching mechanism and
co-operative caching. Vleeschauwer et al. [8] study a Catch-Up TV service
where the viewers can select to watch the content at a time later than the origi-
nal airing time. Based on observations from monitoring realTV program pop-
ularity they present a user behavior model and simulations where Poisson pro-
cesses are used to generate the time when programs are aired (corresponding
to the TV schedule) and the users’ requests for a program. Their conclusions
are consistent with ours that caching is needed to limit the otherwise enormous
bandwidth requirements when new TV services are fully introduced. Krogfoss
et al. [7] investigate several aspects of caching and optimization strategies for
IPTV networks including network dimensioning and cache placement.

There are also related work that look at the larger picture ofmanaging
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Figure 8.10: Maximum bandwidth usage for LFU and LRU with error bars (10
simulation runs).

a whole IPTV deployment. Mahimkar et al. [19] present work onperfor-
mance diagnosis in a large IPTV network. Agrawal et al. [20] develop a
general framework for planning an IPTV service deployment.Much research
has also focused on peer-to-peer techniques for TV distribution [21, 22, 23]
and VoD [24, 25, 26]. Cha et al. [21] analyze the TV viewing behavior in an
IPTV system and explore how P2P-techniques can complement existing Telco-
managed IPTV architectures.

8.7 Future work

IPTV with time-shift and the use of caching for IPTV are stillat an initial stage
of development. We have here studied the basic LRU and LFU caching algo-
rithms. For future work there are more complex IPTV scenarios and IPTV
caching strategies to investigate including co-operativecaches, pre-caching
during low traffic and more. Furthermore, the monetary cost of introducing
memory into the network versus providing the bandwidth needed is important
for operators.

There are also many possible refinements of the simulation model including
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Figure 8.11: Mean bandwidth usage for LFU and LRU with error bars (10
simulation runs).

tuning parameters such as the popularity of time-shifted programs and intro-
ducing more complex viewer behavior.

As described in section 8.6 much research has been done on caching for
video-on-demand. Time-shifted TV is something different in that we have an
initial multicast distribution of all programs and that thebroadcasters’ sched-
ules decide when programs are released and influence when andwhat people
watch. Also, much of the work on caching for video-on-demand, including
sliding-interval, prefix- and segment caching surveyed in [1], assume that only
a small part of a program can be kept in memory. The current trend with mem-
ory prices going down makes it possible to put much larger caches into the
network today than just a few years ago.

In this work we have assumed that all parts of a TV-program have the same
popularity. When more detailed viewing statistics become available for time-
shifted TV; and if it shows that the popularity of different parts of programs dif-
fer a lot, then it could be interesting to re-visit and evaluate more fine-grained
segment-based caching algorithms also in the context of IPTV.
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Figure 8.12: Detailed look on the maximum bandwidth usage for 10 simulation
runs with LFU and LRU and cache size = 150 GB. The LFU strategy is always
the better.

8.8 Conclusions

IPTV is now popular and widespread. Many telecom and broadband compa-
nies have become TV operators and distribute TV channels using IP multicast
in their network. Operators also gradually introduce new services like time-
shifted TV where the viewers can choose to watch the programslater after
their first airing.

With a centralized system, unicast distribution of time-shifted programs,
and hundred-thousands of subscribers, time-shifted IPTV distribution can be
very bandwidth demanding. And since TV statistics show thatmost people are
watching the same programs there can be a very large amount ofcopies of the
same content distributed and putting load on the network. Caching the most
popular programs closer to the viewers can significantly reduce the network
load, as we show in this paper.

The effectiveness of caching depend on several factors including viewing
behavior, request patterns and program popularity. For thedevelopment and
evaluation of good caching strategies it is therefore important to develop real-
istic IPTV workload models that include the new time-shifted TV services.

In this paper we present a simple IPTV workload model, simulate IPTV
distribution with time-shift, and show that caching can limit the bandwidth



102 Paper C

requirements significantly.
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Abstract

Today video and TV distribution dominate Internet traffic and the increasing
demand for high-bandwidth multimedia services puts pressure on Internet ser-
vice providers. In this paper we simulate TV distribution with time-shift and
investigate the effect of introducing a local cache close tothe viewers. We
study what impact TV program popularity, program set size, cache replace-
ment policy and other factors have on the caching efficiency.The simulation
results show that introducing a local cache close to the viewers significantly
reduces the network load from TV-on-Demand services. By caching 4% of the
program volume we can decrease the peak load during prime time by almost
50%. We also show that the TV program type and how program popularity
changes over time can have a big influence on cache hit ratios and the resulting
link loads.



9.1 Introduction 109

9.1 Introduction

Many telecom and broadband companies have become TV operators. They
distribute TV channels using IP multicast in their networksbut also gradu-
ally introduce new services like time-shifted TV (or TV-on-Demand) where
viewers can choose to watch the programs later, after its scheduled time. Dis-
tributing individual TV streams to each viewer requires a lot of bandwidth and
server capacity resulting in a big challenge for TV operators.

One way to reduce the network load is to cache popular contentcloser to
the users. Caching is a well studied technique for web content and video [1, 2],
but TV is different in many ways.

The potential for caching depends on several factors including user be-
haviour and content popularity. The new TV-on-Demand services have many
similarities with Video-on-Demand systems but there are also some clear dif-
ferences. In many traditional Video-on-Demand systems there are only a few
new releases of movies every week. For TV distribution with time-shift the
TV schedule with many ongoing channels gives a constant inflow of new pro-
grams that become available for on-demand requests. The program popularity
is also different. Many TV programs have a very short lifespan. For instance
news programs and weather forecasts quickly become outdated and lose their
popularity as soon as a more recent report is made available.

It is important to understand what impact these characteristics of the new
IPTV services have on caching. For the development and evaluation of good
caching strategies it is also important to develop realistic IPTV workload mod-
els that include the new time-shifted TV services and how popularity changes
over time.

In this paper we use an empirical IPTV workload model to simulate IPTV
distribution with time-shift. The simulations are based onreal TV schedules,
and statistics about TV program popularity and viewer activity.

The contributions of this paper are: we show that a comparatively small
local cache can be used to significantly reduce the peak link loads for TV dis-
tribution with time-shift. We also show that in addition to cache size and cache
replacement policy, TV program type and how program popularity changes
over time can have a big influence on cache hit ratio and the resulting link
loads.

The rest of the paper is structured as follows: In Section 9.2we describe
our data set and give examples of TV viewing behaviour both from traditional
linear TV and time-shifted TV. In Section 9.3 we describe theIPTV simulator
and the simulation scenario. The simulation results, showing the impact of
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Figure 9.1: Fraction of active TV viewers over two weeks. Predictable daily
and weekly variations in viewer behaviour.

TV program popularity, cache size, cache replacement policy, and program set
size, are in Section 9.4. Related work is in Section 9.5, and we conclude the
paper with a discussion in Section 9.6.

