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Abstract

The Internet traffic volume continues to grow at a great rate, now driven by video and TV distribution.
For network operators it is important to avoid congestion in the network, and to meet service level
agreements with their customers. This thesis presents work on two methods operators can use to reduce
links loads in their networks: traffic engineering and content caching.

This thesis studies access patterns for TV and video and the potential for caching. The investigation
is done both using simulation and by analysis of logs from a large TV-on-Demand system over four
months.

The results show that there is a small set of programs that account for a large fraction of the requests
and that a comparatively small local cache can be used to significantly reduce the peak link loads during
prime time. The investigation also demonstrates how the popularity of programs changes over time and
shows that the access pattern in a TV-on-Demand system very much depends on the content type.

For traffic engineering the objective is to avoid congestion in the network and to make better use of
available resources by adapting the routing to the current traffic situation. The main challenge for traffic
engineering in IP networks is to cope with the dynamics of Internet traffic demands.

This thesis proposes L-balanced routings that route the traffic on the shortest paths possible but make
sure that no link is utilised to more than a given level L. L-balanced routing gives efficient routing
of traffic and controlled spare capacity to handle unpredictable changes in traffic. We present an L-
balanced routing algorithm and a heuristic search method for finding L-balanced weight settings for
the legacy routing protocols OSPF and IS-IS. We show that the search and the resulting weight settings
work well in real network scenarios.
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Abstract

The Internet traffic volume continues to grow at a great ratey driven by
video and TV distribution. For network operators it is imgaort to avoid con-
gestion in the network, and to meet service level agreemeitistheir cus-
tomers. This thesis presents work on two methods operadorase to reduce
links loads in their networks: traffic engineering and cantaching.

This thesis studies access patterns for TV and video anddteaial for
caching. The investigation is done both using simulatiod by analysis of
logs from a large TV-on-Demand system over four months.

The results show that there is a small set of programs thatuatdor a
large fraction of the requests and that a comparatively ISimzdl cache can
be used to significantly reduce the peak link loads durinmertime. The
investigation also demonstrates how the popularity of paog changes over
time and shows that the access pattern in a TV-on-Demanesystry much
depends on the content type.

For traffic engineering the objective is to avoid congestiothe network
and to make better use of available resources by adaptimgutiag to the cur-
rent traffic situation. The main challenge for traffic engirieg in IP networks
is to cope with the dynamics of Internet traffic demands.

This thesis proposes L-balanced routings that route tfffectosn the short-
est paths possible but make sure that no link is utilised teertttan a given
level L. L-balanced routing gives efficient routing of traféind controlled spare
capacity to handle unpredictable changes in traffic. Wegntesn L-balanced
routing algorithm and a heuristic search method for findifgelanced weight
settings for the legacy routing protocols OSPF and IS-IS.sWew that the
search and the resulting weight settings work well in reélvbek scenarios.
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Sammanfattning

Trafiken pa Internet fortsatter att vaxa i snabb takt adrp/et av TV- och
videodistribution over natet. For natverksoperatér det viktigt att forsta och
hantera trafikbeteendet for att undvika dverlast i néeétfor att kunna tillhan-
dahalla kommunikationstjanster av god kvalitet. Denawvdandlingen handlar
om tva olika tillvagagangssatt for att undvika owestli natet: lastbalansering
och lokal mellanlagring.

I den har avhandlingen undersoks anvandarbeteendeftecfragemonster
for TV och video och potentialen for lokal mellanlagringlndersdkningen
gors dels med simulering och dels genom analys av loggarétf stort TV-
system.

Resultaten visar att det ar en liten andel av programmerssanfior en stor
del av efterfragan. | manga fall kan man hantera 50% avfefigan genom att
lagra 5% av utbudet. Studien visar ocksa att programutbbdyenre har stor
inverkan pa efterfragemonster och pa hur snabbt progran avtar i popular-
itet. Det ar ocksa stora dygnsvariationer i efterfrageimdet ar viktigt att lagra
ratt program for att hantera toppar i efterfragan undelktid.

For lastbalansering i IP-natverk ar malet att kunnasssp vagvalet efter
den aktuella trafiksituationen och balansera trafiken fieea vagar genom
natverket om det behovs. Man kan pa sa vis utnyttjaariat mer effektivt
och undvika dverlast. Utmaningen ligger i att Interndiftrafta ar skurig med
stora variationer i trafikens mangd och riktning.

I den har avhandlingen foreslas sa kallat L-balansexgval dar trafiken
skickas kortast mojliga vag men man ser till att ingerkl#astas till mer an
en given niva L. L-balanserat vagval ger en kontrolleeskrvkapacitet for att
hantera oforutsagbara forandringar i trafiken. Vi préasrar en L-balanserad
vagvalsalgoritm samt en heuristisk sokmetod for ataHitbalanserade vikt-
sattningar i vagvalsprotokollen OSPF och IS-IS. Vi viairsokmetoden och
de resulterande viktinstallningarna fungerar val i Vigeknatverkscenarier.
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Chapter 1

Introduction

The Internet is a worldwide communication network that gos@rves billions
of Internet users [1]. It is a giant infrastructure of optifiares, copper wires
and wireless connections that via packet switches connedti@ variety of
end-hosts: ranging from servers in data centers to PC:samtojd computers,
to mobile phones and smaller devices embedded in our homears and in
the environmentaround us. The Internetis also an infretstra that supports a
diversity of applications like the web, mail, file sharingctal networking ser-
vices, telephony, radio, video and TV distribution, gantemking and com-
merce of many kinds; and where new applications constantlydaveloped
and deployed.

Internet traffic volumes continue to grow at a great rate.rietwork opera-
tors it is important to avoid congestion in the network, antheet service level
agreements with their customers. This thesis presentsevaoiiko methods op-
erators can use to reduce links loads and avoid congestitdreinnetworks:
traffic engineering and caching of video and TV content.

1.1 Internet — a network of networks

The Internet is a network of networks. It consists of a largmber of inde-
pendently managed networks of different sizes, differeqacities, and un-
der different administrations. When you click on a link inuyaveb browser
the requested webpage often travels over many differemtanks, sometimes
worldwide, on the way to your computer. The view point in tthigsis is often
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from one operator network and the challenge of understgnalid handling
traffic demands to avoid overload in the network.

The structure of the Internet and how traffic flows betweemvoeks are
changing over time [2], often driven by commercial inteseahd business
agreements. The traditional view is that the networks tbatttute the In-
ternet are Internet Service Provider (ISP) networks coi@tetogether in a
loose hierarchy. At the top there are a small number of tiepérators (for
instance AT&T, Level 3, and TeliaSonera International iearf3]) with large
international high-capacity networks, that directly ceanto each other. The
tier-1 operators have peering agreements that allow détavtobetween the
networks without charging each other for the data tranechitA tier-2 network
is typically a regional or national network. It can have pregagreements with
other tier-2 networks to exchange traffic but it is also a@uongr to one or more
tier-1 operators and need to buy transit to reach some pfattie dnternet. At
the bottom of the network hierarchy are the access netwbetscbnnect the
end hosts to the Internet. These are typically local telaprtmmpanies, uni-
versity or company networks that in turn are customers teecipr networks
to be able to communicate worldwide. The hierarchical netvatructure is
also complemented by a very large number of peering cororectietween
networks of different types at Internet exchange point®8X4, 5]. Networks
make peering agreement and exchange traffic based on corahwrother
interests, irrespective of network size and tier structure

In addition to traditional ISP networks, content delivestworks (CDNSs)
like Akamai and Limelight are well-established since a diedaack, and today
deliver a large share of the Internet content [6, 7, 8]. Meently, large con-
tent providers like Google and Netflix have started to buileiit own content
delivery networks [9, 10, 11, 12, 13].

1.2 Traffic characteristics and access patterns

The traffic characteristics in a network depend on when aretevbn the Inter-
net the traffic is measured. The traffic behaviour in a largegkbane network
differs from that in a small company network, and the traffi@i@cteristics
change with new applications, new types of networks and ehi#nging user
behaviour.

The Internet traffic volumes are constantly increasing It bhe growth
rate and the traffic mix very much depend on where on the latéhe mea-
surements are done. Recent measurements of traffic voluoraddrge ISPs,
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peering routers and Internet exchange points report agnoaih rates of 35-
100% [2, 5, 14, 15]. Figure 1.1 shows an example of traffic nea at the
Netnod Internet exchange point in Stockholm.

The Internet traffic over the last 15 years has been domirgteeeb traf-
fic (transfered with the HTTP protocol) and peer-to-peer(PRaffic [2, 4,
14, 15, 17, 18, 19, 20, 21]. The share of the traffic volume th&2P or
HTTP traffic differs between different parts of the Interaed has changed
over time. Fifteen years ago, measurements on the Inteackbbne showed
that 70-75% of the traffic was web traffic [22]. After that P2l §haring
applications became popular and contributed to a largeesifahe traffic vol-
ume [14, 15, 17, 20, 21], but many reports from the last coapieears show
that HTTP traffic is again increasing. Measurements frogddSPs and peer-
ing routers [2, 14], show a decline in the share of P2P trafiid a growth
in HTTP to more than 50% of the traffic. Measurements at a |&g®pean
IXP [4] also show that HTTP accounts for more than 50% of the$ybut the
amount of HTTP traffic varies greatly between different jpgsating AS:es.

Maier et al [18], monitoring 20000 residential DSL customear 2009,
report that HTTP and not P2P dominates the traffic with 57%eftansfered
bytes, while other measurements of residential user tigtffiey that P2P is still
dominant but not growing [15, 17].

A large part of the Internet traffic is delivery of video comttén different
ways: P2P file sharing, P2P streaming services, and muctedhtinease in
web traffic is video that is transfered with HTTP, for instarfoom sites like
Youtube. Video and TV-on-Demand streaming services likéfliXeare also
becoming increasingly popular. There are reports that IMetbne represents
more than 30% of peak downstream traffic in the US [11, 23].

1.3 Television and video over IP

Television and video distribution over IP networks is areaséth fast develop-
ment. There are many terms that describe slightly diffeaspects of the area:
IPTV, Internet television, web TV, TV-on-Demand, time{tid TV, start-over
TV, restart TV, catch-up TV, and so on. Some of these termsatsm have
different meanings in different contexts.

Internet television is a general term that here means TVrarog that are
available via the Internet. This includes TV services whieaglitional TV
broadcasters (or others) make TV programs available fatemand viewing.
It also includes live broadcasts of individual programs itire TV channels
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Figure 1.1: Example of Internet traffic at the Netnod Int¢mechange point
in Stockholm [16] (reprinted with permission). The top gneglhows variation
over a week (30 minute average) and the bottom graph showshetwaffic
volume has increased over two years (one day average).
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Figure 1.2: IPTV network architecture.

over the Internet.

From an Internet service provider perspective much of theafitl video
(for instance from Youtube or Netflix) is so called over-tiop-(OTT) content.
This means that the operator just delivers the IP packetsiaad not control
the TV and video services.

There are also operator managed services where TV is dativser an IP
network to subscribers. This is usually termed IPTV (IngfProtocol Televi-
sion). The IPTV service includes traditional TV channekstthsually are dis-
tributed using IP multicast. The operators often also thtice new on-demand
services where viewers can control when to watch the progirarhese ser-
vices differ slightly depending on when the programs becanadlable and
for how long they are available. We here use the terms TV-em&nd and
time-shifted TV as general terms for programs that can beededecoupled
from the traditional TV schedule. Start-over TV and restartmore specifi-
cally means that the viewer can restart and choose to watohgoing broad-
cast program from the beginning. Catch-up TV usually mehatsprograms
become available for on-demand viewing some time after tbadrast. An
IPTV service often have a mix of these features for diffe@ograms depend-
ing on agreements with content providers. It is also oftemimoed with a
traditional Video-on-Demand service with streaming oftaémovies.

When distributing broadcast TV channels using IP multitiaste is only
one data stream per channel, while for TV-on-Demand therdeane stream
per customer. Distributing dedicated TV streams to eachefigequires a lot
of bandwidth and server capacity.

One branch of a typical IPTV architecture with a hierarchiiege-like net-
work structure is illustrated in Figure 1.2. The TV contendelivered from
content providers and comes into the network at a centrgilziion center
from where it is transmitted to Video Hub Offices (VHO). A Valelub Office
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has storage and video streaming equipment to serve a timtiéccity. Under
the VHO there can be intermediate levels of storage and \ddecers. Differ-
ent operators try and use different structures of varyimgglexity. The figure
also shows a TV subscriber with a home network where the TVthaedet-
top box (STB) is connected via a residential gateway to atBli@ubscriber
Line Access Multiplexer (DSLAM). The TV channels are distried using IP
multicast from the distribution center to the set-top box€¥ programs re-
quested outside the schedule are streamed with unicasttfi@wHO (or from
an intermediate server if available) to the set-top box.

1.4 Overload avoidance

1.4.1 Traffic management

Internet traffic management means handling the traffic Sitnan the net-
works; avoiding congestion and making good use of availalelevork re-
sources.

Traffic management involves both the end hosts and the nketvgarators.
It involves the end hosts in that they for many applicatiams TCP congestion
control and adapt the send rate to what the network can hah@Ie increases
the send rate to find out the available network capacity. Whpacket is lost
this is interpreted as network congestion and the trangonisate is decreased.
From a network operator perspective traffic managementiaganonitoring
and controlling the traffic behaviour in the network. It aiscludes traffic
engineering where the routing of traffic through the netwisradapted to the
current traffic situation.

For network operators it is important to manage the trafficagion in the
network and meet service level agreements (SLAs) made héih¢ustomers.
The traffic demands in a network may fluctuate and change ower fTraffic
engineering mechanisms can then be used to adapt to theashiartgaffic de-
mand and distribute traffic in order to benefit from availai#évork resources.

The first step in the traffic engineering process is to colleetnecessary
information about network topology and the current traffication. Most traf-
fic engineering methods need as input a traffic matrix deisgyithe demand
between each pair of nodes in the network. The traffic masrbhén used as
input to the routing optimization.

Network operators today have different alternatives fquieg with traf-
fic variability: ranging from just over-dimensioning netikacapacity a lot, to
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occasionally tuning the configuration of the routing pratsdn order to post-
pone upgrades of network equipment, to more active use flittraonitoring
and traffic engineering mechanisms to manage the traffiatgtu

One of the main alternatives for traffic engineering withiri network [24,
25] is to use different methods for setting the link costsl smdecide upon the
shortest paths, in the routing protocols OSPF (Open Shdragh First) and
IS-IS (Intermediate System to Intermediate System). Thesd®oth link-state
protocols where the routing decisions are based on linkscastl a shortest
(least-cost) path calculation. With the equal-cost mpdtih (ECMP) extension
to the routing protocols the traffic can also be distributeer several paths that
have the same cost. These routing protocols were desigrsel $omple and
robust rather than to optimise the resource usage. They doynthemselves
consider network utilisation and do not always make goodafisetwork re-
sources. The traffic is routed on the shortest path througiné¢twork even if
the shortest path is overloaded and there exist alternaditres. It is up to the
operator to find a configuration of the protocol, a set of liokts, that is best
suited for the current traffic situation and that avoids estipn in the network.

There are also many other alternatives for how to do traffigresering. For
instance, Multi-Protocol Label Switching (MPLS) [26] hasdm widely used to
control network traffic flows by setting up label-switchedhsthrough the net-
work. More recently, much focus has been on OpenFlow andv&odt defined
Networking (SDN) with the possibility of fine-grained, flobased manage-
ment and control, and the separation of control plane aralglahe function-
ality [27, 28, 29, 30, 31, 32, 33].

1.4.2 Caching

One way to reduce the network load is to use caching, wheregopcontent
are stored in local server nodes closer to the clients. Byirsgrequests from
the local cache instead of from a central server, repead@dfers of popular
content over the network can be avoided.

Caching can be used to reduce network traffic and server lbadn also
be used with other objectives: to lower access latency oid@ase availability
and robustness of a service.

Caching has been widely studied and used for web conten88486, 37],
for video and TV-on-demand [38, 39, 40, 41, 42] and for contistribution
network [6, 7, 8, 9, 10, 11, 12]. Caching, integrated intorteevork architec-
ture, is also a fundamental component in much of the long teisearch on
future Internet architectures, like Information-centre&tworking [43, 44].
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If we consider caching in a simple hierarchical system, abnad in Fig-
ure 1.2 for IPTV, then a request from a client first goes to #ehe, and if the
program is not available there it is instead transfered ftioencentral server.
The system design parameters include: on what level in ttveonke should the
cache be placed, the size of the cache, and what caching polise.

The hit ratio, the share of requests that can be served bytlieecdepends
on the request pattern and on what content is placed in theec&iven a lim-
ited cache size, and content that change in popularity aveer, ta strategy is
needed to decide what should be put in the cache and whatkhewvicted.
Many different cache replacement policies have been pexposthe litera-
ture [35, 37]. Two classic eviction policies are Least Rélydused (LRU) and
Least Frequently Used (LFU). With the LRU strategy the paogthat has not
been requested for the longest time is deleted from the casfite LFU the
program that is requested least often is discarded.

For the design of a caching system and for the choice of cgdimtegy,
it is important to understand demand and access patterns.

1.5 Outline of thesis

This thesis has two parts: an introductory part (Chapters3) followed by
a collection of five papers. Chapter 2 describes the reséssols that this
thesis deals with and the scientific contributions of thesitheChapter 3 sum-
marizes the papers included in the thesis and their comisitsi Chapter 4
discusses related work and put the research into conte@hépter 5 there are
conclusions and future work.



Chapter 2

Research Issues and
Scientific Contributions

This thesis presents work on traffic engineering and on ogcas means to
avoid link overload in the network. For traffic engineeritg tpurpose is to
develop methods to control and steer the traffic. For cactiiegdea is to
store popular content closer to the users to avoid repeassfers of identical
content. The work is done by simulation and by empirical &sidnd analysis
of access patterns using logs from a real system.

2.1 Robust traffic engineering

The objective of traffic engineering is to avoid congestiothe network and
to make better use of available resources by adapting thimgao the current
traffic situation. The main challenge for traffic enginegrisito cope with the
dynamics of traffic demands and topology. Traffic is oftensbuand there
can be unpredictable changes and shifts in traffic demandhdtance due to
hotspots and flash crowds, or because a link goes down, tfeecba@nges in the
inter-domain routing, or because traffic in an overlay islirected. For future
networks more variability in traffic demands is also expéchee to mobility of
nodes and networks and more dynamic on-demand servicedgretments.
The traffic variability means that, even if we could meastme ¢urrent
traffic situation exactly, it would not always correctly piet the near future
traffic situation. Traffic engineering mechanisms need toobest and able to

11
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handle traffic variability and uncertainties in input traffiata.

2.1.1 Contributions

The Papers A and B in this thesis cover different aspectstmfsttraffic en-
gineering. We proposkebalanced routings as a way for an operator to handle
traffic variability and uncertainties in input traffic dat&n |-balanced solution
routes the traffic on the shortest paths possible but makestisat no link is
utilised to more than a given levielThe contributions are drbalanced routing
algorithm based on multi-commodity flow optimisation andeatistic search
method for findind-balanced weight settings for the legacy routing protocols
OSPF and IS-IS.

L-balanced routing gives the operator possibility to apgityiple rules of
thumb for controlling the maximum link utilisation and ceoitthe amount
of spare capacity needed to handle sudden traffic variatiéngives more
controlled traffic levels than other cost functions and medfieient routing for
low traffic loads when there is no need to spread traffic ovagdo paths.

2.2 Understanding TV-on-Demand access patterns
and their impact on caching

Today video and TV distribution dominate Internet traffihielincreasing de-
mand for high-bandwidth multimedia services put pressartnternet service
providers. It is therefore essential for traffic and cacheaggment to under-
stand TV program popularity and access patterns in realorksy

2.2.1 Contributions

The Papers C, D and E in this thesis cover different aspedt¥-@in-Demand

access patterns and the potential for caching. In Papersl©® ave simulate

TV distribution with time-shift and investigate what impdd/ program popu-

larity, program set size, cache replacement policy and délotors have on the
caching efficiency. The simulation results show that inawdg a local cache
close to the viewers significantly reduces the network loachfTV on-demand
services. By caching 4% of the program volume we can decthageeak load
during prime time by almost 50%. We also show that the TV paiogtype and

how program popularity changes over time can have a big inf@en cache
hit ratios and the resulting link loads.
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For the models in Papers C and D we rely to a large extent oist&tat
from traditional scheduled TV. In Paper E we study accestepa in a real
TV-on-Demand system over four months. We study user behawind pro-
gram popularity and its impact on caching. We show how theufsojty of
TV-on-Demand programs changes over time. We see that tlesapattern in
a TV-on-Demand system very much depend on what type of coitteffers.
Furthermore, we find that the share of requests for the topg paysular pro-
grams grows during prime time, and the change rate among tieeneases.
The cacheability is very high and the cache hit ratio inaeeaduring prime
time when it is needed the most.






