
Reasoning about Cyber Threat Actors

by

Eric Francis Nunes

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved May 2018 by the
Graduate Supervisory Committee:

Paulo Shakarian, Chair
Gail-Joon Ahn

Chitta Baral
Nancy Cooke

ARIZONA STATE UNIVERSITY

August 2018

ABSTRACT

Reasoning about the activities of cyber threat actors is critical to defend against cyber

attacks. However, this task is difficult for a variety of reasons. In simple terms, it is difficult

to determine who the attacker is, what the desired goals are of the attacker, and how they will

carry out their attacks. These three questions essentially entail understanding the attacker’s

use of deception, the capabilities available, and the intent of launching the attack. These

three issues are highly inter-related. If an adversary can hide their intent, they can better

deceive a defender. If an adversary’s capabilities are not well understood, then determining

what their goals are becomes difficult as the defender is uncertain if they have the necessary

tools to accomplish them. However, the understanding of these aspects are also mutually

supportive. If we have a clear picture of capabilities, intent can better be deciphered. If we

understand intent and capabilities, a defender may be able to see through deception schemes.

In this dissertation, I present three pieces of work to tackle these questions to obtain

a better understanding of cyber threats. First, we introduce a new reasoning framework

to address deception. We evaluate the framework by building a dataset from DEFCON

capture-the-flag exercise to identify the person or group responsible for a cyber attack.

We demonstrate that the framework not only handles cases of deception but also provides

transparent decision making in identifying the threat actor. The second task uses a cognitive

learning model to determine the intent – goals of the threat actor on the target system.

The third task looks at understanding the capabilities of threat actors to target systems by

identifying at-risk systems from hacker discussions on darkweb websites. To achieve this

task we gather discussions from more than 300 darkweb websites relating to malicious

hacking.

i

ACKNOWLEDGMENTS

I would like to thank my Ph.D advisor, Professor Paulo Shakarian, for his guidance

throughout the dissertation. I am truly fortunate to have had the opportunity to work with him.

I am grateful for his scientific knowledge, methodical advice, and many keen suggestions

and discussions. He also encouraged me to collaborate with right set of people to work on

my research problems. In addition, I would like to thank my defense committee members

Prof. Gail-Joon Ahn, Prof. Chitta Baral, and Prof. Nancy Cooke.

I would also like to thank Dr. Gerardo I. Simari with whom I have collaborated exten-

sively during the later half of my PhD. I have also had the pleasure of collaborating with

multiple researchers during my PhD. I would like to thank Dr. Christian Lebiere, Dr. Robert

Thomson, Dr. Holger Jaenisch, Stefano Bennati, Andrew Ruef, Jay Little, Jana Shakarian,

Andrew Gunn, Casey Buto and Amanda Thart.

I have enjoyed the company and support of my friends and collaborators from CySIS

lab: Elham, Ashkan, Ruocheng, Ericsson, Hamid, Soumajyoti, Mohammed, Ahmad, Vivin,

Abhinav, John, Vineet, Nimish over the course of my program.

I especially thank my mom, dad, and sister. In simple words, I would not have made it

this far without their support. I know that I always have them to count on.

This dissertation would not have been possible without funding from the U.S. Department

of the Navy, Office of Naval Research, grant N00014-15-1-2742 and NEPTUNE program,

the Arizona State University (ASU) Global Security Initiative (GSI), ASU Institute for

Social Science Research (ISSR), CONICET and Universidad Nacional del Sur, Argentina

and the EU H2020 research and innovation programme under the Marie Sklodowska-

Curie grant agreement 690974 for the project “MIREL”. I would also like to thank Cyber

Reconnaissance, Inc. for providing the cyber threat intelligence data. Any opinions, findings,

and conclusions or recommendations expressed in this dissertation are those of the author

and do not necessarily reflect the views of the funding agencies.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

1.1 Reasoning about threat actors . 1

1.2 Literature Overview . 2

1.3 Motivation . 3

1.4 Outline of the Dissertation and Contributions . 4

1.5 Summary of Contributions . 8

2 CYBER-DECEPTION AND ATTRIBUTION IN CAPTURE-THE-FLAG

EXERCISES . 10

2.1 Introduction . 10

2.2 Dataset . 11

2.2.1 Background . 11

2.2.2 Analysis . 12

2.3 Baseline Approaches . 16

2.3.1 Experimental Results . 19

2.3.2 Misclassified Samples . 20

2.3.3 Average Prediction Probability . 21

2.4 Pruning . 21

2.4.1 Discussion . 24

2.4.2 Ensemble Classifier . 27

2.5 Related Work . 27

2.6 Summary . 29

iii

CHAPTER Page

3 ARGUMENTATION MODELS FOR CYBER ATTRIBUTION. 30

3.1 Introduction . 30

3.2 System Overview. 32

3.3 Argumentation Model . 34

3.3.1 Defeasible Logic Programming (DeLP) . 36

3.4 Models . 40

3.4.1 Baseline Argumentation Model (BM) . 41

3.4.2 Extended Baseline Argumentation Model I (EB1) 44

3.4.3 Extended Baseline Argumentation Model II (EB2) 46

3.4.4 Extended Baseline Argumentation Model III (EB3) 47

3.5 Experimental Evaluation . 49

3.5.1 Results . 49

3.5.2 Rule relevance discussion . 52

3.6 Related Work . 57

3.7 Summary . 60

4 DETERMINATION OF ADVERSARIAL INTENT . 61

4.1 Introduction . 61

4.2 Technical Preliminaries . 63

4.3 Cognitively-Inspired Inference . 64

4.3.1 ACT-R Based Approaches . 65

4.3.2 ACT-R Instance-Based Model . 67

4.3.3 ACT-R Rule-Based Model . 69

4.3.4 Model Parameter Settings . 71

4.4 Experimental Setup . 72

iv

CHAPTER Page

4.4.1 Baseline Approaches . 72

4.4.2 Dynamic Malware Analysis . 73

4.4.3 Performance Evaluation. 73

4.5 Results . 74

4.5.1 Mandiant Dataset . 74

4.5.2 GVDG Dataset . 80

4.5.3 MetaSploit . 90

4.5.4 Task Prediction from Hacker activities . 92

4.6 Related Work . 93

4.7 Summary . 96

5 DARKWEB AND DEEPWEB MINING FOR CYBERSECURITY THREAT

INTELLIGENCE . 97

5.1 Introduction . 97

5.2 Background. 100

5.3 SYSTEM OVERVIEW . 103

5.4 Evaluation . 105

5.4.1 Semi-supervised Approaches . 105

5.4.2 Experiments: Marketplaces . 107

5.4.3 Experiment: Forums . 112

5.4.4 Experiment: Subreddits . 113

5.4.5 Darknet New Page Discovery . 115

5.5 Case Studies . 117

5.5.1 Discovery of Zero-Day Exploits. 118

5.5.2 Exploits targeting known vulnerabilities. 118

v

CHAPTER Page

5.5.3 Users having presence in markets/ forums. 119

5.6 Related Work . 121

5.7 Summary . 123

6 AT-RISK SYSTEM IDENTIFICATION VIA ANALYSIS OF DISCUSSIONS

ON THE DARKWEB. 124

6.1 Introduction . 124

6.1.1 Vulnerability related terms . 126

6.2 System Overview. 127

6.3 Dataset . 129

6.3.1 D2web data . 129

6.4 Argumentation Model . 132

6.5 Experiments . 137

6.5.1 Data Representation . 137

6.5.2 Supervised Learning Approaches . 139

6.5.3 Evaluation Metrics . 139

6.5.4 Baseline Model (BM). 139

6.5.5 Reasoning Framework (RFrame) . 141

6.6 Discussion . 146

6.7 Related Work . 147

6.8 Summary . 149

7 CONCLUSION AND FUTURE WORK . 150

7.1 Conclusion . 150

7.2 Future Work . 152

REFERENCES . 155

vi

LIST OF TABLES

Table Page

1.1 Contribution Summary . 9

2.1 Fields in an instance of network attack . 13

2.2 Teams in the CTF competition . 15

2.3 Summary of Prediction results averaged across all Teams for baseline models. 20

2.4 Summary of Prediction results averaged across all Teams using pruning

techniques. 23

2.5 Pruning technique performance comparison for each team. 25

2.6 Summary of Prediction results averaged across all Teams for ensemble

classifier. 28

3.1 Example Predicates and explanation . 36

3.2 Comparison of Models for reduced search space . 50

3.3 Average accuracy comparison of proposed models . 52

3.4 Results Summary . 53

3.5 Comparison of Models for the three test cases . 57

4.1 Attributes extracted through automated malware analysis 64

4.2 Sample of malware tasks . 64

4.3 Parameters for the Cognitive models . 72

4.4 Performance comparison of Anubis and Cuckoo Sandbox. 75

4.5 Classifier run times . 90

4.6 Summary of ACTR-IB results . 91

4.7 Summary of ACTR-IB results . 94

4.8 Actual and predicted Hacker-1 attacks . 95

5.1 Exploit example. 98

5.2 Current Database Status . 100

vii

Table Page

5.3 Markets and Number of products collected. 110

5.4 Example of Products. 110

5.5 Example of Topics. 112

5.6 A sample of Positive Topics. 117

5.7 Example of Zero-day exploits. 118

5.8 Exploit-Vulnerability. 119

6.1 System components and examples . 124

6.2 Characteristics of D2web data . 130

6.3 Example predicates and explanation . 133

6.4 Average Precision, Recall, and F1 measure for NB, LOG-REG, DT, RF and

SVM to identify at-risk systems. 140

6.5 Notation and Explanations . 142

6.6 Average Precision, Recall, and F1 measure comparison between the baseline

model (BM) and reasoning framework (RFrame). 146

viii

LIST OF FIGURES

Figure Page

1.1 Reasoning about threat actors. 2

2.1 Unique deceptive attacks directed towards each team . 16

2.2 Total attacks and duplicate attacks(Deceptive and Non-deceptive) directed

towards each team . 17

2.3 Attacks on each target team by one team, two teams, three teams and more

than three teams. 17

2.4 Team prediction accuracy for LOG-REG, RF, SVM and DT. 19

2.5 Sources of error in the misclassified samples. 21

2.6 Average Prediction probability for correctly classified and misclassified

samples. 22

2.7 Samples correctly classified by all-but-earliest and not by all-but-most-recent. 26

2.8 Samples correctly classified by all-but-most-recent and not by all-but-earliest. 26

3.1 Reasoning system. 32

3.2 A ground argumentation framework. 38

3.3 Example ground arguments from Fig. 3.2. 39

3.4 Facts defined for each test sample. 41

3.5 Defeasible and strict rule for non-deceptive attack. 42

3.6 Facts and rules for deceptive attacks. 42

3.7 Average time for teams to perform a deceptive attack and replay own attacks

(Log-scale). 44

3.8 Time facts and rules. Interval indicates a small portion of the entire deceptive

time (for instance, less than 2, 000 seconds, more than 8, 000 seconds, and

so on). 44

3.9 Rules for unseen attacks. 46

ix

Figure Page

3.10 Time facts and rules. Interval indicates a small portion of the entire deceptive

time (for instance, less than 2, 000 seconds, more than 8, 000 seconds, and

so on). 47

3.11 Time facts and rules. Interval indicates a small portion of the entire deceptive

time (for instance, at most 2, 000 seconds, at least 8, 000 seconds, and so

on), and F is the preferred attacker set for a given target team X. 49

4.1 Average Precision, Recall, F1 and Family prediction comparisons using

cuckoo sandbox for LOG-REG, RF, SVM, ACTR-R, ACTR-IB and IN-

VINCEA. 76

4.2 Average Precision, Recall, and F1 comparisons for LOG-REG, RF, SVM,

ACTR-R and ACTR-IB for Mandiant without inferring families. 77

4.3 Training time for LOG-REG, SVM, RF and ACTR-R with(left) / with-

out(right) inferring families. 77

4.4 Family prediction and F1 value for different threshold and noise parameters

values. 79

4.5 GVDG User Interface . 81

4.6 Average Precision, Recall, F1 and Family prediction comparisons for LOG-

REG, SVM, RF, ACTR-R and ACTR-IB for different carrier samples. 82

4.7 Similarity matrix for 5 different carriers . 82

4.8 Average Precision, Recall, F1 and Family prediction comparisons for LOG-

REG, SVM, RF, ACTR-R and ACTR-IB for different carrier mutated samples. 83

4.9 Average Precision, Recall, F1 and Family prediction comparisons for LOG-

REG, SVM, RF, ACTR-R and ACTR-IB for less training data. 84

x

Figure Page

4.10 Average Precision, Recall, F1 and Family prediction comparisons for LOG-

REG, SVM, RF, ACTR-R and ACTR-IB for low-high mutated samples. . . . 85

4.11 Average F1 values for 5 malware carriers (above) and the average precision,

recall and F1 across all carriers (below) for LOG-REG, SVM, RF, ACTR-R

and ACTR-IB for Leave-one-carrier-out. 86

4.12 Average Precision, Recall, F1 and Family prediction comparisons for LOG-

REG, SVM, RF, ACTR-R and ACTR-IB for unencrypted same carrier samples. 87

4.13 Similarity matrix for 17 versions of the same carrier . 87

4.14 Average Precision, Recall, F1 and Family prediction comparisons for LOG-

REG, SVM, RF, ACTR-R and ACTR-IB for encrypted same carrier samples. 88

4.15 Average Precision, Recall, F1 and Family prediction comparisons for LOG-

REG, SVM, RF, ACTR-R and ACTR-IB for MetaSploit samples. 92

5.1 Weekly detection of cyber-threats. 97

5.2 Social network. 97

5.3 System overview . 103

5.4 Average Precision, Recall and F1 comparisons for NB, LOG-REG, RF and

SVM for product classification. 110

5.5 Average Precision, Recall and F1 comparisons for LP, CT-NB, CT-LOG-

REG, CT-RF and CT-SVM for product classification. 111

5.6 Average Precision, Recall and F1 comparisons for LOG-REG, SVM, CT-

LOG-REG, and CT-SVM for English forum topic classification. 113

5.7 Average Precision, Recall and F1 comparisons for NB, LOG-REG, CT-

LOG-REG and CT-SVM for Russian forum topic classification. 114

xi

Figure Page

5.8 Average Precision, Recall and F1 comparisons for LP, CT-LOG-REG, CT-

RF and CT-SVM for subreddits. 115

5.9 Vendor/User network in marketplace and forum. 120

5.10 Users in multiple markets and forums. 121

5.11 A centric network of a Vendor. 121

6.1 Reasoning System . 127

6.2 Percentage of total websites belonging to the top ten languages in the D2web

data. 130

6.3 Subset of CPE Hierarchy . 131

6.4 A ground argumentation framework. 136

6.5 Example ground arguments from Fig. 3.2. 137

6.6 Facts defined for each test discussion. 142

6.7 Defeasible rules for platform identification. 143

6.8 Defeasible rules for vendor identification. 144

6.9 Defeasible rules for product identification. 145

xii

Chapter 1

INTRODUCTION

1.1 Reasoning about threat actors

Reasoning about the activities of cyber threat actors is critical to defend against cyber

attacks. In doing so, three broad factors need to be considered: the attacker’s use of

deception, the capabilities available, and the intent of launching the attack (see Fig. 1.1).

For a threat actor to pose risk, he/she must intend to do harm and have the capabilities

and resources to conduct a cyber attack [120, 81, 96, 127]. If we understand intent and

capabilities, a defender may be able to see through deception schemes to identify the

attacker – termed as cyber attribution. For real-world applications, security vendors take into

consideration a threat actor’s ability to pose a threat while designing products and services

for threat assessment [40, 39]. The analysis that underpins reasoning about the activities

of threat actors involves many diverse sources of data: network traffic, malware analysis

including code similarity, and intelligence analysis from various hacker forums, to name

a few. Independent and diverse sources of reporting strengthen an analytic argument. The

process, flaws, outcomes, and methodology of understanding and identifying such threat

actors have become a subject of increasingly broad interest over the past few years. Part of

this is due to the increase in cyber-activity and the intersection of that cyber-activity with the

public sphere. For example, it used to be that a major company being hacked would be of

concern only to that company and its customers; however, the compromise of Sony Pictures

allegedly by North Korea in late 2014 elevated public interest in the accurate attribution of

cyber-aggression to the national level.

1

Reasoning about
Threat Actors

Intent
Goals of the attacker

behind the attack

Capability
Ability to achieve

goals (intent) behind
the attack

Tackle
deception schemes

Fig. 1.1: Reasoning about threat actors.

1.2 Literature Overview

Previous research on understanding cyber threat landscape has focused on vulnerability

analysis and prediction using public vulnerability disclosures databases like NVD [138, 16]

and Twitter [106] as data sources. The reported results show poor predictive capability of

NVD [86] and that the data sampling is not reflective of real world scenarios [21] but none

leverage darkweb 1 sites as a source of intelligence for assessing threats. We observe that

darkweb marketplaces gives threat actors access to resources that can be leveraged to carry

out cyber attacks. Determining the intentions of a threat actor behind an attack is important

to assess a threat. Intent refers to goals the attacker is trying to achieve on the compromised

system. This can be inferred by analyzing malware/exploits used in the attack. Most

malware analysis techniques look at identifying if the software is malicious or not [38, 123]

or identifying which family the malware belongs to [8, 60, 61] without identifying the

intentions of the software which in practice is largely human driven. More recently, there

has been work on directly inferring the intent of a malware [54]. This approach leverages

static malware analysis (i.e. analysis of the malware sample conducted without execution,

such as decompilation) and a comparison with a crowd-source database of code snippets

using a proprietary machine leaning approach. However, a key shortcoming of the static
1“darkweb” refers to the anonymous communication provided by crypto-networks like

“Tor”

2

method is that it is of limited value when the malware authors encrypt part of their code as

we saw with the infamous Gauss malware [59]. The goal of understanding a threat can lead

to better cyber attribution. Identifying the threat actors responsible for a given cyber event is

challenging due to lack of a reasoning framework to handle deception and representative

data to evaluate proposed frameworks in the literature. Currently cyber attribution looks to

identify machines, as opposed to a given hacker and his/her affiliations [14] or clustering

common IP sources together [34].

1.3 Motivation

Most technologies designed to aid in cyber security are “introspective” meaning that they

focus on examining vulnerabilities and abnormalities of the system being defended. Tools

for this type of analysis have ranged from the traditional firewall and intrusion detection

system to more recent systems using sophisticated anomaly detection or threat signatures

using information shared amongst different organizations. However, an alternative viewpoint

is to examine the environment of malicious cyber threat actors that lets an organization get a

better understanding of the threat landscape in terms of intent and capability of the threat

actor to defend itself and also identify the threat actor responsible for conducting the cyber

attack.

In the spring of 2017, the Internet was gripped by a widespread ransomware attack,

dubbed WannaCry; the ransomware spread as a worm affecting 300,000 machines in 150

countries, holding files hostage with encryption and promising decryption if a payment was

made to a Bitcoin address. Hackers took advantage of the fact that many systems were not

updated with the patch released by Microsoft, leaving them vulnerable. The attack was

in fact discussed on darkweb forums in several languages including English and Russian

as identified by cybersecurity company CYR3CON [122]; they also reported that hackers

choose medical institutions as prime targets based on the history of paid ransom from

3

similar institutions. Hence the discussions on these darkweb platforms provides valuable

information regarding the capabilities as well as the intent of threat actors and should be

considered in identifying them.

Why do we reason about the activities of threat actors, and who is the customer of

this reasoning? Law enforcement and the courts care about cyber attribution decisions

when making investigative or legal decisions taking into account the intent and capability

of the threat actor. In other spheres, it can help guide the direction and proportion of

an organizational response to a cyber attack. For example, if a commercial company

can determine if an attacker is part of an unsophisticated hacktivist gang rather than a

sophisticated criminal enterprise (based on the intent and capability of the group), they

could simply re-install the compromised computers as a defensive response rather than

engaging with law enforcement. Likewise, according to Wheeler et al., “many offensive

techniques, such as computer network attack, legal action (e.g., arrests and lawsuits), and

kinetic energy attacks, can only be deployed if the source of the attack can be attributed with

high confidence” [136].

In addition to understanding and identifying threat actors, we also ask: how do re-

searchers train and evaluate these models? Using cyber attack data gathered from the real

world is problematic for a few reasons. First, it is difficult to get real-world data due to the

sensitive nature of the data. Additionally, even if the data were available, it is difficult to trust

ground truth about that data. Could attackers’ deceptions go unnoticed in this data? Who

can say? To enable researchers to develop and evaluate their tools, we provide pre-processed

data from capture-the-flag (CTF) contests, where access to the ground truth is available.

1.4 Outline of the Dissertation and Contributions

The central goal of this dissertation is to understand and reason about the activities of

threat actors in terms of the intent and capability to conduct a cyber attack with the goal of

4

performing cyber attribution. The dissertation is divided in three parts. In the first part, we

introduce a new reasoning framework to address deception. We evaluate the framework by

building a dataset from DEFCON capture-the-flag exercise to identify the person or group

responsible for a cyber attack. We demonstrate that the framework not only handles cases

of deception but also provides transparent decision making in identifying the threat actor

(Chapter 2 and 3). In the second part, we introduce a cognitive learning model to determine

the intent – goals of the threat actor on the target system by analyzing the malware/exploits

used (Chapter 4). The third part looks at understanding the capabilities of threat actors. To

achieve this task we first gather discussions from more than 300 darkweb websites relating

to malicious hacking (Chapter 5). Then, we leverage the reasoning framework to identify

at-risk target systems (capable of exploitation) from hacker discussions on darkweb websites

(Chapter 6). Finally, the dissertation is concluded in Chapter 7 with a summary of results

presented in this work and future research directions. Literature corresponding to each of

the specific problem is reviewed in the corresponding Chapter.

Chapter 2: Cyber-Deception and Attribution in Capture-the-Flag Exercises

Attributing the culprit of a cyber-attack is widely considered one of the major technical and

policy challenges of cyber-security. The lack of ground truth for an individual responsible

for a given attack has limited previous studies. In this Chapter, we overcome this limitation

by leveraging DEFCON capture-the-flag (CTF) exercise data where the actual ground-truth

is know. We use various classification techniques to identify the culprit in a cyberattack

and find that deceptive activities account for the majority of misclassified samples. We also

explore several heuristics to alleviate some of the misclassification caused by deception.

Chapter 3: Argumentation Models for Cyber Attribution

In this Chapter, we employ a more principled approach to counter deception based on the

previously established theoretical framework for reasoning about cyber-attribution [114].

5

In particular we employ temporal reasoning to tackle the problem of deceptive attacks

encountered in Chapter 2. We tackled an interesting research problem of identifying hacking

group from a series of attacks over a period of time – differentiating between deceptive

hacking groups.

We introduce an argumentation model based on the DeLP (Defeasible Logic Program-

ming) framework designed to aid analysts in attributing cyber-attacks. Apart from the basic

argumentation machinery, the framework makes use of latent variables to reduce the space

of possible culprits (attackers)—the resulting system is therefore a hybrid between classical

knowledge representation and reasoning techniques and machine learning classifiers. We

report on results obtained from a prototype implementation, showing that our approach

yields much higher accuracy than approaches reported in Chapter 2 (evaluated on the same

dataset) that rely on machine learning classifiers alone—a jump from 37% to 64.5%. The

result is an efficient and scalable reasoning framework designed to aid analysts in attributing

cyber-attacks.

Chapter 4: Determination of Adversarial Intent

Malware reverse-engineering, specifically, identifying the tasks (intent) a given piece of

malware was designed to perform (e.g., logging keystrokes, recording video, establishing

remote access) is a largely human-driven process that is a difficult and time-consuming

operation. In this chapter, we present an automated method to identify malware tasks using

two different approaches based on the ACT-R cognitive architecture, a popular implementa-

tion of a unified theory of cognition. Using three different malware collections, we explore

various evaluations for each of an instance-based and rule-based model - including cases in

which the training data differs significantly from test; where the malware being evaluated

employs packing to thwart analytical techniques; and conditions with sparse training data.

We find that our approach based on cognitive inference consistently out-performs the current

state-of-the art software for malware task identification as well as standard machine learning

6

approaches - often achieving an unbiased F1 score of over 0.9.

Chapter 5: Darkweb and Deepweb Mining for Cybersecurity Threat Intelligence

In this Chapter, we present an operational system for cyber threat intelligence gathering

from various social platforms on the Internet particularly sites on the darkweb and deepweb.

We focus our attention to collecting information from hacker forum discussions and market-

places offering products and services focusing on malicious hacking. We have developed an

operational system for obtaining information from these sites for the purposes of identifying

emerging cyber threats. At the time of development the system was actively collecting

approximately 305 cyber threats each week. These threat warnings include information on

newly developed malware and exploits that have not yet been deployed in a cyber-attack.

This provides a significant service to cyber-defenders. The system is significantly augmented

through the use of various data mining and machine learning techniques. With the use of

machine learning models, we are able to recall 92% of products in marketplaces and 80%

of discussions on forums relating to malicious hacking with high precision. We provide

analysis on the data collected, demonstrating its application to aid a security expert for better

threat analysis.

Chapter 6: At-Risk System Identification via Analysis of Discussions on the Darkweb

Threat assessment of systems is critical to organizations’ security policy. Identifying systems

likely to be at-risk by threat actors can help organizations better defend against likely cyber

attacks. Currently, identifying such systems to a large extent is guided by the Common

Vulnerability Scoring System (CVSS). Previous research has demonstrated poor correlation

between a high CVSS score and at-risk systems. In this Chapter, we leverage hacker

discussions on darkweb marketplaces and forums collected using the system introduced in

Chapter 5 to identify the platforms, vendors, and products likely to be at-risk by hackers.

This gives us an indicator regarding the hacker capability of targeting systems based on their

7

discussions.

We employ and modify the reasoning system introduced in Chapter 3 that combines

DeLP (Defeasible Logic Programming) and machine learning classifiers to identify systems

based on hacker discussions observed on the darkweb. The modified system takes into

account the hierarchical structure of identifying a system in terms of its platform, vendor

and product. The system is evaluated on hacker discussions from nearly 300 darkweb

forums and marketplaces. We improved precision by 15%–57% while maintaining recall

over baseline approaches.

Chapter 7: Conclusion and Future Work

In this chapter, we first recapitulate the main ideas and results presented in the dissertation.

Then some directions for extending the dissertation are given.

1.5 Summary of Contributions

Table 1.1 summarizes the contributions of the dissertation. The contributions can be

split into three broad parts: 1) construction of reasoning framework capable of handling in-

consistent and contradictory information in case of deception and to identify at-risk systems

2) construction of models for automated malware analysis to determine adversarial intent –

the goals of the attacker on the host system and 3) Collected and pre-processed datasets to

evaluate cyber attribution models and applications relating to cyber threat intelligence.

8

Table 1.1: Contribution Summary

Contribution Summary

Reasoning framework

[92, 94, 93]

• A framework that combines classical knowledge representation and

reasoning techniques (DeLP) and machine learning classifiers to han-

dle inconsistent and contradictory information.

• The framework allows for transparent devision making aiding a secu-

rity analyst to review the decision made.

• Applied to the problem of cyber-attribution with improved perfor-

mance over leveraging only machine learning classifiers.

• Applied to the problem of At-risk system identification from hacker

discussions on darkweb by modifying the framework to handle hierar-

chical decision making.

Cognitive Models

[87, 124, 63]

• Two different models based on the ACT-R cognitive architecture -

Instance-based and Rule-based for automated malware analysis to

determine the goals of the attacker on the host system.

• Evaluated on three different malware collections (with encrypted and

mutated malware samples) with parameter exploration and scalability

experiments.

Data Collection

[92, 89, 103]

• We assemble and make available a dataset of cyber-attacks with ground

truth derived from the traffic of DEFCON CTF.

• Hacker discussions and items gathered from more than 300 darkweb

forums and marketplaces in an automated way in real time.

9

Chapter 2

CYBER-DECEPTION AND ATTRIBUTION IN CAPTURE-THE-FLAG EXERCISES

2.1 Introduction

Attributing the culprit of a cyber-attack is widely considered one of the major technical

and policy challenges of cyber-security. The lack of ground truth for an individual respon-

sible for a given attack has limited previous studies. In this work, we take an important

first step toward developing computational techniques toward attributing the actual culprit

(here hacking group) responsible for a given cyber-attack. We leverage DEFCON capture-

the-flag (CTF) exercise data which we have processed to be amenable to various machine

learning approaches. Here, we use various classification techniques to identify the culprit

in a cyber-attack and find that deceptive activities account for the majority of misclassified

samples. We also explore several heuristics to alleviate some of the misclassification caused

by deception. In this chapter:

• We assemble a dataset of cyber-attacks with ground truth derived from the traffic of

the CTF held at DEFCON 21 in 2013.

• We analyze this dataset to identify cyber-attacks where deception occurred.

• We frame cyber-attribution as a multi-class classification problem and leverage several

machine learning approaches. We find that deceptive incidents account for the vast

majority of misclassified samples.

• We introduce several pruning techniques and show that they can reduce the effect

of deception as well as provide insight into the conditions in which deception was

employed by the participants of the CTF.

10

2.2 Dataset

2.2.1 Background

The DEFCON security conference sponsors and hosts a capture the flag (CTF) competi-

tion every year, held on site with the conference in Las Vegas, Nevada. DEFCON CTF is

one of the oldest and best-known competitions. The ctftime.org site provides a ranking for

CTF teams and CTF competitions, assigning it the highest average weight.

CTF competitions can be categorized by what role the competitors play in the com-

petition: either red team, blue team, or a combination. In a blue team focused CTF, the

competitors harden their systems against a red team played by the organizers of the CTF. In

a combined red/blue team CTF, every team plays both blue and red team simultaneously.

The NCCDC and CDX competitions are examples of a blue team CTF, while DEFCON

CTF is a combined red/blue team. Each team is simultaneously responsible for hardening

and defending their systems as well as identifying vulnerabilities and exploiting them in

other teams’ systems.

The game environment is created primarily by the DEFCON CTF organizers. The game

focuses around programs (known in the game as services) written by the organizers and

engineered to contain specific vulnerabilities. The binary images of the services are made

available to each team at the start of the game, but no other information is released. Part

of the challenge is identifying the purpose of each service, as well as the vulnerabilities

they present. Identification of vulnerabilities serves both a defensive and offensive goal;

once a vulnerability has been identified, a team may patch this vulnerability in the binary

program. Additionally, the teams may create exploits for that vulnerability and use them to

attack other teams and capture digital flags from those teams’ systems.

Each team is also provided with a server running the services, which contains the digital

flags to be defended. To deter defensive actions such as powering off the server or stopping

11

the services, the white team (a third team, played by the organizers) conducts periodic

availability tests of the services running on each team’s server. A team’s score is the sum

of the value of the flags they have captured, minus the sum of the flags that have been

captured from that team, multiplied by an availability score determined by how often the

white team was able to test that team’s services. This scoring model incentivizes teams to

keep their server online, identify the vulnerabilities in services and patch them quickly, and

exploit other teams’ services to capture their flags. It disincentivizes teams from performing

host-level blocking and shutting down services, as this massively impacts their final score.

This game environment can be viewed as a microcosm of the global Internet, and the

careful game of “cat and mouse” between hacking groups and companies. Teams are free to

use different technical means to discover vulnerabilities—they may use fuzzing and reverse

engineering on their own programs, or they may monitor the network data sent to their

services and dynamically study the effects that network data has on unpatched services. If a

team discovers a vulnerability and uses it against another team, the first team may discover

that their exploit is re-purposed and used against them within minutes.

