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Abstract. A test rig is built to simulate the typical fault patterns of rigid hoisting guides and to 
collect vibration and inclination signals. In this work, we use these signals to perform data mining 
for fault-pattern recognition. Parameters are initially defined by analyzing collected signals. Then, 
the importance of each parameter is calculated using the boosting-tree method. Some valuable 
parameters are retained. To establish a data-mining algorithm that works remarkably for the fault 
recognition of rigid hoisting guides, six different algorithms including the boosting tree, K-nearest 
neighbor, MARSpline, neural network, random forest, and support vector machine are compared. 
Results show that the best performance is that of the boosting-tree algorithm, whose mechanism 
is then presented in detail. 
Keywords: rigid hoisting guides, data mining, pattern recognition, boosting tree, machine 
learning. 

1. Introduction 

Coal is the primary energy source of humans, so coal-production safety is of utmost concern. 
One safety issue is the avoidance of mechanical accidents caused by faults that occur in hoisting 
guides [1]. Flexible (rope) guides and rigid guides are the two main types of guides for hoisting 
systems. Given the longer service and the better smoothness, rigid guides are more widely used in 
coal mines. Fault recognition of rigid guides is therefore the focus of this paper. 

To check the integrity of rigid guides, a number of great methods have been adopted [2]. In 
early years, static measurement has been used in the performance evaluation of the rigid guides. 
For example, distances between guides and their perpendicularity were tested and regarded as key 
parameters to diagnose faults. Some particular instruments were developed to facilitate such 
measurements later on. All of these methods belong to direct measurement which utilize direct 
parameters of guides themselves but do not have ideal reliability and efficiency.  

Vibration-acceleration-based measurement was then realized, which are actually an indirect 
way to check guides [3]. The relationship between vibration of cages and performance of guides 
has drawn considerable research interest and enthusiasm that lead to a great deal of research 
outcome. Zhanfang Li [4] applied singularity analysis based on wavelet to identify defects of rigid 
guides. Yuqiang Jiang [5] used fuzzy synthetic method to diagnose faults of rigid guides.  

The foundation of vibration-based measurement is the kinetic analysis that has discovered 
some relationship between vibration characteristics and fault patterns. However, actual vibration 
of the cage and ropes has complicated results in the coupling of multiple vibrations such as 
transversal and longitudinal vibrations. To simplify the analysis, previous studies on vibration 
measurement of rigid guides usually neglect some existing vibrations. Thus, their 
accomplishments can only be approximate solutions. Moreover, for fault pattern identification, 
the features and algorithm are selected subjectively, which greatly limits the prediction accuracy. 
All these factors lead to the imperfection of the current vibration measurement.  

Aiming at such inadequacy, this paper focuses on comparison and selection of algorithms to 
recognize fault patterns. A test rig is built to simulate fault patterns and collect needed signals. 
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Parameters are selected according to their importance in contribution to recognition. Different 
algorithms are compared. The best one, the boosting tree algorithm, is presented in detail. 

2. Construction of a test rig 

Inclination, local embossment, and joint dislocation are three typical and usual faults that 
happen to rigid guides. Therefore, the status of rigid guides may be categorized into four patterns 
that include normal, inclination, local embossment, and joint dislocation, which are shown in 
Fig. 1. 

 
a) Normal 

 
b) Inclination 

 
c) Local embossment 

 
d) Joint dislocation 

Fig. 1. Patterns of rigid guides 

They can be simulated by the test rig that has been built and shown in Fig. 2. The test rig is 
made up of head sheave, rigid guides, hoisting container, winding drum, gear box, motor, speed 
regulator, sensors, signal acquisition device, and so on [6]. A DC motor drives the winding drum 
through a gear box. The speed regulator is used to adjust the speed. A rope is winded around a 
head sheave at the top and driven by the drum. The container is lifted up or dropped down through 
the rope. Vibration and angle sensors are installed on the container to collect signals needed and 
transfer them to a computer through a data acquisition device. Three fault patterns are simulated 
artificially as shown in Fig. 1. The parameter of the collected vibrational signals is acceleration. 
The description of key components of this test rig is listed in Table 1. 