Chapter 3

Summary of the Papers and
Their Contributions

This thesis is a collection of five papers. Papers A-B studfemdint aspects
of robust traffic engineering. Papers C-E investigate TVP@mand access
patterns and the potential for caching. The papers are blighed at refereed
international conferences.

In Paper A we look at robust traffic engineering as an optititiagorob-
lem. In Paper B we build upon the work in Paper A by applyingitheas to
the legacy routing protocols OSPF and IS-IS. We study selaecinistics for
finding weight-settings, and evaluate how different cosicfions manage to
handle faults in input traffic data due to traffic hotspots.

In Paper C we use an empirical IPTV workload model to simulBiev
distribution with time-shift and investigate the benefitiofroducing a local
cache closer to the TV subscribers. In Paper D we extend thie ydooking
at how TV program popularity changes over time. For the sitaihs in Paper
C and D we use TV schedules and statistics from linear breadaa In Paper
E we analyse logs from a large TV-on-Demand system over faunths.

15



16 Chapter 3. Summary of the Papers and Their Contributions

3.1 Paper A: A Multi Path Routing Algorithm for
IP Networks Based on Flow Optimisation

Henrik Abrahamsson, Juan Alonso, Bengt Ahlgren, Andersekssbn and
Per Kreuger. A Multi Path Routing Algorithm for IP Networka&ed on Flow
Optimisation. InProceedings of Third COST 263 International Workshop on
Quality of Future Internet Services (QoFIS 2002yrich, Switzerland, Octo-
ber 2002.

Summary:

Intra-domain routing in the Internet normally uses a singtertest path to
forward packets towards a specific destination with no kedge of traffic de-
mand. We present an intra-domain routing algorithm basedwdti-commodity
flow optimisation which enables load sensitive forwardirgramultiple paths.
It is neither constrained by weight-tuning of legacy rogtiprotocols, such
as OSPF, nor requires a totally new forwarding mechanisich sis MPLS.
These characteristics are accomplished by aggregatintydfiie flows des-
tined for the same egress into one commodity in the optimisatnd using a
hash based forwarding mechanism. The aggregation alslsresa reduction
of computational complexity which makes the algorithm fielesfor on-line

load balancing. Another contribution is the optimisatidsjeative function
which allows precise tuning of the tradeoff between loadbeing and total
network efficiency.

Contribution:

There are two contributions in this paper: the modellinghaf problem as
an optimisation problem, and the definition of an optimmaibbjective func-
tion for I-balanced solutions. In the modelling of the optimisatisnlpem

we aggregate all traffic destined for a certain egress ineocmmmodity in a
multi-commaodity flow optimisation. It is this definition of @@mmodity that
both makes the computation tractable, and the forwardmglsi.

L-balanced solutions allows the network operator to choos®x@mum
desired link utilisation level. The optimisation will théind the most efficient
solution, if it exists, satisfying the link level constrai®ur objective function
thus enables the operator to control the trade-off betweammising the net-
work utilisation and balancing load over multiple paths.

My contribution:
This is joint work with Bengt Ahlgren, Juan Alonso, Andersr@iar and Per
Kreuger. Juan Alonso did most of the mathematical work fis gaper. In
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discussion with Juan | contributed to the idea of only loglkdhthe destination
of the traffic when formulating the optimisation problem. d-authored the
paper.

3.2 Paper B: Robust Traffic Engineering using L-
balanced Weight-Settings in OSPF/ISIS

Henrik Abrahamsson and Mats Bjorkman. Robust Traffic Eegiing using
L-balanced Weight-Settings in OSPF/ISIS. Bixth International Conference
on Broadband Communications, Networks, and Systems (BREAB 2009)
September 2009, Madrid, Spain.

Summary:

The focus of this work is on robust traffic engineering for thgacy routing
protocols OSPF and IS-IS. The idea is to usethalanced solutions proposed
in Paper A to make sure that there are enough spare capacdl limks to
handle sudden hotspots and traffic shifts. Search hewretecused to find the
set of weights that avoid loading any link to more thamd the resulting rout-
ings are evaluated using real topologies and traffic scesari

Contribution:

The contributions are the idea bbalanced weight-settings for robust traf-
fic engineering, the search heuristics for finding such wesgltings, and the

evaluation of how different cost functions (includiidpalanced) manage to
handle faults in input traffic data due to traffic hotspots.

My contribution:

The idea of using thebalanced solution for robust weight-settings was mine.
I implemented the search heuristics and did the evaluaindsvrote most of
the paper.

3.3 Paper C: Simulation of IPTV caching strate-
gies

Henrik Abrahamsson and Mats Bjorkman. Simulation of IPB¢lting strate-
gies. In: International Symposium on Performance Evaluation of Qaep
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and Telecommunication Systems (SPECTSIIB)14 July 2010, Ottawa, Canada

Summary:

In this paper we use an empirical IPTV workload model to satellPTV dis-
tribution with time-shift and investigate the benefit offoducing a local cache
closer to the TV subscribers. The simulations are basedamkéschedules,
and statistics about TV program popularity and viewer @gtivWe simulate a
large number of TV viewers that, when active, request scleeldar on-demand
programs and we investigate the resulting bandwidth requéints on the down
link for different cache sizes and caching strategies.

Contribution:

The contributions of this paper are: We present an empiti€aY workload
model. We simulate a realistic scenario for IPTV distribatand compare the
Least Recently Used (LRU) and Least Frequently Used (LFOhica strate-
gies. We show that time-shifted TV can be very capacity detimgnand that
considerable amounts of bandwidth can be saved by cachémgadst popular
programs closer to the viewers.

My contribution:
| designed and implemented the simulator, did the evalnatémd wrote most
of the paper.

3.4 Paper D: Caching for IPTV distribution with
time-shift

Henrik Abrahamsson and Mats Bjorkman. Caching for IPT\triigtion with
time-shift. In: International conference on Computing, Networking & Com-
munications (ICNC’'13)28-31 January 2013, San Diego, USA.

Summary:

In this paper we simulate TV distribution with time-shiftdaimvestigate what
impact TV program popularity, program set size, cache pgpteent policy and
other factors have on the caching efficiency. The simulatsults show that
introducing a local cache close to the viewers significamgtiuces the network
load from TV on-demand services. By caching 4% of the prograimme we
can decrease the peak load during prime time by almost 50%al¥geshow
that the TV program type and how program popularity changes time can
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have a big influence on cache hit ratios and the resultinddiaéls.

Contribution:

In this paper we extend the work in Paper C by looking at how Tégpam
popularity changes over time. Many programs such as newgrgms and
weather forecasts quickly become outdated and lose th@ulpoty when
available on-demand. Other programs, typically drama hd#s, retain in-
terest from some viewers even a long time after their firgasd and initial
peak in popularity. We show that the TV program type and haegpm pop-
ularity changes over time can have a big influence on cacheatiit and the
resulting link loads.

My contribution:
| did the analysis of program popularity, implemented thrawgator, did the
evaluations and wrote most of the paper.

3.5 Paper E: Program popularity and viewer be-
haviour in a large TV-on-Demand system

Henrik Abrahamsson and Mattias Nordmark. Program popylarid viewer
behaviour in a large TV-on-Demand system. Internet Measurement Con-
ference (IMC’'12) 14-16 November 2012, Boston, USA.

Summary:

In this paper we analyse the access patterns in a large TWemmand system
and study the potential for caching. We characterize aquatssrns for differ-
ent program categories, we show how program popularity gésover time
and how this differs between different program types. Wa tinge the request
sequence in the data set for trace-driven simulation ardy stache hit ratios
for different cache sizes, cache replacement policies apdiption sizes.

Contribution:

Our contribution in this paper is three-fold. As a first-ardesult, we pro-
vide reconfirmation of known observations with an independiataset. We
demonstrate that there is a small set of programs that atémua large part
of the requests. The program popularity conforms with theet®gprinciple,
or 80-20 rule. The demand follows a diurnal and weekly pattand there
are large peaks in demand on Friday and Saturday eveningadhbd to be
handled.
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Second, we provide systematic evidence of TV-on-Demanesacgattern
characteristics that are intuitive yet unconfirmed in therditure. We show that
news programs have a very short lifespan and are often oqlested for a few
hours, childrens programs are top ranked in the morningseany evenings,
and movie rentals are concentrated over weekends.

Finally, we also provide novel insights into access pattehat have not
been reported previously to the best of our knowledge. Wev st the pop-
ularity of TV-on-Demand programs changes over time. We ksaethe access
pattern in a TV-on-Demand system very much depend on what ¢§ron-
tent it offers. Furthermore, we find that the share of recquiEstthe top most
popular programs grows during prime time, and the changeaitong them
decreases. The cacheability is very high and the cachethutingreases dur-
ing prime time when it is needed most.

My contribution:
| did the analysis with help from Mattias Nordmark. | did thmslations and
| wrote the paper.



Chapter 4

Related Work

4.1 Traffic engineering in IP networks

Many different approaches for dynamic routing and traffigineering have
been proposed and used in telecommunication [45] and canpeatworks.
For instance, the early ARPANET routing algorithms wereslolasn measured
link delay but had problems with traffic shifts and oscilbeis [46, 47].

The IETF Network Working Group presented a taxonomy of ime¢traf-
fic engineering methods in RFC3272 [48] in 2002. But for mutthe traf-
fic engineering research at that time the existing routirogqmols were fixed.
The challenge was to find configurations that adapted thengtn the cur-
rent traffic situation. Traffic engineering by finding a sbiaset of weights in
OSPF/IS-IS is now a well studied area of research and it isriteesl in text-
books in the area [25, 49]. When we in Paper B revisited thghteietting
approach to traffic engineering we were most inspired by ibiegering works
by Fortz and Thorup [50, 51] and Ramakrishnan and Rodrigb2} [n that
we use a piece-wise linear cost function and search hagigtifind suitable
weight settings.

Several studies [50, 53, 54, 55] have shown that even thowaglinvit the
routing of traffic to what can be achieved with weight-bas&@MP shortest
paths, and not necessarily the optimal weights but thosefby search heuris-
tics, it often comes close to the optimal routing for realvaek scenarios. How
the traffic is distributed in the network very much dependshenobjectives,
usually expressed as a cost function, in the optimisation.often proposed
objective function is described by Fortz and Thorup [50]réHéae sum of the

21
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cost over all links is considered and a piece-wise lineaeasing cost function
is applied to the flow on each link. The basic idea is that itudthde cheap
to use a link with small utilisation while using a link that@paches 100%
utilisation should be heavily penalised. Thbalanced cost function used in
Papers A and B is similar in that it uses a piecewise linearfoostion to ob-
tain desirable solutions. Additionally, it gives the ogerahe opportunity to
set the maximum wanted link utilisation. Cost functionstfaffic engineering
is further investigated by Balon et al. [56]

Paper B added to existing work on weight settings by focusimgobust-
ness and the objective of achieving a controlled spare dgpac handling
unpredictable traffic shifts. For robust traffic enginegrinuch of the focus
has been on handling multiple traffic matrices and traffimaces [51, 57, 58,
59, 60, 61] and handling the trade-off between optimisiridtie common case
or for the worst case. Nucci et al. [62] investigate link weigssignments that
take into account SLA requirements and link failures. Xul e8] describe a
method to jointly solve the flow optimisation and the linkiglgt approxima-
tion using a single formulation resulting in a more efficieamputation. Their
method can also direct traffic over non-shortest paths wibitrary percent-
ages. Their results should also be directly applicable topooblem of pro-
viding robustness to changes, by just substituting theicgiwise linear cost
function with our cost function. In a continuation on thisnkou et al. [64]
propose a hew link-state routing protocol. The protocatspaffic over mul-
tiple paths with an exponential penalty on longer paths ariezes optimal
traffic engineering while retaining the simplicity of hog-hop forwarding.

There are also several proposed traffic engineering pristeach as MATE
[65], TeXCP [66] and REPLEX [67], that can balance traffic ogeveral
paths between ingress and egress nodes in the network,stanae by us-
ing MPLS [26]. Recently, much research focus has also bee@penFlow
and Software-defined Networking (SDN) with the possibitifyfine-grained,
flow-based management and control, and the separation afotptane and
data plane functionality [27, 30, 31, 32, 33].

The advantage of optimising the weights in OSPF and IS-1S &oarse
easy deployment of the traffic engineering mechanism. Heweke disad-
vantage is the difficulties and constraints imposed by usiggcy routing. The
general problem of finding the best way to route traffic thfoagetwork can
be mathematically formulated as a multi-commodity flow (M ©Btimisation
problem. In Paper A we present a routing algorithm based dtissammodity
flow optimisation. By aggregating the traffic flows destinedthe same egress
into one commodity in the optimisation we reduce the comjutal complex-
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ity. The same approach was later used for instance by Sedteral. [68] and
Fu et al. [69]. MCF optimisation is also used by many otheeagsh groups to
address traffic engineering problems including [50, 70k &leo the book by
Pioro and Medhi [49] and references therein.

4.2 Access patterns and potential for caching for
TV and video on-demand

The recent growth and popularity of IPTV services have ledrtancreasing
interest from researchers to measure and model IPTV viebémgvior. Cha
et al. [71] present an extensive study of viewing behavichiding channel
popularity and channel switching in an operational IPTVwwek. Ramos et
al. [72] present work on constructing an IPTV workload mockgbturing the
way viewers change channels and watch live TV. Yu et al [AB]puser activ-
ity and channel zapping in a municipal network. Qiu et al. eidd/ channel
popularity [74] and user activities [75] in a large IPTV sstand present the
SimulWatch workload generator. These studies are sindlauts in that they
model IPTV viewer behavior — but they study traditional liV&, and model
channel popularity and not the popularity of individual grams. In Papers
C and D we also simulate TV channels but our focus is on inyastig time-
shifted TV and the potential for caching. For this the poptyaf individual
programs is a fundamental part of the model. In this sensevotk is closer
to studies of traditional VoD systems.

Yu et al. [76] present a large measurement study of the CaiResverinfo
Video-on-Demand system. This work is similar to ours in thaly investigate
many aspects of user behaviour and content access patiesPowerinfo
system is a traditional VoD system. The videos in the libexgyold TV shows
and movies and there are usually only a few new movies intredto the sys-
tem per day. This is different from the TV-on-Demand systéat tve study
where there is a large inflow of new programs from the TV-scledtime-
shifted viewing, and programs with a very short life-spamr @ork in Paper
E is also different in other aspects in that we investigat® ttee access pat-
tern depend on genre, we study cacheability and use tresslsémulation to
investigate what impact the access patterns have on caching

There are many other interesting studies of VoD systems a&lab\popu-
larity. Griwodz et al. [77] model long-term popularity ofdgos on the time
scale of days based on VHS rental statistics. Lou et al. [K& gxamples of
the popularity evolution of video files from a Chinese tetéwn station. Tang
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et al. [79] analyse and model many aspects of media servesacfvramova
et al. [80] model the popularity evolution of TV-on-demandiarideo traces.
Dan and Carlsson [81] measure and analyse BitTorrent combguilarity. Guo
et al. [82] study the probability distributions of Intermaedia workloads and
analyse caching using a mathematical model. Yin et al. [88]yslive VoD
workloads from the 2008 Beijing Olympics. There are also ynstadies of
Youtube and user generated videos [84, 85, 86, 87]. Szabblalberman [88]
predict the long-term popularity of online content at Diggla¥outube based
on early measurements of user accesses. Much research agdmeasure-
ment studies have also focused on peer-assisted techri@u€¥ and VoD
including [89, 90, 91, 92, 93, 94]. Ager et al. [95] study tteekeability for
HTTP- and P2P-based applications.

Gopalakrishnan et al. [96] study user behaviour in a large/IBystem.
This is similar to our work but their focus is on modeling tigeractive user
behaviour in an IPTV environment, including how users fastvard, pause
and rewind to control their viewing.

In Papers C and D we use an empirical IPTV workload model taikita
IPTV distribution and study caching. The simulations areduhon real TV
schedules, and statistics about TV program popularity éader activity. In
Paper E we use trace-driven simulation, and utilize theeaecgiof requests in
logs from a real TV-on-Demand system. There is also a lotlafed work that
use analytical models and simulations to study the perfoomaf caching in-
cluding [39, 40, 41, 42, 97, 98]. These studies have a mowe¢tieal approach
and is in this sense complementary to our work.

Seen in a broader perspective, a vast amount of researciebagibne on
caching architectures, algorithms and protocols for imstdor web, video and
content distribution networks, as described in Sectior1.4

Another important issue for traffic and cache managemeeisrterac-
tion between traditional traffic engineering and contestribution in operator
networks. What techniques and optimisations are possérke depend on the
level of knowledge and control that the operator can havéefcbntent dis-
tributed [99, 100, 101].



Chapter 5

Conclusions and Future
Work

5.1 Conclusions

The Internet traffic volume continues to grow at a great rad®; pushed on by
video and TV distribution in the networks. Increasing taffolumes and the
introduction of delay and loss sensitive services makealitial for operators
to understand and manage the traffic situation in the netwddte traffic also

necessitate upgrades of network equipment and new invattroe operators,
and keep up-to-date the question of over-dimensioningorteapacity versus
using mechanisms for better handling the traffic.

This thesis deals with two approaches for avoiding netwoekload: traf-
fic engineering and caching. We study traffic engineeringhagisms for
adapting the routing to the current traffic situation andtees traffic away
from overloaded links. We study TV-on-Demand access patand the pos-
sible benefits of using caching mechanisms to avoid loadikg With repeated
transfers of popular content.

This thesis proposdshalanced routings as a way for an operator to handle
traffic variability and uncertainties in input traffic datan I-balanced routing
algorithm based on multi-commodity flow optimisation wasgented in Pa-
per A. A heuristic search method for findihdpalanced weight settings for the
legacy routing protocols OSPF and IS-IS was presented iarfajh-balanced
routing gives the operator possibility to apply simple sutd thumb for con-
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trolling the maximum link utilisation and control the amdwf spare capacity
needed to handle sudden traffic variations. It gives moréralhed traffic lev-
els than other cost functions and more efficient routing éov traffic loads
when there is no need to spread traffic over longer paths. Valeation in
Paper B shows that the search and the resulting weight gettwork well in
real network scenarios.

In Papers C-E we study TV-on-Demand access pattern and thetjad for
caching. We observe that there is a small set of programsatizatunt for a
large part of the requests. The program popularity confomitis the Pareto
principle, or 80-20 rule. The demand follows a diurnal an@kbg pattern, and
there are large peaks in demand on Friday and Saturday eecthiat need to
be handled.

The popularity of rental movies, news, and TV shows changes time
in very different ways. News programs are often only receek$or a few
hours, movies are popular for months and increase in rankgweekends,
TV shows increase in rank when the next episode is shown, hitdren’s
programs are top ranked in the mornings and early evenings.riieans that
programs jumps in and out of the top list of most popular paats. This can
have implications for the choice of caching strategy. Itnportant to have
the right programs in the cache in the evenings when the detaland is the
highest. Another conclusion is that the access pattern MarfFDemand sys-
tem very much depend on what type of content it offers. We als®rve that
the request pattern for different episodes of the same sfwavfor programs
within the same genre, often are very similar.

Another conclusion, from studying the cache friendlinesthe TV-on-
Demand workload, is that the potential for caching is highe Tacheability
is very high, and in many scenarios the cache hit ratio wilidogeplacement
policies is above 50% when caching 5% of the daily demand. [géeabserve
that the hit ratio increases during prime time. The sharegfests for the top
most popular programs grows during prime time, and the ohaatg among
them decreases.

5.2 Future work

It is an interesting time to work on issues related to telewisind video distri-
bution over IP networks and the Internet. It is an area with development.
Even with a view limited to Sweden in autumn 2012, as of thigimg, a lot of
things happen on many levels.
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The way we are watching TV is slowly changing towards IP dsted
television with more opportunities to choose what we wantatch, and when
and where we watch TV. This thesis studies TV-on-Demandsgcpatterns
and the impact on caching. But the media consumption paigeanmoving
target, it changes when the TV and video services evolvefarfdture work
there is a need to continuously study user behaviour andagedterns.

There is a trend towards start-over TV and TV-on-Demand eittes viewer
can choose to watch broadcast programs from the beginnitegesrafter its
scheduled time. Perhaps this is the beginning of a develnpimevhich the
TV schedule becomes more a part of a recommendation systamessonal-
ized playlist with a mix of live and pre-recorded content.