The organizers of DEFCON CTF capture all of the network traffic sent and received

by each team, and publish this traffic at the end of the competition [35]. This includes IP

addresses for source and destination, as well as the full data sent and received and the time

the data was sent or received. This data is not available to contestants; depending on the

organizers’ choice from year to year, the contestants either have a real-time feed but with

the IP address obscured, or a full feed delivered on a time delay of minutes to hours.

2.2.2 Analysis

We use the data from the CTF tournament held at DEFCON 21 in 2013; the dataset is

very large, about 170 GB in compressed format. We used multiple systems with distributed

and coordinated processing to analyze the data—fortunately, analyzing individual streams is

12

Table 2.1: Fields in an instance of network attack

Field Intuition Example Value

byte hist Histogram of byte sequences in the payload 0×43:245, 0×69:8, 0×3a:9,

inst hist Histogram of instructions used in the pay-

load

cmp:12, subs:8, movtmi:60

from team The team where the payload originates (at-

tacking team)

Blue Lotus

to team The team being attacked by the exploit Robot Mafia

time Indicates the date and time of the attack 2013-08-03T23:45:17

easy to parallelize. We identified the TCP ports associated with each vulnerable service and

then used the open source tool tcpflow to process the network captures into a set of files,

with each file representing data sent or received on a particular connection.

With these data files identified, we analyzed some of them by hand using the Interactive

Disassembler (IDA) to determine if the data contained shell-code, which in fact was the

case. We used an automated tool to produce a summary of each data file as a JSON encoded

element. Included in this summary was a hash of the contents of the file and a histogram of

the processor instructions contained in the file. These JSON files were the final output of the

low-level analysis, transforming hundreds of gigabytes of network traffic into a manageable

set of facts about exploit traffic in the data. Each JSON file is a list of tuples (time-stamp,

byte-histogram, instruction-histogram, attack team and target team). The individual fields

of the tuple are listed in Table 2.1. This pre-processing phase can be summarized in the

following steps:

• Un-tar the archives available from the organizers; this produces a large number of

pcap-ng formatted files that contain the traffic captures.

13

• Convert the pcap-ng files to tcpdump format capture using the editcap utility. This

will allow tcpflow to process the data.

• Use xargs and GNU parallel to run tcpflow on each pcap. This took some time, and

produced a directory structure with files for data sent and received on host-port socket

pairs. This step of processing allows file-based tools to process the network data.

• Finally, develop (and run, in parallel) a tool to process each file containing data sent or

received by network ports associated with CTF challenges. This produced summary

statistics for each data stream: a byte histogram, overall size, a hash, and an ARM

instruction histogram (we ran a linear sweep with the Capstone instruction decoder to

produce this). This data was saved via JSON.

After this pre-processing of the network data packets, we have around 10 million network

attacks consisting of about 1 million unique exploits built and used by 20 teams in the

competition. In order to attribute an attack to a particular team, apart from analyzing the

payloads used by the team, we also need to analyze the behavior of the attacking team

towards their adversary. For this purpose, we separate the network attacks according to the

team being targeted. Thus, we have 20 such subsets (Table 4.3), which we denote with T-i,

where i ∈ {1, 2, 3, ..., 20}. We also define deceptive attacks where multiple teams target

the same team using the same exploit. Fig. 2.1 shows the distribution of unique deceptive

attacks with respect to the total unique attacks in the dataset based on the target team. These

unique deceptive attacks amount to just under 35% of the total unique attacks. The resulting

processed dataset is publicly available for research purposes 1 .

We now discuss two important observations from the dataset, that makes the task of

attributing a observed network attack to a team difficult.
1https://cysis.engineering.asu.edu/cyber-attribution/

14

Table 2.2: Teams in the CTF competition

Notation Team Notation Team

T-1 9447 T-11 clg

T-2 APT8 T-12 men in black hats

T-3 Alternatives T-13 more smoked leet chicken

T-4 PPP T-14 pwnies

T-5 Robot Mafia T-15 pwningyeti

T-6 Samurai T-16 routards

T-7 The European Nopsled Team T-17 raon ASRT (whois)

T-8 WOWHacker-BIOS T-18 shell corp

T-9 [Technopandas] T-19 shellphish

T-10 blue lotus T-20 sutegoma2

Deception: In the context of this work we define an attack to be deceptive when multiple

adversaries get mapped to a single attack pattern. In the current setting we define deception

as the scenario when the same exploit is used by multiple teams to target the same team.

Fig. 2.1 shows the distribution of unique deception attacks with respect to the total unique

attacks in the dataset based on the target team. These unique deceptive attacks amount to

just under 35% of the total unique attacks.

Duplicate attacks: A duplicate attack occurs when the same team uses the same payload to

attack a team at different time instances. Duplicate attacks can be attributed to two reasons.

First when a team is trying to compromise other system, it just does not launch a single

attack but a wave of attacks with very little time difference between consecutive attacks.

Second, once a successful payload is created which can penetrate the defense of other

systems, it is used more by the original attacker as well as the deceptive one as compared to

other payloads. We group duplicates as being non-deceptive and deceptive. Non-deceptive

15

0

100000

200000

300000

400000

T-
1

T-
2

T-
3

T-
4

T-
5

T-
6

T-
7

T-
8

T-
9

T-
1

0

T-
1

1

T-
1

2

T-
1

3

T-
1

4

T-
1

5

T-
1

6

T-
1

7

T-
1

8

T-
1

9

T-
2

0

N
u

m
b

er
 o

f
U

n
iq

u
e

A
tt

ac
ks

Teams

Unique Attacks Deceptive Attacks

Fig. 2.1: Unique deceptive attacks directed towards each team

duplicate are the duplicates of the team that first initiated the use of a particular payload.

On the other hand deceptive duplicates are all the attacks from the teams that are being

deceptive. Deceptive duplicates form a large portion of the dataset as seen in Fig. 2.2.

Analyzing the number of teams that use a particular payload, gives us insights into the

deceptive behavior of teams. We plot the usage of unique payloads with respect to the

number of teams using them in their attacks. We use 4 different categories namely payloads

used by a single team, payloads used by two teams, payloads used by three teams and

payloads used by more than three teams. Fig. 2.3 shows the plot for each target team. A

large fraction of unique payloads fall in the first two categories (one team and two teams).

2.3 Baseline Approaches

From the dataset we have the ground truth available for all the samples. Hence we use

supervised machine learning approaches to predict the attacking team. The ground truth

corresponds to a team mentioned in Table 2.2.

Decision Tree (DT). For baseline comparisons we first implemented a decision tree classifier.

16

0

200000

400000

600000

800000

T-
1

T-
2

T-
3

T-
4

T-
5

T-
6

T-
7

T-
8

T-
9

T-
1

0

T-
1

1

T-
1

2

T-
1

3

T-
1

4

T-
1

5

T-
1

6

T-
1

7

T-
1

8

T-
1

9

T-
2

0

To
ta

l A
tt

ac
ks

Teams

Non-Deceptive Deceptive Total Attacks

Fig. 2.2: Total attacks and duplicate attacks(Deceptive and Non-deceptive) directed towards

each team

1

100

10000

T-
1

T-
2

T-
3

T-
4

T-
5

T-
6

T-
7

T-
8

T-
9

T-
1

0

T-
1

1

T-
1

2

T-
1

3

T-
1

4

T-
1

5

T-
1

6

T-
1

7

T-
1

8

T-
1

9

T-
2

0

U
n

iq
u

e
A

tt
ac

ks
(L

o
g

sc
al

e
)

One Team Two Teams Three Teams More than three teams

Fig. 2.3: Attacks on each target team by one team, two teams, three teams and more than

three teams.

17

This hierarchical recursive partitioning algorithm is widely used for classification problems.

We built the decision tree by finding the attribute that maximizes information gain at each

split. This attribute is termed as the best split attribute and is used to split the node. Higher

the information gain , the more pure the nodes that are split will be. During the testing phase,

we check the test sample for the presence or absence of the best split attribute at each node

till we reach the leaf node. The team that has majority samples at the leaf node, is predicted

as the attack team for the test sample. In order to avoid over-fitting we terminate the tree,

when the number of samples in the node are less than 0.1% of the training data.

Random Forest (RF). Random forest is an ensemble method proposed by Breiman [18]. It

is based on the idea of generating multiple predictors which are then used in combination

to classify unseen samples. The strength of random forest lies in injecting randomness to

build each classifier and using random low dimensional subspaces to split the data at each

node in a classifier. We use a random forest which combines bagging [18] for each tree

with random feature selection [17] at each node to split the data thus generating multiple

decision tree classifiers. To split the data at each node we use information gain with random

subspace projection. The information gain indicates the amount of purity in the node with

respect to class labels. More pure nodes result in higher information gain. Hence we try to

find the splits that maximize the information gain. The advantage of using random forest

over a single decision tree is low variance and the notion that weak learners when combined

together have a strong predictive power. During the test phase , each test sample gets a

prediction from each individual decision tree (weak learner) giving its own opinion on test

sample. The final decision is made by a majority vote among those trees.

Support Vector Machine (SVM). Support vector machines is a popular supervised classi-

fication technique proposed by Vapnik [30]. SVM’s works by finding a separating margin

that maximizes the geometric distance between classes. The separating margin is termed as

a hyperplane. We use the popular LibSVM implementation [25] which is publicly available.

18

0

0.1

0.2

0.3

0.4

0.5

0.6

T-
1

T-
2

T-
3

T-
4

T-
5

T-
6

T-
7

T-
8

T-
9

T-
1
0

T-
1
1

T-
1
2

T-
1
3

T-
1
4

T-
1
5

T-
1
6

T-
1
7

T-
1
8

T-
1
9

T-
2
0

A
cc
u
ra
cy

Teams

LOG-REG RF SVM DT

Fig. 2.4: Team prediction accuracy for LOG-REG, RF, SVM and DT.

SVM is inherently a binary classifier, and it deals with multi-class classification problems

by implementing several 1-vs-1 or 1-vs-all binary classifiers which adds to the complexity

as the number of classes increases.

Logistic Regression (LOG-REG). Logistic regression classifies samples by computing the

odds ratio. The odds ratio gives the strength of association between the features and the class.

As opposed to linear regression , the output of logistic regression is the class probability of

the sample belonging to that class. We implement the multinomial logistic regression which

handles multi-class classification.

2.3.1 Experimental Results

For our baseline experiments, we separate the attacks based on the team being targeted.

Thus we have 20 attack datasets. We then sort the attack according to time. We reserve the

first 90% of the attacks for training and the remaining 10% for testing. Attacker prediction

accuracy is used as the performance measure for the experiment. Accuracy is defined as the

fraction of correctly classified test samples. Fig. 2.4 shows the accuracy for predicting the

19

attacker for each target team. Machine learning techniques significantly outperform random

guessing which would have an average accuracy of choosing 1 out of 19 teams attacking

yielding an accuracy of 0.053. For this experiment random forest classifier performs better

than logistic regression, support vector machine and decision tree for all the target teams.

Table 2.3 below summarizes the average performance for each method.

Table 2.3: Summary of Prediction results averaged across all Teams for baseline models.

Method Average Performance

Decision tree (DT) 0.26

Logistic regression (LOG-REG) 0.31

Support vector machine (SVM) 0.30

Random Forest (RF) 0.37

2.3.2 Misclassified Samples

Misclassification can be attributed to the following sources,

• Non-deceptive duplicate attacks attributed to one of the deceptive teams.

• Deceptive duplicates attributed to some other deceptive team.

• Payloads that were not encountered during the training phase.

The first two sources of error make up the majority of misclassifications, since a given attack

can be attributed to any of the 19 teams.

Fig. 2.5 shows the distribution of the above mentioned sources of misclassification

for each team. Deceptive duplicates form the majority of misclassifications. This is not

surprising given the fact that deceptive duplicates make up almost 90% of the total attacks

(see Fig. 2.2).

20

0.0

0.2

0.4

0.6

0.8

1.0

T-
1

T-
2

T-
3

T-
4

T-
5

T-
6

T-
7

T-
8

T-
9

T-
1

0

T-
1

1

T-
1

2

T-
1

3

T-
1

4

T-
1

5

T-
1

6

T-
1

7

T-
1

8

T-
1

9

T-
2

0

Fr
ac

ti
o

n
 o

f
M

is
cl

as
si

fi
ed

 S
am

p
le

s

Teams

Non-Deceptive Duplicates Deceptive Duplicates Unseen payloads

Fig. 2.5: Sources of error in the misclassified samples.

2.3.3 Average Prediction Probability

Fig. 2.6 shows the average probability of correctly classified and misclassified samples.

The reported average probabilities are from the random forest classifier which performs the

best among the baseline approaches (see Table 2.3). To compute this average probability we

look at the predicted probability for each test sample rather than the prediction. For random

forest the predicted probability is the average of individual decision trees in the forest. It

is clear that the classifier predicts the correct team with higher probability as opposed to

misclassified samples which are predicted with less confidence (probability).

2.4 Pruning

We explore different pruning techniques to address misclassification issues with respect

to deceptive and non-deceptive duplicates. The pruning techniques are only applied to the

training data, while the test data is maintained at 10% as mentioned in Section 2.3.1. We

use the random forest classifier for all the pruning techniques.

These pruning techniques are briefly described as follows,

21

0

0.2

0.4

0.6

T-
1

T-
2

T-
3

T-
4

T-
5

T-
6

T-
7

T-
8

T-
9

T-
1

0

T-
1

1

T-
1

2

T-
1

3

T-
1

4

T-
1

5

T-
1

6

T-
1

7

T-
1

8

T-
1

9

T-
2

0

A
ve

ra
ge

 P
re

d
ic

ti
o

n
 P

ro
b

ab
ili

ty

Classified Misclassified

Fig. 2.6: Average Prediction probability for correctly classified and misclassified samples.

• All-but-majority: In this pruning we only consider the duplicates of the most attacking

team given a payload and prune other duplicates.

• All-but-K-majority: Only consider the duplicates of the top K most frequent attacks

given a payload and prunes the rest of the duplicates.

• All-but-earliest-majority: We only retain the duplicates of the team that initiates the

attack given a payload, rest all duplicates are pruned.

• All-but-most-recent-majority: In this pruning we retain the duplicates of the team that

last used the payload in the training data, rest all duplicates are pruned.

Table 2.4 gives the summary of the prediction results for all the pruning techniques in

comparison with the random forest baseline approach. In the pruning techniques All-but-K-

majority works best with an average accuracy of 0.42.

All-but-majority (P-1): In this pruning technique, for each payload, we only retain dupli-

cates of the most frequent attacking team and prune the duplicates of all other teams. This

pruned set is then used to train the random forest classifier. Table 2.5 shows the classifier

22

Table 2.4: Summary of Prediction results averaged across all Teams using pruning tech-

niques.

Method Average Performance

Baseline Approach (RF) 0.37

All-but-majority Pruning (RF) 0.40

All-but-K-majority Pruning (RF) 0.42

All-but-earliest Pruning (RF) 0.34

All-but-most-recent Pruning (RF) 0.36

performance in comparison with the baseline method. All-but-majority pruning technique

has better performance on the test set than the baseline approach for 11 out of 20 teams.

Using this pruning technique does benefit majority of the teams as the prediction accuracy

improves for them, but for some teams the performance drops. The reason for the drop in

performance for some teams is due to the fact that training set gets dominated by a single

team which does not have majority in testing set. Since the majority team gets represented

in most of the leaves of the random forest classifier, it gets predicted more often leading to

high misclassifications.

All-but-K-majority (P-2): In order to address the issue of one team dominating in the

training set, we use the all-but-K-majority where we consider the K most frequent teams for

a payload under consideration. After trying out different values of K we select K = 3, which

gives the best performance. For higher values of K, the pruning behaves like the baseline

approach and for lower values it behaves like All-but-majority. On average each team gains

about 40K samples in the training set as compared to all-but-majority pruning. Table 2.5

shows the classifier performance. In this case also pruning performs better than baseline in

11 out of 20 teams, but as compared to all-but-majority the performance for most teams is

better.

23

All-but-earliest (P-3): For this pruning we only retain the duplicates of the team that

initiated the attack using a particular payload. This pruning technique retains all the non-

deceptive duplicates while getting rid of the deceptive ones. Table 2.5 shows the classifier

performance. This pruning technique performs better than the baseline approach for 8 out of

20 teams. Comparing this result to all-but-majority (including all-but-K-majority) pruning

indicates that deceptive duplicates are informative in attributing an attack to a team and

should not be ignored completely.

All-but-most-recent (P-4): In this pruning we repeat a similar procedure like All-but-

earliest but instead of retaining the duplicates of the team that initiated an attack, we retain

the duplicates of the team that used the payload last in the training set. Because the data is

sorted according to time, the last attacker becomes the most recent attacker for the test set.

Table 2.5 shows the classifier performance.

2.4.1 Discussion

On further analysis of the misclassified samples from all-but-earliest and all-but-most-

recent provides an interesting observation. Though majority of the misclassified samples

between the two pruning techniques are similar, there is a fraction of samples which were

correctly classified by all-but-earliest but misclassified by all-but-most-recent and vice versa.

Let first (correct) denote the number of samples that were correctly classified from the

misclassified samples of all-but-most-recent majority pruning experiment. Similarly last

(correct) be the samples that were correctly classified from the misclassified samples of

all-but-earliest majority pruning technique. Fig. 2.7 shows the number of samples that

all-but-earliest pruning was able to classify correctly that were misclassified by all-but-

most-recent. Fig. 2.8 shows a similar result for the other case. For both cases the correctly

classified samples make up around 5-10% of the misclassified samples for each team. This

result shows that using the two pruning techniques together to make attribution decision,

24

Table 2.5: Pruning technique performance comparison for each team.

Teams RF P-1(RF) P-2(RF) P-3(RF) P-4(RF)

T-1 0.45 0.16 0.46 0.15 0.15

T-2 0.22 0.28 0.30 0.15 0.14

T-3 0.30 0.53 0.29 0.57 0.57

T-4 0.26 0.33 0.27 0.31 0.32

T-5 0.26 0.38 0.45 0.40 0.42

T-6 0.50 0.27 0.24 0.31 0.26

T-7 0.45 0.59 0.58 0.19 0.49

T-8 0.42 0.52 0.52 0.51 0.55

T-9 0.41 0.65 0.68 0.52 0.53

T-10 0.30 0.54 0.34 0.55 0.57

T-11 0.37 0.27 0.35 0.27 0.29

T-12 0.24 0.37 0.37 0.25 0.22

T-13 0.35 0.27 0.37 0.29 0.27

T-14 0.42 0.27 0.40 0.30 0.30

T-15 0.30 0.20 0.27 0.21 0.20

T-16 0.42 0.28 0.22 0.32 0.31

T-17 0.43 0.45 0.35 0.43 0.40

T-18 0.48 0.39 0.43 0.41 0.40

T-19 0.41 0.65 0.58 0.54 0.60

T-20 0.48 0.16 0.16 0.16 0.17

would lead to higher performance as opposed to using only one.

25

0

20000

40000

60000

T-
1

T-
2

T-
3

T-
4

T-
5

T-
6

T-
7

T-
8

T-
9

T-
1

0

T-
1

1

T-
1

2

T-
1

3

T-
1

4

T-
1

5

T-
1

6

T-
1

7

T-
1

8

T-
1

9

T-
2

0

M
is

cl
as

si
fi

e
d

 s
am

p
le

s

First (Correct) Misclassified

Fig. 2.7: Samples correctly classified by all-but-earliest and not by all-but-most-recent.

0

20000

40000

60000

T-
1

T-
2

T-
3

T-
4

T-
5

T-
6

T-
7

T-
8

T-
9

T-
1

0

T-
1

1

T-
1

2

T-
1

3

T-
1

4

T-
1

5

T-
1

6

T-
1

7

T-
1

8

T-
1

9

T-
2

0

M
is

cl
as

si
fi

e
d

 s
am

p
le

s

Last (Correct) Misclassified

Fig. 2.8: Samples correctly classified by all-but-most-recent and not by all-but-earliest.

26

2.4.2 Ensemble Classifier

As discussed earlier using pruning techniques together would improve the prediction

accuracy as opposed to using the pruning techniques individually. We perform an ex-

periment to demonstrate it. We generate one prediction from each of the three pruning

techniques namely, all-but-K-majority (since this pruning technique performs better than all-

but-majority), all-but-earliest and all-but-most-recent. We call these predictions candidates

for being the most likely attackers. We then define conditions to predict the actual attacker

as follows:

1. Predict the team that satisfies atleast two pruning cases.

2. If all the attacking candidates are different, then predict the all-but-K-majority predic-

tion.

Table 2.6 shows the results of this ensemble framework in comparison with the baseline

approach and the different pruning techniques. The results are averaged across all teams.

This 3-candidate ensemble framework performs the best with an average accuracy of 0.46

better than all the approaches indicating that using the pruning techniques in conjunction

with each other improves the prediction accuracy.

2.5 Related Work

In our text on cyber-warfare [113], we discuss the difficulties of cyber-attribution and

how an intelligence analyst must also explore the deception hypothesis in a cyber-warfare

scenario. When compared to other domains of warfare, there is a much greater potential for

evidence found in the aftermath of cyber-attack to be planted by the adversary for purposes

of deception. The policy implications of cyber-attribution have also been discussed in [129]

where the authors point out that anonymity, ability to launch multi-stage attacks, and attack

27

Table 2.6: Summary of Prediction results averaged across all Teams for ensemble classifier.

Method Average Performance

Baseline Approach (RF) 0.37

All-but-majority Pruning (RF) 0.40

All-but-K-majority Pruning (RF) 0.42

All-but-earliest Pruning (RF) 0.34

All-but-most-recent Pruning (RF) 0.36

3-Candidate ensemble model (RF) 0.46

speed pose significant challenges to cyber attribution.

In an early survey on cyber-attribution [14], the authors point out that technical attribution

will generally identify machines, as opposed to a given hacker and his/her affiliations. While

we will use technical information in our approach, we have ground truth data on the group

involved by the nature of the capture-the-flag data. This will allow our approach to profile the

tactics, techniques, and procedures of a given group as we have ground-truth information on

a hacking group as opposed to machines. An example of such an approach is the WOMBAT

attribution method [34] which attributes behavior to IP sources that are potentially linked

to some root cause determined through a clustering technique. Similarly, other work [126]

combines cluster analysis with a component for multi-criteria decision analysis and studied

an implementation of this approach using honeypot data again, this approach lacks any

ground truth of the actual hacker or hacking group. In other work on attribution [58], the

authors study the problem of attributing abnormal internal behavior to a malicious insider

over the course of an advanced persistent threat (APT) a different type of attribution problem

than the one we propose to study. Outside of cyber-security, attribution has also been studied

in other contexts. Of particular note is the work of Walls [132]. Here, the author look

at attribution based on forensic information in a much different problem. They consider

28

diverse sources, but do not seek to overcome inconsistency caused by intentional deception

nor do they apply their methods to cyber-attacks. More recently the Q model has been

proposed [102]. The framework of the Q model works by letting the analyst ask a range

of relevant questions both technical and non-technical to aid in his process of attributing

the attack. It provides a theoretical map towards cyber-attribution but does not address the

issues of deception and does not evaluate the model on a relevant dataset.

Concurrently, we have devised a formal logical framework for reasoning about cyber-

attribution [56, 114]. However, we have not studied how this framework can be instantiated

on a real world dataset and, to date, we have not reported on an implementation or experi-

ments in the literature.

We note that none of the previous work on cyber-attribution leverages a data set with

ground truth information of actual hacker groups – which is the main novelty of this work.

2.6 Summary

In this chapter, we study cyber-attribution by examining DEFCON CTF data - which

provides us with ground-truth on the culprit responsible for each attack. We frame cyber-

attribution as a classification problem and examine it using several machine learning ap-

proaches. We find that deceptive incidents account for the vast majority of misclassified

samples. Moving forward in Chapter 3, we look to employ a more principled approach to

counter deception based on our previously established theoretical framework for reasoning

about cyber-attribution [114]. In particular we wish to employ temporal reasoning to tackle

the problem of deceptive attacks. This opens up interesting research questions in particular

identifying hacking group from a series of attacks over a period of time, differentiating

between deceptive hacking groups in time series data. This is a knowledge engineering

challenge which calls for development of efficient and scalable reasoning framework.

29

Chapter 3

ARGUMENTATION MODELS FOR CYBER ATTRIBUTION

3.1 Introduction

A major challenge in cyber-threat analysis is to find the person or the group responsible

for a cyber-attack. This is known as cyber-attribution [113, 22] and it is one of the central

technical and policy challenges in cyber-security. Oftentimes, the evidence collected from

multiple sources provides a contradictory viewpoint, which makes it unclear how the

evidence needs to be combined or reasoned about in order to arrive at a conclusion. This gets

worse in cases of deception, where either an attacker plants false evidence, or the evidence

points to multiple threat actors, leading to uncertainty. In the text on cyber-warfare [113] the

authors discuss the difficulties that an intelligence analyst faces in attributing an attack to a

perpetrator given that deception might have occurred, and how the analyst needs to explore

deception hypotheses under the given attack scenario. To resolve deception the analyst also

needs to consider multiple sources of information—each with its level of confidence—to

provide an adequate explanation for a particular decision made.

However, one of the main hurdles in the study and evaluation of cyber-attribution models

is the lack of datasets with ground truth available regarding the party responsible for the

attack—this has limited the evaluation of previous proposals. To overcome this, we built

and leveraged a dataset from the capture-the-flag event held at DEFCON. In chapter 2, we

used this dataset 1 to study cyber-attribution framed as a multi-class classification problem

to predict the attacker. The machine learning model was able to achieve an accuracy of

37%, struggling in situations of deception, where similar attributes point towards multiple
1https://cysis.engineering.asu.edu/cyber-attribution/

30

attackers, as well as on previously unobserved attacks (attacks not encountered in the training

data). We thus require a system that must be able to accomplish several goals, including:

• Reason about evidence in case of deceptive and previously unobserved attacks by

relying on explanations (or arguments) constructed from information in the knowledge

base.

• Integrate machine learning tools, towards a hybrid approach that allows to draw

conclusions based on combinations of pieces of evidence and explanations constructed

from the knowledge base.

• Provide analysts with indications as to how the system arrived at a particular conclu-

sion (in this case the actor responsible for the attack), or why other conclusions were

discarded.

To address these requirements, we have proposed a structured argumentation system that

also integrates machine learning approaches in order to reason about cyber events of interest

and tackle the cyber attribution problem. This is—to the best of our knowledge—the first

line of research that combines a Knowledge Representation (KR) formalism, in the form of

structured argumentation, with machine learning (ML) to address cyber attribution. This

chapter brings together and extends the results of chapter 2, combining the DeLP formalism

with machine learning to significantly improve accuracy. This chapter includes:

• A hybrid KR-ML framework that combines machine learning techniques with defea-

sible argumentation for cyber attribution.

• The construction and analysis of a set of argumentation models built on top of each

other in order to improve the performance of the machine learning model.

• An empirical evaluation of the system on our curated dataset; our experiments show

31

Knowledge Base

Machine
Learning
Model

Argumentation Model
θ: Facts

ω: Strict Rules
δ: Defeasible Rules

θ:

Inference

Reduced search space

Byte / Instruction
histograms

Test Attack

Fig. 3.1: Reasoning system

that the hybrid approach achieves a significant accuracy of 64.5%, as compared to

37% achieved by machine learning approaches alone.

• A detailed discussion about the relevance of rules introduced in each of the proposed

argumentation models. The discussion is supported by performance numbers demon-

strating the rules that have the most significant impact on the system’s performance.

3.2 System Overview

Fig. 3.1 gives an overview of the reasoning system we developed; it consists of the

following three main modules:

• Knowledge Base: Stores evidence of previously conducted attacks with the ground

truth of the person/group responsible for the attack—we use this content as the training

data. The data can be of different types, including the tools/softwares used in the

attack, attacker behavior information (including motives for the attack), and so on.

In this chapter, the knowledge base is comprised of all the network traffic captured

32

during the capture-the-flag competition. In these competitions there are 20 teams

(see Table 2.2) responsible for conducting cyber attacks by exploiting vulnerabilities

in each other’s system. These 20 teams are responsible for the 10 million attacks

that make up the dataset. Each attack is represented by the attacking team, the target

team, instruction and byte histograms of the exploit used in the attack, as well as the

timestamp of the attack (see Table 2.1). We discuss the dataset and the DEFCON CTF

event in detail in Section 2.2. We sort the dataset by time and divide it according to

target teams listed in Table 2.2. The first 90% is reserved for training (knowledge

base) and the remaining 10% for testing.

• Argumentation Model: This component constructs arguments for a given query

(attack of interest) using elements in the knowledge base. We use a formalism that

combines logic programming with defeasible argumentation (DeLP). It is made up

of three constructs: facts: observations from the knowledge base that cannot be

contradicted; strict rules: logical combinations of facts that are always true; and

defeasible rules: can be thought of as strict rules but are only true if no contradictory

evidence is present. We discuss the argumentation framework with examples for each

of the constructs in Section 3.3. Arguments help reduce the set of possible attackers

behind the attack; this reduced set of possible attackers acts as one of the inputs to

the machine learning model. The argumentation model thus constrains the machine

learning model to predict the attacker from the reduced set of possible attackers.

• Machine learning model: The machine learning model takes the knowledge base and

query as input, along with the reduced set of possible attackers from the argumentation

model, and provides an attacker deemed responsible for the attack. It is constrained

by the argumentation model to select the attacker from the reduced attacker set, which

aids the machine learning model as demonstrated in the results section of the chapter.

33

We use the byte and instruction histograms extracted from the exploits used in the

attack as features for the machine learning model. Any standard machine learning

model can be used in this module, based on the type of attack data being analyzed.

Here, we use random forest, which have exhibited the best performance for this

dataset [91].

3.3 Argumentation Model

Our approach relies on a model of the world where we can analyze competing hypotheses

in a cyber-operation scenario. It should allow for contradictory information so it can

handle inconsistency in cases of deception. In his section, we review the necessary ideas

from defeasible logic-based argumentation [42], and provide examples of this approach

instantiated for our cyber attribution problem.

Before describing the argumentation model in detail, we introduce some necessary

notation. Variables and constant symbols represent items such as the exploits/payloads used

for the attack, and the actors conducting the cyber-attack (in this case, the teams in the CTF

competition). We denote the set of all variable symbols with V and the set of all constants

with C. In the running example, we use a subset of our DEFCON CTF dataset. For our

model we require two subsets of C: Cact , denoting the actors capable of conducting the

cyber-operation, and Cexp , denoting the set of unique exploits used. We use strings starting

with capital letters to denote variables.

Example 1. The following are examples of actors and cyber-operations from the CTF data:

Cact = {bluelotus, robotmafia, apt8}, Cexp = {exploit1, exploit2, ..., exploitn}.

The language also contains a set of predicate symbols that have constants or variables as

arguments, and denote events that can be either true or false. A ground atom is composed

by a predicate symbol and a tuple of constants, one for each argument. The set of all ground

34

atoms is denoted with G. A ground literal L is a ground atom or a negated ground atom.

An example of a ground atom for our running example is attack(exploit1, bluelotus). We

denote a subset of G with G′. We denote the set of predicates with P.

Example 2. Some examples of predicates are shown in Table 3.1.

For instance, culprit(exploit1, apt8) will either be true or false, and denotes the event where

apt8 used exploit1 to conduct a cyber-operation.

We define deceptive and replay attacks in the context of this work:

Deception: In the context of this work, we define an attack to be deceptive when multiple

adversaries get mapped to an identical exploit. In the current setting we define deception as

the scenario in which the same exploit is used by multiple teams against the same target. In

Table 3.1, deception(exploit1, apt8) denotes the event where apt8 used exploit1 to conduct

a deceptive attack.