9.2 On TV viewing behaviour

9.2.1 Traditional linear TV

We use a data set from traditional TV with 13 channels over 28 days from Me-
diamätning i Skandinavien (MMS) [3]. MMS together with Nielsen Audience
Measurement [4] measure the viewing habits of the TV audience in Sweden.
The measurements are done using a so called People Meter system where the
viewing habits of sample households are logged using electronic meters con-
nected to the remote control.

Our data set includes 11635 TV programs from the most popularTV chan-
nels in Sweden. For each TV program we extracted the time it was scheduled,
its length and the number of viewers. There is a large variation in the num-
ber of viewers between different programs. The median number of viewers of
the programs in our data set is 27000. The maximum number of viewers of a
program is almost 3.3 millions.

The data set also gives us information about the total numberof viewers
that are active and watch TV at a given time. Figure 9.1 shows the fraction of
the viewers that are active and how it varies over the first twoweeks of the data



9.3 Simulation of IPTV with time-shift 111

set. We can see predictable daily and weekly variations in viewer behaviour.
There are small increases in viewer activity each morning and there are distinct
peaks during prime time every evening when up to 50% of the population is
watching TV. As expected, Friday and Saturday evenings are the times when
most people are watching TV, and we can also see that during the weekend
more people are watching TV during daytime.

9.2.2 Time-shifted TV

For TV programs that are available on-demand, popularity declines with time.
In a TV-on-Demand system, there is also a constant inflow of scheduled TV
programs that become available on-demand. Therefore it is not the same pro-
grams that are the most popular day after day. Figure 9.2 shows two exam-
ples of how the number of viewers and the rank of programs decrease with
time. The examples come from the Dutch TV-on-Demand site Uitzending
Gemist [5]. Many programs such as news programs and weather forecasts
quickly become outdated and lose their popularity when available on-demand.
Other programs, typically drama TV-shows, retain interestfrom some viewers
even a long time after their first release and initial peak in popularity. This
categorization is for instance described by Avramova et al.[6] that study and
model the popularity evolution of on-demand programs.

9.3 Simulation of IPTV with time-shift

In order to simulate IPTV distribution and evaluate cachingstrategies we use an
empirical model based on the data set described in Section 9.2.1. We simulate
IPTV distribution on the time scale of minutes. We have a TV schedule with 13
channels over 4 weeks and statistics about viewer activity and the popularity
of the TV programs.

An earlier version of the simulator was presented in [7], andthe reader is
referred to that paper for details of the simulator that are not included here.

In the earlier version in [7] the TV programs were only available on-demand
for a short time (24 hours) and they kept their original popularity. An impor-
tant extension in the current version is that we simulate howprogram popularity
changes over time and how this depends on program type. This is described in
Section 9.3.3.
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Figure 9.2: The top figure shows the number of viewers per day and the rank for
an episode of the reality TV showFarmer wants a wife. The bar graph shows
viewers per day with the scale on the Y-axis shown to the left.The plotted line
shows the rank with the scale on the Y-axis shown to the right.The bottom
figure shows the number of viewers per day for a TV news program. The
figures show how the popularity changes over 40 days after thelive broadcast.
The popularity of a news program quickly declines.
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Figure 9.3: IPTV simulation scenario.

9.3.1 Network model and simulation scenario

We have a scenario with one branch of an IPTV network topology(as shown in
Figure 9.3) with one server and one thousand viewers (TV set-top boxes). We
simulate viewer requests for TV-programs and study the effect of introducing a
local cache (in the DSLAM), the importance of cache size and cache replace-
ment policy at this node, and the significance of TV program popularity and of
the size of the set of available on-demand programs.

The scheduled TV channels are distributed with multicast and all programs
then also become available for time-shifted viewing. We assume that all pro-
grams are distributed to the TV server and that all programs are stored there
as long as they are available for time-shifted viewing. For the local cache it is
different: what is stored in a local cache at a given moment intime depend on
the size of the cache, the caching strategy in use, and what programs the view-
ers under the cache have chosen to watch (the request pattern). We monitor the
cache hit ratio and the load on the link from the server to the local cache and
we investigate how these change for different parameter settings.

9.3.2 TV viewers

In the simulator we follow the graph from the viewer statistics in Figure 9.1
closely and in each time step adjust the fraction of the viewers that are active
and watch TV. A viewer that is activated chooses either to join the distribu-
tion of an ongoing scheduled program or to request one of the time-shifted
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Table 9.1: Simulation parameters.
Number of viewers 1000

Number of TV channels 13
Number of TV programs 11635

Programs available time-shifted 21 days
Simulated time 28 days

Scheduled TV/Time-shifted TV 50/50
TV stream bit rate 2 Mbps

Total program volume (21 days) 5064 GB

programs that are available on-demand. The particular program to watch is
chosen randomly following the empirical probability distribution for the pop-
ularity of the currently available programs. Table 9.1 shows the parameter
settings for the simulations we present in this paper. If a viewer requests a
scheduled program, and none of its neighbors is watching this channel, then a
multicast stream is added to the load on the link down from theserver to the
local cache. If someone is already watching the channel, then the new viewer
joins the ongoing multicast distribution and no additionalload is added to the
down link. Requests for time-shifted programs first go to thelocal cache. If
the program is not available there, it is instead transferred with unicast from
the server adding 2 Mbps to the load on the down link to the local cache.

9.3.3 TV programs

We step through, minute by minute, the TV schedule with 13 channels over 28
days. In each time step we update the set of programs. We also re-calculate the
relative popularity of each program using the number of viewers of each sched-
uled program that we got from the input data set. The latter sets the probability
that a simulated viewer will choose to watch a particular TV program.

The set of time-shifted programs is also updated in each stepof the simu-
lation. All scheduled programs goes into the set of time-shifted programs and
can be requested on-demand. The time interval that the programs are available
on-demand decides the size of the set of available programs.This a tunable pa-
rameter in the simulation that we investigate in Section 9.4.2. As a default value
we let the programs be available on-demand for three weeks. With this param-
eter setting we have a steady state after 21 days when programs are deleted
from the set of time-shifted programs in the same pace as new ones are sched-
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Figure 9.4: Available volume of time-shifted programs over28 simulated days.

uled and introduced. Figure 9.4 shows the available volume of time-shifted
programs over 28 simulated days. When evaluating the effectof caching in
Section 9.4 we only consider the last simulated week. There are then on aver-
age 8736 time-shifted programs to choose between and a program volume of
5064 GB.