The devices are changing. More and more TV is watched onrleteon-
nected smart TVs, and on smaller devices such as phonestdatsta

Another trend is that the TV and video market is changing. péayers
appear and compete with existing services. Many teleconberatiband oper-
ators have become TV distributors and offer new TV servicgBéir own net-
works. HBO and Netflix, American providers of on-demandinét streaming
media, were launched in Sweden during the autumn 2012.

Traditional TV broadcasters are now also starting to diate the sched-
uled TV via the web. It is also common with web exclusive coht®©ne ex-
ample of TV content that is often sent over the Internet tadaports events.
SVT, the Swedish public service television company, shoW&a@D hours from
the London Olympics in two traditional broadcast channeld e six web
channels [102]. A lot of the content was exclusively showrtloa the web.
But the change in viewing behaviour is still at an early stage it takes time.
The vast majority of viewing continues to be via traditiohedadcast.

Television is a big thing. Although it is so commonplace tiwatmight not
think about it. When the way we are watching TV changes it careta big
impact on the distribution networks. In Sweden more than #%e popula-
tion watch something on television on an average day, mane 40% of the
people are watching TV during primetime, and individual Thow's can some-
times assemble 30-45% of the population [103]. If the TV vieypshifts from
traditional broadcast to on-demand, personalized viewimgnobile devices,
then it also gives rise to interesting future technical emgjes.

The increasing demand for high-bandwidth streaming mestidces, both
operator managed and OTT services, puts a big load on theretwCaching
seems to be a promising part of the solution. But there are/ropan issues
for future work about caching, for instance what should beest and on what
level in the network should the caching be done.
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In Papers C-E in this thesis we study many aspects of the apedterns
in TV-on-Demand systems. We look at the cache friendlinégiseoworkload
in terms of cacheability and hit ratios for basic replacenpaticies. An im-
mediate future work is to try to design and evaluate a cacsirajegy that is
customized for the TV-on-Demand access patterns and igaésthe extent to
which it can reduce the network load.

When studying the cache friendliness of the request streafapers C-
E we used the basic LRU and LFU cache replacement policiesh ihese
the last requested program is always cached and the choigbaifto evict
from the cache is between the least recently and the leagtdrely requested
program. A more advanced system could use more knowledgé alboess
patterns and program popularity to decide what program tdrpthe cache
and what program to evict.

One such strategy could be to keep track of all programs irsyiséeem,
also those that are not currently in the cache. One couldtorthie popularity
by counting requests, let the programs age over time andafcn program
keep a value that describes the probability that it will bguessted. There are
a number of observations about the access patterns in #esstthat can be
useful for such an informed caching strategy:

Give preference to new programsThe broadcast of the traditional TV sched-
ule has a marketing effect and with time-shifted TV ongoicdlgesiuled
programs immediately get a lot of requests. Some prograkesTV-
news, also have a very short life-span. The value of a progtaonld
not have to be built up by requests over a long time.

Categorize programs by genre to predict change in popularif over time
We see in Papers D and E that the access pattern very muchdsepen
the type of program. A news program that is top-ranked thediraning
age quickly and has a very low probability for being requeste next
evening. A rental movie however is popular for months anddase in
rank during weekends. By categorizing programs by genrpitbieabil-
ity for future requests can be predicted. The categorimaif@rograms
can also be more detailed. The request patterns for diffeqgisodes
of the same show are often surprisingly similar. For a nevgae of
a show it is a reasonable assumption that the popularityeoptbgram
will change over time in a way similar to that of the previopssedes.

Focus on prime time The value of a program should reflect the probability
that it will be requested during prime time. There are largaks in
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demand in the evenings and at the weekends that need to blethatid
caching is used to limit the maximum link load then it is e$igéito have
the right programs in the cache on Friday and Saturday egenifhere
are program like cartoons that are top-ranked in the mosamgl early
evenings that probably should never be in the cache.

The observations and the predictions outlined above carseeé 10 optimise
the caching performance. However, the basic monitoringgfiest frequency
is still needed as a basis, and to handle unexpected changesidden peaks
in program demand for instance due to large news events.

In Papers C-E we see that the cacheability and cache hisrfatidhe TV-
on-Demand workload are high even for small populationgothicing a com-
paratively small local cache could significantly reducefibeak link loads. But
for operators the monetary cost (both the capital experatitand operational
costs) of introducing memory into the network versus primgdhe bandwidth
needed is essential. This is an important aspect to corigsidigture work.
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Abstract

Intra-domain routing in the Internet normally uses a sirgftertest path to
forward packets towards a specific destination with no kedge of traffic de-
mand. We present an intra-domain routing algorithm basedwdti-commodity
flow optimisation which enable load sensitive forwardingomultiple paths.
It is neither constrained by weight-tuning of legacy rogtiprotocols, such
as OSPF, nor requires a totally new forwarding mechanisih sis MPLS.
These characteristics are accomplished by aggregatintyéfiie flows des-
tined for the same egress into one commodity in the optimisatnd using a
hash based forwarding mechanism. The aggregation alsksrgsa reduction
of computational complexity which makes the algorithm fielesfor on-line
load balancing. Another contribution is the optimisatidsjeative function
which allows precise tuning of the tradeoff between loadbeing and total
network efficiency.
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6.1 Introduction

As IP networks are becoming larger and more complex, theabperof these
networks gain more and more interesttiaffic engineerind1]. Traffic en-
gineering encompasses performance evaluation and penfmeroptimisation
of operational IP networks. An important goal with trafficggmeering is to
use the available network resources more efficiently fdedsht types of load
patterns in order to provide a better and more reliable sena customers.

Current routing protocols in the Internet calculate thersst path to a des-
tination in some metric without knowing anything about tredfic demand or
link load. Manual configuration by the network operator isrfore necessary
to balance load between available alternate paths to avoigestion. One way
of simplifying the task of the operator and improve use ofatailable network
resources is to make the routing protocol sensitive to traémand. Routing
then becomes a flow optimisation problem.

One approach taken by others [2, 3, 4] is to let the flow opttios re-
sult in a set of link weights that can be used by legacy roytirmgocols, e.g.,
open shortest path first (OSPF), possibly with equal costitpath (ECMP)
forwarding. The advantage is that no changes are needed ivafic routing
protocol or the forwarding mechanism. The disadvantagesisthe optimisa-
tion is constrained by what can be achieved with tuning thigts. Another
approach is to use MPLS [5], multi-protocol label switchifigr forwarding
traffic for large and long-lived flows. The advantage is thatdptimisation is
not constrained, but at the cost of more complexity in the¢ingLand forward-
ing mechanisms.

Our goal is to design an optimising intra-domain routingtpcol which
is not constrained by weight-tuning, and whichnbe implemented with mi-
nor modifications of the legacy forwarding mechanism basedestination
address prefix.

In this paper we present a routing algorithm for such a paitbased on
multi-commodity flow optimisation which is both computatally tractable
for on-line optimisation and also can be implemented witlearriegacy for-
warding mechanism. The forwarding mechanism needs a matidficsimilar
to what is needed to handle the ECMP extension to OSPF.

The key to achieve this goal, and the main contribution of gaper, is in
the modelling of the optimisation problem. We aggregattaffic destined for
a certain egress into one commodity in a multi-commodity fagtimisation.
This reduces the number of commodities to at mésthe number of nodes,
instead of beingV? when the problem is modelled with one commaodity for
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each pair of ingress and egress nodes. As an example, theutatiop time
for a 200 node network was in one experiment 35 seconds.Hidslefinition
of a commodity thabothmakes the computation tractabéadthe forwarding
simple.

Another important contribution is the definition of an opation objec-
tive function which allows the network operator to chooseaximum desired
link utilisation level. The optimisation will then find theast efficient solu-
tion, if it exists, satisfying the link level constraint. ©objective function thus
enables the operator to control the trade-off between nigiiig the network
utilisation and balancing load over multiple paths.

The rest of the paper is organised as follows. In the nexiseete de-
scribe the overall architecture where our optimising mogilgorithm fits in.
Section 6.3 presents the mathematical modelling of therogdition problem.
We continue with a short description of the forwarding metdsa in Sect. 6.4.
After related work in Sect. 6.5 we conclude the paper.

6.2 Architecture

In this work we take the radical approach to completely repthe traditional
intra-domain routing protocol with a protocol that is basedflow optimisa-
tion. This approach is perhaps not realistic when it comegpoymentin real
networks in the near future, but it does have two advantagist, it allows
us to take full advantage of flow optimisation without beimgited by current
practise. Second, it results in a simpler overall solutiompared to, e.g., the
metric tuning approaches [2, 3, 4]. The purpose of taking &pproach is to
assess its feasibility and, hopefully, give an indicatiorhow to balance flow
optimisation functionality against compatibility withdacy routing protocols.
In this section we outline how the multi-commodity flow algbm fits
into a complete routing architecture. Figure 6.1 scheralyidllustrates its
components. Flow measurements at all ingress nodes andltbetion of the
result are new components compared to legacy routing. Thesumements
continuously (at regular intervals) provide an estimat¢hefcurrent demand
matrix to the centralised flow optimisation. The demand ma¢raggregated
at the level of all traffic from an ingress node destined foedain egress node.
If a more fine-grained control over the traffic flows are deskifer instance
to provide differentiated quality of service, a more fin@iged aggregation
level can be chosen. This results in more commodities in ftendsation,
which can be potential performance problem. One approaohnsroduce two
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Figure 6.1: Routing architecture with flow optimisation.

levels in the optimisation, one with a longer time-scaledaality of service
flows.

The demand matrix is input to the flow optimiser together vetimodel
of the network. The result of the optimisation is a set of ealy ., which
encode how traffic arriving at a certain nodg @estined for a certain egress
node ¢) should be divided between the set of next hof)s These values are
used at each node together with a mapping between destiratidresses and
egress nodes to construct forwarding tables. Finally, teket forwarding
mechanism is modified to be able to distinguish packetsrisgtfior a certain
egress node, and to forward along multiple paths towardethgsesses.

The computation of the multi-commaodity flow optimisatiorgatithm is
inherently centralised. In this paper we also think of thepatation as im-
plemented in a central server. If a so-called bandwidth érd& needed or
desired for providing a guaranteed quality of service, itasural to co-locate
it with optimisation. We however see the design of a distabdumechanism
implementing flow optimisation as an important future wdgm.

The timescale of operation is important in an optimisingtiray architec-
ture. There are several performance issues that put lowsrdsoon the cycle
flow measurement—optimisation—new forwarding tables. flt\@ measure-
ment need to be averaged over a long enough time to get sofficitable
values. Our current research as well as others [6] inditetethe needed sta-
bility exists in real networks at the timescale of a few, majikse to ten, min-
utes. Other performance issues are the collection of therfleasurements, the
computation of the optimisation algorithm, and the disttibn of the optimi-
sation result. Our initial experiments indicate that a n@tirnisation cycle can
be started in approximately each five minutes for typicabittomain sizes.

An issue that we have identified is how to handle multiple sgge for a
destination injected into the domain by BGP, the borderwayeprotocol. A
straightforward way to solve this is to introduce additibnatual nodes in
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the network to represent a common destination behind batbsegs. This
approach may however introduce a large number of additivo@dés. This will
need to be more carefully considered in the future.

6.3 Optimisation

The routing problem in a network consists in finding a path aftiple paths
that send traffic through the network without exceeding thpacity of the
links. When using optimisation to find such (multiple) patiss natural to
model the traffic problem as a (linear) multi-commaodity netiwflow problem
(see, e.g., Ahuja et al. [7]), as many authors have done.

First, the network is modelled as a directed graph (thisgjitie topology,
i.e., the static information of the traffic problem), andnttae actual traffic
situation (i.e., the dynamic part of the problem, consgstifithe current traffic
demand and link capacity) as a linear program. In modellegtetwork as a
graph, a node is associated to each router and a directetbeeleh directional
link physically connecting the routers. Thus, we assumevarggraphG =
(N, E), whereN is a set of nodes anfl is the set of (directed) edges. We will
abuse language and make no distinction between graph andmkehode and
router, or edge and link.

Every edgg(i, j) € E has an associated capacity reflecting the band-
width available to the corresponding link. In addition, vesame a givede-
mand matrixD = D(s,t) expressing the traffic demand from nogieo node
t in the network. This information defines the routing problem order to
formulate it as a multi-commodity flow (MCF) problem we musicidle how
to model commodities. In the usual approach [7, 2, 8] comtiesdare mod-
elled as source-destination pairs that are interpretedlagdffic from source
to destination”. Thus, the set of commodities is a subsdi®f3artesian prod-
uct N x N; consequently, the number of commaodities is bounded byghare
of the number of nodes. To reduce the size of the problem ameldspp com-
putations, we model instead commodities as (only destinptiodes, i.e., a
commaodityt is to be interpreted as “all traffic 3. Thus, our set of commodi-
ties is a subset oV and, hence, there are at most as many commodities as
nodes. The corresponding MCF problem can be formulatedlasvi

min {f(y) |y € P2} (MCF12)

wherey = (yfj), fort € N, (i,j) € E, andP5 is the polyhedron defined by
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the equations:

S-S k= dG) ViteN  (6.1)
{ilG,5)eE} {il(G, ) EEY
douh < ky V(i,j) € E  (6.2)
teN
where
~> " D(s,t)  ifi=t
d(lvt) seEN
D(i,t) if it

The variableg;; denote the amount of traffic taouted through the linki, j).
The equation set (1) state the condition that, at intermediades (i.e., at
nodes different front), the outgoing traffic equals the incoming traffic plus
traffic created at and destined te, while at¢ the incoming traffic equals all
traffic destined t@. The equation set (2) state the condition that the totdidraf
routed over a link cannot exceed the link’s capacity.

It will also be of interest to consider the correspondingapemwithoutre-
quiring the presence of the equation set (2). We denote thidgm (M CF,).
Notice that every poiny = (yfj) in P15 or P; represents a possible solution
to the routing problem: it gives a way to route traffic over tegwork so that
the demand is met and capacity limits are respected (whexidhgs toP;5),
or the demand is met but capacity limits are not necessaslyected (when it
belongs taP;). Observe thay = (0) is in P15 or in P, only in the trivial case
when the demand matrix is zero.

A general linear objective function for either problem hasform f (y) =
>t.i.g) Vi Yi;- We will, however, consider only the case whentdl = 1
which corresponds to the case where all commodities haveatime cost on
all links. We will later use different objective functions¢luding non-linear
ones) in order to find solutions with desired properties.

6.3.1 Desirable Solutions

In short, the solutions we consider to be desirable are tiwbéeh areefficient
andbalanced We make these notions precise as follows.

We use the objective function considered abofe) = >, (; ;) Yi;» as
a measure of efficiency. Thus, given,y» in P, or Py, we say thaty, is
more efficienthanys if f(y1) < f(y2). To motivate this definition, note that
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whenever traffic between two nodes can be routed over twerdift paths of
unequal lengthf will choose the shortest one. In case the capacity of the
shortest path is not sufficient to send the requested trgffigjll utilise the
shortest path to 100% of its capacity and send the remaindfiictover the
longer path.

Given a pointy = (y;;) as above, we le¥; ; = >, vi; denote the
total traffic sent througky, j) by y. Every suchy defines autilisation of edges
by the formulau(y, ¢,j) = Yi;/ki;, andu(y,i,j) = 0 whenk;; = 0. Let
u(y) denote the maximum value efy, i, j) where(i, j) runs over all edges.
Given an? > 0, we say thay € Pi» (ory € Py) is ¢-balancedif u(y) < ¢.
For instance, a solution i$.(7)-balanced if it never uses any link to more than
70 % of its capacity.

6.3.2 How to Obtain Desirable Solutions

Poppe et al. [8] have proposed using different linear objeétinctions in order
to obtain traffic solutions that are desirable with respeasgveral criteria (in-
cluding balance, in the form of minimising the maximum s#liion of edges).
Fortz and Thorup [2, 3], on the other hand, considers a fixedepwise linear
objective function (consisting of six linear portions faah edge) which makes
the cost of sending traffic along an edge depend on the tidlisaf the edge.
By making the cost increase drastically as the utilisatippraaches 100 %,
the function favours balanced solutions over congested.oAs the authors
express it, their objective function “provides a generaittsffort measure”.

Our contribution is related to the above mentioned work it tive use
different objective functions to obtain desirable soloipand the functions are
piece-wise linear and depend on the utilisation. In contag work defines
different levels of balance (namel§sbalance). For each such level, a simple
piece-wise linear objective function consisting of twaelam portions for each
edge isguaranteedo find ¢-balanced solutions provided, of course, that such
solutions exist. Moreover, the solution found is guarathitedbe more efficient
than any othef-balanced solution.

Another distinctive feature of our functions is that theg defined through
a uniform, theoretical “recipe” which is valid for every metrk. We thus elim-
inate the need to use experiments to adapt our definitionsesudts to each
particular network. Finally, the fact that our functionsistst of only two linear
portions, shorten the execution time of the optimisation.
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l
Figure 6.2: The link cost functio@**.

6.3.3 The Result

To formulate our result we need to introduce some notati@iyl= (y;,) be
a point of P;5 or P;, and suppose given real numbers- 1 and/ > 0. We
define the link cost function (illustrated in Fig. 6.2)

ey~ { U if U < ¢
AU+(1-N 1 ifU>¢

We use this function in the definition of the following objeetfunction:

PPy = D ki CMuly, i, 4))

(i,4)€E
We also need to define the following constants:

v=min{f(y)|y € P2} and  V=max{f(y)|y € P2}

Notice thatv > 0 sinceD(s,t) > 0, andV < oo since the network is finite
and we are enforcing the (finite) capacity conditions. At aergractical level,
v can be computed by simply feeding the linear problem {ifity) |y € P12}
into CPLEX and solving it. Then, to computgé one changes the same linear
problem to a max problem (by replacing "min” by "max”) and\ses it.

Finally, let§ > 0 denote the minimum capacity of the edges of positive
capacity. We can now state the following theorem whose piogfven in a
technical report [9]:

Theorem 1 Let/, ¢ be real numbers satisfyimy< ¢ < 1 and0 <e <1 — /.
Suppose thay € P; is ¢-balanced, and leA > 1 + X—; Then any solution:
of MCF, with objective functiorf** is (¢ + ¢)-balanced. Moreover; is more
efficient than any othe? + ¢)-balanced point of;.

Observe that, sincé < 1 andy € P, is ¢-balanced, we can useCF',
instead of MCF'1,. Informally, the theorem says that if there drbalanced
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solutions, thery** will find one. The numbee > 0 is a technicality needed
in the proof. Notice that it can be chosen arbitrarily small.

Theorem 1 can be used as follows. Given a target utilisaticgay ¢ =
0.7, computef—;, choose a\ as in Theorem 1, and choose> 0, saye =
0.01. Finally, compute a solution, say, of MCF; with objective function
f4*. Then there are two exclusive possibilities: eithes 0.71-balanced or
there is no such solution. In the last casecan be thought of as a “best
effort” solution since we have penalised all utilisatioroa®0.7 (which forces
traffic using edges to more than 70 % of capacity to try to bad@but nd).71-
balanced solution exists. At this point we can either actleigtbest effort
solution or iterate, this time setting the balance targes&y,0.85, etc. After
a few iterations we arrive at a solution which is “sufficigfitbalanced or we
know that there is no solution thatdshalanced for the current value Givhich,
we may decide, is so close tahat it is not worthwhile to continue iterating.

6.3.4 A Generalisation

Theorem 1 has a useful generalisation that can be describfdl@vs. Par-
tition the set of edge& into a family (F;) of subsets, and choose a target
utilisation¢; for eachE;. The generalised theorem says that for smaH 0

we can define a function correspondingfte® in Theorem 1, such that solv-
ing MCF, with this objective function will result in efficient solatins that are
(¢; + €)-balanced onE; provided, of course, that such solutions exist. The
generalised theorem is more flexible in that it allows us gks®lutions with
different utilisation in different parts of the network.

6.3.5 Quantitative Results

We have used CPLEX 7:bn a Pentium laptop to conduct numerical exper-
iments with a graph representing a simplified version of &peajected net-
work. The graph has approximately 200 nodes and 720 direcigds. If we
had modelled MCF with source-destination pairs as comriggithe linear
problem corresponding t&/CF'y» would consist of some 8 million equations
and 30 million variables. Modelling commodities as traféatnode MCF 15
contains, in contrast, “only” about 40000 constraints adfl 000 variables.
Solving MCF'; with objective functionf** takes approximately 35 seconds.
Solving the same problem with the objective function coessd by Fortz
and Thorup [2, 3] takes approximately 65 seconds. Our exyeris suggest

1ILOG CPLEX 7.1 http://www.ilog.com
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Figure 6.3: Address lookup data structure for multiple gativarding.

that this function picks solutions that minimise balanececdntrast, withf*
we can choose any desired level of balance (above the minjmiucourse).

