373 research outputs found

    End-to-end anomaly detection in stream data

    Get PDF
    Nowadays, huge volumes of data are generated with increasing velocity through various systems, applications, and activities. This increases the demand for stream and time series analysis to react to changing conditions in real-time for enhanced efficiency and quality of service delivery as well as upgraded safety and security in private and public sectors. Despite its very rich history, time series anomaly detection is still one of the vital topics in machine learning research and is receiving increasing attention. Identifying hidden patterns and selecting an appropriate model that fits the observed data well and also carries over to unobserved data is not a trivial task. Due to the increasing diversity of data sources and associated stochastic processes, this pivotal data analysis topic is loaded with various challenges like complex latent patterns, concept drift, and overfitting that may mislead the model and cause a high false alarm rate. Handling these challenges leads the advanced anomaly detection methods to develop sophisticated decision logic, which turns them into mysterious and inexplicable black-boxes. Contrary to this trend, end-users expect transparency and verifiability to trust a model and the outcomes it produces. Also, pointing the users to the most anomalous/malicious areas of time series and causal features could save them time, energy, and money. For the mentioned reasons, this thesis is addressing the crucial challenges in an end-to-end pipeline of stream-based anomaly detection through the three essential phases of behavior prediction, inference, and interpretation. The first step is focused on devising a time series model that leads to high average accuracy as well as small error deviation. On this basis, we propose higher-quality anomaly detection and scoring techniques that utilize the related contexts to reclassify the observations and post-pruning the unjustified events. Last but not least, we make the predictive process transparent and verifiable by providing meaningful reasoning behind its generated results based on the understandable concepts by a human. The provided insight can pinpoint the anomalous regions of time series and explain why the current status of a system has been flagged as anomalous. Stream-based anomaly detection research is a principal area of innovation to support our economy, security, and even the safety and health of societies worldwide. We believe our proposed analysis techniques can contribute to building a situational awareness platform and open new perspectives in a variety of domains like cybersecurity, and health

    Characterization of cyber attacks through variable length Markov models

    Get PDF
    The increase in bandwidth, the emergence of wireless technologies, and the spread of the Internet throughout the world have created new forms of communication with effects on areas such as business, entertainment, and education. This pervasion of computer networks into human activity has amplified the importance of cyber security. Network security relies heavily on Intrusion Detection Systems (IDS), whose objective is to detect malicious network traffic and computer usage. IDS data can be correlated into cyber attack tracks, which consist of ordered collections of alerts triggered during a single multi-stage attack. The objective of this research is to enhance the current knowledge of attack behavior by developing a model that captures the sequential properties of attack tracks. Two sequence characterization models are discussed: Variable Length Markov Models (VLMMs), which are a type of finite-context models, and Hidden Markov Models (HMMs), which are also known as finite-state models. A VLMM is implemented based on attack sequences s = {x1, x2, ...xn} where xi 2 and is a set of possible values of one or more fields in an alert message. This work shows how the proposed model can be used to predict future attack actions (xj+1) belonging to a newly observed and unfolding attack sequence s = {x1, x2, ..., xj}. It also presents a metric that measures the variability in attack actions based on information entropy and a method for classifying attack tracks as sophisticated or simple based on average log-loss. In addition, insights into the analysis of attack target machines are discussed

    Large-scale Wireless Local-area Network Measurement and Privacy Analysis

    Get PDF
    The edge of the Internet is increasingly becoming wireless. Understanding the wireless edge is therefore important for understanding the performance and security aspects of the Internet experience. This need is especially necessary for enterprise-wide wireless local-area networks (WLANs) as organizations increasingly depend on WLANs for mission- critical tasks. To study a live production WLAN, especially a large-scale network, is a difficult undertaking. Two fundamental difficulties involved are (1) building a scalable network measurement infrastructure to collect traces from a large-scale production WLAN, and (2) preserving user privacy while sharing these collected traces to the network research community. In this dissertation, we present our experience in designing and implementing one of the largest distributed WLAN measurement systems in the United States, the Dartmouth Internet Security Testbed (DIST), with a particular focus on our solutions to the challenges of efficiency, scalability, and security. We also present an extensive evaluation of the DIST system. To understand the severity of some potential trace-sharing risks for an enterprise-wide large-scale wireless network, we conduct privacy analysis on one kind of wireless network traces, a user-association log, collected from a large-scale WLAN. We introduce a machine-learning based approach that can extract and quantify sensitive information from a user-association log, even though it is sanitized. Finally, we present a case study that evaluates the tradeoff between utility and privacy on WLAN trace sanitization

