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Oil-paper insulation system is commonly used for power transformer internal 

insulation. Partial discharge (PD) is one of the main reasons for aging and disruption 

of the insulation system. Air-gap PD occurs in gas-filled cavity in transformer 

oil-paper insulation and is an extremely common and serious defect type. For air-gap 

PD analysis, most experiments were conducted through the standard air-gap discharge 

model recommended by CIGRE. Some work has been done to diagnose air-gap PD 

severity. However, the effect of cavity size on PD activity has not been emphasized 

yet. My thesis systematically discusses the effect of cavity size on air-gap PD activity 

through experiments. And pattern recognition classifier is a critical part in PD 

diagnosis. Artificial neural network and support vector machine are commonly used 

nowadays and show some good results in site application. To enhance PD diagnosis 

accuracy is still a main task. In this work, Random Forests is first time introduced in 

PD diagnosis. 
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Experiments show that large cavity PD possesses lower inception field, higher charge 

magnitude, higher inception phase. PD happening in large cavity is more harmful than 

that happening in small cavity. Besides, during Air-gap PD development process, 

charge magnitude variation of large and small cavity model both presents concave 

curve shape with respect to time and discharge phase slowly expends. For small 

cavity model, when air-gap PD comes to the last stage, positive PD even can expand 

to the negative half cycle and vice versa. And through clustering, the PD development 

stage for large and small cavity model are both divided into three stages, initial 

discharge stage, weak discharge stage and pre-breakdown stage. For air-gap PD 

development stage identification, total accuracy of random forests classifier is 93.15%, 

showing a better performance than RBF neural network. 
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Chapter 1 Introduction 

1.1 Background 

Power transformers are important apparatuses in electrical power system and need 

very large investments. They are usually very reliable, with a 25-35 year design life [1, 

2]. However as transformers age, their internal condition degrades, which increases 

the risk of failure. Transformer failures due to dielectric problems are reported as high 

as 75% [3, 4]. 

1.1.1 The harm and types of partial discharge (PD) 

Oil-paper insulation system is commonly used for power transformer internal 

insulation. Partial discharge (PD) is one of the main reasons for aging and disruption 

of the insulation system. PD is a weak discharge event which does not bridge the 

electrodes within an electrical insulation system under high field stress. PD normally 

occurs within some defects which are formed in long-term operation, such as cavities, 

cracks, joints and electrode burrs, in the insulation system. It does not cause direct 

breakdown of the insulation immediately because the surrounding insulation is strong 

enough to avoid a complete breakdown of the material. However, long-term PD can 

lead to continuous deterioration of the oil-paper insulation and consequently cause 

breakdown [5].  
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Cumulative PD brings about the aging and degradation of the oil-paper insulation 

through the following ways. ① Bombardment by charged particles. Electrons and 

positive ions generated by PD bombard the insulation with relatively high kinetic 

energy, which is more than 10eV . Normally, the chemical bonds, C H−  and 

C H= , in oil-paper insulation have energy of 3.5eV  and 6.2eV  respectively. 

They are possibly ruptured by the energetic particles. Molecular structure of the 

insulation destroyed, large quantity of tiny holes are generated on the insulation 

surface, eventually leading to the formation of discharge channels in the pressboard. 

② Radiation effect. PD generates visible light, ultraviolet ray, X-ray and γ-ray. 

High-energy X-ray and γ-ray also lead to rupture of the chemical bonds. ③ Thermal 

effect. Temperature at PD point could be high enough to carbonize the pressboard. ④ 

Corrosion by discharge byproducts. Due to PD, 2N , 2H O  and 2O  become  

3HNO  and 3O , which cause the chemical deterioration of the material [2]. 

 

According to different PD locations and mechanism, PD is divided into four main 

types, air-gap (internal) PD, surface PD, corona PD and bubble PD. Air-gap PD 

occurs in gas-filled cavity between winding and pressboard or within pressboard. 

Though air-gap PD magnitude is relatively low, it can do serious harm to the solid 

insulation (pressboard) that can’t be self-recovery [6]. Surface PD, which also can 

also increase the risk of failure, happens along the interface between pressboard and 

oil when the pressboard is affected with damp and contaminated by copper sulphide 

or other impurity [7]. Corona PD happens at conductor burrs and joints which are 
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naked in the oil. It doesn’t damage the solid insulation and is less harmful than 

Air-gap and surface PD. Bubble PD happens in the mobile gas bubble in the oil. It is 

not stable and can be eliminated by oil filtering [8]. 

         

Failures in power transformer due to insulation breakdown can lead to expensive 

maintenance or replacement cost and reduce the reliability of power supply. Therefore, 

it is very necessary to monitor insulation condition and diagnose fault type as well as 

severity, then reasonable and proactive maintenance strategy can be implemented to 

reduce failure rate and prolong life span of power transformer.     

1.1.2 PD measurement and diagnosis techniques 

Generally speaking, the term “monitoring” describes a basic parameter measurement 

with threshold alarms. The term “diagnosis” indicates the addition of sophisticated 

analysis, such as an expert system capable of providing an assessment of equipment 

condition and suggested actions [2]. There are three main kinds of PD measurement 

methods, Dissolved gas analysis (DGA), Acoustic test and Electrical test. 

 

⑴ DGA detects the small quantities of gases which come from oil-paper insulation 

decomposition by abnormal electrical or thermal stresses. DGA is not affected by the 

strong electromagnetic interference in substations and is taken for on-line monitoring 

by most utilities. However, it just can distinguish faults such as arcing, overheating 

and PD but can’t recognize the PD type. 
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⑵ Ultrasonic test detects the acoustic signals ranging from 100 to 300 kHz generated 

by PD. It can precisely tell if there is PD happening. If multiple sensors are mounted 

on the transformer tank, PD source can be located according to the arrival time of the 

pulses at the sensors. Nevertheless, ultrasonic test can’t recognize the PD type or 

severity, either. 

 

⑶ Electrical test is subdivided into two categories, pulsating current method and 

ultra high frequency (UHF) method, based on different detection frequency band. 

More PD information can be obtained by comparing electrically detected pulsating 

signals and power frequency signal for PD type and severity diagnosis. Pulsating 

current method which can be implemented discharge quantity calibration according to 

IEC 60270 is widely used for insulation condition assessment. The diagnosis system 

and procedures are shown below. 
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Figure 1. 1 PD diagnosis system 

① Collect different PD type’s signals at different development stage from experiment 

and site operation, extract parameters from Phase Resolved Partial Discharge (PRPD) 

pattern to be feature information database that is the training data for pattern 

recognition classifier. 

②  Collect field fault signal, denoise PD signal due to strong electromagnetic 

interference in substations. 

③ Build T-F pattern to separate multiple PD sources, then extract parameters from 

each PD’s PRPD pattern. 

④ used the trained classifier to determine PD’s type and severity. 

 

1.2 Thesis objectives and outline 

Large amount of work has been done to deal with PD type and severity diagnosis. For 

air-gap PD analysis, most researchers conducted experiments using the standard 
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cylindrical air-gap discharge model recommended by CIGRE [9]. However, the effect 

of cavity size, which could strongly affect the diagnosis accuracy of PD severity, has 

not been valued yet. Only Lutz and Schifani studied the inception field in different 

height’s cavity in [10-12] and Hazlee studied the effect of cavity height on inception 

field and charge magnitude in [13]. This thesis systematically discusses the effect of 

cavity size on air-gap PD activity through experiments, and then distinguishes 

development characteristic difference between large cavity model and small cavity 

model.  

 

Pattern recognition classifier is another critical part in PD diagnosis. Linear 

discriminant analysis, artificial neural network and support vector machine are 

commonly used nowadays and show some good results in site application. To enhance 

PD diagnosis accuracy is still the main task. In this thesis, random forests classifier 

that is originally proposed by Leo Breiman in [14], which has not been introduced in 

PD diagnosis before, is implemented to identify large cavity and small cavity PD’s 

development stage. 