Each time-shifted program has a value of popularity which determines the
probability that a viewer will choose to watch this particular program. This is
initially set to the same value as the program had when scheduled (which is
the number of viewers the program had in the input data set). But the popu-
larity of a time-shifted program declines with time. Inspired by the work by
Avramova et al [6] we investigated different functions for how TV program
popularity changes. We categorized each program in our dataset as either
News-like or Drama. Programs such as news, business and weather reports,
sports, game shows, and morning shows focusing on current events, were all
classified into the News category of programs that quickly decrease in popu-
larity. Other programs including movies, TV-series, and documentaries were
classified into the Drama category with more slowly declining popularity. The
mix of programs differs a lot between different channels. Some offers a lot
of news programs, others have only movies and documentaries. With the 13
channels in our dataset 68% of the programs were sorted into the drama cat-
egory of programs. In the simulations we let the news programs quickly lose
their popularity when available on-demand, while the dramaprograms retain
their interest over a longer time following the functions plotted in Figure 9.5.
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Figure 9.5: Popularity over time for programs categorized as news or drama.

9.3.4 Cache replacement policy

When the cache is full, and a new program part arrives, a cachereplacement
policy is needed to decide what should stay in the cache and what to delete. In
this work we simulate and compare three classic policies: Least Recently Used
(LRU), Least Frequently Used (LFU) and Clairvoyant.

With the LRU strategy we delete from the cache the program that has not
been requested for the longest time. With LFU we discard the program that is
requested least often. This could be done by counting the number of viewers
that join the multicast distribution of a program and the number of on-demand
requests. In the simulation we here use the known popularityof all programs,
and delete the one with the least probability for being requested.

In the simulation we also implement a clairvoyant strategy with the ability
to look into the future and delete the program part that will not be needed for
the longest time. This is done by running the simulations twice. In the first run
all viewer requests are logged; and in the second run this information is used
to determine which program part that will not be asked for forthe longest time.
The purpose of this strategy is to get an optimal caching strategy and a upper
limit to which we can compare the LRU and LFU strategies.
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Figure 9.6: Load on downlink during 7 days for the cases with no cache (top)
and with a 200GB cache (bottom).

9.4 Simulation results

We simulate TV distribution with time-shift in a simple scenario as described
in Section 9.3. In Section 9.4.1 we study the effect of introducing a local cache,
and how the resulting cache hit ratio and link load depend on cache size and
cache replacement policy. Here we use the default parametersettings described
in Section 9.3 where all programs from 13 channels are available on-demand
for three weeks, and all programs are categorized as either news-like or drama
and have a popularity that decreases over time correspondingly. In 9.4.2 we
vary the time that the programs are available on-demand and study how this
impacts on the caching efficiency. In 9.4.3 we investigate what significance
program popularity have for caching.

9.4.1 Impact of cache size and cache replacement policy

Figure 9.6 shows the link load on the down link during the last7 simulated
days. The top figure shows the case without a local cache, where all time-
shifted TV are distributed in unicast streams from the core.The bottom graph
shows the link load when a 200 GB local cache is introduced using the LFU
cache replacement policy. The volume of on-demand TV programs to choose
from is on average 5064 GB during the last week of the simulation that we
study here. A 200 GB cache can hold 4% of the available programvolume
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Figure 9.7: Comparing maximum bandwidth usage on the downlink for differ-
ent cache sizes and cache replacement policies. The bars show minimum and
maximum values from 5 simulation runs.

and on average it reduces the link load by 45.7%. The highest peak during
primetime is reduced by 49.1% from 770 Mbps to 392 Mbps. The graphs in
Figures 9.7 and 9.8 show the maximum link loads and cache hit ratios (CHR)
for different cache sizes. Here we also see a comparison between different
cache replacement policies.

We see in Figure 9.8 that LFU performs better than LRU. Caching 4% (200
GB) of the available programs with LFU gives a 50% hit rate. Wecan also see
that there is still a lot of room for improvement up to the optimal clairvoyant
replacement policy. With optimal caching (and a cache size of 200 GB) the hit
ratio is increased from 50% to 62% compared to LFU.

9.4.2 Impact of on-demand time and program set size

If we change the time period that programs are available on-demand then we
also change the size of the set of programs that are availablefor on-demand
requests at a given time. Figure 9.9 shows the results for thecases when pro-
grams are available 1 day, 1 week, and 3 weeks. We can see that even though
the program popularity declines with time, the time period that we let the pro-
grams be available on-demand has a big impact on the cache hitratio. In these
simulations the LFU cache replacement policy was used. For the case when
the programs only are available 1 day there are on the average417 on-demand
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Figure 9.8: Cache hit ratio for different cache sizes and cache replacement
policies. The total volume of available on-demand programsare on average
5064 GB. A cache size of 100 GB corresponds to 2%, and 500 GB is close to
10% of the available program volume.
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Figure 9.9: Comparing cache hit ratio for the cases when programs from 13
channels are available on-demand 1 day, 7 days and 21 days.
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Figure 9.10: Influence of program popularity on cache hit ratio. The results
for the set of categorized programs with decreasing popularity is compared to
stationary program popularity, equal popularity, and withthe case where all
programs (as news programs) quickly decrease in popularity.

programs to choose between in our simulation scenario with an inflow from 13
channels.

9.4.3 Impact of program popularity

The popularity distribution of TV-programs is important for the usefulness of
caching. This is also one aspect where TV with time-shift differs from tradi-
tional Video-on-Demand in that many popular TV programs (such as news and
weather forecasts) have a very short life span.

In order to get an idea of what impact different aspects of program popu-
larity have on the results we compare the cache hit ratio thatwe get with our
work load model with the cases: stationary, equal, and news-like popularity.
Figure 9.10 shows the results. In these simulations the LFU cache replacement
policy was used. In theequalcase the popularity of all programs are set to
the same constant value. In thestationarycase all programs keep their orig-
inal values of popularity (which are the number of viewers the programs had
when they were first aired) during the time they are availablefor on-demand
requests. In our workload model we also categorize all programs and take into
account that program popularity changes over time. A comparison between the
stationary and categorized cases in the graph shows what impact this have on
the results. In thenewscase we see what the cache hit ratio would be if all
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programs were news-like and quickly decreased in popularity. For example,
with a 200 GB cache (that can hold 4% of the program volume) we get a cache
hit ratio of 17% for theequalcase, we get a 50% hit ratio for our categorized
workload model, and for thenewscase 81% of the requests can be handled by
the local cache. This shows that the program type, or the typeof TV channel
that offers on-demand services, has a big influence on the caching results.

9.5 Related Work

The recent growth and popularity of IPTV services have led toan increasing
interest from researchers to measure and model IPTV viewingbehaviour. Cha
et al. [8] study viewing behaviour including channel popularity and channel
switching in an operational IPTV network. Qiu et al. model TVchannel popu-
larity [9] and user activities [10] in a large IPTV system andpresent the Simul-
Watch workload generator. These studies are similar to oursin that they model
IPTV viewer behaviour – but they study traditional live TV, and model channel
popularity and not the popularity of individual programs. We also simulate TV
channels but our focus is on investigating time-shifted TV and caching, and for
this the popularity of individual programs is a fundamentalpart of the model.