    Resilient and Scalable Android Malware Fingerprinting and Detection

    Get PDF
    Malicious software (Malware) proliferation reaches hundreds of thousands daily. The manual analysis of such a large volume of malware is daunting and time-consuming. The diversity of targeted systems in terms of architecture and platforms compounds the challenges of Android malware detection and malware in general. This highlights the need to design and implement new scalable and robust methods, techniques, and tools to detect Android malware. In this thesis, we develop a malware fingerprinting framework to cover accurate Android malware detection and family attribution. In this context, we emphasize the following: (i) the scalability over a large malware corpus; (ii) the resiliency to common obfuscation techniques; (iii) the portability over different platforms and architectures. In the context of bulk and offline detection on the laboratory/vendor level: First, we propose an approximate fingerprinting technique for Android packaging that captures the underlying static structure of the Android apps. We also propose a malware clustering framework on top of this fingerprinting technique to perform unsupervised malware detection and grouping by building and partitioning a similarity network of malicious apps. Second, we propose an approximate fingerprinting technique for Android malware's behavior reports generated using dynamic analyses leveraging natural language processing techniques. Based on this fingerprinting technique, we propose a portable malware detection and family threat attribution framework employing supervised machine learning techniques. Third, we design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. We leverage graph analysis techniques to generate relevant, actionable, and granular intelligence that can be used to identify the threat effects induced by malicious Internet activity associated to Android malicious apps. In the context of the single app and online detection on the mobile device level, we further propose the following: Fourth, we design a portable and effective Android malware detection system that is suitable for deployment on mobile and resource constrained devices, using machine learning classification on raw method call sequences. Fifth, we elaborate a framework for Android malware detection that is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques. We also evaluate the portability of the proposed techniques and methods beyond Android platform malware, as follows: Sixth, we leverage the previously elaborated techniques to build a framework for cross-platform ransomware fingerprinting relying on raw hybrid features in conjunction with advanced deep learning techniques

    Reasoning about Cyber Threat Actors

    Get PDF
    abstract: Reasoning about the activities of cyber threat actors is critical to defend against cyber attacks. However, this task is difficult for a variety of reasons. In simple terms, it is difficult to determine who the attacker is, what the desired goals are of the attacker, and how they will carry out their attacks. These three questions essentially entail understanding the attacker’s use of deception, the capabilities available, and the intent of launching the attack. These three issues are highly inter-related. If an adversary can hide their intent, they can better deceive a defender. If an adversary’s capabilities are not well understood, then determining what their goals are becomes difficult as the defender is uncertain if they have the necessary tools to accomplish them. However, the understanding of these aspects are also mutually supportive. If we have a clear picture of capabilities, intent can better be deciphered. If we understand intent and capabilities, a defender may be able to see through deception schemes. In this dissertation, I present three pieces of work to tackle these questions to obtain a better understanding of cyber threats. First, we introduce a new reasoning framework to address deception. We evaluate the framework by building a dataset from DEFCON capture-the-flag exercise to identify the person or group responsible for a cyber attack. We demonstrate that the framework not only handles cases of deception but also provides transparent decision making in identifying the threat actor. The second task uses a cognitive learning model to determine the intent – goals of the threat actor on the target system. The third task looks at understanding the capabilities of threat actors to target systems by identifying at-risk systems from hacker discussions on darkweb websites. To achieve this task we gather discussions from more than 300 darkweb websites relating to malicious hacking.Dissertation/ThesisDoctoral Dissertation Computer Engineering 201

    Cyber Threat Intelligence based Holistic Risk Quantification and Management

    Get PDF

    Big data-driven multimodal traffic management : trends and challenges

    Get PDF

    Visual Anomaly Detection in Event Sequence Data

    Full text link
    Anomaly detection is a common analytical task that aims to identify rare cases that differ from the typical cases that make up the majority of a dataset. When applied to the analysis of event sequence data, the task of anomaly detection can be complex because the sequential and temporal nature of such data results in diverse definitions and flexible forms of anomalies. This, in turn, increases the difficulty in interpreting detected anomalies. In this paper, we propose an unsupervised anomaly detection algorithm based on Variational AutoEncoders (VAE) to estimate underlying normal progressions for each given sequence represented as occurrence probabilities of events along the sequence progression. Events in violation of their occurrence probability are identified as abnormal. We also introduce a visualization system, EventThread3, to support interactive exploration and interpretations of anomalies within the context of normal sequence progressions in the dataset through comprehensive one-to-many sequence comparison. Finally, we quantitatively evaluate the performance of our anomaly detection algorithm and demonstrate the effectiveness of our system through a case study
    • …
    corecore