 

This thesis is divided into 5 chapters. Chapter 1 contains the background of PD 

diagnosis and objectives of this work. Chapter 2 explains the mechanism of air-gap 

PD, introduces the procedure of air-gap PD experiment considering different cavity 

size and interpreters the effect of cavity size on PD activity through experiment 

results. In chapter 3, the development characteristics of large cavity and small cavity 
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PD are detailed. Furthermore, 27 dimensional statistical parameters are extracted from 

PRPD pattern and then parameter dimensions are reduced through kernel principle 

component analysis (KPCA). Chapter 4 presents the clustering results of large and 

small cavity PD development stage. In addition, RBF neural network and random 

forests are used to identify the development stage. Chapter 5 is the conclusions of this 

work.           
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Chapter 2 Effect of cavity size on PD activity 

2.1 Mechanism of air-gap PD in oil-paper insulation 

Air-gap PD occurs in the gas-filled cavity in transformer oil-paper insulation and is an 

extremely common and serious defect type [6, 15]. The gas-filled cavity defect may 

be created during manufacturing, installation or long-term operation process. 

Moisture in the pressboard can be evaporated when oil temperature is high enough, 

causing delamination in the pressboard [16]. Figure 2. 1 indicates a basic diagram of 

air-gap defect in solid dielectric. 

 

 

Figure 2. 1 Diagram of a gas-filled cavity within insulation pressboard 

According to the principle of current continuity, 

 c c b bU Y   U Y =ɺ ɺ ɺ ɺ   (2.1) 

where cU  is the voltage on the cavity, bU  is the voltage on the insulation 

paperboard, cY  , bY  are the admittance of gas and pressboard respectively. cγ , 

conductivity of gas and bλ , conductivity of paper are both less than 
1 11(0 )1 m− −Ωi , 

which can be neglected in power frequency electric field. So the voltage ratio is 

modified in Equation 2.2.  
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Where bε  , cε  are the permittivity of the pressboard and gas. 

 
( )

c C b

b b c

E u

E u d

δ ε
δ ε

= =
−

  (2.3) 

Since the permittivity of the gas is less than the permittivity of the insulation 

pressboard, the electric field in the cavity is higher than that in the paper. And the 

breakdown strength of gas is much lower than the paper’s. When the electric field is 

sufficiently high, PD firstly occurs in the gas-filled cavity. The discharge starts from 

one end of the cavity surface, only bridging the cavity and does not connect the whole 

insulation between electrodes. 

 

If PD occurs in cavity, two conditions must be satisfied. One is that there are enough 

initial free electrons, the other is sufficient electric field to keep electron avalanche 

happening. The electrons in the gas cavity are accelerated by the applied electric field, 

interacting with neutral gas molecules during the movement. If the kinetic energy of 

accelerated electron is high enough, it will collide with any gas molecule, resulting in 

releasing a new electron and positive ion. This process is called collision ionization. 

The new free electron would also be accelerated to hit other gas molecule, producing 

another electron. As the ionization repeats, large amount of electrons, which flow to 

anode, will be generated. The repetition of gas ionization is called as electron 

avalanche, making the gas property from a non-conducting to a conducting condition 

in a very short period of time. 
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Figure 2. 2 Schematic diagram of PD event 

 

As electron avalanche develops, the electric field in the cavity decreases. Figure 2.2 

illustrates this event. When discharge occurs, the electrons and positive ions, 

generated by ionization, flow to the other end of cavity surface. So after a PD, the 

original electric field in the cavity, 0E  is offset partially by the opposite field, sE  

which is due to charge accumulation on the cavity surface. When the resultant field in 

the cavity, cavE  drops to less than the breakdown strength of gas, free electrons lose 

their energy, the streamer channel collapses and discharge stops.  

 

2.2 Air-gap PD experiments considering different cavity sizes  
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2.2.1 Air-gap PD model 

The air-gap discharge models of different size were manufactured according to 

CIGRE Method II and ASTM-D149-09 in [9, 17]. Configuration of the basic model is 

shown in Figure 2. 3. A cylindrical cavity was made by a ring of pressboard 

embedded between two pressboards. In order to study the effect of cavity diameter 

and height on PD activity, five types of configurations are designed. When diameter 

of cavity is set to 40 mm , the heights are 0.5, 1.0 and 2.0 mm . And when height is set 

to 0.5 mm , the diameters are 10, 20 and 40 mm . The insulating glue is employed to 

seal the cavity in order to avoid the oil from penetrating into. The electrode system is 

a pair of plane-plane electrode arrangement. The upper plane electrode, with a 

diameter of 60 mm  and a height of 5 mm , was energized during the experiment. The 

under one, with same diameter and a height of 10 mm , was the grounding electrode.  

All the electrodes are made of brass and the insulating papers are Kraft pressboards. 

Besides, all the pressboards were fully dried and polished smooth before oil 

impregnation. The oil index satisfied the IEC 60296 and ASTM D 3487-09 standards. 
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Figure 2. 3 Air-gap PD model 

2.2.2 PD experiment setup 

In order to simulate the real environment in power transformer, a simulative oil tank 

where the air-gap discharge model is in was designed, shown in Figure 2. 4. To ensure 

an even distribution of both temperature and dissolved gases in the oil tank, a 

circulating pump and oil loop was used for the oil circulation. A temperature sensor 

was installed in the oil tank and the heaters were placed in a large incubator. During 

the test, the temperature of the oil was set to 60 °C, which was similar to a typical 

temperature of power transformers in service.  
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Figure 2. 4 Simulative oil tank 

PD signals were detected according to the pulsating current method based on the 

standard of IEC 60270. A discharge-free AC voltage transformer (60 kV / 60 kVA) 

was applied to energize samples with a power frequency of 50 Hz. The coupling 

capacitors (1000 pF) facilitated the passage of the high-frequency current impulses. 

PD signals were sampled by a digital oscilloscope (Lecroy Wavepro 7100). The 

sampling frequency was set to 10 MS/s during the test. The measurement circuit 

sketch is shown in Figure 2. 5 and the whole PD test system is shown in Figure 2. 6. 
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T1: Voltage regulator； T2：High voltage testing transformer； CK：Coupling capacitance；CX：PD model;： 

R：Protective resistance; D: Current transducer 

Figure 2. 5 Measurement Circuit of Partial Discharge 

 

 

Figure 2. 6 PD test system 

2.2.3 Charge magnitude correction 

According to IEC 60270, PD pulse voltage magnitude detected by oscilloscope can be 

corrected to charge magnitude through the correction circuit shown in Figure 2. 7. The 

artificial simulation branch consists of a voltage source, 0U  in series with a 

capacitance, 0C . When a given charge magnitude, 0 0 0q U C=  is injected into test 

sample, xC , a pulse voltage magnitude, U  can be recorded from the oscilloscope. 

Then 0U  is changed for several times and charge injection is repeated again and 
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again. Relationship between charge magnitude and pulse voltage magnitude is 

obtained by curve fitting shown in Figure 2. 8. In terms of the function, 

0 0.748 1.7078q U= + , PD charge magnitude can be estimated.          

 

Figure 2. 7 Correction circuit of series connection 

 

 

Figure 2. 8 Relationship between charge magnitude and pulse voltage magnitude 

 

2.3 Effect of cavity size on PD inception field 

PD Inception voltage, incV  for each cavity configuration was tested for ten times, and 

PD inception field, incE , the minimum field that is required for a PD to occur, was 

calculated with the help of Ansys Maxwell. The field in each cavity configuration is 

q = 0.748U + 1.7078

R² = 0.9986
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almost uniform. Figure 2. 9 shows the field for the cavity whose diameter is 40 

millimeters and height is 1.0 millimeters. Mean value of experiment results is shown 

in Table 2. 1 and Table 2. 2. It was found that larger cavity possesses lower incE .  