6.4 Multi-Path Forwarding

By modelling the routing problem as “all traffic t, as described in the pre-
vious section, we get an output from the optimisation thavédl suited for
packet forwarding in the routers. The result from the opgation, theyfj val-
ues, tells how packets at a certain nodetg¢ a certain egress nods {n the
network should be divided between the set of next hgpdi/e thus need a for-
warding mechanism that can distinguish packets destineal ¢ertain egress,
and that can forward along multiple paths.

To enable forwarding along multiple paths, we introduce moee step in
the usual forwarding process. An egress data structureested in the address
lookup tree just above the next hop data structure as iitedrin Fig. 6.3. A
longest prefix match is done in the same manner as in a stafafararding
table, except that it results in the destination egress .nddee egress data
structure stores references to the set of next hops to wizfflctfor that egress
should be forwarded, as well as the desired ratiosgtpéor all js) between
the next hops.

In order to populate the forwarding tables a mapping has taerbated
between destination addresses and egress nodes. The irdededtion is the
same as a regular intra-domain routing protocol needs samistained in much
the same way. For destinations in networks run by other eqpesré.e., in other
routing domains), the mapping is obtained from the BGP rayirotocol. For
intra-domain destinations, the destination prefix is diyeconnected to the
egress node.
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Mechanisms for distributing traffic between multiple lirkave been thor-
oughly evaluated by Cao et al. [10]. We propose to use a tasedhashing
mechanism with adaptation, because it can distribute thd xcording to
unequal ratios, is simple to compute, and adapts to the piep@f the ac-
tual traffic.

Similar mechanisms already exist in commercial routergdeoto handle
the equal cost multi-path extension to OSPF and similaiogais.

6.5 Related Work

With the prospect of better utilising available networkaesces and optimis-
ing traffic performance, a lot of research activity is cuthgegoing on in the

area of traffic engineering. The general principles andireqments for traffic

engineering are described in the RFC 3272 [1] produced byBRE Internet

Traffic Engineering working group. The requirements fofficaengineering

over MPLS are described in RFC 2702 [5].

Several researchers use multi-commodity flow models in text of
traffic engineering. Fortz and Thorup [2, 3] use a local dearuiristics for op-
timising the weight setting in OSPF. They use the result oftircommodity
flow optimisation as a benchmark to see how close to optineaDIBPF routing
can get using different sets of weights. Mitra and Ramakast{11] describes
techniques for optimisation subject to QoS constraints PL&-supported IP
networks. Poppe et al. [8] investigate models with difféi@jectives for cal-
culating explicit routes for MPLS traffic trunks. Multi-canodity flow and
network flow models in general have humerous applicatioasar& compre-
hensive introduction to network flows can be found in Ahujalef7].

A somewhat controversial assumption when using multi-coatity flow
optimisation is that an estimate of the demand matrix islalvks. The prob-
lem of deriving the demand matrix for operational IP netvaigkconsidered by
Feldmann et al. [12]. The demand matrix only describes theeattraffic situ-
ation but, for an optimisation to work well, it must also bead prediction of
the near future. Current research in traffic analysis by fAkharyya et al. [6]
and Feldmann et al. [12] indicate that sufficient long termvfiiability ex-
ists on backbone links in timescales of minutes and hoursranthnageable
aggregation levels to make optimisation feasible.
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6.6 Conclusions

We have taken the first steps to introduce flow optimisatios @siting mech-
anism for an intra-domain routing protocol. We have presgatrouting algo-
rithm based on multi-commodity flow optimisation which waiaoh is compu-
tationally tractable for on-line routing decisions andoadgly require a small
modification to the legacy packet forwarding mechanism. édsork is how-

ever needed on other components in order to design and ireptearcomplete
routing protocol using our algorithm.

The key issue, and our main contribution, is the mathematicalelling
of commodities. Traffic destined for a certain egress nodggregated into
a single commodity. This results in computational requizata an order of
magnitude smaller than in the traditional models where ttoblpm is mod-
elled with one commaodity for each flow from one ingress to ogress node.

Multi-path forwarding of the aggregates produced by thénaiger is then
handled by a hash based forwarding mechanism very similah#t is needed
for OSPF with ECMP.

Another contribution is the design of a generic objectivection for the
optimisation which allows the network operator to choosesirgd limit on
link utilisation. The optimisation mechanism then comgugemost efficient
solution given this requirement, when possible, and preduacbest effort so-
lution in other cases. The process can be iterated with, lgirgary search to
find a feasible level of load balance for a given network load.
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Abstract

Internet traffic volumes continue to grow at a great rate, pashed by video
and TV distribution in the networks. This brings up the needtfaffic engi-
neering mechanisms to better control the traffic. The objedf traffic engi-
neering is to avoid congestion in the network and make goeditiavailable
resources by controlling and optimising the routing fuoictiThe challenge for
traffic engineering in IP networks is to cope with the dynaswitinternet traf-
fic demands. Today, the main alternative for intra-domaiffitr engineering
in IP networks is to use different methods for setting theghts in the routing
protocols OSPF and IS-IS.

In this paper we revisit the weight setting approach to tadfigineering
but with focus on robustness. We propbdmlanced weight settings that route
the traffic on the shortest paths possible but make sure ¢thatlois utilised to
more than a given levél This gives efficient routing of traffic and controlled
spare capacity to handle unpredictable changes in traffiqpnésent a heuristic
search method for findingbalanced weight settings and show that it works
well in real network scenarios.
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7.1 Introduction

Internet traffic volumes continue to grow at a great rate, poshed on by
video and TV distribution in the networks. Increasing t@ffolumes neces-
sitate upgrades of network equipment and new investmentspierators, and
keep up-to-date the question of over-dimensioning netwapacity versus us-
ing traffic engineering mechanisms for better handling ta#it. In addition,
as new bandwidth demanding and also delay and loss sensiiveces are
introduced, it is even more important for the operator to aganthe traffic
situation in the network.

The main challenge for traffic engineering is to cope withdigpamics of
traffic demands and topology. How to best model and descgbeegated In-
ternet traffic is still an open area of research. On shortdtakes up to seconds
the traffic is very bursty and on long timescales there aengtedictable daily
and weekly cycles. In between there can be unpredictablegelsaand shifts
in traffic demand, for instance due to hotspots and flash cspatdbecause a
link goes down, there are changes in the inter-domain BG#hgor because
traffic in an overlay is re-directed. For future networks meariability in traf-
fic demands is also expected due to mobility of nodes and mk$smd more
dynamic on-demand service level agreements (SLA:S).

The traffic variability means that, even if we could measure ¢urrent
traffic situation exactly, it would not always correctly dret the near future
traffic situation and this needs to be taken into account vawéng traffic en-
gineering. Network operators often handle this by relyinginple well-tried
techniques (like OSPF and IS-IS routing), over-dimensigrdaf network ca-
pacity, and simple rules of thumb (i.e upgrade the link cépaghen mean
utilisation reaches 70-80%) rather than introducing cexpitaffic engineer-
ing techniques.

In this paper we take this need for spare capacity and simpés rof
thumb as our starting point. We revisit the approach of usieght settings
in OSPF/IS-IS for traffic engineering but now with focus omustness. We
propose weight settings that we chbalancedwhere the operator, by setting
the parameter(to say 80%), control the maximum utilisation level in thé-ne
work and how much spare capacity is needed to handle unpabticraffic
changes. With ahbalanced routing the traffic takes the shortest pathsiplessi
but makes sure that no link is utilised to more than a giveallevf possible.

The main contributions in this paper are:

e We proposd-balanced weight settings in OSPF/IS-IS for robust traffic
engineering.
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e We present a heuristic search method for findibglanced weight set-
tings and show that it works well in real network scenarios.

¢ We evaluaté-balanced routing and compare it with other proposed traf-
fic engineering objectives for several real network top@sa@nd traffic
data sets.

If traffic levels continue to grow then of course network czipaneeds to
be added at some point. But traffic engineering Withalanced routing can
extend the upgrade cycle and postpone the investment, glied to better
use the existing resources in the network until the highilsed links have
been upgraded.

The paper is organized as follows. Section 7.2 gives a shtydduction
to traffic engineering in IP networks and Section 7.3 disesisglated work.
We then present thibalanced cost function in Section 7.4 and describe the
search heuristic used for findingbalanced weight settings. In Section 7.5
we evaluate the proposed methods. We show that the seardbtizeworks
well for finding I-balanced weight settings in real traffic scenarios. Furthe
we compare the robustness of different weight-setting oustfand investigate
what happens to link utilisations in the network if a traffiendand suddenly
increases. Finally, in Section 7.6 we make some concludimgrks about our
findings.

7.2 Traffic Engineering in IP networks

The objective of traffic engineering is to avoid congestiothe network and
to make better use of available network resources by adafim routing to
the current traffic situation. The traffic demands in a nekadranges over
time and for network operators it is important to tune themoek in order
to accommodate more traffic and meet service level agresni@hAs) made
with their customers. This means that a network operatonoanely only on
long-term network planning and dimensioning that are dohemthe network
is first built. Robust traffic engineering mechanisms areladdhat can adapt
to changes in traffic demand and distribute traffic to benefinfavailable re-
sources.

The first step in the traffic engineering process is to colleetnecessary
information about network topology and the current traffication. Most traf-
fic engineering methods need as input a traffic matrix deisgyithe demand
between each pair of nodes in the network. The traffic matrbhén used as
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input to the routing optimization step, and the optimizechpzeters are finally
used to update the current routing.

Today, the main alternative for intra-domain traffic engirieg in IP net-
works is to use different methods for setting the weightsl (em decide upon
the shortest paths) in the routing protocols OSPF (Opent&tdPath First)
and IS-IS (Intermediate System to Intermediate Systemgs@&lare both link-
state protocols and the routing decisions are based ondisils @and a shortest
(least-cost) path calculation. With the equal-cost mpidtih (ECMP) extension
to the routing protocols the traffic can also be distributeer several paths that
have the same cost. These routing protocols were desigrssl $onple and
robust rather than to optimize the resource usage. They toynthemselves
consider network utilisation and do not always make goodafisetwork re-
sources. The traffic is routed on the shortest path througiné¢twork even if
the shortest path is overloaded and there exist alternaditres. It is up to the
operator to find a set of link costs (weights) that is besteslfor the current
traffic situation and that avoids congestion in the network.

The general problem of finding the best way to route traffiotigh a net-
work can be mathematically formulated as a multi-commotldw (MCF)
optimization problem (see, e.g., [1, 2, 3]). The networkhisnt modeled as a
graph. The problem consists of routing the traffic, given leemand matrix,
in the graph with given link capacities while minimizing astéunction. With
no limitations on how the traffic flows can be divided over ttetwork links
the MCF optimal routing problem can be formulated and effitiesolved as
a linear program. Introducing integer weights and ECMP t&sbipaths con-
straints, where the traffic no longer can be split arbityariiakes the problem
computationally much harder. For reasonably sized netsvorie usually has
to rely on search heuristics for determining the set of wisigtather than cal-
culating the optimal weights.

7.3 Related work

Traffic engineering by finding a suitable set of weights in B8®-IS is a well
studied area of research and it is described in recent tekfin the area [3, 4].
When we now revisit the weight setting approach to trafficieegring we are
most inspired by the pioneering works by Fortz and Thorup]2nd Ramakr-
ishnan and Rodrigues [6], in that we use a piece-wise linestrfanction and
search heuristics to find suitable weight settings.

Several studies [2, 7, 8, 9] have shown that even though wethmrouting
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of traffic to what can be achieved with weight-based ECMP telsbpaths,
and not necessarily the optimal weights but those found byckeheuristics,
it often comes close to the optimal routing for real netwar&rearios. How
the traffic is distributed in the network very much dependshenobjectives,
usually expressed as a cost function, in the optimisation.often proposed
objective function is described by Fortz and Thorup [2] (aredwill refer to
it as the FT cost function further on). Here the sum of the owst all links
is considered and a piece-wise linear increasing costifumit applied to the
flow on each link. The basic idea is that it should be cheap ¢oaLignk with
small utilization while using a link that approaches 100%is#tion should
be heavily penalized. Thiebalanced cost function [1, 10] used in this paper
is similar in that it uses a piecewise linear cost functiomldain desireable
solutions. Additionaly, our cost function gives the operahe opportunity to
set the maximum wanted link utilisation. Cost functionstfaffic engineering
is further investigated by Baloet.al[11].

This paper add to existing work on weight settings by focysin robust-
ness and the objective of achieving a controlled spare dgpac handling
unpredictable traffic shifts. For robust traffic enginegnmuch of the focus is
on handling multiple traffic matrices and traffic scenarmsl2, 13, 14, 15, 16]
and handling the trade-off between optimising for the commase or for the
worst case. There are also several works on finding weigtihgetthat are
robust to link failures [17, 18, 19].

Xu et.al[20] describe a method to jointly solve the flow optimizateomd
the link-weight approximation using a single formulati@sulting in a more
efficient computation. Their method can also direct traffreronon-shortest
paths with arbitrary percentages. Their results should bésdirectly appli-
cable to our problem of providing robustness to changesustygubstituting
their piece-wise linear cost function with our cost funatidn a continuation
on that work Xuet.al[21] propose a new link-state routing protocol. The pro-
tocol splits traffic over multiple paths with an exponenpahalty on longer
paths and achieves optimal traffic engineering while ratgithe simplicity of
hop-by-hop forwarding.
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7.4 L-balanced solutions

7.4.1 Optimal I-balanced routing

A routing is said to bé-balancedif the utilisation is less than or equal t@n
every link in the network. For instance a solution is (0.@)amced if it never
uses any link to more than 70% of its capacity.

Thel-balanced cost function, its theoretical foundation, asd in MCF
optimisation is described in [1, 10]. The idea is to use a &nmiece-wise
linear cost function as shown in Figure 7.1 and apply it to ulisation of
each link in the network. The cost function consists of twaedr portions
where the slope of the second line segment should be largeshrio penalise
utilisation above and balance traffic over longer paths.

The work in [1, 10] present a formula to calculate the costcfiom, for
a given network topology and traffic situation, that guaeastto find a-
balanced optimal routing (provided, of course, that sudbtsms exist) that
takes the shortest paths possible and makes sure that ris litiksed to more
thanl.

?

Figure 7.1: The link cost function.

7.4.2 Search for I-balanced weight settings

To apply thel-balanced routing in real OSPF/IS-IS networks we need to find
I-balanced weight settings. For weight settings we dont lla@@uarantee to
find anl-balanced routing in the same way as described for optimaling
above. But we want to use thdvalanced cost function to find weights settings
that achieve the same effect of taking the shortest pattsitpesvhile routing
the traffic so that no link is utilised to more than a given ldve

The problem of finding the optimal weight setting is NP-ha2d 3]; and
so the optimal weights are often too computationally haditane consuming
to calculate for real networks and traffic scenarios. Insiga use a problem
specific local search heuristic to determine the set of visighn overview of
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local search methods can be found in [22]. Our search metande placed
under the Tabu search meta-heuristic in that we allow caseasing solutions
to direct the search away from local minima, and use a tabudiprevent
from looping back to old solutions. A solution is a vector= {w1, .., w,}
of weights, with one weight per directed link in the netwovke have a solu-
tion spacél where each weight can take integer values betwesam65535.
We generate a neighboring solutibre N (w) by increasing one weight in the
current solutionw to divert traffic from the most utilised links, ¢) or change
weights to create paths with the same cost to get ECMP roaofitrgffic over
several links froms. We use a-balanced cost function (as described in the
previous section) calculated for the given topology, teaffiatrix and required
utilisation levell. The costf(w) for a given weight vector is determined by
calculating the shortest paths routing with these weighitsguDijkstra’s algo-
rithm, adding the traffic matrix, and applying the cost fumetto the resulting
link loads.

The starting point is to set all weights to the same valueinstancew; =
10. The search terminates either when we find a solution witisation under
the threshold or it stops after a fixed number of iterations.

At the core of our search method is a simple descent seartivf2e we:

1. choose an initial weight vectore W

2. find the neighboy € N (i) with lowest costi.e.f(j) <= f(k) for any
ke N(3).

3. If f(j) >= f(4) then stop. Else sét= j and go to step 2.

This type of search may stop at a local minimum. We thereftiosvathe
search to continue by doing new descents starting from we#gh with higher
cost. We use information that becomes available duringéhecs to build a
candidate list of weight sets that are used as starting gaantd a tabu list of
weight sets are used to avoid cycling.

We start by setting all weights to the same value. This giliesshortest
paths in number of hops which probably is a good startingtdoinmost real
networks; if the link capacities are uniform and the netweds built with
OSPF/IS-IS routing in mind. Given the network topologyfftcamatrix and
initial weights, we calculate the ECMP shortest paths, &edttaffic matrix,
and find the most loaded linls, ¢) in the network. If the utilisation is less than
| then we are done. We have a routing that takes the shortdst passible
and makes sure that no link is utilised to more than the limif the link is
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utilised to more thath we start searching for a better weight setting using two
strategies:

¢ the first search strategy is to increase the weight on thdaaadd link
in controlled steps so to divert more and more demands (aropate-
mands) from the link. See details in 7.4.3.

e the second search strategy is to find weights to get ECMPrmirbom s
for the demands oveg, ¢), and so balance the traffic over the outgoing
links froms. See details in 7.4.4.

In each iteration of a descent we have a number of neighbathveettings
that we evaluate (one for each weight step and ECMP set descabove).
If a neighbor weight setting gives a lower cost than the aurbest (in this
iteration) it is saved and used as the starting point in the iteration. If a
candidate weight setting gives a routing with a higher dushthe current best
but with a different link than(s, ) as most utilised, then that weight-setting
is saved in the candidate list and used as a starting poiratrfother descent
search later on.

7.4.3 How to determine weight increments for a link?

If a link (s,t) is over-utilised we want to increase the weight on the link in
controlled steps so to divert more and more traffic demarais the link.

To decide the steps in which to increase the weightson) we first deter-
mine the current total weight-cost for each demand routed @v¢). We then
temporarily take away the links, t) from our representation of the topology
and calculate a new shortest-path routing. For all demamatsbiefore were
routed ovels, t) we then check how much the weight cost have increased and
use this for determining the steps with which to increasentbight on(s, t).

In the example in Figure 7.2, we assume that the two demards2) and
D(4,2) overload the link(1,2). We thus want to divert traffic from the link
(1,2) by increasing the weight (1, 2).

We start by determining the increase steps in which to irser¢lae weight
w(l,2):

The total weight costs fab(1,2) andD(4, 2) are 10 and 40, respectively.
If we take away the link(1,2), we get total weight costs of 30 and 50, an
increase by 20 and 10 units respectively. From this we demidibe increase
steps 10, 15 (mid-point between 10 and 20), 20 and 21 unitsadiighis to
the originalw(1,2) = 10 and get the candidate weightg1, 2)= 20, 25, 30
and 31 to evaluate.
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,3)=40

Figure 7.2: Example with an overloaded link (1,2) wherefitafan be diverted
to other paths by increasing the weight on (1,2) in contdodiieps w(1,2)= 20,
25, 30 and 31. With the first increment w(1,2)=20 we diverf baldemand

D(4,2) by ECMP. The next increment w(1,2)=25 diverts all ¢&4[2), and with

w(1,2)=30 we route also half of D(1,2) on another path. Hnal(1,2)=31

diverts all traffic from (1,2).

With the first incrementy(1, 2) = 20 we divert half of demand (4, 2) by
ECMP while the other half oD(4, 2) and all of demand(1, 2) is still routed
on(1,2). The nextincremenb(1,2) = 25 diverts all of D(4, 2) but keeps alll
of D(1,2). With w(1,2) = 30 we also route half oD(1, 2) on another path
and withw(1,2) = 31 we divert all traffic from(1, 2).

7.4.4 How to determine ECMP weight settings?

If we have a weight set that results in an overloaded (k) then we want to
also evaluate neighbor weight settings where we split tramands evenly
over the outgoing links from using ECMP. In order to split a traffic demand
ECMP the total weight for each path frosrto the demand destinatiehneed
to be the same.

Consider, as in Figure 7.3, a noslethe next hops;, and the shortest path
P, from eacht; to the destination. Also consider the corresponding weights
w(s, t;) and total weight cost(P;) for a pathP; from ¢; to d. One way to
achieve ECMP weights is to adjust the weights, ¢;) on the outgoing links
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Figure 7.3: Determining ECMP weights

from s such that:
w(s, i) =1+ mazjo1_a{w(P)} — w(P)

This gives the same total cost for each path from s to d.