Replay attacks: A replay attack occurs when the a team uses the same payload at different

points in time. In Table 3.1, replay attack(E ,Y) denotes the event where exploit E was

replayed by team Y. Replay attacks can be attributed to two reasons. First, when a team is

trying to compromise another’s system, it does not just launch a single attack but rather a

wave of attacks with very little time difference in between consecutive attacks. Second, once

a successful payload is created that can penetrate the defense of other systems, it is used

both by the original attacker as well as the deceptive ones, and it is used in more occasions

compared to other payloads. We group replay attacks as either being non-deceptive or

deceptive. The former are copies of the attacks launched by the team that first initiated the

use of a particular payload; on the other hand, deceptive replay attacks are all the attacks

from the teams that did not initiate the use of a given payload.

We choose a structured argumentation framework [101] for our model; our approach

works by creating arguments (in the form of a set of rules and facts) that compete with each

35

Table 3.1: Example Predicates and explanation

Predicate Explanation

attack(exploit1, bluelotus) exploit1 was targeted towards the team Blue Lotus.

replay attack(E ,Y) Exploit E was replayed by team Y.

deception(exploit1, apt8) Team apt8 used exploit1 for deception.

time diff(I, Y) Team Y was deceptive within the given time interval I .

culprit(exploit1, apt8) Team apt8 is the likely culprit for the attack (using

exploit1 on the target team).

other to attribute an attack to a given perpetuator. In this case, arguments are defeated based

on contradicting information in other arguments. This procedure is known as a dialectical

process, where the arguments that are undefeated prevail—such arguments are said to be

warranted, and they give a clear map of what conclusions are adequately supported. This

transparency lets a security analyst not only add new arguments based on new evidence

discovered in the system, but also get rid of incorrect information and fine-tune the model for

better performance. Since the argumentation model can deal with inconsistent information,

it draws a natural analogy to the way humans settle disputes when there is contradictory

information available. Having a clear explanation of why one argument is chosen over

others is a desirable characteristic for both analysts and organizations that need to make

decisions and policy changes.

3.3.1 Defeasible Logic Programming (DeLP)

DeLP is a formalism that combines logic programming with defeasible argumentation;

we will now provide a brief introduction, but full details can be found in [42]. The formalism

is made up of several constructs, namely facts, strict rules, and defeasible rules. Facts

represent statements obtained from evidence, and are always true; similarly, strict rules

36

are logical combinations of facts that always hold. On the contrary, defeasible rules can

be thought of as strict rules that may be true in some situations, but could be false if

contradictory evidence is present. These three constructs are used to build arguments, and

DeLP programs are sets of facts, strict rules and defeasible rules. We use the usual notation

for DeLP programs, denoting the knowledge base with Π = (Θ,Ω,∆), where Θ is the set

of facts, Ω is the set of strict rules, and ∆ is the set of defeasible rules. Examples of the

three constructs are provided with respect to the dataset in Fig. 3.2. We now describe the

constructs in detail.

Facts (Θ) are ground literals that represent atomic information or its (strong) negation (¬).

Strict Rules (Ω) represent cause and effect information; they are of the form L0 ← L1, ...Ln,

where L0 is a literal and {Li}i>0 is a set of literals.

Defeasible Rules (∆) are weaker versions of strict rules, and are of the form L0 -≺

L1,, Ln, where L0, is the literal and {Li}i>0 is a set of literals.

When a cyber-attack occurs, the model can be used to derive arguments as to who

could have conducted the attack. Derivation follows the same mechanism as logic program-

ming [73]. DeLP incorporates defeasible argumentation, which decides which arguments

are warranted and it blocks arguments that are in conflict and a winner cannot be determined.

Example 3. Fig. 3.2 shows a ground argumentation framework demonstrating constructs

derived from the CTF data. For instance, θ1 indicates the fact that exploit1 was used to

target the team Blue Lotus, and θ5 indicates that team pwnies is the most frequent user of

exploit1. For the strict rules, ω1 says that for a given exploit1 the attacker is pwnies if it was

the most frequent attacker and the attack exploit1 was replayed. Defeasible rules can be

read similarly; δ2 indicates that exploit1 was used in a deceptive attack by APT8 if it was

replayed and the first attacker was not APT8. By replacing the constants with variables in

the predicates we can derive a non-ground argumentation framework.

37

Θ : θ1 = attack(exploit1, bluelotus)

θ2 = first attack(exploit1, robotmafia)

θ3 = last attack(exploit1, apt8))

θ4 = time diff(interval, robotmafia)

θ5 = most frequent(exploit1, pwnies)

Ω : ω1 = culprit(exploit1, pwnies)← most frequent(exploit1, pwnies),

replay attack(exploit1)

ω2 = ¬ culprit(exploit1, robotMafia)← last attack(exploit1, apt8),

replay attack(exploit1)

∆ : δ1 = replay attack(exploit1) -≺ attack(exploit1, bluelotus),

last attack(exploit1, apt8)

δ2 = deception(exploit1, apt8) -≺ replay attack(exploit1),

first attack(exploit1, robotmafia)

δ3 = culprit(exploit1, apt8) -≺ deception(exploit1, apt8),

replay attack(exploit1)

δ4 = ¬culprit(exploit1, apt8) -≺ time diff(interval, robotmafia)

Fig. 3.2: A ground argumentation framework.

Definition 1. (Argument) An argument for a literal L is a pair 〈A, L〉, where A ⊆ Π

provides a minimal proof for L meeting the requirements: (1) L is defeasibly derived from

A 2 , (2) Θ ∪ Ω ∪ A is not contradictory, and (3) A is a minimal subset of ∆ satisfying 1

and 2, denoted 〈A, L〉.

Literal L is called the conclusion supported by the argument, and A is the support. An
2Defeasible derivations are sequences of rules (possibly including defeasible rules) that

end in L.

38

〈A1, replay attack(exploit1) 〉 A1 = {δ1, θ1, θ3}

〈A2, deception(exploit1, apt8) 〉 A2 = {δ1, δ2, θ2}

〈A3, culprit(exploit1, apt8)〉 A3 = {δ1, δ2, δ3}

〈A4, ¬culprit(exploit1, apt8)〉 A4 = {δ1, δ4, θ3}

Fig. 3.3: Example ground arguments from Fig. 3.2.

argument 〈B, L〉 is a subargument of 〈A, L′〉 iff B ⊆ A. The following examples show

arguments for our scenario.

Example 4. Fig. 3.3 shows example arguments based on the knowledge base from Fig. 3.2;

here,
〈
A1, replay attack(exploit1)

〉
is a subargument of

〈
A2, deception(exploit1, apt8)

〉
and

〈
A3, culprit(exploit1, apt8)

〉
.

For a given argument there may be counter-arguments that contradict it. For instance,

referring to Fig. 3.3, we can see that A4 attacks A3. A proper defeater of an argument

〈A,L〉 is a counter-argument that—by some criterion—is considered to be better than

〈A, L〉; if the two are incomparable according to this criterion, the counterargument is said

to be a blocking defeater. The default criterion used in DeLP for argument comparison is

generalized specificity [119].

A sequence of arguments is called an argumentation line. There can be more than

one defeater argument, which leads to a tree structure that is built from the set of all

argumentation lines rooted in the initial argument. In this dialectical tree, every child can

defeat its parent (except for the root), and the leaves represent the undefeated arguments;

this creates a map of all possible argumentation lines that decide if an argument is defeated

or not. Arguments that either have no attackers or all attackers have been defeated are said

to be warranted.

Given a literal L and an argument
〈
A, L

〉
, in order to decide whether or not a literal

39

L is warranted, every node in the dialectical tree T (〈A, L〉) is recursively marked as “D”

(defeated) or “U” (undefeated), obtaining a marked dialectical tree T ∗(〈A, L〉) where:

• All leaves in T ∗(〈A, L〉) are marked “U”, and

• Let 〈B, q〉 be an inner node of T ∗(〈A, L〉). Then, 〈B, q〉 will be marked “U” iff every

child of 〈B, q〉 is marked “D”. Node 〈B, q〉 will be marked “D” iff it has at least one

child marked “U”.

Given argument 〈A, L〉 over Π, if the root of T ∗(〈A, L〉) is marked “U”, then T ∗(〈A, h〉)

warrants L and that L is warranted from Π. (Warranted arguments correspond to those in

the grounded extension of a Dung argumentation system [37].)

In practice, an implementation of DeLP accepts as input sets of facts, strict rules,

and defeasible rules. Note that while the set of facts and strict rules is consistent (non-

contradictory), the set of defeasible rules can be inconsistent. We engineer our cyber-

attribution framework as a set of defeasible and strict rules whose structure was created

manually, but are dependent on values learned from a historical corpus. Then, for a given

incident, we instantiate a set of facts for that situation. This information is then provided

as input into a DeLP implementation that uses heuristics to generate all arguments for and

against every possible culprit for the cyber attack. Dialectical trees based on these arguments

are analyzed, and a decision is made regarding which culprits are warranted. This results in

a reduced set of potential culprits, which we then use as input into a classifier to obtain an

attribution decision.

3.4 Models

We now introduce several DeLP-based models that capture important aspects relating to

cyber attribution and can be instantiated using available data.

40

Θ : θ1 = attack (E ,X)

θ2 = first attack (E ,Y)

θ3 = last attack (E ,Y)

Fig. 3.4: Facts defined for each test sample.

3.4.1 Baseline Argumentation Model (BM)

We use the following notation: let E be the attack query under consideration aimed at

target team X, Y represent all the possible attacking teams, and D be the set of all deceptive

teams (those using deceptive attacks) if the given attack is deceptive in the training set. For

non-deceptive attacks, D will be empty. We note that facts cannot have variables, only

constants (however, help compress the program for readability purposes, we use meta-

variables in facts). To begin, we define the facts described in Fig. 3.4; fact θ1 states that

attack E was used to target team X, θ2 states that team Y was the first team to use the attack

E in the training data, and similarly θ3 states that team Y was the last team to use the attack

E in the training data. The first and last attacking team may or may not be the same. We

study the following three cases:

Case 1: Non-deceptive attacks. In non-deceptive attacks, only one team uses the payload

to target other teams in the training data. It is easy to predict the attacker for these cases,

since the search space only has one team. To model this situation, we define a set of

defeasible and strict rules: In Fig. 3.5, defeasible rule δ1 checks whether the attack was

replayed in the training data. Since it is a non-deceptive attack, it is only replayed by the

same team. The strict rule ω1 then puts forth an argument for the attacker (culprit) if the

defeasible rule holds and there is no contradiction for it.

Case 2: Deceptive attacks. These attacks form the majority of the misclassified samples

in previous work [91]. In this case, set D is not empty; let Di denote the deceptive teams

41

Ω : ω1 = culprit(E ,Y)← last attack(E ,Y), replay attack(E).

∆ : δ1 = replay attack(E) -≺ attack(E ,X), last attack(E ,Y).

Fig. 3.5: Defeasible and strict rule for non-deceptive attack.

Θ : θ4 = decep(E ,X)

θ5 = frequent (E , F)

Ω : ω2 = ¬culprit(E ,Y)← first attack(E ,Y), decep(E ,X)

∆ : δ2 = replay attack(E) -≺ attack(E ,X), last attack(E ,Y)

δ3 = deception(E ,Di) -≺ replay attack(E), first attack(E ,Y)

δ4 = culprit(E ,Di) -≺ deception(E ,Di), first attack(E ,Y)

Fig. 3.6: Facts and rules for deceptive attacks.

in D. We also compute the most frequent attacker from the training data given a deceptive

attack, and denote it with F . The DeLP components that model this case include the ones

in Fig. 3.6; fact θ4 indicates that attack E was deceptive towards team X, and θ5 indicates

the most frequent attacker team F from the training data. Strict rule ω2 indicates that in

case of deception the first attack team Y is not the attacker. For the defeasible rules, δ2 deals

with the case in which attack E was replayed, δ3 deals with the case of deceptive teams from

the set D, and δ4 indicates that all the deceptive teams are likely to be the attackers in the

absence of any contradictory information.

Case 3: Previously Unseen Attacks. The most difficult attacks to attribute in the dataset

are the new ones, which are attacks first encountered in the test set (i.e., those that did not

occur in the training set). To build constructs for this kind of attack we first compute the k

42

nearest neighbors from the training set according to a simple Euclidean distance between

the byte and instruction histograms of the two attacks. For each of the matching attacks

from the training data we check if the attack is deceptive or non-deceptive. If non-deceptive,

we follow the procedure for Case 1, otherwise we follow the procedure for Case 2. Since we

replace one unseen attack with three seen attacks, the search space for the attacker increases

in these cases.

Attacker Time Analysis

The CTF data provides us with time stamps for the attacks in the competition. We can use

this information to come up with rules for/against an argument for a team being the attacker.

We compute the average time for a team to replay its own attack given that it was the first

one to deploy it (see Fig. 3.7). It can be observed that teams like more smoked leet chicken

(T-13) and Wowhacker-bios (T-8) are very quick to replay their own attacks as compared to

other teams. Fig. 3.7 also shows the average time for a team to perform a deceptive attack.

Teams like The European (T-7) and Blue lotus (T-10) are quick to commit deception, while

others take more time.

We use this time information to narrow down our search space for possible attackers. In

particular, for a deceptive attack query, we compute the time difference between the query

and the training sample that last used the same payload. We denote this time difference

as 4t, and include it as a fact θ6. We then divide the deceptive times from Fig. 3.7 into

appropriate intervals; each team is assigned to one of those time intervals. We then check

which time interval4t belongs to and define a defeasible rule δ5 that makes a case that all

teams not belonging to the interval are not the culprits, as shown in Fig. 3.8.

43

1

10

100

1000

10000

T-
1

T-
2

T-
3

T-
4

T-
5

T-
6

T-
7

T-
8

T-
9

T-
1

0

T-
1

1

T-
1

2

T-
1

3

T-
1

4

T-
1

5

T-
1

6

T-
1

7

T-
1

8

T-
1

9

T-
2

0

A
ve

ra
ge

 t
im

e
(s

ec
)

-
Lo

g
Sc

al
e

Deceptive Replay

Fig. 3.7: Average time for teams to perform a deceptive attack and replay own attacks

(Log-scale).

Θ : θ6 = timedifference (E ,X)

For Y /∈ interval:

∆ : δ5 = ¬culprit(E ,Y) -≺ timedifference (E ,X).

Fig. 3.8: Time facts and rules. Interval indicates a small portion of the entire deceptive time

(for instance, less than 2, 000 seconds, more than 8, 000 seconds, and so on).

3.4.2 Extended Baseline Argumentation Model I (EB1)

Previously unseen attacks make up almost 20% of the test samples for each target team.

On analyzing the misclassification from the baseline argumentation model, we observe that

the majority of these attacks get misclassified (>80%).

The misclassifications can be attributed to two main reasons: first, the reduced search

space is not able to capture the ground truth for unseen attacks (i.e., the actual attacker is

not present in the reduced search space), which leads to a wrong decision by the learning

44

model; second, since we represent each unseen attack by the k most similar attacks from the

training data, this leads to an increase in the size of the search space—the presence of more

choices for the learning model makes it more difficult to make the correct choice [94].

We address these issues by leveraging two sets of defeasible rules. First, for each target

team we compute from the training set the top three teams that come up with the most

unique exploits, as these teams are more likely to launch an unseen attack in the test set.

The intuition behind this rule is that not all teams write their own exploits—most teams just

capture a successful exploit launched by other teams and repackage it and use it as their own

(deception). The second set of rules is proposed to avoid addition of less similar teams to

the reduced search space. In the baseline model we use 3-nearest neighbors to represent an

unseen attack; in this extended version, we consider only the nearest neighbors that are less

than a particular threshold value T (set for each target team separately). So, each attack will

be represented by k ≤ 3 teams depending upon the threshold requirement. Apart from the

baseline model rules, we propose additional rules for deceptive attacks. Let U denote the

set of teams with the three highest numbers of unique attacks in the training data. Also, let

N denote the set of three most similar culprits for the given unseen attack. The extended

model is shown in Fig. 3.9; fact θ7 indicates the teams present in N and whose similarity is

less than a particular threshold T , while θ8 indicates if the team ui was one of most unique

attackers from set U . For the defeasible rules, δ6 follows fact θ7, stating that the teams in N

that satisfy the threshold condition are likely to be the culprits, and δ7 indicates that if ui is a

unique attacker then it can be the culprit unless contradictory information is available. U is

independent of the test samples and will be the same for all previously unseen attacks given

a target team.

For each of the similar payloads (three or fewer) computed from the training data we

check if the attack is deceptive or non-deceptive. If non-deceptive, we follow the procedure

for Case 1, otherwise we follow the procedure for Case 2 stated in the baseline argumentation

45

model.

For (ni ∈ N and sim < T):

Θ : θ7 = threshold(E , T)

For ui in U :

θ8 = unique(E , ui)

∆ : δ6 = culprit(E , ni) -≺ threshold(E , T)

For ui ∈ U :

δ7 = culprit(E , ui) -≺ unique(E , ui)

Fig. 3.9: Rules for unseen attacks.

3.4.3 Extended Baseline Argumentation Model II (EB2)

Another source of misclassification in the baseline argumentation model is the presence

of previously unseen deceptive teams and their replayed attacks. These refer to teams that

did not use the exploit in the training set but started using it in the test set. It is difficult

for a machine learning approach to pinpoint such a team as being the culprit if it has not

encountered it using the exploit in the past. In our dataset, these attacks comprise 15% of

the total, and up to 20% for some target teams.

In order to address this issue, we group together teams that have similar deceptive

behavior based on the time information available to us from the training set; for instance,

teams that are deceptive within a certain interval of time (e.g., less than 2,000 seconds) after

the first attack has been played are grouped together. For a given attack query, we compute

the time difference between the query and the last time the attack was used in the training

set. We then assign this time difference to a specific group based on which interval the

time difference falls in. In order to fine-tune the time intervals, instead of using the average

46

Θ : θ9 = timedifference (E ,X)

For Y ∈ interval:

∆ : δ8 = culprit(E ,Y) -≺ timedifference (E ,X).

Fig. 3.10: Time facts and rules. Interval indicates a small portion of the entire deceptive

time (for instance, less than 2, 000 seconds, more than 8, 000 seconds, and so on).

deceptive times averaged across all target teams (as used in the baseline model), we compute

and use deceptive times for each target team separately. We model the time rules as stated in

Fig. 3.10; fact θ9 states the time difference between the query and the last training sample to

use that attack. The defeasible rule δ8 on the other hand states that teams belonging to that

interval (in which the time difference lies) are likely to be the culprits unless a contradiction

is present. It is clear that this rule will increase the search space for the query, as additional

teams are now being added as likely culprits (see Table 3.11).

3.4.4 Extended Baseline Argumentation Model III (EB3)

We now describe a third approach to address misclassifications. In EB1, we try to

address the issue by introducing rules that include additional teams in the reduced search

space given their ability to create unique exploits and not mimic other teams. In EB2,

similarly behaving teams are added to the search space based on the time rules to tackle

unseen attacks. The rules constructed in the previous proposed models are with respect to a

particular query, and do not incorporate the behavior of the attacking team towards different

target teams irrespective of the query.

Analyzing the attack patterns for each team in the CTF event (using the knowledge

base), preferred target teams for each team can be identified. Preferred teams have large

47

amounts of attacks directed towards them from a single team; this is not surprising given

that technical expertise differs from team to team. Teams might find themselves target of a

large number of attacks if they are not able to find the system vulnerabilities quickly and

patch them up. Since teams have access to the network traffic at all times, they can identify

vulnerable teams based on the network traffic directed towards any team. We leverage this

information by identifying the teams that are responsible for a majority of the attacks given

a target team. From this set we select teams based on a threshold set to more than 20%

of the total attacks. We used different threshold values and selected 20%, as reducing the

threshold adds more teams without improving the performance, resulting in a larger reduced

search space and a degradation of the performance for some target teams. We denote this set

as F , and the threshold as λ.

In the above-discussed time based rules, teams are blocked as being the likely attackers if

the attack time difference for the teams falls outside the defined interval (see Fig. 3.8). This

leads to eliminations of some of the deceptive teams that could have been the likely culprit.

We construct defeasible rules by combining the time based rules with teams identified

as preferred attackers for a given target team. The rules are similar to Fig. 3.8, with an

additional condition added to not block the team if it is one of the preferred attackers for the

target team.

Fig. 3.11 shows the updated time rules. We first compute the time difference between

the query and the training sample that last used the same payload (denoted as 4t), and

include it as a fact θ10. Preferred attackers for the given target team X are then computed that

satisfy the given threshold condition; this is represented as fact θ11. We divide the deceptive

times from Fig. 3.7 into appropriate intervals; each team is assigned to one of those time

intervals. Then, we check which time interval4t belongs to, and define a defeasible rule δ9

that makes a case for all teams not belonging to the interval to not be the culprits given that

the team is not from the preferred attacker set F .

48

Θ : θ10 = timedifference (E ,X)

Θ : θ11 = pref attacker(X, λ)

For Y /∈ interval and Y /∈ in F :

∆ : δ9 = ¬culprit(E ,Y) -≺ timedifference (E ,X).

Fig. 3.11: Time facts and rules. Interval indicates a small portion of the entire deceptive

time (for instance, at most 2, 000 seconds, at least 8, 000 seconds, and so on), and F is the

preferred attacker set for a given target team X.

3.5 Experimental Evaluation

We now report on the results of a series of experiments that we run in order to evaluate

our proposed methodology. The dataset was discussed in chapter 2 (see Section 2.2).

3.5.1 Results

Table 3.2 shows the comparison of the four proposed models (baseline plus the three

extended argumentation models) with respect to the reduced search space and the fraction

that of the reduced search space that contain the ground truth. We observe that for EB3 the

search space is increased by an average of almost 3.7 teams per test sample from EB1; at

the same time the presence of ground truth in the reduced search space increased to 0.83,

which is a significant improvement over 0.68.

Baseline Argumentation Model (BM)

We now provide a summary of the experimental results—the setup is similar to chapter 2:

the dataset is sorted by time for each target team, the first 90% of the data is used for training

and the remaining 10% for testing. The constructs for all test samples based on the cases

49

Table 3.2: Comparison of Models for reduced search space

Average BM EB1 EB2 EB3

Average number of teams in the reduced

search space

6.07 5.025 7.518 8.79

Reduced search space with ground truth 0.66 0.68 0.78 0.83

discussed in the previous section are computed, and these arguments are used as input to the

DeLP argumentation framework. For each test sample the DeLP system is queried to find all

possible attackers (culprits) based on the arguments provided. If there is no way to decide

between contradicting arguments, these are blocked and thus return no answers. Initially,

the search space for each test sample is 19 teams (all except the one being attacked).

After running the queries to return the set of possible culprits, the average search space

across all target teams is 6.07 teams. This is a significant reduction in search space across all

target teams; to gauge how much the reduced search space can aid an analyst in predicting

the actual culprit, a metric is computed that checks if the reduced search space contains the

ground truth (actual culprit). For all the target teams, the ground truth is present on average

in almost 66% of the samples with reduced search space. For some teams like more smoked

leet chicken (T-13) and raon ASRT (whois) (T-17) the average reduced search space is as

low as 1.82 and 2.9 teams, with high ground truth fractions of 0.69 and 0.63, respectively.

Analysis is then performed on the reduced search space to derive a culprit. The experi-

mental setup is similar to the one described earlier; the only difference this time is instead of

having a 19 team search space as in chapter 2, the machine learning approach is allowed to

make a prediction from the reduced search space only; a random forest is used for learning,

which has been shown to have the best performance on this data as reported in chapter 2.

The accuracy achieved after running Random forest without applying the argumentation-

based techniques, as reported in chapter 2, is 0.37. This was the best performing approach

50

using standard machine learning techniques. The baseline model achieves an average

accuracy of 0.5, already a significantly improvement.

Extended Baseline Argumentation Model I (EB1)

We used the same experimental setup discussed in the baseline argumentation model. EB1

performs slightly better than the baseline model with an average accuracy of 0.53 vs. 0.50,

and significantly better than the machine learning model without argumentation (accuracy

of 0.37). The improvement in performance is due to the fact that we have a larger fraction of

reduced search spaces with ground truth present in it; also, the search space reduced from on

average 6.07 teams to 5.025 teams, thus having a better chance at finding the right solution.

Extended Baseline Argumentation Model II (EB2)

Again, we used the same experimental setup to evaluate this model; we also report the

fraction that the ground truth is present in the reduced search space to give an intuition

regarding the performance of the prediction model. In Table 3.3, we can see that EB2

obtained an average accuracy of 62%. The addition of teams based on time rules not only

benefits detection of previously unseen deceptive teams, but it also helps in predicting

attackers for previously unseen attacks. The major reason for the jump in performance is

that in many queries with unseen deceptive teams, the time rules proposed in the baseline

model block all deceptive teams from being the culprit, leading to an empty set of culprits.

The new set of time rules proposed in EB2 adds similar-behaving teams to this set based on

time information; the learning algorithm is then able to predict the right one from this set.

Accuracies for each target team are reported in Table 3.4.

51

Extended Baseline Argumentation Model III (EB3)

We evaluate the last extended baseline model (EB3) using the same experimental setup. In

Table 3.3, EB3 performs the best with an average prediction accuracy of 64.5%—Table 3.4

gives the performance for each target team. The conditional time rules benefit 7 out of

20 teams by retaining the actual culprit in the search space, which is then selected by the

machine learning model. The retention is not always beneficial, since in 9 cases the accuracy

does not change from EB2 to EB3. On the other hand, in 4 cases the performance degrades.

The reason for the improvement in overall accuracy is due to the retention of the preferred

attacker set for target teams that contain the actual attacker. This is observed in the fact that

for EB3 the fraction of ground truth present in the reduced search space increases to 83% as

compared to 78% for EB2 (see Table 3.3). Also, the average reduced search space increases

from 7.518 teams to 8.79 teams, as more teams are retained due to the conditional time

rules.

Table 3.3: Average accuracy comparison of proposed models

Average BM EB1 EB2 EB3

Reduced search space with ground truth 0.66 0.68 0.78 0.83

Accuracy 0.50 0.53 0.62 0.645

3.5.2 Rule relevance discussion

We now study and discuss the relevance of different rules introduced to address the three

test cases, namely non-deceptive, deceptive, and previously unseen attacks.

Case 1: Non-deceptive attacks. For these attacks, the search space only has one team,

which is chosen as the culprit (see Fig. 3.5). We define a simple rule that adds the only team

that used that exploit as the likely culprit. On average, the non-deceptive attacks make up

52

Table 3.4: Results Summary

Team ML (chapter 2) BM EB1 EB2 EB3

T-1 0.45 0.51 0.52 0.60 0.58

T-2 0.22 0.45 0.38 0.43 0.50

T-3 0.30 0.40 0.47 0.66 0.68

T-4 0.26 0.44 0.42 0.44 0.48

T-5 0.26 0.45 0.45 0.56 0.60

T-6 0.5 0.49 0.55 0.70 0.70

T-7 0.45 0.53 0.56 0.66 0.64

T-8 0.42 0.61 0.58 0.74 0.74

T-9 0.41 0.50 0.53 0.76 0.76

T-10 0.30 0.42 0.41 0.41 0.46

T-11 0.37 0.44 0.5 0.73 0.71

T-12 0.24 0.43 0.36 0.52 0.56

T-13 0.35 0.63 0.64 0.75 0.75

T-14 0.42 0.52 0.53 0.67 0.67

T-15 0.30 0.38 0.55 0.64 0.67

T-16 0.43 0.48 0.55 0.65 0.65

T-17 0.42 0.58 0.58 0.68 0.68

T-18 0.48 0.50 0.52 0.65 0.63

T-19 0.41 0.51 0.56 0.68 0.68

T-20 0.48 0.51 0.64 0.71 0.71

53

almost 5% of the total test attacks for each target team. On the other hand, the accuracy

of choosing the attacker on average for each target team is 67%. Thus, the simple rule

engineered for the non-deceptive case works well in determining the attacker for 67% of

the time. The misclassified 33% make up a very small portion of the total misclassified test

attacks. The reason for misclassification is that the non-deceptive attack becomes deceptive

in the test set when a new team starts using the exploit. It is a difficult case for attacker

selection, since it requires the framework to predict if a particular test case will become

deceptive in the future based on the evidence from the knowledge base. No new rules are

introduced for the non-deceptive case for any of the proposed extended models.

Case 2: Deceptive attacks. Initially, for deceptive attacks the search space was comprised

of all the teams that had used the exploit in the knowledge base (see Fig. 3.6). The deceptive

attacks (including deceptive replayed attacks) make up to almost 80% of the test attacks for

each target team. Below we discuss the rules introduced for deceptive attacks for each of

the proposed models, and how they affect the accuracy of the solutions.

• BM: The baseline model introduces time rules that eliminate teams from the culprit

set if the time difference since the last attack does not fall in a certain time bucket

(see Fig. 3.8). With these time rules, the average accuracy for each target team for

the deceptive attacks is 54%. Misclassification is attributed to two main factors: first,

the defined time rules are not able to capture the ground truth (i.e., they eliminate the

actual culprit from the culprit set); second, the classification model not able to make

the right prediction.

• EB1: In this baseline model, rules were introduced to address the misclassification for

previously unseen attacks, without any new rules added for deceptive attacks; hence,

the classification performance is the same as for BM.

• EB2: In some cases, the time rules proposed in the BM result in the elimination

54

of all the teams in the culprit set, thus returning an empty set for the classification

model to choose from. Also, since the test attack is already classified as deceptive,

teams not using the exploit in the knowledge base might adopt it in the test set. To

address both these issues, we introduced additional time rules (see Fig. 3.10) that add

similar-behaving teams to the culprit set. In this case the similar behavior represents

teams that have similar deceptive attack times. The new time rules solve the issue of

the empty culprit set, at the same time adding teams that might adopt the deceptive

behavior in the test set. This leads to a significant performance improvement for the

deceptive test attacks, boosting the accuracy from 54% to 64%. The performance

boost indicates that new teams often adopt deceptive behavior in the test set.

• EB3: The time rules proposed above either eliminate teams from the culprit set or

they add to it. The new model proposed here introduces conditional time rules where

the elimination of teams is subject to whether they belong to the preferred attacker

set or not for the particular target team (see Fig. 3.11). It is the only proposed model

where contradiction is resolved by looking at the ordering of rules, deciding which

rule has priority. In this case the preferred attacker set is given preference, as teams

often target teams that they feel are easy to exploit since the team is not quick enough

to patch discovered vulnerabilities. This is observed in the knowledge base for each of

the target teams. Introduction of these new rules improves the accuracy of deceptive

attacks slightly to just under 65%, indicating that rule ordering has some impact.

Case 3: Previously unseen attacks. The attacks not observed in the knowledge base are

termed are referred to as previously unseen attacks, and they comprise almost 15% of

the test attacks for each target team. The rules introduced for these attacks are either the

ones introduced for the deceptive or the non-deceptive case, depending on the computed

similar exploits for a given unseen test attack. So any performance improvement due to the

55

introduction of additional deceptive rules will benefit the unseen attacks as well. We do a

similar comparison of the models proposed for unseen attacks as done for the deceptive

ones.

• BM: In the baseline model, for the unseen attacks we compute the three most similar

exploits from the knowledge base, and then categorize the exploit as deceptive or

non-deceptive; rules are computed accordingly. The average accuracy for the unseen

attack for this model is 30%, so unseen attacks are often misclassified. The main

reasons are that the rules are not able to capture the actual attacking team; also, the

rule of computing similar exploits assumes that similar exploits will be authored by

the same team, which is not true in many cases. Hence, an expansion of the rules for

previously unseen attacks is required.

• EB1: Two rules are proposed for previously unseen attacks in EB1 (see Fig. 3.9).

