2,649 research outputs found

    Surface profile prediction and analysis applied to turning process

    Get PDF
    An approach for the prediction of surface profile in turning process using Radial Basis Function (RBF) neural networks is presented. The input parameters of the RBF networks are cutting speed, depth of cut and feed rate. The output parameters are Fast Fourier Transform (FFT) vector of surface profile for the prediction of surface profile. The RBF networks are trained with adaptive optimal training parameters related to cutting parameters and predict surface profile using the corresponding optimal network topology for each new cutting condition. A very good performance of surface profile prediction, in terms of agreement with experimental data, was achieved with high accuracy, low cost and high speed. It is found that the RBF networks have the advantage over Back Propagation (BP) neural networks. Furthermore, a new group of training and testing data were also used to analyse the influence of tool wear and chip formation on prediction accuracy using RBF neural networks

    Heart Diseases Diagnosis Using Artificial Neural Networks

    Get PDF
    Information technology has virtually altered every aspect of human life in the present era. The application of informatics in the health sector is rapidly gaining prominence and the benefits of this innovative paradigm are being realized across the globe. This evolution produced large number of patients’ data that can be employed by computer technologies and machine learning techniques, and turned into useful information and knowledge. This data can be used to develop expert systems to help in diagnosing some life-threating diseases such as heart diseases, with less cost, processing time and improved diagnosis accuracy. Even though, modern medicine is generating huge amount of data every day, little has been done to use this available data to solve challenges faced in the successful diagnosis of heart diseases. Highlighting the need for more research into the usage of robust data mining techniques to help health care professionals in the diagnosis of heart diseases and other debilitating disease conditions. Based on the foregoing, this thesis aims to develop a health informatics system for the classification of heart diseases using data mining techniques focusing on Radial Basis functions and emerging Neural Networks approach. The presented research involves three development stages; firstly, the development of a preliminary classification system for Coronary Artery Disease (CAD) using Radial Basis Function (RBF) neural networks. The research then deploys the deep learning approach to detect three different types of heart diseases i.e. Sleep Apnea, Arrhythmias and CAD by designing two novel classification systems; the first adopt a novel deep neural network method (with Rectified Linear unit activation) design as the second approach in this thesis and the other implements a novel multilayer kernel machine to mimic the behaviour of deep learning as the third approach. Additionally, this thesis uses a dataset obtained from patients, and employs normalization and feature extraction means to explore it in a unique way that facilitates its usage for training and validating different classification methods. This unique dataset is useful to researchers and practitioners working in heart disease treatment and diagnosis. The findings from the study reveal that the proposed models have high classification performance that is comparable, or perhaps exceed in some cases, the existing automated and manual methods of heart disease diagnosis. Besides, the proposed deep-learning models provide better performance when applied on large data sets (e.g., in the case of Sleep Apnea), with reasonable performance with smaller data sets. The proposed system for clinical diagnoses of heart diseases, contributes to the accurate detection of such disease, and could serve as an important tool in the area of clinic support system. The outcome of this study in form of implementation tool can be used by cardiologists to help them make more consistent diagnosis of heart diseases

    Pattern recognition of rigid hoisting guides based on vibration characteristics

    Get PDF
    A test rig is built to simulate the typical fault patterns of rigid hoisting guides and to collect vibration and inclination signals. In this work, we use these signals to perform data mining for fault-pattern recognition. Parameters are initially defined by analyzing collected signals. Then, the importance of each parameter is calculated using the boosting-tree method. Some valuable parameters are retained. To establish a data-mining algorithm that works remarkably for the fault recognition of rigid hoisting guides, six different algorithms including the boosting tree, K-nearest neighbor, MARSpline, neural network, random forest, and support vector machine are compared. Results show that the best performance is that of the boosting-tree algorithm, whose mechanism is then presented in detail

    A Robust Cardiovascular Disease Predictor Based on Genetic Feature Selection and Ensemble Learning Classification

    Get PDF
    Timely detection of heart diseases is crucial for treating cardiac patients prior to the occurrence of any fatality. Automated early detection of these diseases is a necessity in areas where specialized doctors are limited. Deep learning methods provided with a decent set of heart disease data can be used to achieve this. This article proposes a robust heart disease prediction strategy using genetic algorithms and ensemble deep learning techniques. The efficiency of genetic algorithms is utilized to select more significant features from a high-dimensional dataset, combined with deep learning techniques such as Adaptive Neuro-Fuzzy Inference System (ANFIS), Multi-Layer Perceptron (MLP), and Radial Basis Function (RBF), to achieve the goal. The boosting algorithm, Logit Boost, is made use of as a meta-learning classifier for predicting heart disease. The Cleveland heart disease dataset found in the UCI repository yields an overall accuracy of 99.66%, which is higher than many of the most efficient approaches now in existence

    Surface profile prediction and analysis applied to turning process

    Get PDF
    An approach for the prediction of surface profile in turning process using Radial Basis Function (RBF) neural networks is presented. The input parameters of the RBF networks are cutting speed, depth of cut and feed rate. The output parameters are Fast Fourier Transform (FFT) vector of surface profile for the prediction of surface profile. The RBF networks are trained with adaptive optimal training parameters related to cutting parameters and predict surface profile using the corresponding optimal network topology for each new cutting condition. A very good performance of surface profile prediction, in terms of agreement with experimental data, was achieved with high accuracy, low cost and high speed. It is found that the RBF networks have the advantage over Back Propagation (BP) neural networks. Furthermore, a new group of training and testing data were also used to analyse the influence of tool wear and chip formation on prediction accuracy using RBF neural networks

    Air-Gap Partial Discharge Development Stage Recognition for Power Transformer Insulation Monitoring Considering Effect of Cavity Size

    Get PDF
    Oil-paper insulation system is commonly used for power transformer internal insulation. Partial discharge (PD) is one of the main reasons for aging and disruption of the insulation system. Air-gap PD occurs in gas-filled cavity in transformer oil-paper insulation and is an extremely common and serious defect type. For air-gap PD analysis, most experiments were conducted through the standard air-gap discharge model recommended by CIGRE. Some work has been done to diagnose air-gap PD severity. However, the effect of cavity size on PD activity has not been emphasized yet. My thesis systematically discusses the effect of cavity size on air-gap PD activity through experiments. And pattern recognition classifier is a critical part in PD diagnosis. Artificial neural network and support vector machine are commonly used nowadays and show some good results in site application. To enhance PD diagnosis accuracy is still a main task. In this work, Random Forests is first time introduced in PD diagnosis. Experiments show that large cavity PD possesses lower inception field, higher charge magnitude, higher inception phase. PD happening in large cavity is more harmful than that happening in small cavity. Besides, during Air-gap PD development process, charge magnitude variation of large and small cavity model both presents concave curve shape with respect to time and discharge phase slowly expends. For small cavity model, when air-gap PD comes to the last stage, positive PD even can expand to the negative half cycle and vice versa. And through clustering, the PD development stage for large and small cavity model are both divided into three stages, initial discharge stage, weak discharge stage and pre-breakdown stage. For air-gap PD development stage identification, total accuracy of random forests classifier is 93.15%, showing a better performance than RBF neural network
    • 

    corecore