A possible extension to this is to not always spread the traffer all pos-
sible links but also evaluate different subsets of ECMP Wasigetting with
varying number of outgoing links from

7.4.5 Increment weight on a less utilised link in a path

With high traffic load in the network, link weights can becosensitive to
change after some iterations in the search. For instance éfman overloaded
link already have adjusted the weight to split a large demgittdECMP then
we can not easily increase the link weight to divert yet aaoflow without
disturbing the existing load balancing.

In order to divert traffic demands to other paths but withdstuotbing ex-
isting splits on the most utilised link we extend the neigfiffomd in the search.
We evaluate weight sets where we instead of changing thenveigthe over-
loaded link(s, t) increment the link weight some step away closer to the de-
mand destination. In the example in Figure 7.4, assume hiedirtk (1,3) is
overloaded. With our search (as described in 7.4.3) we wiouldis example
evaluate a weight setting where the demdd, 4) is diverted to the path 1-
5-4 by increasing the weight(1, 3) to 21. But increasing the weight(1, 3)
will also send all ofD(1,2) on the link(1, 2), possibly creating overload on
that link and a higher cost solution.

With the extended neighborhood we also evaluate altemnateight set-
tings where we increase the weight on other links in the path ¢nly on the
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Figure 7.4: Example with an overloaded link (1,3). With ateexied neigh-
borhood in the search the demand D(1,4) can be diverted ijgdeing the
weight w(3,4) instead of w(1,3), and avoid disturbing thkestflows on the
overloaded link (1,3).

most utilised link). In this example for demar(1, 4) we increase the weight
w(3,4) which diverts the demanB (1, 4) from the overloaded linkl, 3) while
keeping the needed ECMP split of demand, 2).

7.4.6 Comments on the search method

As described above several different techniques are ndedgpet an efficient
search method to finkdbalanced solutions.

When designing and implementing our search method we weparinin-
spired by the works of Ramakrishnan and Rodrigues [6] antzFord Tho-
rup [2]. From the first we borrowed the idea of temporarilyingkaway the
overloaded link from the representation of the topology] aalculate a new
shortest-path routing, to find the weight increments foditiie But apart from
this idea our approaches are different. Fortz and Thorupg$g]a Tabu local
search heuristic to find appropriate link weights, and fraanehwe also bor-
rowed the idea on how to find ECMP weight-settings over mamksli

But, for efficiency, we wanted a more problem-specific sedretristic
rather than a generic Tabu search. Instead of searchinghdbmg we start
with the shortest paths possible and directly look at thethoasled link. If the
utilisation is less thah then we are done and no search is needed. If the link
is utilised to more thah then we start to divert traffic from there.

The higher the traffic level the more difficult it is to find a \gbt setting,
that not only balances the traffic, but actually keeps it uradepecified levell.
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We combined the existing techniques described above: wigiglements and
ECMP traffic splits at the most utilised link. But with our éat approach and
at high traffic loads, it turned out not to be enough to fildhlanced routings.

Therefore, we also added our ideas with candidate lists@edded neigh-
borhoods. For the candidate list, we choose weight settirittpsa higher cost
but where the overload has moved to another link, in ordeiverse the search.
And for extended neighborhoods, we increment the weight s utilised
link in a path in order to not disturb the weight compositiosensitive, highly
loaded areas.

7.5 Evaluation
7.5.1 Method

In order to evaluate thebalanced routing and our search method for find-
ing I-balanced weights we use real network topologies and treifizix data
that we scale up to get high loads in the networks. First inti@ed.5.2 we
evaluate that the search method works well for findibglanced weight set-
ting in these scenarios and compare the resulting netwaidslavith optimal
I-balanced routing and routing with other traffic enginegrifbjectives. The
main objective of-balanced routing is to give a controlled amount of spare ca-
pacity to handle traffic changes. In Section 7.5.3 we ingasi how different
weight settings handle hotspots where one traffic matrigyéntreases.

For the evaluation we here use two different data sets thhtde network
topologies and traffic matrix data from the Geant networl,[28d from the
American sub-network of a global IP network.

o Network |: the Geant network with 23 nodes, 74 links and 506 aleds.

o Network Il: the American network with 24 nodes, 110 links &5&PR
demands.

The details of the global IP-network, the subnetwork togae and traffic
demands, are described in [24]. For the Geant network wél iekacapacities
to 10 Gb and scaled up the traffic data to create high load®indbwork.

7.5.2 Static scenario: Evaluating the search method

The evaluation shows that thédralanced objective and our search method for
finding I-balanced weight settings work well. Figure 7.5whaomparisons
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Table 7.1; Performance of the search heuristic for network |

load- | Min. hop routing L-balanced routing (L=0.8)

level | links >L maxutil | time maxutii descents setg
7 0 0.751 | 0.1s 0.751 0 0
8 2 0.858 | 0.3s 0.784 1 63
9 3 0.965 | 0.2s 0.797 1 51
10 3 1.072 | 04s 0.780 1 82
11 4 1.179 | 04s 0.795 1 91
12 5 1.287 | 04s 0.794 1 123
13 6 1.394 | 56.8s 0.790 262 21451

Table 7.2: Performance of the search heuristic for network |

load- | Min. hop routing L-balanced routing (L=0.8)

level | links >L max util| time max util descents sets
7 0 0.728| 0.4s 0.728 0 0
8 1 0.832| 0.4s 0.732 1 41
9 2 0.936| 0.6s 0.766 1 95
10 5 1.040| 2.2s 0.732 7 671
11 5 1.144 | 477.5s 0.801 4390 200037

of optimal and weight-baseldbalanced routing (with=80%) for increasing
levels of traffic demand in the Geant network (Network |) ahd American
network (Network Il). Thd-balanced routing sends the traffic on the shortest
paths as long as the utilisation is low in the network. Thepshaf the curves
shows that when we scale up the traffic demand-h@anced method tries to
keep the utilisation undd«=0.8. The figures also show that the weight-based
routing is close to the optimal routing which validates tbat search method
for setting the weights works well. Note that optimal rogtiminimises the
total cost when thébalanced cost function is applied to the utilisation offeac
link in the network. The utilisation for an individual linlafid so the maximum
link utilisation) can be higher in the optimal solution iffinds a shorter path
that still keeps the utilisation belolw

Tables 7.1 and 7.2 describe the performance of our seardhooheind
show that our search heuristic is fast. The left-hand sidbefables describes
the load situation in the networks. The increasing loadle(ghown in the
first column) come from multiplying each entry in the traffiatrix with a
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Maximum link utilsation for L-balanced routings (Network I)
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Figure 7.5: Comparison of maximum link utilisations for iop&l and weight-
based L-balanced routing for different scaled traffic dedsan the Geant net-
work (top) and the American network (bottom). The utilisatis kept under
the chosen limit and the weights found by the search heuristic gives a routing
close to optimal.
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higher and higher constant value. For both networks it htilds up to level
7, no search is needed since the start weights (all set toritD)he resulting
minimum-hop routing give a maximum link utilisation of letban! = 0.8.

The second and third columns show the number of links thabaded to
more the level = 0.8 and the maximum link utilisation, when all weights are
set to 10. This is the state from which the search start.

The right-hand side of the tables shows the performance pfsearch
method. The first column shows how long time it takes to find-balanced
solution for different levels of network load. The tableathows the number
of search descents (number of new starts) and the total nuofibeighbor
weight sets that were evaluated.

As an example, for Network | in Table 7.1, at scale 8 there arelinks
that are utilized to more thah= 0.80. The search heuristic investigate 63
different weight settings to find anbalanced solution with a maximum link
utilisation of 0.784. This search took only 0.3 seconds oteadard laptop
with a 1.6GHz Intel Core 2 Duo CPU and 2 GB of memory.

At scale 13 there are 6 links utilized to more thiae= 0.80 and with a
maximum utilisation of 1.394. The search needs to find a wedgtiing that
diverts traffic and simultaneously pushes down all six linlkisations under
[ = 0.8 (and without increasing any other link to more tharof course).
Our search heuristic evaluates 21451 weight settings add finl-balanced
solution at this level in less than a minute.

Figure 7.6 shows a comparison betweenlthalanced routing and other
traffic engineering objectives. The minimum-hop routingtkvall weights set
to 10), where no attempt is done to adapt the weight settittgetourrent traffic
demand, quickly leads to overload in the network when thé¢rdemands are
increased. Thebalanced method sends the traffic on the shortest patha@s lo
as the utilisation is less than the chosen vak@8. With a low utilisation of
the network there is no reason to split the traffic over séymaths. The FT
cost function used in [2], pushes down the maximum link sdifion already
at lower traffic levels. This piece-wise linear cost funnt@onsists of several
segments which is reflected in the shape of the curve witleg@legt where the
maximum link utilisation is pushed down.

With minmax routing the objective is to minimise the maximiink util-
isation in the network. This routing always balance the loegr the network
to keep the highest link utilisation down to a minimum. Theimgal minmax
routing gives a lower bound on how much it is possible to keaprdthe max-
imum link utilisation.
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Maximum link utilsation for different traffic engineering objectives
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Figure 7.6: Comparison of maximum link utilisations forfdient traffic engi-
neering objectives in the Geant network.
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7.5.3 Dynamic scenario: Evaluation of robustness

The main purpose withbalanced routing is to give a controlled traffic level
and spare capacity to handle uncertainties and sudden ebamghe traffic
situation. To confirm that thebalanced weight settings fulfil this, we added
hotspot traffic (in a magnitude that théalanced routing should be able to han-
dle) and investigated the resulting link utilisations. dig 7.7 shows the max-
imum link utilisations for minimum hop routind;balanced and FT weight-
settings under assumed hotspot traffic in the Geant netveeriasio.

After determining the weights and the routing for a giveffitanatrix each
of the 506 demands was increased one at a time by 20% of thedjpécity.

The minimum hop routing, without any traffic engineeringas link over-
load for all hotspot traffic at this demand level. The FT rogtsometimes
results in overloaded links when the hotspot traffic is addEae |-balanced
routing (with1=0.8) on the other hand gives 20% spare capacity and so handle
the increase for any of the demands.

7.6 Conclusions

In this paper we propodebalanced routing with OSPF/IS-IS for robust traf-
fic engineering. We present a heuristic search method foinfiriebalanced
weight settings and show that the search and the resultifghtsettings work
well in real network scenarios.

L-balanced weight settings give the operator possibilityapply simple
rules of thumb for controlling the maximum link utilisatiaand control the
amount of spare capacity needed to handle sudden traffiatieanrs. It gives
more controlled traffic levels than other cost functions arate efficient rout-
ing for low traffic loads when there is no need to spread traffier longer
paths.

Our local search method can be placed under the Tabu seatathmgristic
in that we allow cost-increasing solutions to direct theceaway from local
minima, and use a tabu list to prevent from looping back tosoldtions. But
for efficiency, rather than using a generic Tabu search, v¢ement a search
heuristic specific for the problem of findingbalanced weight settings. We
start with minimum-hop routing and investigate the mostkzhlink. If the
utilisation is less thah then we are done and no search is needed. If the link is
utilised to more thath, then we start the search from there, and we use several
different weight strategies for diverting traffic to otheatps.
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The higher the traffic level the more difficult it is to find a \ght setting,
that not only balances the traffic, but actually keeps it uradspecified level
I. We combine controlled weight increments and ECMP traffitspo di-
vert traffic from the most utilised link. We also introducend@ate lists and
extended neighborhoods. Promising weight settings thatentioe overload
to other links are saved in the candidate list to be startinigtp for further
search. Extended neighborhoods means that, when divertraffic flow from
an overloaded link, we do not only try to increase the weighthe overloaded
link. We also evaluate weight settings where we incremenitbight on a less
utilised link further down the path. This is done in order i disturb already
achieved traffic splits in highly loaded areas.

We evaluate our search heuristic in several real networkeses and show
that the search is fast and that it fidsalanced weight-settings in seconds or
minutes depending on the traffic level.
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Abstract

IPTV, where television is distributed over the InternettBool in a single oper-
ator network, has become popular and widespread. Manyorelend broad-
band companies have become TV providers and distribute Bvireéls using
multicast over their backbone networks. IPTV also meanvalution to time-
shifted television where viewers now often can choose tchvidite programs at
any time. However, distributing individual TV streams te@kaiewer requires
a lot of bandwidth and is a big challenge for TV operators. His paper we
present an empirical IPTV workload model, simulate IPTWrilisition with
time-shift, and show that local caching can limit the barditvirequirements
significantly.
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8.1 Introduction

IPTV, where TV channels are distributed using IP multichag become pop-
ular and widespread. Many telecom and broadband compaaiesiiecome
TV providers and distribute TV channels using multicastrabeir backbone
network. IPTV also means an evolution to time-shifted TV vengewers can
choose to watch the programs at anytime.

When distributing the TV schedule using multicast thereriy @ne TV
stream per channel, while for time-shifted TV there can be sineam per
customer. Distributing individual TV streams to each viewexjuires a lot of
bandwidth and this is a big challenge for TV operators. Therajrs now
therefore only gradually introduce access to more and niore-shifted TV
programs, and try out different technical solutions.

TV statistics show that there is a small set of very populagpams that
most people are watching. A popular prime-time program ihacheduled
and distributed with multicast at a given time, will mostdii also have a lot
of viewer that choose to watch the program time-shifted dalbér during the
evening. For an operator with many hundred thousands of Dgaibers there
can be a very large number of copies of the same popular doditgributed
and putting load on the network.

The question we address in this work is: what extent can we limit the
bandwidth requirements from time-shifted TV by cachingrtbst popular pro-
grams closer to the viewersPhe answer depends on several factors including
cache size, caching strategy, and the viewers’ requestrpdttr TV programs.

Caching is a well studied technique for web content and vifle@, 3, 4,
5, 6] and have started to attract interest also in the cooféRTV [7, 8, 9, 10].

In order to develop and evaluate IPTV caching strategies gearkload
models are needed. In this paper we use an empirical IPTVIeadknodel to
simulate IPTV distribution with time-shift and investigahe benefit of intro-
ducing a local cache closer to the TV subscribers. The simnuaksare based
on real TV schedules, and statistics about TV program peopyknd viewer
activity. We simulate a large number of TV viewers that, whetive, request
scheduled or on-demand programs and we investigate thkimgsoandwidth
requirements on the down link for different cache sizes authing strategies.

The contributions of this paper are: We present an empiti€gY work-
load model. We simulate a realistic scenario for IPTV disttion and com-
pare the Least Recently Used (LRU) and Least Frequently (Id$€d) caching
strategies. We show that time-shifted TV can be very capaeimanding and
that considerable amounts of bandwidth can be saved byraattté most pop-
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Figure 8.1: IPTV network architecture.

ular programs closer to the viewers.

The rest of the paper is structured as follows: In sectionm&2escribe
IPTV distribution and time-shifted TV. In section 8.3 we peat the IPTV sim-
ulator, the workload model, and the simulation scenarie ddching strategies
LFU, LRU and Clairvoyant are described in section 8.4. Thauation results
and the evaluation of the caching strategies are presemtgetction 8.5. Re-
lated work is in section 8.6, future work in section 8.7 andasaclude the
paper in section 8.8.

8.2 IPTV and time-shifted TV

We consider IPTV distribution within in a single operatotwerk, where the
operator controls the network and how the TV content is ithsted.

IPTV operators distribute traditional scheduled TV chdsbet also grad-
ually introduce new TV services where the viewer can choosestch a pro-
gram later after its scheduled time. This service is caileetshifted TV (or
sometimes TV on-demand or Catch-Up TV).

A typical IPTV architecture with a hierarchical tree-liketwork structure
is illustrated in Figure 8.1. The TV content is deliveredifroontent providers
and comes into the network at a central distribution cem@nfwhere it is
transmitted to Video Hub Offices (VHO). A Video Hub Office hasrage and
video streaming equipment to serve a district or a city. Wrnide VHO there
can be intermediate levels of storage and video serverferBift operators try
and use different structures of varying complexity. Therféigalso shows a TV
subscriber with a home network where the TV and the set-top(8@B) is
connected via a residential gateway to a Digital Subsctiber Access Multi-
plexer (DSLAM).



8.3 Simulation of IPTV 89

The TV channels are distributed using IP multicast from thstritbution
center to the set-top boxes. TV programs requested outsedschedule are
streamed with unicast from the VHO (or from an intermediaeear if avail-
able) to the set-top box.

8.3 Simulation of IPTV

8.3.1 Workload model

We want to investigate the load that IPTV with time-shift gart on a network
and how caching can reduce the bandwidth requirements.hiowe need a
model of the network, a model of how TV is distributed and how viiew-
ers request programs and put load on the network. We need afadsle
with channels and programs that is continuously updatedt afsosn-demand
programs, and a number of viewers that choose programs thgither live
programs or time-shifted programs).

Our approach to this is to use an empirical model to simula@ dis-
tribution. We have implemented a time-driven simulatot thaerates on the
time-scale of minutes. We simulate TV distribution by stegphrough real
TV schedules and by using statistics about the TV programgufarity and
viewer activity.

8.3.2 Data set

We use a data set from traditional TV with 13 channels ovens diam Me-
diamatning i Skandinavien (MMS) [11]. MMS together withé\sen Audience
Measurement [12] measure the viewing habits of the TV audiém Sweden.
The measurements are done using a so called People Metemsystere the
viewing habits of sample households are logged using eleictmeters con-
nected to the remote control.

Our data set include 2225 TV programs from the most populacfahnels
in Sweden. For each TV program we extracted the time it wasddld, its
length and the number of viewers. There are a few program$tve a very
large number of viewers. The most popular program in thia dat have more
than 2.3 million viewers (26% of the population) while marfytlee programs
only have a few thousand viewers. The graph in figure 8.2 sliograumber
of programs and their share of the total TV viewing time. Tog 1% (22 of
2225 programs) most popular programs stand for 26% of theedeTV time
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Figure 8.2: TV program popularity.

in this data set. The 10% most popular programs stand for G4teo/iewed
minutes.

The data set also gives us information about the total nurmbeiewers
that are active and watch TV at any given time. Figure 8.3 shiv fraction
of the viewers that are active and how it varies over the fiysi&londay to
Friday). There are distinct peaks in the evenings when 4@-dBthe viewers
are active.

Percentage of viewers that are active over time
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Figure 8.3: Percentage of viewers that are active.
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8.3.3 TV programs

In the simulator we represent and step through real TV sdhesdEor the data
set described in 8.3.2 we have a schedule with 13 channetbaays. So,
there is a set of at most 13 ongoing channel programs avaiddlziny point in
time. The data set also gives us the number of viewers of eagrgm.

In each time step in the simulation we move forward one minuténe
schedule, update the set of programs (add new programs &etd tlee ones
that ended), and re-calculate the relative popularity ohgaogram. The latter
sets the probability that a viewer will choose to watch aipalar TV program.

There is also a set of time-shifted programs that is updateshch step
of the simulation. All scheduled programs goes into the $dinme-shifted
programs and can be requested on-demand. The first minujgro§eam that
is scheduled (and sent out with multicast) at titme made available for time-
shifted viewing at time + 1. The time interval that the programs are available
on-demand decides the size of the set of available progrdinis. a tunable
parameter in the simulation. For the experiments desciitbedction 8.5 we
used a default value of 24 hours.

The popularity of the programs at a given time step in the Kitman is
illustrated in figures 8.4 and 8.5 for the scheduled and timé&ed programs
respectively. Here no attempt is made to fit the data to wadkn distribu-
tions. Instead we generate values from the empirical pribtyadbistributions
using the inverse transformation method, for instancerdeesttin Jain [13]. To
choose which program to watch a viewer generate a random etelween
0 and 1 from a uniform distribution. For the example in figur4, & the value
is between 0 and 0.46 then program 1 is chosen, if the valuetigden 0.46
and 0.84 program 2 is chosen and so on.

8.3.4 TV viewers

Our TV viewers are either ON watching TV programs or OFF siegpin the
simulator we follow the graph from the viewer statistics igufie 8.3 closely
and in each time step adjust the fraction of the viewers thataative and
watch TV. A viewer that is activated chooses a program toestjiHe chooses
either to join the distribution of an ongoing scheduled pamg or to request
one of the time-shifted programs that are available on-aein@he particular
program to watch is then chosen randomly following the erogliprobability
distribution for the popularity of the currently availalgeograms.

Table 8.1 shows parameter settings for the simulations wsept in this
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Figure 8.5: Probabilities for the 438 time-shifted progsaavailable at =
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Table 8.1: Simulation parameters.