The first rule computes the number of similar exploits to be used based on similarity

threshold. Hence, the number of similar exploits varies for each unseen attack and

is not fixed to 3 as in the case of BM. The second rule is designed on the basis that

not all teams have similar technical capabilities. Some teams design new exploits

throughout the competition, while others monitor the network and capture and use

exploits designed by other teams most of the time. Therefore, when a new exploit is

encountered in the test set, it is very likely that it comes from a team that has a history

of designing new exploits. We thus introduce a rule that computes the three newest

exploit designers for a given target team and adds them to the set of culprits. These

two rules significantly boost the previously unseen attack performance from 30% to

44%, indicating their relevance.

• EB2: Here, time rules are introduced to add similar-behaving teams to the culprit

set. These rules had a significant performance boost for the deceptive attacks. Since

56

previously unseen attacks can also be deceptive, a similar performance improvement

was observed. The average accuracy of EB2 increases from 44% to 52% for previously

unseen attacks.

• EB3: The performance for EB3 has a trend similar to EB2’s. The introduced con-

ditional time rules benefit deceptive attacks, improving the average accuracy for

previously unseen attacks to 55%.

Table 3.5 summarizes the results for the three test cases for all the proposed models. It

can be observed that time rules proposed in EB2 have the most significant performance boost

for deceptive attacks; on the other hand, the threshold-based rules and the rules to compute

the teams responsible for designing the most unique exploits have the most significant

performance boost for previously unseen attacks.

Table 3.5: Comparison of Models for the three test cases

Average Accuracy BM EB1 EB2 EB3

Non-deceptive attacks 0.67 0.67 0.67 0.67

Deceptive attacks 0.54 0.54 0.64 0.65

Unseen attacks 0.30 0.44 0.52 0.55

3.6 Related Work

This chapter builds upon our own recent application of argumentation to cyber attri-

bution [56] and our preliminary study on applying machine learning models for cyber

attribution in the presence of deception as reported in chapter 2. In chapter 2, only machine

learning techniques were leveraged on the CTF data to identify the attacker—we will now

provide a summary of the results obtained. The experiment was performed as follows: the

dataset was divided according to the target team, building 20 subsets, and all the attacks were

57

then sorted according to time. The first 90% of the attacks were reserved for training, and

the remaining 10% for testing. The byte and instruction histograms were used as features

to train and test the model; models constructed using a random forest classifier performed

the best, with an average accuracy of 0.37. Most of the misclassified samples tend to be

deceptive attacks and their replicates. When using machine learning approaches it is difficult

to map the reasons why a particular attacker was chosen, especially in cases of deception

where multiple attackers were associated with the same attack. Knowing the explanations

that supported a particular decision would greatly aid the analyst in making better decisions

dealing with uncertainty. To address this issue, in this chapter we described how we can

derive arguments based on the latent variables computed from the training data, given

an attack for attribution. This chapter proposes a framework, in which an argumentation

model is used to reason about deception and integrated with the machine learning model for

attacker prediction. This system achieved an accuracy of 62%, significantly improving the

performance for deceptive attacks.

In other literature, currently cyber-attribution is limited to identifying machines [14] as

opposed to the hacker or their affiliation to a group or a state. An example of such a technical

attribution approach is WOMBAT [34], where a clustering technique is used to group attacks

to common IP sources. A method that combines information from different sources was

proposed by Walls [132], who considered forensic information from diverse sources but did

not account for inconsistency or uncertainty due to deception. A less rigorous mathematical

approach, known as the Q model [102], was proposed recently; the model answers queries

from an analyst, and by combining these answers the analyst attributes an attack to a party.

Unfortunately, there are no experimental evaluations of its effectiveness. Similarly, other

work [126] combines cluster analysis with a component for multi-criteria decision analysis

and studied an implementation of this approach using honeypot data – again, this approach

lacks any ground truth of the actual hacker or hacking group.

58

Argumentation has been used for cyber reasoning [7] by leveraging arguments to deal

with incomplete and contradictory data, allowing to derive big-picture conclusions to keep

systems secure and online in case of an attack. This is a different application than the

one we are addressing. Using argumentation to support human decisions was presented

in [117]. Here, the authors discuss how user trust in the evidence influences decision

making; demonstrating the hypotheses in a user-study [107]. Concurrently, a formal logical

framework for reasoning about cyber-attribution has been devised [56, 114]; it explores

multiple competing hypotheses based on the evidence for and against a particular attacker

to help analysts decide on an attribution, providing a map of the reasoning that led to the

decision. While that work inspired this chapter, it did not contain an empirical evaluation.

Adversarial machine learning is an emerging field of study. It uses effective machine

learning techniques to identify or defend against opponents. Understanding the limits of

adversaries’ knowledge and capabilities is crucial for coming up with countermeasures,

as discussed in [53]. Here the authors propose models to study these limitations to come

up with evasion techniques. On the contrary, Lowd and Meek [74] explore the problem

from an adversary’s point of view. They propose strategies that an adversary can use to

reverse engineer a classifier so that attacks are undetected by the classifier. They use a real

world application in spam filtering to demonstrate their method, which they call adversarial

classifier evasion. In a spam filtering setting, an example of such a technique is replacing

feature words that raise a red flag with their synonyms to evade detection. This feature cross

substitution technique is discussed in [69], where the authors offer a simple heuristic method

based on mixed-integer linear programming with constraint generation to make the classifier

robust to cross substitution techniques. There is also research that looks at modeling the

interaction between the learner (adversary) and the classifier in terms of a competition

using Stackelberg games [20, 19]. Most adversarial machine learning applications deal

with modeling classifiers to be robust against evasive techniques in real world applications

59

like malware detection and spam filtering. On the contrary, our proposed system does not

model the adversary but instead analyzes the evidence to derive arguments for and against

a particular team being the attacker; so, in our system the adversary has no knowledge of

arguments as in the case of adversarial machine learning.

3.7 Summary

In this chapter we demonstrated how leveraging Defeasible Logic Programming (DeLP)

in an argumentation-based framework, can be leveraged to improve cyber-attribution de-

cisions. This is done by building DeLP programs based on real-world data; this approach

affords a reduction of the set of potential culprits and thus greater accuracy when using a clas-

sifier for cyber attribution. We thus proposed a hybrid system that integrates argumentation

with a learning model to make decisions.

60

Chapter 4

DETERMINATION OF ADVERSARIAL INTENT

4.1 Introduction

Identifying the tasks 1 a given piece of malware was designed to perform (e.g. log-

ging keystrokes, recording video, establishing remote access, etc.) is a difficult and time

consuming task that is largely human-driven in practice [116]. The complexity of this task

increases substantially when you consider that malware is constantly evolving, and that how

each malware instance is classified may be different based on each cyber-security expert’s

own particular background. Automated solutions for this problem are highly attractive as

they can significantly reduce the time it takes to conduct remediation in the aftermath of a

cyber-attack.

Earlier work has sought to classify malware by similar “families”, something which has

been explored as a supervised classification problem [8, 60, 61]. However, differences over

determining “ground truth” for malware families (i.e. Symantec and McAfee cluster malware

into families differently) and the tendency for automated approaches to only succeed at “easy

to classify” samples [71, 98] are two primary drawbacks of malware family classification.

More recently, there has been work on directly inferring the tasks a malware was designed to

perform [54]. This approach leverages static malware analysis (i.e. analysis of the malware

sample conducted without execution, such as decompilation) and a comparison with a crowd-

source database of code snippets using a proprietary machine leaning approach. However,

a key shortcoming of the static method is that it is of limited value when the malware

authors encrypt part of their code – as we saw with the infamous Gauss malware [59]. This
1We use the term task and intent interchangeably throughout the work.

61

work builds upon recent developments in the application of cognitive models to intelligence

analysis tasks [65] and our own preliminary studies on applying cognitive models to identify

the tasks a piece of malware was designed to perform [64, 125]. Specifically, in this chapter,

we report

• Experimental results illustrating consistent and significant performance improvements

(in terms of precision, recall, and F1) of the instance-based cognitive model approach

when compared with various standard machine learning approaches (including SVM,

logistic regression and random forests) for two different sandboxes and for three

different datasets.

• Experimental results showing a consistent and significant performance improvement

of the instance-based cognitive model and several other machine learning approaches

when compared to the current state-of-the-art commercial technology (based on static

analysis).

• Experiments where we study cases where the malware samples are mutated, encrypted,

and use different carriers - providing key insights into how our approach will cope

with operational difficulties.

• Experimental results illustrating that a cognitively-inspired intermediate step of infer-

ring probability distribution over malware families provides improved performance

over the machine learning and rule-based cognitive model (though no significant

change to the instance-based cognitive model).

• We also provide run-time comparisons of the experiments and discussing the cognitive

models in terms of parameter selection and time complexity analyses. We also explore

the concept of predicting hacker intentions on a host machine in real time.

62

4.2 Technical Preliminaries

Throughout this chapter, we shall assume that we have a set of malware samples that

comprise a historical corpus (which we shall denote M) and each sample i ∈ M is

associated with a set of tasks (denoted tasks(i)) and a set of attributes (denoted attribs(i)).

Attributes are essentially binary features associated with a piece of malware that we can

observe using dynamic and/or static analysis while the tasks - which tell us the higher-level

purpose of the malware - must be determined by a human reviewing the results of such

analysis. AsM comprises our historical knowledge, we assume that for each i ∈M both

tasks(i) and attribs(i) are known. For a new piece of malware, we assume that we only

know the attributes. We also note that throughout the chapter, we will use the notation | · |

to denote the size of a given set. In Tables 4.1 and 4.2 provide examples of the attributes

and tasks based on the malware samples from the Mandiant APT1 dataset (created from

samples available at [78], see also [77]). For instance hasDynAttrib looks at the behavior

section of the analysis report and extracts all the activity of the malware on the host machine.

The attribute usesDll enumerates all the libraries that were used by the malware on the host

machine. The file activity and the registry activity is captured by fileAct and regAct. Finally

all the processes initiated and terminated by the malware are captured by proAct. There is

not a fixed number of any of these attributes for a given malware. The number of attributes

depends on the analysis report generated from the sandbox. A full description of this dataset

is presented in Section 4.5.

Throughout the chapter, we will also often consider malware families, using the symbol

F to denote the set of all families. Each malware sample will belong to exactly one malware

family, and all malware samples belonging to a given family will have the same set of tasks.

Hence, we shall also treat each element of F as a subset ofM.

63

Table 4.1: Attributes extracted through automated malware analysis

Attribute Intuition

usesDll(X) Malware uses a library X

regAct(K) Malware conducts an activity in the registry, modifying key K.

fileAct(X) Malware conducts an activity on certain file X

proAct Malware initiates or terminates a process

Table 4.2: Sample of malware tasks

Task Intuition

beacon Beacons back to the adversary’s system

enumFiles Designed to enumerate files on the target

serviceManip Manipulates services running on the target

takeScreenShots Takes screen shots

upload Designed to upload files from the target

4.3 Cognitively-Inspired Inference

While human inference has memory and attentional limitations, their cognitive processes

are powerful, where adaptive heuristic strategies are adopted to accomplish the tasks under

strong time constraints using limited means. An advantage of using a cognitive model

to describe inferential processes is that the underling architecture provides the benefits

of human-inspired inference while allowing for more flexibility over constraints such as

human working memory. We believe that there is a valid use of cognitive architectures for

artificial intelligence that makes use of basic cognitive mechanisms while not necessarily

making use of all constraints of the architecture. Reitter & Lebiere (2010) introduced a

modeling methodology called accountable modeling that recognizes that not every aspect of

a cognitive model is reflected in measurable performance. In that case, it is arguably better

64

to specifically state which aspects of the model are not constrained by data, and rather than

mock up those aspects in plausible but impossible to validate manner, simply treat them as

unmodeled processes. This approach results in simpler models with a clear link between

mechanisms used and results accounted for, rather than being obscured by complex but

irrelevant machinery. For instance, while the models described in this chapter use activation

dynamics well-justified against human behavioral and neural data to account for features

such as temporal discounting, we do not directly model working memory constraints to

allow for more features of malware and more instances to be present in memory.

4.3.1 ACT-R Based Approaches

We propose two models built using the mechanisms of the ACT-R (Adaptive Control of

Thought-Rational) cognitive architecture [5]. These models leverage the work on applying

this architecture to intelligence analysis problems [65]. In particular, we look to leverage our

recently-introduced instance-based (ACTR-IB) and rule-based (ACTR-R) models [64, 125].

Previous research has argued that the ability of instance-based learning in complex dynamic

situations making it appropriate for sensemaking [45]. On the other hand the rule-based

learning is a more compact representation of associating samples in memory with their

respective families. In this section, we review some of the major concepts of the ACT-R

framework that are relevant to these models and provide a description of both approaches.

We leveraged features of the declarative memory and production system of the ACT-R

architecture to complete malware task identification. In ACT-R, recall from declarative

memory (c.f., identification, for our purposes) depends on three main components: activation

strengthening (i.e., the base-level activation of an element), associative (i.e., spreading)

activation, and inter-element similarity (i.e., partial matching). These three values are

summed together to represent an items total activation. When a recall is requested from

memory, the item with the highest total activation is retrieved.

65

Declarative Knowledge. Declarative knowledge is represented formally in terms of chunks.

Chunks have an explicit type, and consist of an ordered list of slot-value pairs of information.

Chunks are retrieved from declarative memory by an activation process, and chunks are

each associated with an activation strength which in turn is used to compute a retrieval

probability. In this chapter, chunks will typically correspond to a malware family. In the

version of ACTR-IB where we do not represent families explicitly, the chunks correspond

with samples in the training data.

For a given chunk i, the activation strength Ai is computed as,

Ai = Bi + Si + Pi (4.1)

where, Bi is the base-level activation, Si is the spreading activation, and Pi is the partial

matching score. We describe each of these in more detail as follows.

Base-Level Activation (Bi): Technically, base-level for chunk i reflects both the frequency

and recency of samples in memory, even though we are not using recency here but it could

easily be applicable to weigh samples toward the more recent ones. More important, base-

level is set to the log of the prior probability (i.e., the fraction of samples associated with the

chunk) in ACTR-R; for instance-based (ACTR-IB), we set it to a base level constant βi.

Spreading Activation (Si): Spreading activation is a measure of the uniqueness of the

attributes between a test sample i and a sample j in memory. The spread of activation to

sample i is computed by the summing the strengths of association between sample j and

the attributes of the current sample i being considered. To compute the spreading activation

we compute the fan of attribute a (i.e., the number of samples in memory with attribute a)

for each attribute. The strength of association is computed differently in both approaches

and, in some cognitive model implementations, is weighted (as is done in ACTR-R of this

chapter).

Partial Matching (Pi): A partial matching mechanism computes the similarity between two

66

samples. In this work, it is only relevant to the instance-based approach. Given a test sample

j, its similarity with a sample i in memory is computed as a product of the mismatch penalty

(mp, a parameter of the system) and the degree of mismatch Mji. We define the value of

Mji to be between 0 and −1; 0 indicates complete match while −1 complete mismatch.

As common with models based on the ACT-R framework, we shall discard chunks

whose activation strength is below a certain threshold (denoted τ). Once the activation

strength, Ai, is computed for a given chunk, we can then calculate the activation probability,

Pr i. This is the probability that the cognitive model will recall that chunk and is computed

using the Boltzmann(softmax) equation [121], which we provide below.

Pri =
(e

Ai
s)∑

j(e
Aj
s)

(4.2)

Here, e is the base of the natural logarithm and s is momentary noise inducing stochasticity

by simulating background neural activation (this is also a parameter of the system).

4.3.2 ACT-R Instance-Based Model

The instance based model is an iterative learning method that reflects the cognitive pro-

cess of accumulating experiences (in this case the knowledge base of training samples) and

using them to predict the tasks for unseen test samples. Each malware instance associates a

set of attributes of that malware with its family. When a new malware sample is encountered,

the activation strength of that sample with each sample in memory is computed using Equa-

tion 4.1. The spreading activation is a measure of the uniqueness of the attributes between a

test sample i and a sample j in memory. To compute the spreading activation we compute

the fan for each attribute a (fan(a) finds all instances in memory with the attribute a) of the

test sample i. The Partial matching is computed as explained above. The degree of mismatch

is computed as the intersection between the attribute vector of the given malware and each

sample in memory normalized using the Euclidean distance between the two vectors. The

67

retrieval probability of each sample j in memory with respect to the test sample i is then

computed using Equation 4.2. This generates a probability distribution over families. The

tasks are then determined by summing up the probability of the families associated with that

task with an appropriately set threshold (we set that threshold at 0.5(indicates that the model

should be more than 50% confident before a task is predicted for a test malware sample)).

Algorithm 1 shows the pseudo code for the instance-based model.

ALGORITHM 1: ACT-R Instance-based Learning
INPUT: New malware sample i, historical malware corpusM.

OUTPUT: Set of tasks associated with sample i.

for query malware sample i do

for all j inM do

Bj = βj

Pj = mp× |attribs(i)∩attribs(j)|√
|attribs(i)|×|attribs(j)|

for a ∈ attribs(i) do

if a ∈ attribs(j) then

sij += log(|M|
|fan(a) |)

else

sij += log(1
|M|)

end if

end for

Sj =
∑

j
sij

|attribs(i)|

Calculate Aj as per Equation 4.1

end for

Calculate Pr j as per Equation 4.2

pf =
∑

j∈f s.t. Aj≥τ Pr j

tp = {t ∈ T |pf ≥ 0.5}

end for

68

Time Complexity of Instance-based Model: The Instance based model has no explicit

training phase, so there are no training costs associated with it. For a given test sample the

model computes the activation function for each sample in the knowledge base. Hence the

time complexity increases linearly with the knowledge base. Let n be the number of the

samples in the knowledge base and m is the number of attributes associated with the test

sample, then the time complexity can be given as O(nm) for each test sample, as we expect

m to be relative small (n >> m), the relationship is linear in n.

4.3.3 ACT-R Rule-Based Model

In this version of ACT-R model we classify the samples based on simple rules computed

during the training phase. Given a malware training sample with its set of attributes a,

along with the ground truth family value, we compute a pair of conditional probabilities

p(a|f) and p(a|¬f) for an attribute in a piece of malware belonging (or not belonging) to

family f . These probabilistic rules (conditional probabilities) are used to set the strength of

association of the attribute with a family (sa,f). The strength of association is weighted by

the source activation w to avoid retrieval failures for rule-based models. We use empirically

determined Bayesian priors p(f) to set the base-level of each family as opposed to using a

constant base-level for instance based. Only two components of the activation Equation 1

are used, namely the base-level and the spreading activation. Given the attributes for current

malware , we calculate the probability of the sample belonging to each family according to

Equation 2, generating a probability distribution over families.The task are then determined

in a similar way to that of instance-based model. Algorithm 2 shows the pseudo code for the

rule-based model.

Time Complexity of Rule-based Model: For Rule-based model computing the rules for

each attribute in the knowledge base significantly adds to the computation time. Let n be

the number of samples in the training set, m be the number of attributes in the new piece

69

ALGORITHM 2: ACT-R Rule-based Learning
INPUT: New malware sample i, historical malware corpusM.

OUTPUT: Set of tasks associated with new sample i.

TRAINING:

Let X =
⋃
j∈M attrib(j)

for all a in X do

Compute the set of rules p(a|f) and p(a|¬f)

(where p(a|f) = |{i∈M∩f |a∈attrib(i)}|
|f |

and p(a|¬f) = |{i∈M−f |a∈attrib(i)}|
|M|−|f |)

end for

TESTING:

for all f ∈ F do

Bf = log(p(f)) (where p(f) = |f |
|M|)

for all a ∈ attrib(i) do

sa,f = log(p(a|f)
p(a|¬f)); Sf =+ w×sa,f

|attribs(i)|

end for

Af = Bf + Sf

end for

Calculate pf as per Equation 4.2

tp = {t ∈ T |pf ≥ 0.5}

70

of malware, and m∗ be the cardinality of
⋃
j∈M attrib(j). The resulting time complexity

for training is then O(m∗n) for training, which is significant as we observed m∗ >> m in

our study. While this is expensive, we note that for testing an individual malware sample,

the time complexity is less than the testing phase for the instance based O(|F|m) - though

the instance based model requires no explicit training phase (which dominates the time

complexity of the training phase for the rule-based approach).

4.3.4 Model Parameter Settings

The two proposed models leverage separate components of the activation function.

Table 4.3 provides a list of parameters used for both the ACT-R models - we use standard

ACT-R parameters that have been estimated from a wide range of previous ACT-R modeling

studies from other domains [137] and which are also suggested in the ACT-R reference

manual [15].

The intuition behind these parameters is as follows. The parameter s injects stochastic

noise in the model. It is used to compute the variance of the noise distribution and to compute

the retrieval probability of each sample in memory. The mismatch penalty parameter mp is

an architectural parameter that is constant across samples, but it multiplies the similarity

between the test sample and the samples in knowledge base. Thus, with a large value it

penalizes the mismatch samples more. It typically trades off against the value of the noise

s in a signal-to-noise ratio manner: larger values of mp lead to more consistent retrieval

of the closest matching sample whereas larger values of s leads to more common retrieval

of poorer matching samples.The activation threshold τ determines which samples will be

retrieved from memory to make task prediction decisions. The base level constant β is

used to avoid retrieval failures which might be caused due to high activation threshold. The

source activation w is assigned to each retrieval to avoid retrieval failures for rule-based

models.

71

Table 4.3: Parameters for the Cognitive models

Model Parameters

Instance Based Learning β = 20 (base-level constant)

s = 0.1 (stochastic noise parameter)

τ = -10 (activation threshold)

mp = 20 (mismatch penalty)

Rule Based learning s = 0.1 (stochastic noise parameter)

w = 16 (source activation)

4.4 Experimental Setup

4.4.1 Baseline Approaches

We compare the proposed cognitive models against a variety of baseline approaches - one

commercial package and five standard machine learning techniques discussed in Section 2.3.

For the machine learning techniques, we generate a probability distribution over families and

return the set of tasks associated with a probability of 0.5 or greater while the commercial

software was used as intended by the manufacturer. Parameters for all baseline approaches

were set in a manner to provide the best performance.

Commercial Offering: Invencia Cynomix. Cynomix is a malware analysis tool made

available to researchers by Invencia industries [54] originally developed under DARPA’s

Cyber Genome project. It represents the current state-of-the-art in the field of malware

capability detection. Cynomix conducts static analysis of the malware sample and uses a

proprietary algorithm to compare it to crowd-sourced identified malware components where

the functionality is known.

72

4.4.2 Dynamic Malware Analysis

Dynamic analysis studies a malicious program as it executes on the host machine. It uses

tools like debuggers, function call tracers, machine emulators, logic analyzers, and network

sniffers to capture the behavior of the program. We use two publicly available malware

analysis tools to generate attributes for each malware sample. These tools make use of a

sandbox, which is a controlled environment to run malicious software.

Anubis Sandbox. Anubis [55] is an online sandbox which generates an XML formated

report for a malware execution in a remote environment. It generates detailed static analysis

of the malware but provides less details regarding the behavior of the malware on the host

machine. Since it is hosted remotely we cannot modify its settings.

Cuckoo Sandbox. Cuckoo [29] is a standalone sandbox implemented using a dedicated

virtual machine and more importantly can be customized to suit our needs. It generates

detailed reports for both static as well as behavior analyses by watching and logging the

malware while its running on the virtual machine. These behavior analyses prove to be

unique indicators (behavior patterns common to a single family) for a given malware for the

experiments.

4.4.3 Performance Evaluation

In our tests, we evaluate performance based primarily on four metrics: precision, recall,

unbiased F1, and family prediction accuracy. For a given malware sample being tested,

precision is the fraction of tasks the algorithm associated with the malware that were actual

tasks in the ground truth. Recall, for a piece of malware, is the fraction of ground truth tasks

identified by the algorithm. The unbiased F1 is the harmonic mean of precision and recall.

In our results, we report the averages for precision, recall, and unbiased F1 for the number

of trials performed. Our measure of family accuracy - the fraction of trials where the most

73

probable family was the ground truth family of the malware in question - is meant to give

some insight into how the algorithm performs in the intermediate steps.

4.5 Results

All experiments were run on Intel core-i7 operating at 3.2 GHz with 16 GB RAM. Only one

core was used for experiments. Except where explicitly noted, the ACT-R parameters were

fixed as per Table 4.3 for all experiments (across all datasets and sandboxes).

4.5.1 Mandiant Dataset

Our first set of experiments uses a dataset based on the T1 cyber espionage group as

identified in the popular report by Mandiant Inc [77]. This dataset consisted of 132 real

malware samples associated with the Mandiant report that were obtained from the Contagio

security professional website [78]. Each malware sample belonged to one of 15 families

including BISCUIT, NEWSREELS, GREENCAT and COOKIEBAG. Based on the malware

family description [77], we associated a set of tasks with each malware family (that each

malware in that family was designed to perform). In total, 30 malware tasks were identified

for the given malware samples (see Table 4.2). On average, each family performed 9 tasks.

We compared the four machine learning approaches with the rule-based and instance-

based ACT-R models (ACTR-R and ACTR-IB respectively). We also submitted the samples

to the Cynomix tool for automatic detection of capabilities. These detected capabilities

were then manually mapped to the tasks from the Mandiant report. Precision and recall

values were computed for the inferred adversarial tasks. On average the machine learning

approaches predicted 9 tasks per sample, ACTR-R predicted 9 tasks per sample and ACTR-

IB predicted 10 tasks. On the other hand Cynomix was able to detect on average only 4

tasks.

Leave one out Cross-Validation (LOOCV).

74

In leave one out cross validation, for n malware samples, train on n− 1 samples and test

on the remaining one. This procedure was repeated for all samples and the results were

averaged. We performed this experiment using both sandboxes and compared the results

(see Table 4.4).

Table 4.4: Performance comparison of Anubis and Cuckoo Sandbox

Method Anubis

(F1)

Cuckoo

(F1)

DT 0.80 0.80

NB 0.71 0.74

LOG-REG 0.82 0.85

SVM 0.86 0.90

RF 0.89 0.89

ACTR-R 0.85 0.88

ACTR-IB 0.93 0.96

Method Anubis

(Family)

Cuckoo

(Family)

DT 0.59 0.63

NB 0.30 0.40

LOG-REG 0.65 0.84

SVM 0.85 0.86

RF 0.82 0.86

ACTR-R 0.73 0.89

ACTR-IB 0.81 0.93

The average F1 increases by 0.03 when we use the attributes generated by the Cuckoo

sandbox instead of Anubis. The statistical significance results are as follows: for ACTR-IB

(t (132) = 1.94, p = 0.05), ACTR-R (t (132) = 1.39, p = 0.16), RF (t (132) = 0.56, p = 0.57),

SVM (t (132) = 1.95, p = 0.05), LOG-REG (t (132) = 1.82, p = 0.07), NB (t (132) = 1.79, p

= 0.08) and DT (t (132) = 0.83, p = 0.4). But the significant improvement was in the family

prediction values with ACTR-IB improving by 0.12 from 0.81 to 0.93 (t (132) = 3.86, p <

.001) and ACTR-R by 0.15 from 0.72 to 0.87 (t (132) = 3.78, p < .001) outperforming all

other methods. Since having behavior analysis helps in better task prediction as seen from

the comparison experiment, we use cuckoo sandbox for rest of our experiments.

Fig. 4.1 compares the performance of the five best performing methods from Table 1

and compares it with the Cynomix tool of Invincea industries. ACTR-IB outperformed

75

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F1 Family
Prediction

A
ve
ra
ge

LOG-REG SVM RF ACTR-R ACTR-IB INVINCEA

Fig. 4.1: Average Precision, Recall, F1 and Family prediction comparisons using cuckoo

sandbox for LOG-REG, RF, SVM, ACTR-R, ACTR-IB and INVINCEA.

LOG-REG, SVM, RF and ACTR-R; average F1 = 0.97 vs 0.85 (t (132) = 7.85, p < .001),

0.9 (t (132) = 4.7, p < .001), 0.89 (t (132) = 5.45, p < .001) and 0.88 (t (132) = 5.2, p <

.001) respectively. Both the proposed cognitive models and machine learning techniques

significantly outperformed the Cynomix tool in detecting the capabilities (tasks).

These three approaches (LOG-REG, SVM, RF) were also evaluated with respect to

predicting the correct family (before the tasks were determined). ACTR-IB outperformed

LOG-REG, SVM, RF and ACTR-R; average family prediction = 0.93 vs 0.84 (t (132) =

3.22, p < .001), 0.86 (t (132) = 3.13, p < .001), 0.86 (t (132) = 3.13, p < .001) and 0.89 (t

(132) = 2.13, p = .03) respectively.

Task Prediction without inferring families:

In the proposed models we infer the malware family first and then predict the tasks associated

with that family. However, differences over “ground truth” for malware families in the

cyber-security community calls for a direct inference of tasks without dependence on family

76

prediction. In this section we adapt the models to predict tasks directly without inferring the

family.

0.7

0.8

0.9

1

Precision Recall F1

A
ve
ra
ge

LOG-REG SVM RF ACTR-R ACTR-IB

Fig. 4.2: Average Precision, Recall, and F1 comparisons for LOG-REG, RF, SVM, ACTR-R

and ACTR-IB for Mandiant without inferring families.

0

50

100

150

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Tr
ai

n
in

g
ti

m
e

(s
ec

)

LOG-REG SVM RF ACTR-R

0

50

100

150

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Tr
ai

n
in

g
ti

m
e

(s
ec

)

LOG-REG SVM RF ACTR-R

Fig. 4.3: Training time for LOG-REG, SVM, RF and ACTR-R with(left) / without(right)

inferring families.

Fig. 4.2 shows the performance of the cognitive and machine learning models without

inferring the families.There is no difference in the performance of ACTR-IB and ACTR-R

approaches as compared to Fig.2 where we use families. On the other hand direct task

77

prediction reduces the F1 measure of machine learning techniques on average by almost 0.1.

This is due to the fact that, now instead of having a single classifier for each family we have

multiple classifiers for each task that a malware sample is designed to perform. This not only

degrades the performance but also adds to the training time for these methods (including

the ACT-R rule-based approach). We compare the training time with increase in training

data for task prediction with/without inferring families. Inferring families first reduces the

training time (see Fig. 4.3 (a)). On the other hand predicting tasks directly significantly in-

creases the training time for the machine learning methods along with the rule-based ACT-R

approach (Fig. 4.3 (b)). Due to the issues with respect to performance and training time, we

consider inferring families first for the rest of the experiments. An important point to note

is this has no effect on the Instance-based model for both performance and computation time.

Parameter Exploration:

We now discuss two system parameters that control the performance of the ACT-R instance

based model namely the stochastic noise parameter (s) and the activation threshold (τ). We

use the Mandiant dataset to perform this evaluation. The parameter s takes values between

0.1 and 1 (typical values range from 0.1 to 0.3). The value of the activation threshold depends

on the application. Fig. 4.4 shows the variation of family prediction accuracy and F1 score

with respect to different noise parameter values and for different activation thresholds. The

parameter s is used to compute the variance of the noise distribution and retrieval probability

of sample in memory. Larger value of s triggers the retrieval of poor matching samples,

which leads to lower family prediction and F1 scores. As seen in the Fig. 4.4, as the value of

s increases the performance decreases. On the other hand, the activation threshold dictates

how many closely matched samples will be retrieved from memory. For high values of τ the

performance decreases as many fewer samples are retrieved. For lower values of τ we end

up retrieving almost all the samples in the training data, hence the performance does not

78

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
al

u
e

Noise Parameter (s)

Family Prediction F1

(a) τ = -20

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
al

u
e

Noise Parameter (s)

Family Prediction F1

(b) τ = -10

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
al

u
e

Noise Parameter (s)

Family Prediction F1

(c) τ = 0

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
al

u
e

Noise Parameter (s)

Family Prediction F1

(d) τ = 5

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
al

u
e

Noise Parameter (s)

Family Prediction F1

(e) τ = 10

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
al

u
e

Noise Parameter (s)

Family Prediction F1

(f) τ = 15

Fig. 4.4: Family prediction and F1 value for different threshold and noise parameters values.