 

 

Figure 2. 9 Simulation of inception field, d=40mm, h=1mm 

Table 2. 1 Inception voltage and field for cavity of different height, d=40mm 

Cavity height (mm) 0.5 1.0 2.0 

Mean inception voltage (kV) 5.9 6.3 6.6 

Mean inception field (kV/cm) 47.63 37.79 28.28 
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Table 2. 2 Inception voltage and field for cavity of different diameter, h=0.5mm 

Cavity diameter (mm) 10 20 40 

Mean inception voltage (kV) 6.5 6.1 5.9 

Mean inception field (kV/cm) 52.75 49.96 47.63 

 

In other published research, for spherical cavity, incE  has been defined as 

 ( ) [1 ]
( )

inc cr n

E B
E p

p ph
= +   (2.4) 

where ( / )crE p , B  and n  are parameters associated with ionization processes in 

the air gap, p  is the pressure in the cavity and h  is the cavity height. For air, 

1 1( / ) 24.2crE p VPa m− −= , 0.5n =  and 0.5 0.58.6 PaB m= . This equation indicates 

that spherical cavity with higher diameter has lower incE . Results in Table 2. 1 and 

Table 2. 2 show good agreement with the equation. The effect of cavity height on 

incE  can be explained by that as cavity height increases, lower electric field is needed 

for electrons to reach the kinetic energy level to trigger electron avalanche. For longer 

diameter, incE  decreases slightly. Because the formation of streamer is a random 

event, to some degree, larger air gap area increases the probability of the formation of 

discharge channel, reducing incE . 

 

2.4 Effect of cavity size on PD charge magnitude  

During the PD experiment of different cavity size, two hundred power frequency 

cycles’ discharge signals, at the inception voltage, were acquired for each cavity 
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configuration. Discharge signal of a cycle is shown in Figure 2. 10. Figure 2. 10 (a) is 

the discharge signal of the cavity whose diameter is 40 millimeters and height is 2 

millimeters, and Figure 2. 10 (b) is for the cavity 10 millimeters diametric and 0.5 

millimeter high. Obviously, the PD magnitude of large-sized cavity is much greater 

than that of small size.  

 

Table 2. 3 and Table 2. 4 indicate the detailed experiment results, which come from 

the average values of two hundred cycles’ discharge. As diameter stay constant, the 

charge magnitude increases rapidly along with the increased cavity height. When 

height remains the same, the magnitude of different diameter cavity almost stays 

unchanged. It was found that charge magnitude mainly depends on the height rather 

than diameter.     
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Figure 2. 10 Discharge pulse of a power frequency cycle 

Table 2. 3 Charge magnitude for cavity of different height, d=40mm 

Cavity height (mm) 0.5 1.0 2.0 

Maximum PD magnitude (pC) 98 416 624. 

Mean PD magnitude (pC) 47 187 303 

 

Table 2. 4 Charge magnitude for cavity of different diameter, h=0.5mm 

Cavity diameter (mm) 10 20 40 

Maximum PD magnitude (pC) 84 79 98 

Mean PD magnitude (pC) 55 43 47 

 

As shown in Figure 2. 9, electric field in cavity is relatively uniform. The charge 

magnitude of a single pulse can be represented as Equation 2.5. 

 Q NqvSt=   (2.5) 

where N  is total quantity of electrons generated by avalanche, q  is electron charge, 

v  is the electron velocity through a specific streamer area, S and t stands for the 

single discharge duration time.  
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In uniform field, the number of electrons due to avalanche, which starts from cathode 

and then ends on anode, can be calculated by Equation 2.6.     

 0

hN n eα=   (2.6) 

where 0n  is the number of initial electron, α  represents the first Thompson 

ionization coefficient. As cavity becomes higher, total number of electrons generated 

by avalanche certainly increases. And according to Table 2. 2, electrons in higher 

cavity are accelerated by higher potential difference, so the electron velocity in high 

cavity is greater than that in a low one. Besides, Figure 2. 11 shows the single 

discharge waveform of different height’s cavity. Both discharge duration time, t  is 

almost equal to 2.5 sµ , which has no effect on the distinction of Q  for each cavity 

configuration. Therefore, the higher cavity has larger charge magnitude, electrons in 

higher cavity are accelerated by higher potential difference owing to more electrons 

generated and electrons of higher speed.     
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Figure 2. 11 Single discharge waveform 

 

2.5 Effect of cavity size on PD inception phase 

From Figure 2. 10, it is obvious to see both positive and negative discharge inception 

phase of large-sized cavity is much higher than that of small one. Detailed statistical 

results for two hundred power frequency cycles’ discharge signal of each cavity 

configuration are shown in Table 2. 5 and Table 2. 6. Both larger height and diameter 

contribute to the higher PD inception phase.  

Table 2. 5 PD inception phase for cavity of different height, d=40mm 

Cavity height (mm) 0.5 1.0 2.0 

Mean positive PD inception phase (degree)  50.10 69.33 76.08 

Mean negative PD inception phase (degree) 231.12 245.38 252.51 

 

Table 2. 6 PD inception phase for cavity of different diameter, h=0.5mm 

Cavity diameter (mm) 10 20 40 

Mean positive PD inception phase (degree) 26.21 42.67 50.10 

Mean negative PD inception phase (degree) 208.43 218.38 231.12 
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When the inception field in the cavity, incE  has been exceeded, the first free electron 

may not trigger avalanche immediately. Since a neutral gas molecule may absorb the 

electron and becoming a negative ion or the kinetic energy of electron is not enough 

to start ionization. Therefore, there should be a time delay before PD occurs. This 

delay is called average statistical time lag, statt  and it is inversely proportional to the 

electron generation rate, eP . Higher electron generation rate results in more collision 

opportunity for electron and gas molecule, reducing statistical time lag. Referring to 

Figure 2. 10, Table 2. 5 and Table 2. 6, smaller cavity, both height and diameter, will 

cause a higher electron generation rate. 

 

Initial free electrons in the cavity may come from volume ionization, volP  or surface 

emission, surf
P . 

 e vol surf
P P P= +   (2.7) 

 
3

0| ( ) | /(4 )
( ) ( ) exp[ ]surf sc o

q E t
P t N t v

KT

ψ πε−
= −   (2.8) 

Volume ionization of initial electron generation is due to gas ionization by energetic 

photon and detachment of electrons from negative ions. Surface emission is an 

electron generation process where free electrons are emitted from the cavity surface 

under the influence of the amount of electrons trapped by the cavity wall ( )scN t , 

detrapping work function ψ , electric field ( )E t  and temperature T . Nevertheless, 

in a cavity that has never experienced PD, free surface electrons and energetic 

photons are extremely scarce. The generation of initial electrons is a highly random 
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event and where they exactly come from has not been decided yet.   

 

However, after PD has occurred in the cavity, new electrons which start the next 

avalanche almost all come from the electrons which were left on the cavity wall by 

last discharge. The electron generation rate basically depends on the surface emission, 

surf
P  rather than volume ionization, volP . The reason why smaller cavity has the 

property of higher surface emission rate is detailed as follows. 

 

As indicated in equation 2.6, electron generation rate due to surface emission, surf
P   

is a function of the amount of electrons trapped by the cavity wall or on the cavity 

surface, ( )scN t  and the detrapping work function, ψ . The electrons accumulated on 

the cavity duo to PD decay with time through three phenomenon, ① injection into 

electrode through insulation board conductivity [18], ② emission from traps at the 

following half power frequency cycle and ③ recombination with positive ions left 

by previous PD [13].  

 

At the half power frequency cycle when PD occurs, after electrons hit the cavity 

surface, some of them can continue to go through the insulating board due to the 

material conductivity and the applied stress. From the point of equivalent circuit, there 

must be more paralleled resistances connecting cavity surface and electrode for the 

cavity with larger diameter. Higher conduction results in higher surface charge decay 
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rate. Therefore, the amount of charges left on the cavity surface, ( )scN t  is lower for 

larger diameter. With regard to effect of cavity height, the work function, ψ  plays a 

important role. Electrons within higher cavity hit insulating pressboard at higher 

speed, going into deeper traps of the pressboards. This leads to higher detrapping 

work function that electrons require more energy to be emitted from the traps to start 

another avalanche.  