Table 1. Key components and their specification 
Items Type Description 
Motor Z2-11 D-C, Rated speed: 600 r/min 

Speed regulator GLJ-01 For motors of power 0.4-7.5 kW 
Vibration sensor CA-DR-3005 Three directions, range: ±50 ms-2 

Inclination sensor CXTA-02 Range: ±20° 
Data-acquisition card JK-U12 Four differential channels  

 

 
a) Schematic diagram 

 
b) Picture of test rig 

Fig. 2. Test rig 
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Fig. 3 shows an example of collected vibrational signals from the hoisting container while joint 
dislocation and local embossment take place. Given that both local embossment and joint 
dislocation cause sudden change to vibration, some pulses appear in both signals, which are hard 
to tell one from another. To conduct pattern recognition, some parameters must be put forward 
through the analysis on collected signals. 
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Fig. 3. Collected vibration signals 

3. Characteristic parameters 

Different patterns of guides are simulated and then the needed signals are collected during 
each test. Data set can be obtained through the combination of some parameters of the collected 
signals and their corresponding pattern. The parameters acquired initially include the following 
features of collected signals: sampling time, the maximum value (Maximum), the mean value 
(Mean), the maximum value of wavelet transform modulus maximum (ܹܶܯܯ), the area (ܵ) 
between the curve of wavelet transform modulus maximum and its envelope [7], and inclination 
angle. 

The maximum value (Maximum) and the mean value (Mean) of the signal (ݐ)ݔ are calculated 
with Eq. (1) and Eq. (2): ݉ݑ݉݅ݔܽܯ = max൫(ݐ)ݔ൯, ݊ܽ݁ܯ(1) = mean൫(ݐ)ݔ൯. (2)

Wavelet transform of (ݐ)ݔ is: 

ܹ ௫ܶ(ܽ, ߬) = 1√ܽ න ஶ(ݐ)ݔ
ିஶ ߮∗ ൬ݐ − ߬ܽ ൰ ,ݐ݀ (3)

where ܽ and ߬ are the scale factor and time shift factor, respectively, and ߮(ݐ) is basic wavelet 
function. 

The maximum value of ܹܶܯܯ is defined as: ܹܶܯܯ = max (logଶ|ܹ ௫ܶ(ܽ, .(|(ݐ (4)

The area between the curve of ܹܶܯܯ and ܵ can be calculated with Eq. (5): 

ܵ = න ሾ݁(ݐ) − logଶ|ܹ ௫ܶ(ܽ, ௧భ௧బݐሿ݀|(ݐ , (5)

where ݐ଴ and ݐଵ represent the beginning and ending moment and ݁(ݔ) is the upper envelope of the 
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curve of ܹܶܯܯ . Fig. 4 well illustrates the area ܵ . Fig. 4 refer to the three patterns: joint 
dislocation, local embossment, and normal pattern. The value ܹܶܯܯ of the normal pattern is 
larger than that of the other two patterns. Hence, ܹܶܯܯ can be adopted to identify the normal 
pattern but does not work for joint dislocation and local embossment. However, a deeper 
investigation has disclosed that the area between ܹܶܯܯ and its envelope is obviously different 
for joint dislocation and local embossment. This is why ܵ is calculated and regarded as one of the 
candidate parameters in the following identification. 

 
Fig. 4. WTMMs and envelopes of vibration signals collected while  

a) joint dislocation, b) local embossment, c) normal 

For each experiment, the foregoing parameters and the pattern are recorded to form a dataset, 
a part of which is shown in Table 2. Actually, not every parameter in this table is able to make 
important contribution to the final recognition, so those with poor importance need to be found 
and skipped. 

Table 2. A part of the acquired dataset 
No. ST (s) Maximum Mean WTMM S Inclination (°) Fault pattern 
1 67 2.59 2.52 1.73 39.946 1.603 Normal 
2 65 2.7 2.56 1.645 95.391 1.695 Dislocation 
3 81 2.41 2.171 3.269 97.007 1.679 Embossment 
4 76 2.57 2.58 1.612 46.485 6.794 Inclination 
5 56 3.78 2.53 2.103 65.907 1.66 Normal 
6 47 2.36 2.173 3.614 101.47 1.563 Embossment 

ST: the sampling time; Maximum: the maximum value; Mean: the mean value; WTMM: the maximum 
value of Wavelet Transform Modulus Maximum; S: Area between the curve of Wavelet Transform 
Modulus Maximum and its upper envelop 