Gopalakrishnan et al. [11] measure and model in detail the interactive user
behaviour in an IPTV environment, including how users fast-forward, pause
and rewind to control their viewing. There are also many interesting studies
of video popularity. Griwodz et al. [12] model long-term popularity of videos
on the time scale of days based on VHS rental statistics. Tanget al. [13] anal-
yse and model many aspects of media server access and implement a workload
generator. Their model include both static and temporal filepopularity and
they distinguish between files with regular and news-like lifespan. Kang et
al. [14] analyse workload on the Yahoo video sharing site. Gill et al. [15] and
Cha et al. [16] present extensive studies of YouTube video sharing. Borghol et
al. [17] study the popularity dynamics of Youtube videos. Yuet al. [18] study
content access patterns in a large Video-on-Demand system.Lou et al. [19]
study the popularity evolution of video files from a Chinese television station
and use trace-driven simulation to evaluate caching in a p2pVideo-on-Demand
system. Dan and Carlsson [20] measure and analyse BitTorrent content pop-
ularity. Avramova et al. [6] study and model the popularity evolution of TV-
on-Demand and video traces. Szabo and Huberman [21] predictthe long-term
popularity of online content at Digg and Youtube based on early measurements
of user accesses.
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Related work on caching include the work by Borst et al. [22] that study
caching algorithms for content distribution networks. Wauters et al. [23],
Vleeschauwer et al. [24], and Vleeschauwer and Laevens [25]use analytical
models and simulations to study the performance of caching strategies in IPTV
on-demand systems. These studies have a more theoretical approach and is in
this sense complementary to our work. They do not use real TV schedules or
TV statistics to run the simulations. Krogfoss et al. [26] also investigate several
aspects of caching and optimization strategies for IPTV networks including
network dimensioning and cache placement.

Much research has also focused on peer-to-peer techniques for TV and VoD
including [27, 28, 29, 30].

9.6 Discussion

Our simulation results show that a comparatively small local cache can be used
to significantly reduce the peak link loads during prime time. Caching 4%
of the on-demand program volume gives a 50% hit rate with the LFU cache
replacement policy. The simulation results also show that the program type,
or the type of TV channel that offers on-demand services, hasa big influence
on the caching results. It matters whether we have news programs that quickly
become outdated or movies that keep their popularity over a longer time.

For future work more complex IPTV scenarios and caching strategies may
be considered. There are also several possible refinements of the simulation
model such as separating the popularity of different segments of a time-shifted
program and introducing more complex viewer behaviour. Thelarge, pre-
dictable, daily variations in user demand described in Figure 9.1 means that
it is important to have the right programs in the cache duringprime time. It
also makes pre-caching during low traffic an interesting area for further study.
Furthermore, the monetary cost of introducing memory into the network versus
providing the bandwidth needed is important for operators.
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of peer-to-peer IPTV communities.Computer Networks, 53(4):470–484,
March 2009.



Chapter 10

Paper E:
Program Popularity and
Viewer Behaviour in a Large
TV-on-Demand System

Henrik Abrahamsson and Mattias Nordmark.
In Internet Measurement Conference (IMC’12), November 2012, Boston, USA.

c©2012 Association for Computing Machinery (ACM). Reprintedwith permis-
sion.

127



Abstract

Today increasingly large volumes of TV and video are distributed over IP-
networks and over the Internet. It is therefore essential for traffic and cache
management to understand TV program popularity and access patterns in real
networks.

In this paper we study access patterns in a large TV-on-Demand system
over four months. We study user behaviour and program popularity and its
impact on caching.

The demand varies a lot in daily and weekly cycles. There are large peaks in
demand, especially on Friday and Saturday evenings, that need to be handled.

We see that the cacheability, the share of requests that are not first-time re-
quests, is very high. Furthermore, there is a small set of programs that account
for a large fraction of the requests. We also find that the share of requests for
the top most popular programs grows during prime time, and the change rate
among them decreases. This is important for caching. The cache hit ratio in-
creases during prime time when the demand is the highest, andcaching makes
the biggest difference when it matters most.

We also study the popularity (in terms of number of requests and rank) of
individual programs and how that changes over time. Also, wesee that the type
of programs offered determines what the access pattern willlook like.
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10.1 Introduction

Today increasingly large volumes of TV and video are distributed over IP-
networks and over the Internet. Many telecom and broadband companies have
become TV operators and distribute TV channels using IP multicast in their
networks. The TV services also evolve, and are more and more changing to-
wards TV-on-Demand and time-shifted viewing where the users can choose
to watch the programs after its scheduled time. Distributing individual TV
streams to each viewer requires a lot of bandwidth and servercapacity. How
to best use caching of popular content closer to the viewers is therefore an
important issue to reduce network load.

In this paper we study access patterns in a large TV-on-Demand system
over four months. We study user behaviour and program popularity and its
impact on caching.

There are several studies of viewing behaviour in IPTV systems where tra-
ditional scheduled TV is distributed over IP networks [1], [2], [3]. This include
studies of TV channel popularity and channel switching. Ourwork is different
in that we look at TV-on-Demand where the viewers choose programs to watch
outside of the TV schedule. The programs are not distributedusing multicast
but transferred with unicast streams to the viewers.

In this sense our work is closer to studies of content access patterns in tra-
ditional Video-on-Demand systems (VoD) [4]. But TV-on-Demand is different
from traditional VoD in several ways. The TV-on-Demand service is more di-
verse. It is a mix of TV program libraries, time-shifted viewing, and rental
video. Time-shifted viewing here means that the viewer can choose to watch
ongoing scheduled TV-programs from the beginning. The TV schedule gives
a large inflow of new programs each day. The programs available also come
from a wide range of TV channels. There is a large variation inprogram types
(news, drama, children’s programs, movies, etc.) which each can have different
access patterns. Many programs, like news and weather forecasts, also have a
very short lifespan and are typically only interesting for afew hours.

The two main contributions of this paper are: (1) an investigation of pro-
gram popularity and access patterns for TV and video on demand in a real
network, (2) a trace-based study of caching. We characterize access patterns
for different program categories, we show how program popularity changes
over time and how this differs between different program types. We then use
the request sequence in our data set for trace-driven simulation and study cache
hit ratios for different cache sizes, cache replacement policies and population
sizes.
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Our main results are:

• The popularity (ranking) of rental movies, news, and TV shows changes
over time in very different ways. News programs are often only re-
quested for a few hours, movies are popular for months and increase in
rank during weekends, TV shows increase in rank when the nextepisode
is shown, children’s programs are top ranked in the morningsand early
evenings. This means that programs jumps in and out of the top100 list.
It also means that thetypeof content offered is essential for what the
access pattern will look like.

• The program popularity conforms with the Pareto principle,or 80-20
rule. There is a small set of programs that account for a largefraction
of the requests: the 2% most popular programs get 48% of the requests,
and the 20% most popular programs get 84% of the requests.

• The share of requests for the top 100 most popular programs increases
during prime time and the change among the top 100 decreases during
prime time and during weekends when the demand is the highest.