 

Hence, according to Equation 2.8, lower ( )scN t  and higher ψ for larger cavity result 

in lower electron generation rate duo to surface emission, also longer statistical time 

lag and higher inception phase. 

 

2.6 Summary 

This chapter introduces the mechanism of air-gap PD as well as the setup of air-gap 

PD experiment considering different cavity size and emphasizes on interpreting the 

effect of cavity size on PD activity through experiment results. 

1) Large cavity PD possesses lower inception field. Higher cavity height contributes 

more to the lower inception field than larger cavity diameter.  

2) Large cavity PD possesses higher charge magnitude. Charge magnitude mainly 

depends on the cavity height. 

3) Due to lower inception field and higher charge magnitude, PD happening large 

cavity is more harmful than that happening in small cavity. 
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4) Large cavity PD possesses higher inception phase. Both cavity height and 

diameter have impact on the inception phase.  
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Chapter 3 Air-gap PD development characteristics and feature 

information extraction 

In order to evaluate the harmfulness of the detected air-gap PD, the PD development 

characteristic has been studied in some published research. However, due to the effect 

of cavity size on PD activity, previous work on PD development process needs to be 

researched further, making the severity diagnosis more accurate. This chapter first 

discusses about the PD development characteristic within a large cavity as well as a 

small one. Then feature information extraction based on statistical parameters of 

PRPD pattern is introduced.     

3.1 PD development characteristic 

The insulation degradation due to air-gap PD is a long-term process, which could 

continue more than five years until breakdown depending on the field in the 

cavity[19]. Under laboratory conditions, the testing voltage should be higher than the 

inception voltage to accelerate the process of insulation deterioration, making whole 

system breakdown occurs at a reasonable time. According to the previous experiment 

experience, the testing voltage for large cavity, whose diameter is 40mm  and height 

is 2mm , is set to 1.4 times as much as the inception voltage and the voltage for small 

one, 10mm  wide and 0.5mm  high, is double inception voltage. Discharge signals 

of four hundred power frequency cycles were acquired every half an hour until 

breakdown.  
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3.1.1 Large cavity model 

Large cavity model was energized at 8.5kV . It took twenty-eight hours to the final 

breakdown. Discharge signals at different time are shown in Figure 3. 1. At first, PD 

magnitude was relatively high and the discharges mainly concentrated on 90 and 270 

degree where the peak values of power frequency cycle are. After 5
th

 hour, the 

magnitude started declining but inception phase extended to around 60 degree. PD 

magnitude stayed about 400 pC  for a long time. At 19
th

 hour, PD suddenly became 

extremely fierce, the magnitude increasing sharply and inception phase expanding 

much. Then discharge continued developing and the whole system was broken down 

at 28
th

 hour.         

 

(a) 0.5
th

 hour 
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(b) 6
th

 hour 

 
(c) 14

th
 hour 

 

(d) 22
nd

 hour 

 
(e) 27

th
 hour 

Figure 3. 1 Large cavity discharge signals at different time 
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Figure 3. 2 Mean PD magnitude variation for large cavity 

Figure 3. 2 indicates the variation of mean PD magnitude during whole process. In 

theory, damaged condition of the insulation can be identified through the magnitude 

variation. However in reality, this doesn’t work. Firstly, different PD fault type or 

fault location in power transformer has diverse charge magnitude level. Compared to 

air-gap discharge, surface discharge as well as corona discharge possesses higher 

magnitude. PD happening in higher electric field area possesses higher magnitude. 

Secondly, relative costs of online real time PD monitoring systems compared to an 

asset value have resulted in their use being reserved for most critical apparatus [20]. 

Hence, only offline PD magnitude at a specific time can’t figure out the discharge 

development stage. Besides, there may be more than one PD source within 

transformer. Only depending on magnitude variation is not able to separate PD source 

or identify PD type. Therefore, more PD feature information is needed. PRPD pattern, 

which takes PD magnitude, phase and number into account, is widely used in PD 

severity diagnosis. Four hundred discharge signals at one point were taken to build the 

four kinds of two-dimensional distribution images below, which are the maximum 
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charge magnitude distribution with respect to discharge phase )(max ϕqH , mean 

charge magnitude distribution with respect to the phase ( )
qm

H φ , distribution of pulse 

number versus the phase )(ϕnH  and distribution of mean charge magnitude versus 

related phase )(qH n . ( )
qm

H φ , )(ϕnH  and )(qH n  of large cavity model at 

different time are shown as follows.  

 

 
(a) 0.5

th
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 (d) 22
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Figure 3. 3 ( )
qm

H φ  of large cavity model 
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(a) 0.5

th
 hour 

 
(b) 6

th
 hour                     (c) 14

th
 hour 

 

 (d) 22
nd

 hour                     (e) 27
th

 hour 

Figure 3. 4 )(ϕnH of large cavity model 
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(b) 6
th

 hour                     (c) 14
th

 hour 

 
 (d) 22

nd
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th
 hour 

Figure 3. 5 )(qH n  of large cavity model 

At initial stage of PD, relatively high magnitude is due to enough gas molecules. The 

greater probability free electrons collide with gas molecules, the more electrons can 

be generated. According to Equation 2.5, more electrons lead to higher magnitude. As 

PD developed, 2O  and 2N  in the cavity were consumed, pressboards were 

corroded, 3HNO , 2H  and 4CH were generated. The gas volume in cavity can 

decrease down to about eighty percent [21]. Meanwhile, masses of irregularly 

distributed cellulose filaments existing on the surface of insulation paper disappeared 

due to ablating and insulation surface became smooth. Three dimensional insulation 

surface roughness at different discharge time was calculated by atomic force 

microscope in [22]. It shows that the surface roughness in the medium term is the 

lowest. This makes electric field distortion due to surface roughness lower. Equation 

0 200 400 600 800
0

20

40

60

Mean Charge (pC)

N
u
m

b
e
r 

o
f 

C
h
a
rg

e

200 400 600 800

20

40

60

80

Mean Charge (pC)

N
u
m

b
e
r 

o
f 

C
h
a
rg

e

0 1000 2000 3000
0

20

40

60

Mean Charge (pC)

N
u
m

b
e
r 

o
f 

C
h
a
rg

e

0 1000 2000 3000
0

20

40

60

Mean Charge (pC)

N
u
m

b
e
r 

o
f 

C
h
a
rg

e



 33 

 

 

2.8 shows that lower field reduces the amount of free electrons due to surface 

emission. Therefore, both lower collision probability with gas and fewer free 

electrons result in lower PD magnitude in interim stage. As PD continuously 

developed, more oil was decomposed into 2H  and 4CH . Besides, pressboards were 

bombarded and corroded for a long enough time, so that large amount of CO  as well 

as 2CO  were produced and surface roughness started increasing from the lowest 

point, becoming much higher [21, 22]. Those greatly increased the PD magnitude.    

 

Throughout the whole power frequency, PD phase is symmetrical due to no corona 

effect. In addition, PD phase expanded along with increased time. That is because 

there are more electrons accumulated on the cavity wall and strong electronegative 

gas (oxygen), which can capture free electron and become anion, depleted. Both 

factors increase the probability of effective electron generation, leading to lower 

average statistical time leg and lower PD phase angle.    