79

decrease as τ decreases, but it adds to the computational cost of retrieving high number of

samples which is not desirable. We get the best performance for τ = -10 and s = 0.1. Even s

= 0.2 is almost as good as 0.1 providing some advantages in terms of stochasticity ensuring

robustness

We keep the base-level constant (β) and mismatch penalty (mp) values constant. As

explained earlier the base-level constant trades off directly against the retrieval threshold,

and the mismatch penalty against the activation noise, respectively, so it makes sense to vary

only one of the pair.

4.5.2 GVDG Dataset

GVDG is a malware generation tool designed for the study of computer threats [47]. It

is capable of generating the following malware threats:

• File-virus

• Key-Logger

• Trojan-Extortionist

• USB-Worm

• Web Money-Trojan

Fig. 4.5 shows the GVDG user interface used for the generation of malware samples.

We can select the carrier type and the tasks that we want the malware sample to perform

on the host machine. The tasks are represented as payloads, while carrier is a functional

template which can be modified to execute the tasks desired by the user on the host system.

In generating datasets with GVDG, we specify families based on sets of malware with the

same tasks. Whether or not a family consists of malware with the same carrier depends

on the experiment. Further, GVDG also has an option to increase “mutation” or variance

among the samples. We perform experiments analyzing the performance of the proposed

80

Fig. 4.5: GVDG User Interface

methods when the generated samples belong to different carrier and same carrier types, as

well as when the samples are encrypted and mutated making task prediction difficult. In all

the experiments we consider 60% of the data for training and 40% for testing. The results

are averaged across 10 trials. The Cynomix tool from Invencia was unable to detect any

tasks for the GVDG dataset, primarily due to its inability to find public source documents

referencing GVDG samples and also unable to generalize from similar samples.

Different Carriers:

In this experiment, we generated 1000 samples for each carrier type with low mutation.

On average each carrier type performs 7 tasks(payloads). Hence each carrier represents one

family for this experiment. Both random forest and ACTR-IB model were able to predict

the tasks and family with F1 measure of 1.0 outperforming LOG-REG 1 vs 0.91 , SVM 1 vs

0.95 and ACTR-R 1 vs 0.95. All results are statistical significant with (t (1998) ≥ 8.93, p <

.001)(Fig. 4.6). Also for family prediction ACTR-IB and RF outperformed LOG-REG 1 vs

0.92, SVM 1 vs 0.92 and ACTR-R 1 vs 0.95 (t (1998) ≥ 8.93, < .001).

These results are not surprising given that different carrier(family) types have high

81

0.8

0.9

1

Precision Recall F1 Family
Prediction

A
ve
ra
ge

LOG-REG SVM RF ACTR-R ACTR-IB

Fig. 4.6: Average Precision, Recall, F1 and Family prediction comparisons for LOG-REG,

SVM, RF, ACTR-R and ACTR-IB for different carrier samples.

Fig. 4.7: Similarity matrix for 5 different carriers .

82

dissimilarity between them. Also, samples belonging to the same carrier have on average

60% of similar attributes. Fig. 4.7 shows the similarity between the carrier types. The

similarity between families is calculated in the same way as ACTR-IB partial matching with

0 indicating complete match while −1 complete mismatch.

Different Carriers-Mutation:

For this case, we generate the same samples as in the previous experiment but with maximum

mutation between samples belonging to the same carrier. We generated 1000 samples for

each carrier with maximum mutation. In this case ACTR-IB had an average F1 of 1

outperforming LOG-REG 1 vs 0.83, SVM 1 vs 0.88 , RF 1 vs 0.96 and ACTR-R 1 vs

0.92 (t (1998) ≥ 7, p < .001)(Fig. 4.8). Also for family prediction ACTR-IB outperformed

LOG-REG 1 vs 0.85, SVM 1 vs 0.88 , RF 1 vs 0.95 and ACTR-R 1 vs 0.92 (t (1998) ≥ 7, p

< .001).

0.7

0.8

0.9

1

Precision Recall F1 Family
Prediction

A
ve
ra
ge

LOG-REG SVM RF ACTR-R ACTR-IB

Fig. 4.8: Average Precision, Recall, F1 and Family prediction comparisons for LOG-REG,

SVM, RF, ACTR-R and ACTR-IB for different carrier mutated samples.

High mutation induces high variance between samples associated with the same carrier

making the classification task difficult. High mutation samples belonging to same carrier

83

have only 20% of common attributes as compared to 60% for low mutation.

Less Training data:

In order to see how the cognitive models perform with less training data, we repeated the

0.4

0.6

0.8

1

Precision Recall F1 Family
Prediction

A
ve
ra
ge

LOG-REG SVM RF ACTR-R ACTR-IB

Fig. 4.9: Average Precision, Recall, F1 and Family prediction comparisons for LOG-REG,

SVM, RF, ACTR-R and ACTR-IB for less training data.

different-carrier mutation experiment with 10% of the training data selected uniformly at

random (300 samples). Even with less training data ACTR-IB had an average F1 of 0.93

outperforming LOG-REG 0.93 vs 0.71, SVM 0.93 vs 0.6, RF 0.93 vs 0.83 and ACTR-R

0.93 vs 0.88 (t (1998) ≥ 2.89, p ≤ .001), see Fig. 4.9. Also for family prediction ACTR-IB

outperformed LOG-REG 0.91 vs 0.73 (t (1998) = 19.3, p < .001), SVM 0.91 vs 0.58, RF

0.91 vs 0.79 and ACTR-R 0.91 vs 0.88 (t (1998) ≥ 2.05, p ≤ 0.04).

Different Carriers: Low-High Mutation:

For this case, we consider the low mutation samples as training data and the high mutation

samples as testing. Fig. 4.10 shows the comparison results. ACTR-IB had an average F1

84

of 0.96 outperforming LOG-REG 0.96 vs 0.83, SVM 0.96 vs 0.92, RF 0.96 vs 0.93 and

ACTR-R 0.96 vs 0.88 (t (2498) ≥ 15.7, p < .001), see Fig. 4.10. Also for family prediction

ACTR-IB outperformed LOG-REG 0.96 vs 0.81, SVM 0.96 vs 0.92, RF 0.96 vs 0.94 and

ACTR-R 0.96 vs 0.88 (t (2498) ≥ 7, p < .001).

0.7

0.8

0.9

1

Precision Recall F1 Family
Prediction

A
ve
ra
ge

LOG-REG SVM RF ACTR-R ACTR-IB

Fig. 4.10: Average Precision, Recall, F1 and Family prediction comparisons for LOG-REG,

SVM, RF, ACTR-R and ACTR-IB for low-high mutated samples.

Leave one carrier out cross-validation:

To see how the models generalize to unseen malware family(carrier), we performed a

leave-one-carrier-out comparison, where we test the models against one previously unseen

malware carrier. ACTR-IB performs better or on par with all other baseline approaches for

all the carriers. It clearly outperforms all the approaches in recalling most of the actual tasks

(40%) (see Fig. 4.11). ACTR-IB has shown to generalize for unseen malware families [64].

This case is difficult given the fact that the test family is not represented during training,

hence task prediction depends on associating the test family with the training families that

perform similar tasks.

85

0.1

0.2

0.3

0.4

0.5

File-virus Key-logger Trojan-E USB-worm Web-T
F1

0.1

0.2

0.3

0.4

0.5

Precision Recall F1

A
ve
ra
ge

LOG-REG SVM RF ACTR-R ACTR-IB

Fig. 4.11: Average F1 values for 5 malware carriers (above) and the average precision, recall

and F1 across all carriers (below) for LOG-REG, SVM, RF, ACTR-R and ACTR-IB for

Leave-one-carrier-out.

Same Carrier:

As seen in the previous experiments, different carrier types makes the task easier because of

less similarity between them. We now test the performance, on same carrier type performing

exactly one task. Since there are 17 tasks in the GVDG tool, we generate 100 samples for

each task for carrier type File-virus. In this experiment each task represents one family.

Thus in total we have 1700 samples. We do the 60-40 split experiment. From Fig. 4.12

ACTR-IB had an average F1 of 0.95 outperforming LOG-REG 0.95 vs 0.84, SVM 0.95 vs

0.87, RF 0.95 vs 0.90 and ACTR-R 0.95 vs 0.92 (t (678) ≥ 1.52 , p ≤ 0.13). Since each

family performs exactly one task the family prediction is similar to F1. Using the same

carrier for each payload makes the task difficult as can be seen from the similarity matrix

for the 17 payloads(Fig. 4.13).

86

0.8

0.9

1

Precision Recall F1 Family
Prediction

A
ve
ra
ge

LOG-REG SVM RF ACTR-R ACTR-IB

Fig. 4.12: Average Precision, Recall, F1 and Family prediction comparisons for LOG-REG,

SVM, RF, ACTR-R and ACTR-IB for unencrypted same carrier samples.

Fig. 4.13: Similarity matrix for 17 versions of the same carrier .

87

Same Carrier-Encryption:

The GVDG tool provides the option for encrypting the malware samples for the File-virus

carrier type. We use this option to generate 100 encrypted malware samples for each

task(payload) and use them as test data with the unencrypted versions from the same carrier

experiment as training samples. From Fig. 4.14 ACTR-IB had an average F1 of 0.9 outper-

forming LOG-REG 0.9 vs 0.8, SVM 0.9 vs 0.8, RF 0.9 vs 0.74 and ACTR-R 0.9 vs 0.88 (t

(1698) ≥ 2.36 , p ≤ 0.02). Encrypting malware samples morphs the task during execution

making it difficult to detect during analysis. Hence the drop in performance as compared to

non-encrypted samples.We note that SVM performs better than RF likely because it looks

to maximize generalization.

0.6

0.7

0.8

0.9

1

Precision Recall F1 Family
Prediction

A
ve
ra
ge

LOG-REG SVM RF ACTR-R ACTR-IB

Fig. 4.14: Average Precision, Recall, F1 and Family prediction comparisons for LOG-REG,

SVM, RF, ACTR-R and ACTR-IB for encrypted same carrier samples.

Runtime analysis:

Table 4.5 shows the classifier run times for the experiments. Machine learning techniques

are faster but have large training times, which increase almost linearly with the size of the

88

knowledge base. Hence updating the knowledge base is computationally expensive for these

methods, as it has to re-estimate the parameters every time. The same notion holds true

for ACTR-R, since computing the rules during training phase is expensive as can be seen

from the large training times. ACTR-IB on the other hand has no explicit training phase,

so the only time cost is during testing. In fact ACTR-IB is faster than SVM and RF for

same/encrypted carrier experiments.

Scaling of Instance-based model:

Finally to conclude the GVDG experiments, we run ACTR-IB on a combination of all

the above variations of dataset to highlight the space requirements for the learning model.

The dataset comprises of 5 different carriers with low/high mutation (10,000 samples) and

same carrier encrypted/non-encrypted (3400 samples). Based on the tasks they perform we

have in total 22 families represented by 13,400 samples. The analysis reports generated by

cuckoo take up 4 gigabytes of disk space for the samples. We significantly reduce the size

to 600 megabytes by parsing the analysis reports and extracting attributes. We set aside 10%

of the samples for testing (1340) and iteratively add 10% of the remaining data for training.

Table 4.6 gives a summary of the average F1 measure and testing time for ACTR-IB. The

results are averaged across 10 trials. There is a steady increase in performance till we reach

40% of the training data, after that the F1 measure remains almost constant. This experiment

clearly indicates the ability of the ACTR-IB to learn from small amount of representation

from each family, significantly reducing the size of the knowledge base required for training.

We are also looking into techniques to reduce the time requirements of instance-based

learning algorithm (e.g., Andrew Moore explored efficient tree-based storage). There are

also techniques for reducing space requirements, [110] merged training instances in the

ACT-R-Gammon model and obtained considerable space savings at little performance cost.

89

Table 4.5: Classifier run times

Experiment Model Train(sec) Test(sec)

different carriers

LOG-REG 202 7

SVM 250 50

RF 280 30

ACTR-R 6443 143

ACTR-IB - 453

mutated carriers

LOG-REG 214 18

SVM 260 63

RF 303 85

ACTR-R 7223 185

ACTR-IB - 465

same carriers

LOG-REG 152 4.22

SVM 270 38

RF 290 55

ACTR-R 4339 120

ACTR-IB - 205

encrypted carriers

LOG-REG 180 15

SVM 300 80

RF 353 110

ACTR-R 6103 180

ACTR-IB - 365

4.5.3 MetaSploit

MetaSploit is a popular penetration testing tool used by security professionals to identify

flaws in the security systems by creating attack vectors to exploit those flaws [95]. Penetra-

90

Table 4.6: Summary of ACTR-IB results

Fraction of training data F1 measure Test time(sec)

0.1 0.77 418

0.2 0.82 839

0.3 0.90 1252

0.4 0.97 1676

0.5 0.97 2100

0.6 0.97 2525

0.7 0.97 2956

0.8 0.98 3368

0.9 0.98 3787

1.0 0.98 4213

tion testing may also be defined as the methods an attacker would employ to gain access

to security systems. Hence identifying the tasks the exploit was designed to perform is

important to counter the exploit.

For this experiment we generate exploits that attacks windows operating systems. Each

exploit has a set of tasks associated with it. The tasks include setting up tcp & udp back-door

connections, adding unauthorized users to the system, modifying root privileges, download

executables and execute them on the local machine, prevent writing of data to disk, deleting

system folders, copying sensitive information etc. We generated 4 exploit families with

100 samples each performing on average 4 tasks. We induced mutation between samples

belonging to the same family making the classification task difficult. We perform a 60-40

split training-testing experiment and average the results across 10 trials. From Fig. 4.15

ACTR-IB had an average F1 of 0.86 outperforming LOG-REG 0.86 vs 0.62, SVM 0.86 vs

0.82, RF 0.86 vs 0.82, ACTR-R 0.86 vs 0.81 and Invencia 0.86 vs 0.8 (t (158) ≥ 1.94 , p ≤

91

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F1 Family
Prediction

A
ve
ra
ge

LOG-REG SVM RF ACTR-R ACTR-IB INVINCEA

Fig. 4.15: Average Precision, Recall, F1 and Family prediction comparisons for LOG-REG,

SVM, RF, ACTR-R and ACTR-IB for MetaSploit samples.

0.05). Also for family prediction ACTR-IB outperformed LOG-REG 0.8 vs 0.7, SVM 0.8

vs 0.72, RF 0.8 vs 0.72 and ACTR-R 0.8 vs 0.71 (t (158) ≥ 2.53 , p ≤ 0.01).

4.5.4 Task Prediction from Hacker activities

In all the experiments discussed so far, the tasks associated with a given piece of malware

are predefined and do not change with time. In this section , we try to map the tasks that a

hacker is trying to achieve from the activities it performs on a compromised system. For the

entire experiment only one malware is used whose sole purpose is to create a tcp backdoor

connection to let the hacker have access to the system. We evaluate the test samples only

using ACTR-IB and not other machine learning methods. The goal of this experiment is

to demonstrate how the system can deal with real time hacker activities on a compromised

system. It demonstrates the capability of the proposed system to capture hacker behavior.

The experimental setup is as follows. We keep the Cuckoo sandbox running on the

system by executing the malware. This will create a connection between the hacker and

92

the system. Once the hacker gains control of the machine, he can perform operations in

order to achieve his objectives. We treat these objectives as the tasks that the hacker wants

to complete on the system. Once these tasks are completed, Cuckoo generates an analysis

report detailing the behavioral analysis of the hacker. However, these analytics are too

detailed for instance file and registry execution commands and do not provide a clear picture

of the main tasks of the hacker on the machine. Hence, traditionally, this will often require

an expert security analyst to go through large analysis results to determine the task which is

often time consuming. But instead we can feed the analysis report to the ACTR-IB model

to get a prediction of the hacker tasks. For this experiment we use the MetaSploit dataset

discussed in Section 4.5.3 as the knowledge base for the instance based approach. For the

test set we generate samples in real time with hackers trying to achieve their goals (tasks) on

the compromised system. Note, this test also illustrates how well our model generalizes,

as we are identifying hacker behavior using historical data that was not generated by the

hacker - or even a human in this case. We consider two hackers, who are given a list of the

payloads (tasks) to complete from the list mentioned in Section 4.5.3. They always perform

a fraction of the tasks assigned to them at a given time instance and then the model is tested

on predicting these tasks.

We generate 10 such attacks , 5 from each hacker. Each attack consists of achieving 5

tasks on average. We note that for each of the test sample the malware used is the same.

ACTR-IB results are presented in Table 4.7. The results are averaged for each hacker across

test samples. Table 4.7 shows the actual and predicted tasks for Hacker-1 for 5 different

attack instances. The results for Hacker-2 were analogous.

4.6 Related Work

Identification of malicious software. The identification of whether or not binary is ma-

licious [38, 123] is an important related, yet distinct problem from what we study in this

93

Table 4.7: Summary of ACTR-IB results

Subject Average

Precision

Average

Recall

Average F1

Hacker-1 0.8 0.85 0.83

Hacker-2 0.85 0.85 0.85

chapter and can be regarded as a “first step” in the analysis of suspicious binaries in the

aftermath of a cyber-attack. However, we note that as many pieces of malware are designed

to perform multiple tasks, that successful identification of a binary as malicious does not

mean that the identification of its associated tasks will be a byproduct of the result - and

hence this is normally the case, which has led to some of the other related work described in

this section.

Malware family classification. There is a wealth of existing work on malware family

identification [8, 60, 61, 70, 97, 48, 109, 6, 28]. The intuition here is that by identifying

the family of a given piece of malware, an analyst can then more easily determine what it

was designed to do based on previously studied samples from the same family. However,

malware family classification has suffered from two primary drawbacks: (1) disagreement

about malware family ground truth as different analysts (e.g. Symantec and McAfee) cluster

malware into families differently; and (2) previous work has shown that some of these

approaches mainly succeed in “easy to classify” samples [71, 98], where “easy to classify”

is a family that is agreed upon by multiple malware firms. In this chapter, we infer the

specific tasks a piece of malware was designed to carry out. While we do assign malware

to a family as a component of our approach, to avoid the two aforementioned issues as

the family partition is done so probabilistically and the result ground truth is the focus of

our comparison (though we show family prediction results as a side-result). Further, we

also describe and evaluation a variant of our instance-based method that does not consider

94

Table 4.8: Actual and predicted Hacker-1 attacks

Attack Instance Actual Tasks Predicted Tasks

1 setup backdoor connection

modify root privileges

uninstall program

copy files

setup backdoor connection

modify root privileges

uninstall program

delete system files

prevent access to drive

2 setup backdoor connection

modify root privileges

download executables

execute files

copy files

setup backdoor connection

modify root privileges

download executables

execute files

delete files

3 setup backdoor connection

modify root privileges

add unauthorized users

start keylogging

uninstall program

delete files

prevent access to drives

setup backdoor connection

modify root privileges

add unauthorized users

start keylogging

unistall program

delete files

4 setup backdoor connection

add unauthorized users

prevent writing data to disk

delete files

copy files

setup backdoor connection

add unauthorized users

prevent writing data to disk

delete files

modifying root privileges

prevent access to drives

5 setup backdoor connection

download executables

execute files

start keylogging

setup backdoor connection

download executables

execute files

start keylogging

families and yields a comparable performance to our instance-based method that does

consider families.

Malware task identification. With regard to direct inference of malware tasks, the major

95

related work include the software created by the firm Invincea [54] for which we have

included a performance comparison. Additionally, some of the ideas in this chapter were

first introduced in [64, 125, 88]. However, that work primarily focused on describing the

intuitions behind the cognitive modeling techniques and only included experimental evalua-

tion on two datasets (the Mandiant APT1 and GVDG datasets). The experimental evaluation

in this chapter includes additional experiments for the GVDG dataset to consolidate the

previous experiments. Also algorithm analysis and parameter exploration is provided for

the cognitive models. In addition we introduce a popular penetration tool used by security

analyst MetaSploit and present new results on this tool. These experiments evaluate the

proposed model thoroughly to pave the way toward deployment for use by cyber-security

analysts.

4.7 Summary

In this chapter, we introduced an automated method that combines dynamic malware

analysis with cognitive modeling to identify malware tasks. This method obtains excellent

precision and recall - often achieving an unbiased F1 score of over 0.9 - in a wide variety

of conditions over three different malware sample collections and two different sandbox

environments - outperforming a variety of baseline methods.

96

Chapter 5

DARKWEB AND DEEPWEB MINING FOR CYBERSECURITY THREAT

INTELLIGENCE

5.1 Introduction

With the widespread use of technology, cyber-security has become an important issue of

concern for both commercial organizations and governments. With the recent incidents of

data breach at Home Depot, Target and Sony via malicious softwares, many organizations

are looking at proactive techniques to avoid being targeted or minimize the damage of such

attacks.

0

400

800

1200

1600

Week-1 Week-2 Week-3 Week-4 Week-5

Th
re

at
s

D
et

ec
te

d
 (

C
u

m
u

la
ti

ve
)

Fig. 5.1: Weekly detection of cyber-

threats.

Fig. 5.2: Social network.

Pre-reconnaissance cyber threat intelligence refers to information gathered before a

malicious party interacts with the defended computer system. An example demonstrating

the importance of cyber threat intelligence is shown in Table 5.1. A Microsoft Windows

vulnerability was identified in Feb. 2015. The release of the vulnerability was essentially

97

Table 5.1: Exploit example.

Timeline Event

February 2015 Microsoft identifies Windows vulnerability MS15-010/CVE 2015-

0057 for remote code execution. There was no publicly known

exploit at the time the vulnerability was released.

April 2015 An exploit for MS15-010/CVE 2015-0057 was found on a dark-

web market on sale for 48 BTC (around $10,000-15,000).

July 2015 FireEye identified that the Dyre Banking Trojan, designed to steal

credit card number, actually exploited this vulnerability 1 .

Microsoft warning its customers of a security flaw. Note that at this time, there was no

publicly known method to leverage this flaw in a cyber-attack (i.e. an available exploit).

However, about a month later an exploit was found to be on sale in darkweb market. It was

not until July when FireEye, a major cybersecurity firm, identified that the Dyre Banking

Trojan designed to steal credit cards exploited this vulnerability - the first time an exploit was

reported. This vignette demonstrates how threat warnings gathered from the darkweb can

provide valuable information for security professionals. The average global exposure of the

Dyre Banking Trojan was 57.3% along with another banking malware Dridex 2 . It means

that nearly 6 out of 10 organizations in the world were affected, and this is a significantly

high number on a global level.

In another instance, 17-year-old hacker Sergey Taraspov, from St. Petersburg. along

with a small team of hackers, allegedly wrote a piece of malware that targeted point-of-sale

(POS) software, and sold it for $2,000 on a Russian forum/marketplace. This malware was,

in turn, used by around forty individuals to steal over 110 million American credit card
2https://www.fireeye.com/blog/threat-research/2015/06/evolution of dridex.html

98

numbers in the ”Target“- data breach of 2013 3 .

In this chapter, we examine how such intelligence can be gathered and analyzed from

various social platforms on the Internet particularly sites on the darkweb and deepweb.

In doing so, we encounter several problems that we addressed with various data mining

techniques. At the time of development the system was actively collecting approximately

305 cyber threats each week. Fig. 5.2 shows a subset of a social network built using the

collected data. Since then we have transitioned the system to a commercial partner 4 . Fig. 5.1

shows the cumulative trend in threat detection for five weeks at the time of development.

Table 5.2 shows the database statistics before transition. It shows the total data collected and

the data related to malicious hacking. The vendor and user statistics cited only consider those

individuals associated in the discussion or sale of malicious hacking-related material, as

identified by the system. The data is collected from three sources on the darkweb/deepweb:

markets, forums, and subreddits.

We are providing information to cyber-security professionals to support their strategic

cyder-defense planning to address questions such as,

1. What vendors and users have a presence in multiple darkweb/deepweb markets/

forums?

2. What zero-day exploits are being developed by malicious hackers?

3. What vulnerabilities do the latest exploits target?

In this chapter we provide,

• Description of a system for cyber threat intelligence gathering from various social

platforms from the Internet such as deepweb and darkweb websites.
3https://www.nbcnews.com/news/world/skilled-cheap-russian-hackers-power-

american-cybercrime-n22371
4Cyber Reconnaissance, Inc. (CRY3CON), https://www.cyr3con.com.

99

Table 5.2: Current Database Status

Markets

Total Number 27

Total products 11991

Hacking related 1573

Vendors 434

Forums

Total Number 21

Topics/Posts 23780/162872

Hacking related 4423/31168

Users 5491

Subreddits
Total Number 33

Topics/Posts 3940/19601

Hacking related 1654/8270

• The implementation and evaluation of learning models to separate relevant information

from noise in the data collected from these online platforms.

• A machine learning approach to aid security experts in the discovery of new relevant

deepweb and darkweb websites of interest using topic modeling– this reduces the

time and cost associated with identifying new deepweb and darkweb sites.

• A series of case studies showcasing various findings relating to malicious hacker

behavior resulting from the data collected by our operational system..

5.2 Background

Many of the individuals behind cyber-operations – originating outside of government

run labs or military commands – rely on a significant community of hackers. They interact

through a variety of online forums (as means to both stay anonymous and to reach geograph-

100

ically dispersed collaborators). For instance, the distribution of MegalodonHTTP Remote

Access Trojan (RAT) utilized the amateur black hat platform, HackForum. Five people

accused of the malware’s creation and/or distribution resided in three European countries,

requiring law enforcement to cooperate internationally in pursuit of the malicious hackers’

arrest [134]. The international nature of the cyber-domain - the organization of cooperating

malicious hackers as well as their international targets - transcends not only territorial

executive powers, but illustrates the importance of virtual communication platforms.

Darknet and Deepnet Sites. Widely used for underground communication, “The Onion

Router” (Tor) is free software dedicated to protect the privacy of its users by obscuring

traffic analysis as a form of network surveillance [36]. The network traffic in Tor is guided

through a number of volunteer-operated servers (also called “nodes”). Each node of the

network encrypts the information it blindly passes on neither registering where the traffic

came from nor where it is headed [36], disallowing any tracking. Effectively, this allows

not only for anonymized browsing (the IP-address revealed will only be that of the last

node), but also for circumvention of censorship 5 . Here we will use “darkweb” to denote

the anonymous communication provided by crypto-networks like “Tor”, which stands in

contrast to “deepweb” which commonly refers to websites hosted on the open portion of

the Internet (the “Clearnet”), but not indexed by search engines [62]. Corporate websites

supporting employees and library catalogs are good examples of deepweb presences.

Malicious Hacking. Hacking as a subculture has been the subject of many publications,

amongst them Steven Levy’s seminal “hackers” [68], which outlines ideological premises

which many early computer geeks and programmers shared. The machines comprising the

early computers were extensions of the self [130], which might compliment the creative

ownership and the demand for free software that permeated Levy’s account [68]. The term

“hacker” in recent use (and especially in popular media) has become restricted to individuals
5See the Tor Project’s official website (https://www.torproject.org/)

101

who seek unauthorized access to computers and computer networks not their own with the

purpose to manipulate, steal, log or alter data or structures [49, 118].

Markets. Users advertise and sell their wares on marketplaces. Darknet marketplaces pro-

vides a new avenue to gather information about the cyber threat landscape. The marketplaces

sell goods and services relating to malicious hacking, drugs, pornography, weapons and

software services. Only a small fraction of products (13% in our collected data to date) are

related to malicious hacking. Vendors often advertise their products on forums to attract

attention towards their goods and services. Marketplaces have wallets to deposit digital

currency into, but sometimes forum administrators serve as an escrow service. Products are

most often verified before any funds are released to the seller. If a seller is misleading or

fails to deliver the appropriate item, they are banned from the site. Similarly, buyers can be

banned for not complying with the transaction rules.

Forums. Forums are user-oriented platforms that have the sole purpose of enabling com-

munication. It provides the opportunity for the emergence of a community of like-minded

individuals - regardless of their geophysical location. Administrators set up Darkweb forums

with communication safety for their members in mind. During registration (though not

necessarily with every login) every prospective member has to complete CAPTCHAS (Com-

pletely Automated Public Turing test to tell Computers and Humans Apart), answer simple

questions, solve puzzles or complete simple arithmetic operation, presumably to prevent

automated access. Discussion forums on the Darkweb consist of boards and sub-boards

(also called “child-boards”) filled with threads concerned with different topics. While

structure and organization of Darkweb-hosted forums might be very similar to more familiar

web-forums, the topics and concerns of the users vary distinctly. In the English clandestine

Darkweb, people interested in cats, steampunk, and the latest conspiracy theories convene,

but an abundance of arenas dedicated to child pornography (CP), drugs, and weapons can

also be found. Other forums appear to be venues for sharing erotic images – whether

102

Fig. 5.3: System overview

involving real persons or cartoon characters. Lengthy threads seek information on the

reliability of individual vendors and marketplaces in general. Links to other Darkwebsites

and information on potentially fraudulent websites are especially useful in the absence of

pervasive search engines and can be found on many forums. Forums addressing malicious

hackers feature discussions on programming, hacking, and cyber-security. Threads are

dedicated to security concerns like privacy and online-safety - topics which plug back into

and determine the structures and usage of the platforms.

Subreddits. Subreddits can be considered as a subset of forums. Important information

regarding the marketplace environment including reviews of marketplaces, products, and

vendors are often discussed on subreddits. These links and sentiments about markets provide

insight. For instance, we might learn to predict when popular opinion shifts with respect

to a certain market. Subreddits also provide information concerning marketplaces and

forums that are newly introduced or old ones that are shutting down. Hence crawling these

subreddits could provide good insight into the marketplace and forum environment.

5.3 SYSTEM OVERVIEW

Fig. 5.3 gives the overview of the system. Through search engines and spider services

on the Tor network, human analysts were able to find forums and marketplaces populated

by malicious hackers. Other platforms were discovered through links posted on forums

103

either on the Tor-network or on the Clearnet. The system consists of three main modules

built independently before integration. The system is currently fully integrated and actively

collecting cyber threat intelligence.

Crawler: The crawler is a program designed to traverse the website and retrieve HTML

documents. Topic based crawlers have been used for focused crawling where only webpages

of interest are retrieved [83, 24]. More recently, focused crawling was employed to collect

forum discussions from darkweb [41]. We have designed separate crawlers for different

platforms (markets/forums) identified by experts due to the structural difference and access

control measures for each platform. In our crawler we address design challenges like

accessibility, unresponsive server, repeating links creating a loop etc. to gather information

regarding products from markets and discussions on forums.

Parser: We designed a parser to extract specific information from marketplaces (regarding

sale of malware/exploits) and hacker forums (discussion regarding services and threats). This

well-structured information is stored in a relational database. We maintain two databases,

one for marketplaces and the other for forums. Like the crawler, each platform has its own

parser. The parser also communicates with the crawler from time to time for collection of

temporal data. The parser communicates a list of relevant webpages to the crawler, which are

re-crawled to get time-varying data. For markets we collect the following important products

fields: {item title, item description, vendor name, shipping details, item reviews, items sold,

CVE, items left, transaction details, ratings}. For forums and subreddits we collect the

following fields: {topic content, post content, topic author, post author, author status,

reputation, topic interest}.