• The cacheability is very high. The hit ratio with LRU is above50%
when caching 5% of the average daily demand, and the hit ratioincreases
during prime time when it is needed most.

The rest of the paper is structured as follows: In Section 10.2 we describe
the TV-on-Demand service and introduce the data set. In Section 10.3 we
study access patterns and the daily and hourly change in userinterest. In Sec-
tion 10.4 we look at the program popularity in more detail, how the access
patterns differs between different program categories, and how the popularity
of individual programs changes over time. In Section 10.5 weshow what im-
pact the access patterns has on cacheability and cache hit ratios. Related work
is in Section 10.6, we discuss future work in Section 10.7 andconclude the
paper in Section 10.8.

10.2 The data set

We study logs from the TeliaSonera TV-on-Demand service. The program
selection is a mix from a wide range of TV channels (news, drama, children’s
programs, movies, etc.). It is a mix of TV program libraries,time-shifted view-
ing, and rental video.
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Table 10.1: The data set in figures
Requests Clients Programs

Total (over 125 days) 10294948 307347 89889
Daily median 80174 30232 7523

Daily max 121053 42451 8751
Daily min 56720 22194 6316

The TeliaSonera TV service also includes multicast distribution of tradi-
tional scheduled TV. Here we only study logs of on-demand requests but the
TV schedule with many ongoing channels gives a constant inflow of new pro-
grams that become available for on-demand requests. In our data set, on aver-
age 8% of the programs each day have not been requested before.

The data set is a mysql database with logs from RTSP sessions where we
for each session have:<Timestamp, Length, ServerID, ClientID, AssetID>.

The timestamp shows when the session ended and by subtracting the length
of the session we get the time when the request arrived. The AssetID identi-
fies what TV program is requested. For each asset, we also haveadditional
out-of-band information about providers and program descriptions that help us
categorize the programs into genres.

The data set is summarized in Table 10.1. It contains TV-on-Demand re-
quests over 125 days between May 12th and September 13th 2011. During this
period almost 90000 different programs were requested. Thedata set includes
more than 300000 clients making more than ten million requests.

Figure 10.1 shows the number of requests, viewers, and programs per day.
There are distinct weekly cycles where the number of active clients and the
number of requests increase a lot during the weekends.

On average more than 30000 clients are active per day often increasing up
to 40000 at the weekends. Some viewers are much more active than others and
watch more TV programs. Viewers also subscribe to differentTV packages
and have access to different number of TV channels and program libraries. We
can see that 5% of the viewers account for 41% of the requests and 20% of
the viewers account for 75% of the requests. Figure 10.2 shows a log-log-plot
of the number of requests per viewer. While many clients onlywatch a few
on-demand programs per month, the most active viewer had more than 137
requests per day on average. Some of these sessions were 5-30minutes long
but many where short, jumping between different on-demand programs.

The clients in the data set are all in the same time zone and in the same
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Figure 10.1: Number of requests, active clients, and distinct programs re-
quested per day over 125 days. The grid shows weeks starting from Mondays.

geographical region. Later in Section 10.5, when looking atcaching, we will
also study smaller subsets of the population. We have one geographically close
subset with 23304 clients in the same town. For the smaller populations in
the study we randomly chose clients and include into sets of different size up
to 10000. We will use the labelsregion (307347),town (23304),rand10000,
rand1000etc. for the different populations.

On average 7523 different programs are requested per day. Asexpected,
some programs are much more popular than others. On average the top 10
programs each day get 11% of the requests, the top 100 get 35%,and the top
1000 account for 71% of the requests. We will look at the program popularity
in more detail in Sections 10.3 and 10.4.

10.3 Access patterns

10.3.1 Access pattern over a week

Figure 10.3 shows the number of requests per hour during one week from
Thursday to Wednesday.
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Figure 10.2: Log-log plot of requests per client over 125 days.

Table 10.2: The week 19-25/5 in figures
Requests Clients Programs

Total (over 7 days) 585147 105698 14067
Daily median 76931 31542 6813

Hourly median 2626 1723 1190
Hourly max 16037 9019 2987
Hourly min 186 131 128

We can see here in detail the typical daily and weekly variation in demand.
There are large, predictable peaks in demand in the evenings. The number of
requests are often four times higher or more during the peak hour compared to
the average demand during daytime. As expected, the number of requests are
the highest on Friday and Saturday evening. The demand during daytime also
increases during weekends.

The number of distinct programs requested per hour follows asimilar pat-
tern to that of the demand but the peaks are not as pronounced.The number of
different programs requested often doubles in the eveningscompared to day-
time. In this particular week the median number of programs requested per
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Figure 10.3: Number of requests per hour during a week. The grid points out
the hours between 11:00-12:00 and 23:00-00:00 each day.

hour was 1190, the hourly maximum was 2987 programs (Saturday 21:00-
22:00) and the minimum was 128 programs (Wednesday 04:00-05:00).

The bar plot in Figure 10.3 also shows the number of requests for the top
10 and top 100 most popular programs each hour. Figure 10.4 shows the share
of requests per hour that the top 100 most popular programs account for. On
an hourly basis the top 100 on average get 50% of the requests.The top 100
obviously have a large part of the traffic during night when not much more
than 100 programs are requested. But more interestingly thetop 100’s share of
requests also increase significantly during prime time. Thenumber of different
programs requested increases during the evenings and so a hundred programs
constitute a smaller share of the requested program volume.But even so the
top 100’s share of requests increase significantly.

10.3.2 Daily and hourly change in user interest

Which programs are most popular change over time. On average6 of the top 10
programs are replaced each day. Figure 10.5a shows the dailychange among
the top 100 and top 1000 most requested programs. Here we alsosee the
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daily change among all requested programs. On average 73% ofthe requested
programs are the same as yesterday. On average 56% of the top 100 and 42%
of the top 1000 is different from the day before.

We notice in Figure 10.5a a weekly pattern with less change intop 100
during weekends (from Fridays to Saturdays and Saturdays toSundays).
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Figure 10.4: The figure shows the share of requests per hour that the top 100
most popular programs account for. It also shows the share ofprograms re-
quested that a hundred programs comprises. The top 100’s share of requests
increases during night when few programs are requested but more interestingly
it also increases during prime time when the demand is the highest. The grid
points out the hours between 11:00-12:00 and 23:00-00:00 each day.

This suggests that what the most popular items will be is morepredictable
during weekends when the demand also is the highest. This is even clearer on
an hourly basis.

Figure 10.5b shows the hourly change among the top 100 most requested
programs. On average 51 out of the 100 most requested programs are the same
as the hour before. But the amount of change in the top 100 varies from hour to
hour in a distinct daily cycle. During night up to 92% of the top 100 programs
are changed from one hour to the next. While during prime time(19:00 to
23:00) the top 100-list becomes much more stable with down to19% change
among the top 100 programs.
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Figure 10.5: (a) Daily change among the top 100 and top 1000 most requested
programs. (b) Hourly change among the top 100 most requestedprograms.
The figures also shows the fraction of all programs that was not requested the
day and hour before.
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Figure 10.6: Cumulative distribution of requests to programs (1 day, 7 days
and 125 days).