3.1.2 Small cavity model 

Small cavity model was energized at 13kV . It took a longer time, thirty-three hours 

to the final breakdown. Discharge signals at different time and mean PD magnitude 

variation are shown in Figure 3. 6 and Figure 3. 7 respectively. PD development 

characteristic of small cavity is similar to the large one’s. PD magnitude variation is a 

concave curve and PD phase slowly expands. More statistical information are shown 
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from Figure 3. 8 to Figure 3. 10. 
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(e) 30
th

 hour 

Figure 3. 6 Small cavity discharge signals at different time 

 

Figure 3. 7 Mean PD magnitude variation for small cavity 
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Figure 3. 8 ( )
qm

H φ  of small cavity model 
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th

 hour                     (c) 15
th
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(d) 23
rd

 hour                     (e) 30
th

 hour 

Figure 3. 9 )(ϕnH of small cavity model 

Due to the lower inception phase for small cavity interpreted in Chapter 2, ( )
qm

H φ  

and )(ϕnH spanned much wider, making them look like less sharp. When PD came 

to later stage, the positive PD even expanded to the negative half cycle and vice versa. 

As shown in Figure 2. 2, opposite field, sE  will be established after PD occurs. For 

small cavity, more concentrated charge distribution and lower height result in the 

higher reverse field, which can make the resultant field in cavity, cavE  turn over 

before sinusoidal voltage drops to zero. Therefore, positive PD can occur at the end of 

negative half cycle.        
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Figure 3. 10 )(qH n  of small cavity model 

Compared with the )(qH n  distribution for large cavity, number of low magnitude 

PD, for small one, accounts for much higher proportion.     
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3.2 Statistical parameter extraction of Phase Resolved Partial 

Discharge (PRPD) pattern 

PD distribution images of large or small cavity at different time vary significantly, 

which can be used for diagnosis. However, only the operators with much knowledge 

and experience on PD can do the right diagnosis. Hence, quantification of the feature 

information is very necessary. Abstracting statistical parameters from the two 

dimensional distribution images talked about in session 3.1 is one of the most 

effective and sophisticated methods for quantitative analysis. It was successfully used 

to do PD diagnosis in [23-25]. The statistical parameters adopted in this paper are 

degree of skewness ( )Sk , degree of kurtosis ( )Ku , degree of asymmetry ( )Asy , 

number of local peak value ( )peaks  and cross-correlation coefficient ( )Cc , which 

are detailed below. 

 

Sk  represents degree of skewness for a distribution image compared to Gaussian 

distribution, 

 

3

1

3

(y )
n

i i

i

p

Sk

µ

σ
=

−
=
∑

  (3.1) 

where iy  is vertical coordinate value of distribution image, indicating PD magnitude 

or number. µ  is the mean value, σ is the standard deviation and ip  is the 

probability of pulse occurring in ith phase window. In this paper, the power frequency 

cycle is divided into 256 phase windows, so n  equals 128, each window 
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corresponding to approximate 1.4 degree. 

 
1

n

i i

i

y pµ
=

=∑   (3.2) 

 2

1

(y )
n

i i

i

pσ µ
=

= −∑   (3.3) 

If Sk  equals to zero, it indicates that distribution image is symmetrical. If Sk  is 

greater than zero, it indicates the image is left skewed to Gaussian distribution and 

vice versa.  

 

Ku , which is defined in Equation 3.4, represents the degree of kurtosis compared to 

Gaussian distribution. 
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Ku

µ
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−
= −
∑

  (3.4) 

The parameters within Equation 3.4 have the same definition with those in Equation 

3.1. On condition that Ku  is greater than zero, the distribution image should be 

sharper compared to Gaussian distribution and vice versa. 

 

Asy  represents asymmetry of PD magnitude or number in positive and negative 

cycle. 

 
2 1

1 1

1 2

N N

i i

i i

Asy N Ny y− +

= =

= ∑ ∑   (3.5) 

where “ iy+ ” and “ iy− ” are the vertical coordinate value for i th phase window in 

positive and negative cycle respectively, 1N  is the number of phase window, where 
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PD occurred, in positive cycle and 2N  stands for that in negative cycle. Higher  

Asy  indicates more intense PD in negative cycle. 

 

Cc  is used to evaluate similarity of distribution image shape in positive and negative 

cycle. Cc  equals one means that the shape is very similar and Cc  equals zero 

signify that there exists significant difference. 

 
2 2 2 2[ ( ) ( ) / ][ ( ) ( ) / ]

i i i i

i i i i

y y y y n
Cc

y y n y y n

+ − + −

+ + − −

−
=

− −

∑ ∑ ∑
∑ ∑ ∑ ∑

  (3.6) 

 

According to the definitions above, 27 dimensional statistical parameters, which are 

shown in  

Tabla 3. 1, can be abstracted from the four distribution images for a specific data 

collection time. 57 data sets were acquired for large cavity model and 67 data sets for 

small cavity model. 

Tabla 3. 1 Statistical parameters 

Distribution images Parameters 

)(max ϕqH  sk + −sk  +ku  −ku  +peaks  −peaks  Asy  cc  

)(ϕqnH  +sk −sk  +ku  −ku  +peaks  −peaks  Asy  cc  

)(ϕnH  +sk −sk  +ku  −ku  +peaks  −peaks  Asy  cc  

)(qH n  sk  ku  peaks  
－ － 
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3.3 Dimension reduction of statistical parameters based on Kernel 

based Principal Component Analysis (KPCA) 

The 27 dimensional statistical parameters express sufficient information within the 

distribution images. Yet there may be some overlapping information. Taking all of 

them as input to the diagnosis classifier will definitely make the classifier more 

complicated and harder to train. Therefore, kernel principal component analysis 

(KPCA), which can achieve parameter dimension reduction and keep original 

information, was applied.  

3.3.1 Theory of KPCA 

KPCA is an extension of principal component analysis (PCA) based on kernel trick. 

Theory of PCA is described as follows. 

 

①PCA 

Given a dataset 1 2 3[X ,X ,X X ]nX = …  where Xi  is a m  dimensional column 

vector and m  is the number of samples. PCA is an orthogonal linear transformation 

that transforms X  into a new coordinate system such that the greatest variance lies 

on the first coordinate (called the first principal component), the second greatest 

variance on the second coordinate and so on. X  can be transformed into a p

dimensional row vector, Y  through multiplying a transformation matrix, T  with n  

rows and p  columns. How to get value of p and the transformation matrix are 
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detailed below. 

 1 1p n n pY X T× × ×=   (3.7) 

The n  by n  covariance matrix, ∑  of data set X is calculated by Equition 3.8. 

 
,

0, 0

1 1
[( [ ])(X E[X]) ] [( )( ) ]

i n j n
T T

x i i j j

i j

C X E X X X
m m

µ µ
= =

= =

= − − = − −∑   (3.8) 

 x i iC U Uλ= , 1,2i n= …    (3.9) 

Then eigenvalue, iλ  and eigenvectors, iU  of xC  are calculated and iλ  are sorted 

from high to low. Accumulating contribution rate is defined in Equation 3.10. 
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=

∑
=
∑

  (3.10) 

When η  is high enough, typically higher than 90 percent, corresponding p  is set 

and corresponding top- p eigenvectors generate the n  by p  transformation matrix. 

 

②KPCA 

Using a kernel, the originally linear operations of PCA are done in a reproducing 

kernel Hilbert space with a non-linear mapping, φ . Hence, the components obtained 

by KPCA can be taken as the non-linear principle components in original space. First, 

original dataset X  is mapped into high dimensional feature space throughφ function. 

Then covariance matrix is calculated. 

 
,

( )

0, 0

1
[ ( )][ ( ) ]

i m j m
T

x i i j j

i j

C X X
m

φ φ µ φ µ
= =

= =

= − −∑   (3.11) 

However, we don’t know where the feature space is and φ function is never 

calculated explicitly. Kernel method, which can transform the inner product operation 
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in feature space into kernel function calculation in original space, is introduced to 

solve the problem. 

 ( , ) [ ( )][ ( ) ]T

i i j j i i j jK X X X Xµ µ φ µ φ µ− − = − −   (3.12) 

Polynomial kernel function, Equation 3.13 and Gaussian kernel function, Equation 

3.14 are widely used. 

 
2( , ) ( )T

K x y x y c= +   (3.13) 

 ( )
2

2
, exp

x y
K x y

σ

 −
 = −
 
 

  (3.14) 

After obtaining covariance matrix, likewise, the transformation matrix is computed as 

the procedures discussed about in PCA. 