Classifier: Automating the process of classifying a web page as being relevant to the topic

of interest greatly expedites data collection. As the crawler traverses darkweb links faster

than any human could possibly classify the sites, it is important that the classification portion

of the pipeline is able to keep up. By requiring humans to classify each site as relevant or

104

irrelevant, there is a bottleneck in the classification stage and the throughput of the data

gathering pipeline is greatly diminished. We address unique classification challenges. First,

to discover new relevant websites using a topic-modeling technique. Second, we employ

a machine learning technique using an expert-labeled dataset to detect relevant products

and topics from marketplaces and forums respectively. These classifiers are integrated into

the parser to filter out products and threads relating to drugs, weapons, etc. not relevant to

malicious hacking.

5.4 Evaluation

We address distinct classification problems in this chapter. First, a model that could

identify relevant products in darkweb/deepweb marketplaces, relevant topics on forum

post containing communication relevant to malicious hacking, and relevant references to

marketplaces and forums in subreddits (subreddits are forums in which information relating

to forums and marketplaces are discussed - this can be viewed as meta-content). The

second problem is identifying new relevant marketplaces/forums. All the problems are

binary classification problems with the data sample being relevant or not. We look at both

supervised and semi-supervised approaches to address the first classification problem and

topic modeling for the second. We now provide an overview of the approaches used and

then discuss the classification challenges associated with each problem. For supervised

approaches we use standard machine learning techniques discussed in Section 2.3.

5.4.1 Semi-supervised Approaches

Labeling data is expensive and often requires expert knowledge. Semi-supervised

approaches work with limited labeled data by leveraging information from unlabeled data.

We discuss popular semi-supervised approaches used in this work.

Label propagation (LP). The label propagation approach [139] has been widely used for

105

semi-supervised classification task [11, 67, 133, 27]. It estimates the label values based

on graph Laplacian [9] where the model is represented by a weighted graph G = (V,E) ,

where V indicates the vertices representing the samples , while the edges E are the weights

indicating the similarity between points. A subset of these vertices are labeled and these

vertices are then used to estimate the labels of the remaining under the assumption that

the edges are able to capture the similarity between samples. Hence the performance of

these methods depends on the similarity measure used. The most commonly used similarity

measures include k-NN and Guassian kernel.

Co-training (CT). The Co-training approach was proposed by Blum and Mitchell [13]. In

this approach the feature set is divided into two sets (assumed to be independent), and two

classifiers are trained using the limited labeled set denoted by L . These trained classifiers

are then used to estimate the labels for the unlabeled points. High confidence label estimates

from classifier-1 are added to the labeled set L of classifier-2 and vice versa. For the current

setting we set the confidence to 70%. Every time the labeled set L is updated, the classifiers

are retrained. This procedure repeats until all of the unlabeled points are labeled. It can

be viewed as two classifiers teaching each other. For this approach to work, it is necessary

that the two classifiers are uncorrelated and are able to make independent decisions. We

implement this idea of using multiple classifiers to gain two different viewpoints of the

same data. We implement the co-training algorithm using different classifiers discussed in

Section 2.3 to determine the best performing approach.

Latent Dirichlet Allocation (LDA). Additionally, we use LDA, to engineer features in

some cases. Latent Dirichlet Allocation is an unsupervised modeling technique. The

goal is to infer topics that maximize the likelihood (posteriori probability) of positive

webpages. Each webpage has the same set of topics distribution over topics is individually

determined for each. The topic proportions are drawn from Dirichlet distribution. These

topic distributions can be used as features for classification. The features are limited to the

106

topics and thus LDA can be used as a dimensionality reduction technique [12].

5.4.2 Experiments: Marketplaces

The recent growth in popularity of darkweb marketplaces provides a new avenue to

gather information about the cyber threat landscape. As stated earlier, these marketplaces

often sell goods and services that do not relate to malicious hacking, including drugs,

pornography, weapons and software services. Only a small fraction of products (13%) are

related to malicious hacking. We thus require a model that can separate relevant products

from the non-relevant ones. The data collected from marketplaces is noisy and hence not

suitable to use directly as input to a learning model. Hence, the raw information undergoes

several steps of automated data cleaning. We now discuss the challenges associated with the

dataset obtained and the data processing steps taken to address them. We note that similar

challenges occur for forum and subreddit data.

Classification Challenges

Text Cleaning. Product title and descriptions on marketplaces often have much text that

serves as noise to the classifier (e.g. *****SALE*****). To deal with these instances, we

first removed all non-alphanumeric characters from the title and description. This, in tandem

with standard stop-word removal, greatly improved classification performance.

Misspellings and Word Variations. Misspellings frequently occur on forums and market-

places, which is an obstacle for the standard bag-of-words classification approach. Addition-

ally, with the standard bag-of-words approach, variations of words are considered separately

(e.g. hacker, hack, hackers, etc.). Word stemming mitigates these issue of word variations,

but fails to fix the issue of misspellings. To address this we use character n-gram features.

As an example of character n-gram features, consider the word “hacker”. If we were using

tri-gram character features, the word “hacker” would yield the features “hac”, “ack”, “cke”,

107

“ker”. The benefit of this being that the variations or misspellings of the word in the forms

“hack”, “hackz”, “”hackker”, will all have some common features. We found that using

character n-grams in the range (3, 7) outperformed word stemming in our experiments.

Large Feature Space. In standard bag-of-words approach, as opposed to the character n-

gram approach, the feature matrix gets very large as the number of words increase. Consider

the case where the training corpus contains 100,000 unique words and 10,000 documents.

The feature matrix then has 100,000 entries for each document, this means that there are 1

billion entries in the feature matrix. As the number of unique words and documents grow,

this bloated feature matrix begins to greatly degrade performance. Using n-gram features

further increase the already over-sized feature matrix. To address this issue we leveraged

the sparse matrix data structure in the scipy 6 library, which leverages the fact that most of

these over 1 billion entries will be zero. If a word or n-gram feature is not present in a given

document, there is simply no entry for that feature in the sparse matrix. Switching from a

dense matrix representation to a sparse matrix representation greatly reduced runtime, as the

dense matrix representation was hardly tractable for even a few hundred documents.

Preserving Title Feature Context. As the title and description of the product are disjoint,

we found that simply concatenating the description to the product title before extracting

features led to sub-optimal classification performance. We believe that by doing a simple

concatenation, we were losing important contextual information. There were features

that should be interpreted differently should they appear in the title versus the description.

Initially, we used two separate classifiers: one for the title and one for the description. With

this construction, when an unknown product was being classified, we would pass the title to

the title classifier and the description to the description classifier. If either classifier returned

a positive classification, we would assign the product a positive classification. However,

we believe that this again led to the loss of important contextual information. To fix this,
6https://www.scipy.org/

108

we independently extract character n-gram features from the title and description. This

step yields a title feature vector and a description feature vector. We then horizontally

concatenate these vectors, forming a single feature vector which includes separate feature

sets for the title and description.

Results

We consider 10 marketplaces to train and test our learning model. A summary of these

marketplaces is shown in Table 5.3. Table 5.4 gives instance of products defined as being

relevant or not. With the help of security experts we label 25% of the products from each

marketplace. The experimental setup is as follows. We perform a leave-one-marketplace-out

cross-validation. In other words, given n marketplaces we train on n − 1 and test on the

remaining one. We repeat this experiment for all the marketplaces. For the supervised

experiment we only use the 25% labeled data from each marketplace. We evaluate the

performance based primarily on three metrics: precision, recall and unbiased F1. Precision

indicates the fraction of products that were relevant from the predicted ones. Recall is

the fraction of relevant products retrieved. The results are averaged and weighted by the

number of samples in each market. In this application a high recall is desirable as we do

not want to omit relevant products. In the supervised approaches SVM with linear kernel

performed the best, recalling 87% of the relevant products while maintaining a precision of

85% (Fig. 5.4). SVM performed the best likely due to the fact it maximizes generality as

opposed to minimizing error.

As stated, only 25% of the data is labeled, as labeling often requires expert knowledge.

However, this significant cost and time investment can be reduced by applying a semi-

supervised approach which leverages the unlabeled data to aid in classification. It takes

approximately one minute for a human to label 5 marketplace products or 2 topics on forums

as relevant or not, highlighting the costliness of manual labeling. The experimental setup

109

Table 5.3: Markets and Number of products collected.

Markets Products

Market-1 439

Market-2 1329

Market-3 455

Market-4 4018

Market-5 876

Markets Products

Market-6 497

Market-7 491

Market-8 764

Market-9 2014

Market-10 600

Table 5.4: Example of Products.

Product Title Relevant

20+ Hacking Tools (Botnets Keyloggers Worms and More!) YES

SQLI DUMPER V 7.0 SQL INJECTION SCANNER YES

Amazon Receipt Generator NO

5 gm Colombian Cocaine NO

0.5

0.6

0.7

0.8

0.9

Precision Recall F1

A
ve
ra
ge

NB LOG-REG RF SVM

Fig. 5.4: Average Precision, Recall and F1 comparisons for NB, LOG-REG, RF and SVM

for product classification.

110

is similar to the supervised approach, but this time we also utilize the large unlabeled data

from each marketplace (75%) for training.

0.6

0.7

0.8

0.9

1

Precision Recall F1

A
ve
ra
ge

LP CT-NB CT-LOG-REG CT-RF CT-SVM

Fig. 5.5: Average Precision, Recall and F1 comparisons for LP, CT-NB, CT-LOG-REG,

CT-RF and CT-SVM for product classification.

Fig. 5.5 shows the performance comparison for the semi-supervised approaches. For the

co-training approach we divide the feature space into two sets. The two feature sets used

are both based on character n-grams. However, the set of words from which the character

n-grams are derived are disjoint between the two sets. In this way, the two corresponding

feature vectors can be treated as being independent from one another. Hence we get two

views of the same sample. Co-training with Linear SVM is able to recall 92% of the

relevant products as compared to label propagation and other variants of co-training while

maintaining a precision of 82%, which is desirable. In this case, the unlabeled data aided the

classification in improving the recall to 92% without significantly reducing the precision.

111

5.4.3 Experiment: Forums

In addition to the darkweb/deepweb marketplaces that we have already discussed, there

are also numerous darkweb forums on which users will not only discuss on malicious

hacking related topics. Again, there is the issue that only a fraction of these topics with posts

on these forums contain information that is relevant to malicious hacking or the trading of

exploits. hence, we need a classifier to identify relevant topics. This classification problem

is very similar to the product classification problem previously discussed, with similar set of

challenges.

We performed evaluation on an English forum and a Russian forum. For the English

forum we considered a dataset of 781 topics with 5373 posts. Table 5.5 gives instance of

topics defined as being relevant or not. We label 25% of the topics and perform a 10-fold

cross validation using supervised methods. We show the results from the top two performing

supervised and semi-supervised methods. In the supervised setting, LOG-REG performed

the best with 80% precision and 68% recall (Fig. 5.6). On the other hand, leveraging

unlabeled data in a semi-supervised technique improved the recall while maintaining the

precision. We note that in this case the 10-fold cross validation was performed only on the

labeled points. In the semi-supervised domain co-training with LOG-REG improved the

recall to 80% with precision of 78%.

Table 5.5: Example of Topics.

Topic Relevant

Bitcoin Mixing services YES

Hacking service YES

I can vend cannabis where should I go? NO

Looking for MDE/MDEA shipped to Aus NO

112

0.5

0.6

0.7

0.8

0.9

Precision Recall F1

A
ve
ra
ge

LOG-REG SVM CT-LOG-REG CT-SVM

Fig. 5.6: Average Precision, Recall and F1 comparisons for LOG-REG, SVM, CT-LOG-

REG, and CT-SVM for English forum topic classification.

We also encounter forums in languages other than English. Many of the non-English

forums like Russian use English words to describe hacking techniques and exploits (e.g.

“RAT”, and “botnet”). Hence, we use the same character n-gram features for the Russian

forum too. For evaluation we consider a Russian forum with 1609 topics comprising of

8961 posts. We had 25% of the topics labeled by a Russian speaking security analyst. The

experimental setup is similar to English forums. The comparison is shown in Fig. 5.7.

We note that supervised methods do better than semi-supervised methods in this setting.

LOG-REG has the best recall of 58% with 60% precision. We are exploring a combination

of machine learning and keyword filtering to improve the performance on foreign language

forums.

5.4.4 Experiment: Subreddits

We also crawl data from subreddits where discussion is focused on darkweb and deepweb

websites. But, just as in the case of marketplaces/forum, not all subreddit posts are relevant

113

0.2

0.4

0.6

0.8

Precision Recall F1

A
ve
ra
ge

NB LOG-REG CT-LOG-REG CT-SVM

Fig. 5.7: Average Precision, Recall and F1 comparisons for NB, LOG-REG, CT-LOG-REG

and CT-SVM for Russian forum topic classification.

to malicious hacking. Thus, we need a classifier to identify the relevant ones. For evaluating

the model we consider 1550 topics with around 8000 posts from 33 subreddits. We consider

the topic to be relevant if atleast one of the posts in the topic is relevant. We label 25% of the

topics. Using these labeled samples we perform a 10-fold cross validation and average the

results. Fig. 5.8 shows the two best performing supervised methods (NB and LOG-REG).

Naive Bayes is able to recall 68% of the relevant subreddits with a precision of 53%.

On the other hand, leveraging unlabeled data in a semi-supervised technique improves

precision while maintaining the recall. Fig. 5.8 shows the two best performing semi-

supervised methods (CT-LOG-REG and CT-SVM) in comparison with the supervised

methods. Here, the 10-fold cross validation is performed only on the labeled points. Co-

training with linear SVM performs the best with an average precision of 74%, recalling 68%

of the subreddits. Hence, again it provides a significant performance increase in precision.

As with the marketplace classifier, we used two feature vectors of character n-grams derived

from two disjoint sets of words.

114

0.2

0.4

0.6

0.8

Precision Recall F1

A
ve
ra
ge

NB LOG-REG CT-LOG-REG CT-SVM

Fig. 5.8: Average Precision, Recall and F1 comparisons for LP, CT-LOG-REG, CT-RF and

CT-SVM for subreddits.

5.4.5 Darknet New Page Discovery

The crawler often encounters new web links while crawling data from forums and

subreddits. These new links might point to new marketplaces or forums relating to malicious

hacking. We want to automate the process of determining whether or not a given new

web-page is relevant to our data collection efforts. For the previous classification problems

we were able to rely on the structure of the input. That is, in the case of the product classifier

we knew that we were receiving only a product title and description. In the case of the

forum/subreddit classifier we had a thread title and the post content. This classification

problem is different. The input is a single HTML page, the structure of which is completely

unknown. The classifier then has to determine if the page is relevant or not. Without any

assumption on structure, it is very difficult to extract only the parts of the page that are

relevant. In the pre-processing step we extract all visible text on the page (including header,

footer, sidebar, menu etc.).

In our first approach, we used a bag-of-words approach with TF-IDF (term frequency

115

- inverse document frequency) on the extracted text (i.e. all visible text on the webpage).

Using this approach, when given two pages from the same web site, both pages will have an

identical header, footer, sidebar, menu, etc. One difficulty here was that the term frequencies

of the words in the header, footer, etc. are not necessarily that important for classification.

This generates a lot of noise in the feature space. With TF-IDF-based features, we found

that the classifiers greatly overfit to the pages that were in the positive training set. As a

result, pages from new sites were nearly always classified as negative – regardless of content.

To help mitigate the problem of overfitting models to sites in the training set, we used the

topic-distribution generated by Latent Dirichlet Allocation (LDA) [12] as features, rather

than TF-IDF or bag-of-words, which greatly improved performance on an independent

evaluation set. In our ongoing work, we are examining additional features beyond those

based on text.

Results

For training our model, we use all the positive webpages from marketplaces and forums

already identified as relevant by an analyst. The negative pages were gathered by an analyst

during their search for relevant darkweb and deepweb websites. Using all of the labeled

pages as a training set we trained two Linear SVM models, one with TF-IDF features and

one with LDA topic distribution features, with word stemming done for both the models.

To evaluate the models, a security analyst provided us with a list of links. The links were

crawled, yielding 2855 HTML pages with unknown content. Hence, the evaluation described

in this section was a true validation set. Our focus is on precision with the intuition that the

classifier can point out a relatively small number of pages that are likely to be relevant to the

analyst.

TF-IDF-Based Results. When using standard TF-IDF as features, only 35 pages were

classified as relevant and, of them, only 3 unique sites were represented, two of which were

116

deemed irrelevant by an analyst and the third site having pages that appeared in the training

set. Using TF-IDF as features yielded no pages for new markets.

LDA-Based Results. LDA greatly improved performance on the evaluation set. When

evaluating a Linear SVM model with LDA topic distribution features, trained on the labeled

data, 58 of the 2855 unlabeled pages were given a positive classification. Of the 58 pages,

the analyst deemed 50 of them as relevant to what they typically look for, with seven new

markets represented in the set of 58 pages. This classifier performed far better at extracting

the “market structure,” as nearly all positively classified pages were from darkweb markets.

Once markets have been identified, we can leverage the market product classifier discussed

previously to only extract products relating to malicious hacking. We also note that the LDA

topics themselves are useful to the analyst - especially as topics evolve over time. Table 5.6

shows a sample of the 25 LDA topics that were used in this experiment.

Table 5.6: A sample of Positive Topics.

1. bitcoin, use, address, account, order, contact, email, service, product, please, day, send,

market, new, make, share, time, free, month

2. price, day, ago, item, usd, btc, fix, quantity, buy, view, left, bid, unlimited, software, book,

ms, fraud, secure, exploit

3. service, onion, hidden, tor, bitcoin, forum, wiki, host, link, card, mark0et, directory,

clearnet, site, drug, web, marketplace

5.5 Case Studies

We analyze the data with the purpose of answering the questions raised in the Section 5.1.

We will be using the following key security terms. Vulnerability is a security flaw that

allows an attacker to compromise a software or an operating system. Exploit is a piece of

software that takes advantage of a vulnerability in a piece of software or operating system

117

to compromise it. Patch is a piece of software used to improve existing software by fixing

vulnerabilities to improve security. We discuss the following case-studies.

5.5.1 Discovery of Zero-Day Exploits.

Over a 4 week period, we detected 16 zero-day exploits from the marketplace data.

Zero-day exploits leverage vulnerabilities that are unknown to the vendor. Table 5.7 shows

a sample of zero-day exploits with their selling price in Bitcoin. The Android WebView

zero-day affects a vulnerability in the rendering of web pages in Android devices. It affects

devices running on Android 4.3 Jelly Bean or earlier versions of the operating system. This

comprised of more than 60% of the Android devices in 2015. After the original posting of

this zero-day, a patch was released in Android KitKit 4.4 and Lollipop 5.0 which required

devices to upgrade their operating system. As not all users have/will update to the new

operating system, the exploit is continues to be sold for a high price. Detection of these

zero-day exploits at an earlier stage can help organizations avoid an attack on their system

or minimize the damage. For instance, in this case, an organization may decide to prioritize

patching, updating , or replacing certain systems using the Android operating system.

Table 5.7: Example of Zero-day exploits.

Zero-day exploit Price (BTC 7)

Internet Explorer 11 Remote Code Execution 0day 20.4676

Android WebView 0day RCE 40.8956

Fresh 0day MS Office 38.3436

5.5.2 Exploits targeting known vulnerabilities.

Zero-day vulnerabilities are difficult to discover, hence the zero-day exploits are rare.

But exploits targeting known vulnerabilities often show up on the marketplaces for sale.

118

These exploits are advertised to target specific vulnerabilities. Sometimes vendors mention

Common Vulnerability and Exposure (CVE) numbers assigned by the National Institute of

Standards and Technology (NIST). Using NIST’s National Vulnerability Database (NVD) 8

, we can determine the vulnerability and the target softwares from the CVE number. For

instance, the Silent Doc exploit allows remote attackers to execute arbitrary code or cause

a denial of service (memory corruption). It affects Microsoft Word. The severity level

was listed HIGH on this exploit. Exploit kit on the other hand targets many vulnerabilities

and is expensive. The Xer Exploit Kit (Table 5.8) targets 7 vulnerabilities. Also note that

Microsoft also assigns vulnerability numbers for its products with a ”Microsoft Security

Bulletin” (MSB) number. These numbers are sometimes seen as well in marketplace product

descriptions.

Table 5.8: Exploit-Vulnerability.

Exploit Vulnerability

SILENT DOC EXPLOIT CVE-2014-1761

Sqlninja CVE-2010-0232

Xer Exploit Kit / traffic / LOADS CVE-2015-2426, CVE-2015-0313, CVE-2015-0311,

CVE-2014-0556, CVE-2015-0317, CVE-2014-0515,

CVE-2015-2444

5.5.3 Users having presence in markets/ forums.

Previous studies on darkweb crawling [41, 10] explore a single domain, namely forums.

We create a social network that includes both types of information studied in this chapter:

marketplaces and forums. We can thus study and find these cross-site connections that were

previously unstudied. We are able to produce this connected graph using the “usernames”
8https://nvd.nist.gov/home.cfm

119

used by vendors and users in each domain. A subgraph of this network containing some of

the individuals who are simultaneously selling products related to malicious hacking and

publishing in hacking related forums is shown in Fig. 5.9. In most cases the vendors are

trying to advertise/discuss their products on the forums, demonstrating their expertise. Using

these integrated graphic representations, one can visualize the individuals’ participation

in both domains, making the right associations that lead to a better comprehension of the

malicious hacker networks. It is helpful in determining social groups within the forums of

user interaction. The presence of users on multiple markets and forums follows a power

law. From Fig. 5.10, majority of users only belong to a single market or forum. We note

that there are 751 users that are present in more than two platforms. Fig. 5.11 considers one

such user/vendor. The vendor is active in 7 marketplaces and 1 forum . The vendor offers 82

malicious hacking related products and discusses these products on the forum. The vendor

has an average rating of 4.7/5.0, rated by customers on the marketplace with more than 7000

successful transactions, indicating the reliability of the products and the popularity of the

vendor.

Fig. 5.9: Vendor/User network in marketplace and forum.

120

1

10

100

1000

10000

0 2 4 6 8

N
u

m
b

er
 o

f
U

se
rs

 (
Lo

g
sc

al
e)

Number of Platforms

Fig. 5.10: Users in multiple markets and

forums.
Fig. 5.11: A centric network of a Vendor.

5.6 Related Work

Web crawling is a popular way of collecting large amounts of data from the Internet. In

many applications researchers are interested in specific topics for their application. Hence

the need for a topic-based crawler popularly referred to as a focused crawler [24, 23]. Most

of the focused crawlers are designed to collect information from the surface web with little

concentration on the darkweb websites. More recently a focused crawler concentrating

on dark web forums was designed [41]. This research primarily concentrated on forums,

collecting data over a period of time and then performing static analysis to study online

communities. The authors also describe different data mining techniques for these forums

in [26]. We, on the other hand, not only look at darkweb forums but also collect information

from marketplaces hosting a range of products relating to malicious hacking.

Additionally, web-crawlers have been developed to aid law enforcement to track online

extremist activities [82]. This work has included the use of a self-guided web-crawler

using sentiment analysis to identify extremist content, threats to critical infrastructure [75]

and online sexual child exploitation [135]. Another application of leveraging darkweb

information to counter human trafficking is developed by DARPA through the Memex

121

program 9 - a program with different goals than the work described in this chapter.

Previous work leverages the exploit information from marketplaces in a game theoretic

framework to formulate system configurations that minimize the potential damage of a

malicious cyber attack [104]. Other work suggests that hacker communities can be analyzed

to aid in detection to reveal existing and emerging threats. Threats that pose great risk to

individuals, businesses, and government [10]. It further states that knowledge is distributed

in forums. That minimally skilled people could learn enough by simply frequenting such

platforms. This behavior is widespread geopolitically (namely across US, China, Russia, the

Middle-East). Studying these hacker communities gives insights in the social relationships.

Also, the distribution of information amongst users in these communities based on their skill

level and reputation [52, 57, 50]. These forums also serve as markets where malware and

stolen personal information are shared/ sold [51]. Samtani et al. analyze hacker assets in

underground forums [108]. They discuss the dynamics and nature of sharing of tutorials,

source code, and “attachments” (e.g. e-books, system security tools, hardware/software).

Tutorials appear to be the most common way of sharing resources for malicious attacks.

Source code found on these particular forums was not related to specific attacks. Mostly

general, SQL-related (suggesting targets like databases of banks). Additionally underground

forums have also been analyzed to captures the dynamic trust relationships forged between

mutually distrustful parties [84]. They analyze six different underground clearnet forums -

examining the properties of the social networks formed within. The content of the goods and

services being exchanged. Lastly, how individuals gain and lose trust in these underground

forums. These applications gather information from the clearnet to test their theories. Less

effort is put towards analyzing darkweb information given the challenges in gathering

information from the darkweb. Additionally, our focus in this work is on the unique

characteristics of forums and markets supporting malicious hacking in particular - not
9https://opencatalog.darpa.mil/MEMEX.html

122

general illicit activities.

5.7 Summary

In this chapter we implement a system for intelligence gathering related to malicious

hacking. We consider social platforms on darkweb and deepweb for data collection. We

address various design challenges to develop a focused crawler using data mining and

machine learning techniques. We transitioned this system to a commercial partner to

increase the scale of data collection and maintain the system. The constructed database

is made available to security professionals in order to identify emerging cyber-threats and

capabilities as demonstrated by the application in Chapter 6.

123

Chapter 6

AT-RISK SYSTEM IDENTIFICATION VIA ANALYSIS OF DISCUSSIONS ON THE

DARKWEB

6.1 Introduction

Adequate assessment of threats to systems is a central aspect of a mature security policy—

identifying systems that are at-risk can help defend against potential cyber attacks. Currently,

organizations rely on the rating system (CVSS score) provided by The National Institute of

Science and Technology that maintains a comprehensive list of publicly disclosed vulnera-

bilities in the National Vulnerability Database (NVD [86]) to identify if their systems are at

risk. Case studies have shown poor correlation between the CVSS score and the likelihood

that a vulnerability on a system will be targeted by hackers [2]. Hence, organizations are

constantly looking for ways to proactively identify if their vulnerable systems are of interest

to hackers.

Table 6.1: System components and examples

Components Explanation and Examples

Platform Can be either hardware (h), operating system (o), or application

(a) based on what the vulnerability exploits.

Vendor The owner of the vulnerable product. Examples include Google,

Microsoft, The Mozilla Foundation, and the University of Oxford.

Product The product that is vulnerable. Examples include Internet Explorer,

Java Runtime Environment, Adobe Reader, and Windows 2000.

Threat intelligence from darkweb (D2web) has been leveraged to predict whether or

124

not a vulnerability mention on D2web will be exploited [4, 3]. This method only considers

hacker discussions that have a CVE number mentioned in them—a limitation of the approach

is therefore that discussions with no vulnerability identifiers (CVE) that are of interest to

threat actors are not taken into account. In this chapter, we propose to leverage this threat

intelligence gathered from D2web markets and forums to identify the systems that might

be of interest to threat actors. We identify systems based on the structured naming scheme

Common Platform Enumeration (CPE [31]). We focus our efforts towards identifying the

first three system components of the CPE naming scheme; Table 6.1 shows these three

components, with examples for each.

We design a system that leverages threat intelligence (hacker discussions) and makes

a decision regarding at-risk systems, at the same time providing arguments as to why a

particular decision was made. It explores multiple competing hypotheses (in this case

multiple platforms, vendors, products) based on the discussions for and against a particular

at-risk component. The resulting system is a hybrid that combines DeLP with machine

learning classifiers. Previously, a similar reasoning system was employed for attributing

cyber-attacks to responsible threat actors in chapter 4 evaluated on a capture-the-flag dataset

in chapter 3.

In this chapter:

• We frame identifying at-risk systems as a multi-label classification problem, and apply

several machine learning approaches to compare their performance. We find that large

number of possible label choices for vendors and products with less representation in

training account for the majority of the misclassified samples.

• To address misclassification, we propose a hybrid reasoning framework that com-

bines machine learning techniques with defeasible argumentation to reduce the set of

possible labels for each system component. The reasoning framework can provide

125

arguments supporting the decisions, indicating why a particular system was identi-

fied over others; this is an important aspect, supporting a security analyst in better

understanding the result.

• We report on experiments showing that the reduced set of labels used in conjunction

with the classifiers leads to significant improvement in precision (15%-57%) while

maintaining comparable recall.

6.1.1 Vulnerability related terms

Vulnerability is a flaw in a system (software/hardware) that makes the system vulnerable

to attacks compromising the confidentiality, integrity or availability of the system to cause

harm [99].

CVE: Common vulnerability enumeration (CVE) is a unique identifier assigned to a system

vulnerability reported to NIST [32]. NIST maintains a database of all the vulnerabilities pub-

licly available in the National Vulnerability Database (NVD [86]). Predicting exploitability

of a CVE is an important problem and recent work leveraging darkweb data has shown good

performance in achieving that goal [4, 3]. But these techniques reply on direct mentions

of CVE’s. We Note that a very small portion of hacker discussions in the data from the

commercial provider has direct CVE mentions.

CPE: Common platform enumeration (CPE) is a list of software / hardware products that

are vulnerable for a given CVE. NIST makes this data available for each vulnerability in

its database. Identifying at-risk systems in terms of its components (see Table 6.1) is an

important step towards predicting if those systems will be targeted by threat actors (in

cases where the hacker discussion is not associated with a CVE number). For the system

components under consideration, there exists a hierarchy starting from the platform to

vendor to product. For instance, if we are considering operating systems, then there are

126

D2web API’s
(discussions from

forums and markets

NVD
(CPE Hierarchy)

Machine
Learning
Model

Argumentation Model
θ: Facts

ω: Strict Rules
δ: Defeasible Rules

θ:

At-risk System
Vulnerability

Discussion features

Website / user
Preference

Reduced set of platforms,
vendors, products

Fig. 6.1: Reasoning System

limited number of vendors that provide it: Microsoft, Apple, Google, etc. If we identify

Microsoft as our vendor, then the products are related to the Windows operating system.

This hierarchy helps us to narrow down possible choices as we go down the hierarchy.

6.2 System Overview

Fig. 6.1 gives an overview of the reasoning system; it consists of the following three

main modules:

• Knowledge Base: Our knowledge base consists of hacker discussions from darkweb

(D2web) forums and marketplaces collected in chapter 5. This data is maintained and

made available through APIs by a commercial darkweb threat intelligence provider

1 . The database is collected from 302 websites 2 . We use the hacker discussions

in terms of posted content (from forums) and item descriptions (from markets), the

website it is posted on, and the user posting the discussion as inputs to both the
1Cyber Reconnaissance, Inc. (CRY3CON), https://www.cyr3con.com.
2At the time of writing

127

argumentation and machine learning models. We also input the CPE hierarchy from

NVD to the argumentation model. We discuss and provide further analysis of the data

in Section 2.2. For the experiment, we sort the dataset by time (depending on when

the discussion was posted); the first 80% is reserved for training (knowledge base)

and the remaining 20% for testing. We follow similar time split to compute the CPE

hierarchy as well.

• Argumentation Model: This component constructs arguments for a given query (at-

risk system component) using elements in the knowledge base. We use a formalism

called DeLP that combines logic programming with defeasible argumentation. It is

made up of three constructs: facts: observations from the knowledge base that cannot

be contradicted; strict rules: logical combinations of facts that are always true; and

defeasible rules: can be thought of as strict rules but are only true if no contradictory

evidence is present. We discuss the argumentation framework with examples for each

of the constructs in Section 3.3. Arguments help reduce the set of possible choices for

platforms, vendors and products; this reduced set of possible system components acts

as one of the inputs to the machine learning model. The argumentation model thus

constrains the machine learning model to identify the system from the reduced set of

possible platforms, vendors, and products.