10.4 Program popularity

There is a small set of popular programs that account for a very large part of
the requests. The Pareto principle, or the 80-20 rule, is often referred to when
describing video popularity and the concentration of user interest towards a few
popular programs [5], [4]. The users spread of requests across programs in the
TV-on-Demand system conforms with this principle. The 20 % most popular
programs account for more than 80% of the requests.

We calculated the number of requests for each program, sorted them in
order of popularity, and plotted the cumulative distribution function shown in
Figure 10.6. Here we can see the number of requests per program as a CDF-
plot for 1 day, 1 week and for the entire 125-day period.

If we consider the entire 125-day period, then the 2% most popular pro-
grams account for 48% of the requests, the 10% most popular programs ac-
count for 74% of the requests, and the 20% most popular programs receive
84% of the requests. The figures are similar on daily and weekly basis as well.

This skewness in popularity for TV-on-Demand is somewhere in between
what has been described in the literature for user-generated content and tradi-
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Figure 10.7: Log-log plot of requests per program (1 day, 7 days, 125 days).

tional Video-on-Demand systems. For Youtube traffic, investigated by Cha et
al. [5], 10% of the videos accounted for 80% of the requests. In the chinese
PowerInfo Video-on-Demand system described by Yu et al. [4], 10% of the
videos accounted for 60% of the accesses. TV-on-Demand systems are more
dynamic than traditional VoD systems with a large daily inflow of new content.
As we will see in Section 10.4.2, there are programs that are popular for several
weeks and accumulate a lot of requests, but there are also many programs that
have a very short life-span and are only requested for a few hours.

Figure 10.7 shows the number of requests per program as a log-log plot. It
shows the number of times that a program has been accessed versus the ranking
of the program in the data set.

There are a large number of research papers that deal with thepopularity
distribution of web pages and video. Much of the debate concerns whether the
distribution of requests is Zipf-like or not [6, 5, 7, 8, 4]. Here we do not try
to fit the curve to a specific probability distribution. However, we note that the
curve does not follow a straight line on the log-log scale. This implies that the
distribution of TV-on-Demand requests does not follow a Zipf-like distribution.

The 80-20 rule, and the concentration of requests to a small set of pro-
grams is important for caching. This is independent of what exact probability
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distribution best describes the access frequency. In Section 10.5 we perform
trace-driven simulation, and directly use the sequence of requests to investigate
the impact on caching.

10.4.1 Access patterns per program category

Different categories of programs have different access patterns. Figure 10.8
shows the number of requests per hour over two weeks for programs in four
different categories: rental video, TV news, drama and children’s programs.
The figure demonstrates some clear and expected differencesin access patterns.

The top figure shows the access pattern for rental movies. These are movies
that a viewer can pay to access for 24 hours. We can see that movie rentals are
concentrated over weekends with large peaks in demand during Friday and
Saturday evenings.

For TV news the traditional TV schedule determines to a largeextent also
when the program is requested on demand. The TV news is scheduled daily
at 19:00 and 22:00. At the same time it becomes available for time-shifted
viewing and we can see that most requests are close to these times.

For the other two categories we note that the TV reality and drama shows
are watched during the daytime to a larger degree than other programs. We
also see that the children’s programs have peaks in demand inthe mornings
and early evenings. This is especially true for weekends.

10.4.2 Access patterns for individual programs: how pro-
gram popularity changes over time

The popularity of a program changes with time and the demand pattern varies
depending on the program type. Figure 10.9 shows the number of requests per
day for 20 different programs over 125 days.

The top figures show the most requested rental movies and TV news pro-
grams in the data set. For each movie we can see a slow decline in popularity
over time. The movies are requested many weeks after their premiere. There
is also a clear weekly pattern with peaks in demand at the weekends. For TV
news programs the access patterns are very different compared to movies. A
news program is mostly requested the first evening and then quickly becomes
outdated and loses its popularity when available on demand.

The figures at the bottom show the access pattern for five episodes of a
daily TV reality show and five episodes of a weekly home improvement show.
We can see that the request patterns for different episodes of the same show
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Figure 10.8: Access patterns per program category: rental movies, TV news,
TV drama, and children’s programs. Requests per hour over two weeks. The
grid points out the hours between 11:00-12:00 and 23:00-00:00 each day.
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are surprisingly similar. For the reality show we can also see that after the
initial peak in demand the program popularity quickly decline with time. The
programs are requested daily also the following three months but there are
often only a few requests per day.

The life of a rental movie

Figure 10.10a shows the number of requests per day and the rank for a comedy-
drama rental movie. We can see the decline in popularity over16 weeks from
the premiere. The figure also demonstrates the typical peaksin popularity for a
rental movie during weekends where the number of requests increases and the
program increase in rank.

Figure 10.10b shows the change in rank in more detail among the top 100
most popular programs each day. We can see that the movie jumps in and out
of the top 10 and top 100 lists a number of times. This has implications for the
choice of caching strategy. It is essential to have the rightprograms in the cache
at Friday and Saturday evenings when the total demand is the highest. If the
replacement policy acts on popularity over a short time window the program
might be evicted when popularity temporarily goes down during weekdays and
the program will not immediately be available in the cache when the demand
increases again next weekend.

Figure 10.10b also compare the rank for our movie among all programs
with the rank among only rental movies. The movie is the number one most
popular movie for 14 days in a row and it stays in the top 10 for one month and
in the top 20 for two months.

Figure 10.11 shows the rank and the number of requests per hour during
the first week that the movie is available. The movie quickly climbs in rank
and becomes one of the most popular programs. It is in the top ten during
the evenings but the rank of the program sometimes drops during the daytime
and during night. There are large, predictable daily variations in demand with
peaks in the evenings. The number of requests increases significantly during
Friday and Saturday.

The life of a TV news program

TV news programs have a very short lifespan compared to movies. Figure 10.12
shows the rank and number of requests per hour for a news program that was
sent live at 19:00.
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Figure 10.10: (a) Requests per day and ranking for a rental movie (comedy-
drama). The bar graph shows requests per day with the scale onthe Y-axis
shown to the left. The plotted line shows the ranking of the program among all
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Most of the requests are the first hour when the program becomes available.
The news program immediately becomes the most requested program that hour
and number one on the ranking. The popularity then quickly declines. There
are almost no requests at all for a news program after the firstday. The ac-
cess pattern is very different compared to what we see in Figure 10.11 for the
simultaneously available movie.

TV series and children’s programs – periodic increase in popularity

The interest in a TV program usually decreases with time. Butmore often than
not the popularity of a program can also increase temporarily or periodically.
We saw in the previous sections that the number of requests for a program
varies during the day and the week. We also saw for rental movies that the
ranking increased during weekends.