 
1

( (x)) ( ) ( , )
m

k k

i i

i

v K x xφ α
=

⋅ =∑   (3.15) 

3.3.2 Dimension reduction result of statistical parameters 

The 27 dimensional statistical parameters from large cavity model and small one are 

reduced dimensions together by using PCA and KPCA. Accumulating contribution 

rate through PCA and KPCA are shown in Figure 3. 11 and Figure 3. 12 respectively. 

The contribution rate of the first six components coming from PCA is 86.11%, which 

means the six components preserve 86.11 percent information of the original 27 

dimensional parameters. Compared with PCA, KPCA is more effective. The first six 

components preserve 96.1% of all the original information. So the 27 dimensional 

statistical parameters are reduced to six dimensions with the help of KPCA. And the 

3-d visualization of KPCA results is shown in Figure 3. 13. 
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Figure 3. 11 Accumulating contribution rate through PCA  

 

Figure 3. 12 Accumulating contribution rate through KPCA 
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Figure 3. 13 3-d visualization of KPCA results 

3.4 Summary 

The development characteristics of large cavity and small cavity PD are studied in 

this chapter. Furthermore, statistical parameters are extracted from PRPD pattern for 

quantitative analysis. 

1) During Air-gap PD development process, charge magnitude variation of large and 

small cavity model both presents concave curve shape with respect to time. 

Besides, discharge phase continuously expends and the phase span of large cavity 

model is much narrower than that of small cavity model. When air-gap PD comes 

to the last stage, for small cavity model, the positive PD can even expand to the 

negative half cycle and vice versa. 

2) 27 dimensional statistical parameters from PRPD pattern are carried out 

dimension reduction through PCA and KPCA. KPCA shows a better performance, 
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keeping 96.1% of original feature information in the first six principle 

components. 
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Chapter 4 Air-gap PD development stage unsupervised classification 

and identification considering cavity size 

Discharge process was accelerated due to higher field in lab experiment and PD 

development is a relatively random event. Besides in site operation, it is highly costly 

and electromagnetic interference sensitive to implement on-line real-time PD 

monitoring for power transformers. What operators can obtain is the PD signal at a 

specific time when dissolved gas analysis (DGA) shows an abnormal gas level. 

Therefore, it’s not practical to use the lab experiment data of PD development process 

and some site operation data to predict a precise time when a power transformer will 

break down.  

 

In order to diagnose the insulation condition, what is feasible is to divide the PD 

development into several stages according to the whole discharge experiment data, so 

unsupervised classification method, clustering analysis is put to use in this chapter to 

do PD development stage classification. Then the clustering results can be used to 

train a supervised classifier, which can identify the development stage that an 

unknown PD sample is at. 
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4.1 Air-gap PD development stage classification based on clustering 

analysis 

Clustering analysis is an important cognition technique for mankind to discover the 

unknown world. It is the task of grouping a set of objects in such a way that objects in 

the same group are more similar to each other than to those in other groups. In this 

section, hierarchical clustering and K means clustering are used to divide air-gap PD 

development stage.  

4.1.1 Hierarchical clustering 

Hierarchical clustering is a method of cluster analysis that seeks to build a hierarchy 

of clusters. Agglomerative strategy is used for hierarchical clustering. This is a 

“bottom up” approach: each observation starts in its own cluster and pairs of clusters 

are merged as one moves up the hierarchy. The results of hierarchical clustering are 

usually presented in a dendrogram. In order to decide which clusters should be 

combined, a measure of similarity between is required. This is achieved by use of an 

appropriate metric, a measure of distance between pairs of observations, and a linkage 

criterion which specifies the similarity of sets as a function of the pairwise distances 

of observations in the sets. 

 

Some commonly used metrics for hierarchical clustering are shown below. X and Y 

are two observations. 
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1) Euclidean distance 

 
2

0

( , ) (X )
n

i i

i

D X Y Y
=

= −∑   (4.1)  

2) Manhattan distance 

 
0

( , )
n

i i

i

D X Y X Y
=

= −∑   (4.2) 

3) Mahalanobis distance 

 1( , ) ( ) ( )TD X Y X Y X Y−= − ×∑ × −   (4.3) 

where∑ is covariance matrix of samples. 

 

Then common linkage criterions that determine the distance between two clusters, 1G

and 2G , are introduced. 

1) Minimum linkage clustering 

Distance between the two nearest points in two clusters determines the similarity of 

the two clusters.  

 1 2 1 2( , ) min{ ( , ) | , }D G G D X Y X G Y G= ∈ ∈   (4.4) 

2) Maximum linkage clustering 

Distance between the two farthest points in two clusters determines the similarity of 

the two clusters.  

 1 2 1 2( , ) max{ ( , ) | , }D G G D X Y X G Y G= ∈ ∈   (4.5) 

3) Mean linkage clustering 

Mean distance between two points in two clusters determines the similarity. 
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4) Centroid linkage clustering 

Distance between the centroids in two clusters determines the similarity.  

 
1 2( , ) ( , )D G G D X Y=   (4.7) 

 

Hierarchical clustering is conducted as following steps. 

① Construct an initial distance matrix, where the number in the i-th row j-th column 

is the distance between the i-th and j-th observations. In this step, every observation is 

a cluster. 

② Find the minimum mean distance between two clusters in distance matrix, merge 

one cluster into the other becoming a new cluster. Total cluster number reduces one. 

③ Recalculate the distance matrix. 

④ Repeat ② and ③ until total cluster number drops to one. 

⑤ Draw the dendrogram. 

⑥ Stop clustering when the clusters are too far apart to be merged or when there is a 

sufficiently small number of clusters. 

4.1.2 K means clustering 

In hierarchical clustering, once an observation is partitioned to a specific cluster, it 

can’t be assigned to other later. This requires a very explicit clustering at first. Besides, 

it is not economical to calculate the distance matrix when data is very big. K means 
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clustering is an iterative algorithm, originally from signal processing, which can 

dynamically partition n  observations into k  clusters in which each observation 

belongs to the cluster with the nearest mean. Steps of K means clustering are 

introduced as follows. 

 

① Select k  observations as initial clustering centers. 

② Assign each observation into the optimal cluster center which yields minimum 

squared Euclidean distance from the observation. 

③ Calculate the new means to be the centers of the observations for next clustering. 

④ Stop clustering until the centers stay unchanged.    

4.1.3 Clustering results 

Hierarchical clustering and K means clustering are implemented with the help of 

software PASW Statistics 18. Hierarchical clustering results of six dimension 

parameters throughout whole span of experiments for large cavity model and small 

cavity model are shown in Figure 4. 1 and Figure 4. 2 respectively. Euclidean distance 

and mean linkage clustering are employed. For large cavity model, when rescaled 

distance is 13.3, 57 samples, which are marked as t1, t2, t3…t57, are classified into 

three clusters. The first cluster is from t1 to t14, the second one is from t15 to t38 and 

the third one is from t39 to t57. Similar clustering results for 67 samples from small 

cavity model are obtained, t1 to t16, t17 to t44, t45 to t67 except t56 that is classified 

into the second cluster. 
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The three clusters for PD development stage show good agreement with rough stage 

classification by the mean PD magnitude variation curve in Figure 3. 2 and Figure 3. 

7, by gas volume variation in cavity[21] and by three-dimensional insulation surface 

roughness variation[22]. The magnitude in first stage, 0
th

 hour to 6.5
th

 hour for large 

cavity model and 0
th

 hour to 7.5
th

 hour for small cavity model, is relatively high, but 

the high magnitude level does not last very long. This stage is called initial discharge 

stage. Then PD development turns into another stage, magnitude becoming lower and 

PD phase extending more widely. PD is not stable, since during sometime in 10
th

 hour 

to 15
th

 hour, oscilloscope barely can detect effective PD pulse. The second stage, 7
th

 

hour to 18.5
th

 hour for large cavity model and 8
th

 hour to 21.5
th

 hour for small cavity 

model, is called weak discharge stage. Afterward the magnitude increases sharply and 

PD phase continues expanding. PD becomes fierce, because pressboards are long 

lastingly bombarded by charged particles and corroded by discharge byproducts. “Chi 

Chi” discharge sound can be heard. The last stage is called pre-breakdown stage. 