• Machine Learning Model: The machine learning model takes the knowledge base

and query as input, along with the reduced set of possible system components from the

argumentation model, and provides a result identifying the system. It is constrained

by the argumentation model to select the components from the reduced platform,

vendor and product set, which aids the machine learning model (improving precision)

as demonstrated in the results section of the chapter. We use text-based features

extracted from the discussions (TF-IDF/Doc2Vec) for the machine learning model.

128

Any standard machine learning model can be used in this module. We provide a

comparison of different machine learning models to select the best one.

6.3 Dataset

6.3.1 D2web data

We use D2web data supplied by a threat intelligence company collected in chapter 5. The

data is accessed via APIs. The data is comprised of forum discussions and marketplace items

offered for sale in D2web. Exploration of D2web discussions in terms of their structure,

content and behavior of users who post these discussions is reported in [112]. The data is

collected periodically to obtain time-based information indicating changes in the forums and

marketplaces. To ensure collection of cyber-security relevant data, machine learning models

are employed that filter the data related to drugs, weapons, and other irrelevant discussions.

Table 6.2 shows the characteristics for the websites, posts/items, and users. The data is

comprised from websites with different languages. A single website might have discussions

in different languages. Fig. 6.2 shows the percentage of total websites from the D2web for

the top ten languages used to post discussions Majority of the websites have discussions

in English (73%), with other languages having an even distribution. The commercial data

collection platform automatically identifies the language and translates it to English using

the Google Translate API [46].

Ground Truth. In order to evaluate the performance of the reasoning framework, we need

ground truth associated with the hacker discussions. To obtain ground truth we consider

discussions from forums and marketplaces that mention a CVE number. From the CVE

number we can look up the vulnerable systems using the NVD; we note that for both training

and testing we remove the CVE number while computing features. Table 6.2 shows the

characteristics for the websites, posts/items, and users that mention a CVE number. The

129

0

20

40

60

80

%
 o

f
to

ta
l w

eb
si

te
s

Language

Fig. 6.2: Percentage of total websites belonging to the top ten languages in the D2web data.

Table 6.2: Characteristics of D2web data

Number of D2web websites 302

Number of unique users 635,163

Number of unique posts / items 6,277,638

Number of D2web websites (CVE mentions) 135

Number of unique users (CVE mentions) 3,361

Number of unique posts / items (CVE mentions) 25,145

hacker discussion with CVE mentions belong to 135 websites posted by 3361 users. On

analyzing the CVE mentions most of the older vulnerabilities target products that are no

longer in use. For that reason in our experiments we consider CVE discussions posted

after 2013 (starting 01/01/2014). These discussion make up around 70% of the total CVE

discussions.

CPE Hierarchy. We compute the hierarchy for all the vulnerable systems from all the

vulnerabilities disclosed in NVD [86], and maintain it as a dictionary to build arguments on

top of it. Fig. 6.3 shows a subset of the built hierarchy with the three system components

130

Operating
System (o)

Mac OSXWindows
Server

Windows 10

AppleMicrosoft

Product

Vendor

Platform

Fig. 6.3: Subset of CPE Hierarchy

(platform, vendor and product).

Website/User preference. We compute and maintain a list of system components discussed

for each website and user. This lets us know if a particular website is preferred by hackers

to discuss specific at-risk systems. The user list gives us the preference of the user regarding

what at-risk systems are of interest to him/her.

Overall in our dataset, for platforms most discussions pose a threat to operating systems

(57%), following by applications (43%) and hardware makes up a small fraction of the

discussions (3%). There are discussions that pose a risk to multiple platforms i.e. operating

systems and application or in few instances all three. For vendors, the top five at-risk based

on CVE mentions in the hacker discussions: Microsoft (24%), Linux (9%), Apple (6%),

Oracle (5%), Adobe (5%). Similar to platforms discussions can pose a risk to multiple

vendors. For products the distribution is more even since a single vendor can have multiple

products. Even though Microsoft dominates the vendor discussion, it also has the most

number of products that are at risk. The top five at-risk products based on CVE mentions

131

in the hacker discussions: Windows server (5%), Windows 8.1 (4%), Linux kernel (3.8%),

Mac OSX (2.3%), Flash player (1.9%).

6.4 Argumentation Model

Our approach relies on a model of the world where we can analyze competing hypotheses.

Such a model allows for contradictory information so it can handle inconsistency in the data

similar to the one employed for attributing cyber-attacks to responsible threat actors [115,

94].

Before describing the argumentation model in detail, we introduce some necessary

notation (similar to be one used in chapter 3). Variables and constant symbols represent

items such as the platform/vendor/product at-risk by the discussion and post/webID/userID

represent the hacker discussion, where it was posted and who posted it respectively (we note

that for privacy concerns the webID/userID is represented as an integer in the data provided

by the APIs—the names are not disclosed). We denote the set of all variable symbols with

V and the set of all constants with C. For our model we require six subsets of C:

• Cpost denoting the hacker discussion,

• Cweb , denoting the websites (both forums and marketplaces) where the hacker discus-

sion was posted,

• Cuser , denoting the users who posts hacker discussions, and

• Cplatform , Cvendor , Cproduct denoting the three components at-risk by the discussion

(see Table 6.1).

We use symbols in all capital letters to denote variables. In the running example, we use a

subset of the D2web dataset collected by the threat intelligence company.

132

Table 6.3: Example predicates and explanation

Predicate Explanation

posted(post1, webID1) post1 was posted on the website webID1.

at risk(D,Y) Post D discussed vendor Y being at-risk.

user preference (userID1,microsoft) userID1 prefers to post discussions regarding

Microsoft systems at-risk.

previously seen (webID1, adobe flash) At-risk discussions regarding Adobe Flash are

discussed in webID1.

parent(microsoft, safari) Vendor Microsoft is a parent of product Safari.

Example 5. The following system and post/web/user information will be used in the running

example:

Cpost = {post1, post2, ..., postn}

Cweb = {webID1,webID2, ...,webIDn}

Cuser = {userID1, userID2, ..., userIDn}

Cplatform = {h, o, a}

Cvendor = {microsoft, google, the mozilla foundation}

Cproduct = {internet explorer, windows 10, adobe reader}

The language also contains a set of predicate symbols that have constants or vari-

ables as arguments, and denote events that can be either true or false. We denote the

set of predicates with P; examples of predicates are shown in Table 6.3. For instance,

user preference(userID1,microsoft) will either be true or false, and denotes the event where

userID1 prefers to post discussions regarding microsoft systems at-risk.

A ground atom is composed by a predicate symbol and a tuple of constants, one for each

argument—hence, ground atoms have no variables. The set of all ground atoms is denoted

133

with G. A ground literal L is either a ground atom or a negated ground atom. An example

of a ground atom for our running example is posted(post1, webID1). In the following, we

will use G′ to denote a subset of G.

Defeasible Logic Programming: DeLP is a formalism that combines logic programming

with defeasible argumentation; we refer the interested reader to [42] for a fully detailed

presentation of the system. The formalism is summarized in chapter 3 (see Section 3.3)

along with the three constructs, namely facts, strict rules, and defeasible rules. These three

constructs are used to build arguments, and DeLP programs are simply sets of facts, strict

rules and defeasible rules. We adopt the usual notation for DeLP programs, denoting the

program (or knowledge base) with Π = (Θ,Ω,∆), where Θ is the set of facts, Ω is the set

of strict rules, and ∆ is the set of defeasible rules. Examples of the three constructs are

provided with respect to the dataset in Fig. 6.4. We now describe the notation used to denote

these constructs. We reiterate the definitions of the three constructs.

Facts (Θ) are ground literals that represent atomic information or its (strong) negation (¬).

Strict Rules (Ω) represent cause and effect information; they are of the form L0 ← L1, ...Ln,

where L0 is a literal and {Li}i>0 is a set of literals.

Defeasible Rules (∆) are weaker versions of strict rules, and are of the form L0 -≺

L1,, Ln, where L0, is the literal and {Li}i>0 is a set of literals.

When a hacker discussion happens on D2web, the model can be used to derive arguments

to determine the at-risk system (in terms of platform, vendor, and product). Derivation

follows the same mechanism as classical logic programming [73]; the main difference

is that DeLP incorporates defeasible argumentation, which decides which arguments are

warranted, which arguments are defeated, and which arguments should be considered to be

blocked—the latter are arguments that are involved in a conflict for which a winner cannot

be determined.

134

Fig. 6.4 shows a ground argumentation framework demonstrating constructs derived

from our D2web data. For instance, θ1 indicates the fact that a hacker discussion post1 was

posted on the D2web website webID1, and θ5 indicates that user userID1 prefers to post

discussions regarding apple products. For the strict rules, ω1 says that for a given post post1

posing a threat to operating system (o), the vendor sandisk cannot be at risk if the parent of

sandisk is not operating system (o) 3 . Defeasible rules can be read similarly; δ2 indicates

that if post1 poses a threat to the vendor apple, the product safari can be at-risk if apple

is the parent of safari. By replacing the constants with variables in the predicates we can

derive a non-ground argumentation framework that can be applied in general.

The following examples discuss arguments for our scenario.

Example 6. Fig. 6.5 shows example arguments based on the KB from Fig. 6.4; here,
〈
A3,

at risk(post1, apple)
〉

is a subargument of
〈
A2, at risk(post1, safari)

〉
.

We engineer our at-risk system framework as a set of defeasible and strict rules whose

structure was created manually, but are dependent on values learned from a historical corpus

of D2web data. Then, for a given post discussing a vulnerability, we instantiate a set of

facts for that situation; this information is then provided as input into the DeLP system,

which uses heuristics to generate all arguments for and against every possible components

of the system (platforms, vendors, products) for the post discussion. Dialectical trees based

on these arguments are analyzed, and a decision is made regarding which components are

warranted. This results in a reduced set of potential choices, which we then use as input

into a classifier to obtain the at-risk system. The following section discusses these steps in

full detail.
3This encodes the CPE hierarchical structure.

135

Θ : θ1 = posted(post1,webID1)

θ2 = posted(post1, userID1)

θ3 = parent(o,microsoft)

θ4 = parent(apple, safari)

θ5 = user preference(userID1, apple)

θ6 = previously seen(webID1, o)

Ω : ω1 = ¬ at risk(post1, sandisk)← at risk(post1, o),

¬parent(o, sandisk)

ω2 = ¬ at risk(post1, internet explorer)← at risk(post1, apple),

¬parent(apple, internet explorer)

∆ : δ1 = at risk(post1,microsoft) -≺ at risk(post1, o),

parent(o,microsoft)

δ2 = at risk(post1, safari) -≺ at risk(post1, apple),

parent(apple, safari)

δ3 = at risk(post1, apple) -≺ user preference(userID1, apple)

δ4 = at risk(post1, o) -≺ previously seen(webID1, o)

Fig. 6.4: A ground argumentation framework.

136

〈A1, at risk(post1,microsoft) 〉 A1 = {δ1, δ4, θ3}

〈A2,at risk(post1, safari) 〉 A2 = {δ2, δ3, θ4}

〈A3, at risk(post1, apple)〉 A3 = {δ3, θ5}

〈A4, at risk(post1, o)〉 A4 = {δ4, θ6}

Fig. 6.5: Example ground arguments from Fig. 3.2.

6.5 Experiments

We frame the identification of at-risk systems as a multi-label classification problem

for each of the system component (platform, vendor, and product)—the basic step involves

extracting textual features from the discussions to be used as input to the machine learning

models. We now describe the data pre-processing steps and the standard machine learning

approaches, along with the metrics used for evaluating the models.

6.5.1 Data Representation

As mentioned above, we use text-based features to represent the hacker discussions on

the D2web, which are then used as input to the machine learning models. Some of the

discussions are in foreign languages (cf. Fig. 6.2). The commercial data collection platform

automatically identifies the language and translates it to English using the Google Translate

API [46]. The following pre-processing steps are taken to address different challenges. We

employ two feature engineering techniques namely TF-IDF and Doc2Vec.

Text Cleaning. We remove all non-alphanumeric characters from hacker discussions. This

removes any special characters that do not contribute towards making the decision.

Misspellings and Word Variations. Misspellings and word variations are frequently ob-

served in the discussions on the D2web, leading to separate features in the feature vector

if a standard bag-of-words (BOW) approach is used. In BOW, we create a dictionary of

137

all the word occurrences in the training set; then, for a particular discussion, the feature

vector is created by looking up which words have occurred and their count in the discussion.

Misspellings and word variations will thus be represented as different words; to address this,

we use character n-gram features. As an example, consider the word “execute”—if we were

using tri-gram character features, the word “execute” would yield the set of features:

{“exe”,“xec”,“ecu”,“cut”,“ute”}.

The benefit of this technique is that the variations or misspellings of the word, such as

“execution”, “executable”, or “”exxecute”, will all have common features. We found that

using character n-grams in the range 3–7 worked best in our experiments.

TF-IDF Features. We vectorize the n-gram features using the term frequency-inverse

document frequency (TF-IDF) model, which creates a vocabulary of all the n-grams in the

discussion. In TF-IDF, the importance of an n-gram feature increases with the number of

times it occurs, but is normalized by the total number of n-grams in the description. This

eliminates common words from being important features. We consider the top 1,000 most

frequent features (using more than 1,000 features did not improve the performance, but

rather only added to the training and testing time).

Doc2Vec Features. Doc2Vec is a feature engineering technique to generate document

vector (in our case document refers to a discussion), which acts as input to the classifier

to identify at-risk systems. In Doc2Vec, first, a vector representation of each word in the

document in computed by taking into account the words around it (to maintain context) and

then these word vectors are averaged to get a representation of the document. We implement

Doc2Vec using the gensim library in Python 4 . It was been previously used to classify

tweets [128] as well as product descriptions [66].
4https://radimrehurek.com/gensim/models/doc2vec.html

138

6.5.2 Supervised Learning Approaches

We conducted our experiments using the following standard machine learning approaches

implemented using Python machine learning library 5 discussed in Section 2.3.

6.5.3 Evaluation Metrics

In our experiments, we evaluate performance based on three metrics: precision, recall,

and F1 measure. For a given hacker discussion, precision is the fraction of labels (platforms,

vendors, or products) that the model associated with the discussion that were actual labels

in the ground truth. Recall, on the other hand, is the fraction of ground truth labels identified

by the model. The F1 measure is the harmonic mean of precision and recall. In our results,

we report the average precision, recall, and F1 for all the test discussions.

6.5.4 Baseline Model (BM)

For the baseline model, we only leverage the machine learning technique to identify the

at-risk systems. We create training and testing sets by sorting the discussions by posted time

on the website (to avoid temporal intermixing). We reserve the first 80% of the samples

for training and the rest (20%) for testing. We employed both TF-IDF and Doc2Vec as

feature engineering techniques. On conducting the experiments, it was observed that TF-IDF

performed better than Doc2Vec in all the experiments. Hence we only report the results

using TF-IDF features.

Results. Table 6.4 shows the average performance of the machine learning technique for

each component of the at-risk system. For platform identification, SVM performs the best

with the following averages:

• precision: 0.72,
5http://scikit-learn.org/stable/

139

Table 6.4: Average Precision, Recall, and F1 measure for NB, LOG-REG, DT, RF and SVM

to identify at-risk systems.

Component Model Precision Recall F1 measure

Platform

NB 0.68 0.65 0.66

LOG-REG 0.72 0.76 0.74

DT 0.66 0.70 0.68

RF 0.70 0.75 0.72

SVM 0.72 0.78 0.76

Vendor

NB 0.37 0.34 0.36

LOG-REG 0.28 0.25 0.27

DT 0.39 0.43 0.41

RF 0.40 0.43 0.41

SVM 0.40 0.48 0.44

Product

NB 0.19 0.14 0.16

LOG-REG 0.20 0.13 0.16

DT 0.22 0.15 0.18

RF 0.22 0.25 0.24

SVM 0.26 0.24 0.25

• recall: 0.78, and

• F1 measure: 0.76.

LOG-REG had similar precision, but lower recall. Similarly, for vendor identification, SVM

performs the best with averages:

• precision: 0.40,

• recall: 0.48, and

140

• F1 measure: 0.44,

with RF having similar precision. For platform identification, SVM had the best perfor-

mance:

• precision: 0.28,

• recall: 0.24 (comparable to RF), and

• F1 measure: 0.25.

Since SVM performs consistently better for all three classification problems, moving forward

we use SVM as our machine learning component in the reasoning framework (cf. Fig. 6.1).

6.5.5 Reasoning Framework (RFrame)

As we go down the CPE hierarchy, the number of possible labels for vendors and

products increases largely as the number of discussions representing each label decreases,

thus making learning difficult and decreasing performance. We address this issue by

proposing a set of strict and defeasible rules for platform, vendor, and product identification.

We note that these rules arise from the discussion that is being evaluated and do not require

parameter learning.

We use the notation described in Table 6.5 for defining our constructs (facts, strict rules,

and defeasible rules). We note that facts cannot have variables, only constants (however, to

compress the program for presentation purposes, we use meta-variables in facts). To begin,

we define the facts (see Fig. 6.6): θ1 states that a hacker discussion D was posted on the

D2web websiteW (can be either forum or marketplace), and θ2 states that the user U posted

the discussion. For each level in the CPE hierarchy, we define additional rules discussed as

follows.

141

Table 6.5: Notation and Explanations

Notation Explanation

D The hacker discussion (posted on the website) under consideration.

W Website (marketplace or forum) where the hacker discussion was

posted.

Sw, Vw and Pw The set of platforms, vendors and products at-risk by the hacker

discussions previously seen inW under consideration respectively.

U User posting the hacker discussion.

Su, Vu and Pu The set of platforms, vendors and products at-risk by the hacker

discussions previously posted by user U under consideration re-

spectively.

Sp, Vp and Pp The set of platforms, vendors and products identified by the ma-

chine learning model at each level in the hierarchy for hacker

discussions under consideration respectively.

si, vi and pi Each element of the set Sp, Vp and Pp representing a single plat-

form, vendor or product respectively.

Θ : θ1 = posted(D,W)

θ2 = posted(D,U)

Fig. 6.6: Facts defined for each test discussion.

Platform Model. The first level of system identification is identifying the platform that

the hacker discussion is a threat to. We compute previously discussed platforms on D2web

websites under consideration. Similarly, which platform the user under consideration

prefers (based on their previous postings) is also computed. This shows preferred platform

discussions on websites and by users, which can aid the machine learning model in reducing

142

For s ∈ Sw:

∆ : δ1 = at risk(D, s) -≺ previously seen(W, s).

For s ∈ Su:

δ2 = at risk(D, s) -≺ user preference(U , s).

Fig. 6.7: Defeasible rules for platform identification.

the number of platforms it can identify from. The DeLP components that model platform

identification are shown in Fig. 6.7. For the defeasible rules, δ1 indicates that all the

platforms Sw previously seen in the D2web websiteW where the current discussion D is

observed are likely at-risk, δ2 indicates that all the platforms Su from user U’s previous

postings are also likely at-risk.

Vendor Model. The second level is identifying the at-risk vendor. For this case, we use the

platform result from the previous model, taking that as a DeLP fact. The DeLP components

that model vendor identification are shown in Fig. 6.8. Here, the fact θ1 indicates the

platform identified for the discussion—note that multiple platforms may be identified based

on the discussion. The strict rule ω1 states that for a given post D posing a threat to platform

s, the vendor vi cannot be at-risk if the parent of vi is not the identified platform s. This rule

is based on the CPE hierarchy obtained from NVD. For the defeasible rules, δ1 indicates

that all the vendors Yw previously seen in the D2web websiteW where the current hacker

discussion D is observed are likely at-risk, δ2 indicates that all the vendors Yu from user U ’s

previous postings are also likely at-risk, and δ3 states that for a given post D posing a threat

to platform s, all the vendors whose parent is the identified platform are likely at-risk. This

rule is also based on the CPE hierarchy from NVD.

Product Model. The third level is identifying the at-risk product. For this case, we use

the vendor result from the previous model; as before, we use that as a DeLP fact. The

143

For s ∈ Sp:

Θ : θ1 = at risk(D, s)

For s ∈ Sp:

Ω : ω1 = ¬ at risk(D, vi)← at risk(D, s), ¬parent(s, vi)

For v ∈ Yw:

∆ : δ1 = at risk(D, v) -≺ previously seen(W, v).

For v ∈ Yu:

δ2 = at risk(D, v) -≺ user preference(U , v).

For s ∈ Sp:

δ3 = at risk(D, vi)← at risk(D, s), parent(s, vi)

Fig. 6.8: Defeasible rules for vendor identification.

DeLP components that model product identification are shown in Fig. 6.9. Here, the fact θ1

indicates the vendor identified for the discussion—again, multiple vendors may be identified

based on the discussion. The strict rule ω1 states that for a given post D posing a threat to

vendor v, the product pi cannot be at-risk if the parent of pi is not the identified vendor

v (again, based on the CPE hierarchy). For the defeasible rules, δ1 indicates that all the

products Pw previously seen in the D2web websiteW where the current hacker discussion

D is observed are likely at-risk, δ2 indicates that all the products Pu from user U ’s previous

postings are also likely at-risk, and δ3 states that for a given post D posing a threat to vendor

v, all the products whose parent (in the CPE hierarchy) is the identified vendor are likely

at-risk.

Results. We evaluate the reasoning framework using an experimental setup similar to the

one discussed in the baseline model. We report the precision, recall, and F1 measure for

144

For v ∈ Yp:

Θ : θ1 = at risk(D, v)

For v ∈ Yp:

Ω : ω1 = ¬ at risk(D,pi)← at risk(D, v), ¬parent(v,pi)

For p ∈ Pw:

∆ : δ1 = at risk(D, p) -≺ previously seen(W, p).

For p ∈ Pu:

δ2 = at risk(D, p) -≺ user preference(U , p).

For v ∈ Yp:

δ3 = at risk(D,pi)← at risk(D, v), parent(v,pi)

Fig. 6.9: Defeasible rules for product identification.

each of the system components and compare them with the best performing baseline model

(BM). Table 6.6 shows the comparison between the two models.

For platform identification, RFrame outperforms BM in terms of precision: 0.83 vs.

0.72 (a 15.27% improvement), while maintaining the same recall. Similarly, for vendor and

product identification there was significant improvement in precision: 0.56 vs. 0.40 (a 40%

improvement) and 0.41 vs. 0.26 (a 57.69% improvement), respectively, with comparable

recall with respect to the baseline model. The major reason for the jump in precision is

the reduction of possible labels based on the arguments introduced that aids the machine

learning model to make the correct decision.

145

Table 6.6: Average Precision, Recall, and F1 measure comparison between the baseline

model (BM) and reasoning framework (RFrame).

Component Model Precision Recall F1 measure

Platform
BM 0.72 0.78 0.76

RFrame 0.83 0.78 0.80

Vendor
BM 0.40 0.48 0.44

RFrame 0.56 0.44 0.50

Product
BM 0.26 0.24 0.25

RFrame 0.41 0.21 0.30

6.6 Discussion

The performance of the reasoning system highlights that our hybrid framework identifies

at-risk systems with higher precision with respect to the approach using only machine

learning classifiers. In our application, we desire a high precision—while maintaining at

least comparable recall—in order to provide high value risk assessment of systems; low

precision is often equated to a less reliable framework. The majority of misclassifications

are a result of less data representing those systems in the training set; for some system

components, the instances can be as low as having only one discussion in the training

set. This issue becomes more relevant as we go down the hierarchy with large numbers

of vendors and products. In some test instances, for the same platform and vendor, a new

product not previously known to be at-risk becomes vulnerable due to a newly disclosed

vulnerability. In this case, the reasoning framework is not able to identify the product since

it was not previously observed, and this can contribute to a misclassification.

From a security analyst’s perspective, the reasoning framework not only provides a list of

possible at-risk systems but also provides arguments indicating why a particular system was

146

identified as being at-risk. This lets the analyst evaluate the decisions made by the framework

and fine-tune it if necessary. For cases where a new product (not previously discussed in

training) is at-risk, even a partial identification of the system (in terms of platform and

vendor) is of value to the analyst. Based on the alert provided by the framework, the analyst

can manually evaluate the arguments and the discussions to identify possible products,

depending on the platform and vendor identified by the framework.

6.7 Related Work

Threat assessment of systems is critical to organizations’ security policy. Over the

years, CVSS [33] has become a standard metric that organizations use to determine if their

systems are at risk of being targeted by hackers. Unfortunately, case studies have shown

poor correlation between the CVSS score and which system are at-risk [2].

Identifying targeted systems through open source intelligence. Open source intelligence

has been used previously to identify and predict vulnerabilities that are likely to be exploited

to determine which systems are at risk. [138] has looked to predict the likelihood that a

software has a vulnerability not yet discovered using the national vulnerability database

(NVD). They show that NVD has a poor prediction capability in doing so due to limited

amount of information available. On the other hand, [106] looks to predict if a real world

exploit is available based on vulnerabilities disclosed from Twitter data. The authors

report high accuracies of 90% using a resampled, balanced, and temporal mixed dataset,

not reflective of real world scenarios [21]. Identifying threats to critical infrastructure

by analyzing interactions on hacker forums was studied in [76]. Here the authors reply

on keyword based queries to identify such threats from hacker interactions. Tools to

automatically identify products offered in cyber criminal markets was proposed in [100].

This technique looks to extract products mentioned in the description of the item that is

being offered, a problem different than what we address – identifying targeted systems not

147

explicitly stated in the forum discussions.

More recently, researchers have shown increased interest on gathering threat intelligence

from D2web to pro-actively identify digital threats and study hacker communities to gather

insights. Researchers have focused on building infrastructure to gather threat information

from markets (regarding goods and services sold) and forums (discussions regarding exploits

and) [90, 103], studying the different product categories offered in darkweb markets –

creating a labeled dataset [79], analyzing hacker forums and carding shops to identify

potential threats [10], identify expert hackers to determine their specialties [1], identify

key hackers based on posted content, their network and since when they are active in the

forum [80]. For vulnerability research, studies look to leverage vulnerability mentions in the

D2web to predict the likelihood of exploitation using a combination of machine learning and

social network techniques [4, 3]. These techniques rely on the mentions of CVE numbers to

identify likely targeted systems (which is a small fraction of vulnerabilities [4]), not taking

into account discussions where a CVE number is not mentioned. On the other hand, we look

to identify the at-risk systems without having a CVE number, which is a different problem

from those tackled in previous work.

Identifying targeted systems through software analysis. Another way of identifying

targeted softwares with vulnerabilities deals with analyzing the software itself in order

to determine which component of the software is most likely to contain a vulnerability.

Mapping past vulnerabilities to vulnerable software components was proposed in [85], where

the authors found that components with function calls and import statements are more likely

to have a vulnerability. A similar method was employed by [111, 131], where text mining

was used to forecast whether a particular software component contains vulnerabilities.

Similar text mining techniques for vulnerability discovery are listed in [43]. The text mining

methods create a count dictionary of terms used in the software, which are used as features

to identify vulnerabilities. These methods suffer from the issue of not knowing which

148

vulnerabilities might be of interest to hackers. On the other hand, we work with hacker

discussions posing a threat to systems that are of clearly of interest to hackers since they are

discussing them on the D2web websites—vulnerabilities mentioned on D2web regarding

systems are more likely to be exploited [4].

6.8 Summary

In this chapter, we demonstrated how a reasoning framework based on the DeLP struc-

tured argumentation system can be leveraged to improve the performance of identifying

at-risk systems based on hacker discussions on the D2web. DeLP programs built on

discussions found on forums and marketplaces afford a reduction on the set of possible

platforms, vendors, and products that are likely to be at-risk by the hackers participating

in the discussion. This reduction of potential labels leads to better precision while almost

maintaining comparable recall as compared to the baseline model that only leverages ma-

chine learning techniques. Knowing discussed systems by threat actors as possible targets

helps organizations achieve better threat assessment for their systems.

149

Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this dissertation, we described three pieces of work to better understand and reason

about the activities of cyber threat actors. This is achieved by covering three factors: the

threat actor’s use of deception, the capabilities available, and the intent of launching the

attack.

In Chapter 2, we considered the problem of cyber-attribution by examining DEFCON

CTF data - which provides us with ground-truth on the culprit responsible for each attack.

We frame cyber-attribution as a classification problem and examine it using several machine

learning approaches. We evaluated the approaches on nearly 10 million attacks from the

CTF data. Random forest achieved the best performance of identifying 37% of the attacking

teams. We find that deceptive attacks – where same exploits are used by multiple teams

to target a particular team, account for the majority of misclassified samples. The usage

of the same exploit creates similar feature representations for different attacking teams -

making it difficult for machine learning approaches. We employ several pruning techniques

to alleviate the misclassification due to deception.

In Chapter 3, we considered the problem of misclassification in a cyber attribution

scenario introduced in Chapter 2. The main source of misclassification was the deceptive

attacks. In this chapter we demonstrate how leveraging Defeasible Logic Programming

(DeLP) in an argumentation-based framework, can be employed to improve cyber-attribution

decisions. This is done by building DeLP programs based on real-world data; this approach

affords a reduction of the set of potential culprits and thus greater accuracy when using a

150

classifier for cyber attribution. We thus proposed a hybrid system that integrates argumen-

tation with a machine learning model to make decisions. Using this reasoning framework

the accuracy of identifying the attacking team jumped from 37% to 64.5% – a significant

improvement. The framework also aided a security analyst by providing a set of arguments

as to why a particular team was identified as the attacker and other teams were not.

In Chapter 4, we considered the problem of determination of adversarial intent (tasks)

on the attacked system by analyzing the malware/exploit used in the attack. Specifically,

identifying the tasks (intent) a given piece of malware was designed to perform (e.g., logging

keystrokes, recording video, establishing remote access). We present an automated method

to identify malware tasks using two different approaches based on the ACT-R cognitive

architecture, a popular implementation of a unified theory of cognition. Using three different

malware collections, we explore various evaluations for each of an instance-based and

rule-based model - including cases where the training data differs significantly from test;

where the malware being evaluated employs packing to thwart analytical techniques; and

conditions with sparse training data. Features are constructed by combining both static and

dynamic malware analysis – considering the function call names, network activity, malware

behavior on the host machine and so on. We find that our approach based on cognitive

inference consistently out-performs the current state-of-the art software for malware task

identification as well as standard machine learning approaches - often achieving an unbiased

F1 score of over 0.9. We also show the scaling of the model in terms of test time as the

number of samples grow.

In Chapter 5, we considered the problem of gathering intelligence related to malicious

hacking. We consider social platforms on darkweb and deepweb – in particular hacker

forums and marketplaces, for data collection. We address various design challenges to

develop a focused crawler using data mining and machine learning techniques resulting in

an operational system for identifying emerging cyber threats. At the time of development the

151

system was actively collecting approximately 305 cyber threats each week. Since then, we

have transitioned this system to a commercial partner to increase the scale of data collection

and maintenance These threat warnings include information on newly developed malware

and exploits that have not yet been deployed in a cyber-attack, discussions regarding known

vulnerabilities and how they can be exploited, users having presence in multiple platforms

to get better understanding of their social connections. This provides a significant service

to cyber-defenders. The system is significantly augmented through the use of various data

mining and machine learning techniques. With the use of learning models, we are able

to recall 92% of products in marketplaces and 80% of discussions on forums relating to

malicious hacking with high precision.