Many TV shows are part of a series of programs. When the next episode is
sent there is often also renewed interest for old episodes available on-demand.
Figure 10.13 shows an example with the rank and number of started sessions
per day for an episode of a weekly home improvement TV show. Wecan see
that the program increase in rank every Thursday when the series is shown on
the traditional scheduled TV.

Figure 10.14 shows the number of requests per day and the ranking for a
cartoon. After the initial peak in interest the popularity decreases and remains
at a steady level over the month when the program is available. This is different
if we look at the ranking on an hourly basis. Figure 10.15 shows the ranking
of the program per hour during the first week. The pattern is the same for the
next three weeks as well. The program varies in popularity. It goes in and out
of the top 100 list, often twice a day.

The number of requests for children’s programs increases inthe mornings
and in the early evenings. This is a daily recurring pattern.Also, at these times
of the day there is little demand for other TV-programs so fewrequests are
needed to get into the top ranking.
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10.5 Impact on caching

In previous sections we have seen many aspects of the access patterns in a
TV-on-Demand system. In this section we study the impact on caching. We
examine the proportion of requests that are not first-time requests for a program
and therefore potentially could be served from a cache. We look at this for
different population sizes and time periods.

We then use trace-driven simulation to investigate the cache friendliness of
the workload with a limited cache size and the classic LRU andLFU cache
replacement policies. We run the sequence of requests in ourdata set through
caches of different size and look at the resulting cache hit ratios.

10.5.1 Cacheability

For on-demand caching, the first request for a program needs to go to the cen-
tral server. But if we imagine an unlimited cache size then all other requests
could potentially be served from the local cache. It is therefore interesting to
examine the proportion of requests that are not first-time requests. We here call
thatcacheability.

We follow the definition ofcacheabilityused by Ager et al. [9]. But our
data set do not include information about program size so here we only con-
sider requests. Cacheability is then the share of requests that are not first-time
requests. Ifki is the total number of requests for a programi then the cacheabil-
ity is

∑n
i=1(ki − 1)/

∑n
i=1(ki), wheren is the number of programs.

The share of first time requests is very low in the TV-on-Demand system if
we consider all clients over a long period of time. The cacheability over 125
days is: 99.13%.

In Figure 10.16 we also look at the cacheability per day and per hour and
for populations of different size. The calculation of cacheability starts from the
beginning of each time interval. It is not considering what have been requested
the hour or day before. For all clients in the region during the week in Fig-
ure 10.16, the median cacheability per hour is 59%. However,there are large
daily variations. During night many programs are requestedonly once and the
cacheability is low. During Friday and Saturday evenings the cacheability is
above 80%.

Figure 10.17 shows examples of cacheability over 125 days for smaller
populations. For very small populations the probability that a viewer will
choose a program that nobody else in the group has requested before is high.
So the share of first-time requests is high and the cacheability is low. But we
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see that already for groups of 1000 viewers the cacheabilityis above 60%. We
calculated the cacheability for five different groups of 1000 viewers. The me-
dian was 63.9% and the group with lowest result had a cacheability of 61.7%.

10.5.2 Limited cache size

We saw in the previous section that the cacheabilty in the TV-on-Demand sys-
tem is very high. But in practice there is a limited cache size. In order to investi-
gate the cache friendliness of the TV-on-Demand workload weuse trace-driven
simulation. We run the sequence of requests in the data set through caches of
different size and study the cache hit ratios for three classic caching policies:

Least Recently Used (LRU):with the LRU strategy we delete from the
cache the program that has not been requested for the longesttime.

Least Frequently Used (LFU):with LFU we discard the program that is
requested least often. This is done by keeping track of the hit ratio for all
programs currently in the cache (in cache LFU).

Clairvoyant: we also implement a clairvoyant strategy with the ability to
look into the future and delete the program that will not be needed for the
longest time. This is used for comparison to obtain an upper limit on the cache
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Figure 10.18: Cache hit ratio versus cache size, requests from all clients over
3 days. Comparison of the LRU, LFU and Clairvoyant replacement policies.

hit ratio. It is implemented by going through the traces twice. First, for each
request of a program we look up and determine when the programwill be
requested next. This is then used in the simulation to determine what program
should stay in the cache.

Figure 10.18 shows cache hit ratios for the LRU, LFU and Clairvoyant
replacement policies for increasing cache sizes. The hit ratios are calculated
over 3 days. The size of the programs are not taken into account. We calcu-
late request (or program) hit rate and not the byte hit rate. The x-axis shows
cache size in number of programs. The median number of distinct programs
requested per day is 7523. To put the hit ratio and cache size in relation to the
daily demand we therefore look specifically at cache sizes of376 programs,
which is 5% of average daily demand. We can see that caching 5%of the
daily demand gives a hit ratio of 57% for LRU, 60% for LFU and 75% for the
Clairvoyant replacement policy.

In Figure 10.18 we include the requests from all viewers. In Figure 10.19
we investigate the impact of population size. Here we use theLRU replacement
policy and compare the cache hit ratios for populations of different size. For
a cache size of 376 programs (5% of the daily demand) the town subset of
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23304 clients get a hit ratio of 51%. This is close to the result for the full set
of clients. For the small population with 1000 clients we geta hit ratio of 43%.
The cacheability for this particular population of 1000 viewers was0.64 over
125 days and we see the curve approaching that value at a cachesize of 3000
programs.

The cache hit ratio also varies over time. Figure 10.20 showshit ratio
per hour for all viewers, the LRU replacement policy and a cache size of 376
programs. The hit ratio was calculated over 17 weeks and the figure shows the
median (and max and min) value for each hour of the week. We cansee that the
cache hit ratio varies over the day and it increases when it isneeded as most.
During prime time, when there are the most requests, the hit ratio is over 60%.

From the results presented above we highlight three observations:

• The cacheability and the potential for caching is very high.

• The hit ratio with a simple LRU replacement policy is above 50% when
caching 5% of the average daily demand.

• The hit ratio increases during prime time when it is needed most. This is
consistent with the observations in Section 10.3 that the share of requests
for the most popular programs increases during prime time.

We have here looked at the cache friendliness of the TV-on-demand work-
load in terms of cacheability and cache hit ratios for the basic LRU and LFU
replacement policies. In Section 10.7 on future work we discuss how our obser-
vations about access patterns and program popularity can potentially be used
to design a more informed caching strategy.

10.6 Related Work

There are several studies of viewing behaviour in IPTV systems where tra-
ditional scheduled TV is distributed over IP networks. Cha et al. [1] study
viewing behaviour including channel popularity and channel switching in an
operational IPTV network. Qiu et al. model TV channel popularity [3] and
user activities [2] in a large IPTV system. Our work is different in that we
look at TV-on-Demand where the viewers choose programs to watch outside
of the TV schedule. In this sense our work is closer to studiesof traditional
VoD systems.