 



 

 

Figure 4. 

 

Figure 4. 

Same clustering results are 

K means clustering. T

times iteration for large cavity data and six times for small cavity data

stay unchanged. Initial 

cavity data are shown in

 

Figure 4. 1 Hierarchical clustering results of large cavity model

Figure 4. 2 Hierarchical clustering results of small cavity model

clustering results are obtained for PD development stage classification by using 

Three initial cluster centers are set by software, and after four 

for large cavity data and six times for small cavity data

al and final cluster centers for large cavity data as well as

cavity data are shown in Table 4. 1 and Table 4. 3. Class member
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clustering results of large cavity model 

 

clustering results of small cavity model 

lassification by using 

hree initial cluster centers are set by software, and after four 

for large cavity data and six times for small cavity data, cluster centers 

for large cavity data as well as small 

members and distances to 
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cluster centers for the two cavity configuration data are shown in Table 4. 2 and Table 

4. 4 respectively. And 3-d visualization of clustering results for large and small cavity 

PD development stage is shown in Figure 4. 3  

 

Table 4. 1 Initial and final cluster centers for large cavity data 

Parameters 
Initial cluster centers Final cluster centers 

1 2 3 1 2 3 

X1 -1.6001 0.1899 0.1673 -1.2206 0.1431 -0.0266 

X2 -0.1147 1.6325 -1.1493 0.0425 0.8647 -0.4799 

X3 0.3170 -0.6432 -1.3449 -0.4968 -0.9915 -0.9623 

X4 0.4080 -0.3450 -0.1469 -0.0528 -0.4626 -0.2195 

X5 -0.2304 0.2310 0.2662 -0.0148 0.0544 -0.3948 

X6 -0.1416 0.1831 -0.4248 0.0203 0.1118 -0.3333 

 

Table 4. 2 Class membership and distance to cluster center for large cavity data 

Samples Clusters Distance Samples Clusters Distance Samples Clusters Distance 

1 1 0.4546 20 2 0.8046 39 3 0.7193 

2 1 0.5638 21 2 0.9337 40 3 0.8081 

3 1 0.4914 22 2 0.5971 41 3 0.6629 

4 1 0.4511 23 2 0.2771 42 3 0.5719 

5 1 0.5826 24 2 0.8944 43 3 0.6683 

6 1 0.9831 25 2 0.4827 44 3 0.6803 

7 1 0.5495 26 2 0.9874 45 3 0.2299 

8 1 0.3381 27 2 1.1149 46 3 0.5283 

9 1 0.5288 28 2 0.8622 47 3 0.6471 

10 1 0.6402 29 2 0.6523 48 3 0.6841 

11 1 0.7449 30 2 0.3846 49 3 0.5201 
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12 1 0.7778 31 2 0.5753 50 3 0.5933 

13 1 0.6898 32 2 0.6239 51 3 0.6816 

14 1 0.6014 33 2 0.5116 52 3 0.8342 

15 2 0.6772 34 2 0.8618 52 3 0.5768 

16 2 1.0815 35 2 0.7525 54 3 0.4191 

17 2 0.8033 36 2 0.7217 55 3 0.6745 

18 2 1.0274 37 2 0.8896 56 3 0.3686 

19 2 0.8716 38 2  0.8991 57 3 0.7007 

 

Table 4. 3 Initial and final cluster centers for small cavity data 

Parameters 
Initial cluster centers Final cluster centers 

1 2 3 1 2 3 

X1 -0.9431 0.3651 0.7854 -0.6121 0.1431 0.7716 

X2 0.2963 0.5312 -0.9124 0.5574 0.7647 -0.7062 

X3 0.2490 -0.2963 -0.8143 -0.1336 -0.2915 -0.8092 

X4 0.7879 -0. 6256 0.3055 0.8326 -0.4626 -0.0729 

X5 -0.5907 0.3935 0.0589 -0.4139 0.2544 -0.1354 

X6 -0.3168 0.3102 -0.7292 0.0203 0.2151 -0.6618 

 

Table 4. 4 Class membership and distance to cluster center for small cavity data 

Samples Clusters Distance Samples Clusters Distance Samples Clusters Distance 

1 1 0.4701 24 2 0.4088 47 3 0.5589 

2 1 0.5673 25 2 0.8916 48 3 0.5720 

3 1 0.4913 26 2 0.4790 49 3 0.1786 

4 1 0.4492 27 2 0.5555 50 3 0.4494 

5 1 0.8329 28 2 0.7173 51 3 0.5534 

6 1 0.9677 29 2 0.4757 52 3 0.6577 

7 1 0.4830 30 2 0.9547 53 3 0.2652 
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8 1 0.5514 31 2 0.7361 54 3 0.4781 

9 1 0.3671 32 2 0.6682 55 3 0.6447 

10 1 0.5352 33 2 0.5307 56 2 0.9942 

11 1 0.7001 34 2 0.7582 57 3 0.6916 

12 1 0.6614 35 2 0.3325 58 3 0.4936 

13 1 0.7452 36 2 0.4089 59 3 0.6684 

14 1 0.7680 37 2 0.5043 60 3 0.7365 

15 1 0.6702 38 3 0.6553 61 3 0.8197 

16 1 0.8134 39 2 0.5952 62 3 0.3151 

17 2 0.7532 40 2 0.7610 63 3 0.4631 

18 2 0.6810 41 2 0.7128 64 3 0.4290 

19 2 0.5208 42 2 0.6934 65 3 0.6831 

20 2 0.6158 43 3 0.8871 66 3 0.5169 

21 2 0.6247 44 2 0.9230 67 3 0.7323 

22 2 0.6100 45 3 0.9924 
   

23 2 0.5886 46 3 0.6560 
   

 

 

Figure 4. 3 3-D visualization of clustering results 
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4.2 Air-gap PD development stage identification considering cavity 

size 

Air-gap PD development stage identification is a typical pattern recognition problem. 

In this section, conventional Radial Basis Function (RBF) neural network and 

Random Forests which has not been introduced to deal with PD pattern recognition 

problem are used to identify different cavity size’s PD development stage.  

4.2.1 RBF Neural network 

Artificial neural network (ANN) is computational models inspired by animals' central 

nervous systems that are capable of machine learning and pattern recognition. Since 

ANN can achieve complex nonlinear mapping by interconnected group of artificial 

neurons, it is widely used in classification problem. An artificial neuron, which is a 

mathematical function characterizing biological neuron, is the constitutive unit in an 

artificial neural network. The artificial neuron receives one or more inputs 

(representing one or more dendrites) and sums them to produce an output 

(representing a biological neuron's axon). Usually the sums of each node are weighted, 

and the sum is passed through a non-linear function known as an activation function. 

The artificial neuron model is shown as follows. 
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Figure 4. 4 Artificial neuron model 
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m

k kj j

j

y xϕ ω
=

= ∑   (4.8) 

 

Multilayer feedforward network that consists of multiple layers of computational units 

is widely used. Each neuron in one layer has directed connections to the neurons of 

the subsequent layer. In many applications the units of these networks apply a sigmoid 

function as an activation function. Back propagation algorithm is a common method 

of training artificial neural networks. Since during training, weights in every layer 

need to be recalculated each time, multilayer feedforward network is hard to train and 

easy to trap in local minimum [26]. Hence, a lot of improvement has been done on the 

multilayer network and RBF network is one of the most sophisticated improved 

networks.  