Number of viewers 1000
Number of TV channels 13
Number of TV programs 2225

Programs available time-shifted 24 hours
Simulated time 7200 minutes
Scheduled TV/Time-shifted TV 50/50
TV stream bit rate 2 Mbps

paper. The share of time-shifted viewing will most likelyciease with time
when more programs becomes available on-demand and thergigst used
to choosing programs outside the schedule. Here we use a b&d¢ethat an
active viewer chooses to watch a time-shifted program.
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Figure 8.6: IPTV network simulation scenario. Studying #ffect of intro-
ducing a local cache.

8.3.5 Network model and simulation scenario

In our simulator we can represent different topologies wébhing at different
levels in the network including in the set-top boxes. Bubiis ivork we delimit
the network structure to study the effect of introducing @alacache (in the
DSLAM) and the importance of cache size and caching strategyg at this
node.

For this, we study one branch of an IPTV network topology tas in
figure 8.6) with one server, a single local cache, and onestnmdi viewers
(TV set-top boxes). We assume that all programs are distibto the TV
server and that all programs are stored there as long as taeyvailable for
time-shifted viewing. For the local cache it is differenthat is stored in a
local cache at a given moment in time depend on the size ofabieec(which
is a parameter that we investigate in the simulations), #ohiog strategy in
use; and what programs the viewers under the cache havetoosatch (the
request pattern). We monitor the load on the link from th&eseto the local
cache and we investigate how the bandwidth requirementssvaith cache
size (including the case with no caching) and caching gjyate

The bit rate of a TV stream depends on the TV channel and cosist u
For simplicity we here assume that all TV streams require p84b

If a viewer requests a scheduled program, and none of itshheig is
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watching this channel, then a multicast stream is addecettotid on the link
down from the server to the local cache. If someone is alreatghing the
channel, then the new viewer joins the ongoing multicadtidigion and no
additional load is added to the down link. Requests for tshidted programs
first go to the local cache. If the program is not availabledhé is instead
transferred with unicast from the server adding 2 Mbps tddkd on the down
link to the local cache.

8.4 Caching strategies

When the cache is full, and a new program part arrives, aeglyds needed
to decide what should stay in the cache and what to deleteéhisnmork we
simulate and compare three different strategies.

8.4.1 Least Recently Used

With the Least Recently Used (LRU) strategy we delete froendhche the
program that has not been requested for the longest time.

8.4.2 Least Frequently Used

With Least Frequently Used (LFU) we discard the program thaeéquested
least often. This could be done by counting the number of @iswthat join the
multicast distribution of a program and the number of on-dedrequests. In
the simulation we here use the known popularity of all praggaand delete the
one with the least probability for being requested. In addito that we only
consider to deletmactiveprograms; that is programs that no one is watching
at this moment in time.

8.4.3 Clairvoyant

In the simulation we also implement a clairvoyant strated whe ability to
look into the future and delete the program part that will ib@nheeded for the
longest time. This is done by running the simulations twloethe first run all
viewer requests are logged; and in the second run this irdtiomis used to
determine which program part that will not be asked for fa litngest time.
The purpose of this strategy is to get an optimal cachindgegjysand a lower
limit to which we can compare the LRU and LFU strategies.



8.5 Evaluation 95

8.5 Evaluation

We simulate 5 days of TV distribution in a simple scenario ascdibed in
section 8.3. There are 1000 viewers that, when active, stgabeduled TV or
time-shifted TV. The scheduled TV channels are distribued multicast via
a server; and all programs available for time-shifted viey\are also available
from this node. The questions we address &@v much bandwidth can we
save by introducing a local cache (between the viewers aadéhver)? and
how does the result depend on cache size and caching stratebg local
cache?

Figure 8.7 shows the link load on the down link during the Sudated days.
The top figure shows the case without a local cache, whereratshifted TV
are distributed in unicast streams from the core. The migdiph shows the
link load when a 25 GB local cache is introduced. The bottomréghows
the result with a cache that is sufficiently large (250 GB) ¢tdrall available
time-shifted programs.

The graphs in figures 8.8 and 8.9 show the maximum and meafokials
for different cache sizes during the last three days of ttniitions. Here we
also see a comparison between different caching strategies steep slope of
the curves show that introducing even a small cache can agethe load on
the down link considerably. The LFU strategy performs rdtian LRU and
is also close to the lower limit set by the Clairvoyant caghstrategy.

With a sufficiently large cache, with room for all availablmé-shifted
TV programs, the traffic down from the core to the local cachéow, but
not zero. Some viewers are watching the scheduled TV chatimed are dis-
tributed with multicast from the core. There are also stithe unicast transfers
of time-shifted programs from the server. This is becaust the caching
strategies investigated, a program is only distributedcauthed if someone is
requesting it. Scheduled programs that none of our 1000ereare watch-
ing (for instance during night when few viewers are active)reot distributed.
If this program is later requested on-demand then, the firg,tit is trans-
fered with unicast from the server. This explains why, evéh @& sufficiently
large cache, the link load down to the cache, can exceed tHa&t multicast
channels (which would require 26 Mbps with the parameteingetised in the
simulations).

The use and efficiency of the local cache strategy dependenetjuest
pattern i.e what programs the viewers request and in whatrofid compare
the impact on the LFU and LRU strategies we did 10 differemiugation runs
for each cache size. The error bars in figure 8.10 and 8.11 &heer and
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Figure 8.7: Link loads over five days for the cases: no cadh&R cache, and
250 GB cache. Here the LFU caching strategy is used.

upper values for the resulting maximum and mean link loadtermown link.

The error bars are sometimes overlapping. A closer exarnmas illus-
trated in figure 8.12, show that this is due to variation betw&mulation runs.
With the same request pattern the LFU strategy always padat least as
good as the LRU strategy in our simulations.

8.6 Related Work

The recent growth and popularity of IPTV services have ledrtoncreasing
interest from researchers to measure and model IPTV viebéhgvior. Cha
et al. [14] present an extensive measurement study of vigbéhavior includ-
ing channel popularity and channel switching in an operatitP TV network.
Ramos et al. [15] present work on constructing an IPTV waklmodel cap-
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Figure 8.8: Comparing maximum bandwidth usage on the dowknfbr dif-
ferent caching strategies and cache sizes.

turing the way viewers change channels and watch live TV.&Dial. model
TV channel popularity [16] and user activities [17] in a larPTV system
and present the SimulWatch workload generator. Their mod&lde set-top
box on-times and off-times, channel popularity and chasnétiching. These
studies are similar to ours in that they model IPTV vieweradwdr — but they
study traditional live TV, and model channel popularity amat the popular-
ity of individual programs. We also simulate TV channels but focus is
on investigating time-shifted TV and caching, and for tlie popularity of
individual programs is a fundamental part of the model.

Yu et al. [18] measure and model user behavior and contemisaqeat-
terns in a large video-on-demand system. There has been amasant of re-
search on different server scheduling techniques and praslging strategies
and combinations of the two for video-on-demand systemscantent distri-
bution networks [1, 2, 3, 4, 5, 6]. These works are similaraesan that they
study methods for minimizing bandwidth requirements fodraeontent dis-
tribution and investigate the trade-offs between netweakdwidth and cache
storage resources. Time-shifted TV has many similaribegoD but for time-
shifted TV the broadcasters’ schedules decide when pragsaareleased and
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Figure 8.9: Comparing mean bandwidth usage on the down tinklifferent
caching strategies and cache sizes.

influence when and what people watch.

The work closest to ours are the studies by Wauters et al0]9Vleeschauwer
et al. [8], and Krogfoss et al. [7]. They investigate the &audf between band-
width usage and storage in scenarios with time-shifted IBIN these studies
have a more theoretical approach in that they do not use Nachedules
or TV statistics. Wauters et al. present an analytical mf@lednd simula-
tions [10] of time-shifted TV with a sliding-interval caetg mechanism and
co-operative caching. Vleeschauwer et al. [8] study a GbiglTV service
where the viewers can select to watch the content at a tiraettzn the origi-
nal airing time. Based on observations from monitoring T@alprogram pop-
ularity they present a user behavior model and simulatidmsrg/Poisson pro-
cesses are used to generate the time when programs arecressponding
to the TV schedule) and the users’ requests for a programir Tbeclusions
are consistent with ours that caching is needed to limit therwise enormous
bandwidth requirements when new TV services are fully thiiced. Krogfoss
et al. [7] investigate several aspects of caching and opétitn strategies for
IPTV networks including network dimensioning and cacheelaent.

There are also related work that look at the larger picturenahaging
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Figure 8.10: Maximum bandwidth usage for LFU and LRU witloefyars (10
simulation runs).

a whole IPTV deployment. Mahimkar et al. [19] present work perfor-

mance diagnosis in a large IPTV network. Agrawal et al. [26Yalop a
general framework for planning an IPTV service deployméfich research
has also focused on peer-to-peer techniques for TV disioib21, 22, 23]

and VoD [24, 25, 26]. Cha et al. [21] analyze the TV viewing &ébr in an

IPTV system and explore how P2P-techniques can complemistitg Telco-

managed IPTV architectures.

8.7 Future work

IPTV with time-shift and the use of caching for IPTV are silan initial stage
of development. We have here studied the basic LRU and LFbitngalgo-
rithms. For future work there are more complex IPTV scersmsnd IPTV
caching strategies to investigate including co-operat@ehes, pre-caching
during low traffic and more. Furthermore, the monetary céshiwoducing
memory into the network versus providing the bandwidth eeldd important
for operators.

There are also many possible refinements of the simulatiatehircluding
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Figure 8.11: Mean bandwidth usage for LFU and LRU with errarsb(10
simulation runs).

tuning parameters such as the popularity of time-shiftedymms and intro-
ducing more complex viewer behavior.

As described in section 8.6 much research has been done bimgdor
video-on-demand. Time-shifted TV is something differenthiat we have an
initial multicast distribution of all programs and that theoadcasters’ sched-
ules decide when programs are released and influence whentetigeople
watch. Also, much of the work on caching for video-on-demandiuding
sliding-interval, prefix- and segment caching surveyed ngssume that only
a small part of a program can be kept in memory. The currendtwéth mem-
ory prices going down makes it possible to put much largeheadnto the
network today than just a few years ago.

In this work we have assumed that all parts of a TV-progranetiae same
popularity. When more detailed viewing statistics beconslable for time-
shifted TV; and if it shows that the popularity of differersints of programs dif-
fer a lot, then it could be interesting to re-visit and evé&uaore fine-grained
segment-based caching algorithms also in the context of.IPT
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8.8 Conclusions

IPTV is now popular and widespread. Many telecom and broadiicampa-
nies have become TV operators and distribute TV channetg uBi multicast
in their network. Operators also gradually introduce newises like time-
shifted TV where the viewers can choose to watch the progiates after
their first airing.

With a centralized system, unicast distribution of timéfteld programs,
and hundred-thousands of subscribers, time-shifted IPi§¥iloution can be
very bandwidth demanding. And since TV statistics show thast people are
watching the same programs there can be a very large amooops of the
same content distributed and putting load on the networlchitg the most
popular programs closer to the viewers can significantlyicedhe network
load, as we show in this paper.

The effectiveness of caching depend on several factorading viewing
behavior, request patterns and program popularity. Fodéwelopment and
evaluation of good caching strategies it is therefore irtgyurto develop real-
istic IPTV workload models that include the new time-shifiev services.

In this paper we present a simple IPTV workload model, siteulRTV
distribution with time-shift, and show that caching canititihe bandwidth
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requirements significantly.
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Abstract

Today video and TV distribution dominate Internet traffidahe increasing
demand for high-bandwidth multimedia services puts presso Internet ser-
vice providers. In this paper we simulate TV distributiorttwiime-shift and
investigate the effect of introducing a local cache clos¢heoviewers. We
study what impact TV program popularity, program set siashe replace-
ment policy and other factors have on the caching efficiei¢ye simulation
results show that introducing a local cache close to the etiswgignificantly
reduces the network load from TV-on-Demand services. Bhicacd% of the

program volume we can decrease the peak load during prineeltiimalmost
50%. We also show that the TV program type and how programlpdpu

changes over time can have a big influence on cache hit ratibtha resulting
link loads.
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9.1 Introduction

Many telecom and broadband companies have become TV operatbey
distribute TV channels using IP multicast in their netwobkg also gradu-
ally introduce new services like time-shifted TV (or TV-@emand) where
viewers can choose to watch the programs later, after isdadhd time. Dis-
tributing individual TV streams to each viewer requirestottbandwidth and
server capacity resulting in a big challenge for TV opemtor

One way to reduce the network load is to cache popular contesér to
the users. Caching is a well studied technique for web coatahvideo [1, 2],
but TV is different in many ways.

The potential for caching depends on several factors imetpdser be-
haviour and content popularity. The new TV-on-Demand sexwhave many
similarities with Video-on-Demand systems but there ase abme clear dif-
ferences. In many traditional Video-on-Demand systemeethee only a few
new releases of movies every week. For TV distribution withetshift the
TV schedule with many ongoing channels gives a constantirdgfonew pro-
grams that become available for on-demand requests. Tlgegongpopularity
is also different. Many TV programs have a very short lifespgor instance
news programs and weather forecasts quickly become odtdatklose their
popularity as soon as a more recent report is made available.

It is important to understand what impact these charatiesisf the new
IPTV services have on caching. For the development and ataiuof good
caching strategies it is also important to develop reall&tTV workload mod-
els that include the new time-shifted TV services and howutenty changes
over time.

In this paper we use an empirical IPTV workload model to sateilPTV
distribution with time-shift. The simulations are basedreal TV schedules,
and statistics about TV program popularity and viewer @gtiv

The contributions of this paper are: we show that a compaigitsmall
local cache can be used to significantly reduce the peakdiadtd for TV dis-
tribution with time-shift. We also show that in addition taahe size and cache
replacement policy, TV program type and how program pojiyl@hanges
over time can have a big influence on cache hit ratio and thdtires link
loads.

The rest of the paper is structured as follows: In Sectionw@lescribe
our data set and give examples of TV viewing behaviour batimftraditional
linear TV and time-shifted TV. In Section 9.3 we describefh€V simulator
and the simulation scenario. The simulation results, shgwihe impact of
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Figure 9.1: Fraction of active TV viewers over two weeks. dieable daily
and weekly variations in viewer behaviour.

TV program popularity, cache size, cache replacementyaliad program set
size, are in Section 9.4. Related work is in Section 9.5, aedenclude the
paper with a discussion in Section 9.6.

9.2 On TV viewing behaviour
9.2.1 Traditional linear TV

We use a data set from traditional TV with 13 channels overé&&drom Me-
diamatning i Skandinavien (MMS) [3]. MMS together with ien Audience
Measurement [4] measure the viewing habits of the TV audiémSweden.
The measurements are done using a so called People Metemsystere the
viewing habits of sample households are logged using eleictmeters con-
nected to the remote control.

Our data set includes 11635 TV programs from the most poffMarhan-
nels in Sweden. For each TV program we extracted the timestseheduled,
its length and the number of viewers. There is a large vanaiti the num-
ber of viewers between different programs. The median nummibéewers of
the programs in our data set is 27000. The maximum numbeeofers of a
program is almost 3.3 millions.

The data set also gives us information about the total nurmbeiewers
that are active and watch TV at a given time. Figure 9.1 shbaedraction of
the viewers that are active and how it varies over the firstsweks of the data
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set. We can see predictable daily and weekly variationsewer behaviour.
There are small increases in viewer activity each mornirntthere are distinct
peaks during prime time every evening when up to 50% of thaijation is
watching TV. As expected, Friday and Saturday eveningshardimes when
most people are watching TV, and we can also see that durengvéfekend
more people are watching TV during daytime.

9.2.2 Time-shifted TV

For TV programs that are available on-demand, popularitjikes with time.

In a TV-on-Demand system, there is also a constant inflow loédaled TV

programs that become available on-demand. Therefore ditithe same pro-
grams that are the most popular day after day. Figure 9.2 shew exam-
ples of how the number of viewers and the rank of programsedeer with

time. The examples come from the Dutch TV-on-Demand sitedoiding

Gemist [5]. Many programs such as news programs and weathecdsts
quickly become outdated and lose their popularity whenlabbs on-demand.
Other programs, typically drama TV-shows, retain intefiesh some viewers
even a long time after their first release and initial peakapuarity. This

categorization is for instance described by Avramova €6ithat study and
model the popularity evolution of on-demand programs.

9.3 Simulation of IPTV with time-shift

In order to simulate IPTV distribution and evaluate caclsitrgtegies we use an
empirical model based on the data set described in Sectoh. Ve simulate
IPTV distribution on the time scale of minutes. We have a Thestule with 13
channels over 4 weeks and statistics about viewer activitythe popularity
of the TV programs.

An earlier version of the simulator was presented in [7], tredreader is
referred to that paper for details of the simulator that arteimcluded here.

Inthe earlier versionin [7] the TV programs were only avaléson-demand
for a short time (24 hours) and they kept their original papity. An impor-
tant extension in the current version is that we simulate pi@gram popularity
changes over time and how this depends on program type. Stescribed in
Section 9.3.3.
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Figure 9.2: The top figure shows the number of viewers per ddytze rank for
an episode of the reality TV shokarmer wants a wife The bar graph shows
viewers per day with the scale on the Y-axis shown to the Téfe plotted line
shows the rank with the scale on the Y-axis shown to the rigie bottom
figure shows the number of viewers per day for a TV news progrdime
figures show how the popularity changes over 40 days aftdivianbroadcast.
The popularity of a news program quickly declines.
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Figure 9.3: IPTV simulation scenario.

9.3.1 Network model and simulation scenario

We have a scenario with one branch of an IPTV network topo{agyhown in
Figure 9.3) with one server and one thousand viewers (T\togeboxes). We
simulate viewer requests for TV-programs and study theeffEintroducing a
local cache (in the DSLAM), the importance of cache size awhe replace-
ment policy at this node, and the significance of TV programyparity and of
the size of the set of available on-demand programs.

The scheduled TV channels are distributed with multicadtadlprograms
then also become available for time-shifted viewing. Wesassthat all pro-
grams are distributed to the TV server and that all programstred there
as long as they are available for time-shifted viewing. erlocal cache it is
different: what is stored in a local cache at a given mometitrie depend on
the size of the cache, the caching strategy in use, and wbgtgms the view-
ers under the cache have chosen to watch (the request patermonitor the
cache hit ratio and the load on the link from the server to tlvallcache and
we investigate how these change for different parameténgst

9.3.2 TV viewers

In the simulator we follow the graph from the viewer statistin Figure 9.1
closely and in each time step adjust the fraction of the vieuleat are active
and watch TV. A viewer that is activated chooses either to the distribu-
tion of an ongoing scheduled program or to request one ofithe-shifted
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Table 9.1: Simulation parameters.
Number of viewers 1000
Number of TV channels 13
Number of TV programs 11635
Programs available time-shifted 21 days

Simulated time 28 days
Scheduled TV/Time-shifted TV  50/50
TV stream bit rate 2 Mbps

Total program volume (21 dayg) 5064 GB

programs that are available on-demand. The particularrarogo watch is

chosen randomly following the empirical probability distrtion for the pop-

ularity of the currently available programs. Table 9.1 shdihe parameter
settings for the simulations we present in this paper. Ifeaver requests a
scheduled program, and none of its neighbors is watchirsgctiannel, then a
multicast stream is added to the load on the link down fromsérger to the

local cache. If someone is already watching the channei, tthe new viewer
joins the ongoing multicast distribution and no additioloald is added to the
down link. Requests for time-shifted programs first go tolteal cache. If

the program is not available there, it is instead transfewith unicast from

the server adding 2 Mbps to the load on the down link to thel lcaehe.

9.3.3 TV programs

We step through, minute by minute, the TV schedule with 13okés over 28
days. In each time step we update the set of programs. Weeatsadaulate the
relative popularity of each program using the number of eievof each sched-
uled program that we got from the input data set. The lattsrthe probability
that a simulated viewer will choose to watch a particular Tggram.

The set of time-shifted programs is also updated in eachaftdpe simu-
lation. All scheduled programs goes into the set of timdtatiiprograms and
can be requested on-demand. The time interval that the gmmojare available
on-demand decides the size of the set of available progrénisa tunable pa-
rameter in the simulation that we investigate in Sectior®.As a default value
we let the programs be available on-demand for three weekh.tkis param-
eter setting we have a steady state after 21 days when pregrardeleted
from the set of time-shifted programs in the same pace as neware sched-
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Figure 9.4: Available volume of time-shifted programs o2@isimulated days.

uled and introduced. Figure 9.4 shows the available volufrtere-shifted

programs over 28 simulated days. When evaluating the effiecaching in

Section 9.4 we only consider the last simulated week. Ther¢h@n on aver-
age 8736 time-shifted programs to choose between and agmnogrlume of
5064 GB.