Yu et al. [4] present a large measurement study of the chinesePowerInfo
Video-on-Demand system. This work is similar to ours in thatthey investigate
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many aspects of user behaviour and content access patterns.The PowerInfo
system is a traditional VoD system. The videos in the libraryare old TV shows
and movies and there are usually only a few new movies introduced to the
system per day. This is different from the TV-on-Demand system that we study
where there is a large inflow of new programs from the TV-schedule, time-
shifted viewing, and programs with a very short life-span. Our work is also
different in other aspects in that we investigate how the access pattern depend
on genre, we study cacheability and use trace-based simulation to investigate
what impact the access patterns have on caching.

There are many other interesting studies of VoD systems and video popu-
larity. Griwodz et al. [10] model long-term popularity of videos on the time
scale of days based on VHS rental statistics. Lou et al. [11] give examples of
the popularity evolution of video files from a Chinese television station. Tang
et al. [12] analyse and model many aspects of media server access. Avramova
et al. [13] model the popularity evolution of TV-on-demand and video traces.
Dan and Carlsson [7] measure and analyse BitTorrent contentpopularity. Guo
et al. [8] study the probability distributions of Internet media workloads and
analyse caching using a mathematical model. Yin et al. [14] study live VoD
workloads from the 2008 Beijing Olympics. There are also many studies of
Youtube and user generated videos [15, 5, 16, 17].

Gopalakrishnan et al. [18] study user behaviour in a large IPTV system.
This is similar to our work but their focus is on modeling the interactive user
behaviour in an IPTV environment, including how users fast-forward, pause
and rewind to control their viewing.

In this paper we also investigate cacheability and we look atthe potential
for caching in a TV-on-Demand system. Caching has been widely studied for
web content and video [6, 19, 20, 21]. More recently, Ager et al. [9] studied
the cacheability for HTTP- and P2P-based applications. There are also several
studies of caching strategies in IPTV on-demand systems [22, 23, 24, 25, 26],
but these studies use analytical models and simulations whereas we present a
trace-based study from a real TV-on-Demand system.

10.7 Future Work

In this paper we have studied many aspects of the access patterns in a TV-on-
Demand system. We have looked at the cache friendliness of the workload in
terms of cacheability and hit ratios for basic replacement policies. For future
work we hope that our observations can be used as a basis for developing better
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caching strategies for TV-on-Demand systems.
When studying the cache friendliness of the request stream in Section 10.5

we used the basic LRU and LFU cache replacement policies. With these the
last requested program is always cached and the choice of what to evict from
the cache is between the least recently and the least frequently requested pro-
gram. A more advanced system could use more knowledge about access pat-
terns and program popularity to decide what program to put inthe cache and
what program to evict.

One such strategy could be to keep track of all programs in thesystem,
also those that are not currently in the cache. One could monitor the popularity
by counting requests, let the programs age over time and for each program
keep a value that describes the probability that it will be requested. There
are several observations in this paper that can be useful forsuch an informed
caching strategy:

Give preference to new programs
With time-shifted TV ongoing scheduled programs immediately get a lot of
requests. Some programs, like TV-news, also have a very short life-span. The
value of a program should not have to be built up by requests over a long time.

Categorize programs by genre to predict change in popularity over time
We saw in Section 10.4 that the access pattern very much depends on the type
of program. A news program that is top-ranked the first evening age quickly
and have a very low probability for being requested the next evening. A rental
movie however is popular for months and increase in rank during weekends.
By categorizing programs by genre the probability for future requests can be
predicted. The categorization of programs can also be more detailed. The
request patterns for different episodes of the same show areoften very similar
as we saw in Figure 10.9, Section 10.4.2. For a new episode of ashow it is
a reasonable assumption that the popularity of the program will change over
time in a way similar to that of the previous episodes.

Focus on prime time
The value of a program should reflect the probability that it will be requested
during prime time. There are large peaks in demand in the evenings and at the
weekends that need to be handled. If caching is used to limit the maximum
link load then it is essential to have the right programs in the cache on Friday
and Saturday evenings. There are program like cartoons thatare top-ranked in
the mornings and early evenings that probably should not be in the cache.

The observations and the predictions outlined above can be used to opti-
mise the caching performance. However, the basic monitoring of request fre-
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quency is still needed as a basis, and to handle unexpected changes and sudden
peaks in program demand for instance due to large news events.

10.8 Conclusions

We have analysed the access patterns in a large TV-on-Demandsystem and
studied the potential for caching.

Our contribution in this paper is three-fold. As a first-order result, we pro-
vide reconfirmation of known observations with an independent dataset. We
demonstrate that there is a small set of programs that account for a large part
of the requests. The program popularity conforms with the Pareto principle,
or 80-20 rule. The demand follows a diurnal and weekly pattern, and there
are large peaks in demand on Friday and Saturday evenings that need to be
handled.

Second, we provide systematic evidence of TV-on-Demand access pattern
characteristics that are intuitive yet unconfirmed in the literature. We show that
news programs have a very short lifespan and are often only requested for a few
hours, children’s programs are top ranked in the mornings and early evenings,
and movie rentals are concentrated over weekends.

Finally, we also provide novel insights into access patterns that have not
been reported previously to the best of our knowledge. We show how the pop-
ularity of TV-on-Demand programs changes over time. We see that the access
pattern in a TV-on-Demand system very much depend on what type of con-
tent it offers. Furthermore, we find that the share of requests for the top most
popular programs grows during prime time, and the change rate among them
decreases. The cacheability is very high and the cache hit ratio increases during
prime time when it is needed most.

We believe that these observations and findings can guide thedesign of
future systems for TV-on-Demand infrastructures.
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23: Kia Höök, A Glass Box Approach to Adaptive Hypermedia,
1996.

24: Bengt Ahlgren, Improving Computer Communication Per-
formance by Reducing Memory Bandwidth Consumption,
1997.

25: Johan Montelius, Exploiting Fine-grain Parallelism inCon-
current Constraint Languages, 1997.

26: Jussi Karlgren, Stylistic experiments in information retrieval,
2000.

27: Ashley Saulsbury, Attacking Latency Bottlenecks in Dis-
tributed Shared Memory Systems, 1999.

28: Kristian Simsarian, Toward Human Robot Collaboration,
2000.

29: Lars-̊Ake Fredlund, A Framework for Reasoning about Er-
lang Code, 2001.

30: Thiemo Voigt, Architectures for Service Differentiation in
Overloaded Internet Servers, 2002.

31: Fredrik Espinoza, Individual Service Provisioning, 2003.

32: Lars Rasmusson, Network capacity sharing with QoS as a fi-
nancial derivative pricing problem: algorithms and network
design, 2002.

33: Martin Svensson, Defining, Designing and Evaluating Social
Navigation, 2003.

34: Joe Armstrong, Making reliable distributed systems in the
presence of software errors, 2003.
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