 

RBF neural network, shown in Figure 4. 5, is a three layers’ network that uses radial 

basis functions as activation functions in the hidden layer and linear activation 

functions in the output layer. Gaussian function is commonly taken as the radial basis 

activation function, shown in 4.9. Compared to sigmoid function, shown in 4.10, the 

output of Gaussian function only depend on the distance from a center vector, when 
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the input is far from the center, very small output would be generated. This makes 

RBF network faster to train than multilayer feedforward network using sigmoid 

activation function.  

…

…

…

…

 

Figure 4. 5 structure of RBF neural network 

 2 2( ) exp[ ( ) / ]i ix x cϕ σ= − −   (4.9) 

 1( )
1 xx

e
ϕ −=

+
  (4.10) 

 

During the training, the center vector ic , width of the radial function iσ  in the 

hidden layer and the weight iω  connecting hidden layer and output layer need to be 

decided. RBF networks are typically trained by a two-step algorithm. In the first step, 

the center vectors can be estimated by k-means clustering method that is detailed in 

Section 4.1.2. Then width of the radial function is decided by the distance between 

center vectors. The second step determines the weights typically using 

Levenberg–Marquardt algorithm that combines the advantage of Gauss–Newton 

algorithm and the method of gradient descent[27].  
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4.2.2 Random forests 

It is natural and intuitive to classify a pattern through a sequence of questions, in 

which the next question asked depends on the answer to the current question. 

Decision tree is another kind of classifier which comes from this theory. It is 

a flowchart-like structure in which internal node represents test on an attribute, each 

branch represents outcome of test and each leaf node represents class label. A path 

from root to leaf represents classification rules. Decision tree is simple to understand 

and interpret and can be trained very fast. 

 

To maintain advantages of decision tree while increasing accuracy, random forests 

was proposed. Random forests is an ensemble learning method for classification (and 

regression) that operates by constructing a multitude of decision trees at training time 

and outputting the most popular class that each tree casts a unit vote for. The main 

principle behind this ensemble method is that a group of “weak learners” can come 

together to form a “strong learner”. Leo mentioned the advantages of random forests 

in [14]. ① It is unexcelled in accuracy among current algorithms. And the Accuracy 

is as good as Adaboost and sometimes better ② It runs efficiently on large data bases. 

It can be trained very fast and easily parallelized. ③ It can handle thousands of input 

variables without variable deletion. ④ It is resistant to over training. ⑤ It is 

relatively robust to the noise. 
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Figure 4. 6 Random forests 

In order to get strong learner, random forests is implemented as follows. 

① The training set for each tree is selected by Bootstrap aggregating method, also 

called bagging. The training subset is sampled from whole training dataset uniformly 

and with replacement. Typically, it accounts for 63.2% of the whole dataset. 

② Each tree is grown to as large size as possible without pruning based on CART 

algorithm. The optimal feature chosen to split a node is the one that can generate a 

child node with lowest Gini impurity, (n)I . 

 
2

0

( ) 1 ( / )
n

j

I n p j t
=

= −∑   (4.11) 

where ( / )p j t  is the probability of a specific class within the child node. Gini 

impurity should be zero if the node is all one class. In normal decision tree, the 

optimal feature to split a node is selected from all features. However, for random 

forests, the optimal feature is selected from a random subset of features. Typically, for 

a dataset with p  features, p  features are used in each split. 

③ The ultimate output of random forests is obtained by the majority vote of the each 

decision tree.       
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4.2.3 Identification results 

In order to identify different cavity size’s PD development stage, the WEKA 

implementation of RBF neural network and random forests are used in this work. The 

training inputs of the classifiers are the six dimensional statistical parameters that are 

derived from KPCA and the training outputs are PD development stage clustering 

results, initial discharge stage, weak discharge stage and pre-breakdown discharge 

stage, of large and small cavity which are labeled as L1, L2, L3, S1, S2 and S3. For 

either discharge model, two-times discharge development process data, which is 

shown in Table 4. 5, is used to train the two classifiers. And 10-fold Cross-validation 

method is employed to evaluate the classifier identification performance. 

 

Table 4. 5 Training dataset 

Development stage and cavity size L1 L2 L3 S1 S2 S3 

Sample quantity 29 50 39 32 54 44 

Total quantity 248 

 

RBF neural network has six input neurons, one output neuron and adjustable hidden 

neurons. After parameter modulation, the optimal hidden neuron number is six or nine 

that gives total identification accuracy of 87.90%. For random forests, decision tree 

number and feature number used in each split are adjustable. The identification results 

are detailed in Table 4. 7. Random forests classifier shows a better identification 

performance. When decision tree number is 250 and feature number is 3, random 
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forest got the best result that total accuracy is 93.15%. And the confusion table is 

shown in Table 4. 7.        

 

Table 4. 6 Identification results 

RBF neural network 
Total accuracy 

Random forests 
Total accuracy 

Hidden neurons features trees 

3 84.68% 2 50 91.53% 

4 85.08% 2 150 92.34% 

5 80.65% 2 250 92.74% 

6 87.90% 3 50 91.94% 

7 85.89% 3 150 92.74% 

8 86.69% 3 250 93.15% 

9 87.90% 4 50 91.13% 

10 85.08% 4 150 91.94% 

11 83.47% 4 250 91.34% 

 

Table 4. 7 Confusion table for 3 features and 250 trees 

Samples 
Confusion table 

Accuracy Total accuracy 

L1 L2 L3 S1 S2 S3 

L1 27 1 1 0 0 0 93.10% 

93.15% 

L2 1 47 1 0 1 0 94% 

L3 0 3 35 1 0 0 89.74% 

S1 0 0 2 30 0 0 93.75% 

S2 0 0 0 1 53 0 98.11% 

S3 0 0 0 2 1 41 93.18% 
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4.3 Summary 

This chapter presents the clustering results of large and small cavity PD development 

stage. In addition, RBF neural network and random forests are used to identify the 

air-gap PD development stage. 

 

1) Same PD development clustering results are obtained by Hierarchical clustering 

and K means clustering method. The PD development stage for large and small 

cavity model are both divided into three stages, initial discharge stage, weak 

discharge stage and pre-breakdown stage. 

2) For development stage identification of unknown air-gap PD samples, random 

forests classifier shows a better performance than RBF neural network. 
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Chapter 5 Conclusions 

In order to evaluate air-gap PD severity more comprehensively and accurately, the 

effect of cavity size on PD activity and PD development characteristics are studied in 

this work through experiments. Then statistical parameters are extracted from PRPD 

pattern, being carried out dimensions reduction with the help of KPCA. At last, 

software PASW Statistics and WEKA are used to implement the PD development 

stage division and identification. The main conclusions are drawn as follows. 

 

1) Large cavity PD possesses lower inception field. Higher cavity height contributes 

more to the lower inception field than larger cavity diameter. Large cavity PD 

possesses higher charge magnitude. Charge magnitude mainly depends on the 

cavity height. Large cavity PD possesses higher inception phase. Both cavity 

height and diameter have impact on the inception phase. PD happening large 

cavity is more harmful than that happening in small cavity.  

2) During Air-gap PD development process, charge magnitude variation of large and 

small cavity model both presents concave curve shape with respect to time. 

Besides, discharge phase continuously expends and the phase span of large cavity 

model is much narrower than that of small cavity model. When air-gap PD comes 

to the last stage, for small cavity model, the positive PD even can expand to the 

negative half cycle and vice versa. Cavity size should be distinguished in Air-gap 

PD severity diagnosis. 
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3) 27 dimensional statistical parameters from PRPD pattern are carried out 

dimension reduction through PCA and KPCA. KPCA keeps more feature 

information within six dimensional parameters than PCA.    

4) Same PD development clustering results are obtained by Hierarchical clustering 

and K means clustering method. The PD development stage for large and small 

cavity model are both divided into three stages, initial discharge stage, weak 

discharge stage and pre-breakdown stage. 

5) For development stage identification of different-size air-gap PD samples, total 

identification accuracy of random forests classifier is 93.15%, showing a better 

performance than RBF neural network does. 
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