4. Importance and selection of parameters  

The boosting-tree algorithm is adopted to evaluate the importance of each foregoing feature 
[8]. To observe the strength of the relationship between a feature and the dependent variable (fault 
pattern), chi-square value ݔଶ is used to denote the important index, which can be defined as Eq. (6): 
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ଶݔ = ෍ ௜݀݁ݒݎ݁ݏܾܱ) − ௜݀݁ݐܿ݁݌ݔܧ௜)ଶ݀݁ݐܿ݁݌ݔܧ
௡

௜ୀଵ , (6)

where ܱܾ݀݁ݒݎ݁ݏ௜ is an observed value of a feature, and ݀݁ݐܿ݁݌ݔܧ௜ is an expected value of this 
feature under the null hypothesis that this feature and the dependent variable are completely 
independent. The larger a Chi-square value is, the more this hypothesis should be rejected, which 
shows a strong strength of the relationship between this predictor and the dependent. This feature 
should have a large important index. A bar graph of predictor importance presents the results, 
which is shown in Fig. 5. Obviously, the parameter of Maximum has the biggest importance index 
of 1, which illustrates that it contributes most to the classification in comparison with other 
predictors. In the other extremes, the sampling time of a signal has the smallest importance index 
of 0.41. While setting a threshold of 0.5, sampling time is skipped. Only those parameters with 
importance indexes higher than 0.5 are retained as predictors in later prediction models. 
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Fig. 5. Importance of predictors 

5. Algorithm selection 

There are various algorithms that can be used in the classification. In this paper, classification 
specifically refers to the fault pattern recognition of guides. Which algorithm works best for this 
particular issue is the problem that needs to be solved first. For the sake of a higher precision, 
comparison among algorithms should be conducted [9-13]. In this paper, six algorithms are 
investigated. They are boosting tree, K-nearest neighbor (kNN), MARSpline, neural network, 
random forest, and support vector machine (SVM). Parameters for each algorithm are selected or 
optimized so that the performance comparison can be made under a condition of equitableness 
and rationality. As an example, for the neural network algorithm, the final network applied is 
successively obtained through two selections. The first one is performed by the computer, where 
five networks are retained after the evaluation and comparison of 200 networks that have been 
trained. The second selection should be made if more than one network is retained during the first 
selection. Performance and parameters of the retained networks are listed in Table 3. In the table, 
RBF means radical basis function neural networks, and RBFT refers to its training method. MLP 
is multi-layer perceptron networks, and BFGS is a quasi-Newton method proposed by Broyden, 
Fletcher, Goldfarb, and Shanno. Obviously, RBF 6-22-4 and RBF 6-26-4 have very close 
performance which are better than the others, so either of them can be taken as the final network 
and RBF 6-26-4 is actually chosen finally. The detailed parameters such as training algorithm and 
each function can be found in Table 2. Similar work is done for other algorithms. For SVM 
algorithm, its SVM type is classification type 1 with a capacity of 10, and its Kernel type is radial 
basis function with a gamma of 0.167. 

Each algorithm is used to extract a corresponding model from the same data set. Deployment 
of these six models shows their different precisions upon the recognition of guide patterns. Table 
4 lists their different error rates. Apparently, the boosting-tree algorithm outperforms other 
algorithms with the lowest error rate. The kNN and the MARSpline algorithm are also pretty good 
in prediction, whereas the other three have obvious worse performance. More importantly, the 
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highest error rate of random forest declares its unavailability for pattern recognition of rigid 
hoisting guides. Gain chart and lift chart can be used to visualize how well a predictive model 
works. Gain chart is the track of Gains vs. Percentile, and Lift chart is the track of Response vs. 
Percentile. Gains, Percentile, and Response are calculated in Eqs. (7)-(9): 

ݏ݊݅ܽܩ = ݀ܽ + ܾ + ܿ + ݀, ݈݁݅ݐ݊݁ܿݎ݁ܲ(7) = ܾ + ݀ܽ + ܾ + ܿ + ݀, ݁ݏ݊݋݌ݏܴ݁(8) = ܾ݀ + ݀ × 100 %, (9)

where ܽ is the number of cases that are actual negative and predicted negative, ܾ is the number of 
cases that are actual negative but predicted positive, ܿ  is the number of cases that are actual 
positive but predicted negative, and ݀ is the number of cases that are actual positive and predicted 
positive. “Positive” means that this case belongs to one fault pattern, whereas “negative” means 
that this case does not belong to one fault pattern. The bigger a Gains or a Response is, the better 
one model would be. As shown in Fig. 6 and Fig. 7, gain charts and lift charts of six models are 
plotted within the same boxes. Boosting tree is obviously the model which outperforms the others 
for it has the highest values of both gains and response. Through the comparison of error rates, 
gain charts, and lift charts, the boosting-tree algorithm is adopted finally, which takes more 
presentation in the next part. 