In Chapter 6, we considered the problem of identifying systems likely to be at-risk by

threat actors to help organizations better defend against likely cyber attacks. We leverage

hacker discussions on darkweb marketplaces and forums collected using the system intro-

duced in Chapter 5 to identify the platforms, vendors, and products likely to be at-risk by

hackers. This gives us an indicator regarding the hacker capability of targeting systems

based on their discussions. We employed and modified the reasoning system introduced

in Chapter 3 that combines DeLP (Defeasible Logic Programming) and machine learning

classifiers to identify systems based on hacker discussions observed on the darkweb. The

modified system takes into account the hierarchical structure of identifying a system in

terms of its platform, vendor and product. The system is evaluated on hacker discussions

from nearly 300 darkweb forums and marketplaces. We improved precision by 15%–57%

while maintaining recall over baseline approaches.

7.2 Future Work

There are a number of interesting future directions for research. Some specific future

work that extends the work in different chapters is discussed below.

152

In Chapter 3, we presented a reasoning framework to handle contradictory and incon-

sistent evidence resulting in cases of deceptive attacks to identify threat actors. In our

experiments, arguments are defeated based on contradicting information in other arguments

without any preference in terms of confidence in the arguments being defeated. A proba-

bilistic variant of DeLP [114], can result in a preference list to decide defeat of an argument

in case of contradiction.

In addition to understanding and identifying threat actors, we also ask: how do re-

searchers train and evaluate frameworks? The DEFCON CTF competition is designed to

make the incentive structure match the real world: contestants only receive points when

they hack into a system. The one thing teams in the CTF competition are not concerned

with is being discovered by other teams. The goal is to exploit vulnerabilities and score as

many points as possible. There is no incentive in the form of extra points awarded for being

deceptive where the target team cannot identify the adversary. In real world attack scenarios

where deception is an important goal, attackers employ different strategies to protect their

identity i.e. masking their IP address, using other systems as decoy to launch their attacks

and so on. There might me instances where such behavior occurs in the CTF competition

(see Chapter 2) but is not the priority with no incentives attached. To study and encourage

such behavior we designed our own CTF competition recently presented in [105]. By

motivating the contestants to employ deception, the data we gather will be more relevant to

studying deception in attribution while retaining ground truth. As the game masters we can

maintain visibility of the true facts of the game, and we can contrast contestant performance

with the performance of algorithms developed for the purpose of countering deception. The

framework is also capable of capturing host-level interactions that occur in the context of

the vulnerable running program. We make our platform available as open-source software.

It can be downloaded from: https://github.com/trailofbits/attribution-vm.

In Chapter 4, we analyze malicious samples by running them inside a sandbox to capture

153

the behavior on the host machine in terms of network and file activity. There are cases of

highly-sophisticated malware that in addition to using encryption and packing to limit static

analysis, also employ methods to “shut down” when run in a sandbox environment [72].

Methods to address such cases such as the technique of “spatial analysis” [44] that involves

direct analysis of a malware binary can he helpful.

154

REFERENCES

[1] A. Abbasi, W. Li, V. Benjamin, S. Hu, and H. Chen. Descriptive analytics: Examining
expert hackers in web forums. In Intelligence and Security Informatics Conference
(JISIC), 2014 IEEE Joint, pages 56–63. IEEE, 2014.

[2] L. Allodi and F. Massacci. Comparing vulnerability severity and exploits using case-
control studies. ACM Transactions on Information and System Security (TISSEC),
17(1):1, 2014.

[3] M. Almukaynizi, A. Grimm, E. Nunes, J. Shakarian, and P. Shakarian. Predicting
cyber threats through the dynamics of user connectivity in darkweb and deepweb
forums. In ACM Computational Social Science. ACM, 2017.

[4] M. Almukaynizi, E. Nunes, K. Dharaiya, M. Senguttuvan, J. Shakarian, and P. Shakar-
ian. Proactive identification of exploits in the wild through vulnerability mentions
online. In 2017 International Conference on Cyber Conflict (CyCon U.S.), pages
82–88, Nov 2017.

[5] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and Y. Qin. An
integrated theory of mind. PSYCHOLOGICAL REVIEW, 111:1036–1060, 2004.

[6] C. Annachhatre, T. H. Austin, and M. Stamp. Hidden markov models for malware
classification. Journal of Computer Virology and Hacking Techniques, 11(2):59–73,
2015.

[7] A. Applebaum, K. Levitt, Z. Li, S. Parsons, J. Rowe, and E. Sklar. Cyber reasoning
with argumentation: Abstracting from incomplete and contradictory evidence. In
Proc. of MILCOM, 2015.

[8] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda. Scalable,
behavior-based malware clustering, 2009.

[9] M. Belkin and P. Niyogi. Using manifold structure for partially labelled classification.
In Advances in NIPS, 2002.

[10] V. Benjamin, W. Li, T. Holt, and H. Chen. Exploring threats and vulnerabilities in
hacker web: Forums, irc and carding shops. In Intelligence and Security Informatics
(ISI), 2015 IEEE International Conference on, pages 85–90. IEEE, 2015.

[11] C. M. Bishop and I. Ulusoy. Object recognition via local patch labelling. In Deter-
ministic and Statistical Methods in Machine Learning, pages 1–21, 2004.

[12] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the Journal of
machine Learning research, 3:993–1022, 2003.

[13] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In
Proceedings of the Eleventh Annual Conference on Computational Learning Theory,
COLT’ 98, pages 92–100, New York, NY, USA, 1998. ACM.

155

[14] W. E. Boebert. A survey of challenges in attribution. In Proceedings of a workshop
on Deterring CyberAttacks, pages 41–54, 2010.

[15] D. Bothell. Act-r 6.0 reference manual. http://act-r.psy.cmu.edu/
actr6/reference-manual.pdf, 2004.

[16] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker. Beyond heuristics: learning to
classify vulnerabilities and predict exploits. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 105–114.
ACM, 2010.

[17] L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[18] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[19] M. Brückner, C. Kanzow, and T. Scheffer. Static prediction games for adversarial
learning problems. The Journal of Machine Learning Research, 13(1):2617–2654,
2012.

[20] M. Brückner and T. Scheffer. Stackelberg games for adversarial prediction problems.
In Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 547–555. ACM, 2011.

[21] B. L. Bullough, A. K. Yanchenko, C. L. Smith, and J. R. Zipkin. Predicting exploita-
tion of disclosed software vulnerabilities using open-source data. In Proceedings of
the 2015 ACM International Workshop on International Workshop on Security and
Privacy Analytics. ACM, 2017.

[22] J. Carr. The Evolving State of Cyber Warfare. Project Grey Goose, 2009.

[23] S. Chakrabarti, K. Punera, and M. Subramanyam. Accelerated focused crawling
through online relevance feedback. In Proceedings of the 11th international confer-
ence on World Wide Web, pages 148–159. ACM, 2002.

[24] S. Chakrabarti, M. Van den Berg, and B. Dom. Focused crawling: a new approach
to topic-specific web resource discovery. Computer Networks, 31(11):1623–1640,
1999.

[25] C.-C. Chang and C.-J. Lin. Libsvm: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

[26] H. Chen. Dark web: Exploring and data mining the dark side of the web, volume 30.
Springer Science & Business Media, 2011.

[27] H. Cheng, Z. Liu, and J. Y. 0001. Sparsity induced similarity measure for label
propagation. In ICCV, pages 317–324. IEEE, 2009.

[28] I. K. Cho and E. G. Im. Extracting representative api patterns of malware families
using multiple sequence alignments. In Proceedings of the 2015 Conference on
research in adaptive and convergent systems, pages 308–313. ACM, 2015.

156

http://act-r.psy.cmu.edu/actr6/reference-manual.pdf
http://act-r.psy.cmu.edu/actr6/reference-manual.pdf

[29] J. B. M. S. Claudio Guarnieri, Alessandro Tanasi. Cuckoo sandbox. http://www.
cuckoosandbox.org/, 2012.

[30] C. Cortes and V. Vapnik. Support-vector networks. pages 273–297, 1995.

[31] CPE. Official common platform enumeration dictionary. https://nvd.nist.gov/cpe.cfm,
Last Accessed: Feb 2018.

[32] CVE. Common vulnerabilities and exposures: The standard for information security
vulnerability names. http://cve.mitre.org/, Last Accessed: Feb 2018.

[33] CVSS. Common vulnerability scoring system. https://www.first.org/cvss, Last
Accessed: Feb 2018.

[34] M. Dacier, V.-H. Pham, and O. Thonnard. The wombat attack attribution method:
some results. In Information Systems Security, pages 19–37. Springer, 2009.

[35] DEFCON. Defcon: Capture the flag. 2013.

[36] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion
router. In Proceedings of the 13th Conference on USENIX Security Symposium -
Volume 13, SSYM’04, pages 21–21, 2004.

[37] P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial intelligence,
77(2):321–357, 1995.

[38] I. Firdausi, C. lim, A. Erwin, and A. S. Nugroho. Analysis of machine learning
techniques used in behavior-based malware detection. In Proceedings of the 2010
Second International Conference on ACT, ACT ’10, pages 201–203, Washington,
DC, USA, 2010. IEEE Computer Society.

[39] FireEye. Against cyber threats, knowledge is power.
https://www.fireeye.com/products/cyber-threat-intelligence.html, Last Accessed: Feb
2018.

[40] Fortinet. Know your vulnerabilities get the facts about your network security.
https://www.fortinet.com/assessment, Last Accessed: Feb 2018.

[41] T. Fu, A. Abbasi, and H. Chen. A focused crawler for dark web forums. Journal
of the American Society for Information Science and Technology, 61(6):1213–1231,
2010.

[42] A. J. Garcı́a and G. R. Simari. Defeasible logic programming: An argumentative
approach. Theory and practice of logic programming, 4(1+ 2):95–138, 2004.

[43] S. M. Ghaffarian and H. R. Shahriari. Software vulnerability analysis and discovery
using machine-learning and data-mining techniques: A survey. ACM Computing
Surveys (CSUR), 50(4):56, 2017.

157

http://www.cuckoosandbox.org/
http://www.cuckoosandbox.org/

[44] D. Giametta and A. Potter. There and back again:a critical analysis of spatial analysis,
2014.

[45] C. Gonzalez, J. F. Lerch, and C. Lebiere. Instance-based learning in dynamic decision
making. Cognitive Science, 27(4):591 – 635, 2003.

[46] Google. Google cloud translation api documentation.
https://cloud.google.com/translate/docs/, Last Accessed: Feb 2018.

[47] GVDG. Generator malware gvdg. 2011.

[48] S. S. Hansen, T. M. T. Larsen, M. Stevanovic, and J. M. Pedersen. An approach
for detection and family classification of malware based on behavioral analysis. In
Computing, Networking and Communications (ICNC), 2016 International Conference
on, pages 1–5. IEEE, 2016.

[49] T. Holt and B. Schell. Hackers and Hacking: A Reference Handbook. Contemporary
World Issues.

[50] T. J. Holt. Subcultural evolution? examining the influence of on-and off-line experi-
ences on deviant subcultures. Deviant Behavior, 28(2):171–198, 2007.

[51] T. J. Holt and E. Lampke. Exploring stolen data markets online: products and market
forces. Criminal Justice Studies, 23(1):33–50, 2010.

[52] T. J. Holt, D. Strumsky, O. Smirnova, and M. Kilger. Examining the social networks of
malware writers and hackers. International Journal of Cyber Criminology, 6(1):891–
903, 2012.

[53] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar. Adversarial
machine learning. In Proceedings of the 4th ACM workshop on Security and artificial
intelligence, pages 43–58. ACM, 2011.

[54] Invencia. Crowdsource: Crowd trained machine learning model for malware capabil-
ity detection. http://www.invincea.com/tag/cynomix/, 2013.

[55] ISEC-Lab. Anubis: Analyzing unknown binaries. http://anubis.iseclab.
org/, 2007.

[56] S. Jajodia, P. Shakarian, V. S. Subrahmanian, V. Swarup, and C. Wang. Cyber Warfare:
Building the Scientific Foundation. Springer Publishing Company, Incorporated, 2015.

[57] T. Jordan and P. Taylor. A sociology of hackers. The Sociological Review, 46(4):757–
780, 1998.

[58] H. K. Kalutarage, S. Shaikh, Q. Zhou, A. E. James, et al. Sensing for suspicion at
scale: A bayesian approach for cyber conflict attribution and reasoning. In Cyber
conflict (CYCON), 2012 4th international conference on, pages 1–19. IEEE, 2012.

[59] Kaspersky. Gauss: Abnormal distribution, 2012.

158

http://www.invincea.com/tag/cynomix/
http://anubis.iseclab.org/
http://anubis.iseclab.org/

[60] J. Kinable and O. Kostakis. Malware classification based on call graph clustering. J.
Comput. Virol., 7(4):233–245, Nov. 2011.

[61] D. Kong and G. Yan. Discriminant malware distance learning on structural informa-
tion for automated malware classification. In Proceedings of the 19th ACM SIGKDD,
KDD ’13, pages 1357–1365, New York, NY, USA, 2013. ACM.

[62] D. Lacey and P. M. Salmon. It’s dark in there: Using systems analysis to investigate
trust and engagement in dark web forums. In D. Harris, editor, Engineering Psychol-
ogy and Cognitive Ergonomics, volume 9174 of Lecture Notes in Computer Science,
pages 117–128. Springer International Publishing, 2015.

[63] C. Lebiere, S. Bennati, R. Thomson, P. Shakarian, and E. Nunes. Functional cognitive
models of malware identification. Proceedings of ICCM, ICCM, pages 9–11, 2015.

[64] C. Lebiere, S. Bennati, R. Thomson, P. Shakarian, and E. Nunes. Functional cognitive
models of malware identification. In Proceedings of ICCM, ICCM 2015, Groningen,
The Netherlands, April 9-11, 2015, 2015.

[65] C. Lebiere, P. Pirolli, R. Thomson, J. Paik, M. Rutledge-Taylor, J. Staszewski, and
J. R. Anderson. A functional model of sensemaking in a neurocognitive architecture.
Intell. Neuroscience, 2013:5:5–5:5, Jan. 2013.

[66] H. Lee and Y. Yoon. Engineering doc2vec for automatic classification of product
descriptions on o2o applications. Electronic Commerce Research, pages 1–24, 2017.

[67] A. Levin, D. Lischinski, and Y. Weiss. A closed form solution to natural image
matting. In Proceedings of the 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition - Volume 1, CVPR ’06, pages 61–68, Washington,
DC, USA, 2006. IEEE Computer Society.

[68] S. Levy. Hackers: Heroes of the Computer Revolution. Doubleday, New York, NY,
USA, 1984.

[69] B. Li and Y. Vorobeychik. Feature cross-substitution in adversarial classification.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27, pages 2087–2095.
Curran Associates, Inc., 2014.

[70] P. Li, L. Liu, D. Gao, and M. K. Reiter. On challenges in evaluating malware
clustering. In RAID, volume 6307, pages 238–255. Springer, 2010.

[71] P. Li, L. Liu, and M. K. Reiter. On challenges in evaluating malware clustering, 2007.

[72] M. Lindorfer, C. Kolbitsch, and P. Milani Comparetti. Detecting environment-
sensitive malware. In Proceedings of the 14th International Conference on RAID,
RAID’11, pages 338–357, Berlin, Heidelberg, 2011. Springer-Verlag.

[73] J. W. Lloyd. Foundations of logic programming. Springer Science & Business Media,
2012.

159

[74] D. Lowd and C. Meek. Adversarial learning. In Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery in data mining, pages
641–647. ACM, 2005.

[75] M. Macdonald, R. Frank, J. Mei, and B. Monk. Identifying digital threats in a hacker
web forum. In Proceedings of the 2015 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining 2015, pages 926–933. ACM, 2015.

[76] M. Macdonald, R. Frank, J. Mei, and B. Monk. Identifying digital threats in a hacker
web forum. In Advances in Social Networks Analysis and Mining (ASONAM), 2015
IEEE/ACM International Conference on, pages 926–933. IEEE, 2015.

[77] Mandiant. Apt1:exposing one of china’s cyber espionage units. http://
intelreport.mandiant.com/, 2013.

[78] Mandiant. Mandiant APT1 samples categorized by malware families. Contagio
Malware Dump, 2013.

[79] E. Marin, A. Diab, and P. Shakarian. Product offerings in malicious hacker markets.
In Intelligence and Security Informatics (ISI), 2016 IEEE Conference on, pages
187–189. IEEE, 2016.

[80] E. Marin, J. Shakarian, and P. Shakarian. Mining key-hackers on darkweb forums.
In International Conference on Data Intelligence and Security (ICDIS), 2018. IEEE,
2018.

[81] M. Mateski, C. M. Trevino, C. K. Veitch, J. Michalski, J. M. Harris, S. Maruoka, and
J. Frye. Cyber threat metrics. Sandia National Laboratories, 2012.

[82] J. Mei and R. Frank. Sentiment crawling: Extremist content collection through
a sentiment analysis guided web-crawler. In Proceedings of the 2015 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining 2015,
pages 1024–1027. ACM, 2015.

[83] F. Menczer, G. Pant, and P. Srinivasan. Topical web crawlers: Evaluating adaptive
algorithms. ACM Transactions on Internet Technology (TOIT), 4(4):378–419, 2004.

[84] M. Motoyama, D. McCoy, K. Levchenko, S. Savage, and G. M. Voelker. An analysis
of underground forums. In Proceedings of the 2011 ACM SIGCOMM conference on
Internet measurement conference, pages 71–80. ACM, 2011.

[85] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller. Predicting vulnerable soft-
ware components. In Proceedings of the 14th ACM conference on Computer and
communications security, pages 529–540. ACM, 2007.

[86] NIST. National vulnerability database. https://nvd.nist.gov/, Last Accessed: Feb
2018.

[87] E. Nunes, C. Buto, P. Shakarian, C. Lebiere, S. Bennati, R. Thomson, and H. Jaenisch.
Malware task identification: A data driven approach. In Advances in Social Networks
Analysis and Mining (ASONAM), 2015 IEEE/ACM International Conference on,
pages 978–985. IEEE, 2015.

160

http://intelreport.mandiant.com/
http://intelreport.mandiant.com/

[88] E. Nunes, C. Buto, P. Shakarian, C. Lebiere, R. Thomson, S. Bennati, and J. Holger.
Malware task identification : A data driven approach. In Proceedings of International
Symposium on Foundation of Open Source Intelligence and Security Informatics
(FOSINT-SI). IEEE, 2015.

[89] E. Nunes, A. Diab, A. Gunn, E. Marin, V. Mishra, V. Paliath, J. Robertson, J. Shakar-
ian, A. Thart, and P. Shakarian. Darknet and deepnet mining for proactive cyberse-
curity threat intelligence. In Intelligence and Security Informatics (ISI), 2016 IEEE
Conference on, pages 7–12. IEEE, 2016.

[90] E. Nunes, A. Diab, A. Gunn, E. Marin, V. Mishra, V. Paliath, J. Robertson, J. Shakar-
ian, A. Thart, and P. Shakarian. Darknet and deepnet mining for proactive cybersecu-
rity threat intelligence. In Proceeding of ISI 2016, pages 7–12. IEEE, 2016.

[91] E. Nunes, N. Kulkarni, P. Shakarian, A. Ruef, and J. Little. Cyber-deception and
attribution in capture-the-flag exercises. In Proceedings of the 2015 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining,
ASONAM 2015, Paris, France, pages 962–965, 2015.

[92] E. Nunes, N. Kulkarni, P. Shakarian, A. Ruef, and J. Little. Cyber-deception and
attribution in capture-the-flag exercises. In Cyber Deception, pages 149–165. Springer,
2016.

[93] E. Nunes, P. Shakarian, and G. I. Simari. At-risk system identification via analysis of
discussions on the darkweb. In Electronic Crime Research (eCrime), 2018 APWG
Symposium on. IEEE, 2018.

[94] E. Nunes, P. Shakarian, G. I. Simari, and A. Ruef. Argumentation models for cyber
attribution. In Proceedings of the 2016 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, ASONAM 2016, San Fransisco,
USA, 2016.

[95] J. O’Gorman, D. Kearns, and M. Aharoni. Metasploit: the penetration tester’s guide.
No Starch Press, 2011.

[96] T. Parker, M. Sachs, E. Shaw, and E. Stroz. Cyber adversary characterization:
Auditing the hacker mind. Syngress, 2004.

[97] R. Perdisci et al. Vamo: towards a fully automated malware clustering validity analy-
sis. In Proceedings of the 28th Annual Computer Security Applications Conference,
pages 329–338. ACM, 2012.

[98] R. Perdisci and ManChon. Vamo: towards a fully automated malware clustering
validity analysis. In ACSAC, pages 329–338. ACM, 2012.

[99] C. P. Pfleeger and S. L. Pfleeger. Security in computing. Prentice Hall Professional
Technical Reference, 2002.

161

[100] R. S. Portnoff, S. Afroz, G. Durrett, J. K. Kummerfeld, T. Berg-Kirkpatrick, D. Mc-
Coy, K. Levchenko, and V. Paxson. Tools for automated analysis of cybercriminal
markets. In Proceedings of the 26th International Conference on World Wide Web,
pages 657–666. International World Wide Web Conferences Steering Committee,
2017.

[101] I. Rahwan, G. R. Simari, and J. van Benthem. Argumentation in artificial intelligence,
volume 47. Springer, 2009.

[102] T. Rid and B. Buchanan. Attributing cyber attacks. Journal of Strategic Studies,
38(1-2):4–37, 2015.

[103] J. Robertson, A. Diab, E. Marin, E. Nunes, V. Paliath, J. Shakarian, and P. Shakarian.
Darkweb Cyber Threat Intelligence Mining. Cambridge University Press, 2017.

[104] J. Robertson, V. Paliath, J. Shakarian, A. Thart, and P. Shakarian. Data driven game
theoretic cyber threat mitigation. In IAAI, 2016.

[105] A. Ruef, E. Nunes, P. Shakarian, and G. I. Simari. Measuring cyber attribution in
games. In Electronic Crime Research (eCrime), 2017 APWG Symposium on, pages
28–32. IEEE, 2017.

[106] C. Sabottke, O. Suciu, and T. Dumitra. Vulnerability disclosure in the age of social
media: exploiting twitter for predicting real-world exploits. In 24th USENIX Security
Symposium (USENIX Security 15), pages 1041–1056, 2015.

[107] J. Salvit, Z. Li, S. Perumal, H. Wall, J. Mangels, S. Parsons, and E. I. Sklar. Employing
argumentation to support human decision making: A user study. In AAMAS Workshop
on Argumentation in Multiagent Systems, 2014.

[108] S. Samtani, R. Chinn, and H. Chen. Exploring hacker assets in underground forums.
In Intelligence and Security Informatics (ISI), 2015 IEEE International Conference
on, pages 31–36. IEEE, 2015.

[109] K. Sanders and X. Wang. Malware family identification using profile signatures,
Oct. 20 2015. US Patent 9,165,142.

[110] S. Sanner, J. R. Anderson, C. Lebiere, and M. C. Lovett. Achieving efficient and
cognitively plausible learning in backgammon. 2000.

[111] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen. Predicting vulnerable
software components via text mining. IEEE Transactions on Software Engineering,
40(10):993–1006, 2014.

[112] J. Shakarian, A. T. Gunn, and P. Shakarian. Exploring malicious hacker forums. In
Cyber Deception, pages 259–282. Springer, 2016.

[113] P. Shakarian, J. Shakarian, and A. Ruef. Introduction to cyber-warfare: A multidisci-
plinary approach. Newnes, 2013.

162

[114] P. Shakarian, G. I. Simari, and M. A. Falappa. Belief revision in structured proba-
bilistic argumentation. In Foundations of Information and Knowledge Systems, pages
324–343. Springer, 2014.

[115] P. Shakarian, G. I. Simari, G. Moores, and S. Parsons. Cyber attribution: An
argumentation-based approach. In Cyber Warfare, pages 151–171. Springer, 2015.

[116] M. Sikorski and A. Honig. Practical Malware Analysis: The Hands-On Guide to
Dissecting Malicious Software. No Starch Press, 1 edition, 2012.

[117] E. I. Sklar, S. Parsons, Z. Li, J. Salvit, S. Perumal, H. Wall, and J. Mangels. Eval-
uation of a trust-modulated argumentation-based interactive decision-making tool.
Autonomous Agents and Multi-Agent Systems, pages 1–38, 2015.

[118] K. F. Steinmetz. Craft(y)ness: An ethnographic study of hacking. 55(1):125–145,
2015.

[119] F. Stolzenburg, A. J. Garcı́a, C. I. Chesnevar, and G. R. Simari. Computing generalized
specificity. Journal of Applied Non-Classical Logics, 13(1):87–113, 2003.

[120] G. Stoneburner, A. Y. Goguen, and A. Feringa. Sp 800-30. risk management guide
for information technology systems. 2002.

[121] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition, 1998.

[122] J. Swarner. Before WannaCry was unleashed, hackers plotted about it on the
Dark Web. 2017. Available at: http://www.slate.com/blogs/future_
tense/2017/05/23/before_wannacry_was_unleashed_hackers_
plotted_about_it_on_the_dark_web.html.

[123] A. Tamersoy, K. Roundy, and D. H. Chau. Guilt by association: Large scale malware
detection by mining file-relation graphs. In Proceedings of the 20th ACM SIGKDD,
KDD ’14, pages 1524–1533. ACM, 2014.

[124] R. Thomson, C. Lebiere, S. Bennati, P. Shakarian, and E. Nunes. Malware identifica-
tion using cognitively-inspired inference. Proceedings of BRIMS, BRIMS, 2015.

[125] R. Thomson, C. Lebiere, S. Bennati, P. Shakarian, and E. Nunes. Malware identifica-
tion using cognitively-inspired inference. In Proceedings of BRIMS, BRIMS 2015,
Washington DC, March 31-April 3, 2015, 2015.

[126] O. Thonnard, W. Mees, and M. Dacier. On a multicriteria clustering approach for
attack attribution. ACM SIGKDD Explorations Newsletter, 12(1):11–20, 2010.

[127] T. Townsend and J. McAllister. Implementation framework-cyber threat prioritization.
Software Engineering Institute, Carnegie Mellon University, 2013.

[128] L. Q. Trieu, H. Q. Tran, and M.-T. Tran. News classification from social media using
twitter-based doc2vec model and automatic query expansion. In Proceedings of the
Eighth International Symposium on Information and Communication Technology,
pages 460–467. ACM, 2017.

163

http://www.slate.com/blogs/future_tense/2017/05/23/before_wannacry_was_unleashed_hackers_plotted_about_it_on_the_dark_web.html
http://www.slate.com/blogs/future_tense/2017/05/23/before_wannacry_was_unleashed_hackers_plotted_about_it_on_the_dark_web.html
http://www.slate.com/blogs/future_tense/2017/05/23/before_wannacry_was_unleashed_hackers_plotted_about_it_on_the_dark_web.html

[129] N. Tsagourias. Nicolas politis initiatives to outlaw war and define aggression, and
the narrative of progress in international law. European Journal of International Law,
23(1):255–266, 2012.

[130] S. Turkle. The Second Self: Computers and the Human Spirit. Simon & Schuster,
Inc., New York, NY, USA, 1984.

[131] J. Walden, J. Stuckman, and R. Scandariato. Predicting vulnerable components:
Software metrics vs text mining. In Software Reliability Engineering (ISSRE), 2014
IEEE 25th International Symposium on, pages 23–33. IEEE, 2014.

[132] R. J. Walls. Inference-based Forensics for Extracting Information from Diverse
Sources. PhD thesis, University of Massachusetts Amherst, 2014.

[133] C. Wang, S. Yan, L. Z. 0001, and H.-J. Zhang. Multi-label sparse coding for automatic
image annotation. In CVPR, pages 1643–1650. IEEE, 2009.

[134] W. Wei. Hunting russian malware author behind phoenix exploit kit. April 2013.

[135] B. Westlake, M. Bouchard, and R. Frank. Assessing the validity of automated
webcrawlers as data collection tools to investigate online child sexual exploitation.
Sexual abuse: a journal of research and treatment, page 1079063215616818, 2015.

[136] D. A. Wheeler and G. N. Larsen. Techniques for cyber attack attribution. Technical
report, Institute for Defense Analyses, 2003.

[137] T. J. Wong, E. T. Cokely, and L. J. Schooler. An online database of act-r parameters:
Towards a transparent community-based approach to model development. 2010.

[138] S. Zhang, D. Caragea, and X. Ou. An empirical study on using the national vulner-
ability database to predict software vulnerabilities. In International Conference on
Database and Expert Systems Applications, pages 217–231. Springer, 2011.

[139] X. Zhu, J. Lafferty, and Z. Ghahramani. Combining active learning and semi-
supervised learning using gaussian fields and harmonic functions. In ICML 2003
workshop on The Continuum from Labeled to Unlabeled Data in Machine Learning
and Data Mining, pages 58–65, 2003.

164

	LIST OF TABLES
	LIST OF FIGURES
	1
	1.1 Reasoning about threat actors
	1.2 Literature Overview
	1.3 Motivation
	1.4 Outline of the Dissertation and Contributions
	1.5 Summary of Contributions

	2
	2.1 Introduction
	2.2 Dataset
	2.2.1 Background
	2.2.2 Analysis

	2.3 Baseline Approaches
	2.3.1 Experimental Results
	2.3.2 Misclassified Samples
	2.3.3 Average Prediction Probability

	2.4 Pruning
	2.4.1 Discussion
	2.4.2 Ensemble Classifier

	2.5 Related Work
	2.6 Summary

	3
	3.1 Introduction
	3.2 System Overview
	3.3 Argumentation Model
	3.3.1 Defeasible Logic Programming (DeLP)

	3.4 Models
	3.4.1 Baseline Argumentation Model (BM)
	3.4.2 Extended Baseline Argumentation Model i (EB1)
	3.4.3 Extended Baseline Argumentation Model ii (EB2)
	3.4.4 Extended Baseline Argumentation Model iii (EB3)

	3.5 Experimental Evaluation
	3.5.1 Results
	3.5.2 Rule relevance discussion

	3.6 Related Work
	3.7 Summary

	4
	4.1 Introduction
	4.2 Technical Preliminaries
	4.3 Cognitively-Inspired Inference
	4.3.1 ACT-R Based Approaches
	4.3.2 ACT-R Instance-Based Model
	4.3.3 ACT-R Rule-Based Model
	4.3.4 Model Parameter Settings

	4.4 Experimental Setup
	4.4.1 Baseline Approaches
	4.4.2 Dynamic Malware Analysis
	4.4.3 Performance Evaluation

	4.5 Results
	4.5.1 Mandiant Dataset
	4.5.2 GVDG Dataset
	4.5.3 MetaSploit
	4.5.4 Task Prediction from Hacker activities

	4.6 Related Work
	4.7 Summary

	5
	5.1 Introduction
	5.2 Background
	5.3 SYSTEM OVERVIEW
	5.4 Evaluation
	5.4.1 Semi-supervised Approaches
	5.4.2 Experiments: Marketplaces
	5.4.3 Experiment: Forums
	5.4.4 Experiment: Subreddits
	5.4.5 Darknet New Page Discovery

	5.5 Case Studies
	5.5.1 Discovery of Zero-Day Exploits.
	5.5.2 Exploits targeting known vulnerabilities.
	5.5.3 Users having presence in markets/ forums.

	5.6 Related Work
	5.7 Summary

	6
	6.1 Introduction
	6.1.1 Vulnerability related terms

	6.2 System Overview
	6.3 Dataset
	6.3.1 D2web data

	6.4 Argumentation Model
	6.5 Experiments
	6.5.1 Data Representation
	6.5.2 Supervised Learning Approaches
	6.5.3 Evaluation Metrics
	6.5.4 Baseline Model (BM)
	6.5.5 Reasoning Framework (RFrame)

	6.6 Discussion
	6.7 Related Work
	6.8 Summary

	7
	7.1 Conclusion
	7.2 Future Work

	REFERENCES