Each time-shifted program has a value of popularity whicteigeines the
probability that a viewer will choose to watch this parteuprogram. This is
initially set to the same value as the program had when sd¢bédwhich is
the number of viewers the program had in the input data sat}.ti& popu-
larity of a time-shifted program declines with time. Inggrby the work by
Avramova et al [6] we investigated different functions favh TV program
popularity changes. We categorized each program in our skdtas either
Newslike or Drama Programs such as news, business and weather reports,
sports, game shows, and morning shows focusing on current&wvere all
classified into the News category of programs that quickigrease in popu-
larity. Other programs including movies, TV-series, andwoentaries were
classified into the Drama category with more slowly declinmopularity. The
mix of programs differs a lot between different channelsm8awffers a lot
of news programs, others have only movies and documentanéh the 13
channels in our dataset 68% of the programs were sortedhietdrama cat-
egory of programs. In the simulations we let the news progrguickly lose
their popularity when available on-demand, while the draregrams retain
their interest over a longer time following the functionsetpdd in Figure 9.5.
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Figure 9.5: Popularity over time for programs categorizedews or drama.

9.3.4 Cache replacement policy

When the cache is full, and a new program part arrives, a cagilacement
policy is needed to decide what should stay in the cache aatltwlielete. In
this work we simulate and compare three classic policieast Becently Used
(LRU), Least Frequently Used (LFU) and Clairvoyant.

With the LRU strategy we delete from the cache the programths not
been requested for the longest time. With LFU we discard thgrnam that is
requested least often. This could be done by counting thebeuof viewers
that join the multicast distribution of a program and the @mof on-demand
requests. In the simulation we here use the known populafiéyl programs,
and delete the one with the least probability for being retpa

In the simulation we also implement a clairvoyant strategi whe ability
to look into the future and delete the program part that wll Ine needed for
the longest time. This is done by running the simulationséwin the first run
all viewer requests are logged; and in the second run thigrimdtion is used
to determine which program part that will not be asked fotl@longest time.
The purpose of this strategy is to get an optimal cachingegjyaand a upper
limit to which we can compare the LRU and LFU strategies.
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Figure 9.6: Load on downlink during 7 days for the cases wiltache (top)
and with a 200GB cache (bottom).

9.4 Simulation results

We simulate TV distribution with time-shift in a simple s@gio as described
in Section 9.3. In Section 9.4.1 we study the effect of intiridg a local cache,
and how the resulting cache hit ratio and link load dependamine size and
cache replacement policy. Here we use the default parasweitargs described
in Section 9.3 where all programs from 13 channels are dlailan-demand
for three weeks, and all programs are categorized as eiéves-like or drama
and have a popularity that decreases over time correspglgdim 9.4.2 we
vary the time that the programs are available on-demand iy fiow this
impacts on the caching efficiency. In 9.4.3 we investigatatgignificance
program popularity have for caching.

9.4.1 Impact of cache size and cache replacement policy

Figure 9.6 shows the link load on the down link during the lAsimulated
days. The top figure shows the case without a local cache,enddbtime-
shifted TV are distributed in unicast streams from the cditee bottom graph
shows the link load when a 200 GB local cache is introducedgutsie LFU
cache replacement policy. The volume of on-demand TV progr® choose
from is on average 5064 GB during the last week of the sinuiatihat we
study here. A 200 GB cache can hold 4% of the available progi@ome
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Figure 9.7: Comparing maximum bandwidth usage on the dowfdr differ-
ent cache sizes and cache replacement policies. The bavssinamum and
maximum values from 5 simulation runs.

and on average it reduces the link load by 45.7%. The highesst puring
primetime is reduced by 49.1% from 770 Mbps to 392 Mbps. Tlalgs in
Figures 9.7 and 9.8 show the maximum link loads and cacheatiitsr(CHR)
for different cache sizes. Here we also see a comparisonekeatifferent
cache replacement policies.

We see in Figure 9.8 that LFU performs better than LRU. Cagih (200
GB) of the available programs with LFU gives a 50% hit rate. d&a also see
that there is still a lot of room for improvement up to the omi clairvoyant
replacement policy. With optimal caching (and a cache siZ80 GB) the hit
ratio is increased from 50% to 62% compared to LFU.

9.4.2 Impact of on-demand time and program set size

If we change the time period that programs are availableamanhd then we
also change the size of the set of programs that are avafiabtan-demand
requests at a given time. Figure 9.9 shows the results fozakes when pro-
grams are available 1 day, 1 week, and 3 weeks. We can see/ématit®ugh
the program popularity declines with time, the time perioattwe let the pro-
grams be available on-demand has a big impact on the cactagibitin these
simulations the LFU cache replacement policy was used. lecase when
the programs only are available 1 day there are on the avddagen-demand
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Figure 9.10: Influence of program popularity on cache hibrafhe results
for the set of categorized programs with decreasing pojpyiarcompared to
stationary program popularity, equal popularity, and witb case where all
programs (as news programs) quickly decrease in popularity

programs to choose between in our simulation scenario withflow from 13
channels.

9.4.3 Impact of program popularity

The popularity distribution of TV-programs is important the usefulness of
caching. This is also one aspect where TV with time-shifieds from tradi-
tional Video-on-Demand in that many popular TV programsfsas news and
weather forecasts) have a very short life span.

In order to get an idea of what impact different aspects of@m popu-
larity have on the results we compare the cache hit ratiowleaget with our
work load model with the cases: stationary, equal, and rig@spopularity.
Figure 9.10 shows the results. In these simulations the Ld&dbe replacement
policy was used. In thequalcase the popularity of all programs are set to
the same constant value. In thationarycase all programs keep their orig-
inal values of popularity (which are the number of viewers ginograms had
when they were first aired) during the time they are availédseon-demand
requests. In our workload model we also categorize all pnogrand take into
account that program popularity changes over time. A coispabetween the
stationary and categorized cases in the graph shows whatirtigs have on
the results. In theewscase we see what the cache hit ratio would be if all
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programs were news-like and quickly decreased in popwylaFior example,
with a 200 GB cache (that can hold 4% of the program volume)st@gache

hit ratio of 17% for theequalcase, we get a 50% hit ratio for our categorized
workload model, and for theewscase 81% of the requests can be handled by
the local cache. This shows that the program type, or theayd& channel
that offers on-demand services, has a big influence on thenaesults.

9.5 Related Work

The recent growth and popularity of IPTV services have ledrtoncreasing
interest from researchers to measure and model IPTV viehahgviour. Cha
et al. [8] study viewing behaviour including channel popityaand channel
switching in an operational IPTV network. Qiu et al. model @vannel popu-
larity [9] and user activities [10] in a large IPTV system gndsent the Simul-
Watch workload generator. These studies are similar toiaurgt they model
IPTV viewer behaviour — but they study traditional live Ticamodel channel
popularity and not the popularity of individual programse lso simulate TV
channels but our focus is on investigating time-shifted Tid eaching, and for
this the popularity of individual programs is a fundamenpiait of the model.

Gopalakrishnan et al. [11] measure and model in detail ttezadctive user
behaviour in an IPTV environment, including how users fastvard, pause
and rewind to control their viewing. There are also manyriggéng studies
of video popularity. Griwodz et al. [12] model long-term pogrity of videos
on the time scale of days based on VHS rental statistics. &aab [13] anal-
yse and model many aspects of media server access and inmplemerkload
generator. Their model include both static and temporalpfdpularity and
they distinguish between files with regular and news-likesjpan. Kang et
al. [14] analyse workload on the Yahoo video sharing sitél ébal. [15] and
Cha et al. [16] present extensive studies of YouTube videos. Borghol et
al. [17] study the popularity dynamics of Youtube videos.éfwal. [18] study
content access patterns in a large Video-on-Demand sydtem et al. [19]
study the popularity evolution of video files from a Chineslevision station
and use trace-driven simulation to evaluate caching in afidgn-on-Demand
system. Dan and Carlsson [20] measure and analyse BitTaroatent pop-
ularity. Avramova et al. [6] study and model the popularitpletion of TV-
on-Demand and video traces. Szabo and Huberman [21] ptadifing-term
popularity of online content at Digg and Youtube based oty@aeasurements
of user accesses.
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Related work on caching include the work by Borst et al. [2@]ttstudy
caching algorithms for content distribution networks. \téais et al. [23],
Vleeschauwer et al. [24], and Vleeschauwer and Laevensy@slanalytical
models and simulations to study the performance of cactiiatggies in IPTV
on-demand systems. These studies have a more theoretitabah and is in
this sense complementary to our work. They do not use realchédules or
TV statistics to run the simulations. Krogfoss et al. [28Jaihvestigate several
aspects of caching and optimization strategies for IPTWvasks including
network dimensioning and cache placement.

Much research has also focused on peer-to-peer technigieg ind VoD
including [27, 28, 29, 30].

9.6 Discussion

Our simulation results show that a comparatively smalllloaahe can be used
to significantly reduce the peak link loads during prime tim@aching 4%
of the on-demand program volume gives a 50% hit rate with thg tache
replacement policy. The simulation results also show thatdrogram type,
or the type of TV channel that offers on-demand servicesahag influence
on the caching results. It matters whether we have news amogthat quickly
become outdated or movies that keep their popularity ovengdr time.

For future work more complex IPTV scenarios and cachingexjias may
be considered. There are also several possible refinemetits simulation
model such as separating the popularity of different segsnera time-shifted
program and introducing more complex viewer behaviour. TEnge, pre-
dictable, daily variations in user demand described in Fidu1 means that
it is important to have the right programs in the cache dugrime time. It
also makes pre-caching during low traffic an interesting doe further study.
Furthermore, the monetary cost of introducing memory inertetwork versus
providing the bandwidth needed is important for operators.
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Abstract

Today increasingly large volumes of TV and video are disted over IP-
networks and over the Internet. It is therefore essentiatridfic and cache
management to understand TV program popularity and acedtesms in real
networks.

In this paper we study access patterns in a large TV-on-Ddragstem
over four months. We study user behaviour and program pdpuknd its
impact on caching.

The demand varies a lot in daily and weekly cycles. Theresagelpeaks in
demand, especially on Friday and Saturday evenings, tlegt toebe handled.

We see that the cacheability, the share of requests thabafiest-time re-
quests, is very high. Furthermore, there is a small set afraras that account
for a large fraction of the requests. We also find that theesb&requests for
the top most popular programs grows during prime time, aeccttange rate
among them decreases. This is important for caching. Thieechit ratio in-
creases during prime time when the demand is the highestauiting makes
the biggest difference when it matters most.

We also study the popularity (in terms of number of requestsrank) of
individual programs and how that changes over time. Alscse@eethat the type
of programs offered determines what the access pattertoakllike.
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10.1 Introduction

Today increasingly large volumes of TV and video are disted over IP-
networks and over the Internet. Many telecom and broadbamganies have
become TV operators and distribute TV channels using IPicaslt in their
networks. The TV services also evolve, and are more and ni@neging to-
wards TV-on-Demand and time-shifted viewing where the sisan choose
to watch the programs after its scheduled time. Distrilguiimdividual TV
streams to each viewer requires a lot of bandwidth and seaacity. How
to best use caching of popular content closer to the vievgethearefore an
important issue to reduce network load.

In this paper we study access patterns in a large TV-on-Ddragstem
over four months. We study user behaviour and program pdpuknd its
impact on caching.

There are several studies of viewing behaviour in IPTV systevhere tra-
ditional scheduled TV is distributed over IP networks [P], [3]. This include
studies of TV channel popularity and channel switching. ®aork is different
in that we look at TV-on-Demand where the viewers choosenarrag to watch
outside of the TV schedule. The programs are not distribus#g multicast
but transferred with unicast streams to the viewers.

In this sense our work is closer to studies of content accat$srps in tra-
ditional Video-on-Demand systems (VoD) [4]. But TV-on-Danul is different
from traditional VoD in several ways. The TV-on-Demand $sgvs more di-
verse. It is a mix of TV program libraries, time-shifted viesyy, and rental
video. Time-shifted viewing here means that the viewer daoose to watch
ongoing scheduled TV-programs from the beginning. The Thedale gives
a large inflow of new programs each day. The programs availalsb come
from a wide range of TV channels. There is a large variatigorogram types
(news, drama, children’s programs, movies, etc.) which eaa have different
access patterns. Many programs, like news and weatherfige@lso have a
very short lifespan and are typically only interesting fdea hours.

The two main contributions of this paper are: (1) an invegtan of pro-
gram popularity and access patterns for TV and video on ddnram real
network, (2) a trace-based study of caching. We charaetaedzess patterns
for different program categories, we show how program paxityl changes
over time and how this differs between different progranes/pWe then use
the request sequence in our data set for trace-driven diontnd study cache
hit ratios for different cache sizes, cache replacemeritigsland population
sizes.
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Our main results are:

e The popularity (ranking) of rental movies, news, and TV shaWwanges
over time in very different ways. News programs are ofteryost
guested for a few hours, movies are popular for months arréase in
rank during weekends, TV shows increase in rank when theamsode
is shown, children’s programs are top ranked in the mornamgkearly
evenings. This means that programs jumps in and out of th£Q6ist.

It also means that thiype of content offered is essential for what the
access pattern will look like.

e The program popularity conforms with the Pareto princige 80-20
rule. There is a small set of programs that account for a l&eygion
of the requests: the 2% most popular programs get 48% of theests,
and the 20% most popular programs get 84% of the requests.

e The share of requests for the top 100 most popular progracnsdses
during prime time and the change among the top 100 decreasieg d
prime time and during weekends when the demand is the highest

e The cacheability is very high. The hit ratio with LRU is abov@%
when caching 5% of the average daily demand, and the hitiretieases
during prime time when it is needed most.

The rest of the paper is structured as follows: In Sectio® #& describe
the TV-on-Demand service and introduce the data set. InidetD.3 we
study access patterns and the daily and hourly change innisegst. In Sec-
tion 10.4 we look at the program popularity in more detailwhthe access
patterns differs between different program categoried,taw the popularity
of individual programs changes over time. In Section 10.5hawv what im-
pact the access patterns has on cacheability and cach#dst fRelated work
is in Section 10.6, we discuss future work in Section 10.7 eontclude the
paper in Section 10.8.

10.2 The data set

We study logs from the TeliaSonera TV-on-Demand servicee ptogram
selection is a mix from a wide range of TV channels (news, drachildren’s
programs, movies, etc.). Itis a mix of TV program librarig@se-shifted view-
ing, and rental video.
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Table 10.1: The data set in figures
Requests| Clients | Programs
Total (over 125 days) 10294948| 307347 89889

Daily median 80174 30232 7523
Daily max 121053 | 42451 8751
Daily min 56720 22194 6316

The TeliaSonera TV service also includes multicast distidm of tradi-
tional scheduled TV. Here we only study logs of on-demandests but the
TV schedule with many ongoing channels gives a constantirdgfonew pro-
grams that become available for on-demand requests. Inatarset, on aver-
age 8% of the programs each day have not been requested.before

The data set is a mysql database with logs from RTSP sessioaiewe
for each session have:Timestamp, Length, ServerID, ClientID, AssetlD

The timestamp shows when the session ended and by subgrtiwitength
of the session we get the time when the request arrived. Thetisidenti-
fies what TV program is requested. For each asset, we alsoduigonal
out-of-band information about providers and program dpsons that help us
categorize the programs into genres.

The data set is summarized in Table 10.1. It contains TV-emand re-
quests over 125 days between May 12th and September 13th RQfifhg this
period almost 90000 different programs were requested dateset includes
more than 300000 clients making more than ten million retgues

Figure 10.1 shows the number of requests, viewers, and @aregper day.
There are distinct weekly cycles where the number of actileais and the
number of requests increase a lot during the weekends.

On average more than 30000 clients are active per day ofteeasing up
to 40000 at the weekends. Some viewers are much more acinethers and
watch more TV programs. Viewers also subscribe to diffefldntpackages
and have access to different number of TV channels and prolijsearies. We
can see that 5% of the viewers account for 41% of the requast2@% of
the viewers account for 75% of the requests. Figure 10.2 slkeowg-log-plot
of the number of requests per viewer. While many clients evdych a few
on-demand programs per month, the most active viewer haé than 137
requests per day on average. Some of these sessions wenaisi88s long
but many where short, jumping between different on-demaadrams.

The clients in the data set are all in the same time zone arfteisame
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Requests, clients and programs per day, 12/5-13/9
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Figure 10.1: Number of requests, active clients, and distgrograms re-
quested per day over 125 days. The grid shows weeks startimgMondays.

geographical region. Later in Section 10.5, when lookingaathing, we will
also study smaller subsets of the population. We have orgrgghbically close
subset with 23304 clients in the same town. For the smallpulations in
the study we randomly chose clients and include into setsfiefreint size up
to 10000. We will use the labetegion (307347),town (23304),rand10000Q

rand1000etc. for the different populations.

On average 7523 different programs are requested per dagxpgested,
some programs are much more popular than others. On avdragept 10
programs each day get 11% of the requests, the top 100 geta88&dthe top
1000 account for 71% of the requests. We will look at the progpopularity
in more detail in Sections 10.3 and 10.4.

10.3 Access patterns

10.3.1 Access pattern over a week

Figure 10.3 shows the number of requests per hour during @ek from
Thursday to Wednesday.
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Table 10.2: The week 19-25/5 in figures

Requesty Clients | Programs
Total (over 7 days) 585147 | 105698 14067
Daily median 76931 | 31542 6813
Hourly median 2626 1723 1190
Hourly max 16037 9019 2987
Hourly min 186 131 128

We can see here in detail the typical daily and weekly vanieith demand.
There are large, predictable peaks in demand in the evenirtgsnumber of
requests are often four times higher or more during the peak éompared to
the average demand during daytime. As expected, the nurfibequests are
the highest on Friday and Saturday evening. The demandgldaytime also

increases during weekends.

The number of distinct programs requested per hour follogiswar pat-
tern to that of the demand but the peaks are not as pronoufbechumber of
different programs requested often doubles in the everdnggpared to day-
time. In this particular week the median number of prograetgiested per
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Number of requests per hour, 19/5-25/5.
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Figure 10.3: Number of requests per hour during a week. Titdepgrints out
the hours between 11:00-12:00 and 23:00-00:00 each day.
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hour was 1190, the hourly maximum was 2987 programs (Satu2da0-
22:00) and the minimum was 128 programs (Wednesday 04:(BN5

The bar plot in Figure 10.3 also shows the number of requesthé top
10 and top 100 most popular programs each hour. Figure 16wissthe share
of requests per hour that the top 100 most popular progranwuatfor. On
an hourly basis the top 100 on average get 50% of the requBststop 100
obviously have a large part of the traffic during night when mach more
than 100 programs are requested. But more interestingpth&00’s share of
requests also increase significantly during prime time. tumaber of different
programs requested increases during the evenings and saleediprograms
constitute a smaller share of the requested program vollBueeven so the
top 100's share of requests increase significantly.

10.3.2 Daily and hourly change in user interest

Which programs are most popular change over time. On avérafgae top 10
programs are replaced each day. Figure 10.5a shows thectiaihge among
the top 100 and top 1000 most requested programs. Here wesedsthe
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daily change among all requested programs. On average 78% ofquested
programs are the same as yesterday. On average 56% of theGagmd 42%
of the top 1000 is different from the day before.

We notice in Figure 10.5a a weekly pattern with less changepn100
during weekends (from Fridays to Saturdays and Saturdayarndays).

Top 100 programs per hour: share of requests and programs, 19/5-25/5

—e— Top 100 programs: share of requests
s 100/(number of distinct programs requested

[

Increase during prime time

4
©

o
o

Share of requests

o
~

0.2

Thu Fri Sat Sun Mon Tue Wed
Time (hours)

Figure 10.4: The figure shows the share of requests per hattité top 100
most popular programs account for. It also shows the shapeaaframs re-
quested that a hundred programs comprises. The top 100% sheequests
increases during night when few programs are requesteddmatimterestingly
it also increases during prime time when the demand is thieelsig The grid
points out the hours between 11:00-12:00 and 23:00-00:€10 dsy.

This suggests that what the most popular items will be is moedictable
during weekends when the demand also is the highest. Thieisaearer on
an hourly basis.

Figure 10.5b shows the hourly change among the top 100 mpséested
programs. On average 51 out of the 100 most requested pregranthe same
as the hour before. But the amount of change in the top 108s/&m hour to
hour in a distinct daily cycle. During night up to 92% of th@tb00 programs
are changed from one hour to the next. While during prime tj&r#00 to
23:00) the top 100-list becomes much more stable with dowid#b change
among the top 100 programs.
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Change per day among top 100, top 1000 and all programs, 13/5-13/9.
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Figure 10.5: (a) Daily change among the top 100 and top 1032 requested
programs. (b) Hourly change among the top 100 most requ@stegams.
The figures also shows the fraction of all programs that waseguested the
day and hour before.
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Figure 10.6: Cumulative distribution of requests to progsg1l day, 7 days
and 125 days).