Table 3. Performance and parameters of the retained five networks 
No. Network Training Test  Validation Algorithm Error  

function 
Hidden  

activation  
Output  

activation 
1 RBF 6-20-4 87.87879 100.0000 100.0000 RBFT Entropy Gaussian Softmax 
2 MLP 6-22-4 87.87879 83.3333 100.0000 BFGS 4 Entropy Tanh Softmax 
3 RBF 6-27-4 90.90909 83.3333 100.0000 RBFT Entropy Gaussian Softmax 
4 RBF 6-22-4 90.90909 100.0000 100.0000 RBFT Entropy Gaussian Softmax 
5 RBF 6-26-4 90.90909 100.0000 100.0000 RBFT Entropy Gaussian Softmax 

Table 4. Error rate of different algorithms 
Boosting tree kNN MARSpline Neural network Random forest SVM 

0.044 0.067 0.089 0.156 0.778 0.244 
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Fig. 6. Gain charts of different algorithms 
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Fig. 7. Lift charts of different algorithms 
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6. Pattern recognition based on boosting tree 

The boosting-tree algorithm is actually an application of boosting method on decision trees 
[14-18], which can be used for both regression and classification prediction. Pattern recognition 
of rigid guides belongs to problems of classification here. The general idea of the boosting-tree 
algorithm is the calculation of a sequence of simple trees, among which each successive tree is 
built on prediction residual of the predicting tree. During each step of boosting, not only the best 
current partition is determined, but the prediction deviation from observation is also computed. 
The next tree performs another partition to further reduce this deviation. The only difference 
between classification and regression is that classification needs logistic transformation function 
to compute the residual during boosting process. 

According to the result of parameter selection by importance, sampling time is skipped, and 
the other five are retained as continuous predictors to predict the dependent one, which is the 
pattern of rigid guides. The data set is divided into two parts: training and test. In this particular 
process, the proportion of random test data is set to 30 percent and the number of additive terms 
is set to 200. Fig. 8 shows the changing trend of the average multinomial deviance ݈(ݕ௜,  ො௜) withݕ
the increase of tree number. The average multinomial deviance is computed by Eq. (10): ݈(ݕ௜, (ො௜ݕ = ௜ݕ ln൫1 + ݁ି௬ො೔൯ + (1 − (௜ݕ ln൫1 + ݁௬ො೔൯, (10)

where ܰ is the number of training or test cases, ݕො௜ is the prediction of the target value, and ݕ௜ is 
the target values of the ݅th case. The number of trees is the number of a series of simple decision 
trees that the boosting tree model has computed. The model was found to begin to overfit the data 
somewhere around the fortieth tree, after which the deviance increases gradually. For a balance 
between training precision and severity of overfitting, the optimized number of successive trees 
has been determined, which is 134 in this case. Fig. 9 shows the classification matrix ܯ. The 
height of a bar ܯ௜௝ denotes the number of this sort of cases whose observed value is ݅ but predicted 
value is ݆. ݅ or ݆ can be any one of the four patterns of rigid guides, that is, normal, inclination, 
joint dislocation, and local embossment. Some bars are only found on the diagonal of this matrix, 
which means that the recognition made is perfect. 
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Fig. 8. Boosting process 

 
Fig. 9. Classification matrix 

7. Conclusions 

A data-mining approach was applied in the pattern recognition of rigid hoisting guides. 
Classification was performed to determine whether faults occurred in rigid guides, such as joint 
dislocation, local embossment, or inclination, or whether the guides were currently in complete 
normal status. Six parameters were recorded after the analysis on signals collected by a test rig, 
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which were used to form the sample dataset. The boosting-tree algorithm was used to select the 
parameters according to their importance of contribution to prediction. Then, error rate, gain chart, 
and lift chart were adopted to determine which algorithm works best among six different 
algorithms, which include boosting tree, kNN, MARSpline, neural network, random forest, and 
SVM. The results showed that the boosting tree model outperforms others, which was solely 
described in more details. As the main conclusion, the boosting-tree algorithm works efficiently 
with the pattern recognition of rigid guides. 
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