10.4 Program popularity

There is a small set of popular programs that account for yalaege part of
the requests. The Pareto principle, or the 80-20 rule, enaktferred to when
describing video popularity and the concentration of userest towards a few
popular programs [5], [4]. The users spread of requestsagnmgrams in the
TV-on-Demand system conforms with this principle. The 20 @strpopular
programs account for more than 80% of the requests.

We calculated the number of requests for each program,dstrtam in
order of popularity, and plotted the cumulative distribatfunction shown in
Figure 10.6. Here we can see the number of requests per praga CDF-
plot for 1 day, 1 week and for the entire 125-day period.

If we consider the entire 125-day period, then the 2% mosufaopro-
grams account for 48% of the requests, the 10% most popubgrgms ac-
count for 74% of the requests, and the 20% most popular pmgraceive
84% of the requests. The figures are similar on daily and wedwddis as well.

This skewness in popularity for TV-on-Demand is somewhergdgtween
what has been described in the literature for user-gertecatatent and tradi-
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Requests per program 1 day, 1 week, 125 days
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Figure 10.7: Log-log plot of requests per program (1 day,ysda25 days).

tional Video-on-Demand systems. For Youtube traffic, itigesed by Cha et
al. [5], 10% of the videos accounted for 80% of the requesighé chinese
Powerlnfo Video-on-Demand system described by Yu et al. 18P6 of the

videos accounted for 60% of the accesses. TV-on-Demanersgsire more
dynamic than traditional VoD systems with a large daily inflaf new content.
As we will see in Section 10.4.2, there are programs that@ypelar for several
weeks and accumulate a lot of requests, but there are alsp pnagrams that
have a very short life-span and are only requested for a fewsho

Figure 10.7 shows the number of requests per program asladqget. It
shows the number of times that a program has been accessed tleg ranking
of the program in the data set.

There are a large number of research papers that deal withofhdarity
distribution of web pages and video. Much of the debate amsoghether the
distribution of requests is Zipf-like or not [6, 5, 7, 8, 4].ek we do not try
to fit the curve to a specific probability distribution. Hoveeywe note that the
curve does not follow a straight line on the log-log scaleisTimplies that the
distribution of TV-on-Demand requests does not follow afiie distribution.

The 80-20 rule, and the concentration of requests to a sraalbfspro-
grams is important for caching. This is independent of wixateprobability
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distribution best describes the access frequency. In@ed0.5 we perform
trace-driven simulation, and directly use the sequencemiests to investigate
the impact on caching.

10.4.1 Access patterns per program category

Different categories of programs have different accestepet. Figure 10.8
shows the number of requests per hour over two weeks for @negin four
different categories: rental video, TV news, drama anddcéil’s programs.
The figure demonstrates some clear and expected differenaesess patterns.

The top figure shows the access pattern for rental movieseldre movies
that a viewer can pay to access for 24 hours. We can see thét neonals are
concentrated over weekends with large peaks in demandglériday and
Saturday evenings.

For TV news the traditional TV schedule determines to a lagent also
when the program is requested on demand. The TV news is deldediaily
at 19:00 and 22:00. At the same time it becomes availableirffee-shifted
viewing and we can see that most requests are close to thes ti

For the other two categories we note that the TV reality arandr shows
are watched during the daytime to a larger degree than otogrgms. We
also see that the children’s programs have peaks in dematie imornings
and early evenings. This is especially true for weekends.

10.4.2 Access patterns for individual programs: how pro-
gram popularity changes over time

The popularity of a program changes with time and the demaittémm varies
depending on the program type. Figure 10.9 shows the nunfibeqoests per
day for 20 different programs over 125 days.

The top figures show the most requested rental movies and We peo-
grams in the data set. For each movie we can see a slow detlpopilarity
over time. The movies are requested many weeks after theinipre. There
is also a clear weekly pattern with peaks in demand at the evelk For TV
news programs the access patterns are very different cechpamovies. A
news program is mostly requested the first evening and thigklguecomes
outdated and loses its popularity when available on demand.

The figures at the bottom show the access pattern for five égssof a
daily TV reality show and five episodes of a weekly home impraent show.
We can see that the request patterns for different episddixe same show
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Figure 10.8: Access patterns per program category: rergalas, TV news,
TV drama, and children’s programs. Requests per hour ovemieeks. The
grid points out the hours between 11:00-12:00 and 23:006008ach day.
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are surprisingly similar. For the reality show we can alse #®t after the
initial peak in demand the program popularity quickly deelivith time. The
programs are requested daily also the following three nwbtit there are
often only a few requests per day.

The life of a rental movie

Figure 10.10a shows the number of requests per day and théoramcomedy-
drama rental movie. We can see the decline in popularity beveeks from
the premiere. The figure also demonstrates the typical pegkapularity for a
rental movie during weekends where the number of requestsases and the
program increase in rank.

Figure 10.10b shows the change in rank in more detail amamtpih 100
most popular programs each day. We can see that the movies jumamd out
of the top 10 and top 100 lists a number of times. This has gaptins for the
choice of caching strategy. Itis essential to have the pgbgrams in the cache
at Friday and Saturday evenings when the total demand isigihedt. If the
replacement policy acts on popularity over a short time wimdhe program
might be evicted when popularity temporarily goes downmiyiweekdays and
the program will not immediately be available in the cachewthe demand
increases again next weekend.

Figure 10.10b also compare the rank for our movie among aljjiams
with the rank among only rental movies. The movie is the nunaoe most
popular movie for 14 days in a row and it stays in the top 10 far month and
in the top 20 for two months.

Figure 10.11 shows the rank and the number of requests perdooing
the first week that the movie is available. The movie quickisnbs in rank
and becomes one of the most popular programs. It is in thealopltiring
the evenings but the rank of the program sometimes dropaglthie daytime
and during night. There are large, predictable daily vemmtin demand with
peaks in the evenings. The number of requests increasaBcsigtly during
Friday and Saturday.

The life of a TV news program

TV news programs have a very short lifespan compared to rmokigure 10.12
shows the rank and number of requests per hour for a newsagmoiipat was
sent live at 19:00.
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Requests per day and rank for a rental movie (comedy-drama), 12/5-13/9
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Figure 10.10: (a) Requests per day and ranking for a rentalen{oomedy-
drama). The bar graph shows requests per day with the scalgeortaxis
shown to the left. The plotted line shows the ranking of thegpam among all
other programs requested that day. The scale of the rarksigpiwn on the Y-
axis to the right. The grid points out weeks starting on Morsddb) Detailed
look at the rank among all programs (top 100) and among remdsles.
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Requests per hour and rank for a rental movie (comedy-drama), 25/5-31/5
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Figure 10.11: Requests per hour and ranking for a rental enfmomedy-
drama). The grid points out the hours between 11:00-12:6@8&r00-00:00.
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Most of the requests are the first hour when the program bexawadable.
The news program immediately becomes the most requestgdipndhat hour
and number one on the ranking. The popularity then quickblides. There
are almost no requests at all for a news program after thedfingt The ac-
cess pattern is very different compared to what we see inr€ig0.11 for the
simultaneously available movie.

TV series and children’s programs — periodic increase in poplarity

The interest in a TV program usually decreases with time.nBare often than
not the popularity of a program can also increase tempgrariperiodically.
We saw in the previous sections that the number of requesta fisogram
varies during the day and the week. We also saw for rental @sa¥iat the
ranking increased during weekends.

Many TV shows are part of a series of programs. When the nésvée is
sent there is often also renewed interest for old episodstable on-demand.
Figure 10.13 shows an example with the rank and number dédtaessions
per day for an episode of a weekly home improvement TV showcélesee
that the program increase in rank every Thursday when thesssrshown on
the traditional scheduled TV.

Figure 10.14 shows the number of requests per day and thengpfuk a
cartoon. After the initial peak in interest the popularigcdeases and remains
at a steady level over the month when the program is availdbie is different
if we look at the ranking on an hourly basis. Figure 10.15 shtive ranking
of the program per hour during the first week. The patterndsstime for the
next three weeks as well. The program varies in populatfityoés in and out
of the top 100 list, often twice a day.

The number of requests for children’s programs increas#®imornings
and in the early evenings. This is a daily recurring patt@tso, at these times
of the day there is little demand for other TV-programs so fequests are
needed to get into the top ranking.
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Figure 10.13: Requests per day and ranking for an episodevetily home
improvement TV show. The grid points out weeks starting omifays.
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Figure 10.14: Requests per day and ranking for a cartoon.
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Ranking per hour for a cartoon, 27/5-2/6
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Figure 10.15: Ranking per hour for a cartoon. The grid pointisthe hours
between 11:00-12:00 and 23:00-00:00 each day. The progranpg up and
down in popularity. It always climbs to top 40 in the morniregel are often in
top 100 in the early evenings.
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10.5 Impacton caching

In previous sections we have seen many aspects of the acatteenp in a
TV-on-Demand system. In this section we study the impactamhing. We
examine the proportion of requests that are not first-timaests for a program
and therefore potentially could be served from a cache. \k &i this for
different population sizes and time periods.

We then use trace-driven simulation to investigate the e&dndliness of
the workload with a limited cache size and the classic LRU laRd cache
replacement policies. We run the sequence of requests idatarset through
caches of different size and look at the resulting cacheakibs.

10.5.1 Cacheability

For on-demand caching, the first request for a program neegis to the cen-
tral server. But if we imagine an unlimited cache size thémthler requests
could potentially be served from the local cache. It is tfaneinteresting to
examine the proportion of requests that are not first-tiqeests. We here call
thatcacheability

We follow the definition ofcacheabilityused by Ager et al. [9]. But our
data set do not include information about program size se fveronly con-
sider requests. Cacheability is then the share of requestaite not first-time
requests. Ik; is the total number of requests for a progratimen the cacheabil-
ityis >, (k; — 1)/ 3" (k;), wheren is the number of programs.

The share of first time requests is very low in the TV-on-Dedsystem if
we consider all clients over a long period of time. The cabliiya over 125
days is: 99.13%.

In Figure 10.16 we also look at the cacheability per day andhper and
for populations of different size. The calculation of caghity starts from the
beginning of each time interval. It is not considering whatébeen requested
the hour or day before. For all clients in the region during treek in Fig-
ure 10.16, the median cacheability per hour is 59%. Howekere are large
daily variations. During night many programs are requestdg once and the
cacheability is low. During Friday and Saturday eveningscthcheability is
above 80%.

Figure 10.17 shows examples of cacheability over 125 daysrfaller
populations. For very small populations the probabilitattla viewer will
choose a program that nobody else in the group has requesiae lis high.
So the share of first-time requests is high and the cachsaisiliow. But we
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Cacheability per day, 12/5-13/9
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Figure 10.16: Cacheability per day and per hour. Compatistween differ-
ent population sizes.
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Cacheability vs population size
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Figure 10.17: Example of cacheability versus populatiaa.si

see that already for groups of 1000 viewers the cachealsldpove 60%. We
calculated the cacheability for five different groups of Q@@ewers. The me-
dian was 63.9% and the group with lowest result had a caclityaifi61.7%.

10.5.2 Limited cache size

We saw in the previous section that the cacheabilty in theom\Bemand sys-
tem s very high. But in practice there is a limited cache.siz@rder to investi-
gate the cache friendliness of the TV-on-Demand workloadsestrace-driven
simulation. We run the sequence of requests in the datarsetgh caches of
different size and study the cache hit ratios for three &dassching policies:

Least Recently Used (LRU):with the LRU strategy we delete from the
cache the program that has not been requested for the Idirgest

Least Frequently Used (LFU):with LFU we discard the program that is
requested least often. This is done by keeping track of theatio for all
programs currently in the cache (in cache LFU).

Clairvoyant: we also implement a clairvoyant strategy with the ability to
look into the future and delete the program that will not bedesd for the
longest time. This is used for comparison to obtain an uppet dn the cache
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CHR vs cache size (over 3 days, 19/5-21/5)
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Figure 10.18: Cache hit ratio versus cache size, requestsdtl clients over
3 days. Comparison of the LRU, LFU and Clairvoyant replacepelicies.

hit ratio. It is implemented by going through the traces ewi€irst, for each
request of a program we look up and determine when the progritinbe
requested next. This is then used in the simulation to détermhat program
should stay in the cache.

Figure 10.18 shows cache hit ratios for the LRU, LFU and @tgiant
replacement policies for increasing cache sizes. The tiitsrare calculated
over 3 days. The size of the programs are not taken into atcdum calcu-
late request (or program) hit rate and not the byte hit ratee ¥-axis shows
cache size in number of programs. The median number of digtiograms
requested per day is 7523. To put the hit ratio and cachersizddtion to the
daily demand we therefore look specifically at cache size376f programs,
which is 5% of average daily demand. We can see that cachingf5¥te
daily demand gives a hit ratio of 57% for LRU, 60% for LFU and@ for the
Clairvoyant replacement policy.

In Figure 10.18 we include the requests from all viewers. igufe 10.19
we investigate the impact of population size. Here we useftéreplacement
policy and compare the cache hit ratios for populations fiédint size. For
a cache size of 376 programs (5% of the daily demand) the taees of
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CHR vs cache size (125days, 12/5-13/9)
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Figure 10.19: Cache hit ratio versus cache size. Compaoiscerche hit ratios
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23304 clients get a hit ratio of 51%. This is close to the refsulthe full set
of clients. For the small population with 1000 clients we @éit ratio of 43%.
The cacheability for this particular population of 1000wés was).64 over
125 days and we see the curve approaching that value at a siaeh&f 3000
programs.

The cache hit ratio also varies over time. Figure 10.20 shioivsatio
per hour for all viewers, the LRU replacement policy and aheasize of 376
programs. The hit ratio was calculated over 17 weeks anddhesfishows the
median (and max and min) value for each hour of the week. Wseeathat the
cache hit ratio varies over the day and it increases whemi¢ésled as most.
During prime time, when there are the most requests, thathit is over 60%.

From the results presented above we highlight three obsenga

e The cacheability and the potential for caching is very high.

e The hit ratio with a simple LRU replacement policy is abov&&@hen
caching 5% of the average daily demand.

e The hit ratio increases during prime time when it is neededtmrhis is
consistent with the observations in Section 10.3 that thessbf requests
for the most popular programs increases during prime time.

We have here looked at the cache friendliness of the TV-onashel work-
load in terms of cacheability and cache hit ratios for thedaRU and LFU
replacement policies. In Section 10.7 on future work weuBstow our obser-
vations about access patterns and program popularity damtpedly be used
to design a more informed caching strategy.

10.6 Related Work

There are several studies of viewing behaviour in IPTV systevhere tra-
ditional scheduled TV is distributed over IP networks. Chale[1] study
viewing behaviour including channel popularity and chdrsvgtching in an
operational IPTV network. Qiu et al. model TV channel popitya3] and
user activities [2] in a large IPTV system. Our work is di#fat in that we
look at TV-on-Demand where the viewers choose programs tohaautside
of the TV schedule. In this sense our work is closer to studfdsaditional
VoD systems.

Yu et al. [4] present a large measurement study of the chiResgrinfo
Video-on-Demand system. This work is similar to ours in thaly investigate
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many aspects of user behaviour and content access patfiesPowerinfo
system is a traditional VoD system. The videos in the libexgyold TV shows
and movies and there are usually only a few new movies inteduo the
system per day. This is different from the TV-on-Demandeaysthat we study
where there is a large inflow of new programs from the TV-sahedime-
shifted viewing, and programs with a very short life-sparur @ork is also
different in other aspects in that we investigate how thesgpattern depend
on genre, we study cacheability and use trace-based sionulatinvestigate
what impact the access patterns have on caching.

There are many other interesting studies of VoD systems atab\popu-
larity. Griwodz et al. [10] model long-term popularity ofdgos on the time
scale of days based on VHS rental statistics. Lou et al. [V examples of
the popularity evolution of video files from a Chinese tetéwn station. Tang
et al. [12] analyse and model many aspects of media servessicévramova
et al. [13] model the popularity evolution of TV-on-demandiasideo traces.
Dan and Carlsson [7] measure and analyse BitTorrent coptgntlarity. Guo
et al. [8] study the probability distributions of Interneedia workloads and
analyse caching using a mathematical model. Yin et al. [f/]yslive VoD
workloads from the 2008 Beijing Olympics. There are also ynstadies of
Youtube and user generated videos [15, 5, 16, 17].

Gopalakrishnan et al. [18] study user behaviour in a large/IBystem.
This is similar to our work but their focus is on modeling tiéeractive user
behaviour in an IPTV environment, including how users fastvard, pause
and rewind to control their viewing.

In this paper we also investigate cacheability and we loakatpotential
for caching in a TV-on-Demand system. Caching has been witatlied for
web content and video [6, 19, 20, 21]. More recently, Agerl ef% studied
the cacheability for HTTP- and P2P-based applicationsrd hee also several
studies of caching strategies in IPTV on-demand systems2[224, 25, 26],
but these studies use analytical models and simulationseabave present a
trace-based study from a real TV-on-Demand system.

10.7 Future Work

In this paper we have studied many aspects of the accessngdtiea TV-on-
Demand system. We have looked at the cache friendlinesgafdnkload in
terms of cacheability and hit ratios for basic replacemeaticies. For future
work we hope that our observations can be used as a basis/ogiag better
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caching strategies for TV-on-Demand systems.

When studying the cache friendliness of the request straé@edétion 10.5
we used the basic LRU and LFU cache replacement policiesh ihvése the
last requested program is always cached and the choice dftavbaict from
the cache is between the least recently and the least frdgquequested pro-
gram. A more advanced system could use more knowledge aboegsapat-
terns and program popularity to decide what program to ptiéncache and
what program to evict.

One such strategy could be to keep track of all programs irsyiséeem,
also those that are not currently in the cache. One couldtorthie popularity
by counting requests, let the programs age over time andafcn program
keep a value that describes the probability that it will bguested. There
are several observations in this paper that can be usefsufdr an informed
caching strategy:

Give preference to new programs

With time-shifted TV ongoing scheduled programs immedyateet a lot of
requests. Some programs, like TV-news, also have a very lfieespan. The
value of a program should not have to be built up by requestsalong time.

Categorize programs by genre to predict change in popularif over time
We saw in Section 10.4 that the access pattern very much dsjperthe type
of program. A news program that is top-ranked the first evgaige quickly
and have a very low probability for being requested the nesthimg. A rental
movie however is popular for months and increase in rankngurieekends.
By categorizing programs by genre the probability for fetuequests can be
predicted. The categorization of programs can also be metaled. The
request patterns for different episodes of the same showafme very similar
as we saw in Figure 10.9, Section 10.4.2. For a new episodeshbw it is
a reasonable assumption that the popularity of the progréinchvange over
time in a way similar to that of the previous episodes.

Focus on prime time

The value of a program should reflect the probability thatiit be requested
during prime time. There are large peaks in demand in theiegsmand at the
weekends that need to be handled. If caching is used to lmitmaximum
link load then it is essential to have the right programs e&dhche on Friday
and Saturday evenings. There are program like cartoonateabp-ranked in
the mornings and early evenings that probably should nat tieei cache.

The observations and the predictions outlined above carséé o opti-

mise the caching performance. However, the basic mongarirrequest fre-
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quency is still needed as a basis, and to handle unexpeaedetand sudden
peaks in program demand for instance due to large news events

10.8 Conclusions

We have analysed the access patterns in a large TV-on-Desaystein and
studied the potential for caching.

Our contribution in this paper is three-fold. As a first-ardesult, we pro-
vide reconfirmation of known observations with an independiataset. We
demonstrate that there is a small set of programs that atémua large part
of the requests. The program popularity conforms with theet®gprinciple,
or 80-20 rule. The demand follows a diurnal and weekly pattand there
are large peaks in demand on Friday and Saturday eveningadhd to be
handled.

Second, we provide systematic evidence of TV-on-Demanesacgattern
characteristics that are intuitive yet unconfirmed in therditure. We show that
news programs have a very short lifespan and are often oqested for a few
hours, children’s programs are top ranked in the morningseamly evenings,
and movie rentals are concentrated over weekends.

Finally, we also provide novel insights into access pattehat have not
been reported previously to the best of our knowledge. Wev st the pop-
ularity of TV-on-Demand programs changes over time. We kaethe access
pattern in a TV-on-Demand system very much depend on what ¢§ron-
tent it offers. Furthermore, we find that the share of recquiEstthe top most
popular programs grows during prime time, and the changeaitong them
decreases. The cacheability is very high and the cachetioiimareases during
prime time when it is needed most.

We believe that these observations and findings can guiddasign of
future systems for TV-on-Demand infrastructures.
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